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Abstract

This thesis addresses whether it is possible to build a robust memory device for quantum information.

Many schemes for fault-tolerant quantum information processing have been developed so far, one of

which, called topological quantum computation, makes use of degrees of freedom that are inherently

insensitive to local errors. However, this scheme is not so reliable against thermal errors. Other fault-

tolerant schemes achieve better reliability through active error correction, but incur a substantial

overhead cost. Thus, it is of practical importance and theoretical interest to design and assess

fault-tolerant schemes that work well at finite temperature without active error correction.

In this thesis, a three-dimensional gapped lattice spin model is found which demonstrates for

the first time that a reliable quantum memory at finite temperature is possible, at least to some

extent. When quantum information is encoded into a highly entangled ground state of this model

and subjected to thermal errors, the errors remain easily correctable for a long time without any

active intervention, because a macroscopic energy barrier keeps the errors well localized. As a result,

stored quantum information can be retrieved faithfully for a memory time which grows exponentially

with the square of the inverse temperature. In contrast, for previously known types of topological

quantum storage in three or fewer spatial dimensions the memory time scales exponentially with the

inverse temperature, rather than its square.

This spin model exhibits a previously unexpected topological quantum order, in which ground

states are locally indistinguishable, pointlike excitations are immobile, and the immobility is not

affected by small perturbations of the Hamiltonian. The degeneracy of the ground state, though

also insensitive to perturbations, is a complicated number-theoretic function of the system size, and

the system bifurcates into multiple noninteracting copies of itself under real-space renormalization

group transformations. The degeneracy, the excitations, and the renormalization group flow can

be analyzed using a framework that exploits the spin model’s symmetry and some associated free

resolutions of modules over polynomial algebras.
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1

Chapter 1

Introduction

The idea of quantum computer dates back at least to Feynman [1], who speculated a possibility

for exploiting the computational power that Nature allows. The idea raises a deep question. The

computation is a manipulation of symbols and numbers according to our logical system. If we can

simulate the time evolution of Nature in a controllable and mechanical way, then it is unavoidable

to conclude that the present Nature is really computing the future, and that the way she does is

essentially the same as our arithmetic. If we cannot simulate what she does, then it means there is

a fundamental difference between the time evolution and its artificial simulation by our logic and

numbers. Either conclusion must have profound consequences.

An important problem in proving the possibility of a quantum computer is how to suppress

decoherence. Shor discovered a scheme in which as long as elementary operations have a low enough

error rate one can perform an arbitrarily long computation [2]. He showed there is a positive constant

δ such that any ideal computation can be simulated by faulty elementary operations if they are close

to ideal ones up to precision δ; the scheme effectively reduces the error rate. Thus, the problem of

decoherence is solved at least theoretically.

Kitaev proposed yet different scheme, called topological quantum computation, in which ele-

mentary operations are physically protected and hence are ideal for all practical purposes [3]. He

pointed out that there is a naturally protected subspace in topologically ordered systems in two

spatial dimensions. The subspace is accessible by braiding excitations, so-called anyons. As long

as the anyons are geometrically well separated at any time step of the computation, the subspace

remains decoherence-free. A classical analog is easy to understand. In a magnetic storage medium a

bit is encoded into one of two polarizations of little ferromagnets. Each little ferromagnet consists of

billions or more electrons whose spins are aligned together. An electron spin may be flipped by some

error, but it is energetically unfavorable. Many errors require high energy, and it is very unlikely

that the average magnetization would change the sign. The main idea of the encoding quantum

information in the topologically ordered system is similar. The information is carried not by local

degrees of freedom, but by collective degrees of freedom, where local errors are suppressed by natural
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means.

A requirement for a system to be useful for the topological quantum computation is that the

system must have eigenstates of the same energy that are locally indistinguishable. The states only

look different when one has a full description of them; the local reduced density matrices are identical.

This property has no classical analog. Systems whose ground states are locally indistinguishable are

already found. The fractional quantum Hall systems with a filling fraction ν = p/q have q degenerate

ground states that are locally indistinguishable [4, 5]. The local indistinguishability accompanied

by a finite energy gap above the degenerate ground states, has a significant consequence that the

degeneracy does not split in the thermodynamic limit, even under general local perturbations [5, 3, 6].

This intrinsic stability underlies the idea to build a quantum computer on topologically ordered

systems [7, 8, 9].

However, a closer analysis reveals that the topologically ordered system is vulnerable to thermal

fluctuations [10]. The collective degrees of freedom are well protected as long as the anyons are

far separated, but the thermal fluctuations cause the anyons to propagate randomly throughout

the system. The random motions are not a priori suppressed by, for example, energetics. Anyonic

systems do not function as protected media as the magnetic media do for classical information

storage. That any topologically ordered system has a naturally protected subspace is not entirely

true.

We need to separate the problem for further concrete discussions. A computer is loosely divided

into two parts: reliable storage and fault-tolerant processing of information. The division is not

too fundamental since the storage may require some sort of ancillary information processing, and

vice versa. It is a convenient division for the sake of analysis. The storage problem for quantum

information concerns a possibility of a quantum analog of classical hard disk drive, which we call

a self-correcting quantum memory. One asks if there is a system where a subspace is maintained

coherently as collective phenomena [7, 11]. The processing problem concerns a wise choice of an

elementary operation set and its implementation, and is thus contingent upon the storage scheme.

In this thesis we focus on the storage problem.

The result of the present thesis can be summarized as follows. We find a spin model on a three-

dimensional cubic lattice, whose excitations are immobile and point-like. Under any perturbation

the excitations do not acquire a kinetic term — any hopping amplitude vanishes exactly. Moreover,

the ground-state subspace is degenerate, exactly in the thermodynamic limit, and no local order

parameter can be defined. These properties do not fit into intuitive pictures people had about the

topological order. The reason why it is unconventional will be explained below. Given the model, we

devise a scheme to use it as quantum memory and compute the storage time. We prove a rigorous

lower bound on the storage time that grows with system size up to an optimal value Tmem = eΩ(β2)

where β is an inverse temperature of a heat reservoir. It should contrast with a conjectured storage
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time eO(β) of any two-dimensional topologically ordered system.

We briefly review how the concept of topological order has emerged, and discuss our results.

1.1 Topological order

The quantum Hall effects are phenomena in which the transversal conductance becomes a locally

constant function (plateau) for ranges of perpendicular magnetic field strength. In the integer

quantum Hall effect, as the magnetic field is increased, the Hall conductance develops plateaus at

quantized values of ne2/h in the vicinity of field B = ρ0hc/ne where n is a small positive integer

and ρ0 is the electron number density [12]. The quantization is very accurate and universal. The

measured conductances from various experiments all agree with one another within a relative error

less than a part in a million [13]. The agreement is so remarkable because different experiments do not

fine-tune every aspect of experimental setups up to precision 10−6. Due to its simple reproducibility

and high accuracy, the integer quantum Hall effect is now used to define an international standard

of resistance [14].

The exact quantization can be explained by Laughlin’s argument [15], refined by Halperin [16].

They consider an adiabatic insertion of magnetic flux near the boundary of the Hall sample. They

conclude that the Hall conductance is quantized because extended (delocalized) electronic states near

the sample edge whose energies are far from Fermi level are only responsible for the conductance.

Thouless et al. [17] showed that those extended states actually define a topological vector bundle

whose invariant, now called TKNN invariant or Chern number, is directly related to the quantized

Hall conductance.

The awe of the quantum Hall effects does not end there. Soon after the discovery of the integer

quantum Hall effects, another kind of quantization was measured — the fractional quantum Hall

effects [18, 19]. The transversal conductance displays many plateaus at fractional multiples of e2/h,

not only at integral multiples of e2/h. An interesting feature is the structure of the ground-state

subspace. There are q-fold degenerate ground states for a fractional quantum Hall system of filling

fraction ν = p/q defined on a torus, where p and q are co-prime integers [20, 4]. By taking a

detour through an effective theory, the degeneracy is argued to be a function of topology [5]. More

specifically, if a fractional quantum Hall Hamiltonian at ν = p/q is defined on a Riemann surface of

genus g, the degeneracy is qg.

It is much more interesting that quasi-particles of the fractional quantum Hall system are thought

to be anyons [21]. They obey neither bosonic nor fermionic statistics under exchange. Rather, the

wave function of two-anyon state may be transformed by a unitary operator if one anyon is trans-

ported around the other. It has been conjectured that the nonabelian case, where the unitary is not

just a phase factor, could be realized in a fractional quantum Hall system at certain filling fractions
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ν = p/q [22, 23]. Unfortunately, the nonabelian statistics has not been verified experimentally.

Meanwhile, the concept of topological order had emerged. It was introduced as an abstract

notion to describe the fractional quantum Hall systems and spin liquid states [24]. A gapped system is

generally said to be topologically ordered if the ground-state subspace is degenerate but no symmetry

is spontaneously broken, and the degeneracy is robust under any perturbation in the thermodynamic

limit [25, 26]. Also, the degeneracy as a function of physical space topology and the anyonic quasi-

particle statistics are taken as defining characteristics of topological order [5, 3, 23].

Another important yet different characteristic is topological entanglement entropy [27, 28]. A

ground-state wave function of a gapped Hamiltonian is believed to obey an area law. Namely, the

von Neumann entropy S(ρ) of the reduced density matrix ρ for a disk region is bounded from above

by a constant times the area of the boundary. In our two-dimensional situation, the area is the

perimeter of the boundary, so S(ρ) ≤ αL. The topological entanglement entropy is a negative

constant correction to the area law; S(ρ) = αL− γ. Remarkably, the γ is insensitive to microscopic

details and constant under deformation of the Hamiltonian as long as the deformation does not close

the energy gap. This quantity is quite different in nature compared with other characteristics of

topological order, since it is computed from a single wave function whereas the others are defined

for Hamiltonians.

The topological order can be better understood by studying lattice gauge theories [29] and the

toric code model [3]. One of the purposes to introduce lattice gauge theories is to contrast how

our new model, called cubic code, is different from models in a conventional picture. The simplest

possible lattice gauge theory is the Ising gauge theory due to Wegner [30]. Ising gauge theory can

be defined in any dimensions, but let us focus on the two-dimensional square lattice first. Later we

will see a direct relation to the toric code model.

Consider the two-dimensional square lattice with a Ising variable (spin) Z = ±1 at each edge.

For each vertex v, let A(v) be an operator that flips four spins around v; A(v) : ±1 7→ ∓1. A(v) is

called a gauge transformation. We can express it as an operator.

A(v) = X(N, v)X(W, v)X(S, v)X(E, v)

where X(N, v) means the matrix

0 1

1 0

 |+1〉

|−1〉
acting on the north edge of the vertex v, and similarly

for others. We identify all states that related by the gauge transformations. We look for a “local”

Hamiltonian that is invariant under the action of A(v). Here, the locality may be ambiguous since

we have identified states that differ by the gauge transformations and formed a Hilbert space that is

not a tensor product of local constituents. However, the locality is still a proper notion with respect

to the square lattice.

The gauge invariance allows restricted possibilities of terms in the Hamiltonian. It is not hard
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to see that a term in the Hamiltonian must be a product of Z’s along a closed loop. The simplest

closed loop is a single plaquette. Thus, the simplest Hamiltonian would be given by the sum over

all plaquettes p

H = −J
∑
p

B(p) = −J
∑
p

Z(b, p)Z(r, p)Z(t, p)Z(l, p) (1.1)

where J > 0 and B(p) is the product of four Ising variables on the bottom, right, top, and left of the

plaquette p. It is important that the ground-state subspace does not spontaneously break any gauge

symmetry. It is a general statement (Elitzur’s theorem [31]) whose proof is not difficult [29, 32].

If H is defined on a torus with periodic boundary conditions, there are four ground states

that are not equivalent under the gauge transformations. This can be understood by visualizing

configurations by loops. The configuration C0 with all spins taking +1 values is a ground state of

H. Any equivalent state under the gauge transformations is obtained by applying A(v) at vertices.

A single A(v) flips four spins. Imagine connecting those flipped spins by straight lines — they will

form a loop. Applying more gauge transformations A at various vertices, one adds more loops or

deforms the loops. What is always true is that the loops are homologically trivial. Indeed, A can

be interpreted as a boundary operator in the cellular homology with Z/2 coefficient acting on the

dual 2-cells. What if we start with a configuration C1 with all spins +1 except those −1 along

a homologically nontrivial loop of the torus? Since A does not alter the homology class of the

configuration, we conclude that C0 and C1 cannot be equivalent under the action of A. Since there

are 4 distinct homology classes of the torus including the trivial one C0, the degeneracy is therefore

4. We emphasize that the homology classes are not locally distinguishable.

One can generalize the model so that it is defined on an arbitrary surface with a triangulation.

The gauge transformations will be defined for each vertex, and the Hamiltonian will be a sum of all

terms B, the product of Ising variables along the perimeter of elementary triangles. The homology

description will be valid as well. The degeneracy is a function of homology of the surface.

Returning to the square lattice, we ask how an excited state looks like. It is described by unhappy

terms B(p) = −1 in H. If we flip a spin from a ground state, then the two adjacent plaquette terms

will become unhappy. If we flip two spins, say, one on the left and another on the right of a plaquette

p0, B(p0) will remain happy but those on the left plaquette and on the right will not. Generally, if we

flip spins from a ground state such that flipped spins form a string on the dual lattice, then only two

plaquette terms positioned at the end of the string will be unhappy. Those unsatisfied terms can be

isolated at constant energy cost, and appear as the end points of the strings. If the string is extended

to the infinity in one direction, there will be a single excitation. This is a topological excitation, in

the sense that it cannot be created by a local operator, unlike a pair of nearby excitations. Note

that the string that creates excitation has no gauge-invariant meaning. Applying A(v) in the middle

of an extended string will deform the string. The homological argument above shows that if two
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strings with the same end points differ by a homologically trivial cycle, the two strings describe

exactly the same excited states.

The properties of the Ising gauge theory we have reviewed here satisfy several criteria for topo-

logical order. Its degeneracy is a function of topology, and no symmetry is spontaneously broken.

The four-dimensional ground space is stable under gauge-invariant perturbations. Can we obtain

a similar model without the gauge symmetry? A prescription is to promote gauge transformations

to be dynamical [3], and take the Hilbert space as the tensor product of individual spins. In other

words, one adds gauge fixing terms to the Hamiltonian.

H ′ = −J
∑
p

B(p)− g
∑
v

A(v) (1.2)

Since the Hamiltonian H is constructed to be invariant under the gauge transformations, the new

quantum Hamiltonian H ′ is exactly solvable. The ground state is an equal-weight superposition of

all equivalent spin configurations under the old gauge transformations. Our analysis on the absence

of local order parameters and the degeneracy using the cellular homology is still valid. As the

homology classes of spin configuration in the Ising gauge theory were not locally distinguished, the

quantum ground states of H ′ are not locally distinguished. It follows that the degeneracy is not

lifted under any local perturbations [6]. Indeed, it is easily checked that the first order degenerate

perturbation theory is vacuous because any local operator sandwiched between two ground states

|a〉 and |b〉 is proportional to 〈a|b〉.

The gauge symmetry is not strictly imposed any more, but a particular gauge choice is energet-

ically preferred. Accordingly, there is one more type of excitations given by unsatisfied A(v) terms,

known as e-particles. A violated B(p)-term is known as m-particle. Note that there is a duality

between A and B terms. A consists of Pauli X = σx acting on a plaquette on the dual lattice,

and B consists of Pauli Z = σz acting on a plaquette on the primary lattice. A pair of m-particles

can be created from a ground state by applying “spin flip” operators X along a string on the dual

lattice. A pair of e-particles can be created from a ground state by applying “phase flip” operators

Z along a string on the primary lattice. The e- and m-particles display mutual anyonic statistics.

When one makes a complete circle around the other, the wave function acquires a phase factor −1.

The topological entanglement entropy is nonzero [27, 28]. We obtained an exactly solvable simple

model with topological order, the toric code.

1.2 String operators

The string operators in the toric code deserve much attention. They are topological objects in that

only the homological classes they represent matter. The fact that the strings are extended objects
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makes it clear how two particles at a distance may interact by braiding. The nontrivial braiding, in

turn, implies a nontrivial ground-state subspace. The argument is basically the same as the proof

of the degeneracy of the fractional quantum Hall system using magnetic translations [4].

The string picture seems to be correct for all two-dimensional topologically ordered systems.

The robust degeneracy implies that there is no local observable that can distinguish different ground

states; otherwise, perturbing the system with that local observable will lift the degeneracy. A

minimal “global” operator whose support is not local would be a string operator stretched across

the system. Another conceivable argument is as follows. Consider a region R as large as possible

on which no observable can resolve the ground-state subspace. If we assume translation invariance

so we can unambiguously speak of thermodynamic limit, then a local operator is any operator with

a bounded support. Hence, on a torus geometry, R can be taken as the whole system minus two

narrow strips, ensuring R to be a contractible region. Since any operator in R cannot resolve the

ground-state subspace, some operator in the strips must be able to resolve it, which suggests the

existence of string operators. As we will see in Chapter 2, the argument here can be made rigorous

for a class of models. Also, there is an attempt to understand every possible model in two dimensions

with the string picture [33, 34].

What will happen if we go to three spatial dimensions? Consider a three-dimensional Ising gauge

theory. The gauge transformation A(v) is defined for each vertex v, and the Hamiltonian will be

the sum of all plaquette terms B(p). For the 3D simple cubic lattice, a single spin-flip at an edge

will violate four plaquette terms attached to that edge. Many spin flips that form a surface on the

dual lattice will violate plaquette terms along its boundary. In general, excited states are caused by

surface operators and described by loops of unhappy plaquette terms, analogous to domain walls

of the 2D Ising model.1 Now we add gauge fixing terms A(v) into the Hamiltonian to obtain a

quantum model, called three-dimensional toric code. As before, there is a new type of excitation,

an unsatisfied A(v) term. Let us call A(v) a star term. Unlike the plaquette excitations that form

loops, the star excitation is attached to a string operator along a path in the primary lattice. The

star excitations can therefore be isolated.

There are two types of operators acting on the degenerate ground-state subspace. A different

ground state is obtained by flipping all spins on a plane that wraps around the system. When a

finite system with periodic boundary conditions are considered, the locations of the flipped spins

form a nontrivial homological 2-cycle of 3-torus. The other type of operator on the ground-state

subspace is the string operator. If we apply the string operator along a nontrivial homological 1-

cycle of the 3-torus, then the star excitation does not appear since there is no end points, and a

ground state is mapped to a different one. There are three closed surface operators and three closed

string operators, as the homology group of 1-cycles and 2-cycles are generated by three elements,

1An exact mapping actually relates 3D Ising gauge theory with 3D Ising model [30].
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respectively.

The closed surface operator X̄ and the closed string operator Z̄ generate a nontrivial algebra,

because, when a pair of X̄ and Z̄ share a common support, the intersection is just a single spin

on which the pair anti-commute. Of course, X̄ and Z̄ are topological objects and there are many

equivalent representatives. One can easily check that in for any equivalent representatives the

algebraic structure does not change.

The (closed) string and surface operators seem to be universal for any topologically ordered

models. If the ground-state subspace is robust under any perturbations, the algebra generated by the

operators acting on the ground-state subspace must also be robust. Note that operators of extended

overlapping support may not define a robust algebra. For example,
⊗n

i=1 σ
x and

⊗n
i=1 σ

z commute

if n is even, but anti-commute if n is odd. In order to make a well-defined algebra, it is the most

straightforward for the operators of extended support to intersect at a point-like (zero-dimensional)

support. In other words, an n-dimensional operator would have a nontrivial commutation relation

with a (D− n)-dimensional operator, where D is the total spatial dimension. If there were a three-

dimensional model with all surface-like operators acting on the ground-state subspace, they must

intersect along a one-dimensional line. The length of the one-dimensional line is not topological,

and it would be hard for them to form a robust algebra. Therefore, in three dimensions, it seems

necessary for the string operators to exist. In four spatial dimensions it is possible to construct a

model that has a robust ground-state subspace such that all operators on it have two-dimensional

support [7].

We remark that the existence of string operators implies that point-like excitations at the ends of

the string are mobile generically. Although the e- and m-particles of the two-dimensional toric code,

being eigenstates of H ′, are stationary, the excitations will acquire a kinetic or hopping term under

generic perturbations. This is the reason why the topological order at finite temperature is said to

be not stable. At nonzero temperature there must be a nonzero density of the mobile excitations.

Their spatial fluctuation induced by the thermal interaction is strong enough to disorder the ground

state completely. Topological entanglement entropy calculation at nonzero temperatures supports

this intuition [35]. In terms of a measure how difficult it is to generate a state, the Gibbs state of

some topologically ordered model with string operators is not too different from a trivial product

state [36]. Moreover, the relaxation time towards the Gibbs state of the two-dimensional toric code

is only a constant independent of the system size [10].

1.3 Quantum codes and a new model

In our discussion so far, the topological order is characterized by a collection of very compelling

properties of Hamiltonians or ground-state subspaces. However, it is not too clear which one is
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more fundamental. Even, it is not clear whether all those characteristics should appear all together.

The quantum Hall effects [13] and topological insulators [37] should serve as reference systems.

It appears that the local indistinguishability of ground-state subspace is the most mathematically

tractable definition of the topological order. We adhere to this definition. To obtain enough intuition,

we would like to study toy models arising from quantum error correcting codes.

Shor’s fault-tolerant scheme [2] is based on the discovery of quantum error correcting codes. He

demonstrated that there exists a subspace in a many-qubit Hilbert space such that local errors can

be detected and corrected with a high probability without disturbing encoded (logical) quantum

state. Measurements inevitably disturb the system, but a trick is that the logical state is encoded

in the entanglement of the many qubits. It is essential that different encoded states look exactly the

same to the local errors; they are locally indistinguishable.

It did not take too long for people to realize that the Shor’s error correcting code can be general-

ized and studied in an analogous way that one studies classical error correcting codes [38, 39, 40, 41].

The connection is due to the observation that the encoded state can be described as the eigenstate of

pairwise commuting tensor products of Pauli spin- 1
2 matrices; the state is stabilized by commuting

operators. The commutativity is important because, otherwise, we cannot speak of common eigen-

state. The encoded state is required to be highly entangled, and hence avoids in general an efficient

classical description. However, the stabilizer operator language tells us that some class of highly

entangled states has a simple description, which is enough to ensure the local indistinguishability.

We explain this in detail in Chapter 2.

The toric code Hamiltonian H ′ in Eq. (1.2) can be viewed as a quantum code. The terms A(v)

and B(p) consist of Pauli matrices and commute with each other. If the coupling constants J and

g are both positive, then a ground state is a common eigenstate of eigenvalue +1. (Having +1

eigenvalue ensures H ′ is not frustrated.) In general, if a code is defined by a local commuting Pauli

operators, we can write a corresponding Hamiltonian given by the negative sum of all the commuting

Pauli operators. If the code has a good error correcting capability, the corresponding Hamiltonian

must have a locally indistinguishable ground-state subspace.

As we have seen earlier, the toric code Hamiltonian captures essential characteristics of the

topological order. It is one of good motivations to study Hamiltonians with commuting Pauli

operators in order to understand the topological order. One might be uneasy with the fact that the

Hamiltonian H ′ is a four-body interaction. This “unrealistic” interaction may be effective at low

energies, if, for example, a realistic Hamiltonian is highly frustrated from which the effective H ′ is

derived [26, 42]. We will be not concerned about the order of the interaction as long as it is local.

One of our guiding problems is the possibility of self-correcting quantum memory. We wish to

have a system whose ground-state subspace is locally indistinguishable so that local errors do not

corrupt an encoded state. In addition, we demand that there be a physical mechanism such that
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local errors do not accumulate. The string operators of the previous section are against our goal.

Since they make excitations mobile, the physical mechanism to prohibit the error accumulation

cannot be achieved. Hence, in two dimensions it seems impossible to have a self-correcting quantum

memory. Indeed, one can rigorously prove the existence of the strings operators for a class of models

in two dimensions, starting from the local indistinguishability assumption [43, 44, 45]. We noted in

the previous section that there is a four-dimensional topologically ordered model lacking the string

operators [7]. This model indeed functions as a self-correcting quantum memory below a critical

nonzero temperature [46].

A more realistic three-dimensional case is hence interesting. Based on the dimensional duality of

the operators acting on the degenerate ground-state subspace, a no-go theorem seemed plausible [47].

In this thesis we present a concrete counterexample, cubic code, to this intuition.

IZ

���
�

ZI

���
�

ZI ZZ

II IZ

IZ ZI

����

IX

���
�

XI

���
�

XI II

XX IX

IX XI

����

The cubic code is a quantum error correcting code on the simple cubic lattice defined by local Pauli

operators acting on elementary cubes. There are two qubits (spin- 1
2 ) at each site. The two-letter

symbol such as XI means a tensor product σx ⊗ I, and ZZ means σz ⊗ σz, etc. Each diagram

represents a tensor product of eight Pauli matrices. The Hamiltonian is the negative sum of two

diagrams over all elementary cubes. As required, the model has a degenerate ground-state subspace

that is locally indistinguishable. Most importantly we can prove that there does not exist any string

operator. However, it admits isolated point-like topological excitations. They do not appear as the

end points of the string, but as the vertices of fractal operators. The fractal operators is supported

on a self-similar structure. The absence of string operators implies that the point-like topological

excitations are immobile; any hopping amplitude vanishes exactly. It is also interesting that the

degeneracy depends sensitively on the number-theoretic property of the lattice size, illustrated in

Figure 5.2 on page 92. The cubic code is a conceptually new phase of matter.

It is necessary to explain more how the vanishing hopping amplitude and the isolated point-like

topological excitation are simultaneously possible. By a topological excitation, or a charge for short,

we mean a localized excitation that cannot be created from a ground state by any finitely supported

operator. A kink in the 1D Ising model is the simplest example. The isolation of a charge in the

cubic code is possible under a self-similar construction as follows. In Figure 1.1, the first figure

shows how excitations look like when an X error occurs on a ground state. The second figure show

the excitations given four X errors. Note that when two charges are at the same position, they
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Figure 1.1: Isolating a topological excitation. The cubes are in the dual lattice; each vertex represents
an elementary cube in the primary lattice.

cancel with each other. The configurations are similar by ratio 2, so one can construct even larger

configuration where there are only four excitations that are far separated. In the limit of this process

there is an isolated charge. The reason why the hopping amplitude vanishes can be heuristically

understood by the construction. It is impossible to have a configuration where only one charge is

moved away while the other three are held fixed. Such a configuration is forbidden in the spectrum of

the Hamiltonian. The transition amplitude to a non-existing state from any state must be vacuous.

We later prove it rigorously. A classical model where this happens was discovered by Newman and

Moore [48]. Our model is inherently quantum with a locally indistinguishable ground-state subspace

and has a gapped energy spectrum that is robust under generic perturbations [6].

We show that the cubic code model can be used as a quantum memory at nonzero temperatures

in the following sense. We develop a well-defined read-out procedure (decoder) with which a ground

state maintains coherence for time proportional to Lcβ where L is a linear system size and β is an

inverse temperature. This statement is valid only if L ≤ ec′β . Roughly speaking, this is because of a

large entropic contribution from the point-like excitations. For small system size, the entropic con-

tribution is small. At an optimal system size, the memory time is ecc
′β2

. A natural question is then

whether we could remove all such point-like excitations. We answer this question negatively: There

must be an isolated point-like excitation in any topologically ordered three-dimensional quantum

code model if it is translationally invariant. The proof is based on a formalism using translation

group algebras and free resolutions of finitely generated modules.

1.4 Summary of chapters

In Chapter 2, we explain a general structure of a class of quantum error correcting codes, called

additive or stabilizer codes. It is emphasized that the additive code is described by a binary vector

space. A simple counting of vector space dimensions yields cleaning lemma. It states that the

number of independent logical operators on complementary regions add up to the total number of

independent logical operators of the code. Combining the geometric locality of two-dimensional

Hamiltonian with the cleaning lemma, we prove a trade-off theorem about the support of the logical
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operators. In particular, this implies that only string operators act on the ground-state subspace in

two-dimensional quantum codes. The content is published in [44].

In Chapter 3, we develop a formulation of translationally invariant quantum codes. We observe

that they have a succinct description by a matrix σ over the translation group algebra which is

commutative. The local indistinguishability is interpreted as a vanishing homology of a complex

defined by σ. Local unitary transformations and coarse-graining are described by simple matrix

operations. The ground-state degeneracy is approximated as the number of points on an algebraic

variety defined by σ over finite fields. Fractal operators and point-like excitations are defined, and

the set of all point-like excitations modulo locally created ones is identified with a specific module.

The content is published in [49].

In Chapter 4, we use the formalism of Chapter 3 to derive consequences of physical dimensionality.

The translation invariance is imposed. One-dimensional codes are classified completely. Up to

local unitary transformations, any code decomposes into finitely many 1D Ising models. In two

dimensions, we prove that there are finitely many types of topological excitations and they are all

appear as end points of string operators. In three dimensions, we prove that there must exist a

point-like topological excitation. If the ground-state degeneracy is constant independent of system

size, we show that the point-like topological excitations are attached to string operators. Examples

are presented for which our formalism is useful. The content is published in [49].

In Chapter 5, we explain how the cubic code is found. It is a result of an exhaustive but

systematic search. We prove important properties of the cubic code such as the topological order,

ground-state degeneracy, and the absence of string operators. The cubic code’s thermal partition

function is computed to show that the free energy density is smooth in the thermodynamic limit

as a function of temperature. An entanglement renormalization group flow is presented. We find

that the cubic code (A) bifurcates into itself (A) and another model B. The new model B shares

all important properties of A, but is different from A. Under a further real-space renormalization,

B bifurcates into two copies of itself. A part of the content in this chapter is published in [50].

Our presentation in this thesis is more succinct than that in the published paper, due to algebraic

methods of Chapter 3 developed more recently.

In Chapter 6, we prove theorems implied by the absence of string operators. The theorems

quantifies the energy landscape of the Hamiltonian on the “land” of energy eigenstates. Two states

are considered to be “close” in the land if one state can be transformed to the other by a single spin

operator; if it is necessary to apply many spin operators, the two states are considered to be far

apart in the land. On this land of states, imagine hills whose height is given by the energy of the

state. The landscape of this land is analogous to a potential energy barrier in a quantum mechanical

tunneling problem. We define the energy barrier to be the height of the lowest hill on any path in

the land connecting two states. We prove that between two ground states there exists an energy
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barrier larger than the logarithm of the system size L, and the distance in the land is at least Lγ

with γ > 1. A closely related statement reads that between a ground state and a state where a

topological excitation is isolated from others by distance R, there exists an energy barrier ≥ logR,

and the distance in the land is ≥ Rγ with γ > 1. The content is published in [51].

In Chapter 7, we design a decoding algorithm. Any physical memory cannot be pristine after

contact with an error source. In order to retrieve correct information for the next step of processing,

one needs to map the affected state to the ground state. For a ferromagnet this decoding process

amounts to measuring average magnetization. For quantum codes, the first step is to detect errors.

This is done by measuring the terms in the commuting Hamiltonian. The next step is to guess

probable types and locations of errors, which we specifically call “decoding algorithm.” Once error

locations and types are identified, the final step is to undo the errors. A good decoder should map

corrupt states to its original pristine state with high probability. Our algorithm uses a hierarchy of

subroutines which borrows ideas from renormalization group. It is widely applicable and is efficient

with running time O(V log V ) where V is the volume of the system. Moreover, we prove that there is

a positive critical error probability, called a threshold, below which the decoding algorithm succeeds

asymptotically perfectly in the limit of large system size. Our decoder is the first decoder that

admits an efficient implementation and a rigorous threshold theorem. The content is published in

[52].

In Chapter 8, we directly assess the performance of the cubic code as a robust quantum memory at

nonzero temperature. One ingredient is to show that the decoding algorithm of Chapter 7 corrects

errors of low energy barriers. Here, the energy barrier of an error is defined in the same way as

above — the height of lowest hill in the energy landscape on any path connecting a ground state

and the state affected by the error. Another ingredient is an analysis of Markovian master equation

exploiting the fact that there exists a good decoder Φec, a trace preserving completely positive

quantum operation. An analytic bound on the trace distance between the initial state ρ(0) and the

error-corrected time-evolved state Φec(ρ(t)) is given as

‖ρ(0)− Φec(ρ(t))‖ ≤ t (1 + e−β)V

V β

where V is the system volume and β is the inverse temperature, neglecting all unimportant constant

coefficients. If V ≤ eβ , the bound says the fidelity of error-corrected Φec(ρ(t)) remains close to ρ(0)

until t ∼ V β . We complement the bound with a numerical simulation, which suggests that our

bound is optimal up to constant coefficients. The content is published in [52].
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Chapter 2

Additive quantum codes

The theory of quantum error correcting code is an important cornerstone for fault-tolerant quantum

computers [2, 53]. One encodes states one wish to compute about into logical many-qubit states in

such a way that errors that are likely to happen will be correctable. Thus, at the logical level an

effective error rate is much smaller than the physical error rate. Computation can be carried on this

logical level, and the overhead of error correction can be controlled, not to overwhelm the promised

computation. After the discovery of the very first quantum error correcting code by Shor [54], people

have quickly realized analogy between classical error correcting codes and a class of quantum error

correcting codes [41, 40], which are now known as additive or stabilizer codes. Arguably, it is the

most studied class of codes, and is the main object of the present thesis. The connection between the

classical codes and quantum additive codes is provided by the parameterization of basis operators

(Pauli matrices) by binary numbers. In this chapter we review and exploit this correspondence.

The chapter is organized as follows. Section 2.1 provides a convenient and important viewpoint

under which the multiplicative group of all Pauli matrices are described by a vector space over the

binary field. Section 2.2 builds on this viewpoint and explains how to choose a subspace of a many

qubit Hilbert space, which we hope to have a capability to correct errors. Section 2.3 is devoted

to derive an equation, called a cleaning lemma, that relates the numbers of logical operators that

can be supported on complementary regions and the total number of logical qubits. It is remarked

that the cleaning lemma implies that any error occurring within a region, where no nontrivial logical

operator can be supported, can actually be corrected by a physical operation.

The last section 2.4 presents an application of the cleaning lemma which gives a constraint on

the geometric shape of logical operators of local codes on lattices. Most importantly, it is proved

that in two-dimensional lattice codes with geometrically local generators with large code distance,

all logical operators have representatives supported on narrow strips. It had been known by Bravyi

and Terhal [43] that there exists a nontrivial logical operator supported on a strip. Our conclusion

extends this result by finding the geometric shape of all logical operators. If the minimal weight

logical operator has weight proportional to the linear dimension of a two-dimensional system, then



15

all logical operator can be found on narrow strips [44].

Note that there are many interesting quantum codes that are not necessarily additive [55, 3, 34],

but they are out of the scope of this thesis.

2.1 Pauli group as a symplectic vector space

The Pauli matrices

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1


satisfy

σaσb = iεabcσc, {σa, σb} = 2δab.

Thus, the Pauli matrices together with scalars ±1,±i form a group under multiplication. Given a

system of qubits, the set of all possible tensor products of the Pauli matrices form a group, where the

group operation is the multiplication of operators. If the system is infinite, physically meaningful

operators are those of finite support, i.e., acting on all but finitely many qubits by the identity.

We shall only consider this Pauli group of finite support, and call it simply the Pauli group. An

element of the Pauli group is called a Pauli operator. When finitely many qubits are considered,

a Pauli operator is of course an arbitrary tensor product of Pauli matrices.

Since any two elements of the Pauli group either commute or anti-commute, ignoring the phase

factor altogether, one obtains an abelian group. Moreover, since any element O of the Pauli group

satisfies O2 = ±I, an action of Z/2Z on Pauli group modulo phase factors P/{±1,±i} is well-defined,

by the rule n ·O = On where n ∈ Z/2Z. For F2 = Z/2Z being a field, P/{±1,±i} becomes a vector

space over F2. The group of single-qubit Pauli operators up to phase factors is identified with the two-

dimensional F2-vector space. If Λ is the index set of all qubits in the system, the whole Pauli group

up to phase factors is the direct sum
⊕

i∈Λ Vi, which we call Pauli space, where Vi is the vector

space of the Pauli operators for the qubit at i. Explicitly, I = (00), σx = (10), σz = (01), σy = (11).

A multi-qubit Pauli operator is written as a finite product of the single-qubit Pauli operators, and

hence is written as a binary string in which all but finitely many entries are zero. A pair of entries

of the binary string describes a single-qubit component in the tensor product expression. The

multiplication of two Pauli operators corresponds to entry-wise addition of the two binary strings

modulo 2.

The commutation relation may seem at first lost, but one can recover it by introducing a sym-
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plectic form [41]. Let

λ1 =

 0 1

−1 0


be a symplectic form on the vector space (F2)2 of single-qubit Pauli operators.1 One can easily

check that the commutation relation of two Pauli matrices O1, O2 is precisely the value of this

symplectic form evaluated on the pair of vectors representing O1 and O2. Two multi-qubit Pauli

operator (anti-)commutes, if and only if there are (odd) even number of pairs of the anticommuting

single-qubit Pauli operators in their tensor product expression. Therefore, the two Pauli operator

(anti-)commutes precisely when the value of the direct sum of symplectic form
⊕

q∈Λ λ1 is (non-)zero.

Λ could be infinite but the form is well-defined since any vector representing a Pauli operator is of

finite support. We shall call the value of the symplectic form the commutation value.

Remark 2.1. For systems of qudits, a group corresponding to the Pauli group in the qubit case is

the so-called generalized Pauli group [56, 57, 58, 59]. It is the set of all tensor products of powers of

d× d matrices

Xd =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

. . .
...

· · · 1 0


and Zd =



1

ω

ω2

. . .

ωd−1


(
ω = e2πi/d

)
,

which satisfy

XdZd = ω−1ZdXd.

Hence, any generalized Pauli operator on a single qudit is a product Xn
d Z

m
d . The abelianized

generalized Pauli group is identified with P = (Z/dZ)2, a module over Z/dZ. If d is a prime

number, Z/dZ ∼= Fd is a field and the P is a vector space over Fd. The commutation relation can be

recovered by the symplectic form λ1. The generalization to a system of qudits is straightforward.

Most statements in this thesis are true or easily extended for qudits with prime dimensions. An

exception is Levin-Wen fermion model of Example 4.4.

Since the Pauli group can be effectively described by a vector space equipped with a symplectic

form, it is worth studying symplectic vector spaces in general. Any vector space in this section is

with respect to some fixed field F.

Let V be a (finite dimensional) vector space. A bilinear form λ : V × V → F is symplectic or

1The minus sign is not necessary for qubits, but is for qudits of prime dimensions.
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alternating if

λ(v, v) = 0

for any v ∈ V . If follows that

λ(v, w) = −λ(w, v)

since λ(v + w, v + w) = λ(v, v) + λ(v, w) + λ(w, v) + λ(w,w) = 0. Two vectors v, w are said to be

orthogonal if λ(v, w) = 0. If any two vectors are orthogonal to each other, the symplectic space is

said to be null. If for any vector v there exists w such that λ(v, w) 6= 0, the symplectic space is said

to be hyperbolic and λ non-degenerate [60].

Given any basis of a finite dimensional symplectic space V , one can find a canonical basis

{v1, w1, v2, w2, . . . , vn, wn, u1, . . . , un′} such that

λ(vi, wj) =

1 if i = j,

0 otherwise,

and λ(ui, t) = 0 for any t ∈ V.

The canonical basis depends on the order of the basis one starts with, and is not unique. Under the

canonical basis the symplectic form has a matrix representation

λ =



0 1

−1 0

0 1

−1 0

0

. . .


whose rank is 2n. A Gram-Schmidt process for a usual Hermitian inner product space yields a

constructive proof of this claim. The process is inductive:

1. If the given basis is {bi} of V , set v1 := b1.

2. Choose any basis element bj such that λ(v1, bj) 6= 0. (If one cannot find such bj , start over

with a different choice of v1. If one cannot eventually find an appropriate v1, then declare

ui = bi for all i; the space is null.)

3. Set w1 := bj and normalize v1 in order to have λ(v1, bj) = 1. Reorder the index of bj , so

w1 = b2. Now suppose, we have a canonical basis {vi, wi}mi=1 for a hyperbolic subspace Wm of

V .
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4. Replace b2m+j (j ≥ 1) with

b′2m+j := b2m+j +

m∑
i=1

(λ(b2m+1, vi)wi − λ(b2m+1, wi)vi) .

One sees that the b′2m+j are orthogonal to Wm and still linearly independent.

5. Iterate 1-4 with spanF{b′2m+j |j ≥ 1}.

From the algorithm, we have a structure theorem for finite dimensional symplectic vector spaces.

Proposition 2.1.1. Let V be a finite dimensional vector space equipped with a symplectic form over

any field. Then, V is a direct sum of a hyperbolic subspace and a null subspace. In particular, if the

symplectic form is non-degenerate, then V must be even dimensional.

It is important that the abelianized Pauli group is non-degenerate symplectic over F2, since any Pauli

operator anticommutes with some Pauli operator.

As noted earlier, there are many canonical bases. The linear transformations that connect

different bases are called symplectic transformations, i.e., T is a symplectic transformation if

TTλqT = λq =

 0 idq

−idq 0

 .

The symplectic transformation decomposes into a composition of three elementary transforma-

tions [41, 61], as any general linear transformation decomposes into a composition of row operations

and scalar multiplications by Gauss elimination. For notational clarity, define Ei,j(a) (i 6= j) to be

the row-addition elementary 2q × 2q matrix

[Ei,j(a)]µν = δµν + δµiδνja

where δµν is the Kronecker delta and a ∈ F2 is a scalar. The following are elementary symplectic

transformations:

• (Hadamard) Ei,i+q(−1)Ei+q,i(1)Ei,i+q(−1) where 1 ≤ i ≤ q,

• (controlled-Phase) Ei+q,i(a) and 1 ≤ i ≤ q,

• (controlled-NOT) Ei,j(a)Ej+q,i+q(−a) where 1 ≤ i 6= j ≤ q.

• (controlled-NOT-Hadamard) Ei+q,j(a)Ej+q,i(a) where 1 ≤ i 6= j ≤ q.

The fourth one is a combination of the first and the third.

Proposition 2.1.2. [41] The elementary symplectic transformations generate the group of all sym-

plectic transformations.
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Proof. It suffices to prove that an arbitrary symplectic transformation T is a finite composition of

elementary ones. T is a 2q×2q matrix over F2. Let us write T ∼= T ′ if two matrices are transformed

by elementary symplectic transformations. Since any row operation in the upper half block of T

can be compensated by an appropriate row operation in the lower half block by controlled-NOT

(CNOT). One can then transform the upper half block into the reduced row echelon form. Since T

has rank 2q, the upper half block must have rank q. Therefore,

T ∼=

 id ∗

M ∗


where M and ∗ are all q × q. Using CNOT-Hadamard, one can eliminate the first column of M .

Then, since TTλqT = λq, the first row of M must be zero. Inductively, one can completely eliminate

all entries of M .

T ∼=

id L

0 N


The equation TTλqT = λq now implies that N = idq. L can be made zero by a similar transforma-

tions as M was made zero. Thus, we have

T ∼=

id 0

0 id

 .

An arbitrary symplectic transformation T is equivalent to the trivial transformation by elementary

symplectic transformations.

As one can easily see, the elementary symplectic transformations are induced by the following

unitary operators.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


|00〉

|01〉

|10〉

|11〉

, Hadamard =
1√
2

1 1

1 −1

 |0〉
|1〉
, Phase =

1 0

0
√
−1

 |0〉
|1〉

2.2 Additive/stabilizer codes

An additive [62] or stabilizer [40] code is a quantum code defined by the common eigenspace,

called code space, of commuting Pauli operators, called stabilizers, of eigenvalue +1 acting on

many physical qubits. It is required that the group of stabilizers should not contain −I in order for

the code space not to be zero. The number of physical qubits q is called code length. From the

relation of the group of Pauli matrices and the binary linear space, each additive or stabilizer code



20

corresponds to a unique null-symplectic subspace of the abelianized Pauli group of q qubits. (The

requirement that the stabilizer group should not contain −I is however an independent condition.)

If the null-symplectic subspace is spanned by columns of a matrix σ over F2, then the nullity is

expressed by a matrix equation

σTλqσ = 0 (2.1)

where

λq =

q⊕
i=1

λ1 =

 0 id

−id 0


By fixing the form of λq, we also fix a convention for the abelianized Pauli group. The first q

components represents Pauli matrices σx and the second q components σz.

In view of Eq. (2.1), an additive code is a classical linear code with an additional nullity condition.

Calderbank and Shor [38], and Steane [39] (CSS) proposed a solution to this matrix equation of form

σ =

C1 0

0 C2


where CT1 C2 = 0, which we now call CSS code. The history actually goes backwards. CSS first

constructed quantum codes. Later, Calderbank, Rains, Shor, and Sloane [41], and Gottesman [40]

formulated a version with the full matrix equation Eq. (2.1). The matrix σ is called generating

matrix of the code.

We may extend the basis for the null space V spanned by the columns of σ to a canonical basis

B of whole Pauli space P by the Gram-Schmidt process. Another canonical basis C of P is induced

by

{σx ⊗ I ⊗ · · · , I ⊗ σx ⊗ · · · , . . . , σz ⊗ I ⊗ · · · , I ⊗ σz ⊗ · · · }

Two bases are interchanged by a symplectic transformation, and due to Proposition 2.1, such a

symplectic transformation is induced by unitary operators CNOT, Hadamard, and Phase. Under

the basis C, the code space (trivial code) is the common eigenspace of

{σz ⊗ I ⊗ · · · , I ⊗ σz ⊗ · · · }

of eigenvalue +1. If s = dimF2 V ≤ q, then the code space consists of all states of q− s qubits. That

is, the trivial code is

|0〉⊗s ⊗ spanC{|i1 · · · iq−s〉 |ia ∈ F2}.

It is clear that the orthogonal complement V ⊥ with respect to the symplectic form is a direct sum

of V itself and a hyperbolic subspace of P . In conclusion, if there are s independent stabilizers, the
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code space dimension is 2q−s and there are q − s pairs of Pauli operators commuting with every

stabilizer that give rise to a hyperbolic subspace in the symplectic Pauli space. These q − s pairs

of Pauli operators are logical operators. The logical operators are by definition operators that

preserve the code space. If they are Pauli operators, they must belong to V ⊥. Focusing on the

action on the code space by the logical operators, one realizes that different logical operators might

have the same action. Indeed, if U is a logical operator, then US is also a logical operator for any

stabilizer S of the same action on the code space:

US |ψ〉 = U |ψ〉

where |ψ〉 is any code vector. Conversely, if two logical Pauli operators U1 and U2 have the same

action, then U†1U2 have the trivial action so it must be proportional to a stabilizer. Therefore, an

equivalence class of logical Pauli operators precisely corresponds to a coset of V ⊥/V . Sometimes,

stabilizers are called trivial logical operators.

The weight of a Pauli operator is the number of its non-identity tensor factors. Likewise,

the weight of a vector is the number of its nonzero components. A particularly interesting logical

operator is one that corresponds to the minimal weight representative of nonzero elements of V ⊥/V .

This minimal weight is called code distance, minimal distance or just distance for short. The

importance of the code distance in relation to error correcting capability will become clear once we

establish cleaning lemma in the next section.

2.3 Cleaning lemma

Although this thesis mainly discusses additive codes, the content of this section is stated in terms of

subsystem codes. We continue to use the symplectic viewpoint for the Pauli group/space, and the

terms group and space will be used interchangeably.

Let G be an arbitrary subspace of the Pauli space P . We denote by [G] the dimension of G

as a vector space over F2. By Proposition 2.1.1, we have a decomposition G = S ⊕W where S is

null and W is hyperbolic. The orthogonal complement G⊥ consists of S and a hyperbolic subspace

W ′ disjoint from W . Mapping to trivial code, we see that W ′ describes all Pauli operators acting

on some qubits. A subsystem code is a selection of code space given by the states of qubits

acted upon by W ′ [11, 63]. The common eigenspace of S has a nontrivial tensor decomposition

Hgauge ⊗ Hlogical. The Pauli operators acting on Hgauge are represented by W , and those on the

subsystem Hlogical we wish to make use of are represented by W ′. The code space of the subsystem

code is identified with Hlogical. One may think of a subsystem code as a stabilizer code for which

some logical operators are discarded. The group/space S is still called stabilizer group/space. G is
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called gauge group. In this section logical operators only refer to Pauli operators. For subsystem

codes, a bare logical operator is one that belongs to G⊥, and a dressed logical operator is one that

belongs to S⊥. Since logical operators’ action on Hgauge is ignored, the set of all equivalence classes

of bare logical operators is G⊥/S, and the set of all equivalence classes of dressed logical operators

is S⊥/G. It is clear that G⊥/S = W ′ = S⊥/G.

The cleaning lemma for subsystem codes relates the number of independent bare logical operators

supported on a set of qubits M to the number of independent dressed logical operators supported

on the complementary set M c. The concept of the cleaning lemma was introduced in [43], then

generalized in [64] and [65]. Here we use ideas from [64] to prove a version stated in [65]. (See also

[66].)

We use PA to denote the subgroup of the Pauli group P supported on a set A of qubits; likewise

for any subgroup G of the Pauli group GA = G ∩ PA, is the subgroup of G supported on A. We

denote by ΠA : P → PA the restriction map that maps a Pauli operator to its restriction supported

on the set A, and we use |A| to denote the number of qubits contained in A; thus [PA] = 2|A|.

If we divide n qubits into two complementary sets A and B, then a subgroup G of P can be

decomposed into GA, GB , and a “remainder,” as follows:

Lemma 2.3.1. Suppose that A and B are complementary sets of qubits. Then for any subgroup G

of the Pauli group,

G = GA ⊕GB ⊕G′

for some G′, where

[(G⊥)A] = 2|A| − [GA]− [G′],

[(G⊥)B ] = 2|B| − [GB ]− [G′]

Proof. If V is a vector space and W is a subspace of V , then there is a vector space V ′ such that

V = W ⊕ V ′; we may choose V ′ to be the span of the basis vectors that extend a basis for W to a

basis for V . Since GA and GB are disjoint, i.e., GA ∩GB = {0}, GA ⊕GB is a subspace of G, and

thus there exists an auxiliary vector space G′ ≤ G such that

G = GA ⊕GB ⊕G′.

The choice of G′ is not canonical, but we need only its existence. Since the restriction map ΠA

obviously annihilates GB , we may regard it as a map from GA ⊕G′ onto ΠAG. In fact this map is

injective. Note that if ΠAx = 0 for some x ∈ GA ⊕ G′, then since P = PA ⊕ PB it must be that

x ∈ GB . But because the sum is direct, i.e., GB ∩ (GA ⊕ G′) = {0}, it follows that x = 0, which

proves injectivity. Hence ΠA : GA ⊕G′ → ΠAG is an isomorphism. Now, we may calculate (G⊥)A
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by solving a system of linear equations. Noting that x ∈ PA is contained in G⊥ if and only if x

commutes with the restriction to A of each element of G, we see that the number of independent

linear constraints is [ΠAG] = [GA] + [G′]; hence [(G⊥)A] = [PA]− [GA]− [G′] = 2|A| − [GA]− [G′].

