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Abstract

In this thesis we analyze three different problems raised in the context of economic

networks. In Chapter 2 we study the problem of bargaining in networked markets,

and we make two contributions. First, we characterize market equilibria in our model,

and find that players’ equilibrium payoffs coincide with their degree of centrality in

the network, as measured by Bonacich’s centrality measure. This characterization

allows us to map in a simple way network structures into market equilibrium out-

comes, so that payoffs dispersion in networked markets is driven by players’ network

positions. Second, we show that the market equilibrium for our model converges to

the eigenvector centrality measure. We show that the economic condition to reach

convergence is that the players’ discount factor goes to one. In Chapter 3, we extend

the traditional discrete choice theory to the case of markets with a network structure.

Formally, we model the discrete choice process as the flow on a directed network,

which is assigned in an optimal way through the solution of a dynamic programming

problem. Combining these two elements we show that a demand system for hier-

archical or sequential decision processes can be obtained as the outcome of utility

maximization by a representative agent. Finally, in Chapter 4 we study the prob-

lem of price competition and free entry in networked markets subject to congestion

effects. In our analysis, we consider a network with multiple origins and a common

destination node, where each link is owned by a firm that sets prices in order to
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maximize profits, whereas users want to minimize the total cost they face, which is

given by the congestion cost plus the prices set by firms. In this environment, we

introduce the notion of Markovian Traffic Equilibrium to establish the existence and

uniqueness of a pure strategy price equilibrium, without assuming that the demand

functions are concave nor imposing particular functional forms for the latency func-

tions. Given this existence and uniqueness result, we apply our framework to study

entry decisions and welfare, and establish that in congested markets with free entry,

the number of firms exceeds the social optimum.
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Chapter 1

Introduction

This thesis belongs to the growing field of economic networks. In particular, we

develop three essays in which we study the problem of bargaining, discrete choice

representation, and pricing in the context of networked markets. Despite analyzing

very different problems, the three essays share the common feature of making use of

a network representation to describe the market of interest.

In Chapter 1 we present an analysis of bargaining in networked markets. We make

two contributions. First, we characterize market equilibria in a bargaining model, and

find that players’ equilibrium payoffs coincide with their degree of centrality in the

network, as measured by Bonacich’s centrality measure. This characterization allows

us to map, in a simple way, network structures into market equilibrium outcomes, so

that payoffs dispersion in networked markets is driven by players’ network positions.

Second, we show that the market equilibrium for our model converges to the so called

eigenvector centrality measure. We show that the economic condition for reaching

convergence is that the players’ discount factor goes to one. In particular, we show

how the discount factor, the matching technology, and the network structure interact

in a very particular way in order to see the eigenvector centrality as the limiting case

of our market equilibrium.
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We point out that the eigenvector approach is a way of finding the most central

or relevant players in terms of the global structure of the network, and to pay less

attention to patterns that are more local . Mathematically, the eigenvector centrality

captures the relevance of players in the bargaining process, using the eigenvector

associated to the largest eigenvalue of the adjacency matrix of a given network. Thus

our result may be viewed as an economic justification of the eigenvector approach in

the context of bargaining in networked markets.

As an application, we analyze the special case of seller-buyer networks, showing

how our framework may be useful for analyzing price dispersion as a function of

sellers and buyers’ network positions.

From a technical viewpoint, we show how simple ideas from the theory of linear

complementarity problems can be exploited in the context of networked markets and

Nash bargaining. In particular, we show that both models, the exchange network

and the seller-buyer networks, can be analyzed through the study of an associated

quadratic optimization problem. This optimization problem encapsulates all the

needed information to understand existence, uniqueness, and characterization of a

market equilibrium.

Chapter 2 discusses how to extend the discrete choice theory approach to the

case of networked markets. Formally, we provide an alternative way to model se-

quential decision processes, which is consistent with the random utility maximization

hypothesis and the existence of a representative agent. Our result is stated in terms

of a direct utility representation, and it does not depend on parametric assumptions.

One of the main innovations in this Chapter, is the idea of viewing the decision pro-

cess as the flow in a directed network, which is assigned in an optimal way through

the solution of a dynamic programming problem. Combining these two elements we
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show that a demand system for hierarchical or sequential decision processes can be

obtained as the outcome of utility maximization by a representative agent. We only

require the mild condition that the distribution of the unobserved components must

be absolutely continuous.

From an applied perspective we point out that our results can be useful for

carrying out welfare analysis in networked markets, where the standard discrete

choice theory may not apply. For example, our results can be applied to bundling

decisions, merger analysis, or compatibility among goods in networked markets.

Finally, in Chapter 3 we study the problem of price competition and free entry

in networked markets subject to congestion effects. In many environments, such

as communication networks in which network flows are allocated, or transportation

networks in which traffic is directed through the underlying road architecture, con-

gestion plays an important role. In particular, we consider a network with multiple

origins and a common destination node, where each link is owned by a firm that

sets prices in order to maximize profits, whereas users want to minimize the total

cost they face, which is given by the congestion cost plus the prices set by firms.

In this environment, we introduce the notion of Markovian traffic equilibrium to es-

tablish the existence and uniqueness of a pure strategy price equilibrium, without

assuming that the demand functions are concave nor imposing particular functional

forms for the latency functions. We derive explicit conditions to guarantee existence

and uniqueness of equilibria. Given this existence and uniqueness result, we apply

our framework to study entry decisions and welfare, and establish that in congested

markets with free entry, the number of firms exceeds the social optimum.
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Chapter 2

Bargaining and centrality in
networked markets

2.1 Introduction

Traditional models of economic exchange assume that all possible coalitions of agents

can meet and trade. However, due to social relationships, institutional, legal, and

physical barriers, it may be impossible for certain sets (pairs) of sellers and buyers

to communicate or trade with one another directly. For example, financial markets,

supply chains, international trade, and many other markets exhibit barriers limiting

the kinds of coalitions that agents may form.

A simple way of capturing the barriers to the exchange process is via the network

of connections/exchanges it allows for trading. Formally, in a given network the set

of nodes represent players and the set of links represent the possibilities of exchange

between any two players. Thus, the use of a network representation has the advantage

of showing in a simple way how the different types of barriers to trade determine

different market structures.

In this chapter we try to understand how the network topology affects players’
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payoffs. We focus on the following key question:

How does network topology determine players’ payoffs (market outcomes)?

We address the question by studying a simple bargaining model in networked

markets. Our model is based on random matching and the Nash bargaining solution,

and has the advantage of being simple, and most importantly, providing an explicit

connection between players’ network positions and equilibrium payoffs. Concretely,

we show that players’ equilibrium payoffs are uniquely determined by their degree of

centrality in the network, measured by Bonacich [1987]’s centrality measure.1

Our characterization shows how payoffs dispersion is driven by players’ network

positions, where players with a higher degree of centrality obtain higher payoffs than

players with lower centrality. Thus players’ positions determine their market power

in the trading process.

In addition, we note that our result can be seen as economic justification of

Bonacich’s measure in the context of bargaining in networked markets. 2

Our second contribution is the result that as long as the players’ discount factor

goes to one, the equilibrium payoff vector converges to the eigenvector centrality.

We point out that the eigenvector approach is a way to find the most central or

relevant players in terms of the “global” structure of the network, and to pay less

attention to patterns that are more “local”. Mathematically, the eigenvector central-

ity captures the relevance of players in the bargaining process, using the eigenvector

associated to the largest eigenvalue of the adjacency matrix of a given network.3

1For a survey of applications of Bonacich’s measure in economics we refer the reader to Jackson
[2008] and Goyal [2009].

2In fact, Bonacich [1987] proposes the measure as way to rationalize the outcome of lab experi-
ments in the context of bargaining in networks, but without considering an economic model.

3From an applied perspective, the eigenvector approach has been applied in sociology and in the
context of page rank analysis (see Langville and Meyer [2006]).
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Thus our result may be viewed as an economic justification of the eigenvector

approach in the context of bargaining in networked markets.

Formally, our convergence result relies on the specific relationship between, the

discount factor, the matching technology, and the network structure, and intuitively

it may be interpreted as follows: as long as players become more and more patient,

then the market equilibrium is driven by the eigenvector centrality.

We remark that our result is not the first establishing the connection between

Bonacich’s measure and the eigenvector centrality. 4 However, the main contribution

of our result is that it provides a simple and intuitive economic condition for under-

standing when Bonacich’s measure can be interpreted as the eigenvector centrality

As a particular case of our model, we analyze the problem of seller-buyer net-

works. For this specific environment, we show that a convex minimization problem

contains all the relevant information to study existence and uniqueness of a market

equilibrium. The characterization of a market equilibrium as the solution of a mini-

mization problem turns out to be useful in the context of networks with finitely many

sellers and buyers, where standard procedures of convex optimization may be imple-

mented. Furthermore, we exploit the bipartite structure of seller-buyer networks in

order to provide an explicit characterization of equilibrium payoffs in terms of sellers

and buyers’ positions. This characterization rationalizes why buyers with the same

valuation for a good may, in equilibrium, pay different prices.

For the case of the convergence of a market equilibrium to the eigenvector cen-

trality, we show that for sellers and buyers two mutually exclusive conditions can be

derived. The reason for this different condition is given by the bipartite structure of

4See for example Friedkin and Johnsen [1990], Friedkin [1991], Bonacich [1997], and Bonacich
and Lloyd [2001]
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seller-buyer networks.

It is worth remarking that our result of payoffs characterization as the conver-

gence of a market equilibrium to the eigenvector centrality extend the findings in

Corominas-Bosch [2004]. Concretely, our results fully characterize the sellers and

buyers’ payoffs in terms of networks positions without relying on a specific bargain-

ing protocol, whereas Corominas-Bosch [2004]’s results rely on the kind of bargaining

protocol implemented.

From a technical viewpoint, we show how simple ideas from the theory of linear

complementarity problems can be exploited in the context of networked markets and

Nash bargaining. In particular, we show that both models, the exchange network

and the seller-buyer networks, can be analyzed through the study of an associated

quadratic optimization problem. This optimization problem encapsulates all the

needed information to understand the existence, uniqueness, and characterization of

a market equilibrium.

2.1.1 Outline of the model

Our model may be described as follows. We consider an environment in which

any pair of players can trade if and only they are connected in the network. The

network represents the underlying social structure, where a link between two players

represents the opportunity to create one unit of surplus. Given the possibility of

jointly creating such surplus, both players (connected by a link) must agree on how

to split it. We assume that players split the surplus according to the symmetric Nash

bargaining solution.5

Borrowing ideas from the macroeconomics literature on search, we model the

5The symmetry assumption is made for simplicity, but it is not essential to our analysis. In fact,
all of our results extend to the case of using an asymmetric Nash bargaining solution.
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meeting process among players in dynamic and random way. In particular, at each

point of time, a link connecting two agents is randomly drawn.6Then the chosen

players must split the surplus (according to the Nash bargaining solution). An

important feature is that the disagreement points are determined endogenously. This

endogeneity captures the fact that if two chosen players do not reach an agreement,

then they can wait until the next period with the expectation of being drawn again

and so achieve a better payoff.7 On the other hand, if two players reach an agreement,

then they split the surplus and leave the market, and their positions in the network

are occupied by two new players.8 Players discount utilities using a common discount

factor.

This random exchange process induces a dynamical system which shows how

players’ payoffs evolve over time. In order to study the equilibrium of the exchange

process, we analyze its steady state, which we refer as a market equilibrium.

In this framework, it is easy to show the existence and uniqueness of a market

equilibrium. However, the most important property of our analysis is the fact that

a market equilibrium is exactly equivalent to the centrality measure proposed by

Bonacich [1987]. For this characterization, we provide a condition such that the

market equilibrium converges to the eigenvector centrality.

6It is worth remarking that the idea of drawing a link at random at each point of time was
early proposed in Stolte and Emerson [1977] in the context of experiments on exchange networks
in sociology. Thus our choice of the matching technology can be justified from an experimental
perspective.

7The endogeneity of the disagreement points allows us to link the Nash’ bargaining solution
with the strategic approach. See Binmore et al. [1986] for a detailed discussion about this technical
aspect.

8This assumption allows us to avoid strategic considerations that would be raised in the situation
that players cannot be replaced. Formally the assumption allows us to avoid dealing with repeated
games effects.
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2.1.2 Related work

The model we have described in the previous section is related to two different

branches of economic literature. Specifically, our model is related to macroeconomics

models of search and matching9, and models of bargaining in networked markets.10

Instead of describing the extensive literature on these different approaches, we shall

describe the paper by Manea [2011], which turns out to be the closest article to our

work.

The paper by Manea [2011] develops a model of strategic bargaining in networked

markets. In particular, Manea [2011] extends Gale [1987]’s strategic approach to

network environments. However, there are two important differences between our

paper and Manea [2011]’s approach. First, we analyze a networked market using

the symmetric Nash bargaining solution, whereas Manea [2011] proposes a strategic

model where the extensive form of the bargaining turns out to be critical. Formally,

in Manea [2011] there are many possible sub game perfect Nash equilibria supporting

a market outcome. Because we use the Nash bargaining solution we get rid of this

multiplicity problem.

The second and most important difference, is that our approach allows us to

give a simple and explicit expression for the equilibrium payoff vector in terms of

Bonacich [1987]’s centrality measure. Furthermore, we are able to derive an economic

condition to relate Bonacich’s measure with the eigenvector centrality in the context

9The idea of combining random matching and Nash bargaining was first proposed in the macroe-
comomic literature on search. The first papers proposing this approach were Diamond and Maskin
[1979] and Diamond [1982]. A survey of this literature can be found in Rogerson et al. [2005].

10Two early papers that analyze markets using a network representation are Kranton and Mine-
hart [2001] and Calvo-Armengol [2001] Following Kranton and Minehart [2001] and Calvo-Armengol
[2001]’s ideas, the following papers study networked markets: Corominas-Bosch [2004], Kleinberg
and Tardos [2008], Nguyen [2011a,b], Chakraborty et al. [2011], Manea [2011], Elliott [2012]. All
these papers pay attention to an array of different issues, such as strategic bargaining, imbalance
outcomes, and inefficiencies.
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of bargaining in networked markets. Neither of these results are in Manea [2011].

The rest of the chapter is organized as follows. Section 4.2 describes the basic

model of exchange in networks. Section 4.3 analyzes the relationship between our

market equilibrium and the eigenvector centrality. Section 4.4 studies the specific

case of sellers-buyers networks. Section 2.5 concludes. Definitions and proofs are

relegated to Appendix A.1 .

2.2 The model: exchange networks

Let N = {1, . . . , n}, with n ≥ 3, being the set of agents, and let i and j denote

typical members of this set. Let E ⊂ N×N be the set of connections (relationships)

among agents in N . Given the sets N and E, we define a networked market by the

undirected graph G = (N,E). We identify the network G with its adjacency matrix

G = (gij), where gij = 1 if there is a link between i and j, and gij = 0 otherwise. We

denote by GN the set of all possible networks given the set of agents N . In particular,

a link ij ∈ G is viewed as the ability of agents i and j to generate a unit of surplus.

We shall assume that any pair of agents in the network G, can be connected through

a collection of links in E. Formally, we shall assume that any network G ∈ G is

strongly connected.

For each player i ∈ N , we define the set of neighbors as NG
i = {j ∈ N : ij ∈ G},

which describes the set of agents with which player i can meet and trade. We denote

the cardinality of NG
i as di = |NG

i |. We refer to di as agent i’s degree, where the

diagonal matrix D contains the degree of all players, i.e., its elements are given by

the di.

In order to analyze the exchange process, we introduce the following dynamic
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bargaining process. Each period of time t = 0, 1, . . . , a link ij ∈ G is selected

randomly with an exogenous probability πij. The probability πij is the probability

that agents i and j are drawn to trade. We assume the πijs are uniform, with

πij = π = 1
E

for all ij ∈ G. We shall refer to the probability measure π as the

matching technology.11

Once the link ij is drawn, players i and j split the generated surplus accordingly

to the Nash bargaining solution. Players discount payoffs with a common discount

factor 0 < δ < 1.

From the previous description, the dynamical process can be summarized as fol-

lows. At time t players i and j, connected through link ij, are chosen with probability

π to bargain over one unit of surplus. If they do not reach an agreement, each stays

in the market until t + 1, waiting for a new opportunity to trade. In the case that

both players reach an agreement at time t they split the surplus using the Nash

solution. We point out that the disagreement points for players i and j correspond

to they expected utility if they remains in the market until period t+ 1. In order to

analyze a steady state situation, we assume that when a pair of players i and j reach

an agreement, they leave the market, and they are replaced in the same positions by

two new players.

In a steady state situation, let Vi be player i’s steady state expected payoff of

being in the market at time t. Then if at time t the pair of players i and j fail to

reach an agreement, they remain in the market until time t+ 1, and from the point

of view of time t, disagreement results in expected utilities δVi and δVj.

Formally, a steady state is represented by the following system of linear equations:

11We point out that this type of matching technology on networks was early proposed in the
sociological literature under the label of 1-exchange rule. For a discussion and applications of the
1-exchange rule on exchange networks we refer to Willer [1999].
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Vi =
∑
j∈NG

i

π

2
(1− δVj + δVi) + (1− diπ)δVi, ∀i. (2.1)

The explanation for equation (2.1) is the following. When players i and j are

drawn to trade, they split the surplus, and thanks to the Nash bargaining solution,

player i gets 1
2
(1 − δVj + δVi). Because the meeting between players i and j occurs

with probability π, we find that the expected payoff for player i is π
2
(1− δVj + δVi).

