
Topics in Gravitational-Wave Science: Macroscopic
Quantum Mechanics and Black Hole Physics

Thesis by

Huan Yang

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Submitted May 23, 2013)



ii

c© 2013

Huan Yang

All Rights Reserved



iii

Dedicated to my parents

Fuxi Yin and Ganqin Yang



iv

Acknowledgments

There is a Chinese saying that goes, “it takes ten years to sharpen a sword.” It took me the continuous

effort of many years to become an qualified “sword” (with a Ph.D.), ready for cutting through the

fog of unknowns at the frontier of physics. Along my way, studying physics during these years, I have

received enormous encouragement and assistance from my family, my friends and my colleagues. I

am grateful for the help of all of them, and I shall acknowledge them in chronological order.

First I would like to thank my parents Fuxi Yin and Ganqin Yang. They taught me the really

important things in life and they showed me how to build my character with integrity, honesty and

sheer tenacity. There were times when I was confused and uncertain about my future, but they

always told me to follow my heart and they always supported my decisions. My parents greatly

helped me to define who I am.

I am also thankful to Kip Thorne and Nai-Chang Yeh. I worked with Kip since my sophomore

year. He brought me into the field of general relativity, which has become one of my main research

interests. He influenced me not only through his scientific wisdom, but also his way of interacting

with people and his positive energy. Nai-Chang was my senior thesis advisor. During my time

working in her lab, I was truly impressed by her passion and attitude toward doing research. As a

female professor, she is also very generous to her students. I would like to thank for all her help in

my past studies.

I want to give special thanks to my Ph.D thesis advisor Yanbei Chen. As an advisor and as

a physicist, he is my favorite type: very considerate to students, always curious about problems

in physics and full of ideas. I enjoyed spontaneous discussions with him about many branches of

physics, and I learned a lot from him about ways of looking at and solving physics problems. I am

also grateful for his encouragement and painstaking effort to teach me how to write scientific articles

and give clear presentations .

I also want to express my thankfulness to Rana Adhikari, Koji Arai, Jenne Driggers, Jan

Harms, Larry Price, David Yeaton-Massey, Nicholas Smith and my colleagues in the TAPIR group:

David Nichols, Aaron Zimmerman, Fan Zhang, Bassam Helou, Chad Galley, Jeffrey Kaplan, Anil

Zenginoglu, Yasushi Mino, Tanja Hinderer, Jeandrew Brink, Haixing Miao and Roland Haas. I am

lucky to have the chance to work with all these brilliant people. We had a lot of fruitful discussions



v

and many of them have turned into chapters of this thesis.

I would like to acknowledge Stefan Danilishin, Thomas Corbitt, Kentaro Somiya, Yiqiu Ma, Farid

Khalili and Sergey Vyatchanin and all the other members of the Macroscopic Quantum Mechanics

(MQM) discussion group. I also want to thank other colleagues outside Caltech: Howard Wiseman,

Scott Hughes, Emanuele Berti, Sam Dolan, Marc Casals, Yi Pan, Steven Detweiler, Steve Carlip,

Da-Shin Lee, Bei-lok Hu, Ting Yu, Walter Strunz, Matthew Evans and Ian Vega. I enjoyed and

benefitted from stimulating discussions with all of them.

I want to thank the two other members of my thesis committee who have not been mentioned

before: Christopher Hirata and Christian Ott, for giving me very valuable advice and comments on

my thesis research as well as presentation skills.

In working on chapters of this thesis, I was supported by the following public funding: NSF

Grants PHY-1068881 and PHY-1005655, CAREER Grants PHY-0956189 and PHY-1055103, NASA

Grant No.NNX09AF97G, the Sherman Fairchild Foundation and the Brinson Foundation. I am also

grateful for the donation from Dr. and Mrs. David and Barbara Groce, whose gift enabled me to

finish my Ph.D. degree in physics.

