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ABSTRACT

One of the most interesting manifestations of acoustic com-
bustion instability in solid propellant rocket motors is the formation
of strong vortices in the combustion chamber. A single vortex fila~-
ment stretching along the motor axis from the head-end has been ob-
_éerved in several experiments in association with gas oscillations in
the frequently occurring traveling tangential mode of instability.
These flows are sometimes accompanied by a quite noticeable axial
torque on the motor itself, and this effect has given rise. to flight per-
formance difficulties in a number of instances. Previous theoretical
studies of the vortex generation effect have been ina.dequa‘.te in several
respects. The present work is an attempt to place the theory on a
more firm base and to clarify the connection between traveling wave
motions and the generation of vortices and torques.

It is readily shown that traveling waves transport momentum,
and in the case of traveling tangential waves in a cylindrical combus-
tion chamber this represents a steady axial component of angular mo-
mentum in the gas. This observation gives rise to a simple conceptual
model of the vortex generation effect. Thus the presence of a steady
mass flux about the axis implies the existence of a layer of vorticity at
the chamber walls which may be represented by a vortex sheet com-
posed of axially oriented bound vortex filaments. In the three-dimen-
sional case these vortices are shed either at the end of propellant
grain or at the periphery of the nozzle; the other ends of the filaments
traverse the fore-end closure to the center and are combined and shed

in an intense vortex filament along the symmetry axis of the motor.
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Due to the production of gas at the chamber wall, tangential forces at
the wall are produced by the interaction of this mean flow with the
bound vortices. Angular momentum arguments must Be used in this
conceptual mechanism to estimate the strength of the axial vortex
filament, and it is readi_ly. shown that the sense of the vortex must be
6pposite to the diréction of travel of the waves. The direction and
magnitude of the torque on the motor depend on the mean flow Mach
number at the wall and must be established by calculation of the wall
shear stresses. |

The detailed calculations are guided by the mechanism just
outlined. All physical features of the problem which appaaf to be sig-
nificant are simulated mathematically. In particular, the effects of
the three-dimensional mean flow_pattern in the chamber and the pres-
sure-sensitive combustion region at the burning surface are repre-
sented. Also considered are the effects of freedom of motion of the
rocket .motor in the plane normal to the ‘symmetry axis. Both invis-
cid and viscous theories are developed using multi-parameter asymp-
totic perturbation expansion techniques. It is proved that traveling
tangential wavés are subject to amplification undér conditions existing
in typical solid propellant rockets, and that a steady transport of gas
about the chamber axis accompanies this motion as a second-order
perturbation. The equations of motion admit of only a vortex-like
steady second-order azimuthal solution. This must be superimposed
on the acoustic wave motions in such a way that angular momentum is
conserved (due consideration being given to body forces on the gas and

tangential forces at the wall), Thus the net pattern of sfeady circumfer-
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ential mass flux at a given motor cross-section consists of a drift of
fluid in the direction of the wave adjacent to the wall with a rapid
transition to an oppositely spinning vortex flow as the longitudinal
axis is approached. Introduction of the viscous corrections gives
rise to a boundary condition which sets the vortex strength, and a
forrﬂal connection with the classical acoustic streaming effect is
established. Since momentum is dissipated in the shear region at the
wall, a torque_appeafs on the chamber itself. This roll moment is
opposite in sense to the wave travel during amplification of the acous-
tic waves, and numerical calculations give torque magnitudes which

are in agreement with experimental data from several sources.
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I. INTRODUCTION
In their pioneering report on combustion instability in solid
propellant rockets, Boys and Schofield (1) concltided that the second-
ary pressure peaks and grain erosion characteristic of unstable burn-

"... to some abnormal flow or oscillation... as if the gas

ipg are due
were swirling with a high velocity.!" The succeeding 25 years have
produced an abundance of experimental evidence showing that unstable
combustion in certain geometrical situations is often accompanied by
such vortical flows. It is the purpose of this work to clarify the con-
nection between acoustic combustion instability and the generation of
swirling flow phenomena.

An interesting manifestation which often accompanies vortex
flci)ws is the gene ration of moments about the axis of symmetry of the
rocket motor. This has led to flight performance difficulties in a
number of cases. The roll torque effect was first observed in flight
tests of the Sergeant missile system (2, 3, 4). Telemetry records in-
dicated that the attitude control system was opposing large (100 to
500 ft-1b) roll moments during the first few seconds of motor opera-
tion. A connection with combustion instability was indicated, since
these occurrences coincided with periods of intense motor induced
vibration. This connection was subsequently verified in specially in-
strumented static motor firings. Typical roll moment time-histories
for the Sergeant motor are shown in Figure 1. . The p1;esence of
swirling flow in the exhaust gases was demonstrated by placing in-
strumented vanes within the nozzle flow. Figure 2 shows the side-

force time-history on such a vane.
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A spectacular demonstration of the phenomenon was provided
in the first flight test of the Scout space probe launching system.
Shortly after ignition of the third stage (Antares) motor, roll pertur-
bations of uncontrollable magnitude appeared which resulted in guid-
ance failure (5). Proof of the correlation of the roll torque effect
\_&'ith the very marked unstable burning characteristics of the rocket
was provided by static firings carried out with the motor éupported in
low-f.r'iction mountings.

A third example of the roll torque effect was reported by
Landsbaum and Spaid (6) who found that small instability research
motors with a cylindrical internal burning grain configuratioh tended
to rotate in their mountings during periods of severe combustion in-
stability.

Effects such as the se should have been anticipated on the basis
of previous experimental studies of unstable solid rockets. For ex-
ample, rotating flows were observed in both cyllindrical‘ and star-

'perfora.ted grains by Green (7, 8) who utilized high-speed motion pic-
tures taken throﬁgh transparent fore-end closures. Accordiné to
Green, ''several of the films revealed brief interx.rals whe_n vortex mo-
tion of the gases was visible; sometimes the vortex would fill the en-
tire cavity (in the tubular charge), sometimes only loéalized motion
was éuggested (as in the arms of the star-shaped cavity). ' Figure 3
illustrates the flow patterns suggested by these experiments. A sim-
ilar experimental study was carried out recently by Swithenbank and
Sotter {(9) which indicated that the flow perturbations depend strongly

on the mode of oscillation present. The transverse modes produced
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" sets of cellular rotating flows somewhat reminiscent of Taylor vorti-
ces, while a single strong axial vortex accompanied the traveling form
of the first tangential mode.

Attempts to develop a theoretical description of the vortex
generation effect have been made previously by the present author (3,
4) and by Swithenbank, Sotter and others (9, 10, 11) at the University of
Sheffield (England). These have all leaned heavily on the é,coustic
stréaming theory of Maslen and Moore (12), and while they do contain
some elements of the true picture, they suffer from several errors in
the latter work and from certain important misinte rpretations and
. omissions. Acoustic streaming theory does seem to answer the prin-
cipal questions concerning formation of the cellular vortices arising
with standing acoustic oscillations. The much more important case,
however, is that invc;lving traveling waves, a single axial vortex, and
roll torque on the motor. This case is not well represented By acous-
tic streaming theory alone. The main objections to the previous the-
ories are: 1) the significance of angular momentum transport about
the chamber axis by the traveling wave motions has been ignored; 2)
the effects of the mean flow field have nbt been represented in calcula-
tions dealing with either the inviscid or the high shear regions of the
chamber; 3) the influence of the pressure sensitive combustion region
which drives the gas oscillatioqs t]:’lemselves' has not been properly ac-
counted for; 4) the results of the viscous calculations and their signifi-
cance in regard to the whole flow field have been misinterp_reted in
certain respects.

The present work is an attempt to produce a theoretical
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description of the three-dimensional flow field in an unstable solid
propellant rocket. On the basis of the experimental observations,
emphasis is placed on traveling transverse wave motions in a tubular
propellant grain burning at the inner surface. All physical features of
the problem which appear to be significant are simula.ted. mathemati-
f_:.ally, appropriate simple models being used where necessary to rep-
resent complex phenomena. In particular, the combustion region at
the.bu'rning propellant surface is represented by a model which gives
it the characteristics which are exhibited experimentally. and avoids
an extremely detailed description of the combustion dynamics.

On the other hand, several features which have not béen as=-

sessed before were included. For example, it seems apparent that
freedom of motion of the rocket in the plane normal to its axis of sym-
metry might have aﬁ important effect on the internal flow field. The
motor moves (the often observed vibrations ﬁccompanying cdmbu_stion
instability) in response to the oscillating press.ures in the combustion
chamber, and it is of considerable interest to determine how this mo-
tion affects the character of the flow.

Angular momentum considerations provide a mechanism for the
vortex generation effect which guides the theoretical work. It is ap-
propriate at this point to describe this mechanism before the detailed
supporting calculations themselves are undertéken. Figure 4(a) il-
lustrates the type of transverse wave motions most often observed in
acoustically unstable solid propellant rockets. The instant;aneous ve-
locitf distribution is shown for the lowest order traveling. tangential

mode, and the rotation of the velocity nodes about the chamber axis is
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indicated. One complete revolution of the nodes corresponds to one
cycle of oscillation. The superimposed shaded areas in the sketches
represent the high density region of the wave. The motion is anala-
gous to free surface sloshing of a liquid about the axis of a cylindrical
container. It is obvious that momentum is transported by any fra.vel-
ing wave, and in the present case there results a net angular momen-
tum about the axis of the chamber in the direction of nodali travel. We
must inquire as to the source of this angular momentum and seek the
answers to the following related questions: 1) how are the waves (and
the angular momentum indicated by their presence) driven to higher
amplitude in an unstable situation; 2) what interaction forces on the
surfaces of the combustion chamber may accompany the traveling
wave motions, and what relationship do they have to the driving mech-
anism; 3) what relat.ionship is implied between the wave motions them-
selves and experimentally observed secondary flows (vorticés) which
also involve angular momentum? It 'is tempting to answer the first
two questions simultaneously by claiming that tangential forces acting
at the wall prodﬁce both the angular momentum in the gas and a reac-
tion on the wall leading to the observed torque effects. Thus, during
wave amplification, there would result: 1) a net increase in angular
momentum in the gases within tﬁe char‘nber;' 2) a loss of angular mo-
mentum from the system due to flux through the nozzle; and 3) a mo-
ment about the axis in a direction opposite to the nodal travel of the
waves. This model may be appropriate,for instance,in the case in

which the traveling waves are driven intentionally by circumferential
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gas injection at the wall*(9, 10), but it certainly does not work proper-
ly in the more interesting and more frequently encountered case in
which the waves grow spontaneously from small random perturbations.
In fact, if the gas is non-viscous and if the burning surface is assumed
smooth and undistorted, then no tangential wall forces can exist in the
closed system. Ewven if account is taken of frictional effects, it is
difficult to explain how forces due to dissipation of momentum could
act to i:!.'_i_._\_f__e_ momentum into the wave. The correct answer to the
question seems to lie in the possibility of a éuper.imposed steadyw<
secondary flow. This flow must spin in a direction opposite the wave
travel such that an appropriate law of conservation of angular mo-
mentum is not violated. The situation is illustrated in Figure 4(b).
The radial distribution of mass flux carried by the wave is shown in
the first sketch. To account for both changes in amplitude of the mo-
tion within the chamber and the flux of angular momentum through the
nozzle without postulating unjustifiable tangential forces at the wall,
we must superimpose a secondary flow opposite to the wave travel as
shown in the center sketch. The net distribution of steady mass flux

about the axis is illustrated in the last drawing. Note that the radial

The model is in fact only partially correct for this case, since only
part of the momentum carried by the injectant goes into the driving of
the waves. Some momentum is transported with the mean flow and a
vortex is produced in the manner of the Ranque-Hilch effect. This
vortex is in the direction of injection and thus also has the same di-
rection as the nodal travel.

o The word "steady' will be used throughout this report to refer to
non-oscillatory phenomena. However, the steady quantities may vary
exponentially with time.
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distribution of the secondary flow is dictated by the equations of mo-
tion of the gas. Thus, while there is no net time rate of change (in-
cluding flux through the nozzle) of angular momentum and no forces on
the system, there may be a net steady mass flux at a given point in
the chamber_. _ |
| + There exists an interesting analogy with subsonic wing theory
which may help to clarify the above reasoning. To achievé ahalytica.l-
ly a flow pattern about an airfoil which resembles that observed ex-
perimentally, it is necessary to apply auxiliary conditions which lie
beyond the hydrodynamic theory itself. Thus, a net circulation (gen-
erated by an imaginary bound vortex) is superimposed to properly lo-
cate the rear stagnation point at the trailing edge. In the present
problem we may imagine a large number of bound vortices of infini-
tesimal strength in 1;he walls of the chamber as illustrated in Figure 5.
Thus, the wall may be replaced in effect by a superposed cylindrical
vortex sheet and a sheet of sources to account for the mean flow. In-
clusion of a few of the three-dimensional aspects of the problem will
give some insight into the type of secondary flow which would be gen-
erated within the chamber. First note that the cylindrical vortex |
sheet must be shed at the sharp edge of the chamber (corresponding
to the aft edge of the propellant grain or fhe nozzle exit in the actuai
case). Hence a line integral around the exhaust plume would yield a
net vorticity equal to the sum of that represented by the bound vorti-
ces. This situation_ cannot be allowed, and we must trace the opposite
ends of the bound vortex filaments in order that the Helmholtz vortex

theorems not be violated. The filaments may lie in a radial pattern
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along the head-end closure as illustrated in Figure 5, or they may
spiral in some complicated way toward the chamber axis. In either
case, symmetry arguments can be used to show that all of the fila-
ments must meet at the axis, and at this point they must leave the
solid and be shed in an intense vortex filament coincident with the mo-
tor axis. This vortex with those shed from the edge of the nozzle con-
stitute an exact analog to the shed wing-tip vortices in the thrée-—
dimensional wing problem. We are thus led to expect that the super-
imposed secondary flow pattern postulated above must have the form
of a potential vortex, at least under steady-state conditions. This
model seems to agree in all important respects with the observations
already discussed. In the airfoil problem, viscous effects must ulti-
mately be used to justify the Kutta condition at the trailing edge. It
will be proven by detailed calculations in a later section that _the ef-
fects of viscosity at the chamber wall impose a similar requirement
on the flow in the chamber. That is, a steady secondary flow opposite
in direction to_the wave must exist to satisfy the no-slip boundary
conciition at the gas - solid interface. This is the classical "acoustic
streaming'' effect, and it produces a vortex flow which properly bal-
ances the angular momentum carried by the waves themselves.,
Shearing stresses at the walls, head-end, and in the nozzle give rise
to a steady moment on the motor. Since a very complicated momen-
tum balance is involved, the direction of the torque in relation to the
direction of wave travel cannot be specified without making the detailed
calculations of these stresses.