Adding up over all j ∈ NG
i , we find that player i’s expected value of being drawn at

time t is
∑

j∈NG
i

π
2
(1− δVj + δVi). The second term is due to the fact that at time t

with probability (1− diπ), player i has to wait till period t+1 for a new opportunity

to trade. The expected value of this event is (1− diπ)δVi. Combining these two

expected values we get expression (2.1).

Equation (2.1) can be written in a compact way using matrix notation. In par-

ticular, we get the following

(1− δ)[I + πκA]V =
π

2
d, (2.2)

where A = D + G, a n-square matrix, and d = (di)i∈N the n−dimensional de-

gree vector. The parameter κ is defined as κ = δ
2(1−δ) . Finally V = (Vi)i∈N is an

n−dimensional vector, which captures players’ payoffs.

Expression (2.2) may be rewritten as:

[I + πκW]V = ĉ, (2.3)
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where W ≡ [I + πκD]−1G and ĉ = 1
(1−δ) [I + πκD]−1c = 1

2(1−δ)W1, with 1 a vector

of ones. It is worth nothing that the matrix W can be interpreted as a weighted

adjacency matrix.

We now are ready to give a definition of a market equilibrium for the networked

market just described.

Definition 1 A payoff vector V ∗ is a market equilibrium (ME) if it solves (2.3) with

V ∗ ≥ 0.

In other words, Definition 1 establishes that a nonnegative solution of (2.3) is an

ME. The intuition for V ∗ ≥ 0 is that players can afford zero payoffs if they decide

not to participate in the market. Thus the non negativity condition for a ME can

be interpreted as an individual rationality condition.

Our first task, is to establish that such an ME exists. In order to analyze the

existence and uniqueness of a ME, we borrow basic ideas from the theory of linear

complementarity problems (Cottle et al. [2009]). The application of this technique is

based on the the observation that a ME can be formulated as the following collection

of linear inequalities:

V ≥ 0 (2.4)

(I + πκW)V − ĉ ≥ 0 (2.5)

V T ([I + πκW]V − ĉ) = 0 (2.6)

Equations (2.4)-(2.6) describe an ME as a linear complementarity problem (LCP),
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where a vector V is a solution to a ME, if and only if V satisfies (2.4)-(2.6) simulta-

neously. For short, we refer to (2.4)-(2.6) as LCP(W, ĉ).

Proposition 1 below states the simple but important fact that the ME can be

analyzed as the solution of LCP(W, ĉ).

Proposition 1 V ∗ is an ME if and only if V ∗ solves the LCP(W, ĉ).

The main advantage of studying the equilibrium problem through LCP is the

powerful battery of results of existence and uniqueness of solutions. In fact, our next

result exploits such connection.

Proposition 2 There exists a unique ME which is given by the solution of the fol-

lowing optimization problem:

minV {1

2
V TMV − cTV } (2.7)

s.t. V ≥ 0,

with M = (1− δ)[I + πκD][I + πκW].

Three remarks about Proposition 2 are in order. First, we point out that Proposition

2 not only establishes the existence and uniqueness of an ME, but also provides an

algorithm to compute the equilibrium payoffs. In particular, the convex minimization

problem (2.14) can be used to analyze changes of the network topology, the surpluses,

and of the matching technology. Second, Proposition 2 can be extended to deal with

weighted networks, and for the case of heterogeneous discount factors δ. Finally, we
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stress that despite of its apparently similarity with the sort of problems analyzed in

Bramoulle et al. [2011], their results do not apply to our problem.

Our second task is to establish the connection between network topologies and

equilibrium payoffs. In order to provide a characterization of the equilibrium payoffs

in terms of network topologies, we need to introduce the notion of centrality measure.

Our next definition introduces Bonacich’s centrality measure.

Definition 2 (Bonacich [1987]) Let G ∈ GN , and let H be its (non negative)

weighted adjacency matrix. Let µ ∈ R be such that K(µ,H) = [I − µH]−1 is well

defined and nonnegative. Let θ ∈ Rn
+. The vector of (weighted) Bonacich centralities

of parameter µ for the matrix H is given by:

b(µ,H; θ) = K(µ,H) ·H · θ.

In Definition 2, the parameter µ reflects the degree to which a player’s payoff is a

function of the payoffs of those to whom he is connected. If µ is positive, b(µ,H; θ) is

a conventional centrality measure in which each player’s payoff is a positive function

of the payoffs of the players with which it is in contact. When µ is negative, each

player’s payoff is reduced by the higher payoffs to those to which it is connected.

Intuitively, we can think of the magnitude of the µ as the degree to which distant

links are taken into account. If µ = 0, then b(µ,H; θ) is proportional to the degree

of player i, and the number of others that with it is connected, regardless of their

centralities. As the magnitude of µ increases, the centralities of these other players

are taken into account, i.e., as the magnitude of µ increases, b(µ,H; θ) captures local

and global network effects in the bargaining process.
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We point out that Bonacich’s measure was first applied in economics by Ballester

et al. [2006] in the context of network games. In sociology, Bonacich’s measure is

widely used in empirical and experimental work.12 To the best of our knowledge, in

the context of bargaining in networked markets, no previous paper has characterized

the equilibrium in terms of Bonacich’s measure

Theorem 1 The equilibrium payoff vector V ∗ satisfies:

V ∗ = b(−πκ,W; ĉ), (2.8)

where ĉ = 1
2(1−δ)W · 1.

In order to explain the economic intuition of Theorem 1, we may rewrite (2.8) as

follows:

V ∗ = ĉ− πκWV ∗, (2.9)

V ∗ = [I− πκW]ĉ︸ ︷︷ ︸
Local Effect

+ (πκ)2W2V ∗︸ ︷︷ ︸
Global Effect

. (2.10)

Equations (2.9) and (2.10) show how players’ payoffs depend on the whole network

structure. For example equation (2.9) shows how players’ payoffs depend negatively

on the amount of share of surplus that players must give to their direct neighbors. In

addition, Equation (2.10) shows that the payoff characterization in Theorem 1 can

be decomposed into local and global effects. The term [I− πκW]ĉ shows the effect

of direct links on players’ payoffs. However, the interesting term is (πκ)2W2V ∗,

12See Jackson [2008] and the references therein.
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which shows how the indirect links have a positive effect on players’ payoffs. For

example, if we consider player i, then (πκ)2W2V ∗ shows how the links of players in

the set NG
i (player i’s neighbors) have a positive effect on his equilibrium payoff. The

intuition for the global effect captured by (πκ)2W2V ∗, is that from player i’s point

of view, it is better if her neighbors in j ∈ NG
i are connected to players that demand

a large share of the surplus. For example, we can think of the situation where the

set of n buyers is connected to one common seller, i.e., the market is supplied by a

monopolist. It follows that buyers do not have connections to other possible sellers,

so the monopolist can exploit this fact in the bargaining process demanding a large

share of the surplus. In this case, Theorem 1 predicts that the monopolist gets almost

all the surplus.

In the previous analysis, the key element for deriving our intuitions is the negative

term −πκ. Concretely, the fact that −πκ < 0 means that V ∗ is reduced when the

connections of any player are themselves central (equation (2.9)), but increased by

the centrality of those at distance two (equation (2.10)), whose centrality has reduced

the centrality of those at distance one. Thus, a player can have bargaining power

because his neighbors have no options (alternative players to trade) or because his

neighbors are connected to players with a high degree of centrality.

In order to understand the utility of our caractherization, let us consider the

network in Figure 2.1, which consists of seven players and six links. Because we are

assuming that the matching technology is uniform, we get π = 1
6
. For the case of

δ = 0, we get that πκ = 0, and the equilibrium payoffs are V ∗1 = V ∗5 = V ∗7 = 0.08 and

V ∗2 = V ∗4 = V ∗6 = 0.17, and V ∗3 = 0.25. In this case players’ payoffs are determined

only for the local effect in payoffs (equation 2.10), and player 3 obtains the highest

payoff. Thus for players highly impatience (δ ≈ 0), they only get benefits from their
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direct links, and the network topology does not play any role. However, for values of

δ in the open interval (0,1), payoffs behave in a different way. In fact, for δ = 0.99,

we get that πκ > 0, which implies V ∗5 = V ∗7 = 0.41, V ∗2 = V ∗4 = V ∗6 = 0.55, and

V ∗3 = 0.44. In other words, for δ = 0.99 we get

V ∗2 = V ∗4 = V ∗6 > V ∗3 > V ∗5 = V ∗7 .

The reasons for this result are as follows. It is easy to see that players 5 and 7

are at disadvantage because they only can trade with players 4 and 6 respectively.

This implies that players 5 and 7 have no possibility of demanding a large amount

of the surplus, because players 4 and 6 have alternative trading partners. Similarly,

players 4 and 6 can exploit this fact, getting a large amount of the available surplus.

For the case of player 3, all of his neighbors (players 2, 4, and 6) have an alternative

trading partner from which they can get a large amount of surplus. Thus player 3 in

order to trade to with their neighbors, must be available to demand a small amount

of surplus. In sum, when players are patient (0 < δ < 1) they can take advantage of

the whole network structure, incorporating in their payoffs not only the local effects

but also the global effects.



19

1	  

2	  

3	   6	  4	  5	   7	  

Figure 2.1: A network with seven players and six links

2.3 Market equilibrium and eigenvector centrality

The example in Figure 2.1 shows how players’ equilibrium payoffs depend on the value

of the discount factor δ. In particular, example 2.1 shows that when the discount

factor δ goes to one, players’ payoffs depend on the whole network structure.

In this section we show that a general conclusion can be obtained for the case

when the discount factor δ goes to one. In order to estate our convergence result, we

need to introduce some notation. We denote the maximum eigenvalue (in absolute

value) of the matrix A by ρ(A). Let e and q be the left and right eigenvectors

associated to ρ(A).

We remark that, thanks to Perron-Frobenius’ Theorem (Ch. 8, Horn and Johnson

[1990]), we get that ρ(A) > 0, and the eigenvector e is strictly positive and uniquely

determined (up to constant).

Finally, we introduce the notion of eigenvector centrality that is considered in our

analysis.
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Definition 3 Let G ∈ GN , and let H be a non negative matrix induced by the

network G. The eigenvector centrality e(H) of the matrix H is its right eigenvector

associated to the spectral radius ρ(H).

The previous definition states that the eigenvector centrality is the right eigen-

vector associated to the largest eigenvalue of a matrix H. In terms of our problem,

the matrix H is given by the matrix A, which is just the adjacency matrix plus the

diagonal matrix D.

Now we are ready to establish the main result of this section.

Theorem 2 Let V ∗ be a market equilibrium, and let W ∗ ≡∑n
i=1 V

∗
i . Then

lim
δ↑ 1

πρ(A)/2+1

V ∗

W ∗ = e(A).

We note that Theorem 2 shows the explicit relationship among π, the discount

factor δ and the network G. In particular, the condition δ −→ 1

πρ(A)/2+1
provides an

economic condition to establish the connection between our ME given by Bonacich’s

measure and the eigenvector centrality. Thus Theorem 2 has the economic inter-

pretation that as long as the discount factor goes to one the ME is driven by the

eigenvector centrality.

We remark that the result in Theorem 2 has been established in sociology by

Friedkin and Johnsen [1990], Friedkin [1991], Bonacich [1997], and Bonacich and

Lloyd [2001]. However, all of these results rely on parametric assumptions without

an economic foundation, which makes difficult the interpretation of when Bonacich’s

measure can be interpreted as the eigenvector centrality. Thus our main contribution
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is that we show that a simple economic condition on the discount factor contains all

the relevant information about the relationship between Bonacich’s measure and the

eigenvector approach. Furthermore, our result can be seen as an economic justifica-

tion to the eigenvector centrality.

Proposition 3 below shows that for the case of regular networks a sharper condi-

tion may be obtained, which establishes that the number of players plays a role in

the convergence. We recall that a network G is called regular of degree d if di = d

for all i ∈ N .

Proposition 3 Let G be a regular network of degree d. Then limδ↑ 1
1/n∗+1

V ∗

W ∗
= e(A),

where n∗ = n
2
.

The previous result shows how the number of players, in the case of regular

networks, plays an important role. In particular, for the case of networks with

finitely many players, we may expect 1
n∗

to be close to zero, so that the condition

δ −→ 1
1/n∗+1

can be viewed as δ −→ 1.

2.4 Seller-buyer networks

In this section we specialize the previous analysis to the case of seller-buyer networks.

In particular, we assume that the set of agents can be partitioned into two disjoint

sets, where the set of sellers and buyers are denoted as S and B, respectively. We

assume that sellers own a unit of an indivisible good. The buyers value the good at

1, and each seller s charges a price ps in order to sell the good. The price that seller
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s receives when he sells the good to buyer b is given by

psb =
1

2
(1− δVb + δVs) ∀b ∈ NG

s , (2.11)

and buyer b gets a utility of

1− psb =
1

2
(1− δVs + δVb) ∀s ∈ NG

b . (2.12)

Using expressions (2.11) and (2.12), the system of linear equations for the seller-

buyer network can be written as:

Vs =
∑
b∈NG

s

πpsb + (1−
∑
b∈NG

s

dsπ)δVs, ∀s ∈ S, (2.13)

Vb =
∑
s∈NG

b

π(1− psb) + (1−
∑
s∈NG

b

dbπ)δVb, ∀b ∈ B.

In order to write the equilibrium problem using matrix notation we define the

matrix G as follows:  0S GS

GB 0B


where 0S is a zero matrix with dimension |S| × |S|, the matrix GS has dimension

|S| × |B|, the matrix 0B has dimension |B| × |B|, and GB has dimension |B| × |S|.

The matrices GS and GB show the links that sellers have with buyers and the

links that buyers have with sellers, respectively. In addition, we define the following

matrices Wl = [Is + πκGl]
−1Gl for l = S,B. Finally we rewrite the vectors V and
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c as V = [V ′S, V
′
B]′ and c = [c′S, c

′
B]′ respectively.

Using previous notation we can specialize Proposition 2 to the case of seller-buyer

networks.

Proposition 4 There exists a unique ME which is given by the solution of the fol-

lowing optimization problem:

minVS ,VB

{
1

2

∑
l=S,B

[V ′lMlVl − c′lVl] +
1

2
[πκV ′SGSVB + V ′BGBVS]

}
s.t. VS, VB ≥ 0,

with Ml = (1− δ)[Il +πκDl]
−1[Il +πκWl] , and Wl = [Il +πκDl]

−1Gl for l = S,B.

The previous proposition shows how the specific seller-buyer structure is cap-

tured by the minimization problem characterizing the ME. The main advantage of

this characterization is that for the case of large networks, we can find the equilib-

rium solving the convex problem associated to it. Furthermore, comparative static

exercises can be carried out using this characterization.

Combining the uniqueness of an ME with the fact seller s’s price may be defined

as ps =
∑

b∈NG
s
πpsb, we get the following straightforward corollary to Proposition 4.

Corollary 1 Let ps =
∑

b∈NG
s
πpsb be the expected price that seller s receives from

selling his good. Then there exists a unique price vector p∗ = (p∗s)s∈S.

Our next task is to characterize sellers’ and buyers’ payoffs as a function of the

network structure. Our next proposition shows how the specific structure of seller-
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buyer network, allows us to characterize an ME in terms of two vectors, which capture

sellers and buyers’ payoffs, respectively.

Proposition 5 Let V ∗S and V ∗B be the sellers and buyers equilibrium payoff vectors

respectively. Then

V ∗S = b(α,WSB; θSB),

V ∗B = b(α,WBS; θBS),

where α = (πκ)2,WSB = WS ×WB, WBS = WB ×WS, and θSB = ĉS − πκWSĉS,

θBS = ĉB − πκWSĉS, with ĉl = [Il + πκGl]
−1cl for l = S,B.

Proposition 5 characterizes sellers’ (respectively buyers’) payoffs in terms of their

network positions. Concretely, Proposition 5 shows how an ME is determined by

Bonacich’s centrality measure. Thus, for the particular case of seller-buyer networks,

Bonacich’s measure can be viewed as a measure of market power, which is driven by

sellers and buyers’ positions.

Example 1 Let G be the sellers-buyers network displayed in Figure 2.2. Let δ =

0.99 be the value for the discount factor. From Proposition 5, we get the following

equilibrium payoffs Vs1 = 0.5, Vs2 = 0.48, Vb1 = 0.48, and Vb2 = 0.5. The equilibrium

payoffs show how seller s1 and buyer b2 obtain a higher (expected) share of the surplus.

The difference in payoffs is driven by players’ positions. In particular, seller s1 and

buyer b2 can exploit buyer b1 and s2 respectively. In fact, they use their local monopoly

power to extract a higher share of the surplus. In terms of network positions seller

s1 and buyer b2 are identical, so that at equilibrium they get the same payoffs. A
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s1	  

b1	   b2	  

s2	  

Figure 2.2: A network with two sellers and two buyers

similar reasoning applies to the case of seller s2 and buyer b1, which in terms of

network positions are identical.

Example 2 Let us consider the network displayed in Figure 2.3. The main feature

of this network is that each seller (buyer) is connected to the two buyers (sellers)

on the other side. Let us assume δ = 0.99. Then the equilibrium payoffs are given

Vs1 = Vs2 = Vb1 = Vb2 ≈ 0.5. The equilibrium payoffs represent the fact that in

terms of network positions, sellers and buyers do not have advantage. In terms of

Proposition 5, the equilibrium payoffs show that sellers and buyers have the same

centrality.
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s1	  

b1	   b2	  

s2	  

Figure 2.3: A network with two sellers and two buyers

It is worth emphasizing that Examples 2.2 and 2.3 show how our framework

differs from the approach Corominas-Bosch [2004]. The main difference is the fact

that our results do not rely on a specific protocol in the bargaining process, and,

most importantly, our approach and results highlight the relevance of sellers and

buyers’ network positions.