Finally, I would like to acknowledge JoAnn Boyd and Shirley Hampton for their assistance on

administration matters.



vi

Abstract

The theories of relativity and quantum mechanics, the two most important physics discoveries of

the 20th century, not only revolutionized our understanding of the nature of space-time and the

way matter exists and interacts, but also became the building blocks of what we currently know as

modern physics. My thesis studies both subjects in great depths — this intersection takes place in

gravitational-wave physics.

Gravitational waves are “ripples of space-time”, long predicted by general relativity. Although in-

direct evidence of gravitational waves has been discovered from observations of binary pulsars, direct

detection of these waves is still actively being pursued. An international array of laser interferometer

gravitational-wave detectors has been constructed in the past decade, and a first generation of these

detectors has taken several years of data without a discovery. At this moment, these detectors are

being upgraded into second-generation configurations, which will have ten times better sensitivity.

Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed con-

tinuously by photons. The sensitivity of such a quantum measurement can often be limited by the

Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed

as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal

fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to

being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise

in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in

the middle of the detection frequency band. We identified the two elastic loss angles, clarified the

different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3 – 7) concerns formulating experimental concepts and

analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic

objects — as well as developing theoretical tools for analyzing quantum measurement processes.

In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a

single photon strongly influences the quantum state of a mechanical object. We also explain how to

engineer the mechanical oscillator’s quantum state by modifying the single photon’s wave function.

In Chapters 4–5, we build theoretical tools for analyzing the so-called “non-Markovian” quantum
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measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution

of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a

memory) while at the same time being under continuous quantum measurement (by the probe

field). This aims at providing a general framework for analyzing a large class of non-Markovian

measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath

(i.e.,whether and to what extent the bath remembers information about the plant) by perturbing

the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent

measurement of a mechanical oscillator’s zero-point fluctuations, revealing nontrivial correlation

between the measurement device’s sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized,

elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It

offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring

the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly en-

ergetic astrophysical processes, sometimes involving black holes — a type of object predicted by

general relativity whose properties depend highly on the strong-field regime of the theory. Although

black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary

objects, detecting gravitational waves emitted by systems containing black holes will offer a much

more direct way of observing black holes, providing unprecedented details of space-time geometry

in the black-holes’ strong-field region.

The third part of this thesis (Chapters 8 – 11) studies black-hole physics in connection with

gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object

orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian

formalism in which the low-mass object and the metric perturbations of the background spacetime

are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal

modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of

the weakly-damped QNMs, with relative error O(1/L2), and connect these frequencies to geometrical

features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal

Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the

angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11

we obtain an analytical approximate for the scalar Green function in Kerr spacetime.
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Chapter 1

Introduction

This thesis is an assembly of ten research papers that span across several disciplines of physics, which

are all related to the on-going effort of gravitational-wave detection. According to the different

aspects of gravitational-wave science they involve, the following ten chapters of this thesis can

be naturally divided into three parts. In Part I (Chapter 2), we study the physics of advanced

gravitational-wave detectors, in particular how thermal fluctuations affect the detectors’ sensitivity.

In Part II (Chapters 3 – 7), motivated by the fact that gravitational-wave detectors are continuously

monitoring kilogram-scale test masses near the quantum limit, we study Macroscopic Quantum

Mechanics. In Part III (Chapters 8 – 11), we study physics of gravitational-wave sources, in particular

black-hole perturbation theory. Correspondingly, this introductory chapter has also been divided

into three sections. In each section, we shall first provide background for the corresponding part of

the thesis, and then briefly discuss the motivation and summarize the main results of each chapter

in that part.

1.1 Physics of advanced gravitational wave detectors

1.1.1 An overview of laser interferometer gravitational-wave detectors

The existence of gravitational wave (GW) is one of the most powerful predictions of general relativity

(GR); directly measuring GW is an important test of GR. GWs interact very weakly with matter,

but often carry a large amount of energy — for equal-mass binary black-hole mergers, up to 5% of

the binaries’ total mass energy is converted to and radiated away by GWs [1]. Because gravitational

radiation serves as an important component of many astrophysical and cosmological processes, and

because GWs are not easily damped by interacting with matter, GW detection will open a new

window for the human being to observe the universe. With experimental progress in the past

decade, it is getting clearer that we will soon enter a new era with a whole new branch of astronomy