The above mechanism for forma.tipn of vortices in unstable
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rocket motors guides the analysis to follow. The presentation divides
itself naturally into three main parts. In the first, the mathematical
formulation for the entire problem is set forth. Basic assumptions,
equations of motion, and boundary conditions are discussed, and a
strategy for solution of the problem by asymptotic expansion tech-
ﬁiques is laid out. The second part consists of an inviscid approxi-
mation to the solution. The first task is to prove that the fraveling
tangential waves,whose importance in the generation of vortical flows
has already been demonstrated, are indeed subject to amplification
under conditions existing in typical motors. The influence of motion
of the motor in response to the oscillating internal flow fielld is as-
sessed and the main result is found to be a stabilizing influence on the
wave motions. Solutions are carried out to higher order, and it is
demonstrated that a 'steady vortex-like secondary flow with sense op-
posite that of the nodal travel of the waves must accompany f‘he gas
oscillations. The vortex strength is computed somewhat arbitrarily
in the inviscid case by requiring that the shearing stress be zero at
the wall. In the last section, some real fluid effe.cts are introduced,
and the viscous corrections near the chamber walls are investigated
in detail using boundary layer theory. Damping of the wave motion by
viscous shear is assessed. Second-order boundary layer calculations
show that a steady secondary flow opposite to the wave travel direction
. must be superimposed to satisfy the no-slip wall boundary condition.
This is the classical "acoustic streaming" effect, and it provides the
information necessary for estimation of the strength of the axial vor-

tex. The influence of combustion and boundary layer "bl.owing“ by the
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mean flow on these effects is investigated in detail. The steady
shearing stress at the wall is calculated, and the magnitude of the
roll torque on the motor is established. Finally, some numerical
calculations are made and the results are compared to data from

experimental studie s.
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II. MATHEMATICAL MODEL
This section is a summary of the equations, boundary condi-
tions, and assumptions which form the basis for the analysis of the

various aspects of the flow field in an unstably operating rocket motor.

1. Assumptions

An internally burning, cylindrically perforated propellant ge-
ometry is assumed. The propellant and other solid portioﬁs of the
system are taken to be rigid, but will be allowed to move in response
to the pressure and momentum forces generated at the propellant - gas
interface. Only motions in a plane normal to the motor axis are to be
considered.

The region of principal concern consists of that part of the
combustion gas bounded by the cylindrical propellant grain, the head-
end closure and the ﬁozzle entrance plane. Details of the flow through
the nozzle itself will not be considered here. An inviscid fluid will be
assumed at first; later, both viscosity and heat conduction effects will
be added. Variation of the viscosity coefficient with temperature
fluctuations will also be accounted for.

The combustion process is assumed to be concentrated at the
inner surface of the cylinder. The physical character of the combus-
tion zone which is of importance in this study will be simulated by
specifying a boundary condition at its outer surface which matches the
behavior exhibited experimentally. Both the effects of regression of
the burning surface and the change of system mass as the propellant is
consumed can be safely neglected, since the characteristic times as-

sociated with these effects are long compared to the period typical of
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the gas oscillations and to the characteristic amplification time for
acoustic waves.

2. Equations of Motion

The motion of a viscous, compressible, heat conducting gas
relative to coordinates accelerating with respect to the inertial sys-

tem but not rotating relative to it is governed by

% 4 9. (pu) = 0 (2. 1)
Du

S
Ppr ty < 2

+ 8% [ utv(v- ul + V[ --g-p,v- ul+ (Ve Vu-{u VIVu} (2. 2)

; .
BB - Lo pomeien:

2 2u) -2 2
. _ (2. 4)

where 3 is the body force acting on a unit volume element of the com-
bustion gases due to the acceleration of the system. The equations are

written in terms of the dimensionless variables: .

P ='P'/Po r = r'/R
p = 'p'/po t = (ao/R)t'
u = ua, uo= g
T = T'T, m= m'/p R’

where R = chamber radius, a = average speed of sound. Dimension-
al quantities are denoted by primes and subscript o indicates the av-
erage values of the principal thermodynamic variables (dimensional)

in the absence of wave motion. ¢ is the Prandtl number



c = B¢ ' (2. 5)

where CP = specific heat at constant pressure and k = thermal con-
ductivity of the gas. Both are assumed constant throughout the flow.
6 is the inverse square root of a Reynolds number based on the

chamber radius and the average speed of propagation of small dis-

turbances
. 1 .
M 2
6 = o . 2. 6
[poaoR] . | ( )
The body force is
d%s
z = -p > : (2. 7)
dt

where s denotes the position of the moving origin relative to the iner-
tial system as illustrated in Figure 6. The acceleration is determined
from a relation of the form

d’s ‘ ds

3 = XQ._(Ss T—;: t) , o (2.8)

dt
where the vector function Q reflects the integrated effect of the sur-
face tractions acting on the propellant grain and the mechanical con-
straints between the moving motor and its mounting. The scétling
parameter ) is the inverse .of the dimensionless chamber mass

A = 1/m | _ (2.9)

and is therefore proportional to the ratio of the mass of gas contained
within the chamber at a given instant to the chamber mass itself.

3. Perturbation Expansions

In order to solve the equations of motion, we must utilize the
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following observation: the phenomena of importance must grow from
disturbances which are at first small. The strategy is thus to analyze
the motion as though it were a small perturbation to the equilibrium
flow ﬁattern with the hope that the results thus obtained will yield
insight into related phenomena at higher amplitudes. Introduce a
scaling parameter e, which is proportional to the average Mach
number of the disturbance, and another small parameter v which
- represents the relative importance of the mean flow of combustion
gases through the chamber. v is taken for later convenience to equal

the mean flow Mach number at the burning surface:

vE () . O (3.1)

The mean flow field within the chamber is represented by

(u)

—‘mean flow vy : (3.2)
where U reflects the geometrical quélities of the mean flow. The
validity of the perturbation method depends on proper reiationships
between the small parameters based on suitable limit processes (15).
Since acoustic conditions are assumed (that is; € << 1), it is neces-

sary to relate ¢ and v as follows

lim (£) =0 . : (3. 3)
€, v—0 v

That is, (e/v) = O(e).. Other relationships between small quantities
which will be of some importance in what follows are

(v/6)

o(1) | (3. 4)

and

]

(\/v) of1) . (3.5)
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Justification for these will be given in more detailed discussions later.
The physical significance of the small parameters will also receive
more attention at appropriate points in the development.

The following perturbation expansions are employed:

P = 1+€P('1)+€2P(2)+...
p = 1+ep(1)+ezp(2)+...
T = 1474 2030 |,
(3. 6)
uo= 1+ (B)erM e o202y 5
u = yU+ e_g_(l)+ ez_t;_(z)+...

5 - el 20,

where | has been assumed to be a linear function of temperature over
the range of interest. %}'JT is assumed constant throughout the 'region.
Several double expansions will be necessary. In particular,

higher~-order corrections in v will be required eventually. Thus,
pll) o p(10), U1, 2p012)

ull) - 3(10) + vg(“’ + \;23(12) +...

(3.7)

and so on.

4. Boundary Conditions

Since the combustion process takes place in a very thin lamina
of fluid with thickness ﬁf in the range
| 103 <5, <107
at the wall of the chamber, it is possible to represent the effects of
combustion as a boundary condition on the flow at the interface. This

is accomplished by introducing an admittance function A such that

ﬁ-_ﬁ:=-v(%)A , atr=1 (4. 1)
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where :'q_ and P are the (complex) velocity and pressure fluctuations
at the wall. fi is an outward pointing unit vector normal to the cham-
ber wall at the point in question, and y, the ratio of specific heats, is
' inserted for later convenience. Now, since A is taken to be a com-
plex number,

A = alr) a0 (4. 2)
it is seen that the response of the burning surface to the pfessure
fluétuations is a normal oscillating gas influx which may be out of
phase with the pressure. The admittance function is diséussed in de-~
tail in references (16 - 19) from both the theoretical and experimental
points of view. Since only transverse wave motions will be considered
in what follows, boundary conditions at the head-end and nozzle en-
trance planes are of no consequence, as proven by Culick (16).

For the viscous flow computations, the boundary condition for
gas motions parallel to the wall is the usual no-slip condition. The
normal component will be forced to satisfy the same condition as ex-

pressed by (4. 1) but at a distance of order Bf from the wall.
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III. INVISCID THEORY

If it is assumed that the effects of viscosity are confined to
thin layers at the boundaries of the chamber and perhaps to a region
near the chamber axis under certain conditions, then the frictional
terms may be dropped from equations (2. 2} and (2.3). Solutions to the
resulting simplified problem will provide considerable insigh£ into
the situation and facilitate later development of the viscous correc-
tions.

An important task is to demonstrate that such wave motions
can indeed be amplified in an internally burning solid rocket with the .
simple geometry we have assumed. This part of the analysis will be
carried out using methods suggested by Professor F. E. C. Culick,
and are similar in most respects to those employed in his study of
standing wave combl;stion instability (16). The principal departures
involve use of complex eigenfunctions which are suitable for descrip-
tion of traveling waves and inclusion of the effects of motion of the
rocket. Also, the solutions are extended to higher order in both of the
principal scaling parameters € and y in order to study certain noﬁ-—
lineat aspects of the wave motion.

5. First-Order Calculations

Dropping the viscous terms from the equations of motion (2. 1 -
2. 4} and eliminating the temperature by combining the resulting state

and energy equations yields the set

—aal:- +yPVeu = - uw VP | (5.1)
Du
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which governs the principal variables P and u. In accordance with
the mathematical strategy laid out in the last section, we expand (5.1)

and (5. 2) using integral powers of ¢ as an asymptotic sequence:

Order ¢:
ap!!) (1) | (1)
e Tywuw o= -y VP (5. 3)
(1)
9 (1) _
-tét * va = -v[u vt et yyy gt (5. 4)
Order ez
(2)
BE(Z) 32(1)

(2)
o+ B = oM 2 g )

L. 700 70 W surg vat)] 320 (5.6)

where U has been assumed steady and solenoidal. A useful approxi=-
mation to the mean flow for a cylindrical combustion chamber is

T Z .

which will be used ultimately in the numerical calculations. This
representation is easily seen to be a solution of Laplace's equation,
and is thus also irrotational. It departs _from reélity by exhibiting an
axial flow component at the wall. This is of little consequence in the
present development, since tangential gas motions will receive the
most attention. Culick has shown that forcing the mean flow to behave
according to a boundary condition more representative of the actual
situation (that is, that the flow be exactly normal at the wall) gives
rise to a rotational mean flow with transport of an azimuthal compo-

nent of vorticity along the streamlines (20). Since only axial vorticity
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is of primary interest here, effects of this type are assumed negli-
gible.

First-Order Boundary Value Problem. The wave equation for

the pressure fluctuations is derived by subtracting the divergence of
the momentum equation (5. 4) from the time derivative of the pressure

e-quation (5. 3):
gp(l)
at®

- v2p) = o gy (U v i vu)- 2o vphyg. (5. 8)

In anticipation of oscillations, it is convenient to assume that all de-

pendent variables exhibit exponential time dependence:
P(1) - Yp(l)eth

ull) = g ikt (5.9)
3(1) - M(l)eiKt
where K is the complex frequency
K= Q+il (5. 10)

and the amplitudes p(1 ), g_(l ) ’

and _:_?_(1) may be éomplex.‘ Thus, (5.8)
may be written in the form of the non'-homogeneous Helmholtz equa~-
tion:

vZp g gp() o gt (5.11)
where

g(l) = [iK(U. vp(l))-v. (U- vg(”@_u). vu)+ (%— )v.__-_f_“)} (5.12)
' (1) |

The boundary condition on p can be found by combining the defini-
tion for the admittance function (4. 1) with the momentumn equation in
the form of a condition on the component of the pressure gradient

normal to the wall:
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Using (4. 1),

(1) ~-VvAp (1) on the burning surface

f.q" =
0 at the head-end
Thus, the boundary conditions can be expressed in the form
f- Vp(l) = - vh(l) (5. 13)

where

nll) = {—iKAp(1)+ﬁ. [uU- v'_q(l’+_c_l(1)-Vg-()./vl_f_(”]} (5. 14)

on the burning surface.

Solution by Green's Function Method. Equations (5. 11) and

(5. 13) constitute a boundary value problem in which solutions of a
non-homogeneous wave equation are sought which satisfy a non-
homogeneous Neumann boundary condition. The solution is facili-
tated by use of the Green's function. |

The fundamental solution {Green's function) for the Helmholtz
equation satisfies the system

(V+K)Glx|z ) = 8(z-z_) (5. 15)

e VG(E.IE.O) =0 for r=r (5. 16)
where Es is a vector defining position of points on the bounding sur-
face and 5(£-£° ) is the Dirac delta function. Multiplying (5. 11) by

G(xr|r )} and (5. 15) by p(l) and combining the results yields
r|r, , g _
szp(l)-p(”VZG = \;(Gg(l))-p(l)ﬁ(i-_go) .

Integration of this result over the volume of the combustion chamber

gives
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IEG(};'_}‘_O)VZP(I)-p(l)VZG(ELLLO)]dV =
v N
= vIG(EIEO)g(l)dV- j‘p(l)ﬁ(}_'_-z_o)dv .
.V v

(1)

The last integral in this expression is just p evalﬁa.ted at r = X, -

Application of the symmeti'y property
%
Glz|z ) = [Glz |z)]
(1)

. . *
gives an expression for p in terms of G :

P(l)(_l;) = vjd*(gl_{o)ggl)dvo- I[G*(zlgo)vzp(l)*P(I)VZG*(_1;|3'_O)]dVO .
\'2 v

Employing Green's theorem, the latter volume integral can be trans-

formed to a surface integral

J‘(G*vzp(l)_p(l)vzg*)dv - J’(G*vp(l)_p(l)vc*). ads ,
A" . S
but

B Vp(l) = - \Jhu-)

. and
ﬁ.vc,* = 0

‘over the boundary surface. Thus,

p M) = vj'c;*(gl %)ggl-)dvowj'cz*(ﬂ Smitas_ (5. 17)
v 5

where the superscript s again refers to values at points on the bound-
ing surface. The Green's function is conveniently expressed as a
linear combination of the eigenfunctions of the unperturbed wave
equation: |

S G*(z]zx,) =Y At (5. 18)
' o
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where the eigenfunction ¢a(_r_).satisfies the boundary value problem

2 2 _
(v- + Ka)wa(_z) =0 (5. 19)
f- Vd:a =0 on the boundary (5. 20)

and the amplitudes Aa. remain to be computed. « represents the
three-tuple (4, m, n) which identifies the mode of wave motion. For the
cylindrical geometry assumed, the eigenfunctions for traveling waves

are best expressed in complex form as

*a = Jm(kmnr)eiimecos(k‘bz) | (5. 21}

where the ﬁpper sign in the exponential corresponds to clqckwise

traveling waves; the negative sign refers to counterclockwise waves.

The angular speed of wave travel is F(K/m). To satisfy condition

(5. 20) at the boundary of the cylindrical region, it is necessary that
i7R

k, '=—L— L=0,1,2,...

and that k be the root of -
mn
d

dr Jm(kmnr) =0 ' (5. 22)

at r = 1. It is also clear from (5. 19) that the eigenvalues are
2 2

_ 1. 2

Since l)a must be periodic in angle 8, it is necessary that m =0, 1,

2’ ses *
The eigenfunctions must also be orthogonal, that is,
&
wa.wp) = j¢a¢pdv = 0. for a #P (5. 23)
\'4

and

(b ¥,) = f“’:"’ad" = E (5. 24)
v . .
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where Ea is the normalizing constant for mode a , and * denotes the
complex conjugate. |
Substituting the expansion (5. 18) into the differential equation

(5. 15) for G yields
2. .2 - _
S+ KD Y Agrgz) = Blz-z,)
or
2 .
;Aa(v bt Ky,) = (z-x)
but v%y = -K%y_ from (5.19). Thus,
a a'a
ZA v (K2-K%) = B(r-x ) . (5. 25)
& a'oa o - =0

The coefficients Aa can now be determined by manipulating this ex-

pression. By definition of the delta function,

[vpesezgav = vae)
)

%*
for all B. Thus, multiplying (5. 25) by ; ﬂfﬁ(}‘_) and integrating over

the region,
T ises - [ e [T amrer
B v B a

Utilizing the orthogonality properties (5. 23) and (5. 24), only those
terms on the right of the last expression for which a = § are non-zero.