2.4.1 Seller-buyer networks and eigenvector centrality

In this subsection we show how our convergence result in Theorem 2 may be spe-

cialized to the case of seller-buyer networks exploiting the bipartite structure of the

network.

Before establishing our result, we need to introduce some notation. Let pS and

qS be the right and left eigenvectors of WS respectively. Similarly, let pB and qB

be the right and left eigenvectors of WB, respectively. Let ρ(WS) and ρ(WB) be

the largest eigenvalue of WS and WB, respectively.

We now are ready to state our convergence result.
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Proposition 6 Let V ∗S be the sellers’ equilibrium payoff vector, and let W ∗
S =

∑n
i∈S V

∗
i .

Then

lim
δ↑ 1

πρ(WS)/2+1

V ∗S
W ∗
S

= e(WS).

Similarly, let V ∗B be buyers’ equilibrium payoff vector with W ∗
B =

∑
j∈B V

∗
j . Then

lim
δ↑ 1

πρ(WB)/2+1

V ∗B
W ∗
B

= e(WB).

We note that the conditions for convergence of sellers and buyers’ payoffs are

mutually exclusive. The reason for this is because, in general, ρ(WS) 6= ρ(WB).

However, for the particular case of a complete seller-buyer network network with

|S| = |B|, it holds that WS = WB, which implies that ρ(WS) = ρ(WB). From this

observation, the following corollary is a direct consequence of Proposition 6.

Corollary 2 Let G be a complete network with |S| = |B|. Let W ∗
S =

∑
i∈S V

∗
i and

W ∗
B =

∑
j∈B V

∗
j . Then

lim
δ↑ 1
πρ/2+1

V ∗S
W ∗
S

= lim
δ↑ 1
πρ/2+1

V ∗B
W ∗
B

= e(W),

with ρ ≡ ρ(WS) = ρ(WB) and W = WS = WB.
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2.5 Conclusions

This chapter presents a simple model of bargaining in networked markets. We present

two main results. First, we show that the equilibrium payoffs are given by Bonacich

[1987]’s centrality measure. Our result may be viewed as an economic justification

of this measure in the context of bargaining in networked markets.

Our second contribution is the proof that the market equilibrium converges to the

eigenvector centrality as long as the discount factor goes to one. Our result highlights

the specific connection between the network structure, the matching technology,

and the discount factor, and provides an economic interpretation to the eigenvector

centrality.
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Chapter 3

A representative consumer
theorem for discrete choice models
in networked markets

3.1 Introduction

In this Chapter, we propose a way of modeling sequential discrete decision processes,

which is consistent with the random utility hypothesis and the existence of a repre-

sentative agent. In particular, our approach is based on a network representation for

the consumers’ decision process and dynamic programming.1Combining the afore-

mentioned elements, we show that a demand system for hierarchical or sequential

decision processes can be obtained as the outcome of the utility maximization by

a representative agent. Our result differs from previous findings in two important

aspects. First, our result is in terms of a direct utility representation, whilst most of

1The idea of analyzing discrete choice models using a network representation is also considered
in Daly and Bierlaire [2006]. They derive their results under the assumption that the random
variables are generalized extreme value variables. Despite using a network representation, our main
result in section 2 differs from Daly and Bierlaire [2006]’s approach in two important aspects. First,
our result does not require the assumption of generalized extreme value random variables. Second,
and most importantly, we model in an explicit way the recursive choice process.
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results available in discrete choice theory are based on an indirect utility approach.2

Second, and most important, our result does not depend on parametric assumptions

concerning the random components associated to the utilities of different choices.

From a technical point of view, we need to assume that the random variables are

independent within any bundle (path) of goods, but we do not rule out the possibility

that the random components can be correlated among different bundles (paths).

Thus, given its generality, our approach and result can be useful in the study of

demand systems with complex substitution patterns among the utilities associated

with different choices.

An important feature of our result is that when we assume the specific double

exponential distribution for the unobserved components, we show that the nested

logit model can be seen as a particular case of our approach. In particular, we

show that a sequential logit under specific parametric constraints coincides with

the nested logit model(McFadden [1978a,b, 1981]).3 This result generalizes previous

findings in Borsch-Supan [1990], Konning and Ridder [1993], Herriges and Kling

[1996], Verboven [1996], Konning and Ridder [2003], and Gil-Molto and Hole [2004].

All of these papers impose parametric constraints in order to be consistent with the

random utility maximization. Our result shows that such constraints can be avoided

using the assumption of sequential decision making.

Finally, from an applied perspective we point out that our results can be useful to

carry out welfare analysis in networked markets, where the standard discrete choice

theory may not apply. For example, our results can be applied to bundling decisions,

2For a survey of these results see Anderson et al. [1992].
3It is worth pointing out that the nested logit model does not need to be interpreted as a

sequential decision process. In fact, its standard justification is based on preference correlation
structure (see, e.g., Anderson et al. [1992]).
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merger analysis, or compatibility among goods in networked markets.4

The chapter is organized as follows: section 3.2 presents the model, section 3.3

presents the main result of this chapter, and subsection 3.3.1 discusses the logit case.

Finally, section 3 applies our demand framework to study price competition and

merging in the context of networked markets. Appendix B.1 contains the proofs.

3.2 The model

Let G = (N,A) be an acyclic directed graph with N being the set of nodes and A

the set of links respectively. Without loss of generality, we assume that the graph

G has a single origin-destination pair, where o and t stand for the origin node and

destination node respectively.

We identify the set N as the set of decision nodes faced by consumers, and the

set A is identified as the set of the available goods in this economy, i.e., the good a is

represented by the link a ∈ A.5 Thus, starting at the origin o, consumers can choose

bundles of goods through the choice of links on A. The destination t is interpreted as

the node that is reached once consumers have chosen their desired bundles of goods,

and then they leave the market.

For each good a ∈ A, consumers’ valuation is represented by θa ∈ R++. Similarly,

pa ∈ R+ is the price associated to good a. Thus, the utility for good a may be written

as ua = θa − pa. We assume that there exists a continuum of users with unitary

mass. According to this, let d = (da)a∈A a non-negative flow vector, where da ≥ 0

denotes the demand for good a. Any flow vector d must satisfy the flow conservation

4For a survey of networked markets in economics see Economides [1996].
5The set A can also be called the set of choices.
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constraints ∑
a∈A−i

da =
∑
a∈A+

i

da ∀i ∈ N, (3.1)

where A−i denotes the set of links ending at node i, and A+
i denotes the set of links

starting at node i. The set of feasible flows is denoted by D.

It is worth emphasizing that in this chapter we interpret each path in the graph

as a bundle of goods.6 This interpretation allows us to see the goods within a bundle

as complements, and different paths can be viewed as substitute goods.

In order to introduce heterogeneity into the model, we assume that consumers

are randomly drawn from a large population. According to this, the random utility

ũa may be defined as

ũa = ua + εa ∀a ∈ A+
i , i ∈ N,

with {εa}a∈A being a collection of absolutely continuous random variables with

E(εa) = 0 for all a. The random variables εa take into account the heterogeneity

within the population. In particular, these random variables represent the variabil-

ity of the valuation θa.

For all node i 6= d, we assume that the random variables εa ∈ A+
i are independent

with the random variables εb ∈ A+
ja

. In other words, we rule out the possibility that

random variables within the same path can be correlated. Nonetheless, for all i 6= d

we allow for correlation among the random variables εa ∈ A+
i . Furthermore, we allow

for correlation among the random variables in different paths.

6We point out that the standard discrete model can be viewed as particular case of our approach.
In fact, we can define a network with the set of nodes N consisting of just two nodes, where one
node is the source and the other one is the sink, and a collection of |A| parallel links representing
the goods available in the market.



33

In this networked market, consumers choose the optimal bundle of goods in a

recursive way. Concretely, at each node consumers choose a good considering their

utility plus the continuation value associated to their choices. Formally, at each node

i 6= d we define the random utility Ṽa as

Ṽa = Va + εa (3.2)

with Va = ua + ϕja(V ) and ϕja(V ) ≡ E(maxb∈A+
ja
{Vb + εb}), where ja denotes that

node ja has been reached using the link a.

Regarding equation (3.2) three remarks are important. First, thanks to the as-

sumption of independence among the εa along the same path, the terms εa and

ϕja(·) are independent. Second, equation (3.2) makes explicit the recursive nature

of the consumers’ choice process. In particular, consumers reaching node i observe

the realization of the random variables Ṽa, and choose the link a ∈ A+
i with the

highest utility, taking into account the current utility ua plus the continuation value

ϕja(V ).7The third observation is that (3.2) makes explicit the assumption that a con-

sumer makes sequential choices. In other words, consumers maximize utility solving

a dynamic programming problem.8

From previous discussion, it follows that the expected flow xi entering node i

splits among the goods a ∈ A+
i according to

7In the discrete choice literature the functions ϕi(·) are known as the inclusive values at node
i 6= d (See McFadden [1978a,b, 1981], Anderson et al. [1992]).

8We point out that the idea of modeling discrete choices through a sequential process was first
proposed by Ben-Akiva and Lerman [1985] in order to justify the nested logit model. Another
paper exploiting the idea of sequential discrete choice models to analyze price competition among
multi-product firms is the work by Anderson and de Palma [2006].
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da = xiP(Va + εa︸ ︷︷ ︸
Ṽa

≥ Vb + εb︸ ︷︷ ︸
Ṽb

, ∀b ∈ A+
i ). (3.3)

This recursive discrete choice model generates the following stochastic conserva-

tion flow equations

xi =
∑
a∈A−i

da. (3.4)

Using a well known result in discrete choice theory9, equations (3.3)-(3.4) may

be expressed in terms of the gradient of the function ϕi(·). In particular, the conser-

vation flow equations (3.3) and (3.4) may be rewritten as

 da = xi
∂ϕi(V )
∂Va

∀a ∈ A+
i ,

xi =
∑

a∈A−i
da,

(3.5)

where ∂ϕi(V )
∂Va

= P(Va + εa ≥ Vb + εb, ∀b ∈ A+
i ).

Following the previous description, it is easy to see that consumers’ choice process

can be expressed as a Markov chain. In particular, once a consumer reaches a specific

node, say node i, then he must choose among the goods available in the set A+
i .

The following definition formalizes the notion of Markovian assignment in a net-

worked market.10

9For details see Ch. 2 in Anderson et al. [1992].
10We point that an equilibrium notion called Markovian traffic equilibrium has been introduced in

Baillon and Cominetti [2008] and extended to oligopoly pricing problems in Melo [2011]. However,
neither Baillon and Cominetti [2008] nor Melo [2011] analyze the problem that is studied in this
chapter.
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Definition 4 Let p ≥ 0 be a given price vector. A vector d ∈ R|A|+ is a Markovian

assignment if and only if the da’s satisfy the flow distribution equation (3.5) with V

solving Va = ua + ϕja(V ) for all a ∈ A.

We stress that the previous setting defines consumers’ utility in an indirect way.

Assuming a specific distribution for the εa, we can solve Va = ua + ϕja(V ) and find

the demand vector. The next section establishes the main result of this chapter: The

Markovian assignment is equivalent to the demand system generated as the solution

of a direct utility function by a representative consumer.

3.3 Main result

For the networked market described in section 3.2, we consider there exists a

representative consumer endowed with income Y ∈ R++. There is a numeraire good

which is indexed by 0, and its price p0 is normalized to the unity. The budget

constraint for the representative consumer is given by

B(p, Y ) =

{
(d, d0) ∈ R|A|+1

+ :
∑
a∈A

pada + d0 ≤ Y

}
, (3.6)

where d = (da)a∈A is the demand vector for the good at the network, and d0 is the

demand for good 0. We recall that the demand d must satisfy the flow constraint

(3.4).

Theorem 3 A representative consumer’s utility function consistent with the Marko-

vian assignment is given by
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U(d) =


∑

a∈A θada + d0 −
∑

i∈N χi(d), s.t. (3.4);

−∞, otherwise,
(3.7)

where χi(d) = supV

{∑
a∈A+

i
(Va − ϕi(V ))da

}
.

It is worth emphasizing four important features of Theorem 3.

First, we note that Theorem 3 does not require independence of the random

variables εa. Thus this result can deal with complex correlation patterns among

different alternatives.

Second, Theorem 3 is based on a direct utility function for the representative

consumer. In particular, the direct utility function in expression (3.7) encapsulates

two different components. The first component, given by the linear term
∑

a∈A θada+

d0, expresses the utility derived from the consumption of (d, d0) in the absence of

interaction among goods. Furthermore, the valuation parameters θa can be viewed

as measuring the intrinsic contribution of good a to the total utility. The second

effect is given by −∑i∈N χi(d), which expresses the variety-seeking behavior of the

representative consumer.11 The interpretation of variety-seeking behavior has been

given in Anderson et al. [1988].

Third, we note that for the simple case where the number of goods is |A|, and

there are just two nodes, an origin and destination, Theorem 3 provides a direct

representation without imposing parametric assumptions on the collection of εa. For

this simple case, Theorem 3 generalizes previous results in discrete choice theory.12

11The terms −∑i∈N χi(d) can be viewed as a generalized entropy. In section 3.3.1 this interpre-
tation is clearer when we assume that the εa follow a double exponential.

12For a survey of the results of representative agents and demand systems in discrete choice
models see Anderson et al. [1992, Ch. 3].
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Finally, we note that Theorem 3 can be extended to the case of endogenous con-

sumption. In particular, instead of considering the linear component
∑

a∈A θada, we

can consider a strictly concave function F (d; θ) with continuous second derivatives.

Using this function F (d; θ), the strict concavity of the optimization problem holds,

so that we can apply the same reasoning given in the proof of Theorem 3.

3.3.1 The sequential logit case

In theoretical and applied work, the nested logit model is the leading case for model-

ing markets with a tree or network structure. In this section we show that the nested

logit is a particular case of Theorem 3, which is obtained assuming that at each node

i the εa are i.i.d. random variables following a double exponential distribution.

Proposition 7 Assume that at each node i the random variables εa are i.i.d. fol-

lowing a double exponential distribution with location parameter βi ∈ R++. Then, a

representative consumer’s utility function consistent with the Markovian assignment

is given by

U(d) =


∑

a∈A θada + d0 −
∑

i∈N χi(d), s.t. (3.1);

−∞, otherwise,
(3.8)

where χi(d) = 1
βi

(∑
a∈A+

i
da log da −

∑
a∈A+

i
da log

(∑
a∈A+

i
da

))
.

We stress that Proposition 7 generates a demand system based on a sequential

logit model. However, after some simple algebra, it is possible to show that the
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choice probabilities in Proposition 7 can be written as a nested logit. In particular,

we can find the explicit parametric constraints on the βi such that Proposition 7

yields a demand system based on a nested logit model.13

3.4 Applications

In this section we apply our result to analyze price competition in the context of

networked markets. Formally, we analyze the following two stage game; In the first

stage firms set prices p in order to maximize the profits

πa(p, da) = (pa − ca)da ∀ a ∈ A, (3.9)

where da is the demand for good a, and ca is firm a’s marginal cost. In the second

stage, and given the price vector p, consumers choose the optimal bundle (path). We

solve the game using backward induction.

The equilibrium concept that we use is the subgame perfect Nash equilibrium,

and for the first stage we introduce the following definition.

Definition 5 A pair (pOE, d(pOE)) is a pure strategy Oligopoly Price Equilibrium

(OE) if for all a ∈ A

πa(da(p
OE
a , pOE−a )) ≥ πa(da(pa, p

OE
−a )) ∀ (pa, p

OE
−a ), (3.10)

where d(pa, p
OE
−a ) is the Markovian assignment for the price vector (pa, p

OE
−a ).

In order to show the existence of an OE. Thanks to our sequential discrete choice

13See Appendix B.1 for details.
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model, the pricing problem can be reduced to local oligopoly pricing problems. The

following result exploits that feature of our demand model.

Proposition 8 In the pricing game there exists at least one OE. Furthermore, if

for all a ∈ A the random variable εa follows a Gumbel distribution, then the OE is

unique.

Proposition 8 generalizes the findings in Chen and Nalebuff [2007], Casadesus-

Masanell et al. [2007], and Chen and Nalebuff [2007].

A straightforward corollary of Proposition 8 is the following equilibrium charac-

terization.

Corollary 3 Let pOE be an OE. Then

pOEa = ca + µa(p
OE) ∀a ∈ A,

where µa(pOE) =
Fa(θa−pOEa +ϕja (p

OE))
fa(θa−pOEa +ϕja (p

OE))
.

Previous result shows how our demand model allows us to characterize the equi-

librium prices taking into account the network topology through the terms ϕ(·).

3.4.1 Price competition in parallel serial link networks

In this section we analyze price competition in the case of parallel serial networks.

From an economic point of view, a parallel serial link network represents the case

where set of paths represent disjoint bundles, i.e., consumers cannot combine goods

froms different paths.
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In order to explain how our framework works, we embed the classical Cournot’s

complement model into a network (See Ch. 9, Cournot [1897]). Concretely, Cournot

analyzes the situation where consumers in order to produce brass, they must combine

copper and zinc. Each good is produced by a monopolist. In terms of a network, the

market is shown by Figure 3.1.

The node s represents the situation where the consumers must decide if they

want to buy zinc or leave the market. If a consumer decides to buy zinc, then he

must buy cooper.