— gravitational-wave astronomy.
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In the past five years, an international array of first-generation long-baseline laser-interferometer

GW detectors have operated at their design sensitivities. This array included: the LIGO detectors

(US, two 4 km detectors H1 and L1, one 2 km detector H2) [2], the VIRGO detector (France and

Italy, 3 km) [3], the GEO 600 detector (UK and Germany, 600 m) [4] and the TAMA detector (Japan,

300 m) [5]. Up till now, with most of the first-generation data analysis finished, no direct detection

of GW has been made, and this is consistent with astrophysical estimates. In order to achieve first

detection, and subsequently develop a fruitful observational program of GW astronomy, the GW

community must keep upgrading their detectors for better sensitivity. At this moment, while second-

generation detectors (for example the Advanced LIGO detectors in the US) are in construction,

experimental techniques aimed for third-generation detectors are being researched and prototyped.

These prototype experiments include: the 300-m CLIO cryogenic detector (Kamioka, Japan) [6], the

AEI 10-m prototype (under construction in Hannover, Germany) [7], the Glasgow 10-m prototype

(Glasgow, UK) [8], the 80-m high-power facility (Gingin, Australia) [9], and table-top experiments

with small test masses (MIT/ANU/NAOJ) [10].

The typical configuration of a long-baseline laser interferometer GW detector is a Michelson

interferometer with km-scale arms and kg-scale suspended test masses serving as mirrors. The

suspension frequencies are usually around 1 Hz, therefore allowing the isolation of ground motion

at frequencies ∼ 10 Hz and above — at these frequencies, the test masses act as free masses. Laser

light is incident from, and mostly returns to the “bright port” of the Michelson interferometer

— if the mirrors remain at their equilibrium positions — and in this case only a small amount

of light is allowed to emerge from the “dark port” of the interferometer. As arm lengths change

differentially (e.g., due to incoming GWs), additional signal light emerges from the dark port. At

the photodetector, the signal light beats with the static output light from the dark port to give a

linear signal proportional to the amplitude of the gravitational wave. Optical cavities are often used

in the arms (therefore there are two mirrors in each arm) in order to increase light power in the arms

and amplify the signal light. The interferometer’s performance is further amplified when “recycling

mirrors” are further placed at the bright and dark ports.

As we consider GWs with frequencies below the free spectral range of the arm cavity, i.e., c/(2L)

(with L the arm length, 10s of kHz) and above the resonant frequency of the test masses’ translational

motion, a gravitational wave with amplitude h can be viewed as causing relative displacements

∼ Lh/2 between the mirrors (with a geometrical factor that depends on its polarization), while

causing no effect on the propagation of light. We can therefore regard GW detectors as displacement

measuring devices; their sensitivity for measuring the displacement is limited by force noises which

disturb the motion of test masses, and readout noises which add random output fluctuations to the

displacement signal. These noises may have both classical and quantum origins (see Fig. 1.1).

In Fig. 1.1, we show the noise budget of Advanced LIGO detectors (in terms of strain-referred
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Figure 1.1: (Color online.) Square root of strain noise spectrum for several of Advanced LIGO’s
major noise sources. In its detection band 10 Hz – several kHz, Advanced LIGO’s sensitivity is
mainly constrained by quantum noise and coating Brownian noise (red curve).

noise spectral density). This figure shows several major types of noise that are of classical origin [11]:

• Suspension thermal noise (blue curve in Fig. 1.1), which arises from thermal fluctuations in

the wires that are used to suspend the test masses.

• Gravity gradient noise (dark green curve in Fig. 1.1), which arises from differential fluctua-

tions of the Newtonian gravitational field at the locations of the test masses. The dominant

component of this noise arises due to surface seismic waves [12].

• Excess gas noise (light green curve in Fig. 1.1), which is mainly produced by gas molecules in

the beam tube. The high frequency component of this noise arises from molecules randomly

moving through the laser beam, causing phase noise, while at low frequencies the random

impacts of molecules on the mirror surfaces dominate [13].