Likewise, ΠB : GB ⊕G′ → ΠBG is also an isomorphism, and hence [(G⊥)B ] = [PB ]− [GB ]− [G′] =

2|B| − [GB ]− [G′].

Now we are ready to state and prove the cleaning lemma. For a subsystem code, let gbare(M)

be the number of independent nontrivial bare logical operators supported on M , and let g(M) be

the number of independent nontrivial dressed logical operators supported on M , i.e.,

gbare(M) = [G⊥ ∩ PM/SM ] = [(G⊥)M/SM ],

g(M) = [S⊥ ∩ PM/GM ] = [(S⊥)M/GM ].

Likewise, for a CSS subsystem code, let gXbare(M) be the number of independent nontrivial bare

X-type logical operators supported on M , and let gX(M) be the number of independent nontrivial

dressed X-type logical operators supported on M , i.e.,

gXbare(M) = [(GZ)⊥ ∩ PXM/SXM ],

gX(M) = [(SZ)⊥ ∩ PXM/GXM ],

and similarly for the Z-type logical operators.

Lemma 2.3.2. (Cleaning lemma for subsystem codes) Let k be the number of encoded qubits. For

any subsystem code, we have

gbare(M) + g(M c) = 2k,

where M is any set of qubits and M c is its complement. Moreover, for a CSS subsystem code

gXbare(M) + gZ(M c) = k = gZbare(M) + gX(M c).

Proof. We use Lemma 1 to prove the cleaning lemma by a direct calculation:

gbare(M) = [(G⊥)M/SM ] = 2|M | − [GM ]− [G′]− [SM ],

and

g(M c) = [(S⊥)Mc/GMc ] = 2|M c| − [SMc ]− [S′]− [GMc ].
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Summing, we find

gbare(M) + g(Mc) = 2|M |+ 2|Mc| − ([GM ] + [GMc
] + [G′])− ([SM ] + [SMc

] + [S′])

and invoking Lemma 1 once again,

gbare(M) + g(Mc) = 2n− [G]− [S] = 2k,

which proves the claim for general subsystem codes. For the CSS case, we apply the analogue of

Lemma 1 to the X-type and Z-type Pauli operators, finding

gZbare(M) = [(GX)⊥ ∩ PZM/SZM ] = |M | − [GXM ]− [(GX)′]− [SZM ]

and also

gX(M c) = [(SZ)⊥ ∩ PXMc/GXMc ] = |M c| − [SZMc ]− [(SZ)′]− [GXMc ].

Summing and using Lemma 1 we have

gZbare(M) + gX(M c) = n− [GX ]− [SZ ] = k;

a similar calculation yields

gXbare(M) + gZ(M c) = n− [GZ ]− [SX ] = k,

proving the claim for CSS subsystem codes.

Of course, for a stabilizer code there is no distinction between bare and dressed logical operators;

the statement of the cleaning lemma becomes

g(M) + g(M c) = 2k

for general stabilizer codes, and

gX(M) + gZ(M c) = k

for CSS stabilizer codes.

To understand how the cleaning lemma gets its name, note that it implies that if no bare logical

operator can be supported on the set M then all dressed logical operators can be supported on

its complement M c. That is, any of the code’s dressed logical Pauli operators can be “cleaned

up” by applying elements of the gauge group G. The cleaned operator acts the same way on the
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protected qubits as the original operator (though it might act differently on the gauge qubits), and

acts trivially on M .

We say that a region M is correctable if there are no nontrivial dressed logical operators supported

on M . If M is correctable then g(M) = 0 and thus gbare(M) = 0. The cleaning lemma is then

rephrased as follows.

Lemma 2.3.3. For any subsystem code, if M is a correctable region and x is a dressed logical

operator, then there is a dressed logical operator y supported on M c that is equivalent to x.

Remark 2.2. Given a correctable region M , we have a complete set of logical Pauli operators {ya}

supported on M c. Let U be the unitary transformation that maps the code space to that of the

trivial code of the previous section; U is a composition of elementary symplectic transformations.

Since any error e on M was (trivially) commuting with any ya, it follows that UeU† acts by identity

on the logical qubits of the trivial code. Replacing the non-logical qubits with fresh qubits and

applying U†, we can map the damaged code vector to its original state. In conclusion, any error on

the correctable region can be corrected. The code distance is the upper bound on the number of

qubits in any correctable regions.

A more general error correcting criterion can be found in [61, Chapter 15].

2.4 Operator trade-off for local subsystem codes

In this section we consider local subsystem codes with qubits residing at the sites of a D-dimensional

hypercubic lattice Λ. The code has interaction range w, meaning that the generators of the gauge

group G can be chosen so that each generator has support on a hypercube containing wD sites.

Definition 2.1. Given a set of gauge generators for a subsystem code, and a set of qubits M , let M ′

denote the support of all the gauge generators that act nontrivially on M . The external boundary

of M is ∂+M = M ′ ∩M c, where M c is the complement of M , and the internal boundary of M

is ∂−M = (M c)
′ ∩M . The boundary of M is ∂M = ∂+M ∪ ∂−M , and the interior of M is

M◦ = M \ ∂−M .

Recall that a region (i.e., a set of qubits) M is said to be correctable if no nontrivial dressed

logical operation is supported on M , in which case erasure of M can be corrected. Since the code

distance d is defined as the minimum weight of a dressed logical operator, M is certainly correctable

if |M | < d. But in fact much larger regions are also correctable, as follows from this lemma:

Lemma 2.4.1. For a local subsystem code, if M and A are both correctable, where A contains ∂M ,

then M ∪A is correctable.
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Proof. Given a subsystem code C with gauge group G, we may define a subsystem code CMc on M c

with gauge group ΠMcG, where ΠMc maps a Pauli operator to its restriction supported on M c. We

note that a Pauli operator x supported on M c is a bare logical operator for C if and only if x is a

bare logical operator for CMc ; that is, x commutes with all elements of G if and only if it commutes

with all elements of the restriction of G to M c.

Furthermore, if x is a dressed logical operator for CMc supported on ∂+M , then x can be extended

to a dressed logical operator x̄ for C supported on ∂M . Indeed, suppose x = yz, where y is a bare

logical operator for CMc (and hence also a bare logical operator for C supported on M c), while z

is an element of the gauge group ΠMcG of CMc . Then z can be written as a product z =
∏
i gi of

generators of ΠMcG, each of which can be expressed as gi = ΠMc ḡi, where ḡi is a generator of G

supported on M c ∪ ∂−M . Thus x̄ = y
∏
i ḡi is a dressed logical operator for C supported on ∂M .

It follows that if ∂M is correctable for the code C (i.e., code C has no nontrivial dressed logical

operators supported on ∂M), then ∂+M is correctable for the code CMc (CMc has no nontrivial

dressed logical operators supported on ∂+M). By similar logic, if A is correctable for C and contains

∂M , then A ∩M c is correctable for CMc .

Suppose now that the code C has k encoded qubits and that M is correctable, i.e., g(C)(M) = 0.

Therefore, applying Lemma 2.3.2 to the code C, g(C)
bare(M c) = 2k. Suppose further that the set A

containing ∂M is correctable for C, implying that A∩M c is correctable for CMc , i.e., g(CMc )(A∩M c) =

0. Then applying Lemma 2.3.2 to the code CMc , we conclude that g
(CMc )
bare (M c \A) = 2k. Since each

bare logical operator for CMc , supported on M c \A, is also a bare logical operator for C, supported

on M c \A, we can now apply Lemma 2.3.2 once again to the code C, using the partition into M c \A

and M ∪A, finding g(C)(M ∪A) = 0. Thus M ∪A is correctable.

If the interaction range is w, and M is a correctable hypercube with linear size l−2(w−1), then

we may choose A ⊇ ∂M so that M ∪ A is a hypercube with linear size l and M \ A is a hypercube

with linear size l − 4(w − 1). Then A contains

|A| = lD − [l − 4(w − 1)]
D ≤ 4(w − 1)DlD−1

qubits, and A is surely correctable provided |A| < d, where d is the code distance. Suppose that

d > 1, so a single site is correctable. Applying Lemma 2.4.1 repeatedly, we can build up larger and

larger correctable hypercubes, with linear size 1 + 2(w − 1), 1 + 4(w − 1), 1 + 6(w − 1), . . . . This

process continues as long as |A| < d. We conclude:

Lemma 2.4.2. For a D-dimensional local subsystem code with interaction range w > 1 and distance

d > 1, a hypercube with linear size l is correctable if

4(w − 1)DlD−1 < d. (2.2)
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Thus (roughly speaking) for the hypercube to be correctable it suffices for its [2(w − 1)]-thickened

boundary, rather than its volume, to be smaller than the code distance. Bravyi [65] calls this property

“the holographic principle for error correction,” because the absence of information encoded at the

boundary of a region ensures that no information is encoded in the “bulk.”

For local stabilizer codes, the criterion for correctability is slightly weaker than for local subsystem

codes. We say that a local stabilizer code has interaction range w if each stabilizer generator

has support on a hypercube containing wD sites. For this case, we can improve the criterion for

correctability of a hypercube, found for local subsystem codes in Lemma 2.4.2.

Lemma 2.4.3. For a local stabilizer code, suppose that ∂+M , A, and M \ A are all correctable,

where ∂−M ⊆ A ⊆M . Then M is also correctable.

Proof. Suppose, contrary to the claim, that there is a nontrivial logical operator x supported on M .

Then, because A is correctable, Lemma 2.3.3 implies that there is a stabilizer generator y such that

xy acts trivially on A. Furthermore, y can be expressed as a product of local stabilizer generators,

each supported on M ′ = M ∪ ∂+M . Thus xy is a product of two factors, one supported on M \ A

and the other supported on ∂+M . Because ∂−M ⊆ A, no local stabilizer generator acts nontrivially

on both M \ A and ∂+M ; therefore, each factor commutes with all stabilizer generators and hence

is a logical operator. Because M \ A and ∂+M are both correctable, each factor is a trivial logical

operator and therefore xy is also trivial. It follows that x is trivial, a contradiction.

Now, if the interaction range is w and M is a hypercube with linear size l, we choose A so

that M \ A is a hypercube with linear size l − 2(w − 1), and we notice that ∂+M is contained in a

hypercube with linear size l + 2(w − 1). Thus both M \A and ∂+M are correctable provided that

|∂+M | ≤ [l + 2(w − 1)]
D − lD

≤ 2(w − 1)D [l + 2(w − 1)]
D−1

< d.

Reasoning as in the proof of Lemma 2.4.2, we conclude that:

Lemma 2.4.4. For a D-dimensional local stabilizer code with interaction range w > 1 and distance

d > 1, a hypercube with linear size l is correctable if

2(w − 1)D [l + 2(w − 1)]
D−1

< d. (2.3)

To ensure that the hypercube M is correctable, it suffices for its (w− 1)-thickened boundary, rather

than its [2(w − 1)]-thickened boundary, to be smaller than the code distance.

Now we are ready to prove our first trade-off theorem.
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Figure 2.1: Lattice covering used in the proof of Theorem 1, shown in two dimensions. Each gray
square is l × l and the white gap between squares has width w − 1. The solid blue curve represents
the support of a nontrivial logical operator; because the square Mi is correctable, this square can
be “cleaned.” We can find an equivalent logical operator supported on M c

i , the complement of Mi.
When all squares are cleaned, the logical operator is supported on the narrow strips between the
squares.

Theorem 2.1. (Trade-off theorem for subsystem codes) For a local subsystem code in D ≥ 2

dimensions with interaction range w > 1 and distance d � w, defined on a hypercubic lattice with

linear size L, every dressed logical operator is equivalent to an operator with weight d̃ satisfying

d̃d1/(D−1) < cLD, (2.4)

where c is a constant depending on w and D.

Proof. As shown in Fig. 2.1, we fill the lattice with hypercubes, separated by distance w − 1, such

that each hypercube has linear size l satisfying Eq. (2.2). (By “distance” we mean the number of sites

in between — e.g., we say that adjacent sites are “distance zero” apart.) Thus no gauge generator

acts nontrivially on more than one hypercube, and each hypercube is correctable by Lemma 2.4.2.

Consider any nontrivial dressed logical operator x, and label the hypercubes {M1,M2,M3, . . . }. By

Lemma 3 there exists a gauge operator yi that “cleans” the logical operator in the hypercube Mi,

i.e., such that xyi acts trivially in Mi. Furthermore, since no gauge generator acts nontrivially on

more than one hypercube, we can choose yi so that it acts trivially in all other hypercubes. Taking

the product of all the yi’s we construct a gauge operator that cleans all hypercubes simultaneously;

thus x̃ = x
∏
i yi is equivalent to x and supported on the complement of the union of hypercubes

M = ∪iMi. Therefore, the weight d̃ of x̃ is upper bounded by |M c|.

The lattice is covered by hypercubes of linear size l + (w − 1), each centered about one of the

Mi’s. There are LD/ [l + (w − 1)]
D

such hypercubes in this union, each containing no more than

[l + (w − 1)]
D − lD ≤ (w − 1)D [l + (w − 1)]

D−1
elements of M c. Thus

d̃ ≤ |M c| ≤ (w − 1)D [l + (w − 1)]
D−1 LD

[l + (w − 1)]
D

=
(w − 1)D

l + (w − 1)
LD.
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We optimize this upper bound on d̃ by choosing l to be the largest integer such that a hypercube

with linear size l is known to be correctable, i.e., satisfying

l <

(
d

4(w − 1)D

)1/(D−1)

,

thus obtaining Eq. (2.4). Note that Eq. (2.4) is trivial if d is a constant independent of L, since the

weight d̃ cannot be larger than LD.
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Chapter 3

Algebraic formulation for
translationally invariant codes

If an additive code is defined on a lattice with periodic boundary conditions by a translationally

invariant set {gi} of local generators, then we can define a code Hamiltonian

H = −
∑
i

gi

whose ground space is identified with the code space. Prototypical is the toric code model [3].

If the stabilizer generators are given as translations of a finite collection of Pauli operators, we

have a family of code Hamiltonians parameterized by the system size or boundary conditions. In

this chapter we present a framework to study such translationally invariant code Hamiltonians.

We will be particularly interested in the phases of matter represented by the code Hamiltonians.

Hence, we should allow local unitary transformations and deformation of Hamiltonians as long as

the deformation does not close the energy gap between the ground and first excited state, and we

study properties of Hamiltonians that are invariant under these transformations.

If one does not make use of the translation structure, but insists on the use of usual symplectic

vector space description, then one should deal with infinitely many qubits and the generating matrix

of infinite size. However, the translation symmetry tells us that there is only a finite amount of data

describing the family of code Hamiltonians. It is certainly uneconomical to study a general infinite

matrix. We must look for a succinct description. The starting observation is that translation

symmetry is mostly well expressed with the group algebra of the underlying translation group.

Fortunately, the lattice is an abelian group isomorphic to ZD for some D ≥ 1; the group algebra

is a commutative ring, or actually, a Laurent polynomial ring. We will see that, inasmuch as the

additive codes are described by null spaces in symplectic vector spaces, the translation-invariant code

Hamiltonians have corresponding algebraic descriptions by certain submodules of finitely generated

free modules.
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We build an effective dictionary between lattice codes and commutative algebra in Section 3.1.1.

The equivalence of phases of matter is re-expressed in an algebraic form in Section 3.2. Perhaps

the most important entry in this dictionary is that the topological order condition can be expressed

by the vanishing homology of a certain chain complex, presented in Section 3.3. As we will see in

the next chapter, the physical dimension is essentially the length of the chain complex, which is a

reminiscence of Hilbert syzygy theorem. The ground-state subspace can be analyzed by studying an

algebraic set defined by the chain complex. In particular, the degeneracy, or the number of encoded

qubits, can be approximated by counting points in the algebraic set, for which some bounds are given

in Section 3.4. The last section 3.5 introduces fractal operators and establishes a precise algebraic

description of topological charges in connection to the fractal operators. Our discussion assumes

some familiarity with commutative algebra. In Appendix A, we include basic materials relevant to

analysis of codes.

Note that in the classical coding theory the use of multivariate polynomial in multidimensional

cyclic codes at least dates back to Imai [67]. Imai realized the importance of zero-locus of defining

polynomials of the code, which had been emphasized in the one-dimensional cyclic code [68]. See also

[69, 70] and references therein. In the classical coding theory, each lattice sites carries one bit {0, 1},

whereas in our quantum codes each lattice sites may have several qubits. For this generalization

we use modules instead of ideals. Moreover, quantum additive codes require the nullity equation

σTλσ = 0. (See Section 2.2.) We decompose this equation into two parts ε = σTλ and σ, and view

them as connecting maps of a chain complex G
σ−→ P

ε−→ E. The chain complex is relevant only to

quantum codes.

We will treat code Hamiltonians on sets of qubits, two-dimensional (two-level) local Hilbert

spaces. However, our language naturally allows an extension to prime-dimensional qudits. This is

because we only use the fact that the set of coefficients F2 is a field. The generalization is achieved

simply by replacing the ground field F2 with Fp for any prime number p.

3.1 Algebraic structure of code Hamiltonians

3.1.1 Pauli space on a group

Let Λ be the index set of all qubits, and suppose now that Λ itself is an abelian group. There

is a natural action of Λ on the Pauli group modulo phase factors induced from the group action

of Λ on itself by multiplication. For example, if Λ = Z, the action of Λ is the translation on the

one-dimensional chain of qubits. If R = F2[Λ] is the group algebra with the multiplicative identity

denoted by 1, the Pauli group modulo phase factors acquires a structure of an R-module. We shall

call it the Pauli module. The Pauli module is free and has rank 2.

Let r 7→ r̄ be the antipode map of R, i.e., the F2-linear map into itself such that each group
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F2 binary field {0, 1}
D spatial dimension
R F2[x1, x

−1
1 , . . . , xD, x

−1
D ]

bL ideal (xL1 − 1, . . . , xLD − 1)
q number of qubits per site
t number of interaction types
G free R-module of the interaction labels (rank t)
P free R-module of Pauli operators (rank 2q)
E free R-module of excitations (rank t)
σ G→ P , generating matrix or map for the stabilizer module
ε P → E, generating matrix or map for excitations

r 7→ r̄ antipode map of the group algebra R.
† transpose followed by antipode map

λq anti-symmetric 2q × 2q matrix

(
0 id
−id 0

)
Table 3.1: Reserved symbols in Chapter 3. Any ring in this thesis is commutative with 1.

element is mapped to its inverse. Since Λ is abelian, the antipode map is an algebra-automorphism.

Let the coefficient of a ∈ R at g ∈ Λ be denoted by ag. Hence, a =
∑
g∈Λ agg for any a ∈ R. One

may write ag = (aḡ)1.

Define

tr(a) = a1

for any a ∈ R.

Proposition 3.1.1 ([41]). Let (a, b), (c, d) ∈ R2 be two vectors representing Pauli operators O1, O2

up to phase factors:

O1 =

⊗
g∈Λ

(σ(g)
x )ag

⊗
g∈Λ

(σ(g)
z )bg

 ,

O2 =

⊗
g∈Λ

(σ(g)
x )cg

⊗
g∈Λ

(σ(g)
z )dg


where σ(g) denotes the single-qubit Pauli operator at g ∈ Λ. Then, O1 and O2 commute if and only

if

tr

(ā b̄
) 0 1

−1 0

c
d

 = 0.

Proof. The commutation value of (σ
(g)
x )n(σ

(g)
z )m and (σ

(g)
x )n

′
(σ

(g)
z )m

′
is nm′ −mn′ ∈ F2. Viewed

as pairs of group algebra elements, (σ
(g)
x )n(σ

(g)
z )m and (σ

(g)
x )n

′
(σ

(g)
z )m

′
are (ng,mg) and (n′g,m′g),
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respectively. We see that

nm′ −mn′ = tr

(ng−1 mg−1
) 0 1

−1 0

n′g

m′g

 .

Since any Pauli operator is a finite product of these, the result follows by linearity.

We wish to characterize a F2-subspace S of the Pauli module invariant under the action of Λ,

i.e., a submodule, on which the commutation value is always zero. As we will see in the next

subsection, this particular subspace yields a local Hamiltonian whose energy spectrum is exactly

solvable, which is the main object of this thesis. Let (a, b) be an element of S ⊆ R2 = (F2[Λ])2. For

any r ∈ R, (ra, rb) must be a member of S. Demanding that the symplectic form on S vanish, by

Proposition 3.1.1 we have

tr(rab̄− rbā) = 0.

Since r was arbitrary, we must have ab̄ − bā = 0.1 Let us denote
(
ā b̄

)
as

a
b

†, and write any

element of R2 as a 2 × 1 matrix. We conclude that S is a submodule of R2 over R generated by

s1, . . . , st such that any commutation value always vanishes, if and only if

s†iλ1sj = 0

for all i, j = 1, . . . , t.

The requirement that Λ be a group might be too restrictive. One may have a coarse group

structure on Λ, the index set of all qubits. We consider the case that the index set is a product

of a finite set and a group. By abuse of notation, we still write Λ to denote the group part, and

insist that to each group element are associated q qubits (q ≥ 1). Thus obtained Pauli module

should now be identified with R2q, where R = F2[Λ] is the group algebra that encodes the notion

of translation. We write an element v of R2q by a 2q × 1 matrix, and denote by v† the transpose

matrix of v whose each entry is applied by the antipode map. We always order the entries of v such

that the upper q entries describes the σx-part and the lower the σz-part. Since the commutation

value on R2q is the sum of commutation values on R2, we have the following: If S is a submodule

of R2q over R generated by s1, . . . , st, the commutation value always vanishes on S, if and only if

for all i, j = 1, . . . , t

s†iλqsj = 0

where λq =

 0 idq

−idq 0

 is a 2q × 2q matrix.

1A symmetric bilinear form 〈r, s〉 = tr(rs̄) on R is nondegenerate.
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Let us summarize our discussion so far.

Proposition 3.1.2. On a set of qubits Λ× {1, . . . , q} where Λ is an abelian group, the group of all

Pauli operators of finite support up to phase factors, form a free module P = R2q over the group

algebra R = F2[Λ]. The commutation value

〈a, b〉 = tr(a†λqb)

for a, b ∈ P is zero if and only if the Pauli operators corresponding to a and b commute. If σ is a

2q× t matrix whose columns generate a submodule S ⊆ P , then the commutation value on S always

vanishes if and only if

σ†λqσ = 0.

Proposition 3.1.1 [41] is a special case of Proposition 3.1.2 when Λ is a trivial group. When

Λ ∼= Z, a similar equation appears in quantum convolutional codes [71].

3.1.2 Local Hamiltonians on groups

Recall that we place q qubits on each site of Λ. The total system of the qubits is Λ× {1, . . . , q}.

Definition 3.1. Let

H = −
∑
g∈Λ

h1,g + · · ·+ ht,g

be a local Hamiltonian consisted of Pauli operators that is (i)commuting, (ii) translation-invariant

up to signs, and (iii) frustration-free. We call H a code Hamiltonian (also known as stabilizer

Hamiltonian). The stabilizer module of H is the submodule of the Pauli module P generated

by the images of h1, . . . , ht in P . The number of interaction types is t.

The energy spectrum of the code Hamiltonian is trivial; it is discrete and equally spaced.

Example 3.1. One-dimensional Ising model is the Hamiltonian

H = −
∑
i∈Z

σ(i)
z ⊗ σ(i+1)

z .

The lattice is the additive group Z, and the group algebra is R = F2[x, x̄]. The Pauli module is R2

and the stabilizer module S is generated by  0

1 + x

 .
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One can view this as the matrix σ of Proposition 3.1.2. H is commuting; σ†λ1σ = 0. ♦

3.1.3 Excitations

For a code Hamiltonian H, an excited state is described by the terms in the Hamiltonian that have

eigenvalues −1. Each of the flipped terms is interpreted as an excitation. Although the actual set

of all possible configurations of excitations that are obtained by applying some operator to a ground

state, may be quite restricted, it shall be convenient to think of a larger set. Let E be the set of all

configurations of finite number of excitations without asking physical relevance. Since an excitation

is by definition a flipped term in H, the set E is equal to the collection of all finite sets consisted of

the terms in H.

If Pauli operators U1, U2 acting on a ground state creates excitations e1, e2 ∈ E, their product

U1U2 creates excitations (e1 ∪ e2) \ (e1 ∩ e2). Here, we had to remove the intersection because each

excitation is its own annihilator; any term in the H squares to the identity. Exploiting this fact, we

make E into a vector space over F2. Namely, we take formal linear combinations of terms in H with

the coefficient 1 ∈ F2 when the terms has −1 eigenvalue, and the coefficient 0 ∈ F2 when the term

has +1 eigenvalue. The symmetric difference is now expressed as the sum of two vectors e1 + e2

over F2. In view of Pauli group as a vector space, U1U2 is the sum of the two vectors v1 + v2 that,

respectively, represent U1 and U2. Therefore, the association Ui 7→ ei induces a linear map from the

Pauli space to the space of virtual excitations E.

The set of all excited states obeys the translation invariance as the code Hamiltonian H does.

So, E is a module over the group algebra R = F2[Λ]. The association Ui 7→ ei clearly respects this

translation structure. Our discussion is summarized by saying that the excitations are described by

an R-linear map

ε : P → E

from the Pauli module P to the module of virtual excitations E.

As the excitation module is the collection of all finite sets of the terms in H, we can speak of the

module of generator labels G, which is equal to E as an R-module. G is a free module of rank

t if there are t types of interaction. The matrix σ introduced in Section 3.1.1 can be viewed as

σ : G→ P

from the module of generator labels to the Pauli module.

Proposition 3.1.3. If σ is the generating map for the stabilizer module of a code Hamiltonian, then

ε = σ†λq.
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The matrix ε can be viewed as a generalization of the parity check matrix of the standard theory

of classical or quantum error correcting codes [68, 38, 39, 40], when a translation structure is given.

Proof. This is a simple corollary of Proposition 3.1.2. Let hi,g be the terms in the Hamiltonian

where i = 1, . . . , t, and g ∈ Λ. In the Pauli module, they are expressed as ghi where hi is the i-th

column of σ. For any u ∈ P , let ε(u)i be the i-th component of ε(u). By definition,

ε(u)i =
∑
g∈Λ

g tr
(
(ghi)

†λqu
)

=
∑
g∈Λ

g tr
(
ḡh†iλqu

)
= h†iλqu

Thus, h†iλq is the i-th row of ε.

Remark 3.1. The commutativity condition in Proposition 3.1.2 of the code Hamiltonian is recast

into the condition that

G
σ−→ P

ε−→ E

be a complex, i.e., ε ◦ σ = 0. Equivalently,

imσ ⊆ (imσ)⊥ = ker ε

where ⊥ is with respect to the symplectic form.

3.2 Equivalent Hamiltonians

The stabilizer module entirely determines the physical phase of the code Hamiltonian in the following

sense.

Proposition 3.2.1. Let H and H ′ be code Hamiltonians on a system of qubits, and suppose their

stabilizer modules are the same. Then, there exists a unitary

U =
⊗
g∈Λ

Ug

mapping the ground space of H onto that of H ′. Moreover, there exist a continuous one-parameter

family of gapped Hamiltonians connecting UHU† and H ′.

Proof. Let {pα} be a maximal set of F2-linearly independent Pauli operators of finite support that

generates the common stabilizer module S. {pα} is not necessarily translation-invariant. Any ground

state |ψ〉 of H is a common eigenspace of {pα} with eigenvalues pα |ψ〉 = eα |ψ〉, eα = ±1. Similarly,

the ground space of H ′ gives the eigenvalues e′α = ±1 for each pα.

The abelian group generated by {pα} is precisely the vector space S, and the assignment pα 7→ eα

defines a dual vector on S. If U is a Pauli operator of possibly infinite support, then pαU |ψ〉 =
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e′′αeαU |ψ〉 for some e′′α = ±1, where e′′α is determined by the commutation relation between U and

pα. Thus, the first statement follows if we can find U such that the commutation value between

U and pα is precisely e′′α. This is always possible since the dual space of the vector space P is

isomorphic to the direct product
∏

Λ×{1,...,q} F2
2, which is vector space isomorphic to the Pauli group

of arbitrary support up to phase factors.2

Now, UHU† and H ′ have the same eigenspaces, and in particular, the same ground space.

Consider a continuous family of Hamiltonians

H(u, u′) = uUHU† + u′H ′

where u, u′ ∈ R. It is clear that

H = H(1, 0)→ H(1, 1)→ H(0, 1) = H ′

is a desired path.

The criterion of Proposition 3.2.1 to classify the physical phases is too narrow. Physically mean-

ingful universal properties should be invariant under simple and local changes of the system. More

concretely,

Definition 3.2. Two code Hamiltonians H and H ′ are equivalent if their stabilizer modules

become the same under a finite composition of symplectic transformations, coarse-graining, and

tensoring ancillas.

We shall define the symplectic transformations, the coarse-graining, and the tensoring ancillas

shortly.

3.2.1 Symplectic transformations

Definition 3.3. A symplectic transformation T is an automorphism of the Pauli module induced

by a unitary operator on the system of qubits such that

T †λqT = λq

where † is the transposition followed by the entry-wise antipode map.

When the translation group is trivial these transformations are given by so-called Clifford op-

erators. Compare Section 2.2 and see [61, Chapter 15].

2If V is a finite dimensional vector space over some field, the dual vector space of
⊕

I V is isomorphic to
∏

I V
where I is an arbitrary index set.
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Only the unitary operator on the physical Hilbert space that respects the translation can induce

a symplectic transformation. By definition, a symplectic transformation maps each local Pauli

operator to a local Pauli operator, and preserves the commutation value for any pair of Pauli

operators.

Proposition 3.2.2. Any two unitary operators U1, U2 that induce the same symplectic transforma-

tion differ by a Pauli operator (of possibly infinite support).

If the translation group is trivial, the proposition reduces to Theorem 15.6 of [61]

Proof. The symplectic transformation induced by U = U†1U2 is the identity. Hence, U maps each

single-qubit Pauli operator σ
(g,i)
x,z to ±σ(g,i)

x,z . By the argument as in the proof of Proposition 3.2.1,

there exists a Pauli operator O of possibly infinite support that acts the same as U on the system

of qubits. Since Pauli operators form a basis of the operator algebra of qubits, we have O = U .

The effect of a symplectic transformation on the generating map σ is a matrix multiplication on

the left.

σ → Uσ

For example, the following is induced by uniform Hadamard, controlled-Phase, and controlled-NOT

gates. For notational clarity, define Ei,j(a) (i 6= j) as the row-addition elementary 2q × 2q matrix

[Ei,j(a)]µν = δµν + δµiδνja

where δµν is the Kronecker delta and a ∈ R = F2[Λ]. Recall that we order the components of P

such that the first half components are for σx-part, and the second half components are for σz-part.

Definition 3.4. The following are elementary symplectic transformations:

• (Hadamard) Ei,i+q(−1)Ei+q,i(1)Ei,i+q(−1) where 1 ≤ i ≤ q,

• (controlled-Phase) Ei+q,i(f) where f = f̄ and 1 ≤ i ≤ q,

• (controlled-NOT) Ei,j(a)Ej+q,i+q(−ā) where 1 ≤ i 6= j ≤ q.

For the case of a trivial translation group, these transformations explicitly appear in [41] and [61,

Chapter 15]. The one-dimensional case appears in the context of quantum convolutional codes [72].

Recall that the Hadamard gate is a unitary transformation on a qubit given by

UH =
1√
2

1 1

1 −1
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with respect to basis {|0〉 , |1〉}. At operator level,

UHXU
†
H = Z, UHZU

†
H = X

where X and Z are the Pauli matrices σx and σz, respectively. Thus, the application of Hadamard

gate on every i-th qubit of each site of Λ swaps the corresponding X and Z components of P .

The controlled phase gate is a two-qubit unitary operator whose matrix is

UP =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


with respect to basis {|00〉 , |01〉 , |10〉 , |11〉}. At operator level,

UP (X ⊗ I)U†P = X ⊗ Z, UP (Z ⊗ I)U†P = Z ⊗ I,

UP (I ⊗X)U†P = Z ⊗X, UP (I ⊗ Z)U†P = I ⊗ Z.

Note that since UP is diagonal, any two UP on different pairs of qubits commute. Let (g, i) denote

the i-th qubit at g ∈ Λ. The uniform application

U (i)
g =

∏
h∈Λ

UP ((h, i), (h+ g, i))

of UP throughout the lattice Λ such that each UP ((h, i), (h + g, i)) acts on the pair of qubits (h, i)

and (h+ g, i) is well-defined. From the operator level calculation of UP , we see that U
(i)
g induces

P 3 (. . . , xi, . . . , zi, . . .) 7→ (. . . , xi, . . . , zi + (g + ḡ)xi, . . .) ∈ P

on the Pauli module, which is represented as Ei+q,i(g + ḡ). The composition

U (i)
g1 U

(i)
g2 · · ·U

(i)
gn

of finitely many controlled-Phase gates U
(i)
g with different g is represented as Ei+q,i(f) where f =

f̄ =
∑n
k=1 gk + ḡk. The single-qubit phase gate

1 0

0 i
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maps X ↔ Y and Z 7→ Z. On the Pauli module P , it is

P 3 (. . . , xi, . . . , zi, . . .)
T 7→ (. . . , xi, . . . , zi + xi, . . .)

T ∈ P.

which is Ei+q,i(1). Note that any f ∈ R such that f = f̄ is always of form f =
∑
gk + ḡk or

f = 1 +
∑
gk + ḡk where gk are monomials. Thus, the Phase gate and the controlled-Phase gate

induce transformations Ei+q,i(f) where f = f̄ .

The controlled-NOT gate is a two-qubit unitary operator whose matrix is

UN =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


with respect to basis {|00〉 , |01〉 , |10〉 , |11〉}. That is, it flips the target qubit conditioned on the

control qubit. At operator level,

UN (X ⊗ I)U†N = X ⊗X, UN (Z ⊗ I)U†N = Z ⊗ I,

UN (I ⊗X)U†N = I ⊗X, UN (I ⊗ Z)U†N = Z ⊗ Z.

If i < j, the uniform application

U (i,j)
g =

⊗
h∈Λ

UP ((h, i), (h+ g, j))

such that each UN ((h, i), (h+ g, j)) acts on the pair of qubits (h, i) and (h+ g, j) with one at (h, i)

being the control induces

P 3(. . . , xi, . . . , xj , . . . , zi, . . . , zj , . . .)
T

7→ (. . . , xi, . . . , xj + gxi, . . . , zi + ḡzj , . . . , zj , . . .)
T ∈ P.

Thus, any finite composition of controlled-NOT gates with various g is of form Ei,j(a)Ej+q,i+q(ā). It

might be useful to note that the controlled-NOT and the Hadamard combined, induces a symplectic

transformation

• (controlled-NOT-Hadamard) Ei+q,j(a)Ej+q,i(ā) where a ∈ R and 1 ≤ i 6= j ≤ q.

Remark that an arbitrary row operation on the upper q components can be compensated by a

suitable row operation on the lower q components so as to be a symplectic transformation.
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3.2.2 Coarse-graining

Not all unitary operators conform with the lattice translation. In Example 3.1 the lattice translation

has period 1. Then, for example, the Hadamard gate on every second qubit does not respect this

translation structure; it only respects a coarse version of the original translation. We need to shrink

the translation group to treat such unitary operators.

Let Λ be the original translation group of the lattice with q qubits per site, and Λ′ be its subgroup

of finite index: |Λ/Λ′| = c <∞. The total set of qubits Λ× {1, . . . , q} is set-theoretically the same

as Λ′ × {1, . . . , c} × {1, . . . , q} = Λ′ × {1, . . . , cq}. We take Λ′ as our new translation group under

coarse-graining. The Pauli group modulo phase factors remains the same as a F2-vector space for it

depends only on the total index set of qubits. We shall say that the system is coarse-grained by

R′ = F2[Λ′] if we restrict the scalar ring R to R′ for all modules pertaining to the system.

For example, suppose Λ = Z2, so the original base ring is R = F2[x, y, x̄, ȳ]. If we coarse-grain by

R′ = F2[x′, y′, x̄′, ȳ′] where x′ = x2, y′ = y2, we are taking the sites 1, x, y, xy of the original lattice

as a single new site.

Abstractly, the original translation group algebra R is a finitely generated free module over the

coarse translation group algebra R′. Thus, the coarse-graining can be regarded as an exact functor

from the category of R-modules to the category of R′-modules.

The one-dimensional case appears in the context of quantum convolutional codes [73].

3.2.3 Tensoring ancillas

We have considered possible transformations on the stabilizer modules of code Hamiltonians, and

kept the underlying index set of qubits invariant. It is quite natural to allow tensoring ancilla qubits

in trivial states. In terms of the stabilizer module S ⊆ P = R2q, it amounts to embed S into the

larger module R2q′ where q′ > q. Concretely, let σ =

σX
σZ

 be the generating matrix of S as in

Proposition 3.1.2. By tensoring ancilla, we embed S as

σX
σZ

→

σX 0

0 0

σZ 0

0 1

 .

This amounts to taking the direct sum of the original complex

G
σ−→ P

ε−→ E
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and the trivial complex

0→ R

0

1


−−−→ R2

(
1 0

)
−−−−−−→ R→ 0

to form

G⊕R −→ P ⊕R2 −→ E ⊕R.

3.3 Topological order

From now on we assume that Λ is isomorphic to ZD as an additive group. D shall be called the

spatial dimension of Λ.

Definition 3.5. Let σ : G → P be the generating map for the stabilizer module of a code Hamil-

tonian H. We say H is exact if (imσ)⊥ = imσ, or equivalently

G
σ−→ P

ε=σ†λq−−−−−→ E

is exact, i.e., ker ε = imσ.

It follows that the exactness condition is a property of the equivalence class of code Hamiltonians

in the sense of Definition 3.2.

By imposing periodic boundary conditions, a translation-invariant Hamiltonian yields a family of

Hamiltonians {H(L)} defined on a finite system consisted of LD sites. One might be concerned that

some H(L) would be frustrated. We intentionally exclude such a situation. The frustration might

indeed occur, but it can easily be resolved by choosing the signs of terms in the Hamiltonian. In

this way, one might lose the translation invariance in a strict sense. However, we retain the physical

phase regardless of the sign choice because different sign choices are related by a Pauli operator

acting on the whole system which is a product unitary operator. Hence, the entanglement property

of the ground state and the all properties of excitations do not change.

Definition 3.6. Let H(L) be Hamiltonians on a finite system of linear size L in D-dimensional

physical space, and ΠL be the corresponding ground space projector. H(L) is called topologically

ordered if for any O supported inside a hypercube of size (L/2)D one has

ΠLOΠL ∝ ΠL. (3.1)

This means that no local operator is capable of distinguishing different ground states. This

condition is trivially satisfied if H(L) has a unique ground state. A technical condition that is used
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in the proof of the stability of topological order against small perturbations is the following ‘local

topological order’ condition [74, 6, 75]. We say a diamond region A(r) of radius r at o ∈ ZD for

the set

A(r)o =

{
(i1, . . . , iD) + o ∈ ZD

∣∣∣∣∣∑
µ

|iµ| ≤ r

}
.

Definition 3.7. Let H(L) be code Hamiltonians on a finite system of linear size L in D-dimensional

physical space. For any diamond region A = A(r) of radius r, let ΠA be the projector onto the

common eigenspace of the most negative eigenvalues of terms in the Hamiltonian H(L) that are

supported in A. For b > 0, denote by Ab the distance b neighborhood of A. H(L) is called locally

topologically ordered if there exists a constant b > 0 such that for any operator O supported on

a diamond region A of radius r < L/2 one has

ΠAbOΠAb ∝ ΠAb . (3.2)

Since any operator is a C-linear combination of Pauli operators, if Eq. (3.1),(3.2) are satisfied

for Pauli operators, then the (local) topological order condition follows. If a Pauli operator O is

anticommuting with a term in a code Hamiltonian H(L), The left-hand side of Eq. (3.1),(3.2) are

identically zero. In this case, there is nothing to be checked. If O acting on A is commuting with

every term in H(L) supported inside Ab, Eq. (3.1) demands that it act as identity on the ground

space, i.e., O must be a product of terms in H(L) up to ±i,±1. Eq. (3.2) further demands that O

must be a product of terms in H(L) supported inside Ab up to ±i,±1.

Lemma 3.3.1. A code Hamiltonian H is exact if and only if H(L) is locally topologically ordered

for all sufficiently large L.

In order to see this, it will be important to use Laurent polynomials to express elements of the

group algebra R = F2[ZD] ∼= F2[x1, x
−1
1 , . . . , xD, x

−1
D ]. The reader might want to see [67, 70] for

classical multidimensional cyclic codes. For example,

xy2z2 + xy−1 ⇐⇒ 1(1, 2, 2) + 1(1,−1, 0).

The sum of the absolute values of exponents of a monomial will be referred to as absolute degree.

The absolute degree of a Laurent polynomial is defined to be the maximum absolute degree of its

terms. The degree measures the distance or size in the lattice.

The Laurent polynomial viewpoint enables us to apply Gröbner basis techniques. The long

division algorithm for polynomials in one variable yields an effective and efficient test whether a

given polynomial is divisible by another. When two or more but finitely many variables are involved,
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a more general question is how to test whether a given polynomial is a member of an ideal. For

instance, f = xy− 1 is a member of an ideal J = (x− 1, y− 1) because xy− 1 = y(x− 1) + (y− 1).

But, g = xy is not a member of J because g = y(x− 1) + (y − 1) + 1 and the ‘remainder’ 1 cannot

be removed. Here, the first term is obtained by looking at the initial term xy of f and comparing

with the initial terms x and y of the generators of J . While one tries to eliminate the initial term

of f and to eventually reach zero, if one cannot reach zero as for g, then the membership question

is answered negatively.

Systematically, an well-ordering on the monomials, i.e., a term order, is defined such that the

order is preserved by multiplications. And a set of generators {gi} for the ideal is given with a

special property that any element in the ideal has an initial term (leading term) divisible by an

initial term of some gi. A Gröbner basis is precisely such a generating set. This notion generalizes

to free modules over polynomial ring by refining the term order with the basis of the modules. An

example is as follows. Let

σ1 =

x2 − y

x2 + 1

 σ2 =

1

y


generate a submodule M of S2 where S = F[x, y] is a polynomial ring. They form a Gröbner basis,

and the initial terms are marked as bold. A member of S2

x2 + x2y − y2

y + 2x2y


is in M because the following “division” results in zero.x2 + x2y − y2

y + 2x2y

 −yσ1−−−→

 x2

x2y

 −x2σ2−−−−→ 0

A comprehensive material can be found in [76, Chapter 15].

The situation for Laurent polynomial ring is less discussed, but is not too different. A direct

treatment is due to Pauer and Unterkircher [77]. One introduces a well-order on monomials, that

is preserved by multiplications with respect to a so-called cone decomposition. An ideal J over a

Laurent polynomial ring can be thought of as a collection of configurations of coefficient scalars

written on the sites of the integral lattice ZD. If we take a cone, say,

C = {(i1, i2, i3) ∈ Z3|i1 ≤ 0, i2 ≥ 0, i3 ≥ 0},

then JC = J ∩ F[C] looks very similar to an ideal I over a polynomial ring F[x, y, z]. Concretely, I

can be obtained by applying x−1 7→ x, y 7→ y, z 7→ z to JC . The initial terms of JC should be treated

similarly as those in I. This is where the cone decomposition plays a role. The lattice ZD decomposes
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into 2D cones, and the initial terms of J is considered in each of the cones. Correspondingly, a

Gröbner basis is defined to generate the initial terms of a given module in each of the cones. An

intuitive picture for the division algorithm is to consider the support of a Laurent polynomial as a

finite subset of ZD around the origin (the least element of ZD), and to eliminate outmost points

so as to finally reach the origin. If m is a column matrix of Laurent polynomials, each step in the

division algorithm by a Gröbener basis {g} replaces m with m′ = m − cg, where c is a monomial,

such that the initial term of m′ is strictly smaller than that of m. Note that the absolute degree of

c does not exceed that of m.3

Proof of 3.3.1. We have to show that if v ∈ ker ε = imσ is supported in the diamond of radius r

centered at the origin, then v can be expressed as a linear combination

v =
∑
i

ciσi

of the columns σi of σ such that the coefficients ci ∈ R have absolute degree not exceeding w+r. for

some fixed w. A Gröbner basis [77] is computed solely from the matrix σ, and the division algorithm

yields desired ci.

Conversely, suppose v ∈ ker ε. We have to show v ∈ imσ. Choose so large L that the Pauli

operator O representing v is contained in a pyramid region far from the boundary. The local

topological order condition implies that O is a product of terms near the pyramid region. Since this

product expression is independent of the boundary, we see v ∈ imσ.

The Buchsbaum-Eisenbud theorem [78] below characterizes an exact sequence from the properties

of connecting maps. (See also [76, Theorem 20.9, Proposition 18.2],[79, Chapter 6 Theorem 15].) A

few notions should be recalled. Let M be a matrix, not necessarily square, over a ring. A minor

is the determinant of a square submatrix of M. k-th determinantal ideal Ik(M) is the ideal

generated by all k × k minors of M. It is not hard to see that the determinantal ideal is invariant

under any invertible matrix multiplication on either side. The rank of M is the largest k such that

k-th determinantal ideal is nonzero. Thus, the rank of a matrix over an arbitrary ring is defined,

although the dimension of the image in general is not defined or is infinite. The 0-th determinantal

ideal is taken to be the unit ideal by convention. For a map φ between free modules, we write I(φ)

to denote the k-th determinantal ideal of the matrix of φ where k is the rank of that matrix. Fitting

Lemma [76, Corollary-Definition 20.4] states that determinantal ideals only depend on cokerφ.

The (Krull) dimension of a ring is the supremum of lengths of chains of prime ideals. Here,

the length of a chain of prime ideals

p0 ( p1 ( · · · ( pn
3Strictly speaking, one can introduce a term order such that this is true.
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is defined to be n. Most importantly, the dimension of F[x1, . . . , xn] is n where F is a field, as

(0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, . . . , xn).

Dimensions are in general very subtle, but intuitively, it counts the number of independent ‘variables.’

Geometrically, a ring is a function space of a geometric space, and the independent variables define

a coordinate system on it. So the Krull dimension correctly captures the intuitive dimension. For

instance, y − x2 = 0 defines a parabola in a plane, and the functions that vanish on the parabola

form an ideal (y − x2) ⊂ F[x, y]. Thus, the function space is identified with F[x, y]/(y − x2) ∼= F[x],

whose Krull dimension is, as expected, 1.

Facts we need are quite simple:

• In a zero-dimensional ring, every prime ideal is maximal.

• dimR = dimF2[x±1
1 , . . . , x±1

D ] = D

• When I is an ideal of R, dimR/I + codim I = D.4

We shall be dealing with three different kinds of ‘dimensions’: The first one is the spatial dimen-

sion D, which has an obvious physical meaning. The second one is the Krull dimension of a ring,

just introduced. The Krull dimension is upper bounded by the spatial dimension in any case. The

last one is the dimension of some module as a vector space. Recall that all of our base ring contains

a field — F2 for qubits. The vector space dimension arises naturally when we actually count the

number of orthogonal ground states. The dimension as a vector space will always be denoted with

a subscript like dimF2
.

Proposition 3.3.2 ([78]5). If a complex of free modules over a ring

0→ Fn
φn−−→ Fn−1 → · · · → F1

φ1−→ F0

is exact, then

• rankFk = rankφk + rankφk+1 for k = 1, . . . , n− 1

• rankFn = rankφn.

• I(φk) = (1) or else codim I(φk) ≥ k for k = 1, . . . , n.

4 The codimension or height of a prime ideal p is the supremum of the lengths of chains of prime ideals contained
in p. That is, the codimension of p is the Krull dimension of the local ring Rp. The codimension of an arbitrary
ideal I is the minimum of codimensions of primes that contain I. If S is an affine domain, i.e., a homomorphic
image of a polynomial ring over a field with finitely many variables such that S has no zero-divisors, it holds that
codim I + dimR/I = dimS [76, Chapter 13].

5The original result is stronger than what is presented here. It is stated with the depths of the determinantal
ideals.
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Remark 3.2. For an exact code Hamiltonian, we have an exact sequence G
σ−→ P

ε=σ†λ−−−−→ E. As we

will see in Lemma 4.2.1, cokerσ has a finite free resolution, and we may apply the Proposition 3.3.2.

Since Ik(σ) = Ik(ε) for any k ≥ 0, we have

2q = rankP = rankσ + rank ε = 2 rankσ.

The size 2q × t of the matrix σ satisfies t ≥ q. If Iq(σ) 6= R, then codim Iq(σ) ≥ 2.

3.4 Ground-state degeneracy

Let H(L) be the Hamiltonians on finite systems obtained by imposing periodic boundary conditions

as in Section 3.3. A symmetry operator of H(L) is a C-linear combination of Pauli operator that

commutes with H(L). In order for a Pauli symmetry operator to have a nontrivial action on the

ground space, it must not be a product of terms in H(L). In addition, since H(L) is a sum of Pauli

operators, a symmetry Pauli operator must commute with each term in H(L). Hence, a symmetry

Pauli operator O with nontrivial action on the ground space must have image v in the Pauli module

such that

v(O) ∈ ker εL \ imσL

where

G/bLG
σL−−→ P/bLP

εL−→ E/bLE

and

bL = (xL1 − 1, . . . , xLD − 1) ⊆ R,

which effectively imposes the periodic boundary conditions. Since each term in H(L) acts as an

identity on the ground space, if O′ is a term in H(L), the symmetry operator O and the product

OO′ has the same action on the ground space. OO′ is expressed in the Pauli module as v(O)+v′(O′)

for some v′ ∈ imσL. Therefore, the set of Pauli operators of distinct actions on the ground space is

in one-to-one correspondence with the factor module

K(L) = ker εL / imσL.

The vector space dimension dimF2
K(L) is precisely the number of independent Pauli operators

that have nontrivial action on the ground space. Since ker εL = (imσL)⊥ by definition of ε, and

imσL as an F2-vector space is a null space of the symplectic vector space P/bLP , it follows that

ker εL = imσL ⊕ W for some hyperbolic subspace W . The quotient space K(L) ∼= W is thus

hyperbolic and has even vector space dimension 2k. Choosing a symplectic basis for K(L), it is
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clear that K(L) represents the tensor product of k qubit-algebras. Therefore, the ground space

degeneracy is exactly 2k [40, 41]. In the theory of quantum error correcting codes, k is called the

number of logical qubits, and the elements of K(L) are called the logical operators. In this section,

k will always denote 1
2 dimF2

K.

Definition 3.8. The associated ideal for a code Hamiltonian is the q-th determinantal ideal

Iq(σ) ⊆ R of the generating map σ. Here, q is the number of qubits per site. The characteristic

dimension is the Krull dimension dimR/Iq(σ).