Therefore

% _ 2 .2 *
g Volz,) = Za A (K 'Ka).\,l;"’a*adv
or : '

* _ 2 2, 2
tolzy) = Ay(K qua..'
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Thus the coefficients in the Green's function expansion are

\I:*(r )
a'—o
T e——— (5. 26)
o 21,2 .2
ECL(K -KC(.)

and the Green's function can be written in series form as
*

by e,)
G( } = (5. 27)
zlz, Z E2(K2-KP) -

The normalization constant is found by inserting the eigenfuhcti_ons

{5. 21) into (5. 24). Thus

2 *
Ee = \rwa*ddv
\'A

L/R 2x 1
= f j‘ Irdrdedz [an(kmnr)cosz(k’&z)]
0 0 0 .
J(k )+J(k ) - m=0
= 2T (1 + Binlut) ) - (5.28)
2
72 s (1 - -—-k‘;l ) m# 0
mn

Solution to Zeroth Order in v. The form of the wave equation

(1)

governing the behavior of p

o2t 4 g2 (1) | (1)
and the boundary condition
VP(l) = - yutl)

(1)

suggest that p can be represented as a perturbation expansion with

integral powers of v as the asymptotic sequence. Thus we put

p1} o 0 an, 2 a2)

+ vp + ...

where the first element of the superscript refers to the order of the
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solution in ¢ ; the second element refers to the order of the term in v.
Inserting the expansion into the differential equation and boundary con-~

ditions, and collecting terms of like order in v,

Order (0):
vzp(10)+ KZP(IO) = 0
" (10) (5. 29)
n-* Vp = 0 at the boundary
Order (v):
v?.p(ll)+ sz(ll) - g(10) |
(5. 30)
A ppll) o _p(10)

(1) (1)

and so on. Since g and h(l) are functions of p

» they have also

been expanded
g = gl100, U,

B L

Note that (5. 29) is fc.>rma.11y identical to the boundary value problem
expressed by (5. 19) and (5. 20). ~This simply demonstrates fhat the
solution as it is unfolding is a perturbation on .the classical acoustic
solution. Thus p(lo) = q:a and it is proper to write

p(” = ¢a+ Ofv} . _ (5.31)

This form is also justified experimentally, as it is often noticed that
the pressure fluctuations in unstable rocket motors are identifiable
in the majority of cases with classical acoustic modes of the burning

(1)

cavity. Now, the solution for p was found in terms of the Green's

function to be

Pt = vIG*(Ello)gg’dvo+vIG*(glsg)hgl)dso
v S

where
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el ) V(e Wy (z)
ryyr -
- EZ(KZ K )
Thus

1), vfgm‘z 2 (r oMal) av +th“’Z Yy iE olto!2) das

v°_ aE(KK) E(KK) o
= Z _zw—a(?i')—z— Ig(l)‘i‘*(r)dv+ fh(l)dl*(r)ds (5. 32)
EJK-K) |y & S @

~ where the dummy subscript o has been dropped since it is no longer
necessary to distinguish field-point and source-point terms in the in-

tegrals. Investigating a particular mode of -oscillation, séy; a=N,

p = e Ig(l)h:dv+ Jrh(”q,;ds +

553
EnKT-K9) | v s

¥ (r)
+ v Z ____za ) jg(l)ﬂf:d\fﬁ“ fh(”'kzds .
| a#N Ea(K -Ka) 7 S

Thus, the required form of equation (5. 31) is achieved only if

——2— | My tav+ (nlV) =1 .
] L i

Satisfaction of this condition provides an equation for the eigenvalue

K:
2 2 1) * 1) * .
K° = K.N+—\’-Z— Ig( )WNdV+ Jr,h( )*Nds . (5. 33)
En Ly S |
Remember that
K= Q+iA

where (0 represent's the frequency of the fluctuations and A reflects

their rate of growth., In view of the form of (5. 33), it is natural to
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a = ol19 4 oty
(5. 34)
A(lo) + \)A(ll) + ...

A

Expanding (5.33) in a Taylor series, we find

K_=KN+--—-V—T' j‘g(l)w;dV'l' f (l)deS— + ov?)

2ENEN LY 5
and it is apparent that K has no imaginary part of order unity. Thus
at10 = o
_ ' ' 5. 35)
10) . (
all® -k . -
Also,
.
n(11) - 1 5 Q (lo)deV_'_ 'J"h(lo)wN
2K .E Y
KNEn LY s i

(5. 36)

A1) - —L 3 “g(m)w;dv h(1°)¢ *as

C2KNEN Y S

Equation (5. 35) shows that the frequency of the oscillations is the

same as the acoustic frequency to zeroth order in the mean-flow Mach
number v in accord with the oft~-mentioned experimental observation.
The growth rate A will be discussed later when all cofnponents of the
integrals in (5. 36) have been collected.

The First-Order Velocity Field. The solution for the ampli-

tude _q( ) (time-independent part) of the velocity field vector is easily
deduced from the momentum equation (5. 4} writteh in the form
iKﬂ(l)"' vp(l) = _\,["g‘. v3(1)+3(1). vg_ (l/v)i(l)] .

Thus

3(”=.l.11{ et e u(we v g vu- vty (5.37)
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Now, using (5. 34),

k = o104y 3,01y 4 o) (5. 38)
and
1 1 Vv (11) , ., (11) 2
= = 5 -—= [Q + iA 1+ 0(v7) .
K 2
Ny
Expanding g(l) in powers of v,

3(1) - ﬂ(lo)+v1(11)+.“ . (5. 39)

we find immediately

.. (10) '
2(10) - 1V¥ (5. 40)

. (10)
i [ 9p [Q(ll)+'1\(ll) 47 (11)+
KN{ Kn e

(10),

1l

1
q(l )

+ [U-vg 10 vu+( /vt (5. 41)
U:vg' 4gt VUV

and so on. Note that the body force amplitude has also been repre-
sented by an expansion in v.

Summary of Results to Zeroth Order in v. Before further

pProgress can be made, assessment of the bodjr force term f_(l) must
be completed. Let us now summarize the results to zeroth order in

v. In what follows, only transverse modes will be of interest. Thus,

4 = 0 and consequently k 0. Therefore,

L
KN = k
mn
and the complex amplitudes are
(10) _ +im@
P = Jm(l_tmnr)e (5. 42)
« _(10) i d i
9.( ) = -l-(-_l:— [.a? Jm(kmr)e im6 gr
n

- J (k__r) .
iim_rg__?_ ehme@e] (5. 43)
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where er and 'ée are unit vectors in the radial and circumferential
directions respectively. The first~order pressure and velocity fluc-

tuations are, to zeroth order in v:

(11)
pl10) _ me(kmnr)e'vA tc:o:s(knmt + mo) (5. 44)
w10 . [_ = = Jm(kmnr)sin(kmntime)]e"”‘ ta 4
.t ,
J_ (k__r) (11)
¥ [(km ) m rmn cos (kmnt:!: me)] e VA _ 'ée (5. 45)
mn ,

These are, of course, the well-known acoustic solutions for trans-
verse traveling waves in a closed circular cylinder, and i:epresent a
"sloshing" motion of the fluid in which the pressure nodes travel
around the circumference of the chamber at angular rate kmn" Con-
siderable effort has been expended in securing these solutions which
could have been deduced immediately from the formulation of equa-
tions (5. 19) and (5. 20) in the style of classical acoustics. However,
three important things have been accomplished in the précess: | 1) an
expressién for the growth rate of the waves has been found which will
allow an assessment of the sté.bility of iqteresting mode‘s; 2) machin-
ery has been set up which will facilitate carrying out the solutions to
higher order; and 3) terms have been included which will make it pos-
sible to explore the effects of body forces due to motor acceleration
and also, later, to assess the effects of viscosity on the wave motion.
It is in the higher-order, non-linear corrections that the phenomena

of interest in the present study seem likely to appear.
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6., Angular Momentum Considerations

It is an observed fact (cf. references 21 and 22) that traveling
waves are accompanied by a steady secondary flow of fluid which is
generally in the direction of travel of the wave if other perturbing ef=
fects are of no consequence. In the present case, this secondary
mass flux represenfs the presence of angular momentum in the fluid
relative to the moving coordinate system fixed to the motor. No
forées have appeared in the formulation thus far which could account
for this seemingly anomalous situation, and it is certainly not obvi-
ous how the waves,and consequently the angular momentum, can in-
crease in intensity under these conditions. Subsequent efforfs will be
guided by an understanding of the balances of angular momentum in-
volved.

The mass ﬂc;w at a point fixed to the {moving) chamber co-
ordinate system is .

_nl = pu ._ , (6. 1)
where, in the case of acoustic waves, the density variations and pres-
sure ﬂuctua.tioné are related by the isentropic law:

P = pY
which is, in expanded form,

1+ePM ) = eep e, )Y

1+e (vp(l)) + O(e?) .

Thus,

c pt) = B (6. 2)

and so on. Writing the mass flow as a perturbation series,
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1)

(1+ep(1)+. e )(vg+e_1_1_( +.o.0)

=
I

vU+ e(_1_1_(1)+vp(1)g)+ eZ(Vp(Z)I_Hp(l)_g(l)+1_1_(2))+ o) . (6. 3)

The first term is of course just the steady zeroth-order mean flow
throﬁgh the motor. The order ¢ term contains two fluctuating com-
ponents representing momentum flux (purely oscillatory) due to the
wave and the correction té the zeroth~order mass flux due to the
density fluctuations. The order ez term contains correction terms
analogous to those just mentioned (which cannot be discussed until the

solution is extended to second order) and the interesting term
o (1)

Ignoring the other components of the second order expression for the
moment, we note that

!n_(z, = ‘p(l)E(”+ other terms : (6. 4)

.~ has a non-oscillating part, that is

G =<3‘;_’ o> 40 .

Using (5. 44) and (5. 45), we find, to zeroth order in v:

~
d . A
[-35 .}'m(kmnr)sm(kmntime )cos (kmnt:!:me )1e,
(10) J_(k__r)
P (10) _ "m"' " mn
Yg'km<~J(kr)'2 (6. 5)
Flm 20 cos“(k t:!:me)]'é
L L T mn e
and
B 2
o _imJ _(k__r) _

which shows that the wave carries a steady, second-order momentum

flux component in its direction of travel, (the upper sign, again,
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corresponding to a clockwise traveling wave). The radial distribution
of this mass flux is plotted in Figure 7 for the first tangential mode.
The point of maximum mass transport is located about a fourth of the
chamber radius from the wall for this mode.

The last result implies that there is a net steady, second-
order angular momentum about the cylinder axis. Due to the mean
flow, there is also evidently a net efflux of angular momentum from
the system which is of order (\Jez). This, in turn, implies that what~
ever drives the waves must also act on the gas in such a way as to
account for the increase in angular momentum as the wave intensity
builds up and to balance the loss of angular momentum which flows
from the system with the mean flow. It is instructive to examine the
situation in the large by application of the momentum theorerh to the
entire mass of fluid contained within the combustion chamber at a

given instant. Thus,

M = gr f (zX pu)dV + JP(EX pu)(u- A)dS | (6.7)
- v s

relates the summation of all external moments (including those due to
" body forces resulting from acceleration of the system) to the rate of
change of angular momentum within the chamber and the net efflux of
angular momentum through the boundary. Expanding as usual, the
angular momentum balance to various levels of approximation is
Order ¢:

M = 2 fzx_g(l)dv+ i j £Xp(l)gdv+j_1_'><[(g' sy f)1as}
v Y 5 '
+ oWw?) (6. 8)
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Examining the axial component of (6. 9), the axial moment of

all externally applied forces is

Fy I(H'ﬁ)r(p(l)v(l)+v(2))d3 + O(v?) | (6. 10)
S

where

B 0 PSRN L) PP § ) 7
r 8 z

M = Mla 4 mitls, 4 mllhe
- r r 8 8 zZ z

and so on. Note that, for tangential modes of oscillation, W(l) =0
A and -
0 - at nozzle entrance plane (z = L)
1_1_(1)-?1 = 4 o at the head;end (z = 0)
R[-vaplel®t] at the wal (= 1)
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Also,
2L/R at the nozzle entrance plane

0 at the head-end

U-%
-1 at the wall

Thus,

M(zz)= -aa—t-j defr (p(l) (1)+v(2))dr+
(]
2w

. -2
'J‘ ”A(r)p(l))r=1d9 _% I(p(l)v(l)+v(2))r=1d9
0

Wl

2r 1
2 —ﬁ- J;de sz(p(l)v(1)+v(z))dr

+ 0('\)2) .

b [

Wlt‘

We are most interested in the non-oscillatory part of (6. 10).
Evaluating the integrals for this case, keeping in mind that the total
axial angular momentum within the chamber at any instant is

a2 - fr(p(”v(l). W2hay C (6.12)

'

. we find, for the steady part,
2

k2 -1
<M(2')> ) 124k, )[(1+A(r))+(—-1-9-—)(A(11’-1)]
K%
< Irv(z)dv + v I(U-n)rv(z’ds> ' (6. 13)

where evaluation has been carried out for the first travehng (0, 1, 0)
mode. Evaluatmn of the terms involving the second-order circum-

ferential velocity w111 be carried out later. Assume for the moment



-42-
that v(z) is zero. (In actuality, the two integral terms will cancel
exactly, since they represent the integral form of the momentum
equation which must be satisfied by v(z). } Note that the total steady

moment on the gas M(zz)> is zero for a unique value of the growth

rate constant. - Thus, <M(zz)> = 0 if

(11) _ 1 2 plr)
AT = —— 14+ k(AT (6. 14)

Under the conditions we have proposed, this result must be interpre-
ted as follows: angular momentum is carried into the system from
the burning surface by the mean flow at a rate which balances the
loss of angular momentum from the system through the nozzle and
the gain due to amplification of the waves. No moments act on the
system, yet the ma.gnitude of the angular momentum increases (as
do the losses in the system) at a ra.t.e proportional to

e-ZvA(ll)t

where A(ll) is that value given by (6. 14). It will perhaps not be sur-
A(11)

prising to discover later that as computed from equation (5.36)
is precisely that given by (6. 14).

| We can proceed no further with the inspection of the steady

second-order momentum balance as expressed by (6. 13) without

computing <I\_/I> and E(Z)

when these things have been accomplished. The first task will be to

; further comments will be forthcoming

examine the body moments which result from motion of the combus-
tion chamber. The question of stability will then be investigated.

Corrections to the acoustic solutions of first-order in the wé,ll Mach
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number will then be computed. These will be used in determining the
characteristics of the second-order flow field insofar as this is pos-
sible within the framework of the inviscid model.

7. Effects Due to Motion of the Chamber

It is well known that angular momentum can be generated in a
confined fluid by a properly programmed motion of the copta.ine r.
This is in the spirit of the '"cocktail glass vortex' which is probably
observed even more frequently than the famous 'bathtub vortex",
and was the subject of a delightful paper by Crow (23). The same
problem has also arisen in connection with sloshing of liquid propel-
lants in cylindrical fuel tanks, and there has been considerable con-
fusion in the literature concerning these effects {cf. references 24
and 25),

The connection between cocktail glasses and rocket motors
may not be completely clear ait the outset. The analogy is this: the
combustion chamber moves in response to the momentum effects and
integrated pressure forces at its inner boundary. The motions thus
produced feed back into the gas motion via the bo&y-for‘ce terms in
the equations of motion. A related problem which is highly interest-
ing is the effect of oscillatory elastic deformation of the propellant
itself, but incorporation of such complications in the present model

sk
must be postponed for later consideration.