In terms of our two stage game, firms set pz and pc and then consumers choose

the bundle zinc and cooper, or they decide to leave the market. The main result in

Cournot’s model is the following: cooper and zinc producers split the profits evenly,

regardless of cost differences.

Exploiting our demand model, we can extend Cournot’s insight to the case or

parallel serial link networks. Formally, we get the following result.

Proposition 9 Let G a parallel serial network. Let R be the set of paths (bundles).

Then the equilibrium price vector pOE is given by

pOEa = ca + (P̄r − C̄r) ∀a ∈ r and r ∈ R,

with P̄r = 1
|r|
∑

b∈r pa, and C̄r = 1
|r|
∑

b∈r cb.

It is easy to see that Cournot’s result is a particular case of Proposition 9. Let

us consider Figure 2, which displays a parallel serial link network with two paths.

For this particular case, the set of paths is R = {r1, r2} where r1 = (a1, a2) and
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s	   m	   t	  
Zinc	   Cooper	  

Outside:	  Do	  not	  buy	  

Figure 3.1: Cournot’s complements model
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r2 = (b1, b2), and the demand function for path r1 is given by:

dr1(p) = da1(p) = P(θr1 − pa1 − pa2 + εa1 > θr2 − pb1 − pb2 + εb1),

with θr1 = θa1 + θa2 and θr2 = θb1 + θb2 .

Thus applying Proposition 9 it follows that an OE satisfies

pa1 − ca1 = pa2 − ca2 .

Similar argument applies to path r2.

We can also exploit the network representation and our demand model to analyze

the effect of adding serial links. Figure 3.2 shows the network resulting from adding

a serial link, where a2 connects m and m′, whereas a3 connects m′ with t.
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s	  

m	  

t	  

n	  

a1	  
a2	  

b1	   b2	  

Figure 3.2: A parallel serial link network
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s	  

m	  

t	  

n	  

a1	  

a2	  

b1	  
b2	  

m’	  

a3	  

Figure 3.3: The effect of adding a serial link

For this new network the set of paths is R = {r1, r2} with r1 = (a1, a2, a3) and

r2 = (b1, b2). and the demand function for path r1 is given by:

da1(p) = P(θr1 − pa1 − pa2 − pa3 + εa1 > θr2 − pb1 − pb2 + εb1),

with θr1 = θa1 + θa2 + θa3 and θr2 = θb1 + θb2 .

Then applying Proposition 9 it follows that an OE satisfies

pa1 − ca1 = pa2 − ca2 = pa3 − ca3 .
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The main effect of adding the link a3 is captured by θr1 . In particular, for θa3 > 0

the new link a3 affect the demand da1(p).

3.4.2 Merging analysis

In this section we show how our demand model can be useful to analyze merging de-

cisions between two firms producing complementary goods. In terms of a networked

market, we analyze the effect on equilibrium prices when two firms within the same

path (bundle) decide to merge.

Formally, we are analyze the market with the structure displayed in Figure 3.4.

In particular, we can think of firm a as the producer the main good, whereas firm

b1 and b2 are the complement ors to this main good. This simple directed network

captures the situation when consumers first need to buy the main good, and then

they can enjoy the complements (b1 or b2).

An example of a real world situation that is captured by Figure 3.4 is the case

where the main producer is Microsoft, and b1 and b2 are two complementors to the

main good produced by Microsoft. Concretely, b1 and b2 can be the complements for

Microsoft Windows. Our goal is to analyze the effect of merging firm a with firm b1

on the equilibrium prices.

From Proposition 3, we know the equilibrium prices for firm a and b1 takes the

form:

pOEa = ca + µa(p
OE) and pOEb1 = cb1 + µb1(p

OE),

where µa(pOE) =
Fa(θa−pOEa +ϕ(pOE))
fa(θa−pOEa +ϕ(pOE))

, µb1(pOE) =
Fb1 (θb1−θb2−p

OE
b1

+pOEb2
)

fb1 (θb1−p
OE
b1

+pOEb2
)

, and
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s	   t	  

m	  

b1	  

b2	  

O:	  Do	  not	  buy.	  

a	  

Figure 3.4: A network of complements and substitutes
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ϕ(pOE) = E(max{θb1 − pOEb1 + εb1 , θb2 − pOEb2 + εb2}).

Now let us suppose that firm a and b1 merge, i.e., they maximize their joint profit

coordinating their pricing decisions. The equilibrium prices after merging are given

by:

pOEa1 = ca + µa(p
OE) and pOEb1 = cb1 .

The important property of the equilibrium prices after merging is the optimal

price for firm b1 is to set price equal to marginal cost. The intuition for this result is

that once firm a and b1 coordinate their pricing decisions, they internalize the effect

on being in the same bundle (path).

Despite its simplicity, the prices after merging captures real world situations. A

typical example is given the situation of Windows and some of its complements, e.g.

Windows media player, which is given for free. The feature that the Windows media

player is given for free is captured by our result assuming cb1 = 0.
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Chapter 4

Price competition, free entry, and
welfare in congested markets

4.1 Introduction

In many environments, such as communication networks in which network flows

are allocated, or transportation networks in which traffic is directed through the un-

derlying road architecture, congestion plays an important role in terms of efficiency.

In fact, over the last decade the phenomenon of congestion in traffic networks has re-

ceived attention in a number of in different disciplines: economics, computer science,

and operations research.

The main question is how to achieve a socially optimal outcome, which is inti-

mately linked to the assessment of congestion effects. This feeds into the identifica-

tion of socially optimal regulatory actions in such markets. Indeed, a social planner

may use a sort of economic mechanisms in order to induce users’ behavior toward the

socially optimal outcome. In fact, since the seminal work of Pigou [1920], it is well

known that an efficient outcome in a network subject to congestion can be reached

through the centralized implementation of a toll scheme based on the principle of
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marginal cost pricing. Under this mechanism users pay for the negative externality

that they impose on everybody else.

Concretely, under a Pigouvian tax scheme users face two sources of cost: one due

to the congestion cost and the second due to the toll. Nonetheless, Pigou’s solution

is hard to implement in practice, because it requires that the social planner charges

the tolls in a centralized way, which from a practical and computational perspective

is a very complex task. Thus, the natural alternative is to consider a market based

solution, where every route (or link) of the network is owned by independent firms

who compete setting prices in order to maximize profits.1

Despite the relevance of and the increasing interest in implementing decentralized

pricing mechanisms to reduce and control congestion in networks, little is known

about the theoretical properties of such solutions. Indeed, little is known about

the existence and uniqueness of equilibrium prices for general classes of network

topologies.

In addition to the problem of the existence and uniqueness of a price equilibrium,

a second problem that is raised in congested markets is the analysis of free entry

and welfare. In particular, every firm can be viewed as a link, so the number of

firms that enter the market will determine the network topology. Thus the socially

optimal topology can be identified with the optimal number of firms in the market.

Similarly to the study of existence and uniqueness of a price equilibrium, little is

known about the free entry problem in general networks.

We point out that the analysis of existence, uniqueness and free entry in a network

with multiple sources and a common sink is not only relevant from a theoretical

perspective, but also from an applied point point of view. A real world situation

1For an early discussion of price mechanisms in congested networks, we refer the reader to Luski
[1976], Levhari and Luski [1978], Reitman [1991], and MacKie-Mason and Varian [1995].
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where our model may be useful, is the case of the airline industry. In particular,

we can think of in a situation where consumers from different locations (sources)

want to travel to a common destination, let say d. Then consumers can choose

among airlines (and combinations of them) to reach d, where the total cost faced by

consumers is given by the price charged by airlines plus the waiting time (congestion).

An understanding of the conditions when a unique price equilibrium exists and how

free entry affects social welfare turns out to provide critical information for policy

makers regulating this industry.

A second example where a general network analysis is useful, is the case of combi-

natorial markets. In particular, in a large combinatorial market, such as the Internet,

the firms own links and set prices in order to maximize profits whereas consumers

purchase bundles of products in order to maximize their utility. Concretely, we can

consider the situation where each consumer is interested in buying bandwidth along

a path from its source (origin) to its destination, and obtains a value per unit of flow

that it can send along this path. In this environment, the analysis of the existence

and uniqueness of a price equilibrium provides us information concerning how prices

can be used to organize the market. For instance the understanding of the existence

of price equilibria may be useful in the analysis of the efficiency of these markets.2

4.1.1 Our contribution

In this chapter we develop and study a general oligopoly model in a network subject

to congestion effects. Our contribution is threefold. First, we introduce an alterna-

tive notion of equilibrium in traffic networks, which we denote as Markovian traffic

equilibrium. Our equilibrium concept is based on the idea that users choose their

2For an analysis of the efficiency of combinatorial markets we refer to Chawla and Roughgarden
[2008].
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optimal paths in a recursive way. The idea that users can find their optimal paths

in a recursive way turns out to be different to the standard notion of Wardrop equi-

libria. We are not aware of previous papers studying price competition in congested

markets using the notion of Markovian traffic equilibrium.

Second, we show the existence and uniqueness of a pure strategy price equilib-

rium. Our result is very general: we do not assume that demand functions are

concave nor impose particular functional forms for the latency functions (congestion

costs) as is commonly assumed in the extant literature. We derive explicit conditions

to guarantee existence and uniqueness of equilibria. We stress that our existence

and uniqueness result does not rely on a specific network topology. In fact, our re-

sult applies to any directed network with multiple origins and a common destination

node.

Our third contribution is the study of entry decisions and welfare in congested

markets. We show that the number of firms that enter the network exceeds the

social optimum. In terms of network design the excess entry result means that the

observed topology will not be the socially optimal. Because we obtain this result for

a general network, we think of that our excess entry result may be useful in studying

problems of optimal design of networks.

Formally, we study a network with multiple origins and a common destination

node, where every link is owned by a firm that sets prices in order to maximize

profits. In this environment, users face two sources of cost: the congestion cost plus

the price set by the firms. The congestion in every link is captured by a latency

function, which is strictly increasing in the number of users utilizing it. In order to

solve the users’ problem, we adapt the Markovian traffic model proposed by Baillon

and Cominetti [2008], to the study of price competition in congested networks. This
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Markovian model is based on random utility models and dynamic programming. The

use of random utility models allows for heterogeneity in users’ behavior, i.e., instead

of assuming homogenous users, we model the utility of choosing a certain route as

a random variable. In addition, and considering the stochastic structure of users’

utilities, we assume that users solve a dynamic programming problem in order to

construct the optimal path in a recursive way. Thus, at each node users consider

the utility derived from the available links plus the continuation values associated to

each link.

Furthermore, the introduction of random utility models has the advantage of

generating a demand system, which shows how prices and congestion externalities

induce users’ choices.3

Combining the previous elements, we solve a complete information two stage

game, which can be described as follows: In the first stage, firms owning the links

maximize profits setting competitive prices a là Bertrand. In the second stage,

given firms’ prices, users choose routes in order to maximize their utility, namely

the cheapest route. We solve this game using backward induction, looking for a

pure strategy sub-game perfect Nash equilibrium, which we call the Oligopoly price

equilibrium.

Related Work: The pricing game that we study in this chapter is not new at all. In

fact, this class of games is studied in Cachon and Harker [2002], Engel et al. [2004],

Hayrapetyan et al. [2005], Acemoglu and Ozdaglar [2007], Baake and Mitusch [2007],

Allon and Federgruen [2007], Allon and Federgruen [2008], Chawla and Roughgar-

3We stress that our approach differs with the one known as aggregation in oligopoly markets
proposed by Caplin and Nalebuff [1991]. The main technical difference is due to our demand
system being defined in terms of a fixed point equation, which reflects the existence of congestion
externalities in users’ choices, while the results in Caplin and Nalebuff [1991] do not apply to the
case of demand systems with externalities (positive or negative).
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den [2008], and Weintraub et al. [2010]. In order to establish the existence of an

oligopoly price equilibrium, these papers assume the following: First, in order to

describe users’ behavior these papers make use of the concept of Wardrop equilibria,

which establishes that utilities (costs) on all the routes actually used are equal, and

greater (less) than those which would be experienced by a single user on any unused

route. Second, these papers impose assumptions on the demand generated by users’

behavior or assumptions on the class of latency functions. In particular, Cachon and

Harker [2002], Engel et al. [2004], Hayrapetyan et al. [2005], and Weintraub et al.

[2010] assume that the demand functions are concave (or log-concave) functions of

the price charged by firms. Thanks to the concavity assumption, the previous pa-

pers show the existence of an oligopoly price equilibrium. On the other hand, the

papers of Acemoglu and Ozdaglar [2007], Baake and Mitusch [2007], and Chawla

and Roughgarden [2008] show the existence of a pure strategy equilibrium assuming

that the latency functions are affine.

Moreover, all of the papers mentioned above, consider a simple network consisting

of a single origin-destination pair, with a collection of parallel links. This specific

network topology rules out some interesting examples from an applied point of view,4

thus limiting the application of the available existence results.

The recent papers of Allon and Federgruen [2007, 2008], use random utility models

to study price in competition in the context of queuing games, where the latency

functions represent the waiting time that users must wait to be served. These papers

establish the existence and uniqueness of an oligopoly equilibrium. However, the

results in Allon and Federgruen [2007, 2008] differ from ours in two important aspects.

First, Allon and Federgruen [2007, 2008] consider a network consisting of a single

origin-destination pair with parallel links, thus ruling out important cases from an

4For instance, this specific topology rules out the case of hub-spoke networks.



54

applied perspective. Second, Allon and Federgruen [2007, 2008] do not study the

entry and welfare problem.

Regarding our result on free entry and welfare, similar findings in the context

of traditional oligopoly theory can be found in Mankiw and Whinston [1986] and

Anderson et al. [1995]. These papers do not, however, deal with network structures

on congestion; features that are crucial components of our result. For the case

of congested networks, a similar result to ours can be found in the recent paper

of Weintraub et al. [2010] for the particular case of a network with a single pair

source-sink and assuming parallel links. Summarizing, our results can be viewed as

a generalization of previous findings of the free entry and welfare problem.

The rest of the chapter is organized as follows: Section 4.2 presents the model.

Section 4.3 studies the free entry and welfare problem. Section 4.4 shows the exis-

tence and uniqueness of a oligopoly price equilibrium for a general class of latency

functions. Finally, Section 4.5 concludes. Proofs and technical lemmas are presented

in Appendix C.1.

4.2 The Model

Let G = (N,A) be an acyclic directed graph representing a traffic network, with

N being the set of nodes and A the set of links respectively. Let d ∈ N be the

destination node (or sink). For each node i 6= d, gi ≥ 0 denotes the numbers of users

starting at that node. We interpret gi as a continuum of users. For all i 6= d, we

denote Ri as the set of available routes connecting node i with the destination node

d. Every link a is represented by a convex and strictly increasing continuous latency

function la : R 7→ (0,∞), which we assume to be twice continuously differentiable.

A flow vector is a nonnegative vector v = (va)a∈A, where va ≥ 0 denotes the mass
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of users using link a. Any flow vector v must satisfy the flow conservation constraint:

gi +
∑
a∈A−i

va =
∑
a∈A+

i

va, ∀i 6= d, (4.1)

where A−i denotes the set of links ending at node i, and A+
i denotes the set of links

starting at node i. The set of feasible flows is denoted by V .

We introduce firms into the network through the assumption that each link a

is operated by a different firm that sets prices in order to maximize profits. In

particular, firm a’s profits are given by:

πa(p, va) = pava ∀a ∈ A. (4.2)

Profit maximization generates a nonnegative price vector p, p = (pa)a∈A.

In addition, and without loss of generality, we set the parameter R > 0 to be the

users’ reservation utility at each link a. Thus, given a flow v and a price vector p,

the users’ utility is given by:

ua = R− pa − la(va), ∀a ∈ A.

In this environment, firms and users strategically interact in the following way:

at every node i 6= d the firms owning the set of links starting in node i set prices

in order to maximize profits. Then, considering the price vector generated by firms’

behavior, users choose routes in order to maximize their utility. The solution concept

for this game is a sub-game perfect Nash equilibrium, which we shall refer to the

Oligopoly price equilibria.
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We look for an Oligopoly price equilibrium using backward induction, i.e., given

a price vector p, we solve the users’ problem. Given the optimal solution for users,

we solve the firms’ problem.

It is worth noting that the previous framework is deterministic, so the notion of

Wardrop equilibria turns out to be suited for solving the users’ problem. Thus the

firms’ maximization profit considers the demand generated by this solution concept.

This way of analysis has been traditional in the context of pricing in congested

markets, and examples of its use are the papers of Acemoglu and Ozdaglar [2007],

Engel et al. [2004], Hayrapetyan et al. [2005], Weintraub et al. [2010], and Anselmi

et al. [Forthcoming].

In this chapter we propose an alternative model to study pricing in congested

networks. In particular, we consider heterogenous consumers, where one of the main

features of our approach is that the users’ optimal solution is based on the combina-

tion of random utility models and dynamic programming. The next section describes

in detail these ideas.

4.2.1 Markovian traffic equilibrium

In this section we introduce our equilibrium concept for the users’ problem, which is

based on two important features. First, to solve the users’ problem we introduce the

idea of random utility, which takes into account the heterogeneity of users’ prefer-

ences. Second, we use techniques borrowed from dynamic programming to find in a

sequential way the optimal path for users. We now proceed to explain in detail our

approach.

We introduce heterogeneity in the model assuming that users are randomly drawn

from a large population having variable perceptions of the utility of each link a.
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According to this, the random utility ũa may be defined as

ũa = ua + εa ∀a ∈ A,

with {εa}a∈A being a collection of absolutely continuous random variables with

E(εa) = 0 for all a. At least two justifications for introducing {εa}a∈A can be given.