• Seismic noise (brown curve in Fig. 1.1), which is the mirror position fluctuation induced by

ground vibrations. It is the main noise source below 10 Hz.

• Coating Thermo-optic noise(teal curve in Fig. 1.1), which is a combination of coating ther-

moelastic noise and coating thermorefractive noise. Temperature fluctuations in the dielectric

coating and the nearby area in the mirror substrate cause both geometric random deformations
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of the coating and random variations in the coating materials’ refractive index. The geometric

deformation affects the position of the mirror surface, causing thermoelastic noise, while the

refractive index change affects the phase probed by the light beam, which partially penetrates

into the coating layers, causing thermorefractive noise. Evans et al. proved that by careful

design of coating structure these two pieces of noise can almost cancel each other in Advanced

LIGO mirrors[15].

• Brownian noise (red curve in Fig. 1.1), which includes coating Brownian noise and substrate

Brownian noise. At constant temperature T , each elastic eigenmode of the mirror possesses

kBT energy according to equal partition theorem. Because of the mechanical losses, the thermal

spectrum of these modes all have a tail to the low frequency end, and the sum of all these

contributions gives the Brownian noise. Because coatings (quality factor ∼ 103) are much more

lossy than the substrate (quality factor ∼ 107 − 108), coating Brownian noise is much higher

than substrate Brownian noise, and turns out to be higher than all other classical noises in

the advanced LIGO detection band. This is the main motivation for us to carefully analyze

coating Brownian noise in Chapter 2.

In Fig. 1.1, quantum noise is shown in purple curve. This includes quantum radiation pressure

noise, photon shot noise and sensing noise due to optical loss and inefficient photo-detection. The

sensing noise due to optical or photo-detection loss is an important component of the quantum noise

budget, but it can be improved by using better optical systems. The shot noise and radiation pressure

noise together is often subject to a sensitivity bound for general quantum measurement, as will be

shown below (and in the Section 1.2 from a different perspective). Let us approximate LIGO mirrors

as free masses and, for simplicity, assume there are no arm cavities. The displacement-referred noise

spectrum due to radiation-pressure fluctuation for a free mass m is

Srp
x (Ω) =

I0ω0~
m2Ω4c2

, (1.1)

where ω0 is the angular frequency of the laser beam and I0 is the optical power. The stronger the

power of the laser, the higher the rate of random photons that will impinge on the mirror, hence

the higher the radiation-pressure noise. On the other hand, the displacement-referred spectrum of

shot noise is

Ssh
x =

~ c2

I0ω0
(1.2)

which is inversely-proportional to the number of sensing photons — increasing the rate of sensing

photons will improve the our accuracy of position measurement.

Because shot noise and radiation pressure noise depend oppositely on the intensity of light, the

sum of these two noises are limited by a bound regardless of light power, which is usually referred
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as Standard Quantum Limit (SQL) as first realized by Braginsky in the 1960s [17, 18]:

Sx = Srp
x + Ssh

x =
I0ω0~
m2Ω4c2

+
~ c2

I0ω0
≥ SSQL

x (Ω) ≡ 2~
mΩ2

. (1.3)

Here m = M/4 is the reduced mass of the four test masses (each with a mass of M). As we will

show later in Sec. 1.2, once these GW detectors enter this quantum regime, in addition to detecting

gravitational waves with higher sensitivity, one can also use these interferometers to probe quantum

behaviors of macroscopic test masses. In this case, SQL serves as a benchmark for a successful

macroscopic quantum mechanics (MQM) experiment.

1.1.2 Brownian thermal noise of mirrors with multilayer coatings (Chap-

ter 2)

Chapter 2 is a research paper published as:

• T. Hong, H. Yang, E.K. Gustafson, R.X. Adhikari and Y. Chen, Brownian thermal noise in

multilayer coated mirrors, Physical Review D 87, 082001 (2013).