Some work, which is not directly applicable to the problem as set
forth here, has been reported in references (26) and (27), and deals
with some of the consequences of a flexible propellant grain.
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It was shown in a previous section that the non~homogeneocus
terms of order v in the equations governing the motion of the com-
bustion gases (equations (5. 11) and (5. 13)) contain terms proportional
to the body force . Therefore, before higher-order approximations
can be carried out, these terms must be evaluated. This can be ac-
c_:.omplished by use of the first~order solutions found already.

The body force & appears in the equations as a result of writ-
ing the equations of motion of the gas in terms of coordinates which
move with the rocket motor and its attachments. As mentioned be-
fore, we are concerned with that part of the motion of the rocket in a
plane perpendicular to the axis of symmetry; axial effects are there-
fore neglected. Motions of this type result from the forces at _the

- combustion chamber wall, and in accordance with the inviscid approx-
imations employed m the present section, we take these forces to be
normal to the wall. A consequence of this assumption is the consid-
erable simplification that the moving coordinates accelerate with

_respect to inertial space without rotation. As before, the body force
is

dz_s_

3 = -p (7. 1)

™~

dt
where dz_b_/dtz represents the acceleration of the moving coordinates

relative to the inertial ones, and is governed by the differential equa-

tion ‘
a’s ds
= \NQUs, -, t)
dtz == dt

where )\ = m“1 and the vector function Q depends on the mechanical
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constraints between the motor and its mountings. The two limiting
cases are: 1) free motion in which Q represents the force of inter-
actian between the combustion gases and thé chamber wa.lls; and 2)
fixed case in which the system is rigidly mounted, the propellant is
regarded as rigid, and therefore «dz_s_/dt2 =0. As irﬁplied above, in-
termediate cases are of potential importance, since there is evidence
that the motions of the propellant grain in an elastic sense may also
pla& a role in the instability problem. Instead of attempting to analyze
this very complicated situation in which elastic or plastic wave mo-
tions in the propellant must be matched to the gas fluctuations on one
boundary and to a thin elastic shell (the motor case) on aﬁother with
additional complicated mechanical constraints, a greatly simplified
model is considered here. The propellant grain and the other solid
components of the rc.':cket motor and its attachments are taken as

rigid bodies, bu1:, the mounting in which the system opera.tes-(simula-
tion of static test situation) is represented by é. set of idealized springs
and dampers.

Wall Forces. The combustion chamber is assumed to move in

response to the interaction forces at the gas - solid interface. It is
also assumed that the surface force dF at any point on the interface

is normal to the surface and consists of: 1) pressure forces and 2)
momentum forces due to expulsion of mass resulting from combustion.
dF is easily evaluated by application of the momentum theorem to a
small volume element at the burning surface. Figure 8 shows the
element and its free-body diagram.

The momentum theorem states
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Fig. 8. Volume Element at Burning Surface.

: | s , .
dEtotal = ﬁf(ﬂp)dv +I(11_p)_1_1_ nds
v S

where dEtotal represents the vector sum of all forces acting on the
element. Thus,

dF = P(dedr)e_+dF_

—total
where d!._"‘_s is the reaction force on the surface. The volume element
is defined such that |

dr << 1d§

and
dz ~ 1dg
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Also, the pressure, density, and velocity variations within the ele-

ment may be taken as negligible due to its small size; thus,

P& +dF_ = a% [upl, qdr + [lup)lu- R _5

where momentum flux through the sides of the element has also been
neglected. Taking d}_F‘_s to be the force per unit area, and neglécting
the volume integral term which may be regarded as of differential
order, we may write

dE‘S = "Par+ [(ll-p)(-‘-{'ﬁ)]wall .

Expanding P, p, and u as before, and noting that U = -é‘r and u =
..\,p(l)Ae thar on the boundary, the force per unit surface area acting

on 'the wall is

aF = -aF, = {1+l iop?)T+oed) -

The momentum force due to mass efflux is seen to be of order vz,
and is thus a negligible contribution to the driving force.
Integrating dF over the inner surface of the combustion

chamber results in the driving force vector
2n 4 '
: L 1) iKt ~ ~
F = ¢ (XE)I R[p( )e ]r=1' [icos® + ?slne]de ] (7. 1)
0

where i and j are unit vectors in the x- and y-directions, respective-
ly. Adopting notation compatible with that introduced in preceding
sections,

(11)

F = g{g(m)wg‘_ +ooo}

where .

: 2n
E(IO) = (]%)fﬂ[p(m)eﬂ{t]r____l- [fcoso+7sing]de | (7. 2)
0 .

!
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and so on. The last expression is readily evaluated for transverse

modes, and the result is zero for m # 1 ; thus, for traveling waves
. (1

yrL -vA

() 94tk gle

0 m#1

“[Zcosleygt)  Jatnte ] m = 1

icos ) sin m =

E(10) - 10 10 (7. 3)
Therefore, no motion of the chamber (taken as a rigid body) results

unless the first transverse mode {m = 1) is present.

Motion of the Combustion Chamber. Using equation (7.3), the

motion of the rocket can be computed to first order in ¢ | and zeroth
order in v. Frorﬁ this result, the body force on the gas can be es-
- tablished t6 the same level of approximation. Each of thc;. representa-
tive cases discussed above is considered separately.
-Case 1 - Freely Moving Chamber. .

In this case,  Q = F, and the acceleration is simply

dZ

7]

=AF. | (7. 4)

48

dt
Thus, for the first traveling tangéntial mode, the axis of the combus-
tion chamber orbits the inertial axis system as depicted in Figure 9.
The shaded areas in the drawing depict the high density regions of the
acoustic wave as the nodes traverse the chamber wall. The Cartesian

components of velocity and displacement of the chamber axis are

% .
Wall forces due to a standing wave pattern are governed by the

same expression, with one or the other of the components deleted de-
pending on the orientation of the pressure nodes. Motion of the cham-
ber in this case takes place in the direction of the line of nodes.



oy I

Motion of Combustion Chamber in Res

ponse
to Clockwise Traveling Wave, -

Pig. 9.
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J (k |
he () —x *[tsinlic, gt)+ Feosli; 4t)] + Otv)

7k 10) RN

s = -xe () t[?cos(kmtfrﬁ‘sin(kwtmoM

10
and the ,displaceme_nnt‘ amplitude increases at the same rate as the
acouétic wave amplitude,a’s one would expect.. ‘

Using (7. 4), the body force on the gas corresponding tb free
motion of the combustion chamber can be established. Expanding as

usual,

Gl
I

= eg(l) + ég_(z) +oes

= orat10) 4 a1y gy 2200y a2y
(10)

_-(1+ep(1)+...)x3(§ +v],:_(11))

and noting that ‘
1 1) i iKt 10 11
1) (D) iKe | g (10) (1),

H
the body force to various levels of approximation is glven by

1) = 10

32} =y [pl0)g0)

+vF(11)+...]

(10) (1), (L)L (0)y, g Kt

(7. 5)
+v(p
and so on. Writing F in complex form, and putting g(l) in notation
compatible with the equations of the last section, -

-3—(1) = Af_(l)eth
where
Evaluating for the traveling tangenfial mode, and expressing the re-

sult in polar coordinates:

A0 . (lg"l':) Jl(klo)e‘tie[ariiée] y - @8
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and so on to higher order in v.
The term _Ef(z) will be required later when second-order solu-
. -tions of the gas motion are considered. It is appropriate at this point
to note a few characteristics of this forcing term. g(z) is readily

evaluated to zeroth order in vy using the solution already obtained.

Thus

3(20) -y [p(10)§Ke(10)

1E

which displays se{rera.l characteristics of the second-order terms
which will occur frequently in later considerations. In particular, it
is necessary to take the real parts of physical quantities }vhich are

| multiplied together as for p(m) and E(IO) in the above expression.

Thus, for the (0, 1, 0) mode,
_oalll) ik, qt£86)
5(20) _ 'W[‘Tl(kmr’e vAlT e L0 1:“0)

where E‘_(lo) is given in polar coordinates by

(10) - '
(10) ( )J (kIO)e t[’érc_os(klotd:9)?3?‘5111(1(105;9)] .

(7.7)
“Thus,

T NTLLEY
320 - -3 () 7105007 (e gr)e™ VAT

A
€. [1+ cos 2(k;ot £ 8)]

. . . . {7.8)
ee [ sin 2 (kyot % 8)]

Note the appearance of a steady radial force component on the gas, the
forcing in the tangential direction remaining harmonic to this order.

Case 2 - Flexibly Mounted Chamber.

- For this case, the function Q is given by
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A dsx
Q=i [Fx i ralie uxsx]

A ds

+j I:Fy - cy-a}z - nysy]
where subscripts x and y denote quantities corresponding to the x-
énd y-directions, respectively. Thus, . and A, are the éffeétive
c.la.mp'inlg and spring constants for motion in the x-direction. The mo-
tion is analyzed in two dimensions for simplicity, but in aétué.lity
three-dimensional motions would be expected if the ﬂexibility of the
moi_mting system were to vary longitudinally. It is reasonable to ex-
pect that the important elements of the situation can be g;eaned from
the two~-dimensional model. As a further simplification_; it is con-

venient to take

and

ux—ny—n

where, again, the important features of the motion can be extracted
in spite of the idealizations.

The dispia.cement of the combustion chamber is easily com-~
puted, and the result for the first traveling tangential mode of acous-

tic oscillation is, neglecting higher order terms,

"\JA(ll)t A _—aA
[Tcos (klot-a)+ J 'Sin(klot-a)] ’

= % (X%I:) Jy(kjple

where I is the impedance
2 2 i

k 2
10 2 c
‘I=""('V +k10(.;1.-)'

and isithe phase angle
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a1 Mgt
u' -

tan —3
which measures the lag of the combustion chamber response to the

traveling pressure disturbance.

The acceleration is readily deter-
mined to be

= -8 (yrly2 5ok )e"”‘(mt
dtz I R 101 10

[icos (klot-a)‘-l_-? s.in(klot-o.)]

(7. 9)
in Cartesian coordinates.
The body force on the gas can now be found.

notation, the result is

Using the usual
7(1) _

)\él)elkt )‘[_f_(lo)+\,_f_(11)

+ ... :Ielkt
where

(10) _ 1 ynL
i = T'(:R

The order eZ

10‘71“‘10)3*1(““)[?1- 18]

and so on.

body fO]: ce 1‘5 (to zeIOtll OIdeI in u)
3(

I(Z

(11)

-2vA t
2)kfod 1{k10M, (kyor)e
[cosa(l+ cos 2 (klotie)) + sing sin 2 (klot:hB)]

. (7.11)
:l:ee[ cosast(klOti9)+ sina(l+cosZ(k10tie))] _
Thus, when the rocket is constrained by a flexible supporting system,

there is, in addition to a steady radial force as in the free moving
case, a steady tangential body force

(1)
20 YL -2
<3<(a )> 2} (GR)KT T, k) )3, ey gr) ™2V

sinqg (7.12)
which acts in a direction opposite to th_é traveling pressure disturbance.
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The role of the phase angle o is clearly seen in equation (7. 11). For
a stiffly mounted rocket (say, in a static test stand) with a natural
{frequency which is large compared to the frequency of gas oscilla-

tions,

a - 0
aﬂd no tangential force would appear. Similarly, for a motor mounted
in a very flexible system,
a - 7
and again, no important tangential force would be present. If, how-
ever, the natural frequency of the mounting system is rather close to
that of the gas oscillations, then
o~ w2
and I-l can become large. Thus, the most pronounced effect on the
gas due to chamber motion should be experienced under these condi-
tions.
Case 3 -
For the case of a rigidly mounted rocket rnofor. no motion
‘relative to the inertial coordiﬁates obtains. Thus, the body force
term vanishes from the equé,tions of motion and no further comment

is necessary.

8. Stability of Traveling Waves

We are now in a position to prove that the traveling tangential
acoustic modes in a cyl.indrical, internal burning solid propellant

charge can be driven by combustion a.nd mean-flow interactions. The

‘.inﬂuence of the chamber motions discussed in the last section will be

included. We have already found an expression for the growth rate
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constant A, and have shown that for conditions near the stability
boundary (that is, for very weak disturbances) the amplification rate
'is of first order in the wall Mach number:
11) (10)_(10)" (10)_(10)* _|
A= vA( = ——V---Z J Ig P dV+jh P ds| .(8.1)
KnEn LY 5 |

The integral terms are now readily evaluated:

. E %
| I, = Ig(m)p(m) dv = IiKN(p(lo)) H'Vp(lo)dv

Vv A"
. * * ‘
- Jpﬁ @) P2 e hav + &) [ v 1%y . (s.2)
v Vv

Using Green's theorem, the second term can be expanded to the form

* *
i (10002 00 (10)) 0 i o.(10)2, (10)
I-—-—-K (p ) vE(U Vg v J;_K Uevp' " Wp' ) av

+ .J;KN];_ {(P(lo)) V(I_J_'- vp(lo))_(g. Vp(IO))V(p(IO)) }, ﬁds .

Now, using (5. 29):
s2p10) | 2,010
and
wp1%).a = o at r=1,

Therefore,

x , *
1 = ziky [ w wp!!%av g [160 vig: vplO- as
v 5 :

*
+(%)I(p(1°)) v.__f_(m)dv . (8.3)
v _



“56=
Manipulating the surface integral
r, (10), (10),"
I, = Jh (p ) ds
S _

in a similar fashion,

-, ,
= (i Apll0) (10)y o P i A Crrr oo (10), (10)0 o
1= £ rehe ) ase | g 8 v(w vp 1% as

% -
- &) 119U aas (8.4)
e |

Gathering the results and again using Green's theorem:
r %
if(P(lo)) u- Vp(lo)dV
Vv

%
P (10) (10)

A = # J ﬁ -i(A(.r)+iA(i))J 5 ds | (8.5)
N s
Sk
(10) 5 (10)" 4

v/ 2 -
~ Ny .
Culick has discussed the physical significance of the integral terms

(16). The first term represents the average convection of energy into

the system by the mean flow, since

Lk
* (10), , (10)
J{iJP(p(lo.)) p__vp(lo)dv} - JPH.VQD_ )2(p ) av

A" A"
| (10)¥_(10)
i I[(p ) tp )] U 84S
S
and ' *
[Lp_“‘”)z(p“"’)]

is a measure of the energy per unit volume. The second term
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* *
o (10)F (10) 7 - (10)¥ (10)
J{-i(A(r)ﬁA(l))I[(p Lp ]ds} - _A(r)f (e 45
S S

' represents work input associated with the oscillatory combustion, and
the last reflects work done on the system by body forces or other ad-
ditiona.l_ forces.

We can now evaluate (8. 5) in detail for the first traveling tan-
- gential mode. Thus,

v [ ] e

where we have included the effect of the moving combustion chamber,

and
1 2 freely moving motor
B = - iII_O_ e_iu‘ flexibly mounted motor (8. 7)
0 rigidly mounted motor

Notice that the chamber motion does not affect the growth rate unless
the motor is mounted flexibly. The correction is, of course, a sta-
bilizing one, since maintenance of oscillations of the chamber re-
quires that energy be extracted from the combustion gases to replace
that dissipated in the damping of the supporting system. This also
constitutes a crude model for the effect of visco-elastic motions of
the propellant grain on the stability of the waves.