The associated ideals appears in Buchsbaum-Eisenbud theorem (Proposition 3.3.2), which says

that the homology K(L) is intimately related to the associated ideal. Imposing boundary conditions

such as xL = 1 amounts to treating x not as variables any more, but as a ‘solution’ of the equation

xL − 1 = 0. In order for K(L) to be nonzero, the ‘solution’ x should make the associated ideal to

vanish. Hence, by investigating the solutions of Iq(σ) one can learn about the relation between the

degeneracy and the boundary conditions. Roughly, a large number of solutions of Iq(σ) compatible

with the boundary conditions means a large degeneracy. As d = dimR/Iq(σ) is the geometric

dimension of the algebraic set defined by Iq(σ), a larger d means a larger number of solutions.

Hence, the characteristic dimension d controls the growth of the degeneracy as a function of the

system size.

For example, consider a chain complex over R = F[x±1, y±1].

0→ R1

∂2=

x− 1

y − 1


−−−−−−−−−→ R2

∂1=

(
y − 1 −x+ 1

)
−−−−−−−−−−−−−−−−→ R1

It is exact at R2. The smallest nonzero determinantal ideal I for either ∂1 or ∂2 is I = (x−1, y−1).

If we impose ‘boundary conditions’ such that x = 1 and y = 1, then I becomes zero, and according

to Buchsbaum-Eisenbud theorem, the homology K at R2 should be nontrivial. Since the solution of

I consists of a single point (1, 1) on a 2-plane, it is conceivable that ‘boundary conditions’ of form

bL would always give K(L) of a constant F-dimension, which is true in this case. If we insist that

the complex is over R′ = F[x±1, y±1, z±1], then the zero set of I is a line (1, 1, z) in 3-space; there

are many ‘solutions.’ In this case, KR′(L) has F-dimension 2L.

An obvious example where the homology K is always zero regardless of the boundary conditions

is this:

0→ R1

1

0


−−−→ R2

(
0 1

)
−−−−−−→ R1

Here, the determinantal ideal is (1) = R, and thus has no solution.



49

The intuition from these examples are made rigorous below.

3.4.1 Condition for degenerate Hamiltonians

A routine yet very important tool is localization. The origin of all difficulties in dealing with general

rings is that nonzero elements do not always have multiplicative inverse; one cannot easily solve

linear equations. The localization is a powerful technique to get around this problem. As we

build rational numbers from integers by declaring that nonzero numbers have multiplicative inverse,

the localization enlarges a given ring and formally allows certain elements to be invertible. It is

necessary and sometimes desirable not to invert all nonzero elements, in order for the localization

to be useful. For a consistent definition, we need a multiplicatively closed subset S containing 1,

but not containing 0, of a ring R and declare that the elements of S is invertible. The new ring is

written as S−1R, in which a usual formula r1
s1

+ r2
s2

= r1s2+r2s1
s1s2

holds. The original ring naturally

maps into S−1R as φ : r 7→ r
1 . The localization means that one views all data as defined over S−1R

via the natural map φ.6

A localized ring, by definition, has more invertible elements, and hence has less nontrivial ideals.

In fact, our Laurent polynomial ring is a localized ring of the polynomial ring by inverting monomials,

e.g., {xiyj |i, j ≥ 0}. Nontrivial ideals such as (x) or (x, y) in the polynomial ring become the unit

ideal (1) in the Laurent polynomial ring. Further localizations in this thesis are with respect to

prime ideals. In this case, we say the ring is localized at a prime ideal p. A prime ideal p has

a defining property that ab /∈ p whenever a /∈ p and b /∈ p. Thus, the set-theoretic complement of

p is a multiplicatively closed set containing 1. In (R \ p)−1R, denoted by Rp, any element outside

p is invertible, and therefore p becomes a unique maximal ideal of Rp. Moreover, the localization

sometimes simplifies the generators of an ideal. For instance, if R = F[x, x−1] and p = (x− 1), the

ideal ((x− 1)(x5 − x+ 1)) ⊆ R localizes to (x− 1)p ⊆ Rp since x5 − x+ 1 is an invertible element

of Rp.

An important fact about the localization is that a module is zero if and only if its localization

at every prime ideal is zero. Further, the localization preserves exact sequences. So we can analyze

a complex by localizing at various prime ideals. For a thorough treatment about localizations, see

Chapter 3 of [80]. The term ‘localization’ is from geometric considerations where a ring is viewed as

a function space on a geometric space.

Lemma 3.4.1. Let I be the associated ideal of an exact code Hamiltonian, and m be a prime ideal

of R. Then, I 6⊆ m implies that the localized homology

K(L)m = ker(εL)m / im(σL)m

6It is a functor from the category of R-modules to that of S−1R-modules.
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is zero for all L ≥ 1.

It is a simple variant of a well-known fact that a module over a local ring is free if its first

non-vanishing Fitting ideal is the unit ideal [79, Chapter 1 Theorem 12].

Proof. Recall that the localization and the factoring commute. By assumption,

(Iq(ε))m = (Iq(σ))m = (1) = Rm =: S.

6 Recall that the local ring S has the unique maximal ideal m, and any element outside the maximal

ideal is a unit. If every entry of ε is in m, then Iq(ε) ⊆ m 6= S. Therefore, there is a unit entry, and

by column and row operations, ε is brought to

ε ∼=

1 0

0 ε′


where ε′ is a submatrix. It is clear that Iq−1(ε′) ⊆ Iq(ε) since any q − 1× q − 1 submatrix of ε′ can

be thought of as a q× q submatrix of ε where the first column and first row have the unique nonzero

entry 1 at (1, 1). It is also clear that Iq−1(ε′) ⊇ Iq(ε) since any q × q submatrix of ε contains either

zero row or column, or the (1, 1) entry 1 of ε. Hence, Iq−1(ε′) = (1), and we can keep extracting

unit elements into the diagonal by row and column operations [79, Chapter 1 Theorem 12]. After q

steps, t× 2q matrix ε becomes precisely

ε ∼=

idq 0

0 0


where idq is the q × q identity matrix. Since localization preserves the exact sequence G→ P → E,

σ maps to the lower q components of P with respect to the basis where ε is in the above form. Since

Iq(σ) = (1), we must have (after basis change)

σ ∼=

 0 0

idq 0

 .

Therefore, even after factoring by the proper ideal bL, the homology K(L) = ker εL / imσL is still

zero.

Corollary 3.4.2. The associated ideal of an exact code Hamiltonian is the unit ideal, i.e., Iq(σ) = R,

if and only if

K(L) = ker εL / imσL = 0

for all L ≥ 1.
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Proof. If I(σ) = R, I(σ) is not contained in any prime ideal m. The above lemma says K(L)m = 0.

Since a module is zero if and only if its localization at every prime ideal is zero, K(L) = 0 for all

L ≥ 1.

For the converse, observe that if F is any extension field of F2, for any F2-vector space W , we

have dimF F⊗F2
W = dimF2

W . We replace the ground field F2 with its algebraic closure Fa to test

whether K(L) 6= 0. If Iq(σ) is not the unit ideal, then it is contained in a maximal ideal m ( R. By

Nullstellensatz, m = (x1 − a1, . . . , xD − aD) for some ai ∈ Fa. Since in R any monomial is a unit,

we have ai 6= 0. Therefore, there exists L ≥ 1 such that aLi = 1 and 2 - L. The equation xL − 1 = 0

has no multiple root.

We claim that K(L) 6= 0. It is enough to verify this for the localization at m. Since anything

outside m is a unit in Rm and each xLi − 1 contains exactly one xi − ai factor, we see (bL)m = mm.

Therefore, (εL)m = εm/(bL)m and (σL)m = σm/(bL)m is a matrix over the field R/m = Fa. Since

Iq(σ) ⊆ m, we have Iq(σL)m = 0. That is, rankFa(σL)m < q. It is clear that dimFa K(L)m =

dimFa ker(εL)m/ im(σL)m ≥ 1.

This corollary says that in order to have a degenerate Hamiltonian H(L), one must have a proper

associated ideal. We shall simply speak of a degenerate code Hamiltonian if its associated ideal is

proper.

3.4.2 Counting points in algebraic varieties

It is important that the factor ring

R/bL = F2[x1, . . . , xD] / (xL1 − 1, . . . , xLD − 1)

is finite dimensional as a vector space over F2, and hence is Artinian. In fact, dimF2
R/bL = LD.

This ring appears also in [70]. Due to the following structure theorem of Artinian rings, K(L) can

be explicitly analyzed by the localizations.

Proposition 3.4.3 (Chapter 8 of [80], Section 2.4 of [76]). Let S be an Artinian ring. (For example,

S is a homomorphic image of a polynomial ring over finitely many variables with coefficients in a

field F, and is finite dimensional as a vector space over F.) Then, there are only finitely many

maximal ideals of S, and

S ∼=
⊕
m

Sm

where the sum is over all maximal ideals m of S and Sm is the localization of S at m.

The following calculation tool is sometimes useful. Recall that a group algebra is equipped with

a non-degenerate scalar product 〈v, w〉 = tr(vw̄). This scalar product naturally extends to a direct
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sum of group algebras.

Lemma 3.4.4. Let F be a field, and S = F[Λ] be the group algebra of a finite abelian group Λ. If

N is a submodule of Sn, then the dual vector space N∗ is vector-space isomorphic to Sn/N⊥, where

⊥ is with respect to the scalar product 〈·, ·〉.

Proof. Consider φ : Sn 3 x 7→ 〈·, x〉 ∈ N∗. The map φ is surjective since the scalar product is

non-degenerate and Sn is a finite dimensional vector space. The kernel of φ is precisely N⊥.

Corollary 3.4.5. Put 2k = dimF2
K(L). Then,

k = qLD − dimF2 imσL = dimF2 ker εL − qLD.

Further, if q = t, then

k = dimF2
kerσL = dimF2

coker εL.

The first formula is a rephrasing of the fact that the number of encoded qubits is the total number

of qubits minus the number of independent stabilizer generators [40, 41].

Proof. Put S = R/bL. If v1, . . . , vt denote the columns of σL, we have

kerσ†L = λq ker εL =
⋂
i

v⊥i =

(∑
i

Svi

)⊥
= (imσL)

⊥
. (3.3)

Hence, dimF2
ker εL = dimF2

S2q − dimF2
imσL. Since dimF2

S = LD and K(L) = ker εL/ imσL, the

first claim follows.

Since imσL ∼= St/ kerσL, if t = q, we have k = dimF2 kerσL by the first claim. From Eq. (3.3),

we conclude that k = dimF2 S
t/ imσ†L = dimF2 coker εL.

We will apply these formulas in Section 5.3 and Example 4.3.

The characteristic dimension is related to the rate at which the degeneracy increases as the

system size increases in the following sense. Recall that 2k = dimF2
K(L) and the ground-state

degeneracy is 2k.

Lemma 3.4.6. Suppose 2 - L. Let Fa be the algebraic closure of F2. If N is the number of maximal

ideals in Fa ⊗F2
R that contain bL + Iq(σ), then

N ≤ dimF2
K(L) ≤ 2qN.
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Proof. We replace the ground field F2 with Fa. Any maximal ideal of an Artinian ring Fa[x±1
i ]/bL

is of form m = (x1 − a1, . . . , xD − aD) where aLi = 1 by Nullstellensatz. Since 2 - L, we see that

(bL)m = mm and that (R/bL)m ∼= Fa is the ground field. (See the proof of Corollary 3.4.2.)

Now, Iq(σ)+bL ⊆ m iff Iq(σ)m+(bL)m ⊆ mm = (bL)m iff Iq(σ) becomes zero over Rm/(bL)m ∼= Fa

iff 1 ≤ dimFa K(L)m ≤ 2q. Since by Proposition 3.4.3, K(L) is a finite direct sum of localized ones,

we are done.

Lemma 3.4.7. Let I be an ideal such that dimR/I = d. We have

dimF2
R/(I + bL) ≤ cLd

for all L ≥ 1 and some constant c independent of L.

Proof. We replace the ground field with its algebraic closure Fa. Write x̃i for the image of xi in

R/I. By Noether normalization theorem [76, Theorem 13.3], there exist y1, . . . , yd ∈ R/I such that

R/I is a finitely generated module over Fa[y1, . . . , yd]. Moreover, one can choose yi =
∑D
j=1Mij x̃j

for some rank d matrix M whose entries are in Fa. Making M into the reduced row echelon form,

we may assume yi = x̃i +
∑
j>d aij x̃j for each 1 ≤ i ≤ d.

Let S = Fa[z1, . . . , zD] be a polynomial ring in D variables. Let φ : S → R/(I + bL) be the ring

homomorphism such that zi 7→ yi for 1 ≤ i ≤ d and zj 7→ x̃j for d < j ≤ D. By the choice of yi, φ is

clearly surjective. Consider the ideal J of S generated by the initial terms of kerφ with respect to

the lexicographical monomial order in which z1 ≺ · · · ≺ zD. Since x̃j is integral over F[y1, . . . , yd],

the monomial ideal J contains z
nj
j for some positive nj for d < j ≤ D. Here, nj is independent of

L. Since zLi ∈ J for 1 ≤ i ≤ d, we conclude that

dimFa R/(I + bL) = dimFa S/J ≤ Ld · nd+1nd+2 · · ·nD

by Macaulay theorem [76, Theorem 15.3].

Corollary 3.4.8. If 2 - L, and d = dimR/Iq(σ) is the characteristic dimension of a code Hamilto-

nian, then

dimF2
K(L) ≤ cLd

for some constant c independent of L.

Proof. If J = bL + I(σ), N in Lemma 3.4.6 is equal to dimFa Fa ⊗ R/ rad J . This is at most

dimFa Fa ⊗R/J = dimF2
R/J .

Lemma 3.4.9. Let d be the characteristic dimension. There exists an infinite set of integers {Li}
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such that

dimF2
K(Li) ≥ Lid/2

Proof. We replace the ground field with its algebraic closure Fa. Let p′ ⊇ I(σ) be a prime of

R of codimension D − d. Let p be the contraction (pull-back) of p′ in the polynomial ring S =

Fa[x1, . . . , xD]. Since the set of all primes of R is in one-to-one correspondence with the set of

primes in S that does not include monomials, it follows that p has codimension D− d and does not

contain any monomials. Let V denote the affine variety defined by p = (g1, . . . , gn). Since p contains

no monomials, V is not contained in any hyperplanes xi = 0 (i = 1, . . . , D).

Let A1 be a finite subfield of Fa that contains all the coefficients of gi, so V can be defined over

A1. Let An ⊆ Fa be the finite extension fields of A1 of extension degree n. Put Ln = |An| − 1.

For any subfield A of Fa, let us say a point of V is rational over A if its coordinates are in A. The

number N ′(Ln) of points (ai) ∈ V satisfying aLni = 1 is precisely the number of the rational points

of V over An that are not contained in the hyperplanes xi = 0. Since I(σ) ⊆ p′, the number N in

Lemma 3.4.6 is at least N ′(Ln). It remains to show N ′(Ln) ≥ Ldn/2 for all sufficiently large n.

This follows from the result by Lang and Weil [81], which states that the number of points of a

projective variety of dimension d that are rational over a finite field of m elements is md+O
(
md− 1

2

)
asymptotically in m. Since Lang-Weil theorem is for projective variety and we are with an affine

variety V , we need to subtract the number of points in the hyperplanes xi = 0 (i = 0, 1, . . . , D) from

the Zariski closure of V . The subvarieties in the hyperplanes, being closed, have strictly smaller

dimensions, and we are done.

3.5 Fractal operators and topological charges

This section is to provide a characterization of topological charges, and their dynamical properties.

Before we turn to a general characterization and define fractal operators, let us review familiar

examples. Note that for two dimensions the base ring is R = F2[x, x̄, y, ȳ].

Example 3.2 (Toric Code). Although the original two-dimensional toric code [3] has qubits on

edges, we put two qubits per site of the square lattice to fit it into our setting. Concretely, the first

qubit to each site represents the one on its east edge, and the second qubit the one on its north edge.

With this convention, the Hamiltonian is the negative sum of the following two types of interactions:

XI XX

II IX

ZI II

ZZ IZ

y xy

1 x
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where we used X,Z to abbreviate σx, σz, and omitted the tensor product symbol. Here, the third

square specifies the coordinate system of the square lattice. Since there are q = 2 qubits per site, the

Pauli module is of rank 4. The corresponding generating map σ : R2 → R4 is given by the matrix

σ2D-toric =


y + xy 0

x+ xy 0

0 1 + y

0 1 + x

 ∼=


1 + x̄ 0

1 + ȳ 0

0 1 + y

0 1 + x

 .

Here, the each column expresses each type of interaction. It is clear that

ε2D-toric = σ†λ2 =

 0 0 1 + x 1 + y

1 + ȳ 1 + x̄ 0 0


and ker ε = imσ; the two-dimensional toric code satisfies our exactness condition. The associated

ideal is I(σ) = ((1 + x)2, (1 + x)(1 + y), (1 + y)2). The characteristic dimension is dimR/I(σ) = 0.

Note also that ann coker ε = (x − 1, y − 1). The electric and magnetic charge are represented by1

0

 ,

0

1

 ∈ E \ im ε, respectively.

The connection with cellular homology should be mentioned. σ can be viewed as the boundary

map from the free module of all 2-cells with Z2 coefficients of the cell structure of 2-torus induced

from the tessellation by the square lattice. Then, ε is interpreted as the boundary map from the free

module of all 1-cells to that of all 0-cells. σ or ε is actually the direct sum of two boundary maps.

Indeed, the space K(L) = ker εL/ imσL of operators acting on the ground space (logical operators)

has four generators

ly(X) =


1 + y + · · ·+ yL−1

0

0

0

 , lx(X) =


0

1 + x+ · · ·+ xL−1

0

0

 ,

lx(Z) =


0

0

1 + x+ · · ·+ xL−1

0

 , ly(Z) =


0

0

0

1 + y + · · ·+ yL−1

 ,

which correspond to the usual nontrivial first homology classes of 2-torus.

The description by the cellular homology might be advantageous for the toric code over our

description with pure Laurent polynomials; in this way, it is clear that the toric code can be defined
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on an arbitrary tessellation of compact orientable surfaces. However, it is unclear whether this

cellular homology description is possible after all for other topologically ordered code Hamiltonians.

♦

Example 3.3 (2D Ising model on square lattice). The Ising model has nearest neighbor interactions

that are horizontal and vertical. In our formalism, they are represented as 1 + x and 1 + y. Thus,

σ2D Ising =

 0 0

1 + x 1 + y

 .

As it is not topologically ordered, the complex G → P → E is not exact. Moreover, σ is not

injective.

σ2D Ising;1 =

1 + y

1 + x


generates the kernel of σ. That is, the complex 0→ G1

σ2D Ising;1−−−−−−→ G
σ2D Ising−−−−−→ P is exact. ♦

In both examples, there exist isolated excitations. In the toric code, the isolated excitation can be

(topologically) nontrivial since the electric charge is not in im ε. On the contrary, in 2D Ising model,

any isolated excitation is actually created by an operator of finite support because any excitation

created by some Pauli operator appears as several connected loops. This difference motivates the

following definition for charges.

Let R̃ be the set of all F2-valued functions on the translation group Λ, not necessarily finitely

supported. For instance, if Λ = Z,

f̃ = · · ·+ x−4 + x−2 + 1 + x2 + x4 + · · · ∈ R̃

represents a function whose value is 1 at even lattice points, and 0 at odd points. Note that R̃ is

a R-module, since the multiplication is a convolution between an arbitrary function and a finitely

supported function. For example,

(1 + x) · f̃ = · · ·+ x−2 + x−1 + 1 + x+ x2 + · · · ,

(1 + x)2 · f̃ = 0.

Let P̃ = R̃2q be the module of Pauli operators of possibly infinite support. Similarly, let Ẽ be the

module of virtual excitations of possibly infinitely many terms. Formally, P̃ is the module of all

2q-tuples of functions on the translation group, and Ẽ is that of all t-tuples. Clearly, P ⊆ P̃ and

E ⊆ Ẽ. The containment is strict if and only if the translation group is infinite. Since the matrix ε

consists of Laurent polynomials with finitely many terms, ε : P → E extends to a map from P̃ to Ẽ.
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Definition 3.9. A topological charge, or charge for short, e = ε(p̃) ∈ E is an excitation of finite

energy (an element of the virtual excitation module) created by a Pauli operator p̃ ∈ P̃ of possibly

infinite support. A charge e is called trivial if e ∈ ε(P ).

By definition, the set of all charges modulo trivial ones is in one-to-one correspondence with the

superselection sectors. According to the definition, any charge of 2D Ising model is trivial. A

nontrivial charge may appear due to the following fractal generators.

Definition 3.10. We call zero-divisors on coker ε as fractal generators. In other words, an element

f ∈ R \ {0} is a fractal generator if there exists v ∈ E \ im ε such that fv ∈ im ε.

There is a natural reason the fractal generator deserves its name. Consider a code Hamiltonian

with a single type of interaction: t = 1. So each configuration of excitations is described by one

Laurent polynomial. For example, in two dimensions, f = 1 + x + y = ε(p) represents three

excitations, one at the origin of the lattice and the others at (1, 0) and (0, 1) created by a Pauli

operator represented by p. (This example is adopted from [48].) In order to avoid repeating phrase,

let us call each element of the Pauli module a Pauli operator, and instead of using multiplicative

notation we use module operation + to mean the product of the corresponding Pauli operators.

Consider the Pauli operator fp = p+xp+yp ∈ P . It describes the Pauli operator p at the origin

multiplied by the translations of p at (1, 0) and at (0, 1). So fp consists of three copies of p. This

Pauli operator maps the ground state to the excited state f2 = 1+x2+y2. The number of excitations

is still three, but the excitations at (1, 0), (0, 1) have been replaced by those at (2, 0), (0, 2). Similarly,

the Pauli operator f2+1p = f2(fp) consists of three copies of fp, or 32 copies of p. The excited state

created by f3p is f4 = (f2)2 = 1 + x22

+ y22

. Still it has three excitations, but they are further

apart. The Pauli operator f2n−1p consists of 3n copies of p in a self-similar way, and the excited

state caused by f2n−1p consists of a constant number of excitations. More generally, if there are

t > 1 types of terms in the Hamiltonian, the excitations are described by a t×1 matrix. If it happens

to be of form fv for some f ∈ R consisted of two or more terms, there is a family of Pauli operators

f2n−1p with self-similar support such that it only creates a bounded number of excitations. An

obvious but uninteresting way to have such a situation is to put fv = ε(fp′) for a Pauli operator p′

where v = ε(p′). Our definition avoids this triviality by requiring v /∈ im ε. The reader may wish to

compare the fractals with finite cellular automata [82].

Proposition 3.5.1. [83, 16.33] Suppose coker ε 6= 0. Then, the following are equivalent:

• There does not exist a fractal generator.

• coker ε is torsion-free.
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• There exists a free R-module E′ of finite rank such that

P
ε−→ E → E′

is exact.

Proof. The first two are equivalent by definition. The sequence above is exact if and only if 0 →

coker ε → E′ is exact. Since coker ε has a finite free resolution, the second is equivalent to the

third.

The following theorem states that the fractal operators produces all nontrivial charges.

Theorem 3.1. Suppose Λ = ZD is the translation group of the underlying lattice. The set of all

charges modulo trivial ones is in one-to-one correspondence with the torsion submodule of coker ε.

To illustrate the idea of the proof, consider a (classical) excitation map7

φ =


1 + x+ y 0

0 1 + x

0 1 + y

 : R2 → R3.

A nonzero element f = 1 + x+ y ∈ R is a fractal generator since
(

1 0 0
)T

/∈ imφ and (1 + x+

y)
(

1 0 0
)T
∈ imφ; f is a zero-divisor on a torsion element

(
1 0 0

)T
∈ coker ε. It is indeed a

charge since φ(f̃
(

1 0
)T

) =
(

1 0 0
)T

where

f̃ = lim
n→∞

f2n−1 ∈ F[[x, y]]

is a formal power series, which can be viewed as an element of R̃. The limit is well-defined since

f2n+1−1 − f2n−1 only contains terms of degree 2n or higher. That is to say, only higher order

‘corrections’ are added and lower order terms are not affected. Of course, there is no natural

notion of smallness in the ring F[x, y]. But one can formally call the members of the ideal power

(x, y)n ⊆ F[x, y] small. It is legitimate to introduce a topology in R defined by the ever shrinking

ideal powers (x, y)n. They play a role analogous to the ball of radius 1/n in a metric topological

space. The completion of F[x, y] where every Cauchy sequence with respect to this topology is

promoted to a convergent sequence, is nothing but the formal power series ring F[[x, y]]. For a

detailed treatment, see Chapter 10 of [80].

7 It is classical because it is not derived from an interesting quantum commuting Pauli Hamiltonian. For a classical
Hamiltonian where all terms are tensor products of σz , there is no need to keep a t× 2q matrix ε since the right half
ε is zero. Just the left half suffices, which can be arbitrary since the commutativity equation ελε† = 0 is automatic.
Nevertheless, the excitations and fractal operators are relevant. Our proof of the theorem is not contingent on the
commutativity equation.
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The completion and the limit only make sense in the polynomial ring F[x, y]. The reason f̃ is

well-defined is that f ∈ F[x±1, y±1] is accidentally expressed as a usual polynomial with lowest order

term 1. In the proof below we show that every fractal generator can be expressed in this way. Hence,

a torsion element of coker ε is really a charge.

Proof. For a module M , let T (M) denote the torsion submodule of M :

T (M) = {m ∈M | ∃ r ∈ R \ {0} such that rm = 0}

Suppose first that T (coker ε) = 0. We claim that in this case there is no nontrivial charge. Let

e = ε(p̃) ∈ E be a charge, where p̃ ∈ P̃ . By Proposition 3.5.1 we have an exact sequence of finitely

generated free modules P
ε−→ E

ε1−→ E1. Since the matrix ε1 is over R, the complex extends to a

complex of modules of tuples of functions on the translation group.

P̃
ε−→ Ẽ

ε1−→ Ẽ1

(This extended sequence may not be exact.) Then, ε1(e) = ε1(ε(p̃)) = 0 since ε1 ◦ ε = 0 identically.

But, e ∈ E, and therefore, e ∈ ker ε1 ∩ E = ε(P ). It means that e is a trivial charge, i.e., e maps to

zero in coker ε, and proves the claim.8

Now, allow coker(P
ε−→ E) to contain torsion elements. Q = (coker ε)/T (coker ε) is torsion-free,

and is finitely presented as Q = coker(ε′ : P ′ → E) where P ′ is a finitely generated free module. In

fact, we may choose ε′ by adding more columns representing the generators of the torsion submodule

of coker ε to the matrix ε.

ε =

# #

# #

 ε′ =

# # ∗ ∗

# # ∗ ∗


Then, P can be regarded as a direct summand of P ′.9

Let e = ε(p̃) ∈ E be any charge. Since the matrix ε′ contains ε as submatrix, we may write

e = ε′(p̃) ∈ E. Since T (coker ε′) = 0, we see by the first part of the proof that e = ε′(p′) for some

p′ ∈ P ′. Then, e maps to zero in Q, and it follows that e maps into T (coker ε) in coker ε. In other

words, the equivalence class of e modulo trivial charges is a torsion element of coker ε.

Conversely, we have to prove that for every element e ∈ E such that fe = ε(p) for some f ∈ R\{0}

and p ∈ P , there exists p̃ ∈ P̃ such that e = ε(p̃). Here, P̃ is the module of all 2q-tuples of F2-

8 One may wish to consider ε to consist of the second column of φ above. Then ε1 =
(
1 + y −1− x

)
.

9 If we take ε = φ above, then

ε′ =

1 + x+ y 0 1
0 1 + x 0
0 1 + y 0

 .

Note that P ′ = P ⊕R.
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valued functions on the translation group. Consider the lexicographic total order on ZD in which

x1 � x2 � · · · � xD. It induces a total order on the monomials of R. Choose the least term f0 of f .

By multiplying f−1
0 , we may assume f0 = 1.10

We claim that the sequence

f, f2f, f4f2f, . . . , f2nf2n−1

· · · f2f, . . . (3.4)

converges to f̃ ∈ R̃, where R̃ is the set of all F2-valued functions on Λ. Given the claim, since

f2ne = e+ (f − 1)2ne = ε(f2n−1 · · · f2fp) where p ∈ P , we conclude that e = ε(f̃p) is a charge.

If f is of nonnegative exponents, and hence f ∈ S = F2[x1, . . . , xD], then the claim is clearly true.

Indeed, the positive degree terms of f2n = 1 + (f − 1)2n are in the ideal power (x1, . . . , xD)2p ⊂ S.

Therefore, the sequence Eq. (3.4) converges in the formal power series ring F2[[x1, . . . , xD]], which

can be regarded as a subset of R̃. If f is not of nonnegative exponents, one can introduce the

following change of basis of the lattice ZD such that f becomes of nonnegative exponents. In other

words, the sequence Eq. (3.4) is in fact contained in a ring that is isomorphic to the formal power

series ring, where the convergence is clear.

For any nonnegative integers m1, . . . ,mD−1, define a linear transformation

ζm = ζ(m1,m2,...,mD−1) :


a1

a2

...

aD

 7→

a′1

a′2
...

a′D

 =



1 0 0 · · · 0

m1 1 0 0

m1 m2 1 0
...

. . .
...

m1 m2 · · · mD−1 1




a1

a2

...

aD

 on ZD.

ζm induces the map xa11 · · ·x
aD
D 7→ x

a′1
1 · · ·x

a′D
D on R. Let u = xa11 · · ·x

aD
D be an arbitrary term of f

other than 1, so u � 1. For the smallest i ∈ {1, . . . , D} such that ai 6= 0, one has ai > 0 due to the

lexicographic order. Hence, if we choose mi large enough and set mj = 0 (j 6= i), then ζm(u) has

nonnegative exponents. Since any ζm maps a nonnegative exponent term to a nonnegative exponent

term, and there are only finitely many terms in f , it follows that there is a finite composition ζ of

ζm’s which maps f to a polynomial of nonnegative exponents.11

Since a nontrivial charge v has finite size anyway (the maximum exponent minus the minimum

exponent of the Laurent polynomials in the t× 1 matrix v), we can say that the charge v is point-

like. Moreover, we shall have a description how the point-like charge can be separated from the

other by a local process. By the local process we mean a sequence of Pauli operators [[o1, . . . , on]]

10 If D = 1, f would be a polynomial of nonnegative exponents with the lowest order term being 1. If D = 2 and
f = y + y2 + x, then the least term is y. After multiplying f−1

0 , it becomes 1 + y + xy−1.
11 For our previous example f = 1 + y + xy−1, one takes ζ : xiyj 7→ xiyi+j , so ζ(f) = 1 + y + x.
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such that oi+1 − oi is a monomial. The number of excitations, i.e., energy, at an instant i will be

the number of terms in ε(oi).

Theorem 3.2. [48] If there is a fractal generator of a code Hamiltonian, then for all sufficiently

large r, there is a local process starting from the identity by which a point-like charge is separated

from the other excitations by distance at least 2r. One can choose the local process in such a way

that at any intermediate step there are at most cr excitations for some constant c independent of r.

For notational simplicity, we denote the local process [[o1, . . . , on]] by

s = [o1, o2 − o1, o3 − o2, . . . , on − on−1].

It is a recipe to construct on, consisted of single-qubit operators. on can be expressed as “on =
∫
s”,

the sum of all elements in the recipe.

Proof. Let f be a fractal generator, and put fv = ε(p) where v /∈ im ε. We already know v is a

point-like nontrivial charge. Write

p =

n∑
i=1

pi, f =

l∑
i=1

fi

where each of pi and fi is a monomial. Let s0 = [0, p1, p2, . . . , pn] be a recipe for constructing p;∫
s0 = p. Given si, define inductively

si+1 = (f2i

1 · si) ◦ (f2i

2 · si) ◦ · · · ◦ (f2i

l · si)

where ◦ denotes the concatenation and fi · [u1, . . . , un′ ] = [fiu1, . . . , fiun′ ]. It is clear that si+1

constructs the Pauli operator

∫
sr = f2r−1

∫
sr−1 = f2r−1

f2r−2

∫
sr−2 = f2r−1+2r−2+···+1

∫
s0 = f2r−1p

whose image under ε is f2rv. Thus, if r is large enough so that 2r is greater than the size of v, the

configuration of excitations is precisely l copies of v. The distance between v’s is at least 2r minus

twice the size of v.

Therefore, there is a constant e > 0 such that for any r ≥ 0 the energy of f2rv ∈ E is ≤ e. Let

∆(r) be the maximum energy during the process sr. We prove by induction on r that

∆(r) ≤ el(r + 1).
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When r = 0, it is trivial. In sr+1, the energy is ≤ ∆(r) until f2r

1 sr is finished. At the end of

f2r

1 sr, the energy is ≤ e. During the subsequent f2r

2 sr, the energy is ≤ ∆(r) + e, and at the end

of (f2r

1 sr) ◦ (f2r

2 sr), the energy is ≤ 2e. During the subsequent f2r

j sr, the energy is ≤ ∆(r) + je.

Therefore,

∆(r + 1) ≤ ∆(r) + el ≤ el(r + 2)

by the induction hypothesis.

Fractal operators appear in Newman-Moore model [48] where classical spin glass is discussed.

Their model has generating matrix σ =
(

0 1 + x+ y
)T

. The theorem is a simple generalization

of Newman and Moore’s construction. Another explicit example of fractal operators in a quantum

model can be found in Section 8.7.

Note that the notion of fractal generators includes that of “string operators.” In fact, a fractal

generator that contains exactly two terms gives a family of nontrivial string segments of unbounded

length, as defined in Chapter 5.

Below, we point out a couple of sufficient conditions for nontrivial charges, or equivalently, fractal

generators to exist.

Proposition 3.5.2. For code Hamiltonians, the existence of a fractal generator is a property of an

equivalence class of Hamiltonians in the sense of Definition 3.2.

Proof. Suppose imσ = imσ′. Each column of σ′ is a R-linear combination of those of σ, and vice

versa. Thus, there is a matrix B and B′ such that ε′ = Bε and ε = B′ε′. BB′ and B′B are identity

on im ε′ and im ε, respectively. In particular, B′ and B are injective on im ε′ and im ε, respectively.

Suppose f is a fractal generator for ε, i.e., fv = εp 6= 0. Then, 0 6= Bfv = fBv = Bε(p) = ε′(p). If

Bv ∈ im ε′, then v = B′Bv ∈ im ε, a contradiction. Therefore, f is also a fractal generator for ε′.

By symmetry, a fractal generator for ε′ is a fractal generator for ε, too.

Suppose R′ ⊆ R is a coarse-grained base ring. If coker ε is torsion-free as an R-module, then so

it is as an R′-module. If f ∈ R is a fractal generator, the determinant of f as a matrix over R′ is a

fractal generator.

A symplectic transformation or tensoring ancillas does not change coker ε.

Proposition 3.5.3. For any ring S and t ≥ 1, if 0→ St → S2t φ−→ St is exact and I(φ) 6= S, then

cokerφ is not torsion-free. In particular, for a degenerate exact code Hamiltonian, if σ is injective,

then there exists a fractal generator.

Proof. By Proposition 3.3.2, rankφ = t. Since 0 ( It(φ) ( S is the initial Fitting ideal, we have

0 6= ann cokerφ 6= S. That is, cokerφ is not torsion-free.
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For the second statement, set S = R. If σ is injective, we have an exact sequence

0→ G
σ−→ P

ε−→ E.

By Remark 3.2, t = rankG = rankσ = rank ε = q.

Proposition 3.5.4. Suppose the characteristic dimension is D − 2 for a degenerate exact code

Hamiltonian. Then, there exists a fractal generator.

Proof. Suppose on the contrary there are no fractal generators. Then, by Proposition 3.5.1,

G
σ−→ P

ε−→ E → E′

is exact for some finitely generated free module E′. Together with Hilbert syzygy theorem [76,

Corollary 15.11],12 Proposition 3.3.2 implies codim I(σ) ≥ 3 unless I(σ) = R. But, codim I(σ) = 2

and I(σ) 6= R by Corollary 3.4.2. This is a contradiction.

12We will prove a stronger version in Lemma 4.2.1.
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Chapter 4

Structure of exact Hamiltonians on
lattices

One of the goals of the formalism in the previous chapter is to classify all code Hamiltonians that

are translationally invariant. A satisfactory classification should be comprised of a complete set of

invariants, and a table of inequivalent code Hamiltonians or a machinery to obtain them. In this

chapter we present preliminary results towards this goal.

In one dimension, the classification problem is completely solved. A particularly nice property

of one dimension is that its translation group algebra F2[x, x−1] is a Euclidean domain, over which

any matrix is diagonal up to multiplications on the left and right by invertible matrices. We show

that this diagonalization is possible even if the left multiplications are restricted to symplectic

transformations. Exploiting the finiteness of the ground field F2, we conclude that there are only

Ising models [84]. An almost identical treatment appears in quantum convolutional codes [71, 72].

(A more general statement is proved by Beigi [85].)

In two dimensions, we find that any excitation of an exact code Hamiltonian is described by a

collection of point-like ones, each of which is attached to a string operator. Furthermore, it seems

that one can prove a stronger statement that there are only toric codes [84, 86], although we do not

complete the proof. In three dimensions, we show that there must be point-like excitations for exact

code Hamiltonians. This implies that it is unavoidable in the translation-invariant case to have a

topological charge penetrating through the system, for which the energy penalty is only logarithmic

in the displacement. If we assume that the degeneracy under periodic boundary conditions should

be constant independent of system size, then the energy penalty is upper bounded by a constant,

reproducing the result of Yoshida [47].

Note that all the lemmas and theorems in this chapter are valid over qudits with prime dimen-

sions. We conclude this chapter with several examples.
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4.1 One dimension

The group algebra R = F2[x, x̄] for the one-dimensional lattice Z is a Euclidean domain where the

degree of a polynomial is defined to be the maximum exponent minus the minimum exponent. (In

particular, any monomial has degree 0.) Given two polynomials f, g in R, one can find their gcd

by the Euclid’s algorithm. It can be viewed as a column operation on the 1 × 2 matrix
(
f g

)
.

Similarly, one can find gcd of n polynomials by column operations on 1× n matrix

(
f1 f2 · · · fn

)
.

The resulting matrix after the Euclid’s algorithm will be

(
gcd(f1, . . . , fn) 0 · · · 0

)
.

Given a matrix M of univariate polynomials, we can apply Euclid’s algorithm to the first row and

first column by elementary row and column operations in such a way that the degree of (1, 1)-entry

M11 decreases unless all other entries in the first row and column are divisible by M11. Since the

degree cannot decrease forever, this process must end with all entries in the first row and column

being zero except M11. By induction on the number of rows or columns, we conclude that M can

be transformed to a diagonal matrix by the elementary row and column operations. This is known

as the Smith’s algorithm.

The following is a consequence of the finiteness of the ground field.

Lemma 4.1.1. Let F be a finite field and S = F[x] be a polynomial ring. Let φ : S
f(x)×−−−−→ S be a

1 × 1 matrix such that f(0) 6= 0. φ can be viewed as an n × n matrix acting on the free S′-module

S where S′ = F[x′] and x′ = xn. Then, for some n ≥ 1, the matrix φ is transformed by elementary

row and column operations into a diagonal matrix with entries 1 or x′ − 1. The number of x′ − 1

entries in the transformed φ is equal to the degree of f .

Proof. The splitting field F̃ of f(x) is a finite extension of F. Since F̃ is finite, every root of f(x)

is a root of xn
′ − 1 for some n′ ≥ 1. Choose an integer p ≥ 1 such that 2p is greater than any

multiplicity of the roots of f(x). Then, clearly f(x) divides (xn
′ − 1)2p = x2pn′ − 1. Let n be the

smallest positive integer such that f(x) divides xn − 1.1

Consider the coarse-graining by S′ = F[x′] where x′ = xn. S is a free S′-module of rank n, and

(f) is now an endomorphism of the module S represented as an n×n matrix. Since f(x)g(x) = xn−1

for some g(x) ∈ F[x], we have

AB = (x′ − 1)idn

1This part is well known, at least in the linear cyclic coding theory [68].
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where x′ = xn, and A,B are the matrix representation of f(x) and g(x), respectively, as endomor-

phisms. A and B have polynomial entries in variable x′. The determinants of A,B are nonzero for

their product is (x′ − 1)n 6= 0. Let E1 and E2 be the products of elementary matrices such that

A′ = E1AE2 is diagonal. Such matrices exist by the Smith’s algorithm. Put B′ = E−1
2 BE−1

1 . Then,

A′B′ = E1AE2E
−1
2 BE−1

1 = E1ABE
−1
1 = (x′ − 1)idn.

Since A′ and In are diagonal of non-vanishing entries, B′ must be diagonal, too. It follows that the

diagonal entries of A′ divides (x′ − 1); that is, they are 1 or x′ − 1.

The number of entries x′ − 1 can be counted by considering S/(f(x)) as an F-vector space. It

is clear that dimF S/(f(x)) = deg f(x). S/(f(x)) = cokerφ viewed as a S′-module is isomorphic to

S′n/ imA′, the vector space dimension of which is precisely the number of x′ − 1 entries in A′.

For example, consider f(x) = x2 + x+ 1 ∈ S = F2[x]. It is the primitive polynomial of the field

F4 of four elements over F2. Any element in F4 is a solution of x4 − x = 0. Since f(0) = 1, we see

that n = 3 is the smallest integer such that f(x) divides xn − 1. As a module over S′ = F2[x3], the

original ring S is free with (ordered) basis {1, x, x2}. The multiplication by x on S viewed as an

endomorphism has a matrix representation

x =


0 0 x3

1 0 0

0 1 0

 .

Thus, f(x) as an endomorphism of S′-module S has a matrix representation as follows.

f(x) =


1 x3 x3

1 1 x3

1 1 1

 ∼=


1 0 0

0 x3 + 1 0

0 0 x3 + 1


Here, the second matrix is obtained by row and column operations. There are 2 diagonal entries

x3 + 1 as f(x) is of degree 2.

Theorem 4.1. If Λ = Z, any system governed by a code Hamiltonian is equivalent to finitely many

copies of Ising models, plus some non-interacting qubits. In particular, the topological order condition

is never satisfied.

Yoshida [84] arrived at a similar conclusion assuming that the ground space degeneracy when the

Hamiltonian is defined on a ring should be independent of the length of the ring. If translation

group is trivial, the proof below reduces to a well-known fact that the Clifford group is generated by

controlled-NOT, Hadamard, and Phase gates [61, Proposition 15.7]. The proof in fact implies that
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the group of all symplectic transformations in one dimension is generated by elementary symplectic

transformations of Section 3.2.1.

We will make use of the elementary symplectic transformations and coarse-graining to deform σ

to a familiar form. Recall that for any elementary row-addition E on the upper block of σ there is

a unique symplectic transformation that restricts to E.

Proof. Applying Smith’s algorithm to the first row and the first column of 2q× t matrix σ, one gets


f1 0

0 A

g1 g2

... B


by elementary symplectic transformations. Let 1 ≤ i < j ≤ q be integers. If some (1, q + j)-entry is

not divisible by f1, apply Hadamard on jth qubit to bring (q+ j)th row to the upper block, and then

run Euclid’s algorithm again to reduce the degree of (1, 1)-entry. The degree is a positive integer,

so this process must end after a finite number of iteration. Now every (q+ j, 1)-entry is divisible by

f1 and hence can be made to be 0 by the controlled-NOT-Hadamard:
f1 0

0 A

g1 g2

0 B

 .

Further we may assume deg f1 ≤ deg g1. Since σ†λqσ = 0, we have a commutativity condition

f̄1g1 − ḡ1f1 = 0.

Write f1 = αxa+ · · ·+βxb and g1 = γxc+ · · ·+ δxd where a ≤ b and c ≤ d and α, β, γ, δ 6= 0. Then,

f̄1g1 = βγxc−b + · · ·+ αδxd−a. Since f1ḡ1 = f̄1g1, it must hold that −(c− b) = d− a and αδ = βγ.

Since deg f1 ≤ deg g1, we have d−b = −(c−a) ≥ 0. The controlled-Phase E1+q,1(−(xd−b+xc−a)δ/β)

will decrease the degree of g1 by two, which eventually becomes smaller than deg f1. One may then

apply Hadamard to swap f1 and g1. Since the degree of (1, 1)-entry cannot decrease forever, the

process must end with g1 = 0.

The commutativity condition between ith (i > 1) column and the first is f1ḡi = 0. Since f1 6= 0,
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we get gi = 0: 
f1 0

0 A

0 0

0 B

 .

Continuing, we transform σ into a diagonal matrix. (We have shown that σ can be transformed via

elementary symplectic transformations to the Smith normal form.)

Now the Hamiltonian is a sum of non-interacting purely classical spin chains plus some non-

interacting qubits (fi = 0). It remains to classify classical spin chains whose stabilizer module is

generated by (
f
)

where we omitted the lower half block. We can always choose f = f(x) such that f(x) has only

nonnegative exponents and f(0) 6= 0 since x is a unit in R. Lemma 4.1.1 says that (f) becomes

a diagonal matrix of entries 1 or x′ − 1 after a suitable coarse-graining followed by a symplectic

transformation and column operations. 1 describes the ancilla qubits, and x′ − 1 = x′ + 1 does the

Ising model.

Note that an almost identical treatment appears in [72].

4.2 Two dimensions

If D = 2, the lattice is Λ = Z2, and our base ring is R = F2[x, x̄, y, ȳ].

The following asserts that the local relations — a few terms in the Hamiltonian that multiply to

identity in a nontrivial way as in 2D Ising model, or the kernel of σ — among the terms in a code

Hamiltonian, can be completely removed for exact Hamiltonians in two dimensions [87]. We prove

a more general version.

Lemma 4.2.1. If G
σ−→ P

ε−→ E is exact over R = F2[x1, x̄1, . . . , xD, x̄D], There exists σ′ : G′ → P

such that imσ′ = imσ and

0→ GD−2 → · · · → G1 → G′
σ′−→ P

ε−→ E

is an exact sequence of free R-modules. If D = 2, one can choose σ′ to be injective.

The lemma is almost the same as the Hilbert syzygy theorem [76, Corollary 15.11] applied to coker ε,

which states that any finitely generated module over a polynomial ring with n variables has a finite

free resolution of length ≤ n, by finitely generated free modules. A difference is that our two maps



69

on the far right in the resolution has to be related as ε = σ†λ. To this end, we make use of a

constructive version of Hilbert syzygy theorem via Gröbner basis.

Proposition 4.2.2. [76, Theorem 15.10, Corollary 15.11] Let {g1, . . . , gn} be a Gröbner basis of a

submodule of a free module M0 over a polynomial ring. Then, the S-polynomials τij of {gi} in the

free module M1 =
⊕n

i=1 Sei generate the syzygies for {gi}. If the variable x1, . . . , xs are absent from

the initial terms of gi, one can define a monomial order on M1 such that x1, . . . , xs+1 is absent from

the initial terms of τij. If all variables are absent from the initial terms of gi, then M0/(g1, . . . , gn)

is free.

Proof of 4.2.1. Without loss of generality assume that the t× 2q matrix ε have entries with nonneg-

ative exponents, so ε has entries in S = F2[x1, . . . , xD]. Below, every module is over the polynomial

ring S unless otherwise noted. Let E+ be the free S-module of rank equal to rankR E.

If g1, · · · , g2q are the columns of ε, apply Buchberger’s algorithm to obtain a Gröbner basis

g1, · · · , g2q, . . . , gn of im ε. Let ε′ be the matrix whose columns are g1, . . . , gn. We regard ε′ as a map

M0 → E+. By Proposition 4.2.2, the initial terms of the syzygy generators (S-polynomials) τij for

{gi} lacks the variable x1. Writing each τij in a column of a matrix τ1, we have a map τ1 : M1 →M0.

By induction on D, we have an exact sequence

MD
τD−−→MD−1

τD−1−−−→ · · · τ1−→M0
ε′−→ E+

of free S-modules, where the initial terms of columns of τD lack all the variables. By Proposition 4.2.2

again, M ′D−1 = MD−1/ im ττD is free. Since ker τD−1 = im τD, we have

0→M ′D−1

τ̃D−1−−−→ · · · τ1−→M0
ε′−→ E+

Since g2q+1, . . . , gn are S-linear combinations of g1, . . . , g2q, there is a basis change of M0 so that

the matrix representation of ε′ becomes

ε′ ∼=
(
ε 0

)
.

With respect to this basis of M0, the matrix of τ1 is

τ1 ∼=

τ1u
τ1d


where τ1u is the upper 2q × t′ submatrix. Since ker ε′ = im τ1, The first row r of τ1d should

generate 1 ∈ S. (This property is called unimodularity.) Quillen-Suslin theorem [60, Chapter XXI

Theorem 3.5] states that there exists a basis change of M1 such that r becomes
(

1 0 · · · 0
)

.
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Then, by some basis change of M0, one can make

ε′ ∼=
(
ε 0

)
, τ1d ∼=

1 0

0 τ ′1d

 .

where τ ′1d is a submatrix. By induction on the number of rows in τ1d, we deduce that the matrix of

τ1 can be brought to

ε′ ∼=
(
ε 0

)
, τ1 ∼=

σ′′ σ′

I 0



Note that εσ′′ = 0 and εσ′ = 0. The basis change of M0 by

I −σ′′

0 I

 gives

ε′ ∼=
(
ε 0

)
, τ1 ∼=

0 σ′

I 0

 .

The kernel of

σ′
0

 determines ker τ1 = im τ2. Let M ′1 denote the projection of M1 such that the

sequence

0→M ′D−1

τ̃D−1−−−→ · · · →M2 →M ′1
σ′−→M ′0

ε−→ E+

of free S-modules is exact.

Taking the ring of fractions with respect to the multiplicatively closed set

U = {xi11 · · ·x
iD
D |i1, . . . , iD ≥ 0},

we finally obtain the desired exact sequence over U−1S = R with P = U−1M ′0 and E = U−1E+.

Since imσ = ker ε, we have imσ′ = imσ.

Lemma 4.2.3. Let R be a Laurent polynomial ring in D variables over a finite field F, and N be a

module over R. Suppose J = annRN is a proper ideal such that dimR/J = 0. Then, there exists

an integer L ≥ 1 such that

annR′ N = (xL1 − 1, . . . , xLD − 1) ⊆ R′

where R′ = F[x±L1 , . . . , x±LD ] is a subring of R.