1.1.2.1 Motivation and significance

This was my first Ph.D. research project, in which I studied coating Brownian thermal noise (CBTN)

for optical systems. This piece of thermal noise is not only the dominant classical noise source in the

advanced LIGO detection band, but also a limiting factor for controlling laser stability and setting

laser frequency standard [38]. It is therefore important to understand different components of this

noise and their correlations, as well as to investigate possible ways to reduce the noise. Before our

work, many still believed that CBTN could be lowered by careful designs of the structure of the

multi-layer coating. In addition, the gravitational-wave community was not using the correct loss

angle to describe the mechanical losses that are associated with the coating Brownian noise. As

our work gives a solid description of the weak noise correlation, it is clear now that the bulk part

of CBTN can hardly be improved by the coating design — one will have to use low-loss coating

materials or high-Young’s-modulus substrate materials to reduce the CBTN. Our work also pointed

out the correct loss angles to characterize the coating materials’ mechanical losses — assuming that

they are isotropic and formulated experimental strategies that will allow the direct measurement of

both angles. Finally, our analysis also paved the way toward further calculations of thermal noises

with anisotropic coating materials.
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1.1.2.2 Summary of main results

We start Chapter 2 by expressing the amplitude and phase of the reflected light in terms fluctuations

in all aspects of the coating structure, thereby identifying all components of coating thermal noise.

For example, we show that coating noise arise not only from layer thickness fluctuations (as one

might naively think at first sight), but also from fluctuations of the interface between the coating

and substrate, which can also be driven by internal fluctuating stresses of the coating. After applying

the fluctuation-dissipation theorem, we find that thickness fluctuations of different coating layers are

incoherent with each other, although they may correlate with fluctuations of the coating-substrate

interface (depending on the loss angles, which will be discussed later). This is because the fluctuating

stress in any coating layer does not affect thicknesses of the other layers, yet it may influence

the bending of coating-substrate interface. Based on the formulas we obtained for cross spectral

densities, roughly 70% of Advanced LIGO’s coating Brownian noise is due to coating-substrate

interface fluctuations, because Young’s modulus of the more lossy type of coating material (Ta2O5)

was assumed to be much higher than the Young’s modulus of the substrate. This piece of noise turns

out to be inversely proportional to the Young’s modulus of the substrate material, which means it

can be reduced by using stiffer substrate materials.

Previously [43], the vertical and horizontal loss angles φ⊥, φ‖ of an isotropic material are defined

such that given a periodic driving force, the energy dissipated per radian is

Wdiss = φ⊥U⊥ + φ‖U‖, Utot = U⊥ + U‖ (1.4)

where the total elastic energy Utot is separated into vertical component U⊥ (perpendicular to the

surface) and horizontal component U‖ (parallel to the surface). In Chapter 2, we show that for

materials with nonzero poisson ratios, U⊥ and U‖ could be negative for certain ways of applying

external forces. This means neither U⊥ nor U‖ is a reasonable candidate for energy. We instead

propose to use shear and bulk loss angles φΣ, φΘ, associated with the bulk and shear elastic energy

such that

Wdiss = φΣUΣ + φΘUΘ, Utot = UΣ + UΘ. (1.5)

According to elasticity theory, the bulk and shear energies UΣ, UΘ are both positive definite (see

Chapter 2 for their definitions). In fact, for isotropic materials, this is the only well-defined way

to classify loss angles. Since most recent experiments for loss angles all measure quality factors of

bending modes for 2-D thin plates, they only give information about one particular combination of

shear and bulk loss angles. In order to break this degeneracy and obtain two loss angles separately,

we need another independent type of measurement. This can be achieved by measuring torsional

modes of a coated cylinder, which gives information only for the shear loss angle. Combining the



7

proposed experiment with previous measurements, bulk and shear loss angles can be determined

separately.

In Chapter 2 we also point out a new contribution to coating Brownian noise that had not

been discussed before. As briefly explained earlier, this noise is due to refractive-index fluctuations

induced by strain fluctuations, via the photoelastic effect. The photoelastic noise not only imposes a

fluctuating phase shift to light propagating within the coating — the inhomogeneity caused by this

noise also back-scatters some of the propagating light. All the backscattered light add up together

to a new piece of phase noise, which we refer as “backscattered noise”. There is one subtlety we

encountered when computing this noise — mathematically the self correlation of Brownian strain

fluctuations is a δ function in position space, and so is the resulting refractive-index fluctuation.