The first explanation comes from the fact that at each link a, the random variable

εa takes into account the variability of users’ reservation utility. This means that

at each link a we can model the reservation utility as a random variable defined as

Ra = R + εa, with E(Ra) = R. A similar justification can be given if we model the

congestion costs as random variables. Concretely, for any given flow vector v, at

each link a we can consider the random cost defined as l̃a(va) = la(va) + εa, where

E(l̃a(va)) = la(va).
5 For all i 6= d, let Ri denote the set of routes connecting node i

with destination d. Thus, for a route r ∈ Ri, we define its utility as ũr =
∑

a∈r ũa,

and therefore the optimal utility τ̃i = maxr∈Ri ũr as well as the utility z̃a = ũa + τ̃ja

can be rewritten as τ̃i = τi + θi and z̃a = za + εa, where ja denotes that node j has

been reached using the link a, and E(θi) = E(εa) = 0. Each user traveling towards

the final node, and reaching the node i, observes the realization of the variables z̃a

and then chooses the link a ∈ A+
i with the highest utility. This process is repeated

in each subsequent node giving rise a recursive discrete choice model, where the

expected flow xi entering node i 6= d splits among the arcs a ∈ A+
i according to

va = xiP(z̃a ≥ z̃b, ∀b ∈ A+
i ). (4.3)

5We can also consider the case where the utilities of every link are deterministic and the vari-
ability within the population is captured by the distribution of tastes in regard each link. Both
justifications yield the same mathematical structure in terms of expected demand. For a detailed
discussion see Anderson et al. [1992].
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Furthermore, the recursive discrete choice model generates the following conservation

flow equations

xi = gi +
∑
a∈A−i

va. (4.4)

Using a well known result in discrete choice theory (see Anderson et al. [1992]),

equations (4.3)-(4.4) may be expressed in terms of the gradient of the function ϕi(·)
defined as ϕi(z) ≡ E(maxa∈A+

i
{za + εa}).6 In particular, the conservation flow equa-

tions (4.3) and (4.4) may be rewritten as va = xi
∂ϕi
∂za

(z) ∀a ∈ A+
i ,

xi = gi +
∑

a∈A−i
va,

(4.5)

where ∂ϕi
∂za

(z) = P(z̃a ≥ z̃b, ∀b ∈ A+
i ).

Given the recursive structure of the problem, we may write the corresponding

Bellman’s equation in the form τ̃i = maxa∈A+
i
z̃a using z̃a = ũa + τ̃ja . Thus, taking

expectation we get

za = ua + ϕja(z) (4.6)

or in terms of the variables τi

τi = ϕi
(
(ua + τja)a∈A

)
(4.7)

In order to simplify our analysis, we assume the following two conditions for the

random variables {εa}a∈A.

6The functions ϕi(·) are known as the social surplus in the literature of discrete choice models.
In particular, this definition is introduced in McFadden [1981].
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Assumption 1 For all i 6= d and for all r ∈ Ri, the collection of random variables

{εa}a∈r are independent.

Assumption 2 For each node i 6= d, the collection of random variables {εa}a∈A+
i

are

i.i.d following a Gumbel (double exponential) distribution with localization parameter

0 < βi <∞.7

We stress that assumption 1 rules out the possibility that the εa in the same path

may exhibit dependence. In terms of our model, assumption 1 implies that realiza-

tions of εa do not affect ϕja(·). However, assumption 1 does not impose independence

among different paths.

Regarding assumption 2, we note that is made for expositional simplicity, but

all our results hold for a general collection of random variables {εa}a∈A+
i

with the

technical requirement that the density of each εa belongs to C2. In particular, we can

allow for very complex patterns of correlation among the εa at each node i 6= d.

Assumption 2 allows us to write the functions ϕi(z) in a closed form (see Anderson

et al. [1992]):

ϕi(z) =
1

βi
log

∑
b∈A+

i

eβizb

 , ∀i 6= d.

Using this log-sum formula, it follows that ∂ϕi
∂za

(z) = eβiza∑
b∈A+

i
eβizb

, i.e., ∂ϕi
∂za

(z) is the

logit-choice rule.

From equations (4.6) and (4.7), it follows that for every price vector p, users

recursively find the routes with the highest utility through the solution of a dynamic

7The Gumbel (or double exponential) distribution for εa is given by P(εa ≤ x) =
exp(−exp(−{βix+ γ})) where γ is Euler’s constant and 0 < βi <∞.
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programming problem. This means that instead of choosing routes, users recursively

choose links considering the utilities and the continuation values at every node. The

method of solving recursively the users’ problem turns out to be completely different

from the standard notion of Wardrop equilibrium.8 We shall call this solution concept

Markovian traffic equilibrium. Its formal definition is:

Definition 6 Let p ≥ 0 be a given price vector. A vector v ∈ R|A|+ is a Markovian

traffic equilibrium (MTE) iff the va’s satisfy the flow distribution equation (4.5), with

z solving (4.6).

Definition 6 formalizes the idea that for a given price vector p, users solve the

associated dynamic programming problem such that the flow vector v is distributed

in an optimal way. That is, the flow v is distributed such that users’ utility is

maximized. The notion of MTE has been introduced in Baillon and Cominetti

[2008], and it generalizes the concept of stochastic user equilibrium considered by

Daganzo and Sheffi [1977] and Fisk [1980].9 In this Chapter we use the concept

of MTE because it allows us to introduce heterogeneity within users through the

stochastic terms εa. More importantly, the notion of MTE allows us to study price

competition among firms exploiting the recursive structure in users’ decisions. In

particular, at every node i 6= d, and thanks to the Markovian structure, we can

study price competition just considering the firms owning the links at every node. In

other words, we exploit the recursive structure of the users’ problem to decompose

the problem of price competition for the whole network into a collection of local

oligopoly pricing problems at each node i 6= d. In addition, the Markovian structure

8Recall that a Wardrop equilibrium establishes that utilities (costs) on all the routes actually
used are equal, and greater (less) than those which would be experienced by a single user on any
unused route.

9For a discussion of different equilibrium concepts used in traffic networks see the recent survey
by Correa and Stier-Moses [2010].
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makes it possible to study general network topologies in a simple fashion. Example

3 below shows how MTE works for a small network.

Example 3 This example shows how the notion of MTE works. Consider the fol-

lowing network:

	  

words, we exploit the recursive structure of users’ problem to decompose the

problem of price competition for the whole network into a collection of local

oligopoly pricing problems at each node i != d. In addition, the Markovian

structure makes possible to study general network topologies in a simple

fashion. Example 1 below shows how MTE works for a small network.

Example 1 (Finding a MTE) This example shows how the notion of MTE

works. Consider the following network:

i d

j

a

b c1

c2

The set of nodes is N = {i, j, d}, where i and d represent the origin and des-

tination node respectively. The set of link is represented by A = {a, b, c1, c2}.
For each link k the users’ cost is given by pk + lk(vk) with k = a, b, c1, c2,

where vk is the flow of users choosing link k. For a fixed price vector p, MTE

requires that users solve a dynamic programming problem. According to this,

at node i the users compare the cost of links a and b taking into account the

associated continuation values. Thus, the users will choose link b if and only

if ub + τjb
+ εb ≥ ua + εa. Conditional on the choice of link b, the users reach

node j. Then, they must choose between c1 and c2, considering the total costs

and the associated continuation values. Finally, and noting that for this case

the associated continuation values to c1 and c2 are zero, the users will choose

link c1 if and only if uc1 + εc1 ≥ uc1 + εc2. The same logic applies to how

other paths are chosen. The key point is that the optimal path is constructed

in a recursive fashion.

12

Figure 4.1: Finding an MTE.

The set of nodes is N = {i, j, d}, where i and d represent the origin and destination

node respectively. The set of links is represented by A = {a, b, c1, c2}. For each link

k the users’ cost is given by pk + lk(vk) with k = a, b, c1, c2, where vk is the flow of

users choosing link k. For a fixed price vector p, MTE requires that users solve a

dynamic programming problem. According to this, at node i the users compare the

cost of links a and b taking into account the associated continuation values. Thus,
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the users will choose link b if and only if ub + τjb + εb ≥ ua + εa. Conditional on

the choice of link b, the users reach node j. Then, they must choose between c1 and

c2, considering the total costs and the associated continuation values. Finally, and

noting that for this case the associated continuation values to c1 and c2 are zero, the

users will choose link c1 if and only if uc1 + εc1 ≥ uc1 + εc2. The same logic applies

to how other paths are chosen. The key point is that the optimal path is constructed

in a recursive fashion.

4.2.2 Existence and uniqueness of an MTE

Now we are ready to characterize the MTE as the unique solution of a concave

optimization program.

Proposition 10 Given any price vector p ≥ 0, the MTE is the unique optimal

solution v∗ of

max
v∈V

{∑
a∈A

(R− pa)va −
∑
a∈A

∫ va

0

la(s)ds− χ(v)

}
, (P )

where χ(v) =
∑

i 6=d
1
βi

[∑
a∈A+

i
va ln va −

(∑
a∈A+

i
va ln

(∑
a∈A+

i
va

))]
.

We stress three important points regarding Proposition 10. First, we point out

that the result of Proposition 10 is a slight variation of Theorem 2 in Baillon and

Cominetti [2008]. We have adapted their result to incorporate the price vector p. Sec-

ond, the result in Proposition 10 is the stochastic version of the classical characteriza-

tion for Wardrop equilibria introduced by Beckmann et al. [1956] (See also Ch. 18 in
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Nisan et al. [2007]). In fact, in the deterministic case with ϕi(z) = min{za : a ∈ A+
i }

we get χ(v) ≡ 0, so that the characterization in Proposition 10 coincides with the one

given by Beckmann et al. [1956].10 Intuitively, the variational problem in Proposi-

tion 10 can be viewed as a perturbed version of the deterministic problem, where the

perturbation is given by χ(v), which takes into account the heterogeneity of users’

utilities.11.

Our final remark is that Proposition 10 establishes that an MTE gives us the

optimal flow v∗ in terms of an implicit equation. To see this, we note that at each

node i 6= d, v∗ can be rewritten as

v∗a = xi
eβiza∑
b∈A+

i
eβizb

= xi
eβi(R−pa−la(v∗a)+τja )∑
b∈A+

i
eβi(R−pb−la(v∗b )+τjb )

∀a ∈ A+
i . (4.8)

Expression (4.8) makes clear the fact that the optimal solution v∗ is in terms of

an implicit equation.12

The uniqueness of an MTE allows us to define v∗ as v∗ ≡ D(p), where D(p) =

(Da(p))a∈A. We called D(p) the demand function for the traffic problem. By the

maximum theorem, D(p) is a continuous function of p. Thus, the following corollary

is straightforward.

10We point out that Beckmann et al. [1956]’s characterization of Wardrop equilibria provides
uniqueness of an optimal flow over links, but their decomposition of the optimal flow over paths is
not unique. The result in Proposition 10 establishes the uniqueness of an optimal flow over links
and paths.

11We note that χ(v) = 0 means that βi −→ ∞ for all i. This follows because under Assumption
2, for all i 6= d, a ∈ A+

i we get V(εa) = π
βi
√
6
. Thus the homogoneous case corresponds to a situation

where the random variables εa are degenerate with mean and variance equal to zero. In particular,
as long as βi −→∞ for all i 6= d, the MTE coincides with the notion of Wardrop equilibrium.

12The derivation of (4.8) is as follows. Given the flow xi at node i, the probability of choosing
link a ∈ A+

i is given by P(ua + ϕja(z) + εa > ub + ϕjb(z) + εb,∀b ∈ A+
i ). Using Assumption 2

combined with the expression for ua, ub, ϕ(·) we get (4.8).
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Corollary 4 Let D(p) be an MTE. Then the profit function (4.2) is a continuous

function of p. Furthermore, (4.2) can be written as

πa(p) = pa

(
xi

eβi(R−pa−la(Da(p))+τja )∑
b∈A+

i
eβi(R−pb−lb(Db(p))+τja )

)
∀a ∈ A+

i , i 6= d, (4.9)

where xi satisfies (4.5).

The previous corollary is important because it illustrates two important features

of the profit functions represented by πa(·)’s. First, it explicitly shows how the

congestion levels affects the shape of the profit functions. In fact, we shall see that

this feature play a central role in establishing the existence and uniqueness of an OE.

The second feature is that a firm setting prices will worry either about its link

being excluded from the optimal path, or, when retained in the optimal path, about

the reduction on the overall demand for the path. The prices pa and continuation

values τ capture these effects in our model. We shall refer to these effects as the path

effect and the demand effect, respectively.

4.3 Oligopoly pricing: existence and uniqueness

of a symmetric price equilibrium

In this section we begin the study of a price equilibrium by considering a symmetric

model. The general definition of an oligopoly price equilibrium is the following.

Definition 7 A pair (pOE, D(pOE)) is a pure strategy Oligopoly price equilibrium

(OE) if for all a ∈ A
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pOEa ∈ arg max
pa∈[0,R]

{
πa(Da(pa, p

OE
−a ))

}
∀ pOE−a , (4.10)

where D(pa, p
OE
−a ) is the MTE for the price vector (pa, p

OE
−a ).

Definition 7 is the standard notion of a sub-game perfect Nash equilibrium applied to

the pricing game under study and it does not impose any restriction on the network

topology.

We now specialize Definition 7 to the case of a symmetric model. In particular,

in the symmetric model we assume that the congestion at each link a is captured by

the same latency function, namely l(·). We assume βi = β and gi = g for all i 6= d.

Furthermore, we assume that any pair of nodes is connected by at least two links,

where the number of available links is denoted by ni for any node i 6= d. Combining

Definition 7 with the symmetry in the model, we can define the notion of a symmetric

OE as follows.

Definition 8 We say that a pure strategy OE given by (pOE, D(pOE)) is symmetric

if and only if for all i 6= d

pOEa = pOEni ∀a ∈ A+
i ,

with ni = |A+
i |.

Definition 8 just says that at each node i 6= d, firms set the same price, which

depends on the number of firms on that node. In fact, Proposition 14 and Corollary

5 in Appendix A show that for a symmetric OE, the prices and profits are decreasing

in the number of firms. These results use that l(·) is a convex function.

Our first result is the existence and uniqueness of a symmetric OE. Formally we

get:
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Theorem 4 There exists a unique symmetric OE.

The proof of Theorem 4 is based on checking the technical conditions on As-

sumption 3 in Section 4.4 below. In particular, Assumption 3 is a condition on the

latency functions which guarantees that the profit functions are concave, so that the

Kakutani fixed point theorem can be invoked. Interestingly, for the symmetric case

such technical conditions are automatically satisfied, and no further assumptions on

the class of latency functions are required to guarantee the existence and uniqueness

of a symmetric OE.13

4.3.1 Welfare analysis and entry decisions

Provided the existence and uniqueness of a symmetric OE, we ask the following

question: Under free entry, will the number of firms be socially optimal? We inter-

pret entry decisions as new links in the network. Considering a fixed set of nodes,

whenever a firm enters the market, the network topology changes. In this envi-

ronment, a social planner will look for the optimal number of links connecting the

nodes, i.e., he will look for the socially optimal design of the network. Our main

result in this section establishes that under free entry, and given a fixed cost, the

number of firms that enter the market is larger than the socially optimal, i.e., there

is excess entry in this setting. The excess entry result is due to a new firm entering

the market reduces the demand and prices of the existing firms in the network. This

phenomenon is known as “ The business-stealing effect” (Mankiw and Whinston

13Intuitively, Theorem 4 establishes that the demand system induced by the MTE is strictly
concave, which implies that the firms’ best response map is convex. See section 4.4 for the details
of the derivation of the strict concavity of the firms’ profit functions in the general case.
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[1986]). Intuitively, the business-stealing by a marginal entrant drives a wedge be-

tween the entrant’s evaluation of the desirability of his entry and the social planner’s,

generating the discrepancy between nE and nS.

We introduce the presence of a social welfare measure, which is given by the sum of

firms’ surplus and users’ surplus.

Definition 9 Let (pOE, D(pOE)) be a pure strategy OE. We define the aggregate

welfare as

W(pOE, D(pOE)) ≡
∑
i 6=d

Wi(p
OE, D(pOE)), (4.11)

where Wi(p
OE, D(pOE)) ≡∑a∈A+

i
πa(Da(p

OE))+xiE
(

maxa∈A+
i
{za + εa}

)
is the wel-

fare at node i 6= d with xi satisfying the flow constraint (4.5) and za = ua + ϕja(z).

In Definition 9, the term
∑

a∈A+
i
πa(Da(p

OE)) represents firms’ surplus while xiE
(

maxa∈A+
i
{za + εa}

)
represents users’ surplus. Thanks to Assumption 2, formula (4.11) can be written in

a closed form, where

Wi(p
OE, D(pOE)) =

∑
a∈A+

i

πa(Da(p
OE)) +

xi
β

log

∑
a∈A+

i

eβza

 ∀i 6= d. (4.12)

We note that Definition 9 explicitly uses the Markovian structure of the model.