This is a variant of Lemma 4.1.1. The annihilator J = annRN is the set of all elements r ∈ R

such that rn = 0 for any n ∈ N . It is an ideal; if r1, r2 ∈ annRN , then r1 +r2 is an annihilator since

(r1 + r2)n = r1n+ r2n = 0, and ar1 ∈ annRN for any a ∈ R since (ar1)n = a(r1n) = 0. If R′ ⊆ R is
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a subring and N is an R-module, N is an R′-module naturally. Clearly, J ′ = annR′ N is by definition

equal to (annRN) ∩ R′. Note that J ′ is the kernel of the composite map R′ ↪→ R → R/J . Hence,

we have an algebra homomorphism ϕ′ : R′/J ′ → R/J . Although R′ is a subring, it is isomorphic

to R via the correspondence xLi ↔ xi. Therefore, we may view ϕ′ as a map ϕ : R/I → R/J for

some ideal I ⊆ R. It is a homomorphism such that ϕ(xi) = xLi . Considering the algebras as the set

of all functions on the algebraic sets V (I) and V (J) defined by I and J , respectively, we obtain a

map ϕ̂ : V (J) → V (I). Intuitively, ϕ̂ maps each point (a1, . . . , aD) ∈ FD to (aL1 , . . . , a
L
D) ∈ FD. In

a finite field, any nonzero element is a root of unity. Since dimR/J = 0, which means that V (J)

is a finite set, we can find a certain L so V (I) would consist of a single point. A formal proof is as

follows.

Proof. Since R is a finitely generated algebra over a field, for any maximal ideal m of R, the field

R/m is a finite extension of F (Nullstellensatz [76, Theorem 4.19]). Hence, R/m is a finite field.

Since xi is a unit in R, the image ai ∈ R/m of xi is nonzero. ai being an element of finite field, a

power of ai is 1. Therefore, there is a positive integer n such that bn = (xn1 − 1, . . . , xnD − 1) ⊆ m.

Since xn − 1 divides xnn
′ − 1, we see that there exists n ≥ 1 such that bn ⊆ m1 ∩ m2 for any two

maximal ideals m1,m2. One extends this by induction to any finite number of maximal ideals.

Since dimR/J = 0, any prime ideal of R/J is maximal and the Artinian ring R/J has only

finitely many maximal ideals. rad J is then the intersection of the contractions (pull-backs) of these

finitely many maximal ideals. Therefore, there is n ≥ 1 such that

bn ⊆ rad J.

Since R is Noetherian, (rad J)p
r ⊆ J for some r ≥ 0 where p is the characteristic of F. Hence, we

have

bnpr ⊆ bp
r

n ⊆ (rad J)p
r

⊆ J.

Let L = npr. If R′ = F[xL1 , x̄
L
1 , . . . , x

L
D, x̄

L
D], annR′ N is nothing but J ∩R′. We have just shown

bL∩R′ ⊆ J ∩R′. Since J is a proper ideal, we have 1 /∈ J ∩R′. Thus, bL∩R′ = J ∩R′ since bL∩R′

is maximal in R′.

Theorem 4.2. For any two-dimensional degenerate exact code Hamiltonian, there exists an equiv-

alent Hamiltonian such that

ann coker ε = (x− 1, y − 1).

Thus, coker ε is a torsion module.

The content of Theorem 4.2 is presented in [87]. We will comment on it after the proof.
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Proof. By Lemma 4.2.1, we can find an equivalent Hamiltonian such that the generating map σ for

its stabilizer module is injective:

0→ G
σ−→ P.

Let t be the rank of G. The exactness condition says

0→ G
σ−→ P

ε−→ E

is exact where ε = σ†λq and E has rank t. Applying Proposition 3.3.2, since I(σ) = I(ε) and hence

in particular codim I(σ) = codim I(ε), we have that q = t and codim I(ε) ≥ 2 if I(ε) 6= R. But,

I(ε) 6= R by Corollary 3.4.2.

Since q = t, I(ε) is equal to the initial Fitting ideal, and therefore has the same radical as the

annihilator of coker ε = E/ im ε. (See [76, Proposition 20.7] or [60, Chapter XIX Proposition 2.5].)

In particular, dimR/(ann coker ε) = 0. Apply Lemma 4.2.3 to conclude the proof.

An interpretation of the theorem is the following. For systems of qubits, Theorem 4.2 says that

x+ 1 and y + 1 are in ann coker ε. In other words, any element v of E is a charge, and a pair of v’s

of distance 1 apart can be created by a local operator. Equivalently, v can be translated by distance

1 by the local operator. Since translation by distance 1 generates all translations of the lattice, we

see that any excitation can be moved through the system by some sequence of local operators. This

is exactly what happens in the 2D toric code: Any excited state is described by a configuration of

magnetic and electric charge, which can be moved to a different position by a string operator.

Moreover, since (x − 1, y − 1) = ann coker ε, the action of x, y ∈ R on coker ε is the same as

the identity action. Therefore, the R-module coker ε is completely determined up to isomorphism

by its dimension k as an F2-vector space. In particular, coker ε is a finite set, which means there

are finitely many charges. The module K(L) of Pauli operators acting on the ground space (logical

operators), can be viewed as K(L) = Tor1(coker ε, R/bL). Thus, K(L) is determined by k up to

R-module isomorphisms. This implies that the translations of a logical operator are all equivalent.

It is not too obvious at this moment whether the symplectic structure, or the commutation relations

among the logical operators, of K(L) is also completely determined.

Yoshida [84] argued a similar result assuming that the ground-state degeneracy should be inde-

pendent of system size. Bombin [87] later claimed without the constant degeneracy assumption that

one can choose locally independent stabilizer generators in a ‘translationally invariant way’ in two

dimensions, for which Lemma 4.2.1 is a generalization, and that there are finitely many topological

charges, which is immediate from Theorem 4.2 since coker ε is a finite set. The claim is further

strengthened assuming extra conditions by Bombin et al. [86], which can be summarized by saying

that σ is a finite direct sum of σ2D-toric in Example 3.2.
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Remark 4.1. Although the strings are capable of moving charges on the lattice, it could be very

long compared to the interaction range. Consider

εp =

p(x) p(y) 0 0

0 0 p(ȳ) −p(x̄)


where p is any polynomial. It defines an exact code Hamiltonian. For instance, the choice p(t) =

t − 1 reproduces the 2D toric code of Example 3.2. Now let p(t) be a primitive polynomial of

the extension field F2w over F2. p(t) has coefficients in the base field F2 and factorizes in F2w as

p(t) = (t − θ)(t − θ2)(t − θ22

) · · · (t − θ2w−1

). (See [60, Chapter V Section 5].) The multiplicative

order of θ is N = 2w − 1. The degree w of p(t) may be called the interaction range. If the charge

e =
(

1 0
)T

at (0, 0) ∈ Z2 is transported to (a, b) ∈ Z2\{(0, 0)} by some finitely supported operator,

we have (xayb − 1)e ∈ im ε. That is, xayb − 1 ∈ (p(x), p(y)). Substituting x 7→ θ and y 7→ θ2m ,

we see that θa+2mb = 1 or a + 2mb ≡ 0 (mod N) for any m ∈ Z. In other words, a ≡ −b ≡ −2b

(mod N). It follows that |a|+ |b| ≥ N .2 Therefore, the length of the string segment transporting a

charge is exponential in the interaction range w.

Example 4.1 (Wen plaquette [88]). This model consists of a single type of interaction (t = q = 1)

X Y

Y X

σWen =

1 + x+ y + xy

1 + xy



where X,Y are abbreviations of σx, σy. It is known to be equivalent to the 2D toric code. Take the

coarse-graining given by R′ = F2[x′, y′, x̄′, ȳ′] where

x′ = xȳ, y′ = y2.

(The coarse-graining considered in this example is intended to demonstrate a non-square blocking

of the old lattice to obtain a ‘tilted’ new lattice, and is by no means special.) As an R′-module, R is

free with basis {1, y}. With the identification R = (R′ ·1)⊕(R′ ·y), we have x·1 = x′ ·y, x·y = x′y′ ·1,

and y · 1 = 1 · y, y · y = y′ · 1. Hence, x and y act on R′-modules as the matrix-multiplications on

the left:

x 7→

 0 x′y′

x′ 0

 , y 7→

0 y′

1 0

 .

Identifying

Rn = [(R′ · 1)⊕ (R′ · y)]⊕ · · · ⊕ [(R′ · 1)⊕ (R′ · y)],

2In case of qudits with prime dimensions p, the lower bound will be N/(p− 1).
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our new σ on the coarse-grained lattice becomes

σ′ =


1 + x′y′ y′ + x′y′

1 + x′ 1 + x′y′

1 + x′y′ 0

0 1 + x′y′

 .

By a sequence of elementary symplectic transformations, we have

σ′
E2,4(1)−−−−→
E1,3(1)


0 y′ + x′y′

1 + x′ 0

1 + x′y′ 0

0 1 + x′y′


E4,1(ȳ′)−−−−−→
E3,2(y′)


0 y′ + x′y′

1 + x′ 0

1 + y′ 0

: 0 x′y′ + x′



col.2−−−−→
×x̄′ȳ′


0 1 + x̄′

1 + x′ 0

1 + y′ 0

0 1 + ȳ′


1↔3−−−→


1 + y′ 0

1 + x′ 0

0 1 + x̄′

0 1 + ȳ′

 ,

which is exactly the 2D toric code. ♦

4.3 Three dimensions

In the previous section, we derived a consequence of the exactness of code Hamiltonians. The two-

dimensional Hamiltonian was special so we were able to characterize the behavior of the charges

more or less completely. Here, we prove a weaker property of three dimensions that there must exist

a nontrivial charge for any exact code Hamiltonian. It follows from Theorems 3.1,3.2 that such a

charge can spread through the system by surmounting the logarithmic energy barrier.

Lemma 4.3.1. Suppose D = 3,

0→ G1
σ1−→ G

σ−→ P
ε=σ†λq−−−−−→ E

is exact, and I(σ) ⊆ m = (x− 1, y − 1, z − 1). Then, coker ε is not torsion-free.

Proof. Suppose on the contrary coker ε is torsion-free. We have an exact sequence

0→ G1
σ1−→ G

σ−→ P
ε−→ E → E′.

If G1 = 0, Proposition 3.5.3 implies the conclusion. So we assume G1 6= 0, and therefore we have
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I(σ1) = R by Proposition 3.3.2.

Let us localize the sequence at m, so I(σ1)m = Rm. Since rank(G1)m = rank(σ1)m, the matrix

of (σ1)m becomes

(σ1)m =

0

I


for some basis of (G1)m and Gm. See the proof of Lemma 3.4.1. In other words, there is an invertible

matrix B ∈ GLt×t(Rm) such that

σmB =
(
σ̃ 0

)
where σ̃ is the 2q× t′ submatrix. Note that the antipode map is a well-defined automorphism of Rm

since m = m.

Since ε = σ†λq, we have

B†εm =

σ̃†
0

λq =

σ̃†λq
0

 . (4.1)

Therefore, we get a new exact sequence

0→ G′
σ̃−→ Pm

ε̃=σ̃†λq−−−−−→ Rt
′

m

where G′ = Gm/ im(σ1)m is a free Rm-module and t′ = rankG′. It is clear that rank ε̃ = rank σ̃.

Setting S = Rm in Proposition 3.5.3 implies that coker ε̃ is not torsion-free. But, since we are

assuming coker εm is torsion-free, coker σ̃† is also torsion-free by Eq. (4.1). This is a contradiction.

Theorem 4.3. For any three-dimensional, degenerate and exact code Hamiltonian, there exists a

fractal generator.

Proof. By Lemma 4.2.1, there exists an equivalent Hamiltonian such that

0→ G1
σ1−→ G

σ−→ P
ε=σ†λq−−−−−→ E

is exact. The existence of a fractal generator is a property of the equivalence class by Proposi-

tion 3.5.2. If we can find a coarse-graining such that I(σ′) ⊆ (x′−1, y′−1, z′−1), then Lemma 4.3.1

shall imply the conclusion.

Recall that εL and σL denote the induced maps by factoring out bL = (xL−1, yL−1, zL−1). See

Sec. 3.4. There exists L such that K(L) = ker εL/ imσL 6= 0 by Corollary 3.4.2. Consider the coarse-

grain by x′ = xL, y′ = yL, z′ = zL. Let R′ = F2[x′±1, y′±1, z′±1] denote the coarse-grained base

ring. If K ′(L′) denotes ker ε′L′/ imσ′L′ as R′-module, we see that K ′(1) = K(L) as F2-vector space.

In particular, K ′(1) 6= 0. Put m = (x′ − 1, y′ − 1, z′ − 1) = b′1 ⊆ R′. Then, K ′(1)m = K ′(1) 6= 0. By
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Lemma 3.4.1, we have I(σ′) ⊆ m.

Yoshida argued that when the ground-state degeneracy is constant independent of system size

there exists a string operator [47]. To prove it, we need an algebraic fact.

Proposition 4.3.2. Let M be a finitely presented R-module, and T be its torsion submodule. Let I

be the first non-vanishing Fitting ideal of M . Then,

rad I ⊆ rad annT.

Proof. Let p be any prime ideal of R such that I 6⊆ p. By the calculation of the proof of Lemma 3.4.1,

Mp is a free Rp-module, and hence is torsion-free. Since T is embedded in M , it follows that Tp = 0,

or equivalently, annT 6⊆ p. Since the radical of an ideal is the intersection of all primes containing

it [80, Proposition 1.8], the claim is proved.

Corollary 4.3.3. Let T be the set of all point-like charges modulo locally created ones of a degenerate

and exact code Hamiltonian in three dimensions of characteristic dimension zero. Then, one can

coarse-grain the lattice such that

annT = (x− 1, y − 1, z − 1).

The corollary says that any point-like charge is attached to strings and is able to move freely

through the lattice. The condition is implied by Lemma 3.4.9 if the ground-state degeneracy is

constant independent of the system size when defined on a periodic lattice.

Proof. By Theorem 3.1, T is the torsion submodule of coker ε. By Theorem 4.3, T is nonzero.

Setting M = coker ε in Proposition 4.3.2, the associated ideal Iq(ε) is the first non-vanishing Fitting

ideal of M . Since dimR/Iq(ε) = 0 by assumption, we have dimR/ annT = 0. Lemma 4.2.3 implies

the claim.

Example 4.2 (Toric codes in higher dimensions). Any higher-dimensional toric code can be treated

similarly as for the two-dimensional case. In three dimensions one associates each site with q = 3
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qubits. It is easily checked that

σ3D-toric =



1 + x̄ 0 0 0

1 + ȳ 0 0 0

1 + z̄ 0 0 0

0 0 1 + z 1 + y

0 1 + z 0 1 + x

0 1 + y 1 + x 0


.

Both two- and three-dimensional toric codes have the property that coker ε is not torsion-free.

However, in two dimensions any element of E is a physical charge, whereas in three dimensions E

contains physically irrelevant elements. Note that in both cases, 1+x and 1+y are fractal generators.

Being consisted of two terms, they generate the ‘string operators.’

The 4D toric code [7] has σx-type interaction and σz-type interaction. Originally the qubits are

placed on every plaquette of 4D hypercubic lattice; instead we place q = 6 qubits on each site. The

generating map σ for the stabilizer module is written as a 12× 8-matrix (t = 8)

σ4D-toric =

σX 0

0 σZ


where

σX =



1 + y 1 + x 0 0

1 + w 0 0 1 + x

1 + z 0 1 + x 0

0 1 + z 1 + y 0

0 1 + w 0 1 + y

0 0 1 + w 1 + z


,

σ̄Z =



0 0 1 + w 1 + z

0 1 + z 1 + y 0

0 1 + w 0 1 + y

1 + w 0 0 1 + x

1 + z 0 1 + x 0

1 + y 1 + x 0 0


.

Note the bar on σZ .

Theorem 4.3 does not prevent the absence of a fractal generator in four or higher dimensions.

Indeed, this 4D toric code lacks any fractal generator. To see this, it is enough to consider σZ since
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cokerσ†X
∼= cokerσ†Z as R4-modules, where R4 = F2[x±1, y±1, z±1, w±1]. If

ε1 =
(

1 + x 1 + y 1 + z 1 + w
)

: R4
4 → R4,

then

R6
4

σ†Z−−→ R4
4
ε1−→ R4

is exact. (A direct way to check it is to compute S-polynomials [76, Chapter 15] of the entries of ε1,

and to verify that they all are in the rows of σZ .) Hence, cokerσ†Z is torsion-free by Proposition 3.5.1.

For the toric codes in any dimensions, σ has nonzero entries of form xi − 1. The radical of the

associated ideal I(σ) is equal to m = (x1 − 1, . . . , xD − 1). So m is the only maximal ideal of R that

contains I(σ). The characteristic dimension is zero. If 2 - L, since (bL)m = mm, (σL)m is a zero

matrix. Any other localization of σL does not contribute to dimF2
K(L) by Lemma 3.4.1. Therefore,

if 2 - L, K(L) has constant vector space dimension independent of L.

There is a more direct way to compute the R-module K(L). For the three-dimensional case,

consider a free resolution of R3/m, where R3 = F2[x±1, y±1, z±1], as

0→ R1
3

∂3=


a

b

c


−−−−−−→ R3

3

∂2=


0 −c b

c 0 −a

−b a 0


−−−−−−−−−−−−−−−→ R3

3

∂1=

(
a b c

)
−−−−−−−−−−−→ R1

3 → R3/m→ 0

where a = x− 1, b = y − 1, and c = z − 1. We see that

σ3D-toric = ∂̄3 ⊕ ∂2, and ε3D-toric = ∂̄2 ⊕ ∂1. (4.2)

Therefore,

K(L)3D-toric
∼= Tor1(coker ε3D-toric, R3/bL) ∼= Tor2(R3/m, R3/bL)⊕ Tor1(R3/m, R3/bL).

Using Tor(M,N) ∼= Tor(N,M) and the fact that a resolution of R3/bL is Eq. (4.2) with a, b, c

replaced by xL − 1, yL − 1, zL − 1, respectively, we have

Tori(R3/m, R3/bL) ∼= Tori(R3/m, R3/m) ∼= (F2)3Ci

for each 0 ≤ i ≤ 3. Therefore, K(L)3D-toric
∼= (F2)3C2 ⊕ (F2)3C1 ∼= (F2)6. The four-dimensional case

is similar:

K(L)4D-toric
∼= Tor2(R4/m, R4/bL)⊕ Tor2(R4/m, R4/bL) ∼=

(
(F2)4C2

)2
.
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The calculation here is closely related to the cellular homology interpretation of toric codes. ♦

Example 4.3 (Chamon model [89, 90]). This three-dimensional model consists of single type of

term in the Hamiltonian. The generating map is

σChamon =

x+ x̄+ y + ȳ

z + z̄ + y + ȳ

 .

Since

σ†λ1

0

1

 = (1 + xȳ)

 0

x̄+ y

 ,

1 +xȳ is a fractal generator. Consisted of two terms, it generates a string operator. The degeneracy

can be calculated using Corollary 3.4.5. Assume all the three linear dimensions of the system are

even. Put

S = R/(x+ x̄+ y + ȳ, z + z̄ + y + ȳ, x2l − 1, y2m − 1, z2n − 1).

Then, the log2 of the degeneracy is k = dimF2 S. In S, we have x+ x̄ = y + ȳ = z + z̄. Since S has

characteristic 2, it holds that

wp+1 + w−p−1 = (w + w−1)(wp + wp−2 + · · ·+ w−p)

for p ≥ 1 and w = x, y, z. By induction on p, we see that wp + w−p is a polynomial in w + w−1.

Therefore,

xp + x̄p = yp + ȳp = zp + z̄p

for all p ≥ 1 in S. Put g = gcd(l,m, n). Since xl + x−l = ym + y−m = zn + z−n = 0 in S, we have

xg + x−g = yg + y−g = zg + z−g = 0.

Applying Buchberger’s criterion with respect to the lexicographic order in which x ≺ y ≺ z, we

see that

S = F2[x, y, z]/(z2 + zx2l−1 + zx+ 1, y2 + yx2l−1 + yx+ 1, x2g + 1)

is expressed with a Gröbner basis. Therefore,

k = dimF2
S = 8 gcd(l,m, n).

♦

Example 4.4 (Levin-Wen fermion model [33]). The 3-dimensional model is originally defined in

terms of Hermitian bosonic operators {γab}a,b=1,...,6, squaring to identity if nonzero, such that

γab = −γba, [γab, γcd] = 0 if a, b, c, d are distinct, and γabγbc = iγac if a 6= c. An irreducible
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representation is given by Pauli matrices acting on C2 ⊗ C2, and their commuting Hamiltonian fits

nicely into our formalism. The model was proposed to demonstrate that the point-like excitations

may actually be fermions.

σLevin-Wen =


1 + z 1 + z x+ y

y + yz x+ xz x+ y

y + z 1 + x 1 + x

y + z z + xz y + xy



εLevin-Wen =


y + z y + z y + yz 1 + z

z + xz 1 + x x+ xz 1 + z

y + xy 1 + x x+ y x+ y


Here we multiplied the rows of εLevin-Wen by suitable monomials to avoid negative exponents. One

readily verifies that ker εLevin-Wen = imσLevin-Wen. The model is symmetric under the spatial rotation

by π/3 about (1, 1, 1) axis. Indeed, if one changes the variables as x 7→ y 7→ z 7→ x and apply a

symplectic transformation

ω =


1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 0

 :



XI 7→ Y I

IX 7→ IY

ZI 7→ XI

IZ 7→ IX

, (4.3)

then σLevin-Wen remains the same up to permutations of columns.

The torsion submodule T of C = coker εLevin-Wen, which describes the point-like charges according

to Theorem 3.1, is

T = R ·


1 + y

1 + x

0

 . (4.4)

In order to see this, first shift the variables a = x+ 1, b = y+ 1, c = z+ 1. Then, εLevin-Wen becomes

εLevin-Wen =


b+ c b+ c c+ bc c

a+ ac a c+ ac c

a+ ab a a+ b a+ b

 =: φ

We will verify that N = C/T is torsion-free. A presentation of N = cokerφ′ is obtained by joining
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the generator of T to the matrix φ.

φ′ =


b+ c b+ c c+ bc c b

a+ ac a c+ ac c a

a+ ab a a+ b a+ b 0


Column operations of φ′ give

φ′ ∼=


0 c b 0 0

c 0 a 0 0

b a 0 0 0

 =
(
∂2 0 0

)

where ∂2 is from Eq. (4.2). Therefore, φ′ generates the kernel of ∂1, and by Proposition 3.5.1,

N = cokerφ′ = coker ∂2 is torsion-free.

The torsion submodule T of C = cokerφ is annihilated by a, b, or c (See Corollary 4.3.3):

a


b

a

0

 = φ


1

1 + a

0

a

 , b


b

a

0

 = φ


1

1 + b

1

1

 , c


b

a

0

 = φ


0

0

1

1

 .

Therefore, T is isomorphic to coker ∂1
∼= F2 of Eq. (4.2). The arguments hx, hy, hz of φ can be

thought of as hopping operators for the charge. According to [33], one can check that the charge is

actually a fermion from the commutation values among, for example, hx, hy, ȳhy.

Consider a short exact sequence

0→ T → C → N → 0.

The corresponding sequence for 3D toric code splits, i.e., C ∼= T ⊕N , while this does not. It implies

that this model is not the same as the 3D toric code.

Now we can compute the ground-state degeneracy, or dimF2 K(L). Tensoring the boundary

condition

B = R/bL = R/(xL − 1, yL − 1, zL − 1)

to the short exact sequence, we have a long exact sequence

· · · → Tor1(T,B)
δ′−→ Tor1(C,B)

δ−→ Tor1(N,B)→ T ⊗B → C ⊗B → N ⊗B → 0.

Hence, K(L) ∼= Tor1(C,B) has vector space dimension dimF2 im δ + dimF2 ker δ. Since the sequence
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is exact, dimF2
ker δ = dimF2

im δ′. As we have seen in Example 4.2,

Tor1(T,B) ∼= Tor1(R/m, B) ∼= (F2)3, and

Tor1(N,B) ∼= Tor2(R/m, B) ∼= (F2)3.

It follows that dimF2
K(L) ≤ dimF2

Tor1(N,B) + dimF2
Tor1(T,B) = 6.

It is routine to verify that b4 ⊆ I2(φ) ⊆ m := (x + 1, y + 1, z + 1). Recall the decomposition

K(L) =
⊕

pK(L)p where p runs over all maximal ideals of R/bL. Due to Lemma 3.4.1, this

decomposition consists of only one summand K(L)m. When L is odd, since (bL)m = mm, we know

K(L)m = K(1)m. Since φ 7→ 0 under a = b = c = 0, we see dimF2
K(1) = 4. The logical operators

in this case are 
0

0

ẑ

ẑ

^ x̂ · ŷz̄


0

1

0

0

 ;


x̂

x̂

0

0

^ ẑ · x̂y


1

1

1

0


where µ̂ =

∑L−1
n=0 µ

n so µ · µ̂ = µ̂, and symplectic pairs are tied. The left elements are string-like,

and the right surface-like.

When L is even, the following are F2-independent elements of K(L). As there are 6 in total, the

largest possible number, we conclude that K(L) is 6-dimensional, i.e., the number of encoded qubits

is 3 when linear dimensions are even.
0

0

ẑ

ẑ

^ x̂′ŷ′


1 + y

x+ xy

0

1 + x+ y + xy

 ;


x̂

x̂

0

0

^ ŷ′ẑ′


1 + z

1 + z

1 + z

y + yz

 ;


ŷ

ŷ

ŷ

ŷ

^ ẑ′x̂′


0

1 + x+ z + xz

1 + x

1 + x


where µ̂′ =

∑L/2−1
i=0 µ2i so (1 + µ)µ̂′ = µ̂. The pairs are transformed cyclically by x 7→ y 7→ z 7→ x

together with the symplectic transformation ω of Eq. (4.3). ♦

4.4 Discussion

There are many natural questions left unanswered. Perhaps, it would be the most interesting to

answer how much the associated ideal I(σ) determines about the Hamiltonian. Note that the very

algebraic set defined by the associated ideal is not invariant under coarse-graining. For instance, in

the characteristic dimension zero case, the algebraic set can be a several points in the affine space,

but becomes a single point under a suitable coarse-graining. However, the geometry of the algebraic

set seems to be crucial to prove, for example, “no-strings rule.” See Chapter 5.
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It is interesting on its own to prove or disprove that the elementary symplectic transformations

generate the whole symplectic transformation group. In the zero-dimensional case where Λ is the

trivial group, it is true as we have already seen in Proposition 2.1. The one-dimensional case

is also true because it is implied by the computation in the proof of Theorem 4.1. A classical

problem answered affirmatively by Suslin [91] is that any sufficiently large invertible matrix over

a polynomial ring is a finite product of elementary matrices such as row operations and scalar

multiplications. Later, an algorithmic proof is given by Park and Woodburn [92]. A similar problem

under a confusingly similar name ‘symplectic group’ over polynomial rings is solved by Grunewald et

al. [93], who defined the ‘symplectic group’ as
{
S ∈ Mat (n,F[x1, . . . , xn])

∣∣ STλS = λ
}

where T is

the transpose. Kopeyko [94] generalized it to include Laurent polynomials, but still the ‘symplectic

group’ is different from ours since the antipode map is absent from the definition

{
S ∈ Mat

(
n,F[x±1

1 , . . . , x±1
n ]
) ∣∣ STλS = λ

}
.

The characteristic dimension is not proven to be invariant under coarse-graining. It suffices to

have an upper bound on dimF2 K(L) in Corollary 3.4.8. without the condition that 2 - L. A closely

related object is the Hilbert function. Given a graded module M =
⊕∞

s=0Ms over a polynomial ring

with coefficients in a field F, the Hilbert function fM is a numerical function defined by fM (s) =

dimFMs. Since K(L) = dimF2
Tor1(coker ε, R/bL), the Hilbert function might be useful if we could

make coker ε graded. A technical difficulty would be that the ideal bL = (xL1 − 1, . . . , xLD − 1) is not

a power of m = (x1 − 1, . . . , xD − 1). See [76, Chapter 12] and [95].

Lastly, an important problem is to give a criterion to a module M that can be realized as cokerσ†

for an exact code Hamiltonian described by σ. In the two-dimensional case, we know the answer —

annM = (x− 1, y − 1) by Theorem 4.2.
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Chapter 5

Cubic code

The toric code [3] is usually defined on a planar graph with qubits residing on edges. The star

operator and plaquette operators are defined according to the data of the graph. The model is thus

a priori lattice dependent. However, a certain set of important properties of the model turns out

to be lattice independent. Particularly the ground-state subspace conveys a structure that depends

only on the topology of the underlying space, insensitive to the microscopic detail. If the underlying

space is a genus g (oriented) surface, the degeneracy is 4g. Even if the Hamiltonian is perturbed,

the energy splitting of lowest 4g states is exponentially small in the system size as long as the

perturbation is small enough [5, 3, 6]. It is a signature of topological order.

Authors have used the term ‘topological quantum order’ to mean all or a part of the following

properties: Ground-state degeneracy as a function of topology, no spontaneous symmetry breaking,

anyonic particle content [24, 96, 97, 5, 26, 25], robust edge modes against perturbations [98, 99, 37],

locally indistinguishable ground states [6, 75, 74], and topological entanglement entropy [27, 28].

Here, we take the local indistinguishability of ground states as a definition of topological quantum

order. The local indistinguishability is precisely the one used in Chapter 3, as well as in the proof

of gap stability results [75, 74]. See Lemma 3.3.1. We ask what quantum phases are possible in the

class of code Hamiltonians.

An important example of topological quantum order presented in this thesis is cubic code. In this

chapter we explain how the model is found, and study its consequences. The cubic code is an exact

local additive code with translation symmetry on the simple cubic lattice, where the exactness is as

in Chapter 3. This model is a gapped unfrustrated spin Hamiltonian, and is topologically ordered in

the very sense we just defined, but breaks many aspects of conventional models of topological order.

Most prominently, the excitations or charges of the cubic code cannot be interpreted as particles

since they are immobile; the hopping term appears only after L-th or higher order perturbation

theory, where L is the linear system size. The immobility implies that the system spends quite a

long time to reach its thermal equilibrium in response to environment’s change. (Later, we will

give quantitative statements regarding this.) Moreover, due to the topological quantum order, the
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phase is stable with respect to arbitrary but small perturbations; the immobility of excitations is

also protected [6].

The immobility of the charges translates into the theory of quantum error correcting codes as

the absence of string logical operators. We call this property by no-strings rule. The notion of string

logical operators might be intuitive if one imagines the toric codes in two or three dimensions [7].

However, this intuition is too model specific; the strings in discrete lattices are not well-defined

objects since a set of points in the lattice does not in general have a well-defined dimensionality. We

overcome this issue by defining string segments that capture characteristics that are responsible for

the mobility of charges.

We proceed by translating conditions for the absence of the logical string segments into our

algebraic framework, in order to systematically search for codes without logical strings; the cubic

code is not an ad hoc model. By Corollary 4.3.3 [47], the characteristic dimension of the cubic code

must be 1 and the degeneracy must generally grow with the system size. An explicit formula for

the degeneracy is given. Additionally, a real-space renormalization computation is presented. It

seems that the cubic code is a fixed point of a certain unconventional kind. Namely, the model is a

direct sum of two daughter models A and B at a coarse-grained lattice where one daughter model

A is the same as the original model, but the other B is not. The model B produces two copies of

itself at a further coarse-grained lattice. The renormalization group flow continues to branch. Next,

we compute the thermal partition function, and show that there is no finite temperature phase

transition.

5.1 String segments and no-strings rule

The most important property of one-dimensional objects is that a finite part of it has two disjoint

boundary points. An intuitive role of string operator is to move an excitation at its one boundary

point to another boundary point. Essentially, it is a concatenation or juxtaposition of hopping

operators. The hopping operator is, as a whole, a finitely supported operator. Therefore, if the

hopping operator acts on the vacuum (ground state), the overall effect is to create a trivial or

neutral charge, which consists of two spatially separated charges. When either of the two charges

is neutral by itself, the hopping is meaningless because trivial charges can be annihilated locally

and created anywhere arbitrarily; only the hopping of nontrivial charges is important. Now we can

define string segments and their absence.

Definition 5.1. [50, 51] A string segment is a finitely supported Pauli operator that creates

excitations contained in the union of two finite boxes of width w. The string segment is nontrivial

if the charge contained in one of the boxes is nontrivial. The distance between the boxes is the

length of the string segment. We say a model obeys no-strings rule if the length of any nontrivial
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string segment of width w is bounded by αw for some constant α ≥ 1.

The no-strings rule may seem too strong than necessary; why do we need an upper bound by a linear

function? It is rather a technicality that is necessary to prove a logarithmic energy barrier theorem

in Section 6.1. However, our definition seems sharp yet broad enough to derive further results.

An immediate consequence of the no-strings rule in the case of a translation-invariant code

Hamiltonian is that there are infinitely many charges. If there were only finitely many, then in the

sequence of all translations of a charge c there would be an equivalent charge c′. It means c− c′ is

neutral and therefore c− c′ is created by a finitely supported operator, which is a nontrivial string

segment. This string segment can be juxtaposed many times to give arbitrarily long string segments

with fixed width. This is a contradiction to the no-strings rule. Also, in view of Corollary 4.3.3 and

Lemma 3.4.9, a translationally invariant three-dimensional exact code Hamiltonian that obeys the

no-strings rule, must have a growing ground-state degeneracy with respect to the system size when

defined on lattices with periodic boundary conditions.

5.2 Search for models

We wish to find an interesting class of models that are relatively handy to deal with. The following

lemma shows such a family. Recall that for an exact code Hamiltonian, we have kerσ†λ = imσ.

Lemma 5.2.1. The generating matrix of a code Hamiltonian

σ =


f 0

g 0

0 g′

0 f ′

 ,

where f, g, f ′, g′ ∈ R, elements of group algebra of ZD, is exact if and only if

gcd(f, g) = 1, g′ = ḡ, f ′ = −f̄

up to units of R.

It is a generalization of σ in Remark 4.1. The 2D toric code of Example 3.2 falls into this form.

Proof. Observe that there is no mixing between the σx part (the upper two rows of σ) and the σz

part (the lower two rows of σ). So kerσ†λ = imσ can be checked separately. That is, we need to

verify whether the kernel of

εz =
(
f̄ ḡ

)
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is generated by

g′
f ′

, and whether the kernel of

εx =
(
ḡ′ f̄ ′

)

is generated by

f
g

. If f = f1h and g = g1h where gcd(f, g) = h, then

 ḡ1

−f̄1

 ∈ ker εz. We have(
ḡ1 −f̄1

)
= r

(
g′ f ′

)
for some r ∈ R. Since gcd(g1, f1) = 1, r must be a unit. Hence, we may

set g′ = ḡ1 and f ′ = −f̄1. Then,

f1

g1

 ∈ ker εx, so h is a unit. The converse is straightforward.

We stay with the form of σ as in Lemma 5.2.1 for its simplicity. Now we consider the no-strings

rule. The equivalence classes of topologically nontrivial charges is coker ε by Theorem 3.1, which

decomposes as coker εz ⊕ coker εx. Since the two summands are related by the antipode map, it

suffices to consider coker εx ∼= R/(f, g) only. A necessary condition for the no-strings rule is that

any fractal generator should not consist of two terms. For Theorem 4.2, the minimal dimension we

should be interested in is 3; R = F2[x±1, y±1, z±1]. Let I = (f, g), the ideal of R generated by f and

g. If, for example, f factorizes as f = (1 + x)f1 and f1 /∈ I, then (1 + x) is a string generator. So

it is necessary that the Gröbner basis of the ideal (f, g) does not have any two-term factor such as

x+ 1, y+ 1, or z + 1. In order to have a degenerate code Hamiltonian (Corollary 3.4.2), we have to

have a non-unit associated ideal. For simplicity, we demand that x = y = z = 1 is a root of f and g

so that the associated ideal is contained in a maximal ideal (x+ 1, y + 1, z + 1).

We further assume that f and g have exponents 0 or 1 in each variable. Thus, f and g are

linear combinations of 1, x, y, z, xy, yz, zx, xyz over F2. Naively there are 216 possibilities, but they

are not all different. For example, three choices (f(x, y, z), g(x, y, z)), (xf( 1
x ), y, z), xg( 1

x , y, z)), and

(f(y, z, x), g(y, z, x)) define the same models because they are related by the reflection about yz-

plane or the π/3 rotation about (1, 1, 1)-axis. Up to these symmetries of the unit cube, there are 392

pairs of f, g. An exhaustive search gives 10 models in Table 5.1 that satisfy all our requirements.

The most symmetric model defined by

f = 1 + x+ y + z, g = 1 + xy + yz + zx

will be called cubic code.
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f g
1 1 + x+ y + z 1 + xy + xz + yz
2 x+ y + z + yz 1 + y + xy + z + xz + xyz
3 1 + x+ y + z 1 + xz + yz + xyz
4 1 + x+ z + yz 1 + y + xy + xz
5 1 + x+ z + yz y + z + xz + yz
6 1 + x+ y + z 1 + y + xz + yz
7 1 + x+ y + z 1 + z + yz + xyz
8 1 + x+ z + yz 1 + y + xy + z + xz + yz
9 1 + x+ y + z xy + z + xz + yz
10 1 + x+ z + yz 1 + y + xy + xz + yz + xyz

Table 5.1: Complete list of cubic codes. Each pair of polynomials defines an exact degenerate code
Hamiltonian according to Lemma 5.2.1. They potentially obey the no-strings rule. Especially, code
1 indeed obeys the no-strings rule as proven in Section 5.3. The table is exhaustive, up to symmetries
of simple cubic lattice and local symplectic transformations, under the following criteria: (i) f and
g have exponents 0 or 1 for each variable, (ii) any member of the Gröbner basis of the ideal (f, g)
is not divided by any two-term factor, and (iii) f and g become zero when x = y = z = 1. In the
main text, the cubic code refers specifically to the code 1 in the table. The numbering is consistent
with a table in [50].

5.3 Cubic code

Written out explicitly, cubic code is the translation-invariant negative sum of two types of interaction

terms as in Figure 5.1. There are two qubits per site, and the two-letter notation stands for tensor

product of Pauli matrices. For example, XI = σx ⊗ I, ZZ = σz ⊗ σz, etc. The third cube specifies

the coordinate system of the simple cubic lattice. The generating map for the stabilizer module is

σcubic-code =


1 + x+ y + z 0

1 + xy + yz + zx 0

0 1 + x̄ȳ + ȳz̄ + z̄x̄

0 1 + x̄+ ȳ + z̄
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Figure 5.1: Stabilizer generators of the 3D cubic code. Here X ≡ σx and Z ≡ σx represent single-
qubit Pauli operators, while I is the identity operator. Double-letter indices represent two-qubit
Pauli operators, for example, IZ ≡ I ⊗ Z, ZZ ≡ Z ⊗ Z, II ≡ I ⊗ I, etc.



89

where one has to interchange the first and second qubit. The associated ideal is contained in a prime

ideal of codimension 2 in F2[x±1, y±1, z±1]:

I(σ) ⊆ (1 + x+ y + z, 1 + xy + yz + zx) = pxyz.

Since codim I(σ) ≥ 2, the characteristic dimension is 1. Since coker εcubic-code = R/pxyz ⊕ R/pxyz,

any nonzero element of pxyz is a fractal generator. Since the conditions used in the search for the

model were only necessary conditions for the no-strings rule. A rigorous treatments is as follows.

We prove a purely algebraic statement, of which the no-strings rule is an interpretation. A more

elementary method can be found in [50].

Lemma 5.3.1. Let S = F2[x, y, z] be a polynomial ring, and p = (1+x+y+z, 1+xy+yz+zx) ⊆ S an

ideal. If m1e1 +m2e2 ∈ p for polynomials e1, e2 and monomials m1,m2 such that gcd(m1,m2) = 1,

then only one of the following is true:

• e1 ∈ p and e2 ∈ p.

• max(deg e1,deg e2) ≥ max(degm1,degm2).

Proof. Put F4 = {0, 1, ω, ω2}, i.e., ω is the primitive third root of unity over the binary field.

Consider a ring homomorphism φ : S → U := F4[t] defined by

φ : x 7→ 1 + t, y 7→ 1 + ωt, z 7→ 1 + ω2t.

It maps the two generators of p to zero in U .

φ(1 + x+ y + z) = 4 + (1 + ω + ω2)t = 0,

φ(1 + xy + yz + zx) = 4 + 2(1 + ω + ω2)t+ (1 + ω + ω2)t2 = 0.

Moreover, kerφ is precisely p. (This can be verified by eliminating the variable x and computing the

Gröbner basis of ((y+1)+ω(z+1), ω2+ω+1) in an elimination monomial order.) If m1e1+m2e2 ∈ p,

then φ(m1)φ(e1) = φ(m2)φ(e2). Since m1 and m2 are co-prime monomials and φ(x), φ(y), φ(z) are

pairwise co-prime, it follows that φ(m1) and φ(m2) are nonzero and co-prime. Therefore, φ(e1) = 0

if and only if φ(e2) = 0 if and only if e1, e2 ∈ p, which is the first case. If φ(e1) 6= 0, then φ(m1)

must divide φ(e2) and φ(m2) must divide φ(e1). Since φ is degree-preserving, we have the second

case.

Theorem 5.1. The cubic code obeys the no-strings rule with the constant α = 1 under `∞-metric.

Proof. Since the cubic code is translationally invariant, we may use the formalism of Chapter 3.

Since the cubic code is of CSS type, where coker ε is a direct sum of isomorphic summands, we only
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have to consider σx-type charges. The set of all virtual charges is R1 = R = F2[x±1, y±1, z±1] and the

set of all trivial charges are given by a submodule (ideal) pxyz = (1+x+y+z, 1+xy+yz+zx) ⊆ R.

Note that R is the localization of S = F2[x, y, z] by a single element xyz, and pxyz is the localization

of p = (1 + x+ y + z, 1 + xy + yz + zx) by the same single element xyz.

Let e1 and e2 be the charges contained in two boxes of a string segment. Since they are overall

trivial, we have e1 + xiyjzke2 ∈ p where i, j, k ∈ Z. Equivalently, we may write m1e1 + m2e2 ∈ p

where e1 and e2 have nonnegative exponents, and m1,m2 are monomials such that each variable (x,

y, or z) appears only in one of m1 or m2. Since pxyz ∩ S = p, which can be verified using Gröbner

basis techniques, we are in the situation of Lemma 5.3.1. The width of the string segment is the

maximum of the degrees of e1 and e2, and the `1-distance between the boxes enclosing e1 and e2 is

≤ max(degm1,degm2). If we use `∞-distance, the constant α in the no-strings rule is 1.

Let us explicitly calculate the ground-state degeneracy when the Hamiltonian is defined on

L× L× L cubic lattice with periodic boundary conditions. By Corollary 3.4.5,

k = dimF2
R/(pxyz + bL)⊕R/(pxyz + bL) = 2 dimF2

R/(pxyz + bL),

where bL = (xL − 1, yL − 1, zL − 1). So the calculation of ground-state degeneracy comes down to

the calculation of

d = dimF2
T ′/p

where T ′ = F2[x, y, z]/(xn1 − 1, yn2 − 1, zn3 − 1).

We may extend the scalar field to any extension field without changing d. Let F be the algebraic

closure of F2 and let

T = F[x, y, z]/(xn1 − 1, yn2 − 1, zn3 − 1)

be an Artinian ring. By Proposition 3.4.3, it suffices to calculate for each maximal ideal m of T the

vector space dimension

dm = dimF(T/p)m

of the localized rings, and sum them up.

Suppose n1, n2, n3 > 1. By Nullstellensatz, any maximal ideal of T is of form m = (x − x0, y −

y0, z−z0) where xn1
0 = yn2

0 = zn3
0 = 1. (If n1 = n2 = n3 = 1, then T becomes a field, and there is no

maximal ideal other than zero.) Put ni = 2lin′i where n′i is not divisible by 2. Since the polynomial

xn1 − 1 contains the factor x− x0 with multiplicity 2l1 , it follows that

Tm = F[x, y, z]m/(x
2l1 + a′, y2l2 + b′, z2l3 + c′)
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where a′ = x2l1
0 , b′ = y2l2

0 , c′ = z2l3
0 . Hence, (T/p)m ∼= F[x, y, z]/I ′ where

I ′ = (x+ y + z + 1, xy + xz + yz + 1, x2l1 + a′, y2l2 + b′, z2l3 + c′).

If I ′ = F[x, y, z], then dm = 0.

Without loss of generality, we assume that l1 ≤ l2 ≤ l3. By powering the first two generators

of I ′, we see that (x0, y0, z0) must be a solution of them in order for I ′ not to be a unit ideal.

Eliminating z and shifting x→ x+ 1, y → y + 1, our objective is to calculate the Gröbner basis for

the proper ideal

I = (x2 + xy + y2, x2l1 + a, y2l2 + b)

where a = a′ + 1 and b = b′ + 1. So

dm = dimF F[x, y]/I.

One can easily deduce by induction that y2m + x2m−1(mx + y) ∈ I for any integer m ≥ 0. And

b = ωa2l2−l1 for a primitive third root of unity ω. So we arrive at

I = (y2 + yx+ x2, yx2l2−1 + b(1 + l2ω
2), x2l1 + a)

We apply the Buchberger criterion. If a 6= 0, i.e., x0 6= 1, then b 6= 0 and I = (x+(ω2 +l2)y, x2l1 +a),

so dm = 2l1

If a = b = 0, then I = (y2 + yx+ x2, yx2l2−1, x2l1 ). The three generators form Gröbner basis if

l2 = l1. Thus, in this case, dm = 2l1+1 − 1. If l2 > l1, then dm = 2l1+1.

To summarize, except for the special point (1, 1, 1) ∈ F3 of the affine space, each point in the

algebraic set

V =

(x, y, z) ∈ F3

∣∣∣∣∣∣ x+ y + z + 1 = xy + xz + yz + 1 = 0

xn
′
1 − 1 = yn

′
2 − 1 = zn

′
3 − 1 = 0


contribute 2l1 to d. The contribution of (1, 1, 1) is either 2l1+1 or 2l1+1− 1. The latter occurs if and

only if l1 and l2, the two smallest numbers of factors of 2 in n1, n2, n3, are equal. Let d0 = #V be

the number of points in V . The desired answer is

d = 2l1(d0 − 1) +

2l1+1 − 1 if l1 = l2

2l1+1 otherwise

where l1 ≤ l2 ≤ l3 are the number of factors of 2 in ni.

The algebraic set defined by (x + y + z + 1, xy + xz + yz + 1) is the union of two isomorphic
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lines intersecting only at x = y = z = 1, one of which is parametrized by x ∈ F as

(1 + x, 1 + ωx, 1 + ω2x) ∈ F3,

and another is parametrized as

(1 + x, 1 + ω2x, 1 + ωx) ∈ F3.

where ω is a primitive third root of unity. Therefore, the purely geometric number d0 = 2d1− 1 can

be calculated by

d1 = degx gcd
(

(1 + x)n
′
1 + 1, (1 + ωx)n

′
2 + 1, (1 + ω2x)n

′
3 + 1

)
.

Using (α + β)2p = α2p + β2p and ω2 + ω + 1 = 0, one can easily compute some special cases as

summarized in the following corollary. Some values of k for small L are presented in Table 5.2 and

Figure 5.2.
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Figure 5.2: Number of encoded qubits k of the cubic code defined on L× L× L periodic lattice

Corollary 5.3.2. Let 2k be the ground-state degeneracy of the cubic code on the cubic lattice of size

L3 with periodic boundary conditions. (k = k(L) is the number of encoded qubits.) Then

k + 2

4
= degx gcd

(
(1 + x)L + 1, (1 + ωx)L + 1, (1 + ω2x)L + 1

)
F4

=



1 if L = 2p + 1,

L if L = 2p,

L− 2 if L = 4p − 1,

1 if L = 22p+1 − 1.

where ω2 + ω + 1 = 0 and p ≥ 1 is any integer. If L = 2rL′, then k(L) + 2 = 2r(k(L′) + 2).
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(k + 2)/4 = 1 + 12
∑
n qn(L)

qn(L) is nonzero only if n|L.
qn(L) n

1 15 = 24 − 1 = 3 · 5
5 63 = 26 − 1 = 32 · 7

20 255 = 28 − 1 = 3 · 5 · 17
80 1023 = 210 − 1 = 3 · 11 · 31

322 4095 = 212 − 1 = 32 · 5 · 7 · 13
5 341 = (210 − 1)/(22 − 1) = 11 · 31
6 1365 = (212 − 1)/(22 − 1) = 3 · 5 · 7 · 13

49 5461 = (214 − 1)/(22 − 1) = 43 · 127
4 455 = (212 − 1)/(23 + 1) = 5 · 7 · 13
3 585 = (212 − 1)/(23 − 1) = 32 · 5 · 13
9 9709 = (218 − 1)/(3(23 + 1)) = 7 · 19 · 73
5 11275 = 11(210 + 1) = 52 · 11 · 41

Table 5.2: Numerical values of k for odd linear size L computed from Corollary 5.3.2. The list is
complete if 2 ≤ L ≤ 20000. For example, if L = 945 = 15 · 63, then k+2

4 = 1 + 12 · (1 + 5) = 73.

5.4 Real-space renormalization of the cubic code

Renormalization group refers to a machinery to extract essential properties of the system at long

distances. For lattice spin models, the so-called “block spin” method amounts to considering a

sequence of coarse-grained lattices and finding effective Hamiltonians pertaining to the coarse-grained

lattices [100, 101]. In the sequence of coarse-graining, short-ranged correlations will disappear, and

long-ranged essential correlations will remain. Thus, if a generic Hamiltonian retains its form under

the renormalization group flow, we expect that the Hamiltonian should represent a proper phase of

matter, and can wonder about universal aspects of the phase.

For topologically ordered systems, it is interesting to look at entanglement structure instead of

correlation functions, since, as they are gapped, the correlation functions of local operators would

decay exponentially with the distance between the regions the operators act on [102], and hence,

if they are renormalization group fixed points, they will have zero correlation length. As we wish

to ignore local deformations of the system, it is legitimate to apply a finite depth quantum circuit

(local unitary) to the system so as to remove some local entanglement [103, 104, 105, 106, 107]. More

precisely, one applies a finite composition of unitary operators on a ground state, each of which can

be written as a product of local unitary operators of disjoint supports, and then try to identify spins

in a product state.