This δ function apparently causes a divergence problem during the calculation of the backscattered

noise. Fortunately, since the average of fluctuations over any small volume is finite, the total noise is

in fact regular. After a careful treatment, we successfully obtained a regular expression for the back-

scattered noise. For advanced LIGO coatings, the back-scattered noise is less than 5% of the total

coating Brownian noise, because light only penetrates into the first few coating layers, and because

the back-scattering is relatively weak in the first place. However, for other optics experiments using

mirrors with far fewer coating layers, this could be a more important part of total coating Brownian

noise.

1.1.2.3 My specific contributions

I derived the formulas for cross spectral density between strain fluctuations at different locations,

and I also did the calculation for back-scattered noise. I was in charge of revising the manuscript

and answering questions from the referees during the peer-review process and production stages.

1.2 Macroscopic Quantum Mechanics (MQM)

1.2.1 Background

The theory of continuous measurement, namely a single quantum system under continuous moni-

toring, was first considered for GW detectors in the 1960s. In recent years, the field of “quantum

optomechanics”, namely the study of interactions between light with mechanical systems — espe-

cially ones with macroscopic scales — in the quantum regime, has become very active. As Feynman

suggested in his Lectures on Gravitation: “It is possible that quantum mechanics fails at large dis-

tances and for larger objects”; it remains physically interesting and important to test quantum

mechanics at macroscopic scales. In recent years, rapid experimental progresses have been made

towards demonstrating the quantum-mechanical behavior of a macroscopic object, which include
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successfully preparing one degree of freedom of a macroscopic object into the quantum ground state

[19], as well as generating squeezed light though its interaction with a macroscopic oscillator [20].

There are several excellent review articles on this subject: one of them is written by Chen [21],

which emphasizes quantum measurement and testing quantum mechanics; the other one is written

by Aspelmeyer, Kippenberg and Marquart [22], which discusses cavity optomechanics from an ex-

perimental point view. In this section we will only discuss a few basics that are relevant for Part II

of this thesis.

1.2.1.1 The input-output formalism of linear quantum measurement theory

Let us illustrate the input-output formalism of linear quantum measurement theory using a simple

example. Suppose a laser beam with intensity I0 and frequency ω0 is targeting on a test object with

mass m and mechanical frequency ωm. With phase reference (the plane where the phase is set to

zero) chosen at the equilibrium position of the test object, the input electrical field can be written

as

Êin(t) =
[√

2I0/~ω0 + â1(t)
]

cosω0t+ â2(t) sinω0t (1.6)

with â1, â2 being the amplitude and phase quadratures of the fluctuation, their cross spectral density

given by:

Sa1(Ω) = Sa2(Ω) = 1, Sa1a2(Ω) = 0. (1.7)

The reflected electric field Êout(t) is just

Êout(t) = Êin(t− 2x̂/c) , (1.8)

where 2x̂/c is the extra delay time. Similar to the input field, the output field can also be decomposed

as:

Êout(t) =
[√

2I0/~ω0 + b̂1(t)
]

cosω0t+ b̂2(t) sinω0t . (1.9)

According Eq. (1.8), the output quadrature fields b̂1, b̂2 and input quadrature fields â1, â2 are related

to each other by

b̂1(t) = â1(t) (1.10)

b̂2(t) = â2(t) + 2

√
2I0ω0

~c2
x̂. (1.11)

We have to measure the phase quadrature b̂2 to gain position information of the test object. On
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the other hand, the Heisenberg equations of motion of the test object are given by:

˙̂x = p̂/m

˙̂p = 2

√
2~ω0I0
c2

â1(t) + fext(t)−mω2
mx̂ . (1.12)

For simplicity, we have neglected the DC part of radiation pressure force, as it is expected to be

balanced by other DC forces. The first term in ˙̂p is the fluctuating piece of radiation pressure

and the second term is the external force on the test object. Eq. (1.10) together with Eq. (1.12)

describe both the dynamics of this simple optomechanical system and the output signal channel.