In fact, the aggregate welfare is just the sum of welfare at each node i 6= d, which

follows from the recursive structure on users’ decisions.
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In order to analyze entry decisions, we consider a fixed entry cost, which is de-

nominated as sunk cost and is denoted by F .14 Thus, given a price vector p and the

sunk cost F , the profit functions may be written as:

πa(Da(p)) = paDa(p)− F, ∀a ∈ A. (4.13)

Using this simple framework, we are able to answer whether the market will

provide the optimal number of firms or not. In particular, we compare the solution

obtained by a social planner with the solution obtained by the market. The social

planner maximizes the social welfare choosing the optimal number of firms. Formally,

the planner solves the following optimization problem:

max
n

{
W(pOEn , D(pOEn ))

}
= max

n

∑
i 6=d

∑
a∈A+

i

πa(Da(p
OE
n )) +

xi
β

log

∑
a∈A+

i

eβza

 ,

(4.14)

where (pOEn , D(pOEn )) denotes a symmetric equilibrium. Due to symmetry, denote

W(pOEn , D(pOEn )) as W(n), so that expression (4.14) may be rewritten as:

max
n
{W(n)} = max

n

{∑
i 6=d

(
xi
β

log(ni)− xil(xi/ni)− niF
)}

, (4.15)

14We can interpret the term F as the cost that a firm must pay to participate in the market.
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where the last expression is obtained due to the symmetry of the problem.

We note that expression (4.15) is a strictly concave function in n = (ni)i 6=d, so

the first order conditions are necessary and sufficient for finding the socially optimal

number of firms nS = (nSi )i 6=d for the whole network. On the other hand, the equi-

librium condition for firms entering at each node i 6= d, is given by the zero profit

condition:

∀a ∈ A+
i πa(p

OE
ni

) = 0. (4.16)

Thus solving equations (4.16) we get the equilibrium number of firms nEi , where

for the whole network the number of firms is given by nE = (nEi )i 6=d. We remark

that thanks to the convexity of the latency functions, the system of equations (4.16)

has a unique solution.

Previous setting allows us to formalize our initial question in the following way:

What is the relationship between nE and nS ?

The following theorem gives an answer to this question.

Theorem 5 In the symmetric congestion pricing game nE > nS.

The proof of Theorem 5 relies on finding nS and nE solving (4.15) and (4.16)

respectively. Once nE and nS have been found, we proceed to compare them con-

cluding that nE > nS.

It is worth noting two underlying aspects in Theorem 5. First, as we said before,

our result is based in the idea of the business stealing effect. In fact, in Appendix A

we show that prices and profits are decreasing in the number of firms ( Proposition

14 and Corollary 5 respectively). Thus an entering firm does not internalize such
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an effect, while the social planner’s solution considers this externality. Second, the

proof of Theorem 5 also relies on the assumption of convexity of the latency function

l(·). If the latency functions are not convex, then the result in Theorem 5 no longer

holds.

Theorem 5 generalizes the results in Anderson et al. [1995] and Mankiw and

Whinston [1986] to the case of a congestion pricing game with a general network

topology. Similarly, Theorem 5 generalizes the result in Weintraub et al. [2010] to

the case of a general network.

4.4 Existence and uniqueness of an OE: The gen-

eral case

The goal of this section is to establish the existence and uniqueness of an OE for

a general class of latency functions. In our study, we shall restrict attention to an

OE such that at any node i 6= d, the users’ utilities satisfy15

R− pa − la(Da(p)) + τja = R− pb − lb(Db(p)) + τjb for all a 6= b ∈ A+
i .

This condition makes explicit the fact that any firm a setting prices takes into

account the path effect and the demand effect of its price setting behavior. More-

over, restricting our attention to this class of equilibrium has the advantages of its

simplicity and comparability with previous results in the literature.16

15Recall that the index ja denotes that node j has been reached using link a.
16As we said before, most of the existent results on pricing in congested networks make use of
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4.4.0.1 Existence

In order to study the existence of an OE, we exploit the Markovian structure of the

users’ decisions combined with the assumption that every link is owned by a different

firm. In fact, due to the Markovian structure, we can decompose the pricing problem

for the whole network into a collection of pricing problems at each node i 6= d. Thus

the firms competing at node i 6= d set their prices taking as given the flow of users

starting at node i, and the prices set by firms in different nodes.

Using this structure, we study the problem of existence through the application

of Kakutani’s fixed point Theorem. In order to apply Kakutani’s result, we need to

check that the best response map is non empty, upper semi-continuous, and convex

valued. For the pricing game under analysis, the fact that the best response is not

empty and upper semi-continuous follows a straightforward application of the max-

imum theorem. However, the best response map is not convex valued, which makes

the application of Kakutani’s Theorem problematic. In this Chapter we provide a

specific condition in order to guarantee the convexity of the best response. The

condition depends on the latency functions and it is automatically satisfied in the

symmetric case we analyzed in Section 4.2.

Formally, given any price vector p ≥ 0, we define firm a’s best response map

Bia(p−a) as follows: For all i 6= d, a ∈ A+
i ,

Bia(p−a) = arg max
pa∈[0,R]

{πa(Da(pa, p−a))}.

To study the convexity of B(·), we analyze the concavity of the profit functions

πa. Recall that for each firm a the profit function is given by πa(Da(p)) = paDa(p). In

the concept of Wardrop equilibrium.
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order to establish the concavity of the πa we note that for all pOE, profit maximization

implies that the following optimality condition must hold

∀a ∈ A ∂πa(Da(p
OE))

∂pa
= Da(p

OE) + pOEa
∂Da(p

OE)

∂pa
= 0. (4.17)

Using (4.17), we get

∂2πa(Da(p
OE))

∂p2
a

= 2
∂Da(p

OE)

∂pa
+ pOEa

∂2Da(p
OE)

∂p2
a

. (4.18)

The profit function is concave if and only if expression (4.18) is non-positive . In

particular, for the case of uncongested markets, and under the assumption that the

distribution of the εa is double exponential, expression (4.18) is negative, and the

concavity of the profit function holds. Thus, for the case of uncongested markets, the

existence of an OE follows directly. However, we know from (4.8) that the presence

of congestion effects implies that the demand function is defined in implicit terms, so

when computing ∂2πa(Da(pOE))
∂p2a

we must take into account this feature. From (4.18) it

follows that the concavity depends on ∂Da(pOE)
∂pa

and ∂2Da(pOE)
∂p2a

. In Appendix C.1 we

show that ∂Da(pOE)
∂pa

< 0 and ∂2Da(pOE)
∂p2a

can be written as

∂2Da(p
OE)

∂p2
a

= − 1

Da(pOE)

[
∂Da(p

OE)

∂pa

]2 [
Kia(p

OE)− 2
]
,

where Kia(p
OE) is the term that takes into account the effect of the latency functions

la(·) into the sign (and shape) of ∂2Da(pOE)
∂p2a

. Using the previous expression combined
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with (4.17), we can rewrite (4.18) as17

∂2πa(Da(p
OE))

∂p2
a

=
∂Da(p

OE)

∂pa
Kia(p

OE). (4.19)

Equation (4.19) shows that concavity of the profit function relies on under-

standing the term Kia(p
OE). In particular, the profit function will be concave if

Kia(p
OE) > 0.

The derivation of the Kia(p
OE) is quite involved, and we refer the reader to

Appendix C.1 for details. We define the Kia(p
OE) in the following way; for all

i 6= d, a ∈ A+
i

Kia(pOE) = 2 +
βiDa(pOE)

Jia

(
Ωia(pOE) + (1− 2Pa)

[
∂Da(pOE)

∂pa

]−1)
, (4.20)

where Pa = eβiza∑
b∈A+

i
eβizb

, and Jia = 1+βiDa(pOE)
(

(1− Pa)l′a(Da(pOE)) +
∑
b 6=a

Pbl′b(Db(p
OE))

(ni−1)

)
.

The term Ωia(p
OE), can be decomposed as

Ωia(p
OE) = Firm a’s congestion︸ ︷︷ ︸

Ca(pOE)

+ Competitors’ congestion︸ ︷︷ ︸
C−a(pOE)

,

17The derivation of (4.19) is the following. From the first order condition, we know that

Da(pOE) = −pOEa ∂Da(p
OE)

∂pa
. Using this fact we note that pOEa

∂2Da(p
OE)

∂p2a
= 2∂Da(p

OE)
∂pa

. Then

replacing the last expression into ∂2πa(Da(p
OE))

∂p2a
the expression follows at once.
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with Ca(pOE) = (1−2Pa)l′a(Da(p
OE))+Da(p

OE)(1−Pa)l′′a(Da(p
OE)), and C−a(pOE) =∑

b 6=a l
′
b(Db(p

OE))
(

(ni−1)Pb−Pa
(ni−1)2

)
−∑b6=a

Da(pOE)Pbl′′b (Db(p
OE))

(ni−1)2
.

The component Ca(pOE) shows the effect of firm a’s latency function la, while

C−a(pOE) can be viewed as the average effect of firm a’s competitors’ latency functions

lb, with b 6= a. Thanks to this decomposition, the term Ωia(p
OE) captures all relevant

information needed to determine the concavity of the profit function.18 First, we note

that Ωia(p
OE) depends on the l′a and l′′a. By assumption, we know that the latency

functions la’s are strictly increasing and convex, so it follows that Ca(pOE) is strictly

positive. For the case of C−a(pOE), a more careful analysis must be carried out.

In fact, in Appendix A we analyze how C−a(pOE) determines the sign of Kia(p
OE)

through its effect on Ωia(p
OE). The main message from that analysis is that for

highly congested networks, the sign of Kia(p
OE) can be negative, which implies that

the condition of strict concavity of the profit function can be violated.

4.4.0.2 Uniqueness

Similar to the study of existence, an explicit condition can be derived to analyze the

uniqueness of an OE. In particular, we study the uniqueness based on the dominant

diagonal property (see Vives [2001, Ch. 2]), which establishes that the equilibrium

is unique if the following condition holds:

18Throughout the analysis, and without loss of generality, we shall assume that at each node
i 6= d the equilibrium probabilities satisfy

∑
b 6=a Pb ≥ Pa for all a ∈ A+

i .
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∀i 6= d, ∀ a, b,∈ A+
i ; −

∑
b 6=a

∂2πa(Da(p
OE))

∂pa∂pb

[
∂2πa(Da(p

OE))

∂p2
a

]−1

< 1.

The previous condition shows that the uniqueness depends on the positivity of

∂2πa(Da(pOE))
∂pa∂pb

, which can be written as

∂2π(Da(p
OE))

∂pa∂pb
=
∂Da(p

OE)

∂pb
+ pOEa

∂2Da(p
OE)

∂pa∂pb
. (4.21)

In Appendix C.1, Lemma 3 shows that ∂Da(pOE)
∂pOEa

> 0, and Lemma 5 shows that

∂2Da(pOE)
∂pa∂pb

can be written as

∂2Da(p
OE)

∂pa∂pb
= − 1

Da(pOE)

[
∂Da(p

OE)

∂pa

∂Da(p
OE)

∂pb

] [
K̄iab(p

OE)− 1
]
,

where K̄iab(p
OE) is the term that takes into account the effect of the l′a(·) and l′′a(·) in

the sign (and shape) of ∂2Da(pOE)
∂pa∂pb

. Using the previous expression, we rewrite (4.21)

as

∂2πa(p
OE)

∂pa∂pb
=
∂Da(p

OE)

∂pb
K̄iab(p

OE). (4.22)

Thus expression (4.22) is positive if K̄iab(p
OE) is strictly positive. For uncongested

markets, and under Assumption 2, expression (4.22) is strictly positive.

Similar to the case of Kia(p
OE), the derivation of K̄iab(p

OE) is involved and we
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refer the reader to Appendix C.1. These terms are defined as follows; for all i 6= d,

a, b ∈ A+
i

K̄iab(p
OE) = 1 +

βiDa(pOE)

Jia

(
Ωia(pOE)−

[
∂Da(pOE)

∂pb

]−1 [
Pb −

Pa
(ni − 1)

])
(4.23)

with Ωia,Pa,Pb,and Jia defined as before. Furthermore, we note that points 1) and

2) made for the Kia(p
OE) also apply to the case of the K̄iab(p

OE).

From the previous analysis, it is clear that the existence and uniqueness of an

OE follows if Kia(p
OE) > 0 and K̄iab(p

OE) > 0. Formally

Assumption 3 For any node i 6= d, and for all a, b ∈ A+
i , let Kia(p

OE) and

K̄iab(p
OE) be given by expressions (4.20) and (4.23) respectively. The latency func-

tions are such that: Kia(p
OE) > 0 and K̄iab(p

OE) > 0 for all pOE.

We point out that Assumption 3 is not vacuous. The following examples illustrate

how Assumption 3 can apply to two classes of latency functions.

Example 4 (Linear class) Our first example is the class of linear latency func-

tions. This class is given by the functions la(Da(p)) = δaDa(p), with δa > 0 for all

a ∈ A. A straightforward computing shows that for this class of functions Kia(p
OE)

is strictly positive. The reason for this is because l′′a(Da(p)) = 0 for all a ∈ A. This

implies that the negative term in C−a does not play any role. Thus for the case of

linear latency functions, the profit function is concave in its own price. Furthermore,
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it is easy to see that for the linear case K̄iab > 0. Thus, for the case of linear latency

functions, the assumption 3 is satisfied. �

Example 5 (Load balancing class) Let us consider the class of latency functions

given by la(Da(p)) = (µa − Da(p))
−1 with µa > Da(p) for all p ≥ 0 and a ∈ A.

The parameter µa > 0 represents the capacity of each link a. As we said be-

fore, this class of functions is the leading case in the context of queueing games

(see Hassin and Haviv [2003]). This class is strictly increasing and strictly con-

vex, where l′a(Da(p)) = l2a(Da(p)) and l′′a(Da(p)) = 2l3a(Da(p)). From this latter

property, it follows that l′′a(Da(p)) −→ ∞ as Da(p) −→ µa, which implies that

C−a(pOE) + (1 − 2Pa)
[
∂Da(pOE)

∂pa

]−1

can be arbitrarily large and negative if some of

firm a’s competitors are operating very close to their link capacities. This behavior

can make Kia(p
OE) negative, and as a consequence, the concavity of the profit func-

tion will fail. The intuition for this observation is that for highly congested networks

operating close to the capacity of their links, an OE may not exist.19 Using the con-

verse argument, it can be established that if at each node i 6= d the µa are such that

the strict inequality
∑

a∈A+
i
µa >

∑
a∈A+

i
Da(p) holds, then the conditions of Assump-

tion 3 will apply, and the profit functions will be concave. A similar reasoning can

be applied to analyze the sign of K̄iab(p
OE). �

From an applied point of view, we note that the conditions in Assumption 3

provide information for the design of large scale simulation exercises having a unique

OE.

Finally, the main result can be formally written as:

19A similar observation in the context of load balancing games can be found in Anselmi et al.
[Forthcoming]. However, they do not provide conditions to study the existence of an OE. In
particular, expression (4.20) formalizes their intuition.
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Theorem 6 Suppose that Assumptions 2 and 3 hold. Then, there exists a unique

OE.

Three aspects are worth emphasizing with regards to Theorem 6. First, we note

that Theorem 6 is a generalization of the results available in the literature of oligopoly

pricing in congested markets. Indeed, practically all environments considered in the

literature satisfy Assumption 3. Furthermore, for the case of networked markets

without congestion effects, Theorem 6 also applies. In fact, Assumption 3 trivially

holds. Thus Theorem 6 can also be viewed as an extension of the results of existence

and uniqueness of an OE in the standard oligopoly theory. Second, Theorem 6

establishes the existence and uniqueness of an OE for a general class of network

topologies. Finally, we stress that Theorem 6 considers certain heterogeneity among

the random variables because of the different βi at each node, i.e. the result applies

to the case where at every node the population heterogeneity is different. Indeed,

Theorem 6 can be stated for a general collection of absolutely continuous random

variables {εa}a∈A, at the cost of a more cumbersome notation and no additional

insights.

In addition to the existence and uniqueness of an OE, we provide an explicit

characterization of the equilibrium price vector pOE.

Proposition 11 Let (pOE, D(pOE)) be a pure strategy OE. Then, for all i 6= d, and

a ∈ A+
i :

pOEa =
1

βi(1− Pa)
+Da(p

OE)

[
(1− Pa)l′a(Da(p

OE)) +

∑
b 6=a Pbl′b((Db(p

OE))

ni − 1

]
,

where ni = |A+
i |, and Pa = eβiza∑

b∈A+
i
eβizb

for all a ∈ A+
i .
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Proposition 11 establishes that the equilibrium price vector pOE can be expressed

as a function of two components. The first component is due to the fact that pOE

depends on the dispersion parameters βi. In particular, at each node i 6= d, the

equilibrium prices include the terms 1
βi(1−Pa)

. This contrasts with the expression

that we would get if the notion of Wardrop equilibrium were considered. The reason

for this discrepancy is because our approach allows for heterogeneity within users,

whereas Wardrop equilibrium works for a homogenous population of users. However,

as βi −→ ∞ for all i 6= d, the term 1
βi(1−Pa)

goes to zero, which implies that equilib-

rium prices resemble the ones obtained when Wardrop equilibrium is considered as

the solution concept.20

The second component is Da(pOE)

[
(1− Pa)l′a(Da(pOE)) +

∑
b 6=a Pbl′b(Db(p

OE))

ni−1

]
. From

the previous expression, it is easy to see that Da(pOE)(1−Pa)l′a(Da(pOE)) is the Pigou-

vian pricing, which must be charged by firms such that users internalize the conges-

tion externality. Regarding the term Da(pOE)
∑
b 6=a Pbl′b(Db(p

OE))

ni−1 , it has the interpretation

of an extra markup due to oligopolistic competition among firms at each node i 6= d.

Summarizing, the equilibrium price vector pOE can be viewed as the sum of three

factors: heterogeneity, pigouvian pricing, and extra markup.