Code Hamiltonians admit an even simpler renormalization scheme. Under the local unitaries the

Hamiltonian is conjugated, and spins in product states is readily identified by single-spin operators

such as σz acting on unentangled spins. If we restrict ourselves to translationally invariant case, we

may also assume that the local unitaries obey the translation invariance. For example, it is well-

known that the 2D toric code model is a renormalization group fixed point under this scheme [105].
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In Chapter 3, we have developed enough tools for the simplified renormalization group flow

computation. In fact, we have done a computation in Example 4.1. To warm up, let us compute

the renormalization of the 2D toric code. The generating matrix is

σ =


1 + x 0

1 + y 0

0 1 + 1
y

0 1 + 1
x


If we coarse-grain the lattice by blocking two sites in x-direction, then every module is now viewed

as a module over F2[x±2, y±1], and each entry of σ is replaced by a 2 × 2 matrix, since σ is a map

between free modules G and P . Concretely,

σ′ =



1 1 0 0

x 1 0 0

1 + y 0 0 0

0 1 + y 0 0

0 0 1 + 1
y 0

0 0 0 1 + 1
y

0 0 1 1
x

0 0 1 1


where the double line distinguishes σx-part and σz-part. Here, the variable x really means the

translation along x-direction by two units of the original lattice. Applying local unitaries, we see

σ′ →



1 1 0 0

0 1 + x 0 0

0 1 + y 0 0

0 1 + y 0 0

0 0 0 0

0 0 0 1 + 1
y

0 0 1 1
x

0 0 1 1



→



1 1 0 0

0 1 + x 0 0

0 1 + y 0 0

0 0 0 0

0 0 0 0

0 0 0 1 + 1
y

0 0 0 1 + 1
x

0 0 1 1



→



1 0 0 0

0 1 + x 0 0

0 1 + y 0 0

0 0 0 0

0 0 0 0

0 0 0 1 + 1
y

0 0 0 1 + 1
x

0 0 1 0



.

In the last matrix, it is evident that the first qubit (all the first qubits on every site) and the fourth

qubit are disentangled. Ignoring those, we see that the generating matrix and also the Hamiltonian

retain the original form. A drawback of this computation is that it is hard to understand why this

should happen. Fortunately, there is a better understanding for two-dimensional quantum double
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models [3], which includes the 2D toric code model, using so-called G-injective PEPS by Schuch,

Cirac, and Pérez-Garćıa [108]. Their conclusion is that the quantum double model is constructed

with the regular representation of a finite symmetry group G, and it is a renormalization group fixed

point because of the plethysm CG⊗ CG ∼= CG⊗ (C1)⊕|G| of the regular representation.

Now we return to the cubic code. We perform a similar computation as above, and find that

under blocking of 2 × 2 × 2 sites (16 spins in total) the cubic code model A decomposes into two

non-interacting Hamiltonians A and B living in the coarse-grained lattice, one of which is the same

as the original A, but the other B looks different. Detailed calculation will be given below. The

generating matrices are as follows.

σA =


1 + x+ y + z 0

1 + xy + yz + zx 0

0 1 + 1
xy + 1

yz + 1
zx

0 1 + 1
x + 1

y + 1
z

 , σB =



x+ z 1 + x

1 + x 1 + z

x+ y 1 + y

1 + y 1 + x

1 + 1
y

1
x + 1

y

1 + 1
x 1 + 1

y

1 + 1
x

1
x + 1

z

1 + 1
z 1 + 1

x



.

We can repeat the renormalization group flow computation for the model B only. We find that after

blocking of 2× 2× 2 sites, B is renormalized to the identical two copies of B itself. (Calculation will

be given below.)

A
2×2×2−−−−→ A⊕B, and B

2×2×2−−−−→ B ⊕B.

The renormalization group yields an explicit method to produce the ground states of the cubic

code, Start with a state one wish to encode, put auxiliary qubits in the trivial state, apply the

inverse local unitaries, and iterate the overall process on the refined lattice with more auxiliary

qubits. It is slightly different from the MERA (Multiscale Entanglement Renormalization Ansatz)

prescription of 2D toric code state developed in [105]. Rather a so-called branching MERA [109] is

more appropriate.

We do not have a deeper understanding why this should happen. However, there are some

consistency checks from the degeneracy formula and the annihilator of the module of topological

charges. Corollary 5.3.2 says that the number of encoded qubits k is

k(L) = 4L− 2 =

(
4
L

2
− 2

)
+

(
4
L

2

)
=

(
4
L

4
− 2

)
+

(
4
L

4

)
+

(
4
L

4

)
+

(
4
L

4

)
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when the linear system size L is a power of 2. The expression is decomposed to display contributions

from the model A and the model B explicitly. It suggests that the model A, the original cubic code,

cannot give rise to an identical pair of models at coarse-grained lattice, whereas B can. It is not too

clear whether the two models A and B are really non-isomorphic.

On the other hand, the annihilator of the topological charge module tells us there is something

special about 2 × 2 × 2 blocking. The topological charge module is the torsion part of the virtual

excitation module factored by trivial charge module, i.e., the torsion submodule of coker ε. As for

the cubic code, coker ε is a torsion module, which is a direct sum of two isomorphic summands.

coker ε = R/pxyz ⊕R/pxyz,

R = F2[x±1, y±1, z±1],

pxyz = (1 + x+ y + z, 1 + xy + yz + zx) ⊂ R.

where the bar denotes antipode map. We focus on the first summand R/pxyz. If we replace F2 with

its algebraic closure F for convenience, R/pxyz = (F[x, y, z]/p)xyz is the coordinate ring of an affine

variety defined by p localized on the complement of the union of three planes xyz = 0. The variety

is a union of two isomorphic lines, as we have seen in the degeneracy calculation of Section 5.3. One

line is parameterized as

x = 1 + t, y = 1 + ωt, z = 1 + ω2t

and the other is

x = 1 + t, y = 1 + ω2t, z = 1 + ωt

where ω is the primitive third root of unity. The ideal pxyz is the annihilator of a module M =

R/pxyz. Under coarse-graining M is promoted to a module over the coarse-grained translation group

algebra, which is R′ = F2[x±2, y±2, z±2] in our 2× 2× 2 blocking. Then, the annihilator of M in the

new ring R′ is just R′∩I. It is easy to verify that R′∩pxyz = (1+x2+y2+z2, 1+x2y2+y2z2+z2x2) =

p′ using Gröbner basis. As rings, R′/p′ and R/pxyz are isomorphic. Thus, it is consistent that A

renormalizes to something similar to itself. Further, we see that the charge annihilator of B must

be the same as that of A.

This observation tells us that 23 blocking is special. If we had blocked 33 sites, we would not see

the self-reproducing behavior, since the charge annihilator would be different:

F2[x±3, y±3, z±3] ∩ pxyz =
(

1 + y′ + y′
2

+ y′
3

+ z′ + y′z′ + y′
2
z′ + z′

2
+ y′z′

2
+ z′

3
,

1 + x′ + x′
2

+ y′ + x′y′ + y′
2

+ z′ + x′z′ + y′z′ + z′
2
)
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where x′ = x3, y′ = y3, z′ = z3.

Calculation

The generating matrix σA for the stabilizer module of the cubic code transforms under the coarse-

graining by blocking two sites along x-direction as

σA
coarse-grain x2→x−−−−−−−−−−−−→ σ1 =

σ1X 0

0 σ1Z



σ1X =


1 + y + z 1

x 1 + y + z

1 + yz y + z

xy + xz 1 + yz

 , σ1Z =


1 + 1

yz
1
xy + 1

xz

1
y + 1

z 1 + 1
yz

1 + 1
y + 1

z
1
x

1 1 + 1
y + 1

z

 .

We apply elementary symplectic transformations. Recall † is the transpose followed by entry-wise

antipode map x 7→ x−1, y 7→ y−1, z 7→ z−1.

σ2 =

σ2X 0

0 σ2Z

 =

r1 0

0 r†1

σ1X 0

0 σ1Z

c1 0

0 c†1


where

σ2X =


0 1

1 + x+ y2 + z2 0

1 + y + y2 + z + yz + z2 0

0 0

 , σ2Z =


0 0

0 1 + 1
y2 + 1

y + 1
z2 + 1

z + 1
yz

0 1 + 1
x + 1

y2 + 1
z2

1 0

 ,

r1 =


1 0 0 0

1 + y + z 1 0 0

y + z 0 1 0

1 + yz y + z 1 + y + z 1

 , c1 =

 1 0

1 + y + z 1

 .

The first and fourth qubit may be factored out from σ2. A subsequent coarse-graining by blocking

two sites in each y- and z-direction gives

σ2
y2→y, z2→z−−−−−−−−−→ σ3 =

σ3X 0

0 σ3Z
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σ3X =



1 + x+ y + z 0 0 0

0 1 + x+ y + z 0 0

0 0 1 + x+ y + z 0

0 0 0 1 + x+ y + z

1 + y + z 1 1 1

z 1 + y + z z 1

y y 1 + y + z 1

yz y z 1 + y + z



,

σ3Z =



1 + 1
y + 1

z
1
z

1
y

1
yz

1 1 + 1
y + 1

z
1
y

1
y

1 1
z 1 + 1

y + 1
z

1
z

1 1 1 1 + 1
y + 1

z

1 + 1
x + 1

y + 1
z 0 0 0

0 1 + 1
x + 1

y + 1
z 0 0

0 0 1 + 1
x + 1

y + 1
z 0

0 0 0 1 + 1
x + 1

y + 1
z


We keep applying elementary symplectic transformations.

σ4 =

σ4X 0

0 σ4Z

 =

r2X 0

0 r2Z

σ3X 0

0 σ3Z

c2X 0

0 c2Z


where

σ4X =



0 1 0 0

0 0 0 0

0 0 1 + x+ y + z 0

0 0 0 1 + x+ y + z

1 + x+ y + z 0 0 0

x+ xy + z + xz 0 1 + y y + z

y + xy 0 1 + z 1 + y

xy + yz 0 y + z 1 + z



,
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σ4Z =



0 0 0 0

1 0 0 0

0 1 + 1
y 1 + 1

z
1
y + 1

z

0 1
y + 1

z 1 + 1
y 1 + 1

z

0 1
x + 1

xy + 1
z + 1

xz
1
y + 1

xy
1
xy + 1

yz

0 1 + 1
x + 1

y + 1
z 0 0

0 0 1 + 1
x + 1

y + 1
z 0

0 0 0 1 + 1
x + 1

y + 1
z



,

r2X =



1 0 0 0 1 0 0 0

1 + y + z 1 1 1 1 + x+ y + z 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

1 + y + z 0 0 0 1 + y + z 1 0 0

y 0 0 0 y 0 1 0

y 0 0 0 y 0 0 1



,

r2Z =



0 1 + 1
x + 1

y + 1
z 0 0 1 1 + 1

y + 1
z

1
y

1
y

0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 1
x 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



.

c2X =


1 0 0 0

x 1 1 1

0 0 1 0

0 0 0 1

 , c2Z =


1 1 + 1

y + 1
z

1
y

1
y

0 1 0 0

0 0 1 0

0 0 0 1

 ,
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Factoring out the first and second qubit from σ4 and applying elementary symplectic transformations,

we arrive at

σ5 =

σ5X 0

0 σ5Z

 =

r3X 0

0 r3Z

σ4X 0

0 σ4Z

|{1,2}c
c3X 0

0 c3Z


where

σ5X =



1 + x+ y + z 0 0

1 + xy + xz + yz 0 0

0 x+ z 1 + x

0 1 + x 1 + z

0 x+ y 1 + y

0 1 + y 1 + x


, σ5Z =



0 0 1 + 1
xy + 1

xz + 1
yz

0 0 1 + 1
x + 1

y + 1
z

1 + 1
y

1
x + 1

y 0

1 + 1
x 1 + 1

y 0

1 + 1
x

1
x + 1

z 0

1 + 1
z 1 + 1

x 0


,

r3 =



0 0 1 0 0 0

0 0 1 1 1 1

1 1 x 1 0 0

1 0 1 1 1 0

1 0 0 0 1 0

0 1 1 + x 1 0 0


, r3Z =



1 1
x 1 1 1 1

0 0 0 0 0 1

1 0 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

1 1 0 0 1 1


,

c3 =


1 0 0

1 1 0

x 0 1

 , c3Z =


1 0 1

0 1 1

0 0 1

 .

It is clear that σA, σ1, σ2, σ3, σ4, and σ5 are all equivalent because we applied only elementary

symplectic transformations. σ5 shows a decomposition of σ into two non-interacting two models,

one of which is σA at 2 × 2 × 2 coarse-grained lattice and another is σB . We perform a similar
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renormalization for σB . The coarse-graining by blocking two sites in x-direction gives

σB
x2→x−−−−→ σB1 =

σB1X 0

0 σB1Z



σB1X =



z 1 1 1

x z x 1

1 1 1 + z 0

x 1 0 1 + z

y 1 1 + y 0

x y 0 1 + y

1 + y 0 1 1

0 1 + y x 1



, σB1Z =



1 + 1
y 0 1

y
1
x

0 1 + 1
y 1 1

y

1 1
x 1 + 1

y 0

1 1 0 1 + 1
y

1 1
x

1
z

1
x

1 1 1 1
z

1 + 1
z 0 1 1

x

0 1 + 1
z 1 1



.

Apply elementary symplectic transformations to factor out trivial qubits.

σB2 =

σB2X 0

0 σB2Z

 =

r4X 0

0 r4Z

σB1X 0

0 σB1Z

c4X 0

0 c4Z


where

σB2X = σB2Z =

0 0 0 1

0 0 0 0

1 0 0 0

0 0 0 0

0 1 + y y + z 0

0 1 + x+ z + yz y + z 0

0 0 x+ y + z + yz 0

0 y + z 1 + x+ y + yz 0



,



0 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

0 1 + 1
x
+ 1

z
+ 1

yz
0 1

y
+ 1

z

0 1 + 1
y

0 1
y
+ 1

z

0 1
y
+ 1

z
0 1 + 1

x
+ 1

y
+ 1

yz

0 0 0 1
x
+ 1

y
+ 1

z
+ 1

yz



,



102

r4X = r4Z =

1 0 z 0 0 0 0 0

y 1 1 + y 0 z 1 1 1

0 0 1 0 0 0 0 0

1 + y 0 1 1 1 1 1 + z 0

0 0 y 0 1 0 0 0

1 + y 0 x+ z + yz 0 0 1 0 0

0 0 1 + y 0 0 0 1 1

1 0 z 0 0 0 0 1



,



1 1 0 1 + 1
z

0 1 + 1
y

1 1

0 1 0 0 0 0 0 0

1
z

1
x

1 1
x

1
y

1
x

1 + 1
y

0

0 0 0 1 0 0 0 0

0 1
z

0 1 1 0 0 0

0 1 0 1 0 1 0 0

0 1 0 1 + 1
z

0 0 1 0

0 0 0 1 + 1
z

0 0 1 1



.

c4X =


1 1 0 0

0 1 1 + z 0

0 0 1 0

0 1 + z z 1

 , c4Z =


1 1 0 1

y

0 1 0 1

0 1 + 1
y

1 1

0 0 0 1

 ,

Factoring out trivial qubits from σB2 and coarse-graining by blocking two sites along z-direction,

we have

σB2|{1,2,3,4}c
z2→z−−−→ σB3 =

σB3X 0

0 σB3Z

 , where

σB3X = σB3Z =

1 + y 0 y 1

0 1 + y z y

1 + x 1 + y y 1

z + yz 1 + x z y

0 0 x+ y 1 + y

0 0 z + yz x+ y

y 1 1 + x+ y y

z y yz 1 + x+ y



,



1 + 1
x

1
z + 1

yz
1
y

1
z

1 + 1
y 1 + 1

x 1 1
y

1 + 1
y 0 1

y
1
z

0 1 + 1
y 1 1

y

1
y

1
z 1 + 1

x + 1
y

1
yz

1 1
y

1
y 1 + 1

x + 1
y

0 0 1
x + 1

y
1
z + 1

yz

0 0 1 + 1
y

1
x + 1

y



.

Again apply elementary symplectic transformations.

σB4 =

σB4X 0

0 σB4Z

 =

r5X 0

0 r5Z

σB3X 0

0 σB3Z

c5X 0

0 c5Z
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where

σB4X =



0 0 1 0

1 + x+ y + xy2 + z + yz 0 0 xy + y2 + xy2 + yz

0 0 0 0

1 + x2 + xy + x2y + z + y2z 0 0 x2y + z + yz + y2z

x+ y + xy + y2 0 0 1 + y + xy + y2

z + y2z 0 0 x+ y + yz + y2z

0 1 0 0

y + xy + xy2 + y2z 0 0 1 + x+ y + y2 + xy2 + z + yz + y2z



,

σB4Z =



0 0 0 0

1 + 1
y2 1 + 1

x 0 1 + 1
x + 1

y + 1
yz

0 0 1 0

1 + 1
y 1 + 1

y 0 1 + 1
z

1 + 1
x + 1

xy
1
z 0 1

xz + 1
yz

1
y2

1
y 0 1 + 1

x + 1
z + 1

yz

0 0 0 0

1 + 1
y2 0 0 1

x + 1
y + 1

z + 1
yz



,

r5X =



1 0 0 0 0 0 0 0

1 + x+ y + xy + z 1 0 0 0 0 1 + y 0

1 + x+ y y 1 1 1 + x 1 + y x+ y 1 + y

1 + x2 + yz 0 0 1 0 0 1 + x 0

x+ y 0 0 0 1 0 0 0

z + yz 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

y + xy + z + yz 0 0 0 0 0 y 1



,

r5Z =



1 1 + 1
x + 1

y + 1
xy + 1

z
1
xy 1 + 1

x2 + 1
yz

1
x + 1

y
1
z + 1

yz 0 1
y + 1

xy + 1
z + 1

yz

0 1 1
y 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 + 1
x 0 1 0 0 0

0 0 1 + 1
y 0 0 1 0 0

0 1 + 1
y 1 + 1

y 1 + 1
x 0 0 1 1

y

0 0 1 + 1
y 0 0 0 0 1



,
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c5X =


y 0 1 1 + y

1 + x+ xy 1 1 + x y + xy

1 + y 0 1 y

0 0 0 1

 , c5Z =


1
y 0 1 1

z

0 1 0 1

1 + 1
y 0 1 1

z

0 0 0 1

 .

Factor out the first, third, and seventh qubits from σB4, and coarse-grain by blocking two sites along

y-direction.

σB4
y2→y−−−−→ σB5 =

σB5X 0

0 σB5Z

 , where

σB5X =



1 + x+ xy + z 1 + z y + xy x+ z

y + yz 1 + x+ xy + z xy + yz y + xy

1 + x2 + z + yz x+ x2 z + yz x2 + z

xy + x2y 1 + x2 + z + yz x2y + yz z + yz

x+ y 1 + x 1 + y 1 + x

y + xy x+ y y + xy 1 + y

z + yz 0 x+ yz 1 + z

0 z + yz y + yz x+ yz

xy + yz 1 + x (1 + x+ z)(1 + y) 1 + z

y + xy xy + yz y + yz (1 + x+ z)(1 + y)



,

σB5Z =



1 + 1
y 0 1 + 1

x 0 1 + 1
x

1
y + 1

yz

0 1 + 1
y 0 1 + 1

x 1 + 1
z 1 + 1

x

1 1
y 1 1

y 1 + 1
z 0

1 1 1 1 0 1 + 1
z

1 + 1
x

1
xy

1
z 0 1

xz
1
yz

1
x 1 + 1

x 0 1
z

1
z

1
xz

1
y 0 0 1

y 1 + 1
x + 1

z
1
yz

0 1
y 1 0 1

z 1 + 1
x + 1

z

1 + 1
y 0 0 0 1

x + 1
z

1
y + 1

yz

0 1 + 1
y 0 0 1 + 1

z
1
x + 1

z



.

Apply elementary symplectic transformations to factor out two more qubits.

σB6 =

σB6X 0

0 σB6Z

 =

r6X 0

0 r6Z

σB5X 0

0 σB5Z

id4×4 0

0 c6Z
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where

σB6X =



1 + x+ xy + z 1 + z y + xy x+ z

y + yz 1 + x+ xy + z xy + yz y + xy

0 0 0 0

xy + x2y 1 + x2 + z + yz x2y + yz z + yz

x+ y 1 + x 1 + y 1 + x

y + xy x+ y y + xy 1 + y

z + yz 0 x+ yz 1 + z

0 0 0 0

xy + yz 1 + x (1 + x+ z)(1 + y) 1 + z

y + xy xy + yz y + yz (1 + x+ z)(1 + y)



,

σB6Z =



0 1
y + 1

xy 0 1
y2 + 1

y
1
x + 1

y + 1
z + 1

xz
1
x2 + 1

x + 1
xy + 1

xz

0 1 + 1
y 0 1 + 1

x 1 + 1
z 1 + 1

x

1 0 0 0 0 0

0 1 + 1
y 0 1 + 1

y 1 + 1
z 1 + 1

z

0 1
xy + 1

yz 0 1
y + 1

xy 1 + 1
x + 1

z2 + 1
xz 1 + 1

x2 + 1
z2 + 1

yz

0 1 + 1
x 0 1

xy + 1
z

1
x + 1

z
1
x2 + 1

x

0 0 0 1
y2 + 1

y 1 + 1
x + 1

y + 1
z

1
y + 1

xy

0 0 1 0 0 0

0 0 0 1
y2 + 1

y 1 + 1
x + 1

y + 1
z 1 + 1

x + 1
xy + 1

z

0 1 + 1
y 0 0 1 + 1

z
1
x + 1

z



,

r6X =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 + y 0 1 1 1 + x x y 0 1 + y 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

x+ y 0 0 0 1 + x+ z x y 1 1 + y 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,
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r6Z =



1 0 1 + 1
y 0 0 0 0 1

x + 1
y 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 1 + 1
x 0 1 0 0 1 + 1

x + 1
z 0 0

0 0 1
x 0 0 1 0 1

x 0 0

0 0 1
y 0 0 0 1 1

y 0 0

0 0 0 0 0 0 0 1 0 0

0 0 1 + 1
y 0 0 0 0 1 + 1

y 1 0

0 0 0 0 0 0 0 0 0 1



,

c6Z =



1 0 1 1
y 1 1 + 1

x + 1
z

0 1 0 0 0 0

0 1
y 1 0 1

z 1 + 1
x + 1

z

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

The third and eighth qubits in σB6 are trivial. We finally finish our lengthy transformation.

σB7 =

σB7X 0

0 σB7Z

 =

r7X 0

0 r7Z

σB6X 0

0 σB6Z

|{3,8}c
c7X 0

0 c7Z


where

σB7X =



x+ z 1 + x 0 0

1 + x 1 + z 0 0

x+ y 1 + y 0 0

1 + y 1 + x 0 0

0 0 x+ z 1 + x

0 0 1 + x 1 + z

0 0 x+ y 1 + y

0 0 1 + y 1 + x



, σB7Z =



1 + 1
y

1
x + 1

y 0 0

1 + 1
x 1 + 1

y 0 0

1 + 1
x

1
x + 1

z 0 0

1 + 1
z 1 + 1

x 0 0

0 0 1 + 1
y

1
x + 1

y

0 0 1 + 1
x 1 + 1

y

0 0 1 + 1
x

1
x + 1

z

0 0 1 + 1
z 1 + 1

x



,
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r7X =



1 + z 1 0 0 z 0 0 1

1 + x 1 1 x 0 1 0 1

1 + x+ y 0 1 x 1 1 + y y 1

1 + y 1 1 0 1 + x y y 1

1 + x 1 1 x+ z 0 0 0 1

x 1 1 x+ z 0 1 1 1

1 + x 1 1 1 + x+ z 1 1 1 1

0 0 0 1 0 0 0 0



,

r7Z =



0 0 1 0 0 0 0 1

0 1 0 0 0 1 1 1

0 1 0 0 0 0 0 1

1 1 1
x 0 1 0 1 0

1 + 1
y 1 1 + 1

x + 1
xy 0 1 + 1

y 1 1 + 1
y

1
y

1 + 1
x + 1

y
1
x

1
x2 + 1

x + 1
xy + 1

z 0 1
x + 1

y 0 1
x + 1

y 1 + 1
y + 1

z

1 + 1
x

1
x

1
x2 + 1

x + 1
z 0 1

x 0 1 + 1
x 1 + 1

z

1 + 1
z

1
z

1
xz 1 1

z
1
z 1 1 + 1

z



,

c7X =


1 0 0 1 + z

0 1 0 1

1 0 1 1 + z

1 1 0 1 + z

 , c7Z =


1
z 1 + 1

z 1 0

1 1 0 0

1
y 1 + 1

y 0 1

0 1 0 0

 .

We see that σB7 is a direct sum of two copies of σB . This verifies the bifurcation:

A
2×2×2−−−−→ A⊕B, and B

2×2×2−−−−→ B ⊕B.

5.5 Thermal partition function of the cubic code

The only relevant property of the cubic code in relation to a thermal partition function is that the

generating map σ for the stabilizer module is injective.

0→ G
σ−→ P

This property is shared with 1D Ising model (Example 3.1), 2D toric code (Example 3.2), and 3D

Chamon model (Example 4.3). Slightly more generally, Lemma 4.2.1 says that for two-dimensional

exact code Hamiltonians one can choose an injective generating map that gives rise to an equivalent

Hamiltonian in the sense of Definition 3.2.
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Let H = −
∑
i Pi be the Hamiltonian of the cubic code on L×L×L periodic lattice. We set the

coupling constant to be 1 so that each term literally squares to the identity P 2
i = 1. The thermal

partition function is

Z = Z(β) = Tr exp(−βH)

where β is an inverse temperature. Since H consists of commuting terms, the exponential function

can be written as products.

Z = Tr
∏
i

(coshβ + Pi sinhβ) = coshM β Tr
∏
i

(1 + xPi)

where M = tL3 is the number of terms in H and x = tanhβ. Since the trace of a Pauli operator

that is not identity is zero, only the term in the expansion of the product that is proportional to

the identity contributes to Z. If there are N = qL3 qubits in the system, the trace of the identity

operator is 2N .
Z

2N coshM β
=
∑
γ∈Γ

x|γ|

where γ runs over all possible collections of terms Pi of H that multiply to the identity. Γ contains

the empty collection. Thus, Γ is in one-to-one correspondence with kerσL. (It may be nonzero

due to the periodic boundary conditions although σ was injective. See Section 3.4.) Therefore, the

cardinality of Γ is precisely

|Γ| = 2dimF2 kerσL = 2k,

the ground-state degeneracy. The second equality is implied by Corollary 3.4.5.

We know from Corollary 5.3.2 that k is bounded by a linear function of L for the cubic code;

k = O(L). Therefore, the partition function is sandwiched as

| logZ(β)− L3 log(2q cosht β)| ≤ k log 2 = O(L).

Thus, the free energy per unit volume in the thermodynamic limit is just a smooth function

log(2q cosht β) for all nonzero temperatures. This should contrast with three- or higher-dimensional

toric code model where the free energy density has a singularity at a nonzero temperature [110].

The analyticity of the free energy does not directly invalidate a possibility of self-correction of

encoded quantum information. The latter is rather a dynamical process, which may have little to

do with the thermal equilibrium. In fact, it is quite subtle to analyze self-correcting power or to

give a criterion on it, based on the thermal partition function. The existence or possibility of a good

decoding process to extract the encoded quantum information would be a more appropriate way to

address the question of self-correction. For instance, in the four-dimensional toric code model the

thermal expectation value for any bare logical operator is zero. However, a special dressed logical
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operator defined with respect to a decoding algorithm can have a non-vanishing expectation value in

the thermodynamic limit [32]. For the cubic code, the analyticity of the partition function suggests

that it does not allow such a nonzero thermal expectation value for logical operators. Nevertheless,

we can show that the characteristic time scale of the expectation values of logical operators dressed

by a decoding algorithm, is very large at low temperatures. This is the topic of the next chapters.
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Chapter 6

Consequences of no-strings rule

The no-strings rule prohibits a nontrivial charge to travel a distance longer than a constant times

its size. We repeat the rule.

Definition 5.1: A string segment is a finitely supported Pauli operator that creates

excitations contained in the union of two finite boxes (anchor regions) of width

w. The string segment is nontrivial if the charge contained in one of the boxes

is nontrivial. The distance between the boxes is the length of the string segment.

We say that a model obeys no-strings rule if the length of any nontrivial string

segment of width w is bounded by αw for some constant α ≥ 1.

The cubic code is an extreme case where a point charge cannot move distance 1 (Theorem 5.1). It

does not mean that isolation or diffusion of charges is impossible; Theorem 3.2 actually gives a local

process for the isolation to happen in the translationally invariant case. The isolation process for a

charge has to pay an energy penalty upper bounded by the logarithm of the distance from others.

In this chapter, we illustrate the energy landscape of the cubic code Hamiltonian in a view

towards self-correcting quantum memory. We show that the separation or isolation of charges

requires an energy barrier logarithmically high in the separation distance. This can be visualized

as follows. Imagine all the energy eigenstates as points on an imaginary “land,” and introduce a

metric on the land by the minimum number of local operations one has to apply in order to map one

state to another. Consider a function on the land given by the energy of the energy eigenstate. Our

logarithmic energy barrier means that the energy function, or “energy landscape,” has a macroscopic

number of local minimums separated by macroscopic energy barriers. These minimums correspond

to low-energy excited states in which the separation between defects is approximately the system

size.

The energy landscape with the large number of the local minimums suggests a possibility of a

spin glass phase at a sufficiently low temperature. Note that there is no quenched disorder in the

Hamiltonian [111, 112], and the glassy feature, if present, would be protected “topologically” [6]. A

spin glass phase can indeed be realized for some classical spin Hamiltonians with logarithmic energy
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barriers such as the model discovered by Newman and Moore [48]. Interplay between the topological

order and the spin glassiness has been studied recently by several authors [89, 113].

The logarithmic energy barrier is an optimal bound up to constants because of Theorem 3.2 and

4.3. An obvious difficulty in proving the lower bound on the energy barrier is that there are a huge

number of paths to isolate a charge. Relying on scale-invariant nature of the no-strings rule, we

introduce a technique which may be regarded as a renormalization group in the space of error paths.

Also, we attempt to estimate the length of the separation process: How many local operations do

we need in order to isolate a charge? Put differently, how large is a quantum mechanical tunneling

probability between two ground states in presence of local perturbations? Since the tunneling

amplitude would be non-vanishing only for virtual process that is mediated by an operator acting

on the ground space, the question translates into the theory of error correcting codes as to find the

weight distribution of logical operators. We do not answer this question at a satisfactory level, but

we find a superlinear lower bound on the code distance assuming the no-strings rule.

6.1 Logarithmic energy barrier

We consider a regular D-dimensional cubic lattice Λ with periodic boundary conditions and linear

size L, that is, Λ = ZDL . Each site u ∈ Λ is populated by a finite number of qubits. The class of

models we are going to discuss is that of code Hamiltonians

H = −
M∑
a=1

Ga, (6.1)

where each term Ga is a multi-qubit Pauli operator (a tensor product of I,X, Y, Z with an overall

±1 sign) and different terms commute with each other; GaGb = GbGa and G2
a = I. We assume that

each generator Ga acts nontrivially (by X,Y or Z) only on a set of qubits located at vertices of an

elementary cube. It is allowed to have more than one generator per cube. Any short-range stabilizer

Hamiltonian can be written in this form by performing a coarse-graining of the lattice. We continue

to assume that H is frustration-free1, The Hamiltonian may or may not be translation-invariant.

Consider any multi-qubit Pauli operator E. A state ψ = E ψ0 is an excited eigenstate of H.

Obviously, Ga ψ = ±ψ where the sign depends on whether Ga commutes (plus) or anticommutes

(minus) with E. Any flipped generator (Ga ψ = −ψ) will be referred to as a defect. Different

defects may occupy the same elementary cube. It should be emphasized that a configuration of

defects, called a syndrome, in ψ is the same for all ground states ψ0. An eigenstate with m defects

has energy 2m above the ground state. For brevity, we shall use the term vacuum for a ground

state of H whenever its choice is not important. A Pauli operator E whose action on the vacuum

1This is always the case for independent generators Ga. Since our goal is to obtain a lower bound on the energy
barrier, we can assume that the generators are independent, although it does not play any role in our analysis.
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creates no defects is either a stabilizer (E ∈ G), or a logical operator (E /∈ G, but E commutes

with G). In the former case any ground state of H is invariant under E. In the latter case E maps

some ground state of H to an orthogonal ground state.

A Hamiltonian is said to have topological order if it has a degenerate ground state and different

ground states are locally indistinguishable. We shall need a slightly stronger version of this condition

that involves properties of both ground and excited states. These properties depend on a length

scale Ltqo that must be bounded as Ltqo ≥ Lγ for some constant γ > 0. (For code Hamiltonians,

Ltqo corresponds to the code distance.) Most of stabilizer code Hamiltonians with topological order

satisfy our conditions with Ltqo ∼ L. Our first topological quantum order condition concerns ground

states, which is a rephrasing of Definition 3.6:

Definition 6.1. TQO1 refers to the following condition: If a Pauli operator E creates no defects

when applied to the vacuum and its support can be enclosed by a cube of linear size Ltqo then E is

a stabilizer, E ∈ G.

Our second TQO condition concerns excited states. A cluster of defects S will be called neutral

if it can be created from the vacuum by a Pauli operator E whose support can be enclosed by a

cube of linear size Ltqo without creating any other defects. Otherwise we say that S is a charged

cluster. Given a region A ⊆ Λ we shall use a notation Br(A) for the r-neighborhood of A, that is,

a set of all points that have distance at most r from A. Here and below we use `∞-distance on ZDL .

We shall need the following condition saying that neutral clusters of defects can be created from the

vacuum locally.2

Definition 6.2. TQO2 refers to the following condition: Let S be a neutral cluster of defects and

Cmin(S) be the smallest cube that encloses S. Then S can be created from the vacuum by a Pauli

operator supported on B1(Cmin(S)).

Remark 6.1. A translationally invariant exact code Hamiltonian satisfies both of our topological

order conditions. In particular, the cubic code satisfies the present TQO conditions. [ ∵ TQO1 is im-

mediate from Lemma 3.3.1, and TQO2 follows from an argument similar to the proof of Lemma 3.3.1.

Indeed, given a neutral cluster e of defects, we have an equation e = εp for some p of the Pauli mod-

ule. p is computed by the standard division algorithm applied to the columns of the excitation map

ε. If e is centered at origin, then the degree of p does not exceed that of e, which implies the second

TQO condition.]

Let us consider a process of building a cluster of defects S (syndrome) from the vacuum. It

can be described by an error path — a finite sequence of local Pauli errors E1, . . . , ET such that

E = ET · · ·E2E1 creates S from the vacuum. For simplicity, we assume that each local error Et is

2If a lattice has a boundary, charged defects might be created locally on the boundary, as it is the case for the
planar version of the toric code. This is the reason why we restrict ourselves to periodic boundary conditions.
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a single-qubit Pauli operator σx, σy, or σz. Applying this sequence of errors to a ground state ψ0

generates a sequence of states {ψ(t)}t=0,...,T , where and ψ(T ) = E ψ0 is the excited state of defect

configuration S. We will say that S has energy barrier ω if for any Pauli operator E that creates

S from the vacuum and for any error path implementing E, at least one of the intermediate states

has more than ω defects. Note that we do not impose any restriction on the length of the path T as

long as it is finite. In particular, one and the same error may be repeated in the error path several

times at different time steps. Similarly, we consider the energy barrier for a logical operator P ; we

say that a logical operator P has energy barrier ω if for any error path implementing ψ0 7→ P ψ0

at least one of the intermediate states ψ(t) has more than ω defects.

For any integer p ≥ 0, define a level-p unit of length ξ(p) as3

ξ(p) = (10α)p, p = 0, 1, . . . . (6.2)

Let S be any non-empty syndrome. Recall that each defect in S can be associated with some

elementary cube of the lattice.

Definition 6.3. A syndrome S is said to be sparse at level p if the set of elementary cubes

occupied by the defects in S can be partitioned into a disjoint union of clusters such that each

cluster has diameter at most ξ(p) and any pair of distinct clusters combined together has diameter

larger than ξ(p+ 1). Otherwise, S is non-sparse at level p.

For example, suppose all defects in S occupy the same elementary cube. Since an elementary cube

has diameter 1, such a syndrome S(t) is sparse at any level p ≥ 0. If S occupies a pair of adjacent

cubes, S(t) is sparse at any level p ≥ 1, but is non-sparse at level p = 0. Note that the partition of

S into clusters required for level-p sparsity is unique whenever it exists. The non-sparsity provides

a lower bound on the number of defects in a cluster as follows.

Lemma 6.1.1. A non-empty syndrome S that is non-sparse at all levels q = 0, . . . , p contains at

least p+ 2 defects.

Proof. Let C
(0)
1 , . . . , C

(0)
g be elementary cubes occupied by S. Obviously, S contains at least g

defects. Since S is non-empty and non-sparse at level 0, we have g ≥ 2 and there exists a pair of

cubes C
(0)
a , C

(0)
b such that the union C

(0)
a ∪ C(0)

b has diameter at most ξ(1). Combining the pair

C
(0)
a , C

(0)
b into a single cluster, we obtain a partition S = C

(1)
1 ∪ · · · ∪ C(1)

g−1 where each cluster C
(1)
a

has diameter at most ξ(1). Since S is non-sparse at level 1, we have g − 1 ≥ 2, and there exists a

pair of clusters C
(1)
a , C

(1)
b such that the union C

(1)
a ∪C(1)

b has diameter at most ξ(2). Combining the

pair C
(1)
a , C

(1)
b into a single cluster and proceeding in the same way we arrive at g ≥ p+ 2.

3The choice of the constant 10 is somewhat arbitrary. We do not try to optimize constants in our proof.
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A configuration of defects created by applying a Pauli operator E to the vacuum will be called a

syndrome caused by E. The process of building up a logical operator P by a sequence of local errors

E1, . . . , ET can be described by a syndrome history {S(t)}t=0,...,T . Here S(t) is the syndrome

caused by the product Et · · ·E2E1, a partial implementation of P up to a step t. The following

concerns the size of local errors

Lemma 6.1.2. Let Qj be Pauli operators causing a chain of transitions

vac
Q1−−→ S1

Q2−−→ S2
Q3−−→ . . .

Qr−−→ Sr
Qr+1−−−→ vac.

Let Pj be some Pauli operator creating the syndrome Sj from the vacuum. Suppose the support of

any operator Pj and any operator Qj can be enclosed by n or less cubes of linear size R such that

4nR < Ltqo. Then, the product Q = Q1 · · ·QrQr+1 is a stabilizer.

Proof. Let ψ0 be any ground state. Define a sequence of states

ψ(1) = P1Q1 · ψ0,

ψ(j + 1) = (PjPj+1)Qj+1 · ψ(j) for j = 1, . . . , r − 1,

ψ(r + 1) = Qr+1Pr · ψ(r).

Obviously,

ψ(j) = ±Pj · (Q1 · · ·Qj) · ψ0 for j = 1, . . . , r

ψ(r + 1) = ±Q · ψ0.

It follows that all states ψ(j) are ground states, and the transition from ψ(j) to ψ(j + 1) can be

caused by a Pauli operator

Oj = PjPj+1Qj+1.

Let Mj be the support of Oj . By assumption, Mj can be enclosed by at most 3n cubes of linear size

R. If Mj is a connected set, i.e., one can connect any pair of qubits from Mj by a path (u1, . . . , ul)

such that the distance between ua and ua+1 is 1, then Mj can be enclosed by a single cube of linear

size at most 3nR. That 3nR < Ltqo implies Oj is a stabilizer by the topological order condition.

Generally, Mj consists of several disconnected components Mα
j , such that the distance between any

pair of distinct components is at least 2. The restriction of Oj on a connected component commutes

with any stabilizer generator, and is supported in a box of linear size 3nR, which is smaller than Ltqo

by assumption. Therefore, the restrictions are stabilizers, and their product Oj is also a stabilizer.

In other words, ψ(j + 1) = ±ψ(j) for all j. It means that Qψ0 = ±ψ0 for any ground state ψ0. We
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conclude that Q is a stabilizer.

The no-strings rule says that an isolated charged defect belonging to some sparse syndrome cannot

be moved further than distance α away by a sequence of local errors. Since the no-strings rule is

scale invariant, it may be applied to a coarse-grained lattice to show that isolated charged clusters

cannot be moved further than distance αξ(p) away. In order to exploit the scale invariance, we define

a level-p syndrome history as a subsequence of the original syndrome history {S(t)}t=0,...,T that

includes only those syndromes S(t) that are non-sparse at all levels q = 0, . . . , p − 1. The level-0

syndrome history includes all syndromes S(t), the level-1 syndrome history omits S(t) that is sparse

at level 0, and so on. When S(t′) and S(t′′) are a consecutive pair of level-p syndromes, we define a

level-p error E connecting S(t′) and S(t′′) as the product of all single-qubit errors Ej that occurred

between S(t′) and S(t′′). Level-p errors are represented by horizontal arrows on Fig. 6.1. Note that

we do not have any bound on the number of single-qubit errors Ej in the interval between S(t′) and

S(t′′). In the worst case, E could act nontrivially on every qubit in the system. A main technical

lemma of this chapter below asserts, loosely speaking, that if a syndrome history does not have a

deep enough non-sparse hierarchy, any error path is equivalent to one that is localized around the

defects.

Lemma 6.1.3. Let S′ = S(t′) and S′′ = S(t′′) be a consecutive pair of syndromes in the level-p

syndrome history of a Hamiltonian obeying the no-strings rule. Let E be the product of all errors

Ej that occurred between S′ and S′′. Suppose that any S(t) contains at most m defects. If

16mξ(p) < Ltqo,

then there exists an error Ẽ supported on Bξ(p)(S′ ∪ S′′) such that EẼ is a stabilizer.

Proof. The proof is by induction in p. When p = 0, E = Ej is a single-qubit error. If the qubit

acted on by E does not belong to B1(S′ ∪ S′′), one must have S′ = S′′. It means that E is a single-

qubit error with a trivial syndrome. The topological order condition implies that E is a stabilizer.

Choosing Ẽ = I proves the lemma for p = 0.

Suppose the assertion is true for some level p ≥ 0. Let S′ = S(t′) and S′′ = S(t′′) be consecutive

syndromes in the level-(p+1) history. Consider first the trivial case when S′ = S(t′) and S′′ = S(t′′)

are also consecutive syndromes in the level-p history. Then S′ and S′′ are connected by a single4

level-p error E which, by induction hypothesis, has support on Bξ(p)(S′ ∪ S′′) modulo stabilizers.

The latter is contained in Bξ(p+1)(S
′ ∪ S′′) which proves the induction step.

4The word ‘single’ does not necessarily mean a single blob of errors supported in a small ball; it just means a
single arrow in the level-p history. For instance, suppose that a model permits neutral point defects. Two neutral
defects separated by distance 1 is a non-sparse at level 0 and 1. If we annihilate one of them, put sparsely many
neutral defects, and finally put a neutral defect adjacent to one of the defects, then the whole process is described by
a consecutive pair in the level 1 history. The ‘single’ level-1 error in this case consists of many components.
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Figure 6.1: Renormalization group technique used to prove a logarithmic lower bound on the energy
barrier for logical operators. Horizontal axis represents time. Vertical axis represents RG level
p = 0, 1, . . . , pmax. A sequence of level-0 errors (single-qubit Pauli operators) implementing a logical
operator P defines a level-0 syndrome history (yellow circles) that consists of sparse (S) and non-
sparse (D) syndromes. The history begins and ends with the vacuum (0). For any level p ≥ 1
we define a level-p syndrome history by retaining only non-sparse syndromes at the lower level. A
syndrome is called non-sparse at level p if it cannot be partitioned into clusters of size ≤ (10α)p

separated by distance ≥ (10α)p+1, where α is a constant coefficient from the no-strings rule. Each
level-p error (horizontal arrows) connecting syndromes S′, S′′ is equivalent to the product of all
level-(p−1) errors between S′, S′′ modulo a stabilizer. We prove that these stabilizers can be chosen
such that level-p errors act on 2O(p) qubits. Since at the highest level p = pmax a single level-p error
is a logical operator, one must have pmax = Ω(logL). We prove that level-p non-sparse syndromes
contain Ω(p) defects which implies that at least one syndrome at level p = pmax − 2 consists of
Ω(logL) defects.

The nontrivial case is when there is at least one level-p syndrome between S′ and S′′. The interval

of the level-p syndrome history between S′ and S′′ can be represented (after properly redefining the

time variable t) as

S′
Elead−−−→ S(1)

E1−−→ S(2)
E2−−→ · · · Eτ−1−−−→ S(τ)

Etail−−−→ S′′.

Here all syndromes S(1), . . . , S(τ) are sparse at the level p and all transitions are caused by level-

p errors. The sparsity implies that the set of elementary cubes occupied by S(t) has a unique

partition into a disjoint union of clusters Ca(t) such that each cluster has diameter at most ξ(p) and

the distance between any pair, if any, of clusters is at least

dist(Ca(t), Cb(t)) ≥ ξ(p+ 1)− 2ξ(p) ≥ (10α− 2)ξ(p) ≥ 8αξ(p).

Represent any intermediate syndrome as a disjoint union

S(t) = Sc(t) ∪ Sn(t), t = 1, . . . , τ, (6.3)

where Sc(t) and Sn(t) include all charged and all neutral clusters Ca(t), respectively. Let g be the

number of clusters in Sc(t). We claim that g does not depend on t. Indeed, since a level-p error

Et acts on ξ(p)-neighborhood of S(t) ∪ S(t+ 1) by the induction hypothesis, the sparsity condition

implies that Et cannot create or annihilate a charged cluster Ca(t) from the vacuum, or map a
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charged cluster to a neutral cluster and vice versa. The same argument shows that each cluster

Ca(t) ⊆ Sc(t) can ‘move’ at most by ξ(p) per time step, that is, we can parameterize

Sc(t) = C1(t) ∪ . . . ∪ Cg(t)

such that a ‘world-line’ of the a-th charged cluster obeys the continuity condition

dist(Ca(t+ 1), Ca(t)) ≤ ξ(p). (6.4)

We can now use the no-strings rule to show that all charged clusters are ‘locked’ near their initial

positions, so that their world-lines are essentially parallel to the time axis. More precisely, we claim

that

dist(Ca(t), Ca(1)) ≤ αξ(p) for all 1 ≤ t ≤ τ . (6.5)

Indeed, suppose Eq. (6.5) is false for some a. Using the continuity Eq. (6.4), one can find a time

step t1 such that dist(Ca(t1), Ca(1)) > αξ(p) and dist(Ca(t), Ca(1)) ≤ αξ(p) for all 1 ≤ t < t1. Let

Eclose be the product of all level-p errors Ej that occurred between S(1) and S(t1) within distance

(2 + α)ξ(p) from Ca(1). Since all intermediate syndromes are sparse at level p, the net effect of

Eclose is to annihilate the charged cluster Ca(1) and create the charged cluster Ca(t1). Equivalently,

applying Eclose to the vacuum creates a pair of charged clusters Ca(1) and Ca(t1). However, this

contradicts to the no-strings rule since Ca(1) and Ca(t1) have linear size at most ξ(p) while the

distance between them is greater than αξ(p). Thus we have proved Eq. (6.5).

We say that ~x ∈ Λ is close to S′ if ~x ∈ Bξ(p+1)(S
′), and ~x ∈ Λ is close to S′′ if ~x ∈ Bξ(p+1)(S

′′).

Let Et be the level-p error causing the transition from S(t) to S(t + 1), where t = 1, . . . , τ − 1.

By induction hypothesis, we may assume that the support of Et is in Bξ(p)(S(t) ∪ S(t + 1)). Let

Ect be the restriction of Et onto Bξ(p)(Sc(t) ∪ Sc(t + 1)), and Ent be the restriction of Et onto

Bξ(p)(Sn(t) ∪ Sn(t+ 1)). The sparsity of S(t) implies that

Et = Ect · Ent . (6.6)

We claim that any error Ect is close to S′. Indeed, each cluster in Sc(1) is within distance 2ξ(p) from

S′ since, otherwise, a single level-p error Elead, supported in Bξ(p)(S′∪S(1)) by induction hypothesis

(modulo stabilizers), would be able to create a charged cluster from the vacuum. Using Eq. (6.5),

we infer that Ca(t) ⊆ B(2+α)ξ(p)(S
′) for all a = 1, . . . , g. Therefore, Ect is close to S′.

We wish to find a “localized” leading error Ẽlead that maps the syndrome S′ to Sc(1) such that

the support of Ẽlead is close to S′. For each neutral cluster C ∈ Sn(1) of diameter at most ξ(p),

let O′(C) be a Pauli operator creating C from the vacuum. Because of our TQO2, we can choose
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O′(C) to be supported in B1(C). Set

Ẽlead = Elead

∏
C∈Sn(1)

O′(C),

We have seen that Sc(1) is within (2 + α)ξ(p)-neighborhood of S′. If Elead has a disconnected

component E(C), isolated by distance ξ(p) and centered at a neutral cluster C of Sn(1), then

E(C)O′(C) is a stabilizer. Hence, Ẽlead is close to S′ modulo stabilizers. If Elead does not have such

a component, Ẽlead is already close to S′. Certainly, Ẽlead maps S′ to Sc(1). We can apply the same

rules to the error Etail and the syndrome Sn(τ). We find a localized error

Ẽtail = Etail ·
∏

C∈Sn(τ)

O′′(C)

modulo stabilizers such that Ẽtail maps Sc(τ) to S′′ and the support of Ẽtail is close to S′′. The

operator O′′(C) above creates a neutral cluster C ∈ Sn(τ) from the vacuum.

We can now define a localized level-(p+ 1) error Ẽ whose support is close to S′ ∪ S′′ as

Ẽ = Ẽtail · Ecτ−1 · · ·Ec1 · Ẽlead. (6.7)

By construction, it describes an error path

S′
Ẽlead−−−→ Sc(1)

Ec1−−→ Sc(2)
Ec2−−→ · · ·

Ecτ−1−−−→ Sc(τ)
Ẽtail−−−→ S′′.

It remains to check that E · Ẽ is a stabilizer. Combining Eq. (6.6) and Eq. (6.7) we conclude that

E · Ẽ = ±(ẼleadElead) · En1 · · ·Enτ−1 · (ẼtailEtail).

Applying E · Ẽ to the vacuum generates the following chain of transitions:

vac
ẼleadElead−−−−−−−→ Sn(1)

En1−−→ Sn(2)
En2−−→ · · ·

Enτ−1−−−→ Sn(τ)
ẼtailEtail−−−−−−→ vac (6.8)

Each syndrome Sn(t) consists of at most m neutral clusters of diameter ξ(p), i.e., it can be created

from the vacuum by an error whose support can be enclosed by at most m cubes of linear size 2+ξ(p),

due to our TQO2. The first transition ẼleadElead or the last transition ẼtailEtail is caused by errors

whose support can be enclosed by at most m cubes of linear size 2 + ξ(p). All intermediate ones are

supported on Bξ(p)(Sn(t)∪Sn(t+ 1)). Hence their support can be enclosed by at most 2m cubes of

linear size 2 + ξ(p). Now the statement that E · Ẽ is a stabilizer follows from Lemma 6.1.2.

Now we state two theorems that apply to any stabilizer Hamiltonian Eq. (6.1) on a D-dimensional
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lattice that obeys the topological order condition (TQO1,2) and the no-strings rule. The numerical

constants for the Hamiltonian are α ≥ 1 in the no-strings rule and 1 ≥ γ > 0 in the bound Ltqo ≥ Lγ

where L is the linear system size.

Theorem 6.1. The energy barrier for any logical operator is at least c logL for some constant

c = c(α, γ).