This input-output formalism is generalized to describe more sophisticated systems in Chapter 4–7.

1.2.1.2 The standard quantum limit

We introduced the Standard Quantum Limit (SQL) for the position sensitivity of GW detectors

in Sec. 1.1. It was obtained by minimizing the sum of photon shot noise and radiation pressure

noise in the output light field. In fact, as originally showed by Braginsky and Khalili, the SQL can

be regarded as a benchmark for any quantum measurements performed on a test object, and it is

directly related to the Heisenberg uncertainty principle. Below we shall explain it from a generalized

linear quantum measurement point of view. A more detailed justification can be found in [21] or

[18].

According to the free mass’s Heisenberg equations of motion, momentum p̂ is a conserved quantity

and the position operator at time t is given by

x̂(t) = x̂(0) +
p̂(0)
m

t, (1.13)

which also means that

[x̂(t), x̂(t′)] = i~(t′ − t)/m. (1.14)

From the above expression, it is clear that the Heisenberg operators of position do not commute at

different times. In fact , if we were to measure both positions in a continuous quantum measurement,

the Heisenberg uncertainty relation would suggest that

∆x(t)∆x(t′) ≥ ~
2m
|t− t′|. (1.15)

Imagine we send a sequence of light pulses to measure the positions, with the time intervals

between neighboring pulses equal to τ . No matter how strong the pulses are, Eq. (1.15) tells us that
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the measurement uncertainty ∆x is at least

∆x ∼
√

~τ
2m

. (1.16)

The corresponding noise spectral density (at Ω ∼ 1/τ) is then given by

Sx(Ω) ∼ ∆x2τ ∼ ~
2mΩ2

(1.17)

which recovers the SQL we obtained in Sec. 1.1.

1.2.2 Open quantum dynamics of single-photon optomechanical devices

(Chapter 3)

Chapter 3 is based on the following preprint:

• Ting Hong, Huan Yang, Haixing Miao, Yanbei Chen, Open quantum dynamics of single-photon

optomechanical devices, arXiv:1110.3348 [quant-ph].

1.2.2.1 Motivation and signficance

This work was inspired by Marshall et al. [40], where the authors proposed to measure the effect

of the (speculated) gravity-induced-decoherence using a Michelson interferometer with Fabry-Perot

cavity arms (one with a movable end mirror, the other with fixed mirrors), and driven by a single

photon. Based on the time evolution of the interference pattern’s visibility on the dark port, Marshall

et al. claimed that they could determine the decoherence rate of the total system — yet in their

calculations they had assumed that the single photon starts off already as a coherent superposition

in either of the Fabry-Perot cavities, instead of having to enter them from the outside. Therefore,

they did not have to consider the spatial mode of the incoming photon, either. Such single-photon

driven devices have also been studied by Rabl [41] and Nunnenkamp et al. [42]. Unlike Rabl and

Nunnenkamp et al., who studied systematically the statistics of the out-going photons and the

steady state reached by the mechanical oscillator, we focused instead on the fringe visibility of a

single-photon interferometer, and the conditional quantum state of the mechanical oscillator upon

the detection of an outgoing photon —- explicitly accounting for the spatial mode of the incoming

photon. We obtained an exact analytical solution for the system’s quantum mechanical equations

of motion, including details about the exchange of the single photon between the cavity mode

and the external continuum. This result is one of the few known exact solutions for nonlinear

quantum open systems. Using our exact solution, we found Marshall et al.’s calculation result only

approximately correct when the incoming photon has a much broader frequency width than the

cavity’s linewidth, in which case the photon has a small chance of entering the cavity in the first
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place, thereby lowering the efficiency of the experiment, and making it potentially more susceptible

to imperfections. Furthermore, we presented a method to construct the non-classical quantum state

of the mechanical oscillator by modulating the single photon’s profile, which sheds light on future

technologies of quantum-state engineering.