A diséussion of the result (8. 6) is now in order in the light of
the angular momentum discussion. We note first that except for the
term of order (A/v) the growth rate is identical to that found by Culick
' for the corresponding standing mode. Tﬁus, neglecting other contri-

butions to A, there is no reason, on the basis of stability of the sys-
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tem, to expect standing waves to be amplified in preference to trav-
eling ones or vice versa. In a given set of circumstances, it is likely
that distortion of the grain shape, erosive burning effects, or the like
could be the determining factor in whether traveling vis-4-vis standing
waves are driven to high amplitude. Perhaps the most significant re-
| sult is that except for the chamber-motion correction term, A is just
'tha.t value which we have found would account completely for the

steady angular momentum carried by the wave. Inserting (8. 6) into

the equation {6. 13) for the steady moment acting on the gas, we find

<Mi2)> = <-a§€ J;rv(z)dv + v ‘i(g ﬁ)rv(z’dS :

2
Kk
Lo A ¢syrnLl 10 . 2
* (ka klo( 7) (- sine) T G )

(20)

but the latter term is just the moment of the body force <F0 > inte-
grated over the volume of the chamber. Thus, neglecting viscous ef-
fects or other body forces arising from external fields for example,

the second-order circumferential velocity component must satisfy the

angular momentum equation

<8lt Irv(z)dv + vJP([_['ﬁ)rv(z)dS> = 0 ' (8. 8)
Vv S

which is simply the integral form of the equation of motiofl for the
steady second~order circumferential velocity coniponent. This equa-
tion will be used later‘in differential form to find the characteristics
of that flow.

For a discussion of the correspondence of the results (8. 6) to
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the experimental data of Brownlee and Marble (28) for the standing
mode of oscillation, see Culic:‘k (16).

It is convenient at this point to determine the corrections to
the oscillation frequency; the calculations are similar to those j_ust
employed for the stability computations. The order v freQuenéy cor-
' z;ecti'on vis, according to (5. 36),

o * x
a1 L g [(1960% avs [a30H0) as
2KNEn Uy | s ,
= —— R[I, +1,] (8.9)
ZK‘NEI\ZI 1 2 _ . . _
or, using the previous results,

("~ *
i'f(p(lo)) U. Vp(lo)dV

E

e N

% ' :
. (10),, (10)
N S ' : .

*
By [ 005,00 ay
L KNL

Thus, for the (0, 1, 0) mode, the frequency to order v is:
k

Vv
0= kot _Tl_o__ [k Al ()‘ )(.Y.._) p(r)] + O(v )
(kyp-1)

where ﬁ(r) is the real part of B as defined in (8. 7). The frequency of
oscillation is little changed from the acoustic value by the effects of
bﬁrning or by the freedom of motion of the rocket. This, again, is in

.accord with the corresponding finding from much experimental work.
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9., Corrections to the Acoustic Solutions

The form of the set of terms involving the as yet undetermined

(2)

second-order velocity u in the momentum balance equation (6. 13)

suggests that it will be necessary to extend the first-order solutions

(2)

to order v in order to solve for u'”“’. From equations (5. 3.1-) aﬁd
(5. 32) it is evidently possible to write the order v correction to 'p(l)
in the form |
pI = ) _2____4'? - Ug(m)w:dwfh(m)‘p:dsJ (9. 1)
o#N Eg(K-Ko) LS S ‘
where g(lo) and h(lo) are given by (5. 12) and (5. 14) with p(,l) and

1
q( ) (10) q(w)‘

replaced by the zeroth-order approximations p and

Higher-order corrections can be found in the same way. In general,

pin) - Z — K% 5 [J gt o )‘yadv+fh(1 o ”‘pdds] (9. 2)
ofN EgKT-K ) Ly s :

where n is the order, in v, of the correci:ion,' i.e., n= 1, 2, 3, .

It is a consequence of orthogonality that the integra.lbterms in

(9. 1) vanish for all values of 4+ and m not equal to the corresponding

ones in the three-tuple N. Thus, the triple summation

is reduced to a single summation

n#n'
where the primes denote the values of 4, m, and n corresponding to

mode N. Therefore, (9. 1) can be written for transverse modes as
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hm S
p(ll) - Z: Jm'(kmn r)
n#¥n'

[1, +1,] (9. 3)
Ecr.'(KN'Ka')
where
I, = Ig(lo)eq:m'eJm,(km,n-r)dV . n#n'
12 = JPh(IO)e'I'm'eJm'(km.nr)ds n=n'
S

and a' = (0, m', n).
From (5. 12) and (5. 13),

G10) K (U 710 (u. 7g19%44119), 9y (%)V.i(lo)_

(9. 4)
w010 - Lk ap0. (1. vq! 1410 gy (%)_f_(m)]}
N - r=

Due to the importance of the mode N = (0, 1, Of as demonstrated
previously, it is appropriate to specialize the detailed calculation of

the correction to this mode. Integrals I1 and IZ for the first travel-

%
ing tangential mode are

I Z-n'L

| 2
2klo(klo’”]
1=

1100710 )[ (kyn k10
(9. 5)

= I(Z"L)J T (kln){(

where the effects of the moving chamber have been included.

) -k, o1 vB}

Noting that for the (0, 1,n) mode,

2
2 L1r k

Ep =&)Y (kln’(

ln

The detailed calculations leading to these results are included in
the appendix. -~
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(9. 3) can be written in the form

P = - e 05 (9. 6)
where .
f(r) = Z Jl(klnr)[cn(r)-!-icn(i)j (9.7)
n=1 . A : :
With :
A . A L
" = T tor 4 OR8]
| 2 . (9. 8)
@) M [Zaolkyemt) | el A(r)]
n EPLLTR] R SWR Y 37 10
d
= Zki'
n

n - .2 2 .2
(ky =10y =Ky )

The representation (9. 7) is in the form of a Dini-Be>sse1 series ex-
pansion for a' function closely resembling in behavior the imaginary
part of the modified Bessel function with parameter i'\[;, usually
referred to as the bei function in the literature. |
The ord.er v velocity corrections are now obtained by sub-
stitution of (9. 6) into expression (5.41). Thus, the amplitude of the

correction is, for transverse modes,

(10)

11(11)=k]1- {vp(u)_ka [n“”+m(“’]+[v(g-g(m))-(%)_fflo’]}
mn n

m
(9.9)
Evaluating this expression for the (0, 1, 0) mode,
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7k
(1) _ 1100 L WTRPIN P
(10)
. . L
— - kjph - (%)(111;‘.')‘3]

+ [
Z k
(k}o-1) 10

gl

1"'1‘ A . d Fa
)Tk gr) 8+ ige T(kyT)€,]

ko

i +1i0@ L wL n s A )
tio Tk gle™ F(G)R) BLe £ i8y) (9. 10)
*
where A is the complex conjugate of the admittance function

A% = APl

Setting

pi(r) = £7) = ch(r’Jl(kln‘r)
n=1 (9. 11)

df(r) = ) = ch(i)Jl(klnr)
\ n=1 '

r~

the velocity vector correct to first order in v can be written

dJ,(k,.r)
1 1”10 sin(klotie)

"k d
Ir
_apfll)
e VA Tts

(1) _ 10
\ | &

_ +v[A(r)cos (kmtd: e)+ B(r)sin(klot:h 0)]

Is

J,(k, 1) :
1710 cos (klot:lze) :
vh(ll)

ko

+l
.

. +.v [c(r)cos (kg ot 6)+ D(r)s_in(klotd: 9)]

where
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T, (k
k

(1 r)

10) df(i))

Alr) = 10 dr

k J (k10 r)+
10°

2 , (i)
(1+ kT A 1y dJ, (k; 1)

T2 d

kyolkyg-1) i
. dJ, (k,.r) J,(k
A\ ofi)ywL 1 1Y10 1
+ (—)ﬁ ( R )[ 2 dr " Tk
Y kyolkyo-1) |

)
10 ] (9. 13)

10

Jl(k
k

Alr) dJl(klor)

(kfo- 1) dr

i}

10’ df(r)) .

B(r)
10 dr

dJl. {k, r) J,(k,,)
+(")ﬂ‘r’(l—)[ T "% 19] 9. 14)
10“‘10 - 10

J (k J'l(k

) ) (r) r)
107 ,f A 10
() -

C(r)
i (k2,-1) T

(ko) T (k, 1)
+(& )ﬂ(r)(L_)[ 1'"10 1 Z].Or ] (9. 15)
10 l()(k“)--l)r ,

and
J (k f(1)
D(r) = (r

E10 X

L ATk or) (1412 Al 7, (k

2 dr 2
10 kyglkyo-1)

. J (k, 1) J. (kyq)
AN i)/ yrL [ 110 1%10 ]
+ (A - X (9. 16)
(e C) km(kfo-l)r ko

10%)
. r

Equation (9. 12) shows that the effects of mean flow, combustion, and
" body force due to chamber motion are to produce an order y correc-
tion which is out of phase with the first-order velocity vector.

10. The Second-Order Flow Field

It was implied in the discussion on the angular momentum
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question (Section 6) that the second-order (in the amplitude parameter
€ ) corrections rﬂight play an important role. We have already demon-
strated the existence of a steady moment on the gas due to motion of

the chamber as indicated by the steady circumferential body fo:_ce

(7. 12).

| (11)
<39(20)> = :I;—- )kIO 1(klo)J' (klor)e-z\m ts.ina .

Thus . .
MBIN = g ALy’ 2
< z > = +3(g) vsinadflky,

but, as we have already found, this was balanced exactly by a term in
the momentum equation resulting from the effect of chamber motion on
the growth constant A. Thus, in the absence of other body forces it

was concluded in equation (8. 8) that

gt JP rv dV + vf(U- n)rv dS>

Let us explore this question in grea.tef detail by reverting to the for-

mal second-order momentum equation (5. 6) written in the form:
(2) v (1)

+ v[v () u)-ux(xa?)1=52). (”—3— -all) gyt

t t - -—

~vlpMv@!t vy o)
(1)

where cognizance has been taken of the irrotationality of U and u'"

as used here.

(2)

In anticipation of steady terms, u can be written in the form

of a linear combination of oscillatory and non-oscillating compyonents

W2) 5@

+<u( )>, 

(2)

where it is clear from the formulation that E will oscillate in time
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(2)

and angle with argument Z(kmntine ), and <u'”’> must have only ex-

ponential time dependence. Thus, one can write
<3(2’> = [R(x)&, + 8(x)8, + Z(x)8,] e *N* (10. 2)

where R, ®, Z are functions of position and remain to be determined.

The boundary conditions are:

R(1, 6, z) 0
(10. 3)

Z(r,0,0) 0

and no boundary condition §n ®(r) can be specified within the conﬁnes
of the inviscid tﬁeory. All we can say about the éecond-order flow
near the wall is_ that it is parallel to the wall. A conservation of mo-
mentum argument will be used subsequently as a necessary condition
on the azimuthal velocity.

‘The non-homogeneous terms in (10. 1) aré readily e\.ralua.ted by.
inserting the first-order solutions. From the form of (10. 1), it can
be seen that terms of order v must be carried thfough. Foi‘tunately,

most of the terms which have been left in series form Cé,ncel identi-

cally, and we find: — 2 ~
(11) _
' A Jl(klor) _
- T + kloD(r)Jl(klor)
(1) avil) -y -ZvA(“)t ‘ 10 '
P e ) Ttz
\ ' J,(k, A1) .
' L r 1Y10 _
+o?) |
— . =
1 d 2
.| Fio & Ty (kyor)
=F Ve-Z\)A t :

L3 L ’ '
-p MG OTR) 7,6k o7, ey )
2, “ ' N
+ o) (10.4)
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also,

2 2
r?dJl(kmr) d Jl(klor) i Jl (klor)
dr 2 3
dr r
. Jl(kmr) dJl(kmr)
2 dr
r
- . () 2
) N e-ZvA t d=J (klor) 4B dJ (klor) o
Cutlva ..---——< vy [- ———29 B(r )_....____
—_ —_ 2 10 2 dr dr r
- 2k dr
10
+'J1(k10r) ac _ J1lkyer) ote)
T dr 2
_ T
dJ,(k,,1) |
C(r) 110
.+ r dr ] J
+ o) | (10. 5)
and '

) | |
<p(l)V(_1_1_(l)-£>= + e 2VA t[z-ﬁll—a £ le(klor)] 8, + Olv) . (10.6)

Focusing attention on the circumferential component, and noting
gul?)

-2vA (1 )t

- -zvn‘mtmg)er+®(;)ee+ z(z)2_Je ro?) ,

t

we find to order v: (20)
) ' 3
-2t ®(_1_'_)+{-®(£)-r§-—+ 22 38
1 A1)
hd ‘[‘“‘41:.1 e “‘101"‘33 ' (G)(L‘) Jl(km”l(kmr)}

+ {4k 5 a &7 (klor)}

Rearranging, and remembering from (8. 7) that

kZ

5(1)
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the governing equation for circumferential second-order velocity is,
. {

regardless of the nature of the motion of the chamber,

g@uzlx‘“’m@- ZzS—f =0 . o)

Note that r® is proportional to the axial angular momentum compo-
nent for a fluid element, and that vorticity of second order may be
thought of as being propagated along the mean-flow characteristics
(29). Thus, the angular momentum must be constant along stream-
_ lines in the absence of a disturbance. Writing (10.7) for flow along a
streamline, noting that for the mean flow,
U = -r and | W = 2z ,

we have |

(U + W2 )x8) = 2210 .0) | (10. 8)
or

Vi (:0) = 2011) @)

where V = velocity along the streamline. Now, in the absence of wave
amplification or other disturbances, r® must be constant along a

characteristic, since

Thus,
r® = const.,
or
= L '
0 = 5 (10.9)
X . (11) _ (11), :
along streamlines for A = 0. In the event that A is non-zero,

d(r8) _ (ZA(H))dS .

r

Therefore,
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r, 2
_ T ‘ (11) ds
@ = o7 eXP 2A ~ (10, 10)
y=const,

for A(u) # 0. Where the fntegral is taken from a point on the trans-
versé.l (in this case, the cylindrical wall of the motor) along a sj:ream-
line tp the point (r, 2,) in question. We must kriow the distribution of
e aloné the transversal in' order to complete the solution, at least to
wit'hin‘a constant. A momentum argument will be introduced in the
next section for determina.tion of the constant " insofar as this is
possible in the frictionless case. Later, satisfaction of the no-slip
condition in the viscous computations will determine T exactly.

For later use, let us determine the form of the solution for the

case that ® is not a function of axial position along the wall. Then we

can write _
Ups (:0) = 2211)z0)
and '
® = L AT - (10.11)
21r(r1+2A )
anWhe re in the chamber, .Finally, _
11
(2) re-ZvA( )t v o
<r > = N _ (10.12)
\ 21‘rr(1+2A ) |

Note that for A(ll)s 0, <v(2)> has the form of a potential vortex .of
étrength ', and that there is no direct dependencé on any first-order
quantities. It is important to note that no other circﬁmferenti'al‘sec-
ondary flow satisfies the second-order morﬁentum equatidﬁ.