Proof. Consider a syndrome history of an implementation of a logical operator E. We keep the

initial and the final syndromes (the empty syndromes) at all levels; the syndrome history starts and

ends with the vacuum at any level p. It suffices to treat the case where all intermediate syndromes

S(t) are non-empty. Let pmax be the highest RG level, that is, the smallest integer p ≥ 0 such that

a single level-p error E maps the vacuum to itself, see Fig. 6.1. Let m be the maximum number of

defects in the syndrome history at any given moment.

Suppose that 16mξ(pmax) < Ltqo. Then Lemma 6.1.3 applied to the level-pmax syndrome history

with S′ = S′′ = ∅ (vacuum), would imply Ẽ = I. Since E is not a stabilizer by assumption, we must

have 16mξ(pmax) ≥ Ltqo. Since the syndrome history must contain a syndrome S(t) non-sparse

at all levels 0, . . . , pmax − 2, Lemma 6.1.1 implies m ≥ pmax. And, TQO1 requires Ltqo ≥ Lγ .

Therefore, 16(10α)2m ≥ 16m(10α)m ≥ 16m(10α)pmax ≥ Lγ , and m = Ω(L).

Theorem 6.2. Let S be a neutral cluster of defects containing a charged cluster S′ ⊆ S of diameter

r such that there are no other defects within distance R from S′. If r + R < Ltqo, then the energy

barrier for creating S from the vacuum is at least c logR for some constant c = c(α).

Proof. Let S be a neutral cluster of defects and E be a Pauli operator creating S from the vacuum,

with S′ ⊂ S of diameter r being charged. Consider a hierarchy of syndrome histories similar to

the one shown on Fig. 6.1, where we now maintain the initial syndrome ∅ and the final syndrome

S for all levels. Let pmax be the highest RG level. Then a single level-pmax error E creates S

from the vacuum. Since there must be a syndrome that is non-sparse for all levels 0, 1, . . . , pmax−2,

Lemma 6.1.1 implies m ≥ pmax where m is the maximum number of defects in the syndrome history.

Suppose 16mξ(pmax) < Ltqo Lemma 6.1.3 implies that E is the equivalent modulo stabilizers to

Ẽ supported on Bξ(pmax)(S). If ξ(pmax) < R/4, then Ẽ must act on two separated regions, one near

S′ and another far from S′. This means that S′ alone can be created by a Pauli operator whose

support is enclosed by a cube of linear size r + R/2. Since r + R < Ltqo, it is contradictory to the

assumption that S′ is charged. Therefore, ξ(pmax) ≥ R/4, and m = Ω(R). If 16mξ(pmax) ≥ Ltqo,

then, since Ltqo > R, we also have m = Ω(R).
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6.2 Superlinear code distance

We have shown that in a process of isolating a charged cluster, there is a logarithmic energy barrier.

The following theorem quantifies how long the process must be. The proof again makes use of

renormalization group, and shows that there is a subset of ‘fractal dimension’ γ > 1 in the support

of E, the operator that makes two separated clusters from the vacuum of which one is charged. We

assume that E has weight minimum possible.

Let w be an odd positive number. We say a set of sites C ⊂ Λ is a level-p chunk if diam(C) < wp.

A path in the lattice is a finite sequence of sites (u1, u2, . . . , un) such that d(ui, ui+1) = 1. (Recall

that we use the l∞ metric d.) Using paths, we can say whether a set is connected.

Definition 6.4. A connected level-p chunk C ⊆ S is maximal with respect to a set of sites S if

there exist a connected subset C◦ ⊆ C and a path ζ = (u1, . . . ,m, . . . , un) ⊆ C◦ satisfying

(i) d(u1, un) = wp − wp−1,

(ii) d(u1,m), d(un,m) ≥ wp−wp−1

2 ,

(iii) C◦ contains the connected component of m in Bwp−wp−1

2

(m) ∩ S, and

(iv) C contains the connected component of C◦ in Bwp−1

2

(C◦) ∩ S.

The last two conditions restricts the position of ζ in C such that ζ lies sufficiently far from the

boundary of C. The site m will be referred to as a midpoint of C. Let S be the support of the

Pauli operator E, any restriction of which obeys the no-strings rule.

Lemma 6.2.1. Given a path ζ in S joining u1 and un such that d(u1, un) = lwp − 1, there are l

disjoint maximal chunks of level p whose midpoints are on ζ.

Proof. For convenience, we assume that the z-coordinates of u1 and un are 0 and lwp−1, respectively.

Consider l+1 planes Pi perpendicular to the z-axis, whose z-coordinates are iwp for i = 0, 1, . . . , l. In

each region between the two consecutive planes Pi−1 and Pi, there is a subpath ζi = (uji−1 , . . . , uji)

such that d(uji−1 , uji) = wp − 1. Choose mi ∈ ζi such that d(uji−1 ,mi), d(mi, uji) ≥ wp−1
2 . Let Ci

be the connected component of mi within S ∩ Bwp
2

(mi). Add, if necessary, some points of ζi to Ci

to get a maximally connected C ′i. This C ′i is a maximal chunk of sites with midpoint being mi. Any

two C ′i’s are disjoint since each of them lies in a unique region enclosed by Pi−1 and Pi.

Lemma 6.2.2. For sufficiently large w, a maximal level (p + 1) chunk C with respect to S admits

a decomposition into w + 1 or more maximal chunks of level p with respect to S.

Proof. Recall that S is the support of the Pauli operator E, any restriction of which obeys no-strings

rule. Define the boundary of a subset U of S to be ∂U = B1(U) ∩ U c ∩ S. Then, any subset U of

sites with boundary enclosed in a two disjoint regions can be regarded as a string segment.
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By the definition of the maximal chunk, there exists a path (u1, . . . ,m, . . . , un) in C◦ ⊆ C such

that d(u1, un) = wp+1 − wp. We assume that the z-coordinates of u1, un differ by wp+1 − wp. We

will show that there are sufficiently long and separated paths in C◦, to which we apply Lemma 6.2.1

to find w + 1 maximal chunks of level p. They will lie in Bwp
2

(C◦), and hence in C.

Let M (N) be the subset of S consisted of sites whose z-coordinates differ from that of u1 (un)

by at most ηwp. First, suppose ∂C◦ is not contained in M ∪N . Since u1 ∈ M and un ∈ N , there

is a site s ∈ C◦ adjacent (of distance 1) to ∂C◦ such that d(s, u1), d(s, un) > ηwp. Furthermore,

d(s,m) ≥ wp+1−wp
2 − 1; otherwise, C◦ contains a site in the boundary, which is a contradiction.

Consider the shortest network N of paths in C◦ connecting four sites u1,m, un, s. (The length

of a network of paths is the number of sites in the union of the paths.) Let ζ be the shortest path in

N from u1 to un. If s is not contained in B3wp(ζ), then ζ ′ ⊆ N joining s to a site on ζ has a subpath

ζ ′′ ⊆ ζ ′ of diameter at least 2wp such that ζ ′′ is separated from ζ by wp. Applying Lemma 6.2.1

to ζ and ζ ′′, we find at least w + 1 maximal chunk of level p. If m is not contained in B3wp(ζ), a

similar argument reveals at least w + 1 maximal chunk of level p.

Suppose both s and m are contained in B3wp(ζ). Observe that ζ \ (B4wp(s) ∪ B4wp(m)) consists

of three connected components ζ1, ζ2, ζ3, two of which have diameter ≥ wp+1−wp
2 − 8wp and the

other has diameter ≥ (η − 4)wp. Two distinct Bwp
2

(ζi) and Bwp
2

(ζj) (i, j = 1, 2, 3) do not overlap

because of the minimality of ζ. Applying Lemma 6.2.1, we find w+ η − 21 maximal chunks of level

p. Choosing η > 21, we get the desired result.

Next, suppose ∂C◦ is contained in M ∪ N . Let sM , sN ∈ C◦ \ (M ∪ N) be sites adjacent to

M and N , respectively. The separation between M and N is (w − 1 − 2η)wp. If it is greater than

η′αwp, there must be a z-plane P that contains sM or sN such that P ∩ C◦ has diameter > η′wp;

Otherwise, the no-strings rule is violated. Let v1, v2 ∈ P ∩ C◦ be sites separated by η′wp. The four

sites, u1, un, v1, v2 are sufficiently separated and connected by some paths in C◦. Arguing as before,

we find (w − 1) + η′ − 16 maximal chunks of level p. The choice of η′ > 17 and w > 1 + 2η + η′α

proves the lemma.

Theorem 6.3. Let E be a Pauli operator creating S, a neutral cluster of defects containing a

charged cluster S′ ⊆ S of diameter r such that there are no other defects within distance R from S′.

If r + 2R < Ltqo, then the weight of E must be ≥ cRγ for some constant γ > 1 and c.

Proof. The support of the minimal Pauli operator E in Theorem 6.3 must admit a path connecting

S′ and S \ S′. Otherwise, S′ can be regarded as being created locally, and our topological order

condition demands the cluster be neutral. Since the path has length ≥ R, Lemma 6.2.1 says we

have a maximal chunk of level p where p is such that wp ≤ R < wp+1. Lemma 6.2.2 implies

any maximal chunk of level p must contain at least (w + 1)p sites. This concludes the proof with

γ = log(w+1)
logw > 1.
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A similar argument proves the lower bound d = Ω(Lγ) on the code distance d of the cubic code

since the minimal logical operator must contain a path of length L.
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Chapter 7

Renormalization group decoder
and error threshold theorem

Any error correcting scheme would be comprised of a chosen code space, an encoding procedure, and

a decoding procedure. We have studied a way to choose a code space via additive/stabilizer code

formalism. Our focus has been the situation where the code space is realized as a ground space of a

local Hamiltonian. The encoding is a process in which one prepares a state that is to be transferred

or stored, and then one embeds the state into the designed code space. For a concatenated code

the encoding would be hierarchical resembling the very way the code is constructed. Interestingly, a

ground state of toric code model can also be prepared in a similarly hierarchical way [105]. In case

of the cubic code, for example, the encoding can be done by inverting the real-space renormalization

group procedure presented in Section 5.4.

The decoder of a quantum code restores a damaged state into the code space. In contrast to

its name, the decoder should not reveal any information that is encoded. Rather, it prepares the

state appropriate for next information processing step which assumes that the state is in the code

space; it detects errors and suggests an operator that would undo the errors. The performance

of the decoder is measured by how closely the damaged state is restored to the original encoded

state. In this chapter, we explain a decoding algorithm, called renormalization group decoder, that

is applicable for a family of topological codes including the cubic code. A very similar idea appears

in Harrington’s thesis [114]. A decoder for 2D toric code with a similar name was proposed by

Duclos-Cianci and Poulin [115]. The two decoders are conceptually similar, and the running times

are the same up to a multiplicative constant. Our decoder is however advantageous for its simplicity

and applicability. In particular, our decoder is the only decoder so far that has a positive error

threshold under stochastic error when used with the cubic code. In fact, our decoder provides a

universal positive error threshold for all topological codes in a given number of spatial dimensions,

as we prove in Section 7.5.

Formally, if we restrict ourselves to local additive codes, the decoder is an association of a Pauli
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operator P to any possible syndrome S such that the Pauli operator P transforms S to the empty

syndrome. Recall that the syndrome measurement reveals locations of defects (flipped stabilizer

generators) created by an unknown error. The renormalization group (RG) decoder attempts to

annihilate the defects comprising the syndrome S by dividing them into disjoint connected clusters

S = C1 ∪ . . . ∪Cm and then trying to annihilate each cluster Ca individually. More specifically, the

decoder checks whether Ca can be annihilated by a Pauli operator Pa supported on a sufficiently

small spatial region b(Ca) enclosing Ca. If such a local annihilation operator Pa exists, the decoder

updates the syndrome by erasing all the defects comprising Ca, records the operator Pa, and moves on

to the next cluster. If Ca cannot be annihilated, the decoder skips it. The annihilation operator Pa is

not unique. However, if the enclosing region b(Ca) is small enough to ensure that no logical operator

can be supported on b(Ca), all annihilation operators Pa must be equivalent modulo stabilizers and

the choice of Pa does not matter.

After all clusters Ca have been examined, the decoder is left with a new configuration of defects

S′, which is typically smaller than the original one. If no defects are left, i.e., S′ = ∅, the decoder

stops and returns the product of all recorded Pauli operators Pa. If S′ 6= ∅, the decoder applies

a scale transformation increasing the unit of length by some constant factor and repeats all the

above steps starting from the syndrome S′. The scale transformation potentially merges several

unerased clusters Ca into a single connected cluster whereby giving the decoder one more attempt

to annihilate them.

The full decoding algorithm is the iteration of partitioning the defects into the connected clusters

and calculating the annihilation operators. It declares failure and aborts if the recorded operator

cannot annihilate all the defects before the rescaled unit length is comparable to the lattice size.

A detailed implementation of the RG decoder must be tailored to a specific lattice geometry and

a stabilizer code under consideration. It must include a precise definition of the connected clusters

of defects Ca and the enclosing regions b(Ca). It must also include an algorithm for choosing the

annihilation operators Pa, a schedule for increasing the unit of length, and clearly stated conditions

under which the decoder aborts. In the rest of this chapter we describe an efficient implementation

of the RG decoder for arbitrary stabilizer codes satisfying topological order conditions defined in

the previous chapter. The only part of this implementation specialized for the 3D cubic code is

the “broom algorithm” of Section 7.4. As we have noted in Remark 6.1, the our topological order

conditions are satisfied by every translationally invariant exact code. It turns out that the broom

algorithm is also applicable for every translationally invariant code.
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7.1 Assumptions and conventions

Let Λ be the regular 3D cubic lattice of linear size L with periodic boundary conditions along

all coordinates x, y, z. We shall label sites of Λ by triples of integers (i, j, k) defined modulo L and

measure the distance between sites using the `∞-metric. In other words, the distance d(u, v) between

a pair of sites u and v is the smallest integer r such that u and v can be enclosed by a cubic box

with dimensions r × r × r. For example, d(u, v) = 1 whenever u and v belong to the same edge,

plaquette, or elementary cube of the lattice. Each site of Λ represents one or several physical qubits

(two qubits for the 3D Cubic Code). Each elementary cube c represents a spatial location of one

or several stabilizer generators For example, there are two generators for the 3D Cubic Code. A

generator located at cube c may act only on qubits located at vertices of c. We shall label each

elementary cube by coordinates of its center, the triple of half-integers (i, j, k) defined modulo L.

The distance d(c, c′) between a pair of cubes c and c′ is the distance between their centers. For

example, d(c, c′) = 1 whenever c and c′ share a vertex, an edge, or a plaquette.

A defect is a stabilizer generator whose eigenvalue has been flipped as a result of the error. We

shall use a term cluster of defects, or simply cluster for any set of defects. Define the diameter

of a cluster d(C) as the maximum distance d(c, c′) where c, c′ ∈ C. Here and below the distance

between defects is defined as the distance between the cubes occupied by these defects. Given two

non-empty clusters C and C ′, define a distance d(C,C ′) as the minimum distance d(c, c′) where

c ∈ C and c′ ∈ C ′. Given an integer r, we shall say that a cluster C is connected at scale r, or

simply r-connected, if C cannot be partitioned into two proper subsets C = C ′ ∪ C ′′ such that

d(C ′, C ′′) > r. A maximal r-connected subset of a cluster C is called a r-connected component

of C. The minimal enclosing box b(C) of a cluster C is the smallest rectangular box B enclosing

all defects of C such that all vertices of B are dual sites of Λ. Note that the minimal enclosing box

b(C) is unique as long as d(C) < L/2; if a cluster C has diameter L/2, one may have two boxes with

the same dimensions enclosing C that ‘wrap’ around the lattice in two different ways.

Let G be the abelian group generated by the stabilizer generators. Elements of G are called

stabilizers. Let S(P ) be the syndrome of a Pauli operator P , that is, the set of all stabilizer

generators anticommuting with P . The syndrome can be viewed as a cluster of defects.

We assume that our topological code obeys TQO1 and TQO2 of Defini-

tions 6.1,6.2 throughout the chapter, but not the no-strings rule of Definition 5.1.

The 3D cubic code satisfies both of TQO1 and TQO2 with Ltqo = 1
2L, since it is exact. In order to

avoid unnecessary complications due to boundaries, we always assume that Ltqo ≤ 1
2L. Below we

consider only topological stabilizer codes. Continued from the previous chapter, a cluster of defects

C is called neutral if it can be created from the vacuum by a Pauli operator P supported on a cube

of linear size Ltqo. Otherwise, the cluster is said to be charged. For example, the 2D toric code [3]
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has two types of defects: magnetic charges (flipped plaquette operators) and electric charges (flipped

star operators). In this case, a cluster of defects C is neutral if and only if C contains even number

of magnetic charges and even number of electric charges. It follows from TQO2 that any neutral

cluster of defects C can be annihilated by a Pauli operator supported on the 1-neighborhood of the

minimum enclosing box b(C).

7.2 Renormalization group decoder

We are now ready to define our RG decoder precisely. Recall that d(C) is the diameter of a cluster

C, and Ltqo ≤ 1
2L by convention.

TestNeutral

Input S : a set of defects, Output P : a Pauli operator.

1. Compute the minimal enclosing box B of S.

2. if d(B) > Ltqo, then return I.

3. Try to compute a Pauli P supported on the 1-neighborhood of B such that S(P ) = S.

4. if a consistent P is found then return P else return I.

TQO2 implies that TestNeutral successfully computes the correcting Pauli operator for any neutral

cluster. Step 1 is easy as we discuss in the end of Section 7.3. The specification of Step 3 depends on

the code, but it always has an efficient implementation using the standard stabilizer formalism [116].

In general, the condition S(P ) = S can be described by a system of O(V ) linear equations over O(V )

binary variables parameterizing P , where V is the volume of B. The running time is then O(V 3) by

the Gauss elimination. In the special case of the 3D cubic code or more generally all translationally

invariant codes, there is a much more efficient algorithm running in time O(V ) which we describe

in Section 7.4.

Let pM be the largest integer such that 2pM < Ltqo. For any integer 0 ≤ p ≤ pM , we define the

level-p error correction:

EC(p)

Input S : a syndrome, Output P : a Pauli operator.

1. Partition S into 2p-connected components: S = C1 ∪ . . . ∪ Cm.

2. For each component, compute Pa = TestNeutral(Ca).

3. return the product P1P2 · · ·Pm.

The overall running time of EC(p) is polynomial in the number of qubits N . Step 1 can be done,

for example, by examining the distance between all pairs of defects, forming a graph whose edges

connect pairs of defects separated by distance ≤ 2p, and finding connected components of this graph.

A more efficient algorithm with the running time O(N) is described in Section 7.3. Since V = O(N)

and m = O(N), we see that the worst-case running time of EC(p) is O(N2). For instance, one can
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Figure 7.1: Configuration of defects at consecutive levels of renormalization group decoder. Bit-flip
errors are generated stochastically for an illustrative purpose, over 64×64 lattice with a uniform error
rate 8% per qubit. The dots are flipped stabilizer generators (defects) of the 2D toric code. At each
level p, RG decoder decomposes the set of defects into connected clusters — connected components
in a graph with vertices representing defects and edges connecting pairs of defects separated by
distance 2p or less (not shown). Each neutral cluster containing even number of defects (blue) is
annihilated by applying a local Pauli operator supported in the smallest rectangular box enclosing
the cluster. Charged clusters containing odd number of defects (red) cannot be annihilated locally.
All defects in the red clusters are passed to the next RG level p+ 1. In this example the red clusters
from level 3 are annihilated at level 4 (not shown) and RG decoder successfully annihilated all defects
returning the corrupted state to the originally encoded state.
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consider nested boxes, near the faces of which many defects lie. However, clusters are created from

the vacuum with some probability which we expect to be smaller than, say, 1
2 . So the number of

clusters that have overlapping minimal enclosing box appears with exponentially small probability.

On average, the running time of EC(p) will be O(N). The full RG decoding algorithm is as follows.

RG Decoder

Input S : the syndrome, Output Pec : a Pauli operator.

1. Set Pec = I.

2. for p = 0 to pM do

Let Q =EC(p)(S).

Update Pec ← Pec ·Q and S ← S ⊕ S(Q).

end for

3. if S = 0 then return Pec else declare failure.

Here the notation S ⊕ S(Q) stands for the symmetric difference of the sets S and S(Q) or addition

modulo two, if the syndromes are represented by binary strings. The discussion above implies that

the RG decoder has running time O(N2 logN) in the worst case, and O(N logN) in the case of

sparse syndromes. An example of RG decoder in action is illustrated in Figure 7.1.

Being a physically realizable operation, any decoder should be written as a trace preserving

completely positive map on the set of density matrices. By measuring a syndrome S, the decoder

projects the state onto a subspace ΠS of the syndrome S, and then applies a correcting operator

Pec(S):

Φec(ρ) =
∑
S

Pec(S)ΠS ρΠSPec(S)†

where the sum is over all possible syndromes. Thus, to conform with this equation our decoder

should return some operator that is consistent with the measured syndrome, rather than declaring

a “failure.” It is however no better than initializing the memory with an arbitrary state.

7.3 Cluster decomposition

Given a length scale r, the cluster decomposition of defects is to partition the defects into maximally

connected subsets (connected components) of the syndrome at scale r. Naively, the task to compute

the decomposition of all the defects into clusters will take time O(m2) where m is the total number

of defects. The density of defects will typically be constant irrespective of the system size, and the

computation time for decomposition will be O(N2), where N is the volume of the system. However,

by exploiting the geometry of simple cubic lattice, we can do it in time O(N). This is the optimal

scaling since we have to sweep through the whole system anyway to identify the position of defects.

If r = 1, the problem is to label the connected components of binary array [117, 118]. Given a
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defect u0, we can compute the connected component containing u0 in time O(m) where m is the

number of defects in the component. One prepares an empty queue (first-in-first-out data structure),

and puts u0 into it. The subsequent computing is as follows: (i) Pop out the first element u from the

queue, and of the neighborhood put the unlabeled defects into the queue and label them. (ii) Repeat

until the queue becomes empty. Every defect in a connected component j is stored in the queue only

once. Hence, this process computes the component j of a given defect in time proportional to the

number mj of defects in j. One examines the whole system in some order and finds the connected

component whenever there is an unlabeled defect. The total computation time is proportional to

N +O(1)
∑
jmj = O(N), since the connected components are disjoint.

For r > 1, the algorithm begins by dividing the whole lattice into boxes of linear size r or smaller.

The defects in a box certainly belong to a single connected component (recall that we use the `∞

metric). The defects in the boxes B,B′ belong to the same component if and only if there is a pair

u ∈ B, v ∈ B′ of defects such that d(u, v) ≤ r. In other words, we evaluate the binary function

δ(B,B′) =

1 if there are u ∈ B, v ∈ B′ such that d(u, v) ≤ r,

0 otherwise

for each neighbor B′ of B; if B does not meet B′, we know that δ(B,B′) = 0.

Given the table of δ, we can finish computing the decomposition in time O((L/r)D) as in the

r = 1 case. We show that the computation of δ(B,B′) can be done in time O(rD) where D is the

dimension of the lattice. Then, the total time to compute the table of δ for all adjacent boxes will be

O(rD(L/r)D) = O(N). Let B and B′ be adjacent. For clarity of presentation, we restrict to D = 2.

Suppose B and B′ meet along an edge parallel to x-axis. Since any difference |x−x′| of x-coordinates

of the defects in B ∪B′ is at most r, we only need to compare y-coordinates. That is, the problem

is reduced to one dimension. It suffices to pick two defects from B and B′, respectively, that are

the closest to the x-axis. If the y-coordinates differ at most by r, then δ(B,B′) = 1; otherwise,

δ(B,B′) = 0.

Suppose B and B′ meet at a vertex. Without loss of generality, we assume B is in the third

quadrant, and B′ is in the first quadrant. Define a binary function δ′ on B′ as

δ′(i, j) =

1 if there is a defect (x, y) ∈ B′ where x ≤ i and y ≤ j,

0 otherwise.

The function table of δ′ is computed in time O(r2). It is important to note that δ′(i, j) = 1 implies

δ′(i + 1, j) = δ′(i, j + 1) = 1. One starts from the origin and sets δ′( 1
2 ,

1
2 ) = 1 if there is a defect

at (1
2 ,

1
2 ); otherwise δ′( 1

2 ,
1
2 ) = 0. Here, ( 1

2 ,
1
2 ) means the elementary square in the first quadrant
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that is the closest to the origin. Proceeding by a lexicographic order of the coordinates, one sets

δ′(i, j) = 1 if δ′(i − 1, j) = 1, or δ′(i, j − 1) = 1, or there is a defect at (i, j); otherwise δ′(i, j) = 0.

It is readily checked that this procedure correctly computes δ′. Equipped with this δ′ table, we can

immediately test for each defect in B whether there is a defect in B′ within distance r. Thus, we

have computed δ(B,B′) in time O(r2) + O(m) where m is the number of defects in B, which is at

most O(r2). The computation of δ in higher dimensions is similar.

The computation of the minimal enclosing box for each cluster is also efficient. Given the

coordinates of the m points in the cluster, we read out, say, x-coordinates x1, . . . , xm. The minimal

enclosing interval Bx of x1, . . . , xm under periodic boundary conditions, is the complement of the

longest interval between consecutive points xi and xi+1 which can be computed in time O(m). Bx

is unambiguous if the diameter of the cluster is smaller than L/2. The minimal enclosing box is the

product set Bx ×By ×Bz, whose vertices are computed in time O(m).

7.4 Gröbner basis and broom algorithm

Now we describe an efficient algorithm for the 3D cubic code that tests whether a cluster is neutral.

If the test is positive, the algorithm also returns a Pauli operator E that annihilates the cluster.

A crucial property of the 3D cubic code is that it is translationally invariant; it is described

by a few Laurent polynomials over the variables that represent translations. See Chapter 3. The

polynomials form a matrix σ satisfying σ†λσ = 0, where † is transposition followed by entry-wise

antipode map, x 7→ x−1, etc., and λ is an alternating full rank matrix. Since we are working with

qubits, the alternating matrix is actually symmetric. More important than σ is the excitation map

ε = σ†λ. A Pauli operator described by a column matrix p produces a syndrome described by

εp. Thus, the neutrality of a cluster c is equivalent to the existence of p of finitely many terms

such that c = εp. That is, c is neutral if and only if c ∈ im ε; the neutrality test is really a

submodule membership problem. Gröbner basis provides an efficient algorithmic answer to the

membership problem: Compute a Gröbner basis B for the module im ε. It can be done by, for

example, Buchberger algorithm applied to columns of ε [77]. The Gröbner basis is computed only

once for a given code. Then, the neutrality test is straightforward:

(1) Express a cluster as a column matrix e of Laurent polynomials. This step takes running time

O(V ) where V is the volume of the cluster.

(2) Run a standard division algorithm with respect to B. It generates an explicit expression

e =
∑
i

cibi + r

where bi ∈ B, and r is a unique remainder that cannot be further reduced by B. During the
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Figure 7.2: Elementary syndromes created by Z errors. The vertices which are on the dual lattice,
represent the defects created by the error at the center. The elementary syndrome by ZI is used to
push the defects to the bottom and to the left. The syndromes by errors of weight three is used to
push the defects to the bottom-left corner. The cube on the right specifies the coordinate system.

division the degree does not increase. Therefore, the running time of the division is O(V ).

(3) If r = 0, then the cluster is neutral, and ci give the annihilating operator for the cluster. If

r 6= 0, then the cluster is charged.

The 3D cubic code is simple because it is Calderbank-Shor-Steane type code; X- and Z-type

errors can be treated separately. Since there is one X-type stabilizer generator, the syndrome caused

by Z errors is expressed by one Laurent polynomial, which we call a syndrome polynomial. And

neutral syndromes are described by an ideal (submodule) I = (xyz+xy+yz+zx, xyz+x+y+z).1

For simplicity, suppose that the syndrome polynomial is of nonnegative exponents. A Gröbner basis2

of I is

x+ y + z + xyz,

x+ y + xy + z + xz + yz,

x+ y + z + xz + yz + z2 + xz2 + yz2, (7.1)

x+ y + xy + y2 + xy2 + z + yz + y2z,

y2 + yz + y2z + z2 + yz2 + y2z2

where leading terms are marked as bold. The following is an graphical explanation for the division

algorithm. Figure 7.2 shows a subset of a Gröbner basis for the cubic code. One can directly see

1 The generators of I are different from those presented in Chapter 5, but they are related by redefinition of lattice
coordinate system. The antipode map applied to I yields (1 + x+ y + z, 1 + xy + yz + zx).

2The basis presented here is not the reduced Gröbner basis, by which we mean a basis where no term is divisible by
a leading term of other elements in the basis. The presented basis is actually what is used in the numerical simulation
of the cubic code in Chapter 8. It also matches with Figure 7.2.
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that the first four polynomials in Eq. (7.1) matches the diagrams. A step-by-step explanation is as

follows. We fix a box B that encloses all the defects in the neutral cluster. We will sweep the defects

to bottom-left-back corner. Since each defect is a Z2 charge, they will disappear in the end. The

algorithm begins with the top-right foremost vertex of B on the dual lattice. If there is a defect at

(x + 1
2 , y + 1

2 , z + 1
2 ), we apply ZI at (x, y, z) to eliminate it. This might create another defects as

there are four defects in the elementary syndrome. Important is that the potentially new defects

are all contained in the box B we started with. Continuing with ZI we push all the defects in the

foremost plane of B to the left vertical line and the bottom horizontal line. During this process, we

record where ZI has been applied.

For the defects on the vertical line at the left or on the horizontal line at the bottom, we use the

operator of weight 3 to further move the defects to the bottom-left corner. See Fig. 7.2. This will

in general create more defects behind, all of which are still contained in B. Thus, we have moved

all the defects on the foremost plane to the bottom-left corner except for the three sites t, u, v:

t o

u v

(7.2)

That is, if E′ is the recorded operator during the sweeping process, the syndrome S(EE′) ⊆ B has

potential defects only at t, u, v on the foremost plane.

Let o be at (xo + 1
2 , yo + 1

2 , zo + 1
2 ). By considering the multiplication by suitable stabilizer

generators QZ , we can assume that EE′ is the identity on the plane x = xo, except (xo, yo, zo).

Since there is no defect at o, the operator at (xo, yo, zo) has to commute with XX; it is either II

or ZZ. Applying ZZ if necessary, the operator at (xo, yo, zo) will become II, and the defects at

t, u, v will disappear. In this way, we have successfully pushed all the defects to the next-to-foremost

plane. We emphasize that the box B still envelops all the defects, and further B can be shrunk in

one direction.

Due to the threefold symmetry of the cubic code, one can carry out this broom algorithm along

any of three directions. We will have, at last, a box B of volume 1 that encloses all defects. The

defects in the cluster must be from one of the three elementary syndrome cubes created either by

ZI, IZ, or ZZ, which are easily eliminated. It is clear that in time O(V ) the error operator has

been computed up to stabilizer, where V is the initial volume of the minimal enclosing box of the

cluster.
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7.5 Threshold theorem for topological stabilizer codes

In this section we prove that any topological stabilizer code can tolerate stochastic local errors with

a small constant rate assuming that the error correction is performed using the RG decoder. We

assume without loss of generality that each stabilizer generator is supported on a unit cube. Each

site of the lattice may contain finitely many qubits. A generator at a cube c may act only on qubits

of c. We shall assume that errors at different sites are independent and identically distributed. More

precisely, let E(P ) be the set of sites at which a Pauli error P acts nontrivially. We shall assume

that

Pr[E(P ) = E] = (1− ε)V−|E|ε|E| (7.3)

where 0 ≤ ε ≤ 1 is the error rate and V = LD is the total number of sites (the volume of the

lattice). For example, the depolarizing noise in which every qubit experiences X,Y, Z errors with

the probability p/3 each, satisfies Eq. (7.3) with the error rate ε = 1−(1−p)q, where q is the number

of qubits per site.

Theorem 7.1. Suppose a family of stabilizer codes has topological order satisfying TQO1,2. (In

particular, every translationally invariant exact codes do.) Then, there exists a constant threshold

ε0 > 0 such that for any ε < ε0 the RG decoder corrects random independent errors with rate ε with

the failure probability at most e−Ω(Lη) for some constant η > 0.

In the rest of this section we prove the theorem. Our proof borrows some techniques from [119, 120,

114], specifically Section 5.1 of Gray’s review [119] on Gács’ 1D cellular automata [120].

Recall that we use `∞-metric, so a cube of linear size r thus has diameter r. We keep the

terminologies and conventions from Section 7.1, and our decoder is what we have explained in the

previous sections: The level-p error correction EC(p) on a syndrome S is the following subroutine.

(i) find all neutral 2p-connected components M of S, (ii) for each M found at step 1, calculate and

apply a Pauli operator P supported on the 1-neighborhood of b(M) that annihilates M , and update

the syndrome accordingly. Calling the full RG decoder on a syndrome S involves the following

steps: (i) run EC(0), EC(1), ..., EC(blog2 Ltqoc), (ii) if the resulting syndrome S is empty, return

the accumulated Pauli operator applied by the subroutines EC(p). Otherwise, declare a failure.

Below we shall use the term ‘error’ both for the error operator P and for the subset of sites E

acted on by P , whenever the meaning is clear from the context. Let us choose an integer Q � 1

and find a class of errors which are properly corrected by the RG decoder, see Lemma 7.5.2 below.

We will see later that this class of errors actually includes all errors which are likely to appear for

small enough error rate.

Definition 7.1. Let E be a fixed error. A site u ∈ E is called a level-0 chunk. A non-empty

subset of E is called a level-n chunk (n ≥ 1) if it is a disjoint union of two level-(n − 1) chunks
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and its diameter is at most Qn/2.

The term ‘chunk,’ not to be confused with the usage in Section 6.2, is chosen in order to avoid

confusion with ‘cluster’, which is used for a set of defects. Note that a level-n chunk contains exactly

2n sites. Given an error E, let En be the union of all level-n chunks of E. If u ∈ En+1, then by

definition u is an element of a level-(n+1) chunk. Since a level-(n+1) chunk is a union of two level-n

chunks, u is contained in a level-n chunk. Hence, u ∈ En, and the sequence En form a descending

chain

E = E0 ⊇ E1 ⊇ · · · ⊇ Em,

where m is the smallest integer such that Em+1 = ∅. Let Fi = Ei \Ei+1, so E = F0 ∪ F1 ∪ · · · ∪ Fm
is expressed as a disjoint union, which we call the chunk decomposition of E.

Proposition 7.5.1. Let Q ≥ 6 and M be any Qn-connected component of Fn. Then M has diameter

≤ Qn and is separated from En \M by distance > 1
3Q

n+1.

Proof. We claim that for any pair of sites u ∈ Fn = En \ En+1 and v ∈ En we have d(u, v) ≤ Qn

or d(u, v) > 1
3Q

n+1. Suppose on the contrary to the claim, that there is a pair u ∈ Fn and v ∈ En
such that Qn < d(u, v) ≤ Qn+1/3. Let Cu 3 u and Cv 3 v be level-n chunks that contains u and v,

respectively. Since the diameters of Cu,v are ≤ Qn/2 and d(u, v) > Qn, we deduce that Cu and Cv

are disjoint. On the other hand,

d(Cu ∪ Cv) ≤ d(u, v) + d(Cu) + d(Cv) ≤ Qn+1/2

since Q ≥ 6. Thus, Cu ∪ Cv is a level-(n+ 1) chunk that contains u which shows that u ∈ En+1. It

contradicts to our assumption that u ∈ Fn = En \ En+1.

Note that in the chunk decomposition a Qn-connected component P of En may not be separated

from the rest E \ P by distance > Qn.

Lemma 7.5.2. Let Q ≥ 10. If the length m of the chunk decomposition of an error E satisfies

Qm+1 < Ltqo, then E is corrected by the RG decoder.

Proof. Consider any fixed error P supported on a set of sites E. Let E = F0 ∪ F1 ∪ · · · ∪ Fm be the

chunk decomposition of E, and let Fj,α be the Qj-connected components of Fj . Also, let Bj,α be

the 1-neighborhood of the smallest box enclosing the syndrome created by the restriction of P onto

Fj,α. Proposition 7.5.1 implies that

d(Bj,α) ≤ Qj + 2 and d(Bj,α, Bk,β) >
1

3
Q1+min (j,k) − 2. (7.4)

Let P
(p)
ec be the accumulated correcting operator returned by the levels 0, . . . , p of the RG decoder.

Let us use induction in p to prove the following statement.
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1. The operator P
(p)
ec has support on the union of the boxes Bj,α.

2. The operators P
(p)
ec and P have the same restriction on Bj,α modulo stabilizers for any j such

that 2p ≥ Qj + 2.

The base of induction is p = 0. Using Eq. (7.4) we conclude that any 1-connected component of

the syndrome S(P ) is fully contained inside some box Bj,α. It proves that P
(0)
ec has support on the

union of the boxes Bj,α. The second statement is trivial for p = 0.

Suppose we have proved the above statement for some p. Then the operator P ·P (p)
ec has support

only inside boxes Bj,α such that 2p < Qj+1 (modulo stabilizers). It follows that any 2p+1-connected

component of the syndrome caused by P ·P (p)
ec is contained in some box Bj,α with 2p < Qj +1. Note

that the RG decoder never adds new defects; we just need to check that 2p+1-connected components

do not cross the boundaries between the boxes Bj,α with 2p < Qj + 1. This follows from Eq. (7.4).

Hence P
(p+1)
ec has support in the union of Bj,α. Furthermore, if 2p < Qj + 1 ≤ 2p+1, the cluster of

defects created by P · P (p)
ec inside Bj,α forms a single 2p+1-connected component of the syndrome

examined by EC(p+ 1). This cluster is neutral since we assumed Qm+1 < Ltqo. Hence P
(p+1)
ec will

annihilate this cluster. The annihilation operator is equivalent to the restriction of P · P (p)
ec onto

Bj,α modulo stabilizers, since the linear size of Bj,α is smaller than Ltqo. It proves the induction

hypothesis for the level p+ 1.

The preceding lemma says that errors by which the RG decoder could be confused are those from

very high level chunks. What is the probability of the occurrence of such a high level chunk if the

error is random according to Eq.(7.3)? Since our probability distribution of errors depend only on

the number of sites in E, this question is completely percolation-theoretic.

Let us review some terminology from the percolation theory[121]. An event is a collection of

configurations. In our setting, a configuration is a subset of the lattice. Hence, we have a partial

order in the configuration space by the set-theoretic inclusion. An event E is said to be increasing

if E ∈ E , E ⊆ E′ implies E′ ∈ E . For example, the event defined by the criterion that there exists

an error at (0, 0), is increasing. The disjoint occurrence A ◦ B of the events A and B is defined as

the collection of configurations E such that E = Ea ∪Eb is a disjoint union of Ea ∈ A and Eb ∈ B.

To illustrate the distinction between A ◦ B and A ∩ B, consider two events defined as A = “there

are errors at (0, 0) and at (1, 0)”, and B = “there are errors at (0, 0) and at (0, 1)”. The intersection

A ∩ B contains a configuration {(0, 0), (1, 0), (0, 1)}, but the disjoint occurrence A ◦ B does not. A

useful inequality by van den Berg and Kesten (BK) reads [122, 121]

Pr[A ◦ B] ≤ Pr[A] · Pr[B] (7.5)

provided the events A and B are increasing.
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Proof of Theorem 7.1. Consider a D-dimensional lattice and a random error E defined by Eq. (7.3).

Let Bn be a fixed cubic box of linear size Qn and B+
n be the box of linear size 3Qn centered at Bn.

Define the following probabilities:

pn = Pr [Bn has a nonzero overlap with a level-n chunk of E]

p̃n = Pr [B+
n contains a level-n chunk of E]

qn = Pr [B+
n contains 2 disjoint level-(n− 1) chunks of E]

rn = Pr [B+
n contains a level-(n− 1) chunk of E]

Note that all these probabilities do not depend on the choice of the box Bn due to translation

invariance. Since a level-0 chunk is just a single site of E, we have p0 = ε. We begin by noting that

pn ≤ p̃n ≤ qn.

Here we used the fact that any level-n chunk has diameter at most Qn/2 and that any level-n chunk

consists of a disjoint pair of level-(n − 1) chunks. Let us fix the box B+
n and let Qn be the event

that B+
n contains a disjoint pair of level-(n− 1) chunks of E. Let Rn be the event that B+

n contains

a level-(n− 1) chunk of E. Then Qn = Rn ◦ Rn. It is clear that Qn and Rn are increasing events.

Applying the van den Berg and Kesten inequality we arrive at

qn ≤ r2
n.

Finally, since B+
n is a disjoint union of (3Q)D boxes of linear size Qn−1, the union bound yields

rn ≤ (3Q)Dpn−1.

Combining the above inequalities we get pn ≤ (3Q)2Dp2
n−1, and hence

pn ≤ (3Q)−2D((3Q)2Dε)2n .

The probability pn is doubly exponentially small in n whenever ε < (3Q)−2D. If there exists at least

one level-n chunk, there is always a box of linear size Qn that overlaps with it. Hence, on the finite

system of linear size L, the probability of the occurrence of a level-m chunk is bounded above by

LDpm. Employing Lemma 7.5.2, we conclude that the RG decoder fails with probability at most

pfail = LDpm for any m such that Qm+1 < Ltqo. Since we assumed that Ltqo ≥ Lδ, one can choose

m ≈ δ logL/ logQ. In this case pfail = exp (−Ω(Lη)) for η ≈ δ/ logQ. We have proved our theorem

with ε0 = (3Q)−2D where Q = 10.
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7.6 Benchmark of the decoder

Given a decoder, a family of quantum codes indexed by code length (system size) is said to have an

error threshold pc if the probability for decoder to fail approaches zero in the limit of large code length

provided the random error rate p is less than pc. We tested our decoder with respect to random

uncorrelated bit-flip errors on the well-studied 2D toric code. The error threshold is measured to be

8.4(1)% using `1-metric. See Fig. 7.3. It is reasonably close to the best known value 10.3% based on

the perfect matching algorithm [7, 114], or 9% based on a renormalization group decoder of similar

nature to ours [115]. This is remarkable for our decoder’s simplicity and applicability. The 3D cubic

code has threshold & 1.1% under independent bit-flip errors using `∞-metric. Note that in these

simulations we do not use TestNeutral′ of Remark 8.1.
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Figure 7.3: The thresholds of 2D toric code (left) and 3D cubic code (right) under independent
random bit-flip errors using our RG decoder. The left shows simulation data for 2D toric code
under `1-metric, The right shows the data for 3D cubic code under `∞-metric. The thresholds are
measured to be pc(2D toric) = 8.4(1)% and pc(3D cubic) & 1.1%.
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Chapter 8

Self-correcting quantum memory

We now directly assess the cubic code as a self-correcting quantum memory. The results in this

chapter depend on previous chapters. In Chapter 6 we have found an energy barrier to isolate a

nontrivial charge. It implies that nontrivial charges are localized in their original position where they

are created. It suggests further that geometrically localized defects would form a neutral cluster, and

the annihilation of them would not likely cause any undetected logical error. The renormalization

group decoder and the threshold theorem in Chapter 7 have been motivated by this intuition. In

this chapter, we show that the performance of the RG decoder against thermal errors matches our

expectation, too. We prove that if the no-strings rule is satisfied, then the memory time grows as a

power law Lcβ where β is the inverse temperature of the heat bath. The bound is valid when the

system size is small enough L ≤ ec
′β . Note that our analysis does not tell anything conclusive for

the system in thermodynamic limit.

A few remarks can be made to the validity regime L ≤ ec
′β . It is reasonable to expect that the

no-strings rule and a good decoder would be sufficient to guarantee that the memory time increases

with the system size. However, when the entropy is considered, the situation is more complicated.

From the degeneracy formula of the cubic code in Chapter 5, we know that there are system sizes

where the number k of encoded qubits is 2. Since the cubic code has exactly one X-type stabilizer

generator GX in each elementary cube, k/2 is equal to the number of ways that GX ’s multiply to

the identity. Therefore, when k = 2, any configuration of defects is allowed as long as they are in an

even number, and the number of excited states at a particular energy is given by a combinatorial

factor. In contrast, the two-dimensional Ising model has only exponentially many configurations at

a particular energy (the number of self-avoiding walks). The energy barrier of the cubic code is lower

than that of the 2D Ising model, while the entropic contribution is stronger in the cubic code than

in the 2D Ising model. The inequality L ≤ ec
′β can be understood as a requirement that entropic

contribution should not be too large.

Perhaps, this is already hinted from the smooth thermal partition function of the cubic code

presented in Section 5.5. It appears that the strong entropic contribution is unavoidable at the
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presence of point-like defects. We have seen from Chapter 4 that the point-like defects always exists

in three-dimensional translationally invariant topological codes. Thus, it would be impossible to have

a truly self-correcting quantum memory based on local translationally invariant quantum codes in

three dimensions whose memory time increases unbounded with the system size, similar to the 4D

toric code [46, 32].

We model the thermal interaction by taking Davies weak coupling limit [123]. In order to

make use of the results from previous chapters, we continue to assume topological quantum order

(TQO) condition 1 and 2 defined in Chapter 6, and the no-strings rule of Chapter 5. The two TQO

conditions demand that ground states must be locally indistinguishable, and that any locally created

cluster of defects must be created from a ground state by an operator supported on the immediate

neighborhood of the cluster. Note that any translationally invariant exact code Hamiltonian, such

as the cubic code, automatically satisfies both of the TQO conditions. Of course, the cubic code

satisfies the no-strings rule.

One more technical requirement to show the long memory time is that the number k of encoded

qubits, or the ground-state degeneracy must be small. It is an ironic requirement at least for the cubic

code because the small k implies a large number of excited states and large entropic contribution.

In the three-dimensional case, we know from Corollary 4.3.3 that the characteristic dimension must

be 1 in order for the no-strings rule to be obeyed. The nonzero characteristic dimension generally

implies a growing k(L) as a function of L. It is not so clear whether it is always possible to find a

family of lattice sizes {Li} such that k(Li) is small. Although we do not know how to resolve this,

the cubic code causes no problem since we know there is an infinite family {Li} such that k(Li) = 2

by Corollary 5.3.2.

8.1 Previous work

Alternative routes towards quantum self-correction in topological memories proposed in the liter-

ature, focus on finding new mechanisms for suppressing diffusion of topological defects (here and

below we only consider zero-dimensional defects). Arguably, the simplest of such mechanisms would

be to have no topological defects in the first place. Unfortunately, this seems to require four spa-

tial dimensions. The 4D toric code [7] provides the only known example of a truly self-correcting

quantum memory. As was shown by Alicki and Horodecki’s [46], the memory time of the 4D toric

code grows exponentially with the lattice size for small enough bath temperature. The first 3D

topological memory in which diffusion of defects is constrained by superselection rules was proposed

by Chamon [89], see also [90]. Topological defects in this model have a limited mobility restricted to

certain subspaces of R3 or have no mobility at all. However, the model has no macroscopic energy

barrier that could suppress the diffusion. 2D topological memories in which diffusion of anyons is
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suppressed by effective long-range interactions were studied by Chesi et al. [124] and Hamma et

al [125]. A quenched disorder and Anderson localization were proposed as a means of suppressing

propagation of defects at the zero temperature by Wootton and Pachos [126] and, independently, by

Stark et al. [127], see also [128]. A no-go theorem for quantum self-correction based on 3D stabilizer

Hamiltonians in which ground-state degeneracy does not depend on lattice dimensions was proved

by Yoshida [47]. A different line of research initiated by Pastawski et al. [129] focuses on quantum

memories in which active error correction is imitated by engineered dissipation driving the memory

system towards the ground state (as opposed to the Gibbs state). Finally, let us emphasize that

quantum self-correction is technically different from the thermal stability of topological phases, see,

for instance, [35, 130, 110, 36]. While the latter attempts to establish the presence (or absence) of

topological order in the equilibrium thermal state, quantum self-correction is mostly concerned with

the relaxation time towards the equilibrium state.

8.2 Storage scheme

In order to use any memory, either classical or quantum, a user must be able to write, store, and

read information. In this section we describe these steps formally for a topological quantum memory

based on the 3D cubic code. The Hamiltonian of the memory is

H = −J
∑
c

GXc +GZc ,

where the sum runs over all L3 elementary cubes c and the operators GXc , GZc act on the qubits of

c as shown on Fig. 5.1. The positive coupling constant J is set to J = 1
2 for simplicity.

Suppose at time t = 0 the memory system is initialized in some ground state ρ(0) encoding a

quantum state to be stored; the ground space is the code space. We model interaction between

the memory system and the thermal bath using the Davies weak coupling limit [123]. It provides a

Markovian master equation of the following form:

ρ̇(t) = −i[H, ρ(t)] + L(ρ(t)), t ≥ 0. (8.1)

Here ρ(t) is the state of the memory system at time t and L is the Lindblad generator describing

dissipation of energy. To define L, let us choose some set of self-adjoint operators {Aα} through

which the memory can couple to the bath. We assume that each Aα acts nontrivially on a constant

number of qubits. For example, {Aα} could be the set of all single-qubit Pauli operators. Let

Aα(t) = eiHtAαe
−iHt =

∑
ω

e−iωtAα,ω. (8.2)
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We will see later in Eq. (8.7) that Aα,ω maps eigenvectors of H with energy E to eigenvectors with

energy E − ω. Then

L(ρ) =
∑
α

∑
ω

h(α, ω)

(
Aα,ωρA

†
α,ω −

1

2
{ρ,A†α,ωAα,ω}

)
. (8.3)

The coefficient h(α, ω) is the rate of quantum jumps caused by Aα transferring energy ω from the

memory to the bath. It must obey the detailed balance condition [123]

h(α,−ω) = e−βωh(α, ω), (8.4)

where β is the inverse bath temperature. The detailed balance condition Eq. (8.4) is the only part of

our model that depends on the bath temperature. It guarantees that the Gibbs state ρβ ∼ e−βH is

the fixed point of the dynamics as L(ρβ) = 0. Identities in the proof of Proposition 8.3.4 are useful

to see L(ρβ) = 0. This is a unique fixed point under certain natural ergodicity conditions [131].

Furthermore, we shall assume that ‖Aα‖ ≤ 1 and

max
α,ω

h(α, ω) = O(1). (8.5)

Let us remark that the Davies weak coupling limit was adopted as a model of the thermal dynamics in

most of the previous works with a rigorous analysis of quantum self-correction; see, for instance, [46,

10, 32, 124].

The final state ρ(t) generated by the Davies dynamics can be regarded as a corrupted version of

the initial encoded state ρ(0). A decoder retrieves the encoded information from ρ(t) by performing a

syndrome measurement and an error correction. A syndrome measurement involves a non-destructive

eigenvalue measurement of all stabilizer generators GXc , GZc . The measured syndrome S can be

regarded as a classical bit string that assigns an eigenvalue ±1 to each generator. The error correction

step is specified by an algorithm that takes as input the measured syndrome S and returns a

correcting Pauli operator Pec(S). Let ΠS be the projector onto the subspace with syndrome S.