Finally, we note that Proposition 11 shows that equilibrium prices solve a fixed

point equation, where for each firm a the equilibrium price pOEa depends on two

factors: the prices of its competitors and the continuation values τja associated to its

link. These two elements make explicit that a firm setting prices considers the path

and demand effects. The previous effects combined with the heterogeneity in users

20Recall that at each node i 6= d, the variance of the random variable {εa}a∈A+
i

is given by

V(εa) = π
βi
√
6
. Then, βi −→ ∞ implies that the variance goes to zero, meaning that utility

within the population is homogenous. This latter interpretation allows us to compare our result in
Proposition 11 with the prices that would be obtained using Wardrop equilibria as the equilibrium
concept for solving users’ problem.
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(through the βi) turn out to be new elements in the study of price competition in

congested networks.

4.5 Conclusion and final remarks

In this Chapter we have studied the problems of free entry and welfare, and the exis-

tence and uniqueness of an OE in congested markets for a general class of networks.

In particular, we provided conditions under which an OE exists and is unique in a

general class of environments, encompassing many settings studied in the literature.

These results allow to us to inspect the welfare properties of congested networks

under free entry. To the best of our knowledge, our work is the first to establish the

result of excess entry for the case of congestion pricing games in a general network.

The closest result to ours is the recent paper by Weintraub et al. [2010], who consider

a simple network having a single origin-destination pair with a collection of parallel

links. Consequently, we think that our result may provide insights regarding the

design of optimal networks subject to congestion effects.

Finally,the introduction of random utility models to the study of pricing in con-

gested networks opens the possibility of carrying out two interesting exercises. The

first exercise is related to the evaluation of changes in users’ welfare, using the de-

mand function generated at every node. Concretely, and given the result in Theorem

6, we can evaluate the impact in users’s welfare of different pricing policies. From an

econometric viewpoint, the second exercise is related to the estimation of a congestion

pricing game, mimicking the empirical I.O. literature.
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Appendix A

Appendix to Chapter 1

A.1 Definitions and proofs

A.1.1 Definitions

Definition 10 (P-matrices) A matrix M ∈ Rn×n is said to be a P-matrix if all

its principal minors are positive. The class of such matrices is denoted P.

Definition 11 A matrix M ∈ Rn is row diagonally dominant if

|mii| >
∑
j 6=i

|mij|, i = 1, . . . , n

and strictly row diagonally dominant if strict inequality holds for all i.

Theorem 7 (Cottle et al. [2009]) A matrix M ∈ Rn×n is a P-matrix if and only

if the LCP (q,Σ) has a unique solution for all vectors q ∈ Rn.

Proof. See Cottle et al. [2009]. �

Proof of Proposition 1:

(=⇒) If V ∗ is a ME, then it satisfies [I + πκW]V ∗ = ĉ with V ∗ ≥ 0. Moreover,

V ∗
′
([I + πκW]V ∗ − ĉ) = 0. Thus V ∗ is a solution of the LCP(W, ĉ).
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(⇐=) Let V ∗ be a solution to the LCP(W, ĉ). Noting that −ĉ ≤ 0, and using the

fact that V ∗ ≥ 0, it follows that V ∗
′
([I+πκW]V ∗− ĉ) = 0 implies [I+πκW]V ∗ = ĉ.

Then we conclude that V ∗ is a ME. �

Proof of Proposition 2: It is easy to see that the matrix M = [I + πκD][I + πκW]

satisfies Definition 11, so that M is dominant diagonal. This implies that M is

invertible and positive definitive, as long as the condition 0 < δ < 1 holds. This fact

combined with Theorem 7 implies that the LCP (W, ĉ) has a unique solution. Then

the conclusion follows from Proposition 1. �

Proof of Theorem 1 : Let V ∗ be an equilibrium. Then we know that it satisfies

[I + πκW]V ∗ = ĉ. Noting that [I + πκW] satisfies Definition 11, we can solve for

V ∗, so that we get

V ∗ = [I + πκW]−1ĉ.

This expression is equivalent to [I−(−πκW)]−1ĉ, and using Definition 2, we conclude

that V ∗ = b(−πκ,W; ĉ). �

A.1.2 Proof of Theorem 2

Let T = A
ρ(A)

, and let P be an n-square strictly positive matrix. In particular,

P is defined as P =
eqt

qte , where e and q are the right and left eigenvectors of A

respectively.

The following Lemma establishes the connection between T and P.

Lemma 1 limk−→∞Tk = P.

Proof. Thanks to the assumption of G being a strongly connected network it follows
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that T is primitive, i.e., limk−→∞Tk exists. Furthermore, this limit corresponds to

the matrix P (Ch. 8, Horn and Johnson [1990]). �

Lemma 2 lima−→1(1 + a)[I + aT]−1 = P.

Proof. From Lemma 1 we know that for a given ε
2

there exists K such that for all

k > K we get ‖Tk−P‖∞ < ε
2
. Let us choose a < 1 such that |∑K

k=0(1 + a)(−a)k| <
ε

2θ
, where θ = maxk<K ‖Tk −P‖. Using this fact we get:

‖(1 + a)[I + aT]−1 −P‖ = ‖
∞∑
k=0

(1 + a)(−a)kTk −P‖

≤ ‖
K−1∑
k=0

(1 + a)(−a)k[Tk −P]‖︸ ︷︷ ︸
b1

+ ‖
∞∑
k=K

(1 + a)(−a)k[Tk −P]‖︸ ︷︷ ︸
b2

.

For b2 we obtain:

b2 ≤ |
∞∑

k=K+1

(1 + a)(−a)k| ε
2
<
ε

2
.

For the term b1 we get:

b1 ≤ |
K∑
k=0

(1 + a)(−a)k|θ,

<
ε

2θ
θ =

ε

2
.

Thus we obtain

‖ (1 + a)[I + aT]−1 −P‖ < ε.
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�

Proof of Theorem 2: Thanks to previous lemma, we know that for ε1, there exists ε

such that

‖ (1 + a)[I + aT]−1 −P‖ < ε,

which implies that

∣∣∣∣∣ bi(−a,T; 1)∑n
j=1 bj(−a,T; 1)

− ei(A)

∣∣∣∣∣ < ε1 for all i ∈ N.

Thus it follows that

∥∥∥∥∥ b(−a,T; 1)∑n
j=1 bj(−a,T; 1)

− e(A)

∥∥∥∥∥ < ε1.

Then the conclusion follows from the fact that the eigenvectors are invariant to

scale combined with the identification a

ρ(A)
= πκ. �

Proof of Proposition 3: For the regular case, we note that (2.2) can be written as

(1− δ)[I + πκdA]V ∗ = c,

where d is the degree. The important fact is that dA is given by dA = d[I + G′],

where I is the identity matrix, and G′ is the original adjacency matrix for the network

G weighted by 1
d
. Using the fact that ρ(A) = ρ(I + G′) = 1 + ρ(G′), and using the

fact that the rows of G′ add to one, we get ρ(A) = 2. Furthermore, for the case of

a regular network the number of edges E is given by E = nd
2

. Thus π is equal to
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π = 1
nd/2

. The previous observations imply that the condition πκd < 1

ρ(A)
may be

written as δ < 1
n∗+1

where n∗ = n
2
. Thus the conclusion follows at once. �

A.1.2.1 Proofs for the case of sellers-buyers networks

The proofs of this subsection follows from the previous arguments.
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Appendix B

Appendix to Chapter 2

B.1 Proofs

Proof of Theorem 3: Noting that the utility function U(d) is strictly concave, the

first order conditions are necessary and sufficient for finding a maximum. Using this

fact, we can write the Lagrangian for the consumer’s optimization problem as

L =
∑
a∈A

θada + d0 −
∑
i∈N

χi(d) + λ[Y −
∑
a∈A

pada − d0] +
∑
i∈N

µi[
∑
a∈A−i

da −
∑
a∈A+

i

da] +
∑
a∈A

λada.

The multipliers µi and λ ∈ R correspond to constraints (4.1), (3.6), and da ≥ 0

respectively. For a stationary point we get λ = 1, u∗a = θa − pa and ζ ∈ ∂(−χ(v))

with ζa = u∗a + µja − µia and χ(d) =
∑

i∈N χi(d). For the multipliers λa we simply

set λa = 0 for all a ∈ A. Taking µi = ϕi((u
∗
a +ϕja(V ))a∈A), and combining (4.1) and

(4.5) we get

da =
∂ϕia
∂da

(V )
∑
a∈A+

i

da,

which shows that V is an optimal solution for −χ(d). Therefore, setting ga =
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ϕia(V ) − Va we get g ∈ ∂(−χ(d)). Combining ϕia(V ) with Va = u∗a + ϕja(V
∗),

it follows that ζ = g ∈ ∂(−χ(d)) as required. �

Proof of Proposition 7 : We can write the Lagrangian for the consumer’s

optimization problem as

L =
∑
a∈A

θada + d0 −
∑
i∈N

1

βi

∑
a∈A+

i

da log da −
∑
a∈A+

i

da log

∑
a∈A+

i

da

+

λ[Y −
∑
a∈A

pada − d0] +
∑
i∈N

µi[
∑
a∈A−i

da −
∑
a∈A+

i

da] +
∑
a∈A

λada.

As in Theorem 3, the multipliers µi and λ ∈ R correspond to constraints (4.1),

(3.6), and da ≥ 0 respectively. Taking the first order condition and setting λa = 0,

we get

∂L
∂d0

= 1− λ = 0,

∂L
∂da

= θa − λpa −
1

βi

log da − log

∑
a∈A+

i

da

+ µja − µia = 0 ∀i ∈ N.

Combining (4.1) and (4.5), and after some simple algebra we find that

da = xi
eβi(θa−pa+ϕja )∑
b∈A+

i
eβi(θb−pb+ϕjb )

∀a ∈ A+
i ,

which is equivalent to
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da = xi
eβiVa∑
b∈A+

i
eβiVb

∀a ∈ A+
i ,

and the conclusion follows at once. �

B.2 Appendix: Sequential MNL and its relation-

ship with the nested logit model

In this appendix we show how Proposition 7 is related to the nested logit model.

To make as clear as possible our comparison, we describe a model in terms of a tree

decision process. In particular, we follow Train [2009]’s description for a tree process.

Formally, let A be the set of goods, and |A| the number of available choices for

consumers. The set A can be partitioned into K nonoverlapping subsets denoted

B1,...,BK , which we call nests. The utility associated to good j in nest k is given by

ũjk = wk + ujk + εjk, where ujk is the deterministic utility for good j in nest k, wk is

a constant term within nest k, but it varies across nests, and the εjk is the random

component for good j in nest k. The nested logit is obtained by assuming that the

joint distribution of the random variables εik is given by

F (ε) = e

(
−
∑K
k=1(

∑
j∈Bk

e
−εjk/λk)

λk
)
, (B.1)

where 0 < λk ≤ 1 for all k.

The expression (B.1) is a generalized extreme value distribution. It is a general-

ization of the double exponential distribution that gives rise to the logit model. The
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parameter λk is a measure of the degree of independence among goods in nest k.

Let Pjk be the probability that consumer chooses good j from nest k. Using (B.1)

we get

Pjk =
eujk/λk∑
i∈Bk e

uik/λk

ewk+λkIk∑K
l=1 e

wl+λlIl
(B.2)

where Il = log(
∑

i∈Bl e
uil/λk) for l = 1, ..., K. In expression (B.2), as λk −→ 0

the alternatives in nest Bk are highly correlated, whereas λk −→ 1 means that the

alternatives in Bk are independent. As we said in section 3.3.1, the random utility

hypothesis holds for 0 < λk ≤ 1. This condition is formalized in McFadden [1978a,b]

and McFadden [1981].

This parametric constraint for the λk can be violated in applied work, which is

interpreted as violations of the random utility maximization hypothesis. In fact,

evidence of this violation can be found in Kling and Herriges [1995].

From Proposition 7, we know that the probability of choosing good j from nest

k is given by

P̄jk =
eβkujk∑
i∈Bk e

βkuik

eβτk∑K
l=1 e

βτl
(B.3)

where τl = E(maxj∈Bl{wl + ujl + εjl}) for l = 1, ..., K. Moreover, for this case we

know that τl = E(maxj∈Bl{wl +ujl + εjl}) = 1
βl

log(
∑

j∈Bl e
βl(wl+uil)). Then it follows

that τl = wl + 1
βl
Il, and redefining βl = 1

λl
we get
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P̄jk =
eujk/λk∑
i∈Bk e

uik/λk

eβwk+βλkIk∑K
l=1 e

βwl+βλlIl
. (B.4)

Then, it follows that equations (B.2) and (B.4) coincides if and only if β = 1. This

means, that as a particular case, we obtain the nested logit model from Proposition

7.
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Appendix C

Appendix to Chapter 3

C.1 Proofs

We begin this Appendix with the proof of the existence and uniqueness of an MTE.

Proof of Proposition 10: For a given p ≥ 0, let v∗ be a MTE. Since (P ) is

a strictly concave program with respect to v, it suffices to check that v∗ ∈ V is a

stationary point of the Lagrangian:

L =
∑
a∈A

(R− pa)va −
∑
a∈A

∫ va

0

la(s)ds− χ(v) +
∑
i 6=d

µi

gi +
∑
a∈A−i

va −
∑
a∈A+

i

va


−

∑
a∈A

λava.

The multipliers µi ∈ R, and λa ≥ 0 correspond to (4.1) and va ≥ 0 respectively, and

stationary amounts to R − pa − la(v∗a) = u∗a, and ζ = ∇χ(v) where ζ = µia + u∗a −
µja − λa. For the multipliers λa, we simply set λa = 0. To check the last condition

take µi = τi(u
∗). Combining the (4.1) and (4.5) we get
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va =
∂ϕi
∂za

(z)
∑
a∈A+

i

va =

(
eβiza∑
b∈A+

i
eβizb

) ∑
a∈A+

i

va

which shows that z is a optimal solution for χ(v) and therefore setting ga = ϕia(z)−za
we get g = ∇χ(v). Since ϕia(z) = τi and za = u∗a+τja we deduce that g = ζ = ∇χ(v)

as required. �

C.1.1 Quasi concavity of the profit function

In this section we derive the conditions for the quasi concavity of the profit function

πa(·) for all a ∈ A. In particular, we find expressions for
∂2π(pa,pOE−a )

∂p2a
and

∂2π(pa,pOE−a )

∂pa∂pb
,

for a 6= b. Our first result is the characterization of
∂Da(pa,pOE−a )

∂pa
and

∂Da(pa,pOE−a )

∂pb
for

b 6= a.

Lemma 3 Let (pOE, D(pOE)) be a pure strategy OE. Then, ∀i 6= d, a, b ∈ A+
i , with

a 6= b we get:

∂Da(pa, p
OE
−a )

∂pa
=
−βiDa(pa, p

OE
−a )(1− Pa)
Jia

, (C.1)

∂Da(pa, p
OE
−a )

∂pb
=

βiDa(pa, p
OE
−a )Pb

Jia
, (C.2)

where

Jia ≡ 1 + βiDa(pa, p
OE
−a )(1− Pa)

[
l′a(Da(pa, p

OE
−a )) +

∑
b 6=a qbl

′
b(Db(pa, p

OE
−a ))

(ni − 1)

]
,
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with ni = |A+
i |, Pa = eβiza∑

b∈A+
i
eβizb

, and qb = Pb
1−Pa .

Proof. Let us fix a node i 6= d. Considering Da(pa, p
OE
−a ) and taking partial derivative

with respect to pa we get

∂Da(pa, p
OE
−a )

∂pa
= −βiDa(pa, p

OE
−a )(1− Pa)

[
1 + l′a(Da(pa, p

OE
−a ))

∂Da(pa, p
OE
−a )

∂pa

]
+

βiDa(pa, p
OE
−a )

∑
b6=a

Pbl′b(Db(pa, p
OE
−a ))

∂Db(pa, p
OE
−a )

∂pa
.

On the other hand, for the entering flow xi, we know that it must satisfy
∑

b∈A+
i
Db(pa, p

OE
−a ) =

xi. Using the fact that pOE is a pure strategy OE it follows that

∂Da(pa, p
OE
−a )

∂pa
= −βiDa(pa, p

OE
−a )(1− Pa)

[
1 + l′a(Da(pa, p

OE
−a ))

∂Da(pa, p
OE
−a )

∂pa

]
−

βiDa(pa, p
OE
−a )

ni − 1

∂Da(pa, p
OE
−a )

∂pa

∑
b 6=a

Pbl′b(Db(pa, p
OE
−a )).

Solving for
∂Da(pa,pOE−a )

∂pa
we get:

∂Da(pa, p
OE
−a )

∂pa
=

−βiDa(pa, p
OE
−a )(1− Pa)

1 + βiDa(pa, pOE−a )(1− Pa)
[
l′a(Da(pa, pOE−a )) +

∑
b 6=a

Pb
1−Pa

l′b(Db(pa,p
OE
−a ))

ni−1

]
Finally, using the definition for qb (with b 6= a) and Jia, we find:

∂Da(pa, p
OE
−a )

∂pa
=
−βiDa(pa, p

OE
−a )(1− Pa)

Jia
.

As the previous analysis holds for any node i 6= d, the conclusion follows. For the
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case of
∂Da(pa,pOE−a )

∂pb
, the same logic yields

∂Da(pa, p
OE
−a )

∂pb
=
βiDa(pa, p

OE
−a )Pb

Jia
, ∀b 6= a ∈ A.

�

When there is no congestion at the network we get l′a(xa) = 0 for all xa and for

all a ∈ A, so that we find ∂Da(pa,pOEa )
∂pa

= −βiDa(pa, p
OE
−a )(1 − Pa), and ∂Da(pa,pOEa )

∂pb
=

βiDa(pa, p
OE
−a )Pb for b 6= a. Thus, Lemma 3 can be viewed as a generalization of the

demand behavior to the case of oligopoly competition in congested markets.