The axial vorticity is
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: (2) (2)
g(z) = a‘gr + "r (10.13)
Thus the steady part is ‘
-<C.(2)> _ A(:rl)l"1_-2(/\(11)+1_)e‘-2vl\(u)t (10.14)

and, when motion is not being amplified, A(u) =0 and

<C(2)> =0 .

That is, the motion is irrotational (assuming, of course, an irrota-

tional mean flow) when the growth rate of the wave motion is zero.

(11)<0,

When the waves are being amplified, A and the axial vorticity

is given by (10, 14). Thus, vorticity is generated at the wall and

transported by the mean flow under these conditions. Figure 10 shows

(2}

the effect of wave amplification on the radial distribution of <v' ">,

11, Recapitulation

Before making computations with real fluid effects included, it .
‘seems appropriate to summarize what has bee_n leafned»thué’ far.

It is not surprising in t.he light of two decades of experimental
evidence.to ﬁnd that the wave motion,at least at low amplitudes,
closely resembles the classical acoustic waves in form and frequency.
For the same reasons, it is not sufprising to find that the often ob-
served traveling transverse (0, 1, 0) mode is subject to amplification
in a cylindrically pe rforated,internaily burning, solid propellant
charge. The traveling mode is as susceptible to amplification as the
corresponding standing mode, and on the basis of the first-order the-
ory there is no way to determine for a given set of circumstances
" which form is more likely to appear.

The influence of freedom of movement of the combustion
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- chamber is a stabilizing one. A steady circumferential moment rela~
tive to the moving chamber axis acts on the gas in a direction opposite
to the first-order wave motion. This moment only appears when the
chamber is mounted flexibly, and the reduction of amplification rate
corresponds ‘tovdissipa‘.tion of energy in the supporting systefn. ‘Simi-
lé.r eff.ecfs no doubt arise as a result of flexibility of the propellant
gfa.in. The frequency of oscillation is slightly decreased iﬁ thé case
of a. freely moving rocket or one which is constrained in a ﬂéxible
- mounting. Since the chamber motion effects are proportibna.l to (A /v),
where ) is i:he ratio of the mass of gas in the chamber to the overall
mass of the rocket and v is the mea‘n—,ﬂow Mach number at the wall,
none of tixe effects mentioned are really impbrta.nt in most cases of
infqrest.

It is easily shown that for most rockets, reg’ardlesé of size,

A o~ 1070

‘while v is usually in the range

3 2

1077 <y < 1077,
Thus, 10-3 < )\/v‘ < 10"'2 , and the above statement is justified. Only
in special circumstances then, say, for a véry light motor casing near
the end of the motor run, would the influence of the moving ‘system be
of importance. |
Cu;ick (16) has é,lready shown that the growth rate predicted by
the present theory is quite representative of experimental data if
damping mechanisms are taken into account. He suggests that in

some cases, viscous shear at the head-end is an important contribu-

tor to the damping, while energy dissipation due to solid particles in
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the flow is the dominant effect in others.

Perhaps the most significant finding is that angular momentum
is introduced into the combustion products by the combination of
mass influx and combustion at the wall, The second-order steady
flow was found to consist of a superposition of the circumferential
rhass flux illustratéd in Figure 7, which is in the direction of the
wave motion and a potential vortex with ma..gnitude and sense which
caﬁnot be specified v?ithout further argument. The reader has perhaps
formed the mental image of a control volume surrounding the rocket
motor with angular momentum emerging through the surface with the
exhaust gases as the above calculations imply. This gives fise to
questions regarding moments acting on the motor itself. The inviscid
analysis cannot fully answer such gquestions since no information is
‘given on the viscous stresses at. the wall. The situation is analogous
to that arising from application of inviscid flow theory to'sindple wing
problems as we have already discussed in detail in the Introduction.

In that application,- to secure results which correspond to re-
ality, certain.auxilia.ry conditions must be introduced. The presence
of viscosity must be admitted and the Kutta condifion must be imposed
to place the rear stagnation point in the proper position. The result is
a model thch predicts,within certain limitations, the correct lift and
moment on the airfoil. In the_prgsent problem, what sort of an analog
to the Kutta condition to apply is not particularly clear.

To simplify the situation, one can define the inviscid approxi-
mation to mean that no tangential forces act at the walls of the cham-

ber and therefore no moments act on the motor. Using the mechanism
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postulated in the Introduction, we can easily der‘nonstrate that this
must be regarded as a definition only. Recalling that the vortex flow
in the chamber may be thought of as resulting from a distribution of
vortex filaments bound in the chamber walls parallel to the longitudi-
nal axis, there is evidently implied the presence of a distributed
force on the wall which is parallel at any point to the wall. The force
may be estimated by the familiar Kutta~-Joukowsky law if it is as-
sumed that the mean flow originates from sources far from the cham-
ber and flows radially through poroﬁs walls, past the bound vortices,
and into the region of interest inside the rocket motor. The tangential
force on the wall per unit area due to the presence of thelbound vor-
ticity has a direction opposite the concentrated axial vortex as illus~-

trated in the sketch of an element of the wall.

W aouno

\ ]#~ VORTICES

VORTEX
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The circulation about a unit area element of the wall is

~ _ I
aT =
and the force per unit area is
= M
dF = 5

Thus, the roll torque about the axis of symmetry is

M, = Lk - oany
Remembering that I" is of order sz ; then the roll moment is of

. order \)ez. We cannot calculate the actual moment from these résults
since I' remains unknown, and forces due to dissipation a.t-the wall
are not accounted for. It w_ill,' however, be of interest later to c‘om-
pare the result (11, 1) to the viscous calculations.

Proceeding with the assumption that the ta.ngt_antia.l forces are
zero for the inviscid case (that is, the moment M from (11. 1) is ex-
acﬂy balanced by the viscous forces at the wall), an angulér momen-
tum balance can be used to estimate the vortex strength T". Choc'Jsing
>a control volume enlclosing the propellant grain such th‘a‘.t"the only ef-
flux is through the nozzle entrance plane, and focusing attention on the

steady second-order part of the axial component of the momentum

balance, we obtain

<M;2)> = 0 = % ‘Jﬁr[<p(l)v(1)>+<fr(2)>]dv+
) \'4

+v JP(H- ﬁ)r[< p(l)v(1)> + <v(2)>]dS . (11, 2)
L ,

Effects due to motor motion have been dealt with already, and are

(2)

therefore neglected. We also assume v to be constant along the
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(1) (1)

transversal. Inserting the expressions for v'' ', p'"/, and v

(2)

corresponding to the first traveling tangential mode, we find
4TI'L (11) -Z\)A( l)t P I‘ (1 ZA(ll)) rJ (klol') _
RN e et TR PR
J |2 X,
0

which sets the value of I required to satisfy the angular momentum

.balance. Thus,
1

2
J'rJl (kmr)dr
0
—
k (11)
:-ro Pr(l"zA )dr

' = %

)
in order that <M(zz)> =0, and

1f(k10

= (11),,2
T = :i:—-—-f,’-——(l-A )Jl(klo) . (11.3)

k10
Note that the sense of the vortex is opposite that of the wave,as ex-
pected, and that the vortex strength increases during amplification of
the waves. It is now possible to discuss the features ‘of. the net
steady second-order mass flow consisting of the mass flux carriéd by

the wave and the superimposed vortex flow. Writing

<m;2’> = <p(l)v(”>+ <v(2)> , (11.4)
we find for the (0, 1, 0) mode,
(320, x) h
(11) __1_(__19:_ +
(2) - 'ZVA r
<mz > = +——Tc——-—--< > (11.5)
(F -1)(1-A(11))J12(k10) ~
B (11)
. LHAH2ZAT
10 -

This relation is plotted in Figure 11 for the neutrally stable case
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-78-
(A = 0). Note that the wave generated mass flux dominates near the
wall. The superimposed vortex dominates the flow over most of the
region, and in an experimental situation is certain to be the most ap-

parent manifestation of the second-~order flow field.
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IV. VISCOUS THEORY

The potential importance of a more realistic representation of
the fluid, particularly in regard to the tangential boundary condition
at the wall and its influence on the second-order vortex flow, was
brought out in the last section. Before proceeding, it seems advisable
to emphasize again what will and what will not be simulated.

The attempt will be made to represent the following physical
aspects of the real gas motion in an unstable rocket: 1) convective
effects due to mean flow; 2) response of the combustion iayer to pres-
sure fluctuations; 3) variation of viscosity with temperature; 4) heat
conduction in the gas, 5) compressibility; and 6) the no-sllip boundary
condition on the tangential velocity component at the wall.

No attempt will be made to represent the following: 1) a de-
tailed model of the combustion process and flame structure; 2) turbu-
lent flow effects; 3) diffusion of chemical species; 4} 'liquifiéation or
fizz zones at the gas - solid interface; 5) heat fransfer to and from
the wall; 6) comp}ex geometrical features; 7) nozzle effects; and 8)
flexibility of the propellant grain. The effects of combustion are
represented by forcing the solutions to match thé observed behavior
at the outer edge of the combustion layer, and by including the effects
of normal mass transport through the combustion layer, Although
one can hardly expect the numerical results from such an idealized
model to match experimental data, it can surely be hoped that some
insight into the nature of the flow might be gained.

It is apparent from the mathematical formulation discussed in

Part II that careful consideration must be given to the several simi-
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larity parameters involved in planning an attack on the viscous as-
pects of the flow. Obviously, an important simplification results if
the viscous effects can be considered to be confined in some sense to
a thin layer in the vicinity of the wall. Let us first inquire as to the
condition under whieh a boundary layer approach might be rewarding
and dete rmine if these conditions are met in the situation of interest.
The existence of a "boundary layer" solution depends mainly en the

magnitude of the parameter 6:
i
5 = [ Ho ]z

poa.oR

From equations (2. 2) and (2. 3), it is seen that the boundary layer ap-
proximations can be justified only if

62 <<1.
Physical mea.mng can be attached to this requirement if it is noted

N

that the frequency of oscillation is

Thus

sz
where Vo is the average kinematic viscosity in the chamber. Taking

w_l to be proportional to a characteristic time to ’

6Z — voto .
= > ;
R

6 may be interpreted as a dimensionless boundary layer thickness.

Thus,
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is the actual boundary layer thickness. to may be interpreted as the
time for vorticity to diffuse through the distance 6* » and it is clear
that boundary layer approximations are justified only if the kinematic
viscosity is very small and the frequency of oscillation is high. Note
that

2
'voto — \Jo/R rate of diffusion through distance R

= % = 3 s .
RZ \)0/(6 )2 rate of diffusion through boundary layer

and that this ratio of diffusion rates must be small [cf. referencé (30),
Ppo 350-356]o

Another parameter of importance is

wR
ae /e
O

where a ¢ is the (dimensional) speed characteristic of the velocity
fluctuations, and

2
- *
WR_ Mt yish)
a e a e/R ~ ael/R
Lo (o) ()

rate of diffusion through boundary layef
rate of convection by speed a e through distance R °

If this parameter is large, that is, if ¢ = 0, then a series expansion
in ¢ is also justified. These ideas have been discussed in full detail
by J. T. Stuart (30).

Finally, a comment on the effect of the ""blowing'' by the mean
flow on the boundary layer is called for. " It will be shown as the de-
velopment unfolds that the mean flow contributes terms proportional
to (v/58) in the governing equations in expanded form. Note v is the
Imea.n-ﬂow Mach number in what follows, and should not be confused

with the average kinematic viscosity Vor The method of solution
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will be based on the assumption
v/& = O(1)

which, fortunately, is actually the case in an average rocket. A few
numbers are in order at this point to justify the above statements.
For a typ1ca.1 rocket, say, r=.5ft, a_ = 3500 ft/sec, P = 600
1b/in’ »and yu_~2- 10"6 Ib-gsec/ft , the corresponding boundary
lay_er thickness is L

| 6 ~ 1. 10-3 .
As already mentioned, the wall Mach number is ordinarily approxi-
mately
v~ 1.103
and all of the above assertions are justified if the wave amplitude ¢

is also small.

12, First-Order Boundary Layer Solutions

In light of the above discussions, it seems reasonable to ex-
pand equations (2. 1) - (2. 4) in a power series in ¢ and to apply the
usual boundary layer approximations. Stuart (30) points out that this
procedure is a ;afe one as long as only the periodic first-order solu-
tions and the steady part of the second-order solutions are of interest;
neglected terms may be of importance in higher order corrections.

To first order in ¢, the equations of motion are

(1) ‘

%—+ v @MeveMy) = o (12.1)
(1) |

Su 1

.;t VPY -v[U- Vu( )+u(1) VU]+5 {Vz (l) lv(v “(l)

+liWve U+v U)+w[U- v, ). Zu(l)v. up |
*V[(Vum°V)H-(H'V)Vum]} - z.2)



(1) (1) 2
9%-—+ U-VT(” (l'—l) P = (%-)V.VT(” (12.3)
pll) o M ) | (12.4)

Introducing the boupda.ry layer coordinate,

n= L | (12.5)

.'and applying the boundary layer approximations (retaining only terms
of zeroth order in & in the regidn near the wall), equations (12. 2)

and (12, 3) become:

(1) (1) 2 (1) (1) :
: 1 8P o2y :
ety - - (3) ~oq~ - uze

and

o) (y-1) 8P( ) (_)a 2p(1)

' (1)
BT
ot Y ( )

v (12.7)

where the momentum equation has been written for the tangential
component only. Note the presencé of the "biowi;:xg" terms propor-
tional to (v/6). An a;.dditional as sumpt‘ionr based on cl_é,s_sical boﬁnda.ry
la.yér theory is that the pressure distribution is only siightly affected
by the presence of the layer. Thus, we may take P(l) to be that so-
lution already found for the inviscid flow. Equa.i:ions (12. 6) and (12.7)
are readily solvéd using standard 'procedures. The resﬁlts are, for

the (0, 1, 0) mode,

T(l) = -(y-1)Jl(km)e-Me-cncos(kmt:{:9-dn)+
+(y-1)Jl(klor)e-Atcos(kmtie) (12. 8)
and |
I, (k,,) J.(k,n1)
1 1107 =At - = "1"710 =At.
v( )==|:__k?}._e Ae a"ncos(kmtie-b'r|)+-—k—I-(-)-;.----e A‘ qos(kmt:i:_a)

(12.9)
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where

- (%)  (12.10)

{[;ﬁ) +(k10) ]% l5) }

b {[(25) +.(k10) 6)} e
{J Bt )} @ e
L d —{[ ” 4+(ok10) ) } ‘ | (12 13)

Note the first term in the solution for v represents an exponential-

o
Nlt-

NIH

ly decaying shear wave traveling away from the wall with Mach number

_ 1510
us = [—b—-] . . - (12. 14)

Note also that b diminishes as the blowing becomes stronger; thus the
rate of travel of the shear waves grows rapidly with increasing mean-
flow Mach number v, as expected. "Plots of the Qariation of functions
a, b, ¢, and d with (v/5) are shown in Figures 12 and 13. The
second term in (12. 9) is required for continuity, and of course
represents the tangential velocity in the wave motion outside the
boundary la.jre r. |

Figure 14 shows the boundary layer p1"ofi1es at § = 0 with no
blowing (v/8 = 0) for a half-cycle of wave motion. The influence of
blowing is illustrated in Figure 15, for argument (klotﬂ:e) = 0. Note
in particular the thickenix_ig effect brought about by the mass flux
thrbugh the layer. This implies that the theery breaks doﬁ for (v/8)

too large.
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The density distribution in the oscillating boundary layer is
easily found by substituting the result (12. 8) for the temperature

fluctuation into the equation of state (12. 4). Thus

o) = (y-103, 0, g)e " Me ™ Meos (i, ot £ 8-dn) +T, (k) gre At coslic;t£8) .
(12. 15)
The radial velocity component is most easily found from the

continuity equation written in the form

(1) (1) (1) (1) o
a 1( (1), . au s Lo % -, . (12.16)

r 08 Jr

In terms of the boundary layer coordinate this becomes

(1) (1) 4 (1) (1)
a“n -ﬁu(1)=6[a%t + 2 +(%)‘E—aan] :

(12.17)

Note the correction term due to mass efflux. The boundary condition
" to be satisfied is that the behavior of the layer far from the wall

{n - o) matches that exhibited experimentally. Thus |
. l - ‘ . . . . T
o1 = I (kg e At[A(r)cos(kmtie)-A(l?sxn(klotie)] (12, 18)

far from the wall in accordance with equation (4. 1). The solution is
(\:/6).11 (klor)[AA(l)sin(klot +0 )-A(r)qos (kmt +6)]
Ty (k)

-an . - N '
. +—— [a sin(k,,t* 6-bn)-bcos(k, t+80bn)]
(1) =;'5e-At< klo(a2+b2) 10 | | 10

_ klOC,Sin(kIOti f-dn) +

(y=1)J, (i )

. (c%+d%)

-C

+[ (% )[( 2.+d2)-k10d]cos (kl’Qt +6-dn)

F T1lkggrle” Mgin(k gt£0) 0 (z19)
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13. Viscous Damping of Wave Motion

The effect of the first-order wall shear stresses on the wave
growth consfa.nt can now be assessed by using the results of the last
section in the stability arguments set forth in Section 8. Culiqk (16)
has already investigated the damping due to shear at the hééd-énd
_.clos'ure' and to presence ‘of srﬁall particles in the flow.