The net action of the decoder on states can be described by a trace preserving completely positive

(TPCP) linear map

Φec(ρ) =
∑
S

Pec(S)ΠS ρΠSPec(S)†, (8.6)

where the sum runs over all possible syndromes. We choose the renormalization group decoder

presented in Chapter 7.
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8.3 Properties of the Lindbladian

Proposition 8.3.1 ([32]). Each operator Aα,ω acts non-trivially only on O(1) qubits. Furthermore,

‖L+‖1 ≡ sup
X

‖L+(X)‖1
‖X‖1

= O(N).

Proof. Recall that each operator Aα acts on O(1) qubits. Since H is a sum of pairwise commuting

terms, we can represent Aα(t) as Aα(t) = eiHαtAαe
−iHαt where Hα is obtained from H by retaining

only those stabilizer generators that do not commute with Aα. (Compare it with Eq. (8.2).) All

such generators must share at least one qubit with Aα. Therefore Aα(t) and Aα,ω act non-trivially

only O(1) qubits. Furthermore, since Hα has O(1) distinct integer eigenvalues, Aα(t) has only O(1)

distinct Bohr frequencies; the summation over ω in Eq. (8.2) is finite. The bound ‖Aα,ω‖ ≤ 1 follows

trivially from our assumption ‖Aα‖ ≤ 1. The norm of L+ is then bounded from Eq. (8.3) using

triangle inequality, ‖XY ‖1 ≤ ‖X‖ · ‖Y ‖1, and Eq. (8.5).

Proposition 8.3.2.

HAα,ω −Aα,ωH = −ωAα,ω and HA†α,ω −A†α,ωH = +ωA†α,ω (8.7)

Proof. Let us drop the subscript α momentarily for notational convenience. The spectral component

Aω is given by a Fourier transformation

Aω =

∫
dt

T
eiωt

(
eiHtAe−iHt

)
where the integral is over a period T such that fT

2π is an integer for every Bohr frequency f of A(t).

Since there are only finitely many Bohr frequencies, such T exists. Let |ψ〉 be any energy eigenstate

of energy E. Then,

HAω |ψ〉 =

∫
dt

T
eiωtHeiHtAe−iHt |ψ〉

=

∫
dt

T
ei(ω−E)tHeiHtA |ψ〉

=

∫
dt

T
ei(ω−E)t(−i) ∂

∂t
eiHtA |ψ〉

=

∫
dt

T
(−i) ∂

∂t
ei(ω−E)teiHtA |ψ〉 − (ω − E)

∫
dt

T
ei(ω−E)teiHtA |ψ〉

=
−i
T

[
eiωtA(t)

]T
0

+ (E − ω)

∫
dt

T
eiωteiHtAe−iHt |ψ〉

= (E − ω)Aω |ψ〉

= −ωAω |ψ〉+AωH |ψ〉 .



143

Since |ψ〉 was an arbitrary energy eigenstate, we have Eq. (8.7).

Proposition 8.3.3. Let Ĥ be the linear map defined by Ĥ(X) = HX−XH. The map Ĥ commutes

with the Lindblad generator L. Therefore, Ĥ(ρ(t)) = 0, and ρ(t) = eLt(ρ(0)).

Proof. It is elementary that Ĥ(XY ) = Ĥ(X)Y +XĤ(Y ). Eq. (8.7) reads Ĥ(Aα,ω) = −ωAα,ω and

Ĥ(A†α,ω) = +ωA†α,ω. Hence, Ĥ(Aα,ωA
†
α,ω) = 0. Clearly,

ĤL(ρ) = Ĥh

(
aρa† − 1

2
ρa†a− 1

2
a†aρ

)
= −hωaρa† + haĤ(ρ)a† + hωaρa† − 1

2
hĤ(ρ)a†a− 1

2
ha†aĤ(ρ)

= LĤ(ρ)

where a = Aα,ω, h = h(α, ω) with the sum over α and ω understood, and ρ is arbitrary. It follows

that

ρ(t) = e−iĤt+Lt(ρ(0)) = eLt ◦ e−iĤt(ρ(0)) = eLt(ρ(0)),

since Ĥ(ρ(0)) = [H, ρ(0)] = 0. It implies that Ĥ(ρ(t)) = 0.

Proposition 8.3.4 ([46]). Let L∗ be the adjoint linear map of L (the one describing time evolution

in the Heisenberg picture) with respect to Hilbert-Schmidt inner product. Define Liouville inner

product by 〈X,Y 〉β ≡ Tr ρβX
†Y . Then, L∗ is self-adjoint with respect to Liouville inner product;

〈X,L∗(Y )〉β = 〈L∗(X), Y 〉β.

Proof. We suppress the index α for notational convenience. Using eHXe−H = eĤ(X) and Ĥ(Aω) =

−ωAω, we have eβHAωe
−βH = eβĤ(Aω) = e−βωAω, or Aωρβ = e−βωρβAω. Hence, ρβ(A†ωAω) =

(A†ωAω)ρβ . Now,

〈L∗X,Y 〉 − 〈X,L∗Y 〉 =
∑
ω

h(ω) Tr

(
A†ωX

†AωY ρβ −
1

2
X†A†ωAωY ρβ −

1

2
A†ωAωX

†Y ρβ

−X†A†ωY Aωρβ +
1

2
X†Y A†ωAωρβ +

1

2
X†A†ωAωY ρβ

)
=
∑
ω

h(ω) Tr
(
A†ωX

†AωY ρβ −X†A†ωY Aωρβ
)

=
∑
ω

h(ω) Tr
(
A†ωX

†AωY ρβ −X†A†ωY ρβAωe−βω
)

Applying the detailed balance condition e−βωh(ω) = h(−ω) of Eq. (8.4), we see that

=
∑
ω

h(ω) Tr
(
A†ωX

†AωY ρβ
)
−
∑
ω

h(−ω) Tr
(
X†A†ωY ρβAω

)
.
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Since Aω is a Fourier transform of a Hermitian operator A(t) in Eq. (8.2), we apply A†ω = A−ω to

conclude

=
∑
ω

h(ω) Tr
(
A†ωX

†AωY ρβ
)
−
∑
ω

h(−ω) Tr
(
X†A−ωY ρβA

†
−ω

)
= 0.

The last equality is because ω is a dummy variable.

8.4 Analysis of thermal errors

We now analyze the relation between L and Φec. Recall the following terminology and notations.

A ground state of the memory Hamiltonian will be referred to as a vacuum. It will be convenient

to perform an overall energy shift such that the vacuum has zero energy. A Pauli operator is an

arbitrary tensor product of single-qubit Pauli operators X,Y, Z and the identity operators I. We will

say that a Pauli operator creates m defects iff P anticommutes with exactly m stabilizer generators

GXc , G
Z
c . Equivalently, applying P to the vacuum one obtains an eigenvector of H with energy m.

For example, using the explicit form of the generators, see Figure 5.1, one can check that single-qubit

X or Z errors create 4 defects, while Y errors create 8 defects. See Figure 7.2. We will say that a

Pauli error P is corrected by the decoder if Pec(S(P )) = ±PG, where S(P ) is the syndrome of P

and G is a product of stabilizer generators. Let N = 2L3 be the total number of qubits. Note that

N is also the number of stabilizer generators for the cubic code.

Let Γ = (P0, P1, . . . , Pt) be a finite sequence of Pauli operators such that the operators Pi and

Pi+1 differ on at most one qubit for all 0 ≤ i < t. We say that Γ is an error path implementing a

Pauli operator P when P0 = I and Pt = P . Let mi be the number of defects created by Pi. The

maximum number of defects

m(Γ) = max
0≤i≤t

mi

will be called an energy cost of the error path Γ. Given a Pauli operator P , we define its energy

barrier ∆(P ) as the minimum energy cost of all error paths implementing P ,

∆(P ) = min
Γ

m(Γ).

Although the set of error paths is infinite, the minimum always exists because the energy cost is a

nonnegative integer. In fact, it suffices to consider paths in which Pi are all distinct. The number

of such paths is finite since there are only finitely many Pauli operators for a given system size.

It is worth emphasizing that an operator P may have a very large energy barrier even though

P itself creates only a few defects or no defects at all. Consider as an example the 2D Ising model,
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H = − 1
2

∑
〈uv〉 ZuZv, where the sum runs over all pairs of nearest neighbor sites on the square

lattice of size L× L with open boundary conditions. Then the logical-X operator P =
⊗

uXu has

an energy barrier ∆(P ) = L since any sequence of bit-flips implementing P must create a domain

wall across the lattice. It is clear that a Pauli operator P acting nontrivially on n qubits has energy

barrier at most O(n).

A naive intuition suggests that a stabilizer code Hamiltonian is a good candidate for being a

self-correcting memory if there exists an error correction algorithm, or a decoder, that corrects all

errors with a sufficiently small energy barrier. Errors with a high energy barrier can confuse the

decoder and cause it to make wrong decisions, but we expect that such errors are unlikely to be

created by the thermal noise. We make this intuition more rigorous.

Let f be the maximum energy barrier of Pauli operators that appear in the expansion of the

quantum jump operators Aα,ω or A†α,ωAα,ω of Eq. (8.3). Since Aα,ω act on a constant number of

qubits by Proposition 8.3.1, we have f = O(1). Below m is an arbitrary energy cutoff. Let D = ker Ĥ

be the set of all operators that are commuting with the Hamiltonian H. Every operator in D is

block-diagonal in the energy eigenstate basis. Since ρ(0) is supported on the ground subspace of H,

we have ρ(0) ∈ D. Below we only consider states from D and linear maps preserving D. Define an

orthogonal identity decomposition

I = Π− + Π+

where Π− projects onto the subspace with energy < m+ f and Π+ projects onto the subspace with

energy ≥ m+ f . Introduce auxiliary Lindblad generators

L−(ρ) =
∑
α

∑
ω

h(α, ω)

(
Bα,ωρB

†
α,ω −

1

2
{ρ,B†α,ωBα,ω}

)
, where Bα,ω = Π−Aα,ω (8.8)

and

L+(ρ) =
∑
α

∑
ω

h(α, ω)

(
Cα,ωρC

†
α,ω −

1

2
{ρ, C†α,ωCα,ω}

)
, where Cα,ω = Π+Aα,ω. (8.9)

Simple algebra shows that L− and L+ preserve D and their restrictions on D satisfy

L = L− + L+. (8.10)

It is useful to note that any X ∈ D commutes with Π±. By abuse of notations, we shall apply

Eq.(8.10) as though it holds for all operators.

Lemma 8.4.1. Suppose that an error correction algorithm s 7→ Pec(s) corrects any Pauli error

P with the energy barrier smaller than m + 2f . Let Φec be the corresponding decoder defined by
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Eq.(8.6). For any time t ≥ 0 and for any state ρ0 supported on the ground subspace of H one has

Φec(e
L−t(ρ0)) = ρ0.

Proof. Since all maps are linear, we may assume ρ0 = |g〉 〈g| is a pure state. Then, eL−t(ρ0) is in the

span of states of form |ψ〉 = Π−En · · ·Π−E2Π−E1 |g〉, where Ei are Pauli operators that appears

in the expansion of Aα,ω or A†α,ωAα,ω. This follows from the Taylor expansion of eL−t. Since

Pauli errors map eigenvectors of H to eigenvectors of H, we conclude that either |ψ〉 = 0, or |ψ〉 =

En · · ·E2E1 |g〉. Furthermore, the latter case is possible only if the Pauli operator E ≡ En · · ·E2E1

has energy barrier smaller than m+ 2f . Indeed, definition of Π− implies that EjEj−1 · · ·E1 creates

at most m+f −1 defects for all j = 1, . . . , n. By assumption, each operator Ej can be implemented

by an error path with energy cost at most f . Taking the composition of all such error paths one

obtains an error path for E with energy cost at most m+ 2f − 1 and thus Φec will correct E. Since

Φec ◦ eL−t is a TPCP map, we must have Φec(e
L−t(ρ0)) = ρ0.

For any decomposition L = L− + L+ one has the following identity:

eLt = eL−t +

∫ t

0

ds eL−(t−s)L+ e
Ls, (8.11)

which follows from the identity

d

ds
eL−(t−s)eLs = eL−(t−s)(−L− + L)eLs = eL−(t−s)L+ e

Ls.

Lemma 8.4.2. Assume the supposition of Lemma 8.4.1. Let Qm be the projector onto the (high

energy) subspace with at least m defects. Then

ε(t) ≡ ‖Φec(ρ(t))− ρ(0)‖1 ≤ O(tN)TrQme
−βH (8.12)

for any initial state ρ(0) supported on the ground subspace of H. The time evolution of ρ(t) is

governed by the Lindblad equation, Eq. (8.1), with the inverse temperature β of the bath.

Proof. Write ρ0 ≡ ρ(0). First, Proposition 8.3.3 says ρ(t) = eLt(ρ0). Applying Lemma 8.4.1 and

Eq. (8.11) one arrives at

ε(t) ≤
∫ t

0

ds ‖eL−(t−s)L+ e
Ls(ρ0)‖1 ≤ t · max

0≤s≤t
‖L+ e

Ls(ρ0)‖1. (8.13)

We shall use an identity

L+(X) = L+(QmXQm) (8.14)
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valid for any X ∈ D. Indeed, any quantum jump operator Aα,ω changes the energy at most by f ,

so that L+(Q⊥mX) = L+(XQ⊥m) = 0 for any X ∈ D (note that any X ∈ D commutes with Qm). We

arrive at

ε(t) ≤ t · ‖L+(Qme
Ls(ρ0)Qm)‖1 ≤ t · ‖L+‖1 · ‖QmeLs(ρ0)Qm‖1 ≤ O(tN) TrQme

Ls(ρ0), (8.15)

where the maximization over s is implicit. We used Proposition 8.3.1 and the positivity of L(ρ0).

in the last inequality. Since the ground-state energy of H is zero, one has

ρ0 = Zβρβρ0, (8.16)

where Zβ is the partition function. It yields

TrQme
Ls(ρ0) = Tr ρ0 e

L∗s(Qm) = Zβ Tr ρβρ0e
L∗s(Qm) = Zβ〈ρ0, e

L∗s(Qm)〉β , (8.17)

Proposition 8.3.4 implies that the map eL
∗s is also self-adjoint with respect to the Liouville inner

product. Hence, we have

TrQme
Ls(ρ0) = Zβ〈ρ0, e

L∗s(Qm)〉β = Zβ〈eL
∗s(ρ0), Qm〉β = Tr eL

∗s(ρ0)Qme
−βH ≤ TrQme

−βH ,

(8.18)

where the last inequality is because eL
∗s is a unital completely positive map and ρ0 ≤ I.

8.5 Correctability of errors with an energy barrier

Let P be an unknown Pauli error. Suppose we are promised that P has a sufficiently small energy

barrier, namely, ∆(P ) ≤ c logL, for some constant c that will be chosen later. In this section we

prove that any such error P will be corrected by the RG decoder.

Assume throughout this section that a family of topological stabilizer codes {CL}L defined in

Section 6.1 with Ltqo ≥ Lγ obey the no-strings rule with some constant α as in Definition 5.1. The

`∞-metric d is used; d((x, y, z), (x′, y′, z′)) = max{|x− x′|, |y − y′|, |z − z′|}. We use

ξ(p) = (10α)p

for notational convenience as in the previous chapter, as well as the notion of level-p sparseness

of Definition 6.3 and level-p syndrome history. When P0, P1, . . . , Pt form an error path, the corre-

sponding sequence of syndromes S(j) caused by Pj acting on a vacuum is called a level-0 syndrome

history. A level-p syndrome history, inductively defined, discards all level-(p− 1) sparse syndromes

from level-(p− 1) syndrome history, but keeps the initial and final syndromes.
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Let Γ = (P0, P1, . . . , Pt) be an error path implementing P with the energy cost m(Γ) = m. Here

P0 = I, Pt = P , while Ej ≡ PjPj−1 are single-qubit Pauli operators for all j. Lemma 6.1.1 implies

that there is a level pmax < m such that in the level-pmax syndrome history only the initial empty

syndrome S(0) = 0 and the final syndrome S(t) = S are possibly non-sparse.

Lemma 8.5.1. Let P be any Pauli error, S = S(P ) be its syndrome, and m = ∆(P ) be its energy

barrier. Suppose

16m(10α)m < Ltqo. (8.19)

Then, there exists a stabilizer G ∈ G such that P · G has support on the ξ(m)-neighborhood of S.

Any R-connected component of S is neutral for 2ξ(m) < R ≤ 4ξ(m).

Proof. Let us apply Lemma 6.1.3 to the level pmax, the smallest integer such that the level-pmax

syndrome history has the initial and final syndrome, and level-pmax-sparse syndromes. Since pmax <

m, the condition 16mξ(pmax) < Ltqo in Lemma 6.1.3 is satisfied. We have S′ = 0, S′′ = S, and

E = P . Hence, there exists a stabilizer G ∈ G such that P · G is supported on the ξ(pmax)-

neighborhood of S. It proves the first statement of the lemma.

Let r = ξ(m) = (10α)m. Choose any R such that 2r < R ≤ 4r and let Ca be any R-connected

component of S. Since Ca contains at most m defects, the diameter of Ca is at most mR. Restricting

P ·G on the r-neighborhood of Ca, we obtain a Pauli operator Pa supported on a cube of linear size

at most mR + 2r ≤ 4rm + 2r < Ltqo by assumption. Furthermore, the support of Pa is separated

from (Pa)−1(P · G) by distance at least R − 2r > 0. Hence, Pa creates the cluster Ca from the

vacuum. Therefore, Ca is neutral.

We wish to have a well-separated cluster decomposition.

Lemma 8.5.2. Let S be any cluster of m > 0 defects. For any integer µ ≥ 1, there exists a

nonnegative integer p < m and a decomposition

S = C1 ∪ · · · ∪ Cn such that d(Ca) ≤ 4pµ and d(Ca, Cb) >
1

2
· 4p+1µ for a 6= b. (∗)

Proof. The only nontrivial part is that p can be chosen as p < m. Let us say that a partition of

S into clusters is p-good if it satisfies (∗). By grouping all defects occupying the same elementary

cube into a cluster, one obtains a partition S = C1 ∪ . . . ∪ Cg. Obviously, g ≤ m, and d(Ca) ≤ µ.

If this partition is not 0-good, then g ≥ 2 and there is a pair, say, C1, C2 such that d(C1, C2) ≤ 2µ.

Merging C1 and C2 into a single cluster C ′2, one obtains a partition S = C ′2 ∪ C3 ∪ . . . ∪ Cg where

d(C ′2) ≤ 4µ. If this partition is not 1-good, then g ≥ 3 and one can repeat the merging again. After

at most g − 1 iterations, one arrives at a good partition.
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Note that the minimal enclosing boxes of distinct cluster do not overlap, since

d(b(Ca), b(Cb)) > 2 · 4pµ− 4pµ− 4pµ = 0.

The following is the desired property of the RG decoder.

Lemma 8.5.3. Let P be any Pauli error with energy barrier m = ∆(P ). Suppose

(160α)m < Ltqo.

Then calling the RG decoder on the syndrome S(P ) returns a correcting operator Pec such that PPec

is a stabilizer. Thus, the RG decoder corrects P if ∆(P ) < γ
log(160α) logL.

Proof. Let S = S(P ) be the syndrome. Let p be the integer such that 2ξ(m) < 2p ≤ 4ξ(m).

Setting µ = 2p in Lemma 8.5.2, S is decomposed into S = C1 ∪ . . . ∪ Cn such that d(Ca) ≤ 2p
′

and d(Ca, Cb) > 2p
′+1 for all a 6= b, where p′ is an integer such that p ≤ p′ < 2m + p. Since

16m(10α)m ≤ (160α)m, Lemma 8.5.1 implies that each Ca is neutral for being a disjoint union of

neutral 2p-connected components. The RG subroutines EC(s) with s = 0, 1, . . . , p − 1, can only

annihilate some neutral 2s-connected components of Ca, which does not alter the neutrality of Ca.

Therefore, the RG decoder from level-0 to p will annihilate each cluster Ca, and hence S at last.

We need to show that P ·Pec is a stabilizer, where Pec is the returned correcting operator. Let Ba

be the (10α)m-neighborhood of b(Ca). Our assumptions imply that Ba has diameter smaller than

Ltqo and distinct Ba’s do not intersect. By construction, the operators Pec and P ·G have support

in the union B1 ∪ · · · ∪Bn. Therefore, P ·G ·Pec = Q1 · · ·Qn, where Qa has support on Ba and has

trivial syndrome. Topological order condition implies that Qa are stabilizers, so is the product.

The full hierarchy of the RG decoder is not necessary to correct the error with the low energy

barrier. A single level-p error correction with p proportional to logLtqo, will be sufficient. We

nevertheless include the hierarchy since in practice it corrects errors with slightly higher (although

only by a constant factor) energy barrier at a marginal slowdown of the decoder. If one wishes to

apply the decoder against random errors, the hierarchy becomes necessary, as we have discussed in

Section 7.5.

Remark 8.1. A closer analysis reveals a simplification of TestNeutral defined in Section 7.2 for

the 3D Cubic Code. We defined TestNeutral to return the identity operator if a cluster turns out

to be charged. The modified TestNeutral′ just applies the broom algorithm and returns recorded

operator in any case. It gives the same characteristic as stated in the Lemma 8.5.3. EC′(p) using

TestNeutral′ will transform a charged cluster Ca to a different cluster C ′a, but C ′a is still contained

in b(Ca). Due to Lemma 8.5.2, b(Ca) do not overlap at a high level p, and EC′(p) will eliminate



150

neutral clusters at last. This specialized version of RG decoder is used in our numerical simulation

in Section 8.7.

8.6 A lower bound on memory time

Theorem 8.1. For a code Hamiltonian in D spatial dimensions that satisfies TQO1, TQO2, and no-

strings rule, there exists a decoder Φec and a constant c, c′ > 0 such that for any inverse temperature

β > 0, any state ρ(0) supported on the ground subspace of H, and any evolution time t ≥ 0 one has

ε(t) ≡ ‖ρ(0)− Φec(ρ(t))‖1 ≤ O(t) · 2k(L) · LD−cβ (8.20)

as long as L ≤ ec′β. The error correction algorithm used by the decoder has running time poly(L).

Proof. We use the renormalization group decoder of Chapter 7. Its running time is poly(L).

Lemma 8.5.3 guarantees that the supposition of Lemma 8.4.2 is satisfied with m = Ω(logL). It

remains to bound TrQme
−βH from above, where H has ground energy equal to 0 by convention and

Qm is the projector onto the space of energy m or higher. The number of states of exactly n defects,

is 2k(L) times the number of configurations of n defects, the latter of which is upper bounded by the

binomial coefficient
(
rLD

n

)
where r is the maximum number of terms in the Hamiltonian that acts

on an elementary cube. (In case of the cubic code, r = 2.) Therefore,

ε(t) ≤ O(tLD)2k
∑
n≥m

(
rLD

n

)
e−βn

= O(tLD)2ke−βm/2
∑
n≥m

(
rLD

n

)
e−βn+βm/2

≤ O(tLD)2ke−βm/2
∑
n≥m

(
rLD

n

)
e−βn/2

≤ O(tLD)2ke−βm/2
(

1 + e−β/2
)rLD

(8.21)

As long as rLD ≤ eβ/2 the entropy contribution is bounded by a constant. Since m = Ω(L), the

proof is complete.

Clearly, our bound is most useful when k(L) is small. In the following we shall mostly be

interested in the smallest ground-state degeneracy, k(L) = 2. This happens for any odd 3 ≤ L ≤ 200

such that L is not a multiple of 15 or 63. In fact, there exists an infinite sequence of lattice sizes

such that k(L) = 2, for example, k(2p + 1) = 2 for all p ≥ 1 by Corollary 5.3.2.

On the other hand, this requirement seems unnecessary; we believe that the 2k factor should be

removable. A very rough argument is as follows. Once we fix a ground state at t = 0, the interaction
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with the thermal bath turns the system into an ensemble, which is likely to be supported on the

states above the fixed ground state. Eq. 8.20 can be viewed as a probability estimation that the

system has visited a high energy state above the logarithmic cutoff, below which topological sectors

are unambiguously told. Since quantum tunneling to another sector is highly suppressed by the

macroscopic code distance, the system would not be aware of the other topological sectors.

The upper bound on the storage error can be easily translated to a lower bound on the memory

time. Indeed, if one is willing to tolerate a fixed storage error ε, say ε = 0.01, the memory time

Tmem can be defined as the smallest t ≥ 0 such that ε(t) ≥ ε. Assuming that the lattice size is

chosen such that k(L) = 2, Theorem 8.1 implies that

Tmem ≥ Lcβ−3 if L ≤ ec
′β . (8.22)

Here we neglected the overall constant coefficient. It shows that for low temperatures, β � 1, and

sufficiently small system size, L � ec
′β , the memory time grows with L according to a power law

whose exponent is proportional to β. To the best of our knowledge, this provides the first realistic

example of a topological memory with a self-correcting behavior. Unfortunately, the bound is not

conclusive in the thermodynamic limit. At the optimally chosen lattice size, the maximum memory

time Tmem(β) achievable at a given temperature β is easily found from Eq. (8.22):

Tmem(β) ≥ ecc
′β2

(8.23)

for β � 1. For comparison, the memory time of the 2D toric code model grows only exponentially

with β [10, 124]. Depending on the value of the constant cc′ and the temperatures realizable in

experiments, the scaling Eq. (8.23) may be favorable enough to achieve macroscopic memory times.

The restriction L � ec
′β implies that the average number of defects (flipped stabilizers) in the

equilibrium Gibbs state ρβ ∼ e−βH is small, that is, the Gibbs state has most of its weight on

the ground subspace of H. This might suggest that the thermal noise is irrelevant in the studied

regime. However, this is not the case. If the evolution time is large enough, so that ρ(t) ≈ ρβ , the

encoded information cannot be retrieved from ρ(t), since ρβ does not depend on the initial state. If

a time t ∼ eΩ(β2) has elapsed, the system would have accommodated approximately tL3e−β ∼ eΩ(β2)

defects during the evolution. This implies in particular that the system has endured eΩ(β2) errors

which becomes significant for low temperatures.

8.7 Numerical simulation

Since Theorem 8.1 only provides a lower bound on the memory time, a natural question is whether

this bound is tight and, if so, what is the exact value of the constant coefficient c? To answer this
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Figure 8.1: The memory time Tmem vs. the system size L. In the upper inset is shown the exponent
of the power law fit of Tmem for the first a few system sizes. It is clear that Tmem ∝ L2.93β−10.5

when L < L?, where L? is the optimal system size where Tmem reaches maximum. The data for
β = 4.3, 4.5, 4.7, 4.9, 5.1, 5.25 are shown.
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Figure 8.2: The maximum memory time Tmem vs. the inverse temperature β. The memory time
is maximized with respect to the system size. The logarithm of Tmem clearly follows a quadratic
relation with β as opposed to a linear one.
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question, the memory time of the 3D cubic code has been computed numerically for a range of β’s

and L’s. It should be emphasized that both Theorem 8.1 and our numerical simulation use the same

decoder at the read-out step. The numerical results strongly suggest that our analytical bound

is tight up to constant coefficients for our renormalization group decoder. See Figure 8.1,8.2. It

suggests that Tmem ≈ L2.93β−10.52 as long as L ≤ L∗ ≈ e0.78β−0.87. The number 0.78 in the estimate

of L∗ should not be taken too seriously, as one sees in the inset that the dependence of L∗ on β is

hard to tell quantitatively. It is clear, however, that L∗ is increasing with the inverse temperature.

The interaction of the memory system with a thermal bath is simulated by Metropolis evolution.

As we wish to observe low temperature behavior we adopt continuous time algorithm by Bortz,

Kalos, and Lebowitz (BKL) [132]. A pseudo-random number generation package RngStream by

L’Ecuyer [133] was used. As before, the coupling constant in the Hamiltonian is set to J = 1
2 so a

single defect has energy 1. Although the cubic code is inherently quantum, it is relevant to consider

only X-type errors (bit flip) in the simulation, thanks to the duality of the X- and Z-type stabilizer

generators of the cubic code. The simulation thus is purely classical. The errors are represented by

a binary array of length 2L3, and the corresponding syndrome by a binary array of length L3.

The memory time is measured to be the first time when the memory becomes unreliable. There

are two cases the memory is unreliable: either the broom algorithm fails to remove all the defects

so we have to reinitialize the memory, or a nontrivial logical error is occurred. It is thus necessary

in our simulation to keep track of the error operator during the time evolution. In fact, most of

the time, it was the broom algorithm’s failure that made the memory unreliable. Nontrivial logical

errors occurred only for very small system sizes L = 5, 7.

It is too costly to decode the system every time it is updated. Alternatively, we have performed

a trial decoding every fixed time interval

Tec =
e4β

100

where β is the inverse temperature. Although the time evolution of the BKL algorithm is stochastic,

a single BKL update typically advances time much smaller than Tec. So it makes sense to decode

the system every Tec. The exponential factor appears naturally because BKL algorithm advances

time exponentially faster as β increases. It is to be emphasized that we do not alter the system by

the trial decodings (a copy of the actual syndrome has been created for each trial decoding).

The system sizes L3 for the simulation are chosen such that the code space dimension is exactly

2, for which the complete list of logical operators is known. If the linear size L is ≤ 200, this is the

case when L is not a multiple of 2, 15, or 63 by Corollary 5.3.2. For these system sizes, to check

whether a logical operator is nontrivial is to compute the commutation relation with the known

nontrivial logical operators.
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The measured memory time for a given L and β is observed to follow an exponential distribution;

a memory system is corrupted with a certain probability given time interval. Specifically, the prob-

ability that the measured memory time is t is proportional to e−t/τ . Thus the memory time should

be presented as the characteristic time of the exponential distribution. We choose the estimator for

the characteristic time to be the sample average T̄ = 1
n

∑n
i Ti. The deviation of the estimator will

follow a normal distribution for large number n of samples. We calculated the confidence interval to

be the standard deviation of the samples divided by
√
n. For each L, 400 samples when β ≤ 5.0 and

100 samples when β > 5.0 were simulated. The computation was performed on IBM Blue Gene/P

using 512 cores located in IBM T. J. Watson Research Center, Yorktown Heights, New York. The

result is summarized in Figure 8.1,8.2.

Figure 8.2 clearly supports log Tmem = cβ2 + · · · . Figure 8.1 demonstrates the power law for

small system size:

Tmem ∝ L2.93β−10.5

We wish to relate some details of the model with the numerical coefficients. The rigorous analysis of

the previous section, gives a relatively small coefficient c of the energy barrier for correctable errors

by our RG decoder. However, we expect that the coefficient of β in the exponent is the same as the

constant c that appear in the energy barrier

E = c log2R

to create an isolated defect separated from the other by a distance R. This is based on an intuition

that the output P ′ of the decoder would have roughly the same support as the real error P for the

most of the time, provided that the error has energy barrier less than ∆ = c log2 Ltqo. Thus, an error

of energy barrier less than ∆ would be corrected by the decoder. Our empirical formula supports

this intuition. It suggests that c = 2.93 log 2 = 2.03 ∼ 2.

Indeed, we can illustrate explicitly an error path that separates a single defect from the rest by

distance 2p during which only 2p+ 4 defects are needed. Consider an error of weight 2 that creates

4 defects as shown in the top of Fig. 8.3. We call it the level-0 hook. The bottom sequence depicts

a process to create a configuration shown at the bottom-left, which we call level-1 hook. One sees

that level-1 hook is similar with ratio 2 to level-0, and is obtained from level-0 with extra 2 defects.

One defines level-p hooks hierarchically. We claim that a level-p hook can be constructed from the

vacuum using 2p+ 4 defects. The proof is by induction. The case p = 1 is treated in the diagrams.

Suppose we can construct level-p hook using 2p+4 defects. Consider the 2nd, 4th, 6th, and 8th steps

in Fig. 8.3. They can be viewed as a minuscule version of level-p steps that construct a level-(p+ 1)

hook from the level-p hooks. It requires at most 2p+ 4 + 2 defects to perform the level-p step; this

completes the induction.
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Figure 8.3: Construction of a hook of level 2 from the vacuum. The grid diagram represents the
position and the number of defects in the (x = z)-plane. For each transition, an operator of weight
1 is applied. The total number of defects never exceeds 6. From a level-0 hook (the second diagram
in the sequence), a level-1 hook (the last in the sequence) is constructed using extra 2 defects.

It may not be obvious whether a high level hook corresponds to a nontrivial logical operator,

but such a large hook is bad enough to make our decoder to fail.



156

Appendix A

Commutative algebra

We briefly review algebraic concepts and tools used in this thesis, mainly in Chapter 3 and 4.

There are many nice textbooks including those by Lang [60], Atiyah and MacDonald [80], and

Eisenbud [76]. The book by Lang is a comprehensive textbook covering a wide range of topics in

abstract algebra. The book by Atiyah and MacDonald explains commutative algebra that may look

too concise, but precisely for this reason it is very useful as a reference. Examples are rare but

essential. The book by Eisenbud is also on commutative algebra and is extensive. It covers more

material than Atiyah-MacDonald. In particular, our summary of Gröbner basis follows Eisenbud.

The chapter on Gröbner basis appears in the middle of the book, but is relatively self-contained and

elementary. Here, we will omit many proofs and not try to be fully rigorous. We explain theorems

to the point where intuition can be developed. Rigorous proofs can be found in one of the three

books.

We start by recalling definitions for abelian groups. An abelian group G with the identity element

denoted by 0 is a set with an operation + : G × G → G such that g + g′ = g′ + g and 0 + g = g.

It is required for G to have inverses of g denoted by −g such that g + (−g) = 0. n-fold sum of g is

simply denoted as ng, where n ∈ Z. Given two abelian groups G and H, we can form a direct sum

G⊕H. It is the set of all tuples (g, h), where g ∈ G, h ∈ H, and the group operation + is defined

as (g, h) + (g′, h′) = (g + g′, h + h′). We can form a direct sum
⊕

αGα of arbitrary family {Gα}

of groups. It is the set of all indexed collections of group elements (gα) where only finitely many gα

are nonzero. The group operation is again defined component-wise. Thus, any element in the direct

sum is a sum of finitely many gα ∈ Gα. A sum of two abelian groups can be defined if they are

subgroups of a parent group. If A,B ≤ C are subgroups, the sum A+B is the group of all elements

of C of form a + b where a ∈ A and b ∈ B. Note that A + B ∼= A ⊕ B if and only if A ∩ B = 0.

Given a subgroup N ≤ G, we can form a quotient group G/N , the set of all equivalent classes under

the equivalence relation [g] = [g′] iff g − g′ ∈ N . In commutative algebra, almost everything is an

abelian group. On top of the abelian (additive) group structure, a new “multiplication” is added.
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A.1 Rings and homomorphisms

The set of integers . . . ,−2,−1, 0, 1, . . . admits two operations, addition and multiplication. There

is 0 that has no effect under addition, and 1 that has no effect under multiplication. One can

always undo the addition because one can subtract a number. However, the multiplication is not

invertible within the set of integers because fractions are not integers. One convenient thing is

that the multiplication does not care about the order. A commutative ring is an abstraction of this

structure. It is a set, in which one can add and subtract. A multiplication exists but is not in general

invertible. An additive identity 0 exists, and a multiplicative identity 1 exists. The distribution law

a(b+ c) = ab+ ac is assumed, and the multiplication is commutative ab = ba. A ring R can consists

of a single element, in which case R is called a zero ring, if and only if 0 = 1. Indeed, if a ∈ R and

1 = 0 ∈ R, then a = a ·1 = a ·0 = a ·(0+0) = a ·(1+1) = a+a = 0. Examples of rings are abundant:

The set of all integers, the set of all complex numbers, the set of all square diagonal matrices of a

fixed size, the set of polynomials, the set of all differentiable functions on a real line, the set of all

continuous real-valued functions on a manifold, etc. Is the set of all even integers a ring? No. Some

authors define rings to include this case where the multiplicative identity 1 is not provided, but we

avoid this case. Any ring is with 1. Note that 1 is unique; if 1′ is also a multiplicative identity, then

1 = 1 · 1′ = 1′. The same is true for 0.

A ring is always understood in terms of relations with other rings. Given two rings A and

B we consider a restricted class of maps between them. That is, we require that the map obeys

the ring structure of the rings. f : A → B is a homomorphism if f(a + b) = f(a) + f(b) and

f(ab) = f(a)f(b) for any a, b ∈ R. In addition, we assume f(0) = 0 and f(1) = 1. (“morph” means

“shape.”) The + or the omitted · between a and b in ab on the left-hand side are the operations

defined in A, whereas those in the right-hand side are in B. The image of a homomorphism f is

the subset of B written as f(A) defined by {f(a) | a ∈ A}. Is the image of a homomorphism a ring?

Yes.

There is no point to speak of a map between two rings A,B that is not a homomorphism. If we

are going to ignore the ring structure, we would rather say the map between the “sets” A,B. We

will simply say a map between rings to mean a homomorphism. We note more terminologies: An

endomorphism is a map from a ring into itself. An isomorphism is a map between two rings

with a unique inverse. An automorphism is an isomorphism that is an endomorphism.

The ring of integers is so primitive in the following sense. Let A be an arbitrary ring. Consider

a map f : Z→ A. f(n) =
∑n
i=1 f(1) and f(−n) =

∑n
i=1(−f(1)) where n > 0. But, f(1) = 1 is the

unique multiplicative identity. Therefore, f is completely determined, though we just required f be

a homomorphism; there is a unique nonzero map from Z into any ring. How many endomorphisms

are there for Z?
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The kernel of a map (homomorphism!) f is the subset of A written as ker f defined by {a ∈

A | f(a) = 0}. It is easy to see that the kernel is closed under the addition and multiplication. Here,

the closeness means that the result of the operation using two elements in a subset lies in the subset.

(It is pointless to speak of the closedness of an operation without reference to a subset.) There is

one more important property as we discuss below.

A.2 Ideals and modules

The kernel I of a map f between rings R→ S has the following property:

∀r ∈ R, ∀x ∈ I : rx ∈ I (A.1)

This is easily verified since f(rx) = f(r)f(x) = f(r) · 0 = 0. When a subset I of a ring R is closed

under the multiplication and addition, and satisfies the above property, we call I to be an ideal of

R. For example, in Z, the set of all even numbers is an ideal denoted as (2). The property (A.1) is

trivial, because it reads a multiple of an even number is even. This ideal is the kernel of the map

Z → Z/(2), where the latter is the ring of integers modulo 2. Remember that there is a unique

nonzero map from Z to any ring. In fact, any ideal arises in this way: An ideal is the kernel of a

ring homomorphism.

To understand this, we need to formalize how to construct quotient rings or factor rings. Let

R be a ring and I be an ideal. They are both abelian groups; they are closed under the addition

with identity 0, and contains additive inverses, the minus elements. The quotient ring R/I as a

set is the same as the quotient group as an abelian group. R/I is the family of equivalence classes

under the equivalence relation that [a] = [b] ∈ R/I iff a − b ∈ I. The multiplication in R/I is as

expected: [a] · [b] = [ab]. Using the property (∗) one can verify that it is well-defined. Consider a

map R → R/I defined by a 7→ [a]. It should be straightforward that it is a ring homomorphism.

What is the kernel? Precisely, I. Now it is an almost tautology that an ideal is a kernel of a ring

homomorphism. Often, we just write a in place of the equivalence class notation [a]. In this lazy

notation, “the map R → R/I is defined by a 7→ a.” This map is so important that it has its own

name: canonical map or quotient map.

In leisurely words, an ideal extends what we treat as zeros; any element of I is zero in R/I. Zero

plus zero or zero times zero must be zero, so I is closed under the addition and multiplication. Zero

times any element must be zero, so the property (A.1) should hold. How do we specify an ideal

in a real calculation? Consider a polynomial ring Q[x], the set of all polynomials (of finitely many

terms) in x with coefficients in the rational numbers. Suppose we decided that x must be equal to

1
2 . In other words, we decided that x − 1

2 must be “zero” in Q[x]/I. Then, as zero times anything
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must be zero, any element (x − 1
2 ) · f(x) must be zero in Q[x]/I, too; it must be an element of

the ideal we are defining. We require no more elements are identified as zeros. That is, we define

I = {f(x)(x − 1
2 ) | f(x) ∈ Q[x]} as our ideal, and carry out any computation in the quotient ring

Q[x]/I. We write I as (x − 1
2 ) by putting the generator inside the parenthesis. Computing in

Q[x]/I is the same as computing in Q[x] and evaluate the polynomial at x = 1
2 .

In general, if we write and ideal I of R as (a, b, c), then we mean

I = {ax+ by + cz | x, y, z ∈ R}.

I is said to be generated by a, b, c. A quick exercise: What is Q[x]/(x − 1
2 , x − 1) ? It is a

zero ring. Since x − 1
2 and x − 1 are “zeros,” their difference 1

2 is zero. Zero times 2 is zero, so

1 is zero. Therefore, everything is zero. We proved an ideal equality (x − 1
2 , x − 1) = (1). The

whole ring R viewed as an ideal is called the unit ideal denoted by (1). In fact, when there is any

invertible element in an ideal, it is the unit ideal. For this reason, an invertible element in a ring

is called a unit. Note that computing the minimal set of generators is in general a hard problem.

For instance, I do not know any algorithmic answer to questions like “can this ideal be generated

by three elements?” However, the Gröbner basis gives a canonical set of generators for an ideal of

a polynomial ring, and we can algorithmically compare two ideals.

Prime, maximal

There is a very important class of ideals that generalizes prime numbers in Z. A prime number p

has a property that if p divides a product of two integers ab then p divides either a or b. A prime1

ideal p of R is an ideal not equal to (1) such that

ab ∈ p implies a ∈ p or b ∈ p for any a, b ∈ R. (A.2)

The condition is rephrased as a /∈ p and b /∈ p imply ab /∈ p. Is the ideal (0) = {0} prime? It

depends. In Z the zero ideal is prime because the product of two nonzero integers is nonzero. In the

polynomial ring Q[x], (0) is prime because the degree of nonzero polynomial does not decrease under

any nonzero multiplication. If any nonzero elements of a nonzero ring R has a multiplicative inverse,

in which case R is called a field, then (0) is prime because ab = 0 means a = 0 or b = 0. However, in

the ring of diagonal 2×2 matrices, (0) is not prime because nonzero matrices

1 0

0 0

 and

0 0

0 1


multiply to zero. The ring in which (0) is prime has a special name, (integral) domain. It is easy

to verify that R/p is an integral domain if and only if p is prime, applying the picture that p defines

zeros in R/p.

1Do not use “primary” in place of “prime.” The adjective “primary” has a slightly different technical meaning.
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There is one more important property of prime ideals. Let f : A → B be a map between two

rings. If p ⊆ B is a prime ideal, then I = f−1(p) ⊆ A is prime. Proof: aa′ ∈ I ⇒ f(a)f(a′) ∈ p⇒

f(a) ∈ p ∨ f(a′) ∈ p⇒ a ∈ I ∨ a′ ∈ I.

A subclass of prime ideals consists of maximal ideals. A maximal ideal m 6= (1) is defined by

the maximal property:

m ( m′ implies m′ = (1) for any ideal m′. (A.3)

It is a priori not vivid why maximal ideals are prime. But it is easy to see. Consider R/m. If

a ∈ R/m is nonzero, that is a /∈ m, then I = (m, a) ) m and therefore I = (1), which means there

is an element b ∈ R such that ba + m = 1 for some m ∈ m. By the canonical map, b maps to a

multiplicative inverse of a in R/m. (The converse is also true. m 6= (1) is a maximal ideal if and only

if R/m is a field.) In other words, R/m is a field, and therefore an integral domain. In particular,

m is prime.

Modules

Ideals admit another viewpoint. Let us forget the multiplication within an ideal I, and treat I as a

separate set from the mother ring R. It is still an abelian group, and satisfies (A.1). The condition

(∗) looks very similar to the scalar multiplication on vector spaces. Indeed, consider a direct sum

R ⊕ R of abelian groups, the set of all tuples (r, r′) where r, r′ ∈ R are any elements. There is an

operation on R ⊕ R similar to (A.1); we can define r · (s, s′) to be (rs, rs′), similar to the scalar

multiplication for a vector space. Indeed, a two-dimensional vector space is precisely obtained in

this way by setting R = Q,R,C, etc.

Let us define an abstract notion. Let M be an abelian group with a bilinear operation · such

that

∀r ∈ R, ∀m ∈M : r ·m ∈M. (A.4)

The “multiplication” · here is not the same thing as the multiplication within the ring. We assume

expected formulas (rs) ·m = r · (s ·m), and simply write (rs) ·m = rsm where r, s ∈ R and m ∈M .

We call M an R-module or a module over R. It is general than the notion of vector spaces.

A vector space is a module over a field, a commutative ring in which multiplication by a nonzero

element has an inverse. An ideal is a subset of R such that it is a module over R.2 Note that R

itself is an R-module via the multiplication within R. The above example R⊕R is an R-module.

For an R-module M if there exist finitely many elements m1, . . . ,mn ∈M such that

M = {r1m1 + · · ·+ rnmn | r1, . . . , rn ∈ R}, (A.5)

2 Although an ideal is a valid module, often it is treated differently than a module. One should sometimes be
careful to apply things defined for modules, especially when one reads the dimension theory of Eisenbud [76].
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then we say M is finitely generated. All of our modules in the thesis are finitely generated. An

ideal is finitely generated if it is finitely generated as a module.

There is a confusingly similar terminology that one must distinguish. Suppose A is a subring

of B. That is, A is a ring by itself and contained in a bigger ring B. Or slightly more generally,

suppose we are given a ring map A→ B. The subring case is precisely when the map is an inclusion.

We say B is a finitely generated A-algebra if there exists finitely many elements b1, . . . , bn ∈ B

such that any element of b can be written as a polynomial in b1, . . . , bn with coefficients in the image

of A. In this case, B is sometimes written as B = A[b1, . . . , bn]. A typical situation is when A is a

field such as Q,C and B is a polynomial ring over A. For example, B = Q[x, y]. The reason it is a

confusing terminology is because B is not necessarily finitely generated A-module. Q[x], a finitely

generated Q-algebra, has infinitely many generators {1, x, x2, . . .} as a Q-module. Is Q a finitely

generated Z-algebra? No, because multiplying by integers cannot produce large denominators.

As the rings are understood in relation to others, the modules should be understood via maps.

We required the ring homomorphisms to preserve the defining operations of the rings. The same is

true for the module maps. Given two modules M and N over R, we define an R-linear map or

R-module homomorphism f : M → N to satisfy

f(m+m′) = f(m) + f(m′) and f(r ·m) = r · f(m) for any r ∈ R, m,m′ ∈M. (A.6)

Note that the · on the left-hand side is the operation (A.4) for M whereas that on the right-hand

side is the operation for N .3 The notions of kernel, image, endomorphism, automorphism, and

isomorphism apply to module maps, too. A simple exercise: Let A,B be two R-algebras; there are

ring maps R → A and R → B. The two algebras are naturally R-modules, when a map A → B

becomes R-linear? Answer: It becomes R-linear when the following diagram commutes.

A // B

R

__????
??����

Free

An R-module isomorphic to
⊕

αR is called a free module. When there are finitely many sum-

mands, it is called finitely generated free module. It is the most convenient type of modules.

In particular, a module map between finitely generated free R-modules is simply given by a matrix

with entries in R, just as linear map between finite dimensional vector space can be described by a

matrix with entries in a field. Note that elements of a finitely generated free R-module M = R⊕n can

3 In group representation theory, the R-linear maps are called equivariant maps, where R is the group algebra
which may not be commutative. The representation space is a module, the subrepresentation space is a submodule,
and the irreducible representation space is a simple submodule.
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be expressed by column matrices. Let ei (i = 1, . . . , n) denote the canonical basis column matrices.

(We could say “column vectors” instead of column matrices. However, an element of a module is

not a vector in general.) A map f from M to any module is specified if we specify the image f(ei)

because the image of other elements a1e1 + · · · anen is must be a1f(e1)+ · · ·+anf(en) by R-linearity.

Writing f(ei) in columns, we have a matrix representation of f . An un-redundant set of generators

of a free module is called a basis. The cardinality of a basis is called rank. (One can show that rank

is independent of the choice of a basis.) Only for free modules can we speak of bases. The crucial

difference between general modules and vector spaces is that a module is in general not free, while a

vector space, a module over a field, is always free. That nonzero elements are invertible makes such

a huge difference.

Note that any module can be described by free modules. Take a generating set {mα} of a

module M ; any element of M is a finite R-linear combination
∑
i rαimαi . A trivial and useless

choice would be to take whole M as a generating set. Let F be a free R-module whose rank is the

same as the cardinality of the generating set, i.e., there is a surjective module map F → M . The

kernel N is a submodule of F , not necessarily free, and M ∼= F/N . One can carry the same process

for the module N . That is, one finds a free module F ′ such that φ : F ′ → N is a surjection. Now

M is expressed as M ∼= F/ imφ. This is conceptually important observation, but not too useful

because we do not have any control over the ranks of F and F ′. We need some finiteness conditions.

An R-module M is said to be finitely presented if there is a map φ : F ′ → F between finitely

generated free modules such that M ∼= F/ imφ. The latter expression F/ imφ is often abbreviated

as cokerφ. The map φ is called a finite presentation of M . As we have seen above, φ is a matrix

with entries in R, and M is expressed by a single matrix φ. In case of a finite dimensional vector

space, φ can always be brought to a diagonal matrix with entries of 0 or 1, after basis change of F

and F ′. We will discuss more on a finite presentation in Section A.5.

Noetherian

A technically very important and convenient adjective is Noetherian. It is as important as vector

spaces having finite dimensions. A module M is Noetherian if every increasing sequence of

submodules is stationary, i.e., if M1 ≤ M2 ≤ · · · ≤ Mn ≤ · · · is a sequence of submodules of M ,

then for all sufficiently large n one has Mn = Mn+1. Often this condition is referred to as the

ascending chain condition or a.c.c. A module M is Noetherian if and only if any submodule is

finitely generated. If a submodule cannot be generated by finitely many elements, one can construct a

strictly increasing infinite sequence of submodules using an infinite subset of generators. Conversely,

if any submodule of M is finitely generated, then the union ∪∞i=1Mi of any increasing sequence of

submodules Mi of M is also finitely generated, say, by m1, . . . ,mr. Since mj is contained in some

Mj′ , there must be some k such that m1, . . . ,mr ∈Mk. It follows that Mk = Mk′ for all k′ ≥ k. A
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Noetherian module over a field is just a finite dimensional vector space. A Noetherian ring R is

a ring that is Noetherian as an R-module, i.e., the a.c.c is satisfied with respect to the ideals of R.

In a Noetherian ring, any ideal is finitely generated.

Being Noetherian is preserved in many cases. Loosely speaking, it says that a module carries a

finite amount of data. A module with a finite amount data manipulated finitely many times would

still have a finite amount of data. The following are facts:

• A homomorphic image of Noetherian ring (module) is a Noetherian ring (module).