We now introduce the terms Kia(p
OE) and K̄iab(p

OE) as follows: For all i 6= d,

and a ∈ A+
i , define

Kia(p
OE) ≡ 2 +

βiDa

Jia
Ωia +

βiDa

Jia

[
∂Da

∂pa

]−1

(1− 2Pa),

where Ωia =
[
(1− 2Pa)l′a +

∑
b6=a l

′
b

(
(ni−1)Pb−Pa

(ni−1)2

)
+Da(1− Pa)l′′a −

∑
b 6=a

DaPbl′′b
(ni−1)2

]
, Pa = eβiza∑

b∈A+
i
eβizb

,

Jia ≡ 1 + βi

(
Da(1− Pa)l′a +

∑
b 6=a

DaPbl′b
(ni−1)

)
, Da ≡ Da(pOE), l′a ≡ l′a(pOE), and l′′a ≡ l′′a(pOE) for

all a ∈ A.

Similarly, we define K̄iab(p
OE) as:

K̄iab(p
OE) = 1 +

βiDa

Jia
Ωia −

βiDa

Jia

[
∂Da

∂pb

]−1(
(ni − 1)Pb − Pa

(ni − 1)

)
,
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with Ωia,Pa, Jia, Da, l
′
a, and l′′a defined as before.

As we pointed out in the main text, the terms Kia(p
OE) and Kiab(p

OE) can be

viewed as technical conditions on the class of latency functions.

The term Kia(p
OE) is derived as follows. From Lemma 3 we know that ∂Da(pa,pOEa )

∂pa

satisfies the following equation:

∂Da(pa, p
OE
−a )

∂pa
Jia = −βiDa(pa, p

OE
−a )(1− Pa).

Derivating this expression with respect to pa we find

∂2Da(pa, p
OE
−a )

∂p2a
Jia +

∂Da(pa, p
OE
−a )

∂pa

∂Jia
∂pa

= −βi
∂Da(pa, p

OE
−a )

∂pa
(1− Pa)− βiDa(pa, p

OE
−a )

∂(1− Pa)

∂pa
.

Using implicit differentiation on ∂Jia
∂pa

, the previous equation can be written in

terms of
∂Da(pa,pOE−a )

∂pa
and

∂2Da(pa,pOE−a )

∂p2a
. Thus solving for

∂2Da(pa,pOE−a )

∂p2a
we can identify

Kia(p
OE) (see Lemma 4 below). A similar reasoning allows us to identify K̄iab(p

OE)

(see Lemma 5 below).

C.1.2 Analysis of C−a(pOE)

In this section we discuss the terms C−a(pOE). In particular, we show how the sign

of the C−a(pOE) depends on the latency functions. We consider two cases.
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Case 1 C−a(pOE) + (1− 2Pa)
[
∂Da(p

OE)
∂pa

]−1
≥ 0: Noting that Ca(pOE) > 0, it follows that

Ωia(p
OE) + (1− 2Pa)

[
∂Da(p

OE)

∂pa

]−1

> 0.

The previous condition implies that Kia(p
OE) > 0, and from (4.19) we conclude

that the profit function is concave.

Case 2 C−a(pOE) + (1− 2Pa)
[
∂Da(p

OE)
∂pa

]−1
< 0: Using this condition and noting that

Ωia(pOE) + (1− 2Pa)

[
∂Da(pOE)

∂pa

]−1
= Ca(pOE) + C−a(pOE) + (1− 2Pa)

[
∂Da(pOE)

∂pa

]−1
,

we get the following: If C−a(pOE) + (1− 2Pa)
[
∂Da(pOE)

∂pa

]−1

dominates Ca(pOE),

then we obtain Kia(p
OE) < 0 and the concavity of the profit function will fail.1

This implies that the existence of an OE cannot be established. Conversely,

if C−a(pOE) + (1 − 2Pa)
[
∂Da(pOE)

∂pa

]−1

is dominated by Ca(pOE), it follows that

Kia(p
OE) is strictly positive, and by the same argument used in Case 1, we

conclude the existence of an OE.

The previous analysis show us that the problem of establishing the concavity of

the profit function, occurs when C−a(pOE) and (1− 2Pa)
[
∂Da(pOE)

∂pa

]−1

dominate the

term Ca(pOE). In other words, the complicated case is when the latency functions

are such that the Kia(p
OE) are strictly negative implying that the concavity of the

profit functions does not hold.

1We employ the term dominate in an absolute value sense.
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C.1.3 Analysis of the existence and uniqueness of an OE

After this discussion we are ready to establish the technical Lemmas in order to show

the existence and uniqueness of an OE.

Lemma 4 Suppose that Assumption 3 holds. Then, for all i 6= d, a ∈ A+
i

∂2Da(p
OE)

∂p2
a

= − 1

Da

[
∂Da(p

OE)

∂pa

]2

[Kia(p
OE)− 2] < 0.

Proof. From Lemma 3 we know that

∂Da

∂pa
=
−βiDa(1− Pa)

Jia
,

where Da ≡ Da(pa, p
OE
−a ) for all a ∈ A+

i . Thus, we can rewrite the previous expression

as:

∂Da

∂pa
Jia = −βiDa(1− Pa).

Recalling the definition of Jia and taking the derivative with respect to pa we get:

∂2Da

∂p2
a

Jia +
∂Da

∂pa

∂Jia
∂pa

= − 1

Da

∂Da

∂pa
βi(1− 2Pa).

Computing the derivative ∂Jia
∂pa

, evaluating at pOE, and solving for ∂2Da
∂p2a

, we get



98

∂2Da(p
OE)

∂p2
a

= − 1

Da

[
∂Da(p

OE)

∂pa

]2

[Kia(p
OE)− 2],

with 0 < Da < xi and thanks to Assumption 3, Kia(p
OE)− 2 > 0 for all a. Thus, we

conclude that ∂2Da(pOE)
∂p2a

< 0. �

Now we establish a key result to guarantee the existence of an OE. Concretely, we

utilize Lemma 2 to show the quasi-concavity of πa(·, pOE−a ).

Proposition 12 Suppose that Assumption 3 holds. Then, for all firm a, πa(pa, p
OE
−a )

is strictly quasi-concave in its own price pa.

Proof. Taking the first order condition we get that an OE satisfies :

∂πa(p
OE)

∂pa
= Da(p

OE) + pOEa
∂Da(p

OE)

∂pa
= 0.

Now, taking the second order condition evaluated at pOE we find that

∂2πa(p
OE)

∂p2
a

= 2
∂Da(p

OE)

∂pa
+ pOEa

∂2Da(p
OE)

∂p2
a

< 0,

where last inequality follows from Lemmas 3 and 4. Thus, we conclude that for all

a ∈ A, the profit function πa(·, pOE−a ) is strictly quasi-concave in its own price pa. �

The following Proposition establishes the properties of the best response map.

In particular, we establish that under assumption 3 the best response map is convex

valued.
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Proposition 13 Suppose that Assumption 3 holds, and let (pOE, D(pOE)) be a pure

strategy OE. Then, at each node i 6= d the best response map Bia(p
OE
−a ) is non empty,

upper semi-continuous and convex valued for all a ∈ A+
i .

Proof. Fix a node i 6= d. Using Corollary 4.9 we know that for every firm a ∈ A+
i ,

the profit function is continuous and Sa = [0, Ra] is a compact set, then there exists

at least one maximizer, which implies that Bia(p
OE
−a ) is non empty. By the maximum

theorem, Bia(p
OE
−a ) is upper semi-continuous. The fact that Bia(p

OE
−a ) is a convex set

follows from Proposition 12. �

To establish the uniqueness of an OE we use the dominant diagonal property (cf.

Vives [2001, Ch. 2]). In order to apply such a property we need to establish two

technical results, which are given in Lemmas 5 and 6.

Lemma 5 For all i 6= d, a 6= b ∈ A+
i :

∂2Da(p
OE)

∂pa∂pb
= − 1

Da

[
∂Da(p

OE)

∂pa

∂Da(p
OE)

∂pb

]
[K̄iab − 1] > 0.

Proof. From Lemma 3 we know that

∂Da

∂pb
=
βiDaPb
Jia

,

where Da ≡ Da(pa, p
OE
−a ) for all a ∈ A+

i . Thus, we can rewrite the previous expression

as:

∂Da

∂pb
Jia = βiDaPb.
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Recalling the definition of Jia and taking derivative with respect to pa we get:

∂2Da

∂pa∂pb
Jia +

∂Da

∂pa

∂Jia
∂pa

=
∂Da

∂pa
βi

[
Pb −

Pa
ni − 1

]
.

Computing the derivative ∂Jia
∂pa

, evaluating at pOE, and solving for ∂2Da(pOE)
∂pa∂pb

, we get

∂2Da(p
OE)

∂pa∂pb
= − 1

Da

[
∂Da(p

OE)

∂pa

∂Da(p
OE)

∂pb

]
[K̄ib(p

OE)− 1],

where 0 < Da < xi and by Assumption 3, K̄ib(p
OE) − 1 > 0 for all b. Thus, we

conclude that
∂2Da(p

OE)

∂pa∂pb
> 0, ∀a, b ∈ A.

�

Lemma 6 For all i 6= d, a, b ∈ A+
i with a 6= b

∑
b 6=a

Pb
1− Pa

K̄iab(p
OE)

Kia(pOE)
< 1 ∀pOE.

Proof. Note that for a 6= b, Kia(p
OE) and K̄iab(p

OE) can be written as:

Kia(p
OE) = 1 +

Da

Jia
Ωia +

Pa
1− Pa

,

K̄iab(p
OE) =

Da

Jia
Ωia +

Pa
Pb(ni − 1)

,
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where Ω̄ia is defined as:

Ωia ≡ βi

(1− 2Pa)l′a +
∑
b6=a

l′b

(
(ni − 1)Pb − Pa

(ni − 1)2

)
+Da(1− Pa)l′′a −

∑
b 6=a

DaPbl′′b
(ni − 1)2

 .
Using this fact we get:

∑
b 6=a

Pb
1− Pa

K̄iab(p
OE)

Kia(pOE)
=

∑
b 6=a

Da

(1− Pa)Kia(pOE)
Pb
(

Ωia

Jia
+

1

Db(ni − 1)

)
,

=
Da

(1− Pa)Kia(pOE)

(∑
b 6=a

Pb
Ωia

Jia
+

1

xi

)
,

=
Da

(1− Pa)Kia(pOE)

(
(1− Pa)

Ωia

Jia
+

1

xi

)
,

where the last equality follows because of
∑

b6=a Pb = 1− Pa. On the other hand, for

Kia(p
OE) we get:

Kia(p
OE) =

Da

1− Pa

(
1

Da

+ (1− Pa)
Ωia

Jia

)
.

Combining the expressions for Kia(p
OE) and K̄iab(p

OE), we find

∑
b6=a

Pb
1− Pa

K̄iab(p
OE)

Kia(pOE)
=

(1− Pa)Ωia
Jia

+ 1
xi

(1− Pa)Ωia
Jia

+ 1
Da

.

Using the fact 0 < Da < xi, we conclude that
∑

b6=a
Pb

1−Pa
K̄iab(p

OE)
Kia(pOE)

< 1. �

Now we are ready to proof Theorem 6.
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Proof of Theorem 6:

Existence: First, thanks to Proposition 13, the correspondence B(pOE) is non

empty, upper semi-continuous and convex valued. Then, by Kakutani’s fixed point

theorem, it follows that there exists a price vector pOE such that pOE = B(pOE).

Second, we show that for pOE there exists an MTE given by D(pOE), such that the

condition (4.10) is satisfied. In particular, we show that for any node i 6= d and

given pOE−a , the firm a ∈ A+
i does not have a profitable deviation. In fact, noting that

Da(p
OE) can be written as Da(p

OE) = xi−
∑

b 6=aDb(p
OE) for all b ∈ A+

i , and thanks

to Proposition 10, it follows that the flow is uniquely determined, which means that

firm a does not have an incentive to deviate from pOEa . As this argument is valid at

any node i 6= d, we conclude that (pOE, D(pOE)) is an OE.

Uniqueness: As we said before, to establish the uniqueness we apply the dominant

diagonal property. Concretely, at every node i 6= d and for a, b ∈ A+
i , we compute

the term:

−
∑
b6=a

∂2πa(p
OE)

∂pa∂pb

(
∂2πa(p

OE)

∂p2
a

)−1

, ∀a, b ∈ A+
i .

Using Lemmas 4 and 5 we get:

∂2πa(p
OE)

∂pa∂pb
=

∂Da(p
OE)

∂pb
K̄iab, for all b 6= a ∈ A+

i ,

∂2πa(p
OE)

∂p2
a

=
∂Da(p

OE)

∂pa
Kia, for all a ∈ A+

i .

Thus, we find that:

−
∑
b 6=a

∂2πa(p
OE)

∂pa∂pb

(
∂2πa(p

OE)

∂p2
a

)−1

=
∑
b 6=a

Pb
1− Pa

K̄iab(p
OE)

Kia(pOE)
.
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Then, thanks to Lemma 6, it follows that

−
∑
b 6=a

∂2πa(p
OE)

∂pa∂pb

(
∂2πa(p

OE)

∂p2
a

)−1

< 1 ∀a, b ∈ A+
i ,

and we conclude that the equilibrium is unique. �

Proof of Proposition 11:

Let pOE−a be an OE for all firms b 6= a. Then the best response for firm a is

characterized by
∂π(pa,pOE−a )

∂pa
= 0. Thus, it follows that pOEa being a best response to

pOE−a must satisfy

Da(pOE) + pOEa
∂Da(pOE)

∂pa
= 0.

Then, using the expression for ∂Da(pOE)
∂pa

given in Lemma 3, we find

pOEa =
1

βi(1− Pa)
+Da(p

OE)

[
l′a(Da(p

OE)) +

∑
b 6=a qbl

′
b(Db(p

OE))

ni − 1

]
.

�

C.1.4 Symmetric case

Proposition 14 Let (pOEn , D(pOEn )) be a symmetric price equilibrium. Then, the

following holds

pOEni+1 < pOEni ∀i 6= d.
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Proof. From a symmetric pure strategy OE condition it follows that

pOEni+1 =
ni + 1

βni
+
xi
ni
l′(xi/(ni + 1)), ∀i 6= d

pOEni =
ni

β(ni − 1)
+

xi
ni − 1

l′(xi/ni).

Computing pOEni+1 − pOEni we get:

pOEni+1 − pOEni = − 1

βni(ni − 1)
+

xi
ni(ni − 1)

[ni(l
′(xi/(ni + 1))− l′(xi/ni))− l′(xi/(ni + 1))].

Thus, thanks to the convexity of l(·), the term (l′(xi/(ni+1))− l′(xi/ni)) is negative.

Combining this fact with l′(·) > 0, it follows that pOEni+1 − pOEni < 0, or equivalently

pOEni+1 < pOEni . �

Corollary 5 Let (pOEn , D(pOEn )) be a symmetric equilibrium. Then, the following

holds

πa(Da(p
OE
n+1)) < πa(Da(p

OE
n )) ∀a ∈ A.

Proof. For all firms a ∈ A consider the symmetric equilibriums pOEni+1 and pOEni with

the associated profits πa(Da(p
OE
n+1)) and πa(Da(p

OE
n )). Computing πa(Da(p

OE
n+1)) −

πa(Da(p
OE
n )) we get:

πa(Da(p
OE
n+1))− πa(Da(p

OE
n )) =

xi
ni(ni + 1)

[ni(p
OE
ni+1 − pOEni )− pOEni ]

< 0,

where the last inequality follows from Proposition 14. Thus we conclude that profits

are decreasing in n. �
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Proof of Theorem 4:

Existence: Noting that for a symmetric OE we have that for all i 6= d, a ∈ A:

Kia(p
OE
n ) =

ni
ni − 1

+
βDa

Jia

(
ni − 2

ni(ni − 1)

)
[(l′(Da)(2ni − 1) + l′′(Da))] > 0,

with Da = xi
ni

. Thus, we find that Assumption 3 is satisfied and the existence of a

symmetric OE follows from Theorem 6.

Uniqueness: In order to show the uniqueness, note that for all i 6= d, b ∈ A it holds

that:

K̄iab(p
OE
n ) =

1

ni − 1
+
βDa

Jia

(
ni − 2

ni − 1

)
[l′(Da) +Dal

′′(Da)] > 0,

with Da = xi
ni

. In particular, we see that Kia(p
OE) > K̄iab(p

OE
n ), which implies that

Lemma 6 applies, so we conclude that the symmetric equilibrium is unique. �

Proof of Theorem 5: First, as we noted the function W(pOEn ) is strictly concave

in n. Thus, taking the first order conditions and solving for n we get:

∂W(pOEn )

∂ni
=

x

βni
+

[
xi
ni

]2

l′(xi/ni)− F = 0, ∀i 6= d.

Thus, the optimal number of firms at each node is given by
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∀i 6= d
xi
βnSi

+

[
xi
nSi

]2

l′(xi/n
S
i ) = F (S).

Moreover, thanks to the convexity of l(·) the left hand side in (S) is a decreasing

function of nsi , which implies that there exists a unique optimal solution nSi . Now

considering the zero profit condition we find that πa(Da(p
OE
n )) = 0 yields the follow-

ing equation

x

β(nEi − 1)
+

x2
i

nEi (nEi − 1)
l′(xi/n

E
i ) = F (E).

Once again, the convexity of the left hand side in (E) implies that nE is uniquely

determined. Finally, from (S) and (E) it follows that nE > nS. �
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