According to equatioxi (8. 5), ‘the part of the growth'éo’nstant af-

fected by body or shear forces may be written as

r *
&) [ v 1%y

Ay =Y (13.1)
¢ e o
_ (_)_\_) (p(lo)) f(IO)_ 4dS
.Y -
Since the shear stress is parallel to the wall, |
i(m).,ﬁ =0
. and
10), .{10) o
Ay = —2 Jj(p( yve 104y (13. 2)
ZKNEN v : :
- Now, .the shear force per unit volume is
. 2 (10) 2 (10) ' _
(10) _ 2 Y ,
3, = ( rPwE ) = | | (13. 3)

_ where 7 is the boundary layer coord1nat,ev as before. Thus, writing

z;10) - agl10) ikt (13. 4)

in accordance with equations (5. 9) and using (12.9), we find

aZv(lO) - Jl(klo) [( +b)2 +i@ -(a.+1b)n]
an’ k10
n

in complex form, and idéntify
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T (kyn) P . '
VAR SRR bkt ' (a+ib)2e*1°e‘(a+1b’”]e . (13.5)
= ki0 6
Thus, for the (0, 1, 0) mode,
2wl .2 o]
21Ly 72, ) o
A =—r( K) 71l JJ‘ sifatib)? e (a¥ibIng,
ad ()1l (- —5-)
A A L Ul Sl
10
= =2, (13.6)
(kyo=1) |

Thus, the growth rate including wall dissipation is

A= - =Y [1+x2.a0) (), (13.7)
(kjg-1) 10 &) -

where a is given by (12. 10). Note that dissipation due to friction at
the wall decrgases as the rﬁean flow Mach number at the wall in-
creases, Ad is plotted in Figure 16 versus the blowing parameter
(v/8). For v ~ &, . the dissipative effect. due to viscous shear_is
roughly half the amplification due to_me an flow; ior v~ 100, the
dissipation is negligible in comparison to the émplification.

14, Second-Order Solutions

We now turn our attention to the second-order approximation
to thé boundé.ry layer flow with the object of learning something about
the proper boundary condition to apply to the inviscid éecond-order
vortex flow whose existence has been proven in prior calculations.
Again, it is clear that a steady flow component will appear due to
combinations of the form

o) 41
which have been discussed already. Also, we have demonstrated the

presence of a steady, second-order mass transport in the inviscid
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ﬂow. This flow has been often referred to in the literature dealing
with acoustic streaming theory as the ""mass transport velocity, "' or
"velocity transform' (21, 31, 32, 33, 34), and represents the effects of
non-linear Reynolds stresses in traveling wave motions (30). It must
be cé.refully distinguished from the ""acoustic streaming" itself which
is another steady part of the second-order mass flow. The "net
mass transport velocity' is the vector sum of the mass transport ve-
locity and the a.c‘oustic’ streaming, and represents the actual steady
flow which could be measured in an'experimental situation. Addi-
tional comments on acoustic streaming and the .like‘: will folléw the

(2)

calculation of <v'’'> itself in the region of non-uniform‘ity’close to

‘the chamber wall.
Expanding the momentum equation and collecting terms of

order ez, we find

(2) (1) (1)
L meal) wrhuT
Bt P Bt 3 =

XVXE(I),

+;){P(l )[VU- u(l)-UXVXu(l)] +[vU- u(z)-t_J_XVxE(Z)] } =

(9202, 88 1(1052,1), o0, 21y, 84 g, 1) ]

= 6% ( + Mot orih). 2 Fve ul?). Z—Ev(T‘”v ull)y (14.1)

"

W perhoga B Mgprithoy)
K. J
where terms of order 62\) are not written out in detail, since they
will vanish when use is made of the boundary layer approximations.

Focusing attention on the azimuthal component of the momentum

equation, we find:
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(2) (1)8 (1) 1((1)811(1) 1) 8+ [(1)((1)+ra (1) 9u(1)] .

Et a0 9
(1) (1) (1) (1) (1)
1 8,(Q 19 9 9 1
I L
\, - -
' (2) (2) (2) ( ) (2)
19 ,(2) 2 19 a 19
- +[;§-é-(u Utw! )w) Wi "ge - )-l-U(B — r'T‘l,le )]
(T2 0@, 022 1 0%(2) 10y 42) 92,2) R
' ‘z‘ L) 92 'rz aez T or L2 922
(1)[2 sall) 92,10 | g2 () ;5 (M) () g2 (1)}
+ =T | + +—= += -t
rZ 96 8r2 r2 892 r Or r2 Bzz
(2) 2 (2) 2_(2) 2_(2) |
1[ 1 82 1 8% 19 1 8%w
+?[;7 516 +r 368r t— 2 8;’2 +? Beaz ]
' (1) 2 (1) 2 (1) 2 (1)
16y (1) 1 8u’ 18 1 9 198%"
+357T [‘r"z' 55 T Poor ‘:7 8‘;2 T 3852 ]
_s2) syt o[ mor® M or®  qyart |
6 +5%;5§[ 81- +X =5t e >(14.2)
_zau w2, w01 ertt) |
39T tw T 00
1) (1) 51 w1 gpll) Wl
aul o 7 () aT ut’ aT 9 9T 1)8T
+5%[a—( g Lt P Y ant s N )]
(1) () W Lo (1) |
9 aT +8u 19 9
+ T[ r or +? ;9 + ‘i;,z )]
(1)[1 aT(l) 9 T(”+ 1 T(1)+8 'r(”]+ |
- — (o)
u 5%‘ T 0T U 5.2 22 agZ | 0a2 v) J
Applying the boundary layer approximations,
BV( ) @ S 92 gy ) Mg, (1) (1) (1)

on 8 2 ot r 08 T

of1) g (1) (1)
+_6_8v +(V)p(” av %Eai((l)av ) (14. 3)
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which represents a considerable simplification. Note the presence of
the terms proportional to (v/8) which reflect the influence of the mass
efflux from the wall on the boundary layer flow.

In anticipation of steady terms, put
W2 o (@) @) (14. 4)

The non-oscillatory part is governed by

2
Pl COF - RO S
dn

= eZAt< inhomogeneous terms > . (14. 5)

A complementary function for this second-order ordinary equation is

<v(2)> Begn . (14. 6)

(o

]

where

2 ' (11) &
g = (.Zl’s)i[(-z—"s) -2A] ){11[1-\: ZA 12}

(11) |
~ {v } = 25011 (14.7)

(z5)

* : '
for cases of interest . Note £ is negative since A(ll

L
2

I
—~~
S«

)

is negative in
an unstable rocket. The constant B will be used later in satisfying
the no-slip condition at the wall. We must now find a particular inte-
gral. In working with the terms on the right of (14. 5), it is convenient

to put all input quantities in the form

The complementary function (14. 6) would in general be

(2)

(11) (11)
<8y - g elv/8 - 28A )11+B2e251\ n

c 1

but the first term vanishes in the process of asymptotic matching to
the outer solution represented by equation (10. 12).
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Qn(n, 8,t) = u.nsin(klot-.':e) + ﬁncos(klotie) .
Then for the correlation Qan » the steady part is
<Qan> = %(amc'n+ ﬁmﬁn) *

Thus, the particular integral must satisfy
2

—é—'<v('2)> - (2-)-9-'-<v(2)> + ZA<V(2)> =
an? P &7dm P P
~ 7
Cle-zan + Cze-ansinbn
'* le(klo) + C3e-ancos bn + C4e-cﬂsind-n $
- 2
+ Cpe” B Mainpap
-(a+
k+ C6e (@ c)ncos(b-d)'q .
where
- 2ab
0 Ry v o
- 10 {(a™+b")

C, =1 -R—L(%)[b(A(r)-l-l)-aA(i)] _ 2(21;'1)2\.1‘) 91
10 10 4

: 2 .2
- 1 v (r) i _ (y-a~-b")
| = "fiz‘*o"[a“‘ ““‘“AI] -

C. = (y-1){1+ ac-bd]+[b(a+c)+a(b-d)] %
5 { [(c2+dz) 1o 3T

L. C, = (y-1) _[bc+ad] +[a.(a.+c)—b(b-d)] b }
6 { (c%+d?) k10 ﬁ‘

(14.8)

(14.9)

(14. 10)

(14.11)

(14. 12}

{14. 13)

(14. 14)

and a, b, ¢, and d have been defined previously. The particular

integral is easily found by standard techniques, and the complete solu~

tion is
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<v(2)> = <v(2)>c + <V(2)>P ‘= B (1 + 25/\(11)7]+ 0(62)) +
~ G C C
=Le22N_ Tc'i' e M gin bn +k—ze-ancos bn
1 10 10

r 2y | (y-l)[F3e'c”sindn + Gye"Mcos dn] o |
T A (14.15)
+ (F4C5-G4C6)e-(a+c)nsin(b-d)’q ‘

+ (G4C5+F4Cé)e-(a+c)ncos(b-d)‘n
\_ .

. where a Taylor series expansion has been inserted for the comple-

mentary function and

(F, = 2a[2a+ (v/8)] - (14. 16)
2 2
F, = ——pbic =d 13cl/8)] 5 (14, 17)
{[{c"=-d"Hc(v/8)]" + a"[2c+(v/8)]%} -
PR d[2c + (v/8)]
G. = (14. 18)
¢ 3 (et 81 + dl2ct /0112 -
F, - [(a+c) -(b d) +(v/6)(a+C)J — (14.19)
{[(atc)®-(b-d) +(—5)(a+t:)] %+(b-d)* [2(a+CH( )14
G4 = (b- d)[Z(a'l'c)'l'(\)/ﬁ)] (14.20)
- [[at+c)®-(b-d)*+(¥ Nate) 124 (b-d)° [z(a+c)+(gn %)
and to satisfy the no-slip cond1t10n,
c, C, ( - h
. —t =+ (v=1)G
_3fwy) ) F1okio Y
B = 5 (14. 21)

+ G4C5 + F4C6

It is important to note from (14. 15) that the complementary function

contributes a term
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(2) =
v 56 = B (14. 22)

which does not diminish with distance m from the wall to the zeroth
order in 8. This is the classical "acoustic streaming'' effect, and in
the present case, it must be interpreted with great care. First, it is
o_f interest to compare (14. 22) with the results of other investigators.
In pafticular. it can be compared to the work of Maslen and Moore (12)
who solved for the streaming flow in~a circular cylinder for tﬁe case of
zero mean flow (v/& = 0) and no unsteady combustion effects (A = 0).

Their result for the (0, 1, 0) mode in the present n-ota.tion is
2
I (kqn)
(2) - 1'10 3 _(-1)sg1 8 :
<vi®> =% oy |2 Ty_i1+c (G-93%) (14. 23)
: 10 .

which indicates the streaming flow to be in the direction opposite to the

direction of nodal travel of the wave. From (14. 22), we find,for the

case (v/6)=0, A =0, that

(2) I ko) [ 1 (y=1) 4l 8y |
<v >n_m=i_2k__—[-1+ z‘(1+o)(‘6'°ar] (14, 24)

which differs in several respects. Most importantly, (14.24) indi-

" cates that the streaming is in the direction of wave travel, a result
more in line with other calculations involving no wall efflux (cf. 30,
31, 32). The reversed signs on the. first two terms and the three in
the secc.md term on the right of (14. 23) appear to be typographical er-
.rors. Unfortunately, these errors affect the vé.lidity of later investi-
gations (4, 9, 10, 11) which utilized the Maslen and Moore results. It is
also itnporta.r;t to note that the presence of unsteady combustion and

the generation of gases at the burning surface affect both the magni-
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tude and direction of the streaming flow. Thus, the Maslen and Moore
theory is not applicable to the unstable solid propellant rocket problem
in any case. |

The effects of mass efflux through the boundary layer on the
acoustic streaming are shown in Figure 17.  The calculations are for
y=1.25, 0=0.75, 8, /9T = 1, and Al = 0. Note that <V(Z)>n-'oo
is _opposite in sense to the wave under conditions represeﬁtative qf an

unstable rocket (v/6 = O(1), A(r) > 0), and the value of A(i) is of
. _ (2) .

»

little consequence since its effect on <v' "> is proportional to a{v/8)

(2),
. "Moo
changes little with increasing (v/8). Figure 18 illustrates the effect

which is always small. For (v/8) > 5, the value of <v

of blowing on the steady second-order boundary layer for A(r)= 0.25.
These velocity profiles represent the mean about which the first-
order circumferential flow oscillates. Note the strong effect of mass
' flux on thé direction of steady flow near the wall.

It is now possible to match the inner e@ansion represented by
equation (14. 15) to the outer expansion represented by the steady
second-order vortex solution found for theinviscid flow outside the
boundary layer. Thus, the acoustic streaming correction gives the
boundary condition necessary to specify completely the flow through
the chamber to second orde1_-. The appropriate form of the outer so-

lution is (cf. eqn. 10.12),
e-ZvA(ll)t

(2) -
<v'“'> = (14. 25)
AT, |

Ztrr(l+z

and the correct value of I' can now be found using (14.-22). The result

is
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T = Tl 2k )C1+CZ+( 1)G,+G,C+F ,C (14. 26)
= Ty 10\ 7] Ko Y- 4 Ce .

and we have established the presence of a vortex-like circumferential
flow. Note from Figure 17 that this flow is opposite to the wave di-
rection for a given set of conditions and for values of v/& above some
critical value. The critical value of v/ corresponds to the transi-
tion from decaying to amplifying conditidns, and can be estimated
from the results of equation (13. 7). Thus, neglécting damping from
other sources, the waves are ainplified for values of v/5 greater than
the value given by |

-1/4

(v/8) Ko {[Z(3/2+k A(r)) 1/4]-1/16}

cri’cical
{14. 27)

and under these condition, the vortex is opposite in sense to the direc-
tion of wave travel.