• A submodule of Noetherian module is Noetherian.

• A finitely generated algebra over a Noetherian ring is a Noetherian ring.

• In particular, a polynomial ring over a field with finitely many variables is a Noetherian ring.

• A finitely generated module over a Noetherian ring is Noetherian.

There are more to mention about being Noetherian using tensor products and localization. See

Section A.4.

Remark that a finitely generated module M over a Noetherian ring R always admits a finite

presentation φ : F ′ → F . Since M is finitely generated, the module F is of finite rank. F is

Noetherian, and therefore, imφ is finitely generated, which means F ′ can be taken to be of finite

rank. The “matrix” φ is of finite size.

Is the ring of all differentiable functions R→ R Noetherian? No. Is the ring of all trigonometric

functions R→ R of period 1/n, where n are positive integers, Noetherian? Yes.

A.3 Gröbner basis

Gröbner basis is a special generating set for ideals and modules. It provides canonical presentations

of modules and ideals, from which any concrete computational commutative algebra is built. In

all notions in the previous section, I cannot imagine any systematic way to compute things con-

cretely without Gröbner basis. It is theoretically important too because it tells what is actually

constructible. A nice application of the Gröbner basis is a sharp version of Hilbert syzygy theo-

rem [76, Corollary 15.11]. In this section we assume the (base) ring is a polynomial ring over a field

F with finitely many variables; R = F[x1, . . . , xn]. Since R is Noetherian, for any ideal there is a

finite set of generators.

How do ideals look like in F? There are only (0) and (1) because any nonzero element is a unit.

How about F[x]? It is only slightly more complicated. By the Euclidean algorithm, the gcd of two
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polynomials f(x), g(x) can be expressed as

gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x) ∈ (f(x), g(x))

An ideal generated by f(x) and g(x) is thus the same as an ideal generated by a single element

gcd(f(x), g(x)), in which case the ideal is called principal. By induction, one can always reduce

the number of generators of an ideal in F[x] if it is greater than 1. Since F[x] is Noetherian, this

is enough to imply that any ideal of F[x] is generated by a single element, i.e., any ideal of F[x] is

principal. The principal generator p(x) is important, not only because it is simple, but also because

it gives a criterion whether an arbitrary polynomial h(x) is contained in (p(x)): Divide the h(x) by

p(x). The remainder is zero if and only if h(x) ∈ (p(x)). Put differently, we can find a canonical

representative in the quotient ring F[x]/(p(x)) to be the remainder r(x) where deg r < deg p. The

p(x) is the Gröbner basis for the ideal (p(x)) in F[x].

In case of two or more variables, it is no more true that any ideal is principal. Let us examine

the division algorithm. Let f(x) be a dividend and p(x) be a divisor. We first compare degrees of

them. If deg f < deg p, then the division is completed, and f is the remainder. Otherwise, we match

the leading coefficients and then subtract a multiple a(x)p(x) from f(x). a(x) is a monomial such as

3x2. The purpose is of course to have deg(f − ap) < deg f . And then we iterate. Essential is a total

ordering among terms such that the ordering is preserved under multiplication by a monomial. Now

we consider a problem of computing the remainder of f modulo G = {g1, . . . , gk}. Equipped with

the ordering, given a dividend f and a set G of divisors, (Step-1) one should be able to match the

leading term and kill it, thereby “reduce” the leading term of the dividend. (Step-2) One stops when

the reduction becomes impossible. A question arises. During Step-1, there would be many possible

choices among the divisors from G. How do we guarantee that the remainder is independent of the

choices? This is a sound question, and the answer is no in general. Even in the one variable case,

the answer is no in general. Consider f = x2 − 1, g = x3 − 1 in Q[x]. The division by the set {f, g}

of a dividend x3 gives 1 if we kill the leading term by x3 − 1, or x by x2 − 1.

We formulate the problem as finding a generating set of an ideal I that gives rise to a unique

remainder under the division. A solution is that we include more and more elements of I into a

generating set G so that any leading term l of a dividend can be removed where l appears as a

leading term of some elements of I. In the one variable case, it is enough to include the gcd of all

(finitely many) generators of I. We have given enough motivation and technical problems to smooth

out.
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Definitions

A monomial is a product of variables. A monomial order on the set of all monomials of R =

F[x1, . . . , xn] is a total ordering �, under which any two monomials are comparable, such that

xim � xim′ � m′ whenever m � m′ (A.7)

for any monomial m,m′ and any variable xi. Since a monomial xa11 · · ·xann is uniquely given by

a n-tuple of nonnegative integers (ai) = (a1, . . . , an), a monomial order is a total order on the

hyper-octant of Zn of nonnegative coordinates. Note that under any monomial order, 1 is the least

monomial.

Two examples at least are important. The first one is the lexicographic order, under which

(ai) � (bi) if and only if ai > bi for the least i such that ai 6= bi. For example,

x1 �lex x
5
2 �lex x2x

100
3 .

The second example is the degree reverse lexicographic order, under which (ai) � (bi) if and

only if ‘
∑
ai >

∑
bi’ or ‘

∑
ai =

∑
bi and ai < bi for the largest i such that ai 6= bi.’ For example,

x1 �revlex x2 �revlex · · · �revlex xn

x100
3 �revlex x

50
2 �revlex x

49
1 x3.

The degree reverse lexicographic order is the most commonly used in computer software.

Any monomial order is a well-order, i.e., every set of monomials has a minimal element. This

statement is at the core of any finiteness proof regarding Gröbner basis. The proof is very simple.

Let X be any set of monomials of R. The submodule (ideal) generated by X is finitely generated

by G because R is Noetherian. It means X consists of multiples of a finitely many monomials of

G. Therefore, the minimal element of G, a finite set, is the minimal element of X. The statement

can be rephrased as any decreasing sequence of monomials is stationary or as any strictly decreasing

sequence of monomials is finite.

With a monomial order, we can define the leading term or initial term of a polynomial f which

is the greatest term of f with respect to the monomial order. (We are distinguishing “term” and

“monomial.” A monomial is a product of variables only, and a term is F-multiple of a monomial.)

Let us denote the leading term of f by lt(f). Given any set S of R, let the ideal generated by all

leading terms of element of S be denoted by lt(S). Now, a Gröbner basis G of I is a generating

set of I such that lt(I) = lt(G). Since R is Noetherian, lt(I) is finitely generated. Therefore, G can

be chosen to be a finite set.
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Buchberger criterion

The division by a Gröbner basis results in a unique remainder. In particular, a polynomial is in I

if and only if the division by a Gröbner basis yields the zero remainder. To see this, let f be an

arbitrary polynomial. Let r be a remainder obtained by killing large terms of f by elements of G.

Let r′ be another remainder. We must show r = r′. It is clear that r − r′ belongs to I. If nonzero,

the leading term of r − r′ belongs to lt(I) = lt(G). However, r or r′ has by construction no leading

term that belongs to lt(G). Therefore, r − r′ must be zero.

It is not clear yet how G can be computed from given generators of I, though we know a solution

in the case where the generators of I are in a single variable. A strategy is hinted from one-variable

case:

(1) Start with any generating set S of I.

(2) Try to produce new polynomials whose initial terms are not contained in lt(S).

(3) Update S by adjoining the new polynomials.

(4) Iterate.

It will end after finitely many iterations because the new initial terms form a descending sequence

of monomials. It remains to find an effective method to produce new initial terms. Let us work

with an example first. Consider I = (x2, xy + y2) ⊂ Q[x, y]. We will compute Gröbner basis with

respect to two monomial orders. The first one is the lexicographic order under which x � y. We

have lt(x2) = x2 and lt(xy + y2) = xy. Neither of them is a multiple of the other. However,

y(x2) − x(xy + y2) = −xy2 has the leading term divisible by xy. This combination is called “S-

polynomial” of x2 and xy + y2. So, y(x2)− x(xy + y2) + y(xy + y2) = y3. We see that y3 is a new

initial term of I. The generating set is expanded as G = {x2, xy + y2, y3}. We then again form

S-polynomials using any two among G, but fail to produce any new initial term. Indeed, G is a

Gröbner basis of I. The second monomial order is the lexicographic order under which x ≺ y. Then,

lt(x2) = x2 and lt(xy + y2) = y2. We form an S-polynomial, y2(x2) − x2(xy + y2) = −x3y. It is a

multiple of x2, and we do not get anything new. Indeed, {x2, xy + y2} is a Gröbner basis.

Given two polynomials f, g let us fix the leading coefficient of gcd to be 1. The S-polynomial

of two polynomials f and g is the polynomial

σ(f, g) =
lt(g)

gcd(lt(f), lt(g))
f − lt(f)

gcd(lt(f), lt(g))
g.

Dividing an S-polynomial by a set of generators will give a non-unique remainder, but we can hope

that the calculation would find a new initial term. Buchberger showed that the process is sufficient
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to find all initial terms of an ideal. The Buchberger algorithm to find a Gröbner basis is given

by the above “algorithm,” where the step (2) is now well-defined by (2′):

(2′) For each pair f, g of polynomials of S, compute σ(f, g) and its remainder r after division by

S.
lt(g)

gcd(lt(f), lt(g))
f − lt(f)

gcd(lt(f), lt(g))
g =

∑
k

hksk + r

where sk ∈ S, hk ∈ R, and lt(r) /∈ lt(S) or r = 0.

In other words, the algorithm terminates with a correct answer, a Gröbner basis G, if the remainder

of any S-polynomial computed from a pair of polynomials inG is zero. This is called the Buchberger

criterion. It follows that if G is a Gröbner basis for the ideal (G), then any subset G′ ⊆ G is a

Gröbner basis for the ideal (G′).

A Gröbner basis G = f1, . . . , ft is reduced if any term of fi is not divisible by any lt(fj) where

i 6= j, and the leading coefficients of all fi are 1. The reduced Gröbner basis can be obtained

from any Gröbner basis. Given a monomial order, a reduced Gröbner basis is unique for an ideal.

Therefore, two ideals are the same if and only if their reduced Gröbner bases are the same.

Applications

An immediate application is to decide whether a set of polynomial equations {fi(x1, . . . , xn) = 0}

admits a common solution. If one obtains 1 = 0 while manipulating fi, then certainly there is no

solution, and this is the only case. That is, the ideal I generated by fi contains 1, i.e., I is the

unit ideal, if and only if there is no common solution to fi = 0. Since the ideal membership can be

tested by the division algorithm using a Gröbner basis, we can algorithmically answer this question

by computing a Gröbner basis in any monomial order and looking for 1.

Note that known algorithms for Gröbner basis is not efficient in a computation complexity sense.

Any significant improvement seems impossible because if one can compute Gröbner basis efficiently,

then one can also solve, for example, Boolean satisfiability problem (SAT) efficiently. A SAT is a

decision problem that asks whether there exists an assignment to Boolean variables x1, . . . , xn such

that a given formula using AND, OR, and parenthesis evaluates to 1. Any SAT can be formulated

as a finding a solution to a system of polynomial equations. Being Boolean can be expressed as

xi(xi − 1) = 0. The OR of two binary variables x, y can be expressed as 1 − (1 − x)(1 − y). The

AND of two binary variables x, y is the product xy. In particular, the 3-SAT, the SAT where all

the expressions are given by conjunctive normal form with 3 variables per clause, is equivalent to

finding a solution to systems of polynomial equations, each of which has degree at most 3. The 3-

SAT is known to be NP-complete. However, finding Gröbner basis for a fixed number of variables is

efficient, i.e., the number of calculation steps increases as a polynomial in the degree of the generating
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polynomials.

We can also compute the intersection of an ideal with a subring. The foundational case is when

the subring is given by T = F[x1, . . . , xn] contained in R = F[x1, . . . , xn, y1, . . . , ym]. If an ideal

I of R is given, we wish to compute the intersection T ∩ I, which is an ideal of T . We should

use an elimination monomial order under which lt(f) ∈ T implies f ∈ T . The lexicographic

order in which xa ≺ yb is an elimination order. The following statement is true. If a Gröbner basis

G = {f1, . . . , fu, g1, . . . , gv} of I under elimination order is such that fi do not involve any variable

yb (b = 1, . . . ,m) but gj do, then G′ = {f1, . . . , fu} is a Gröbner basis of I∩T . The ideal J generated

by G′ is certainly contained in I ∩ T . It is clear that G′ is a Gröbner basis for J because it satisfies

the Buchberger criterion. If J ( I ∩ T , then there would be f ∈ (I ∩ T ) \ J with the least leading

term. In particular, lt(f) /∈ lt(J). Since G is a Gröbner basis, lt(f) ∈ lt(G). Since lt(gj) involve yb

due to the elimination order, but lt(f) ∈ T , we must have lt(f) ∈ lt(G′) = lt(J), a contradiction.

More generally, suppose we are given with a subring T ⊆ F[y1, . . . , ym] generated by some

polynomials hi(y1, . . . , ym) (i = 1, . . . , n) over F. We wish to find T ∩I for an ideal I of F[y1, . . . , ym].

Introduce new variables x1, . . . , xn, and consider

T ′ = F[x1, . . . , xn]
φ−→ F[y1, . . . , ym]

π−→ F[y1, . . . , ym]/I,

where φ is defined by xi 7→ hi(y1, . . . , ym) and π is the canonical map. φ maps onto T . If we knew

K = kerπ ◦ φ, the image φ(K) would be precisely T ∩ I. Let R = F[x1, . . . , xn, y1, . . . , ym]. Note

that R contains T ′ and F[y1, . . . , ym] as subrings. Thus φ can be extended to φ̃ as

φ̃ : R = F[x1, . . . , xn, y1, . . . , ym]→ F[y1, . . . , ym] defined by

xi 7→ hi(y),

yj 7→ yj .

The kernel of π ◦ φ̃ is the ideal J = (x1−h1(y), . . . , xn−hn(y)) + I. We have K = J ∩T ′, which can

be computed by the method above. For example, let I = (1+x+y+z, 1+xy+yz+zx) ⊆ F2[x, y, z].

If a subring is T = F2[x3, y3, z3], then an auxiliary ring is T ′ = F2[x′, y′, z′]. The intersection I ∩ T

can be found by computing

(1 + x+ y + z, 1 + xy + yz + zx, x′ − x3, y′ − y3, z′ − z3) ∩ F[x′, y′, z′].

In the end, one has to replace x′ with x3, y′ with y3, and z′ with z3.

The Gröbner basis is also useful to compute the vector space dimension of R/I, where R =

F[x1, . . . , xn]. The remainder r after division by a Gröbner basis of I is unique and has a property

that lt(r) is not divisible by any leading term of the Gröbner basis elements. The remainders are

unique representatives for elements of R/I. It follows that there is a one-to-one correspondence as
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sets between R/I and R/ lt(I). In particular, they are isomorphic as vector spaces. The generators

of lt(I) are monomials m1, . . . ,mt computed by the Gröbner basis. Recall that monomials are in

one-to-one correspondence with the hyper-octant H of nonnegative coordinates of Zn. Therefore,

the vector space basis of R/ lt(I) is labeled by points of H that are not contained in any cone whose

vertex, the least element with respect to the monomial order, is mi (1 ≤ i ≤ t). For example, let

I = (x2, xy + y2) ⊂ F[x, y] = R. The reduced Gröbner basis under a lexicographic order in which

x � y is {y3, xy + y2, x2}. Therefore, R/ lt(I) has a vector space basis {1, x, y, y2}. In a different

lexicographic order in which x ≺ y, the reduced Gröbner basis of I is {x2, y2 + xy}. A vector space

basis of R/ lt(I) is {1, x, y, xy}.

Syzygies and generalization to free modules

So far we have discussed only ideals and generators. It is straightforward to generalize the notions to

submodules of free modules over polynomial rings R = F[x1, . . . , xn]. We first need to generalize the

monomial order. Let e1, . . . , er be a basis of free module F = Rr. A monomial of F is a product

of variables times one of the basis, e.g., x1x
5
2e3 and x3

1x3e1 are monomials. A monomial order

on F is defined in the same way as (A.7). The well-ordering property holds with the same proof.

The leading terms are defined the same way, as well as the ideal generated by leading terms. The

division algorithm does not need to be restated. The Buchberger criterion and algorithm make sense

with a minor change that if two leading terms involve different basis elements, then the S-polynomial

is defined to be zero. The elimination order are still applicable, and the calculation techniques are

valid with respect to submodules.

Nontrivial relations between polynomials are called syzygies. (Here, polynomials include basis

elements, so they are really elements of a free module.) More formally, if a submodule is defined

by the image of a module map φ : F ′ → F between finitely generated free modules, the kernel of

φ is called syzygy. For instance, the syzygies of x and y can be described by a submodule M of

F[x, y]2 generated by

 y

−x

, since the ideal (x, y) with generators x and y is the image of the map

φ : R2

(
x y

)
−−−−−−→ R and M = kerφ. The relation between x and y is thus y(x)− x(y) = 0. We have

implicitly seen how to obtain nontrivial relations from the Buchberger algorithm. We formed an

S-polynomial of two polynomials and ran the division algorithm with respect to a set G = {gi} of

polynomials:

σ(gi, gj) =
lt(gj)

gcd(lt(gi), lt(gj))
gi −

lt(gi)

gcd(lt(gi), lt(gj))
gj =

∑
k

hijk gk + r,

where hijk ∈ R. If G were a Gröbner basis, then by Buchberger criterion we would have r = 0, and
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the expression would be a nontrivial relation among gi. More formally, let the module be generated

by a Gröbner basis {gi}. That is, module is the image of the map φ : F ′ → F where the basis {εi}

of F ′ is mapped as εi 7→ gi. Then,

τij =
lt(gj)

gcd(lt(gi), lt(gj))
εi −

lt(gi)

gcd(lt(gi), lt(gj))
εj −

∑
k

hijk εk

is mapped to zero under φ. It is a theorem that kerφ is generated by τij. {τij} is often a redundant

generating set for kerφ. Be warned that τij is defined to be identically zero if lt(gi) and lt(gj) involve

different basis elements of F .

Given a finite presentation of a module F0/ imφ1 where φ1 : F1 → F0 is a module map between

finitely generated free modules, we can algorithmically find kerφ1. This kernel is a finitely generated

submodule of F1, so it can be identified with the image of a map φ2 : F2 → F1 between finitely

generated free modules. We can continue this as many times as we want, and obtain a sequence of

maps

· · · → Fn
φn−−→ Fn−1 → · · · → F2

φ2−→ F1
φ1−→ F0.

This sequence is called a free resolution of F0/ imφ1. A particularly interesting case is when the

resolution is finite, i.e., Fn = 0 for some n.

A.4 Localization

Tensor product

Operations of modules include direct sum and quotient, both of which are automatic from the fact

that modules are abelian groups. Here we introduce another operation on modules called tensor

product. It is perhaps best defined by a categorical characterization, which is the most useful to

prove things. Here we define it in a colloquial way.

Let us first review a familiar case of vector spaces over a field F. The tensor product V ⊗W of two

vector spaces V,W is a collection of formal finite linear combinations
∑
i,j aijvi ⊗ wj of “products”

vi ⊗ wi where vi ∈ V, wj ∈W and aij ∈ F. The “product” ⊗ is multilinear since

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w and v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

The scalar multiplication floats around ⊗ as

(av)⊗ w = v ⊗ (aw)

for any a ∈ F. In physics literature, it is sometimes said that a tensor is a multi-indexed object
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that transforms in a certain way under transformations for “indices.” This phrasing focuses on the

coefficients aij and captures the multilinearity, as

∑
ij

aijvi ⊗ wj =
∑
ij

aij

(∑
a

Aiav
′
a

)
⊗

(∑
b

Bjbw
′
b

)
=
∑
ab

∑
ij

aijAiaBjb

 v′a ⊗ w′b.

The tensor product of two modules is defined in a similar way. For an R-module M and N ,

we build a formal abelian group out of all possible expressions x ⊗R y for x ∈ M and y ∈ N , with

the following equalities imposed:

(x+ x′)⊗R y = x⊗R y + x′ ⊗R y,

x⊗R (y + y′) = x⊗R y + x⊗R y′,

rx⊗R y = x⊗R ry. (A.8)

The resulting abelian group is denoted by M ⊗R N . It is an R-module by defining an action

r · (x⊗R y) = rx⊗R y. This is the tensor product of M and N . When there is no confusion about

the base ring R, we write ⊗ instead of ⊗R.

Note that any abelian group M is a module over Z by action n · m =
∑|n|
i=1 sgn(n)m for any

n ∈ Z and any m ∈M . Hence, we can take the tensor product of any abelian groups as Z-modules.

Since any R-module is an abelian group, one realizes that there are at least two ways to form tensor

products of two R-modules M and N ; M ⊗ZN and M ⊗RN . All but one equations of (A.8) remain

unchanged. The last equation declaring R-linearity of ⊗R depends on R. It makes a huge difference.

For instance, C ⊗C C ∼= C is one dimensional, but C ⊗Q C is infinite dimensional since there are

infinitely many irrational numbers. C⊗ZC is even larger. When the subscript is omitted, the tensor

product of two R-modules is taken over R by convention.

Since the tensor product of two modules is a module, it makes sense to take the tensor product

of three or more modules. Fortunately, the order of the tensor product does not matter.

(L⊗RM)⊗R N ∼= L⊗R (M ⊗R N) M ⊗R N ∼= N ⊗RM

There are (unwelcome) phenomena for general modules that never occur for vector spaces. The

tensor product of two nonzero modules may be zero. For example, the tensor product of two Z-

modules Z/(2) and Q is zero because [a]⊗ b = [a]⊗ 2a2 = 2[a]⊗ a
2 = 0⊗ a

2 = 0. An expression x⊗ y

may be zero in M⊗N but may not be zero in M ′⊗N ′ where M ′ ≤M and N ′ ≤ N are submodules.

For example, let M = Z and N = Z/(2) be Z-modules. Choose M ′ = 2Z and N ′ = N . Now 2⊗ [1]

is nonzero in M ′ ⊗N ′, but in M ⊗N , it is equal to 2 · 1⊗ [1] = 1⊗ [2] = 0.

Below we explain a “safe” and powerful tensor product.
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Ring of fractions

The ring of rational numbers Q is constructed from Z by inverting nonzero elements. We wish to

do a similar thing for general rings. Let U be a multiplicatively closed subset of a ring R, i.e.,

1 ∈ U and any product of two elements of U lies in U . U needs not be closed under addition. For

example, the set of all nonzero numbers in Z is a multiplicatively closed set. More important is the

complement of a prime ideal p. 1 is included in R \ p because p 6= (1). If a /∈ p and b /∈ p, then

ab /∈ p. This is the defining property of the prime ideal.

We construct “fractions” by putting elements of U ⊆ R in denominators and elements of R in

numerators. The set of all fractions becomes a ring with the “usual” additions and multiplications

a

p
+
b

q
=
aq + bp

pq
, (A.9)

a

p
· b
q

=
ab

pq
. (A.10)

Moreover, the elements of U are invertible!

1

p
· p =

p

p
= 1,

qa

qp
=
a

p
.

The new ring of fractions4 is denoted by U−1R or R[U−1]. Two special cases are so important

that they deserve separate notations.

• If U = R \ p, the ring of fractions is called the localization of R at p and denoted by Rp.

• If U = {1, f, f2, f3, . . .} for some f ∈ R, the ring of fractions is denoted by Rf .

The original ring R lives in U−1R via a canonical map r 7→ r
1 . With this canonical map, we omit

1 in the denominators. Note that U−1R is an R-module. For example, Z2 = Z[ 1
2 ] is a ring of

fractions with denominators are powers of 2. (Yes, this is a confusing notation since Zn is used

to mean Z/(n).) Z(2) is a ring of fractions with odd denominators. Q[x](x) is a ring of fractions

of polynomials where denominators does not vanish at x = 0. What is Q[x, y]xy? It is a ring of

fractions of polynomials where denominators are powers of xy. Since 1
x = y

xy and 1
y = x

xy , we notice

that Q[x, y]xy is really the ring of Laurent polynomials.

Modules can be fractionalized as well. Let M be an R-module. Choose a multiplicatively closed

set U of the base ring R, and define U−1M as the set of all fractions with elements of M in the

numerators and elements of U in the denominators. The addition within U−1M is defined by (A.9).

U−1M becomes an U−1R-module using (A.10). In fact, U−1M ∼= (U−1R)⊗RM as U−1R-modules.

4 Rigorously, the ring of fractions is a collection of equivalence classes of R× U ; (a, p) = (b, q) if and only if there
exists s ∈ U such that s(aq − bp) = 0. The reason we do not define the equivalence using “aq = bp” is that there
could be zero-divisors in R. Interested readers might want to check that U−1R indeed becomes a ring using (A.9)
and (A.10) as definitions.
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Moreover,

• U−1M ⊗U−1R U
−1N = U−1(M ⊗R N) for any R-modules M,N .

The localization, the process passing to fractional rings and modules, is so well behaving under

nearly all conceivable operations. Let A,B ≤M be submodules.

• U−1A is a submodule of U−1M , i.e., U−1A injects into U−1M .

• U−1A ∩ U−1B = U−1(A ∩B).

• U−1A+ U−1B = U−1(A+B).

• U−1(M/A) = (U−1M)/(U−1A).

They all originate from the following. A sequence of maps among modules A,B,C

0→ A→ B → C → 0

is a short exact sequence if

• ker(A→ B) = 0,

• im(A→ B) = ker(B → C),

• im(B → C) = C.

The localization preserves short exact sequence, i.e., if 0 → A → B → C → 0 is a short exact

sequence, then

0→ U−1A→ U−1B → U−1C → 0

is also a short exact sequence. For example, the first and the fourth statement above follows from

localizing the short exact sequence

0→ A→M →M/A→ 0.

The localizations at prime ideals are useful because an R-module M is zero if and only if Mp = 0

for every prime ideal p of R. In fact, M = 0 if and only if Mm = 0 for every maximal ideal m of R.

This can be understood as follows. The annihilator denoted by annRM of an R-module M is an

ideal of R defined by

annRM = {r ∈ R | rm = 0 for any m ∈M} (A.11)

It is an ideal because (a+b)m = am+bm = 0+0 = 0 and (ra)m = r(am) = 0 if a, b ∈ annRM . Note

that any R-module M becomes a module over R/(annRM). What is to be proved for this statement
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is the well-definedness of the defining operation (A.4), i.e., one needs to check that [a] ·m = [b] ·m

if [a] = [b] ∈ R/(annRM) for any m ∈ M . Note that if R is a polynomial ring over a field, there is

an algorithm to compute annRM for a finitely presented module M using pull-backs and Gröbner

basis techniques. Now, it is easy to see that a module Mp (the localization of M at a prime p) is

zero if and only if the annihilator is not contained in p, since a module is zero if and only if 1 or

any unit is an annihilator, but the localized ring at p anything outside p is a unit. If M becomes

zero at the localization at any maximal ideal, it means that the annihilator is not contained in any

maximal ideal. The only elements of R that lie outside of any maximal ideal are units. Therefore,

M = 0.

Recall that there exists a canonical map φ from R to a ring of fractions U−1R, sending r to r
1 .

The image under φ of any ideal I of R is not in general an ideal. However, we may consider the

ideal of U−1R generated by φ(I). This ideal is denoted by Ie ⊆ U−1R, called an extended ideal.

In fact, any ideal of U−1R is an extended ideal. To see this, consider any ideal J of U−1R, and

its contraction φ−1(J) ⊆ R. An element of J is x
s . Since J is an ideal, s

1
x
s = x

1 ∈ J . That is,

x ∈ φ−1(J). We have shown (φ−1(J))e = J . Note that every prime ideal of U−1R is an extended

ideal of a prime ideal of R that do not intersect U . We have seen that the inverse image of a prime

ideal p is prime; the contraction pc = φ−1(p) of a prime ideal of U−1R is prime. Since prime ideal

is not (1), it cannot contain any unit. Hence pc cannot meet the set of units U . Conversely, for any

prime ideal q of R that do not intersect U , qe is a prime ideal of U−1S, since ab
ss′ ∈ qe ⇐⇒ ab

1 ∈ qe.

It is clear that if φ−1(J) is generated by n elements of R, then J is generated by n elements of

U−1R. More importantly, if R is a Noetherian ring, then any localization is a Noetherian ring.

A local ring is a ring with a unique maximal ideal. Typically, maximal ideals are not unique. In

the ring of integers, every prime number generates a distinct maximal ideal. Let Rp be a localized

ring at a prime ideal p of R. By definition of Rp, the set of all denominators do not meet p. Hence,

pp is a prime ideal of Rp. If m is any ideal of Rp, we must have m ⊆ pp. Otherwise, m contains an

element outside pp, which is invertible, and hence m = (1). The localized ring Rp at a prime ideal is

a local ring with a unique maximal ideal pp. One thing to remember about a local ring is that any

element outside the unique maximal ideal is a unit, i.e., it is invertible.

Geometry

Why is it called “localization?” Here we briefly introduce the algebro-geometric point of view on

rings.

The (only) algebraic structure that we should start with for a geometric object is a function

space. By a function we mean a set-theoretical map from the geometric object to numbers. We

can impose certain conditions such as continuity or differentiability on the function space to study

deeper and interesting aspects of the geometric object. In classical algebraic geometry, the geometric
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object, called variety, is defined by one or more polynomial equations, and the functions are defined

by polynomials.

Roughly speaking, there are two interesting types of functions: globally defined functions and

locally defined functions. The locally defined ones may not be well-defined for some regions far from

the point of interest. In the algebraic setting, the global functions are given by polynomial expressions

without denominators. There may be several polynomial expressions for the same function. This

happens when two polynomials differ by the equations of the variety. For example, the global

function space, called coordinate ring of a parabola on R2 defined by y = x2 is a quotient ring

R = R[x, y]/(y − x2).

Locally defined functions at a point p, if they are given as a fraction of two polynomials, are

precisely those whose the denominators are not zero at p. For example, the fraction 1
x+1 is a locally

defined function at a point (0, 0) of the parabola, but x−1
y is not. Collecting all locally defined

functions at m = (0, 0), we obtain a local ring Rm = (R[x, y]/(y − x2))(x,y), which is consisted of

fractions whose denominators are not contained in the maximal ideal (x, y). The global function ring

R is localized at m to be a local ring Rm. Note that we have identified a point on the parabola with

a maximal ideal m. This makes sense because the set of all solutions of the equations f(x, y) = 0

where f(x, y) ∈ m is exactly (0, 0).

One might ask what it means geometrically to localize at a prime ideal p. A prime ideal defines

a subvariety by equations f = 0 where f ∈ p. The localization reveals the set of “functions” that

are locally defined “around” the subvariety. (The notion of neighborhood can be made rigorous by

defining a topology using polynomials.)

A.5 Determinantal ideal

When is a square matrix with integer entries invertible? A naive answer is that it is when the

determinant is nonzero. It is true when the matrix is viewed as a matrix over Q. If we insist that

the inverse matrix must be expressed over Z, then the answer is that it is when the determinant

is ±1. That is, the determinant must be invertible within the ring. Put differently, it is when the

ideal generated by the determinant is the unit ideal. The determinant has another use. The rank of

a matrix is the largest k such that there exists a k × k submatrix whose determinant is a nonzero.

Put differently, it is when the ideal generated by determinants of all k × k submatrices is nonzero.

These observations motivate us to define a determinantal ideal over an arbitrary commutative

ring R. Consider a rectangular matrix M with entries in R. A kth minor is the determinant of a

k× k submatrix. (There are quite many kth minors if k is about half of the matrix size.) Note that

to define the minor we do not have to assume that the full matrix M is square. When k is larger

than the number of rows or columns, kth minor is, by definition, zero. kth determinantal ideal
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Ik(M) of M is the ideal of R generated by all kth minors of M. By convention, 0th determinantal

ideal is taken as I0(M) = (1) = R. If M is n × n, then nth determinantal ideal is generated by a

single element, the determinant of M. The first determinantal ideal is generated by all entries of M.

A (k + 1)st minor is a linear combination of kth minors, as it has a cofactor expansion. Therefore,

the determinantal ideals form a decreasing chain:

R = I0(M) ⊇ I1(M) ⊇ I2(M) ⊇ · · · ⊇ Imin(#row,#col)(M) ⊇ (0)

The rank of M is the largest k such that Ik(M) is nonzero.

The determinantal ideals are invariants of M under invertible matrix multiplications on the right

or on the left.

Ik(MD) = Ik(EM) = Ik(M) if D, E are square and invertible.

To understand this, it is enough to see Ik(EM) ⊆ Ik(M) for arbitrary matrix E. Then, for invertible

E, we would have Ik(E−1EM) ⊆ Ik(EM). We need to see that a kth minor of EM is a linear

combination of kth minors of M. Fix a k × k submatrix K of EM.

Kil =
∑
j

eijMjl

where eij = Eij is written with small letter to emphasize it is merely an element of R. Now the

determinant of K is vividly expressed by minors of M, since the determinant is multilinear over R

in rows Ki of K.

det K = det(K1, . . . ,Kk) = det

∑
j1

e1j1Mj1 , . . . ,
∑
jk

ekjkMjk


=

∑
j1,...,jk

e1j1 · · · ekjk det [Mj1 , . . . ,Mjk ]

where Mj is the row j of the submatrix of M that is consisted of entries contributing to K.

Suppose R be a local ring with a maximal ideal m, and consider a matrix M over R of rank

k. If Ik(M) = (1), how would M look like after row and column operations? The operations are

invertible, and therefore do not change the determinantal ideals. Since the determinantal ideals form

a descending chain, it follows that I1(M) = (1). It means that at least one entry must lie outside

m and is invertible. Bringing that entry to (1, 1) position by permuting rows and columns, we can
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eliminate other entries in the first row and column, by row and column additions. So

M ∼=

1 0

0 M′


where ∼= means the equivalence up to invertible matrix multiplication on the left or right. Now we

use the fact that I2(M) = (1) = I1(M′). By a similar process we can extract 1 from M′. After k

steps, we have

M ∼=

idk 0

0 0

 . (A.12)

Here, observe that R is not necessarily a field. It is just a local ring where some nonzero elements

may not be invertible. The smallest nonzero determinantal ideal being a unit ideal was strong

enough to imply the structure of the matrix.

Smith normal form

Beyond the “easy” local ring case, there is one more easy case of principal ideal domains, in which

every ideal is generated by a single element. It is not necessarily local. The ring of integers and

the ring of polynomials in one variable over a field are principal ideal domains; given finitely many

generators of an ideal, one can find the greatest common divisor (gcd) by the Euclidean algorithm.

Let R be a principal ideal domain. We ask what normal forms of matrices we may have, after

invertible matrix multiplication on the left or right. In other words, we seek for invariants of the

matrices. Observe that the gcd of two elements5 f and g can be expressed as a linear combination

of f and g

gcd(f, g) = af + bg

for some a, b ∈ R. To see this, consider the ideal (f, g). It must be generated by a single element, say,

d, i.e., (d) = (f, g). Then, f ∈ (d) ⇐⇒ f = df ′ and g ∈ (d) ⇐⇒ g = dg′. So d is a common divisor

of f and g. In addition, (d) = (f, g) ⊆ (gcd(f, g)) implies that gcd(f, g) divides d. Thus, gcd(f, g)

and d are the same up to units, and gcd(f, g) ∈ (f, g). We thus obtain the above expression. Now,

consider the following matrix equationgcd(f, g)

0

 =

 a b

−g′ f ′

f
g


5To speak of gcd, it must be first proved that in R any element has a unique factorization. It is true that in

any principal ideal domain, any element is a product of irreducible factors that are unique up to units. If the latter
is satisfied, the ring is called a unique factorization domain. Note that an arbitrary ring may not be a unique
factorization domain. For example, in Z[

√
−5], we have 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5), which are two different

factorizations of 6 into irreducible factors.
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The 2 × 2 matrix has determinant af ′ + bg′ = gcd(f, g)/d, a unit. We have transformed a 2 × 1

matrix by an invertible left multiplication such that there is only a single nonzero entry left. A

similar thing can be done for an n× 1 matrix.

(
gcd(f1, . . . , fn) 0 · · · 0

)T
= E

(
f1 · · · fn

)T
where E is invertible.

If we are given with a rectangular matrix M, we can perform this transformation by looking

at the first column of M. The transformed matrix M ′ will have a nonzero entry on the first row

in the first column. Perform a similar transformation by right multiplication, focusing on the first

row of M′. The new matrix M′′ has unique nonzero entry at M′′
1,1 in the first row, but the first

column may be screwed up. We can iterate these transformations as many times as we want. Will

this process eventually terminate? Yes. For example, if we are working in the ring of integers, the

absolute value of the entry M′′
1,1 is smaller than |M′

1,1|, which is ≤ |M1,1|. Positive integers cannot

decrease forever, and the process must terminate. More generally, the ascending chain condition

makes the proof smooth. The ideals generated by the (1, 1)-entries will form an increasing sequence

of ideals. Our ring R, being a principal ideal domain, is Noetherian. The sequence must become

stationary after finitely many iterations. If one is not too familiar with Noetherian rings, one can

rely on the fact that there are finitely many factors of a given element. If (d1) ⊆ (d2) ⊆ · · · is an

increasing sequence of ideals, we have di+1|di. Since there are only finitely many factors in d1, one

cannot have an infinite and strictly increasing sequence of ideals.

The matrix M(n) obtained from M by iterating the gcd-computations n-times, has a unique

nonzero entry d at (1, 1) in its row and column.

M(n) =

d 0

0 M1


We can claim a bit more. If there is any entry at (u, v) of M1 that is not divisible by d, we can add

the row u to the first row and run the gcd-computation again. The ideal generated by (1, 1)-entry

will become larger. Iterating, we eventually find the largest possible ideal generated by (1, 1)-entry.

Therefore, we can obtain M1 whose entries are all divisible by d.

The above algorithm applied to M1, and to its submatrix, and so on, will produce a diagonal

matrix. This diagonal matrix is called the Smith normal form of M. The nonzero diagonal entries

d1, . . . , dk have a property that

d1|d2| · · · |dk.
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Here, the number k is precisely the rank of the matrix M. Moreover, the determinantal ideals are

It(M) = (d1 · · · dt).

This immediately proves that di’s are uniquely determined by M. The invariants di’s are called

elementary divisors of M. Since any matrix, not necessarily square, can be brought to the Smith

normal form by invertible transformations, it follows that the elementary divisors are complete

invariants, i.e., the elementary divisors are the same for two matrices if and only if two matrices

are related by invertible matrix multiplication on the left and right.

Finitely generated modules and Fitting ideals

We briefly noted about finite presentations of modules when we discussed free modules. We say that

an R-module M is finitely presented by a matrix φ : Rm → Rn if M is isomorphic to Rn/ imφ. This

is more commonly denoted as M = cokerφ.

To get some feeling, let us consider a simple case where R = Z. The matrix φ : Rm → Rn

is an n × m matrix with integer entries. Any basis change in Rn amounts to an invertible left

multiplication on φ. Any basis change in Rm amounts to an invertible right multiplication on φ.

We know a very convenient canonical form of φ — the Smith normal form. Let φ be in the Smith

normal form with the diagonal elements d1, . . . , dk. In the simplest case k = m = n = 1, the module

M is R/ imφ = Z/(d1). If m = n = 2 and d2 = 0, the module M is R2/ imφ = Z/(d1)⊕ Z.

In fact, we can prove the structure theorem for finitely generated abelian groups very easily. Let

M be a finitely generated abelian group. It can be viewed as a finitely generated Z-module. Let n

be the number of generators. We have a module map φ̃ : Zn → M , which is surjective. The kernel

K is also finitely generated since Zn is Noetherian. Hence, we have another map φ : Zm → K ⊆ Zn

where m is the number of generators of K. We have constructed a finite presentation of M by φ,

i.e., M = Zn/ imφ. Bring φ to the Smith normal form by basis changes in Zn and Zm. If d1| · · · |dk
are elementary divisors of φ, we define dk+1 = · · · = dn = 0. Then we have an isomorphism of

Z-modules M ∼= Z/(d1)⊕ · · · ⊕ Z/(dn). Viwed as a group, the notation will be

M = Z/d1Z× · · · × Z/dkZ× Zn−k.

This is the most general form of a finitely generated abelian group. Note that the rank n−k and the

elementary divisors d1|d2| · · · |dk 6= 0 are uniquely determined by the group M . Any finite abelian

group is obviously finitely generated.

Let R be an arbitrary commutative ring, and M be an R-module with a finite presentation given

by a matrix A : Rm → Rn, i.e., M ∼= Rn/ imA = cokerA. We define Fitting ideals Fi(M) of M
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as

Fi(M) = In−i(A), (A.13)

so

F0(M) ⊆ F1(M) ⊆ · · · ⊆ Fn(M) = R.

One should ask: A is one of many possible finite presentations. How can we be sure that Fi(M)

is determined by M and is independent of a particular presentation A? We can be sure. The

presentation really consists of two sets of things: a set of generators x1, . . . , xn ∈ M and their

relations (syzygies) given by columns of A

∑
i

xiAij = 0.

Thus, we can think of A as the matrix of relations. The isomorphism M ∼= cokerA ensures that

any possible relations among xi is generated by columns of A. That is, for any coefficients ci such

that
∑
i xici = 0 we can express ci as ci =

∑
j Aijdj . Therefore, if we write a n ×∞ matrix Ã by

collecting all relations among xi, then the kth determinantal ideal of Ã is exactly Ik(A). In other

words, Ik(A) is determined by the chosen generators of M . Our question on the well-definedness of

the Fitting ideal concerns, in fact, many possible choices of generators for M . Now, let y1, . . . , yn′

be elements of M . We have n+n′ generators xi, yi′ of M , and M is presented as a quotient module

of Rn+n′ . The relations among xi, yi′ constitute a matrix

W =

A A′ #

0 id #

 ∼W ′ =

A 0 A′

0 id 0

 ∼W ′′ =

A 0 0

0 id 0


where ∼ means equality up to row or column operations. The first matrix W can be written as

shown because yi′ can be written as some combination of xi. W
′′ is obtained from W ′ since we know

that A generates all relations among xi. Since determinantal ideals are invariant under invertible

matrix multiplications, we see that Ik+n′(W ) = Ik+n′(W
′) = Ik+n′(W

′′) = Ik(A). Another finite

presentation B : Rm
′ → Rn

′
of M ∼= cokerB gives another set of generators. By the above

calculation, In−k(A) = In+n′−k(W ) = In′−k(B). Therefore, the Fitting ideals are well-defined. We

now see clearly why the numbering of the Fitting ideals are given as (A.13). (One might notice that

the finite presentation is actually too much than what is needed to define Fitting ideals. They can

be defined for any finitely generated module.)

The first nonvanishing Fitting ideal is important because it tells when a finitely generated module

becomes free after localization. For example, suppose an R-module M is finitely presented by

φ : Rm → R3 and F1(M) is nonzero. Let p be a prime ideal of R such that F1(M) 6⊆ p. Localizing

at p, we see that F1(M) = I2(φ) becomes the unit ideal, since anything outside p is a unit in Rp.
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Then, we have seen in (A.12) that the matrix φp is equivalent to a diagonal matrix with entries

0 or 1. Therefore, cokerφp is obviously isomorphic to R3
p/R

2
p = R1

p, a free module. Conversely, if

cokerφp is free for some prime ideal p, then Ik(φp) is either (1) or (0). Therefore, every Fitting ideal

of cokerφp is either (0) or (1). In conclusion, the localizaed module Mp of M at a prime ideal p is

free if and only if the first nonvanishing Fitting ideal of M is not contained in p.

The initial Fitting ideal F0(M) is also interesting because it approximates the annihilator of M .

Let M be generated by n elements. Then,

(annM)n ⊆ F0(M) ⊆ annM. (A.14)

Here, the ideal power (annM)n means the ideal generated by all products of n elements from

annM . By definition, F0(M) = In(A) where A is a matrix of relations among the n generators xi

of M . If Z is an n × n submatrix of A, we have
∑
i xiZij = 0. Multiplying the adjugate matrix

of Z, we see (detZ)xi = 0 for all 1 ≤ i ≤ n. Hence, detZ ∈ annM . Since F0(M) is generated by

these detZ, we have the second inclusion of (A.14). If a1, . . . , an ∈ annM , then the diagonal matrix

made of ai expresses relations among xi. The determinant a1 · · · an therefore belongs to F0(M).

This proves the first inclusion of (A.14).

A.6 Finite fields

A field is a nonzero commutative ring where every nonzero elements are invertible. There is only

one proper ideal, the zero ideal (0). A finite field is a field with finitely many elements. If there

are q elements in the field, we denote the field by Fq. The minimum possible number is of course

q = 2 because we need 0 6= 1. In this case it is called bianary field F2. It may seem quite

modest to require for a field to have finitely many elements, but, unlike finite groups, finite fields

are particularly simple — there is a unique field of q elements up to isomorphisms. Let us see why.

Since any ring is an additive group, Fq is a finite abelian group. How does it look like as an

additive group? Applying the “structure theorem for finitely generated abelian group,” we know

Fq ∼=
⊕k

i=1 Z/(di). where 1 < d1|d2| · · · |dk 6= 0. It follows that for any element x ∈ Fq we have

dkx = 0. Here, dk is the smallest number such that dkx = 0 for any x ∈ Fq. If dk is not a prime

number, say, dk = pp′ with p, p′ < dk, then p = p · 1 6= 0 in Fq is invertible. Hence, p′ = p′ · 1 = 0,

which is a contradiction to the minimality of dk. Therefore, dk is prime, and d1 = d2 = · · · = dk = p.

It follows that |Fq| = q = d1d2 · · · dk = pk. This conclusion is often phrased as a finite field has

characteristic p for some prime number p and the total number of elements is a power of p. Note

that the image of Z → Fq, as there is a unique ring homomorphism from Z to any ring, is Fp, a

subfield of Fq. It is of great importance that Fq is a k-dimensional vector space over Fp.
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Next, how does the multiplicative group of all nonzero elements of Fq look like? It is again a

finitely generated abelian group. Therefore, its group structure is uniquely determined by elementary

divisors 1 < e1|e2| · · · |em 6= 0. In a similar logic as above, we have xem = 1 for any nonzero x ∈ Fq.

It is an equation in the field, so it can be rewritten as xem − 1 = 0. How many solutions can an

equation have? At most the degree. It means that q − 1 = e1e2 · · · em ≤ em. The only possibility is

that m = 1 and e1 = q − 1. That is, the multiplicative group F×q consisted of all nonzero elements

is isomorphic to the additive group Z/(q − 1), a cyclic group generated by a single element. In

other words, there exists an element x in Fq such that {xn|n ∈ Z} is equal to the set of all nonzero

elements. Such an element x is called primitive element of Fq. There could be many primitive

elements in Fq.

Finally, let us mix the two operations, the addition and multiplication, and consider the ring

structure of Fq. Before we start analyzing Fq, remark that for any field F, not necessarily finite, and

an irreducible polynomial f(x) over F, we can construct a larger field F[x]/(f(x)) that contains F.

A larger field is called an extension field over the smaller field.

We noted above that Fq is a k-dimensional vector space over Fp. Fix a primitive element α of

Fq. Then, the set of “vectors” {1, α, α2, . . . , αk} contains k + 1 vectors, so it cannot be linearly

independent over Fp. Consider the set Iα of all polynomials f(t) ∈ Fp[t] ⊆ Fq[t] such that f(α) = 0.

It is clearly a nonzero ideal, and therefore is generated by a single element fα(t), which divides any

element in Iα. fα(t) is unique if we demand the leading coefficient to be 1. A polynomial with the

leading coefficient 1 is called monic. The minimality of fα(t) forces it to be irreducible. fα(t) is

uniquely determined by α, called the minimal polynomial of α ∈ Fq over Fp. We have established

a ring homorphism Fp[t]/(fα(t))→ Fq such that t 7→ α. Since α is a primitive element, this map is

surjective. Moreover, it is injective because of the choice of fα(t). It follows that the degree of f(t)

is actually equal to k, the dimension of Fq as an Fp-vector space, and the ring Fq is isomorphic to

a quotient ring of the polynomial ring Fp[t].

Recall the polynomial h(x) = xq − x becomes zero at any element of Fq. It means that in the

ring Fq[x], the polynomial h(x) factorized into linear factors as

h(x) = x(x− α)(x− α2)(x− α3) · · · (x− αq−1). (A.15)

Since xq − x ∈ Iα, it follows that fα(x) ∈ Fp[x] divides xq − x ∈ Fp[x]. Therefore, fα(x) ∈ Fq[x]

factorizes into linear factors, too. That is, any root of fα(x) can be found in Fq, not only α.

Furthermore, any root of fα(x) is a primitive element. Let β ∈ Fq be any root of fα(x). The ideal

Iβ ⊆ Fp[x] contains fα(x). Hence, the minimal polynomial f1(x) ∈ Iβ divides fα(x). Since fα(x) is

irreducible in Fp[x], we must have fα(x) = fβ(x). It means that Fq 3 α 7→ β ∈ Fq is an isomorphism,

guaranteeing that β is a primitive element.
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The quotient ring presentation of Fq is not unique because it depends on fα(t) which is determined

by a primitive element. It is thus a relevant question whether two finite fields with the same

cardinality Fq and F′q are isomorphic as rings. Let α be a primitive element of Fq with the minimal

polynomial f(x) over Fp, and β be a primitive element of F′q with the minimal polynomial g(x)

over Fp. We know that f(x)|h(x) and g(x)|h(x) where h(x) = xq − x. It follows from (A.15) that

f(βn) = 0 in F′q for some n. Given such n, we can define a ring homomorphism Fp[x]/(f(x)) 3

x 7→ yn ∈ Fp[y]/(g(y)). It amounts to a ring homomorphism Fq 3 α 7→ βn ∈ F′q. Note that any

nonzero ring homomorphism from a field is injective simply because the kernel is a proper ideal.

Since both the domain and the target are finite dimensional vector spaces, our homomorphism is

bijective, and we obtain a field-isomorphism. In conclusion, any finite field is uniquely determined

up to isomorphisms by its cardinality.

Let f(x) ∈ Fq[x] be any irreducible polynomial over Fq. We may consider an extension field

E = Fq[x]/(f(x)) over Fq. It is still a finite field for being a finite dimensional vector space over a

finite field. In E, f(x) factorizes into linear factors by the same reasoning as above. More generally,

since any polynomial g(x) is a product of irreducible polynomials, by extending the field, one can

factor further some of the irreducible factors. Since there are finitely many irreducible factors,

one eventually reaches an extension field where g(x) factorizes into linear factors completely, after

finitely many extensions. If we started with a finite field, then the ultimate field will still be finite

of cardinality, say, q′. It follows that g(x) is a factor of (xq
′ − x)n for some n, where n is to take

care of potential multiplicity in g(x). n can be chosen to be large. If one wishes, it may be of form

pm where p is the characteristic of the field. Then, (xq − x)p
m

= xq
′pm − xpm . Summarizing, any

nonzero polynomial g(x) over a finite field divides xp
m′ − xpm for some m′ > m.
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