Torque on the Rocket Motor. One of the manifestations of

traveling mode combustion instability which is. of great pracfical im-
portance is fhe appearance of a torque on the rocket motor 'aboﬁt the

longitudinal axis during periods of intense oscillations. This must be
due to a ‘steady component of shear stress at the lchamber wall due to

viscous dissipation of the gas motions. The shear stress vector is

given by _
T o= ﬁu—g—%%e (14. 28)
where
|z = YLI;-— (14, 29) .
o

and t' is the dimensional shear stress. Expanding in the usual fash-

ion, and writing T for the magnitude of T » the shear in the gas to
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various orders is

1)
(1) _ . vl
T = b o (14. 30)
)
(2) _ 8v( (1) Bv( '
+2) - & +_éj:_lr Fr ) (14.31)
and so on. The second-order correction exhibits a steady component:
¢ aC,-bC |
1 -2an 2
- 2a -FT + ( ) smbn
bC +aC -a ‘
( k e Ncos bn

- (y- 1)(cF +dG )e smdn
. 2 + (y-l)(dF3-cG3)e_cncos dn
67, (i, )
<rl®s oy 110
- -[(a+c)(F405-G4C6)
+(b-d)G,C 5+F4c6)]e'(a+°’“ sin(b~d)n

+[(b-d)(F C -G C6)

L - (a.+c)(G C +F C6)] -{at c)ncos(b -d)n
8 (1) Bv(l) 2 ’
+8 (-5%)<Tl g >+ oY) . (14. 32)

Evaluating the shear stress at the wall, noting that the steady part of

- (1)
the temperature dependent term <T(1) Ov > vanishes since the

first order temperature fluctuations were a.ssumed zero at the wall,
bC +a.C

- Za— - ( i )+(y-1)(dF ~cG,)

(2) 87, (k59

<t > =t ——

n=0 Z + (b-d)(F ,C,~G 4cé).- (at+c NG,C+F ,C,

14, 33)

Figure 19 shows the variation of shear stress on the wall with the
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mass efflux parameter (v/8) for several values of the real part of the
acoustic admittance of the burning surface A(r). Note that the stress
is opposite in direction to the wave motion for conditions correspond-
ing to wave amplification.

The roll moment acting on the motor is approximately

L/R 2r _
<m?)> - f [P ga0as = (Zgh<rlh L aa3e
0 0

This is a conservative estimate, since we have neglected the torque
due to dissipation at the motor head-end and in the nozzle where the

swirl is greatly intensified. o
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V. CONCLUSIONS

The detailed calculations support the simple concepi:ua.l model
of vortex generation in acoustically unstable solid-propellant réckets
introduced earlier. This simple mechanism is based on the observa-
tion that traveling transverse waves in the combustion chamber trans-
port mass circumferentially in the direction of wave travel. This
implies a layer of vorticity at the wall composed of axialiy oriented
bound vortex filaments. Vorticity shed at the pe riphery of the nozzle
exit is balanced by an oppositely épinning concentrated vortex emerg-
ing from the motor along the axis. The vortex system may be imag-
ined to be composed' of a series of horseshoe vortices arranged as il-
lustrated in Figure 5. The presence of the mean flow and its interac-
tion with the bound wall vortices implies a roll torque on the motor of
order vez , but the direction and numerical magnitude of the torque
must be established by detailed calculations taking account .of viscous
dissipation of the circumferential wave motion near the wall.

The calculations show that traveling tangential waves are
amplified under conditions typical of those in a solid propellant rocket.
The response of the combustion process to the pressure fluctuations in
combination with the mean flow act fo drive the wave motion to higher
amplitude. The presence of a second-order circumferential mean flow
in the direction of the wave indicates an axial angular momentum com-
ponent in the gas. This swirlin'g flow is introduced into the fluid by
the same processes that drive the first-order wave motion. The effect
of motion of the rocket in response to the oscillating transverse pres-

sure forces is to damp the wave motions through the action of a
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éteady second-order body moment on the gas relative to the moving
chamber-fixed coordinate system. In addition to the steady mass
flux carried by the wave, the inviscid theory predicts a steady second-
order flow which takes the form of a potential vortex in the absence of
amplification. With amplification, the radial velocity distribution is
altered by vorticity driven into the flow. in the amplification process.
A simple angular momentum argument shows that the vortex is al-
ways opposite in sense to the direction .of wave travel during amplifi-
cation of the oscillations, but may have the same sense as the nodal
travel during decay (1\(11) > 1)

The magnitude of the vortex strength, and the direction and
amplitude of the axial torque due to circumferential shear stress,
were estimated by application of laminar boundary-layer theory to the
region near the wa.li. The validity of a boundary layer approach to
the viscous calculations was established on the grounds that the fre-
quency of the oscillations is high and that the ratio of wall Mach num-
ber v to the Reynolds number 6 is of order unity in a typical situa-
tion. The first-order boundary layer is purely oscillatory and consists
of exponentially damped shear waves propagating into the outer flow.
The damping rate decreases with wall Mach number, and therefore,

" the boundary layer approach breaks down when v/5 reaches some
critical value. The first-order oscillations are about a non-zero

mean represented by a steady part of the second-order boundary layer -
flow which is identifiable with the "acoustic streaming'' effect.

The magnitude of the.acoustic streaming just outside the influ-

ence of the shear layer sets the strength and direction of the vortex
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‘predicted by the inviscid theory. The vortex strength depends on the
mean flow Mach number v and on the acoustic admittance of the com-
bustion layer at the wall. The net steady circumferential flow in the
chamber is the superposition of the vortex on the mass flux trans-
ported by the wave itself. The vortex is, however, the dofnina:ting
feature'undér a typical set of conditions. This is mainly due to the
fresence of the radial mean-flow component typical of an 'inte‘rna.lly-
bui-ning solid-propellant rocket configuration. Effects similar to
those just described are known to accompany transversel mode insta-
bility in some liquid propellant rockets, but since the mean flow is
nearly axial, and since combustion takes place in a region normal to
the motor axis, the vortex flow fails to appear. However, a swirling
flow with complicated radial distribution is undoubtedly preseht in
such cases.

Figure 20 summarizes some of the key findings of thé study.
Shown are the relative directions of the swirliﬁg flow emerging from
the motor and the torque on the motor case for clockwise and counter-
clockwise traveling waves. The illustration corresponds to conditions
which would exist during é.mpliﬁcation of the pres.sure ﬂu;tuations.

As has already been indicated, one cannot expect the numerical
computations of the idealized» theory to be a particulariy good repre-
sentation of reé.lity, especially in the case of finite amplitude waves.
Nevertheless, let us extrapolate the results to finite amplitudes
(e = O(1)) to see what sort of torque effects can be predicted by the
theory. Using equation (14.34), and neglecting dissipation at the

head-end. and in the nozzle, we find, for the (dimensional) torque
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about the motor axis of symmetry,

<M'> = 2nR2Lr! = 2we’RELyP 6%<1l?)s |
z o n=0
For (v/6)= 1.5, R=.5ft, L=6ft, P_=6001b/in”, &=1-107,

which are numbers representative of a typical small rocket, we find

<M!> = ¢2(53. 5) ft 1b .

Thus, for ¢ ~ .5, <M;> ~ 10 ft 1b , which is in close correspondence
to torques actually measured in the presence of finite amplitﬁde waves.,
Additional contributions to the roll moment are produced by
viscous dissipation of the steady flow at the head-end of the motor and
within the nozzle. The latter may be the dominating effect in an actual
case due to intensification of the swirling flow through the nozzle
throat due to angular 'morﬁentum conservation. These considerations,
coupled with the fact.that laminar theory was used to estimate shear
-stresses_in-an unquestionably turbulent situation, implies that the
- numerical results just given represent in fact.an underestimate of the
actual torque acting on the system. The latter may thus be taken as a
lower bound on the actual roll moment. Finally, it has been suggested
by Swithenbank and Sotter (9) that the interaction of the spinning flow
with the'nozzle flow may be responsible for the pressure peaks ("ir-
regular cqmbustioﬁ") which often accompany combustion instability

involving the traveling transverse acoustic modes.

i



-111-

V. APPENDICES
APPENDIX 1 - Calculation of I1 for the (0, 1, 0) Mode
It is desired to evaluate the integral

10) ¥im'
1, = jg( Ytim®y g, rlav (@A)
v

where n # n' and

M - ik (0 9p10) - v. (g vg10eg 10,

For the (0, 1, 0) mode,

~

vU) . (A. 2)

1{ky07)

J (k, ,1)
(10) i £if d A . +i@ 10° ’
< q = i;; [e = J (k r)er:l: ie —_— Qe]

T
U= -ré& +2Z8&
- r z

.

It is easily shown that U and q(lO)

are each irrotational flow fields.
Thus, (A.2) simplifies to

g = ik (U 1Y) - v.v(u. 1)),

(A. 3)
and evaluating for the (0, 1, 0) mode,
' o, 3 2
(10) i [ 4 d 2 d] £i0
g = r + 3 -k J (k r)e .
klO dr3 er 10 d 10

Put x = klor and d/dr = k10 Exq- and denote derivatives W.R. T. x
by primes. Then

10 = i e O raa i) + 37,Mx) - xT "))
Noting
.Tl(x)
I'x) = T (x) -
- J (x)
3 Mx) = (—- - 1)J {x) -
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M) = (= - 1N o) + (é-;%nl(x)

X

Substituting the Bessel function derivatives and simplifying:

g(lO) = -Zikwx.To(x)e:Eia = -Zikioch(kmr)eiie . (A. 4)
Thus, integral I, is
L/R 2w 1 -
.2 +1 +
1, #JP j‘ Jp(dzdedr)r[—21k10r30(k101‘)e 1B]e e.]'l(klnr)
0
1
= -ami (F)KE | 220 koI (k) riar (A. 5)
10 o 10 1'"in * *
0

The latter integral is readily evaluated by recourse to the Bessel
equations defining the two Bessel components of the integral.

Consider the following pair:

2
4”7, (x) a7 (x)
z 12 + x cllx + (x;-l)Jl(x)_ =0

(“

dx

— N,

) dZJl(Ex) aJ | (Ex)
x —— + x +(gx-1)J(gx)_o
dx

where x =k r and § =k, /k,,. Differentiating the first equation,

multiplying by J 1(gx), and subtracting the second multiplied by

\ [dJl(x)]/dx yields

d.Tl(x)
(&~ l)x

Jl(gx) = ZXJl(x)Jl(f;x)+

d J (x) 2d.?fl(x) dJl(E,x) : dJl(x)
{xJ(g) — - i e ) g }.

Integrating:
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ST ko

€-1) [ 23,603 (Exdax = 2 [x7, 607, (i
0 0

k10
d J (x) 2d.'.fl(x) dJl(ﬁx) dJ (x)
+ xJ(gx)——Z-——x o I + xJ (§x) *
dx 0

Using the boundary conditions

d =

ar Jl(klnr] L, -0

r=1
k k
10 - 10 2
k a1, (k)

2 L

Iszl'(x)Jl(ngx = E_fﬂ ijl(x)Jl(gx)u + -(Ei(i’-; J (k ) ™
0 0

%
Using this result, the integral in (A.5) can be evaluated as follows:

k1o k10
2 _ 1 2
jr J’o(kmr)Jl(kInr)dr = P— x Jo(x)Jl(gx)dx
10 0
ko . K0 _
1 r - 1 2_,
= ) xJ,(x)T (Ex)dx + —— | x“T '"(x)T,(Ex)dx .
3 J TN 3 1 1
10 0 10 0

The first integral on the right is a tabulated one; the second has been

evaluated above. Thus,

1 ko
frZJo(kmr)Jl(klnr)dr - ;g_ [1+-€f—l]fol(x)Jl(§x)dx
0 10 0

2
. Jpley,) 473k, 0)
kKiple=1) 42
(jg-1) Tk ).;r (k, )
T TR Ky gt Y10k,
and finally
L 10“‘10 )J

* noting J_(x) = J,"(x) + = Jl(x)
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APPENDIX 2. Calculation of I2 for the (0, 1, 0) Mode

Integral IZ is defined as

_.
I, = j\h(lo)e+1meJm,(km,nr)dS - (A. 7)
' 5

whe re

n(10) { K qp(w)J,n,[U. q!10g10, gy (x)_f_uo)]}

For the first tangential mode,

2 .
477y (kyor) AT, (kyo7) +ig
> + e

10 dr dr =1
- (3)n. £10)

(10) _ . +i0 i
h = -1k10AJ'1(k10)e " %

10)

where _{( is given by equation (7. 6) for a rocket in free motion, by
(7. 10) for a rocket motor in a flexible mounting, and is zero fbr a

rigidly fixed motor. Noting

dJl(klor) _
> = 0
dr r=1
and
2.
d Jl(klor) ) {( _ l)J . ) - J (klor)
10 2 2 110 E
dr klO _
r=1
= (1-%%) 7, (k;)
10°°1'Y"107 °
Also,
- (ﬂli).]' (klo)e:l:ie for case 1 (freely moving
case)
ﬁ._f.uo)= < ( )J (klo)e:l:le S gor case 2 {flexibly mounted
motor)
0 for case 3 (rigidly mounted

motor)
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where I and a are the mechanical impedance and lag angle resulting
from the flexible mounting in case 2. The integral is now easily

evaluated with the result
2

kT -1
21rL 10
a 1 case 1
2 k2 - -
A L 10 -ia '
+(Dv(F) T,k )k ) < -4-e% | case2 (A. 8)
9 0 case 3
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VII. NOTATION

average speed of sound
acoustic admittance of burning surface
damping constant
normalization constant for mode a
amplitude of body force on gas
body force vector
integrated pressure force on chamber wall
function defined by equation (5. 12)
function defined by equation (5. 14)
referé to imaginary part
Bessel function of first kind of order m
thermal conductivity
root of d/dr Jm(kmnr) =0 atr=1
complex frequency = Q + iA
chamber length (dirhensional)
dimensionless motor mass
moment vector
mass flux vector
outward pointing normal unit vector
refers to mode (4, m, n)
amplitude of pressure
pressure
amplitude of velocity
chamber constraint function

position vector
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R chamber radius (dimensional)
R refers to real part

position of chamber axis relative to inertial system

t time

;‘ temperature

u velocity vector

u geometrical part of mean-flow velocity vector
a three-tuple defining mode, phase angle

B function defined by equation (8. 7)

Y ratio of specific heats

T vortex strength

) boundary layer parameter

6(r-r ) Dirac delta function
— =0
€ amplitude parameter
n boundary layer coordinate

azimuthal position

®o spring constant

A magnitude of perturbing force

A growth constant for wave amplification
vl viscosity coefficient

v mean-flow Mach number

P density

o Prandtl number
T shear stress

v . eigenfunction of unperturbed problem

w frequency
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Q frequency

Subscrigts

o : refers to average (dimensional)conditions in absence of
wave

z refers to axial component

Superscripts

! refers to dimensional quantities

(i) . refers to imaginary part

(r) refers to real part

(mn) refers to term of order m in ¢ and order n in v
(m) refers to term of order m in ¢

Triangular brackets < > indicate the non-oscillatory part of the en-

closed function.
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