1.2.2.2 Summary of main results

In Chapter 3, we start with a total system with the Hamiltonian:

Ĥ =
i

2

∫ ∞
−∞

(∂xĉ†xĉx − ĉ†x∂xĉx) dx+ ω0â
†â+ i

√
γ(ĉ0â† − âĉ†0) +

p̂2
y

2m
+

1
2
mω2

mŷ
2 + kâ†âŷ. (1.18)

The first term is the Hamiltonian for a freely propagating single photon: the field with x < 0 is

propagating toward the cavity, while the field with x > 0 is the propagating away from the cavity.

The second term in Eq. (1.18) is Hamiltonian for the optical mode of the cavity (one that is closest

to being excited by the single photon). The third term indicates that the cavity’s front mirror is

located at x = 0; the reflection of the electromagnetic field on the front mirror, i.e the transition from

c0− to c0+ is naturally captured by this term. The next two terms are the mechanical oscillator’s

kinetic and potential energies, while the last term describes the interaction between the cavity’s

optical mode and the mechanical oscillator.

This Hamiltonian can be used to model the optomechanical device previously studied by Marshall

et al. [40], which is a Michelson interferometer with an Fabry-Perot cavity in each arm, one of them

with a movable end mirror. The system is driven by a single photon injected from one of the

input ports of the Michelson interferometer. However, Marshall et al. neglected the free-propagation

Hamiltonian for their single photon. They instead assumed that the photon was initially prepared

in a “Schrödinger-cat state”, namely a coherent superposition of either being in one of the cavities

or being in the other, with equal probability, which was experimentally unrealistic.

Without coupling to the outside, the photon-mirror Hamiltonian is known to be analytically solv-

able. This is no-trivial, because we have a cubic term in the Hamiltonian. The analytic solution is

only possible because this nonlinearity is very special. Now, adding the coupling to the outside field,

the system is more complex. However, we have been able to explicitly solve the single-photon case.

We then applied this analytical solution to the experimental setup in [40], which has a Michelson

interferometer. The resulting time evolution of the interferometer’s fringe visibility displays inter-

esting new features when the incoming photon’s frequency uncertainty is narrower or comparable

to the cavity’s line width — only in the limiting case of a much broader-band input photon does

the result return to that of Marshall et al.. In this case the photon is not very likely to enter the

cavity and interact with the mirror, making the experiment less efficient and more susceptible to

imperfections.
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Given the exact solution of the total system’s joint wave function, we show that after the detec-

tion of the single photon at the interferometer’s dark port, the mechanical oscillator’s conditional

quantum state can be obtained and (for the same photon arrival time) it depends linearly on the

initial profile of the single photon (it also depends on the arrival time of the photon, but not linearly).

We then discover a family of initial wavefunctions of the single photon for which the resulting me-

chanical oscillator’s asymptotic-conditional-states are displaced number states. Since the set of all

number states forms a complete basis, it is natural to see that ideally we can prepare the mechanical

oscillator’s quantum state by engineering the single photon’s wavefunction. In reality, there are a lot

of restrictions on quantum state preparation. First, the optomechanical coupling has to be strong.

We define a constant β as

β =
k/(2ωm)√
~mωm/2

=
[

~ω0

c

]√
2

~mωm

[
2ωm

L

c

]−1

, (1.19)

which is the momentum kick of the photon (to the oscillator during one radian of mechanical os-

cillation) divided by the ground state momentum uncertainty
√

~mωm/2 (L is the cavity length).

The first requirement is β > 1, which means the momentum kick from the photon needs to be big

enough to substantially change the mirror state. The second requirement is that the cavity band-

width be smaller than the mechanical frequency γ < ωm. This is to ensure the photon stays inside

the cavity long enough to affect the mirror motion. The third requirement is that the thermal deco-

herence effect has to be small within one mechanical oscillation period, which is a generic condition

for all MQM experiments. With all requirements satisfied, we show that preparing a mechanical

quantum state with high occupation number generally has a low probability of success — in other

words, a large number of experimental trials are needed. For example, with β ∼ 1, the probability

of successfully preparing a state with occupation number less than 8 and fidelity ≥ 90% is about

0.1%. Although the requirements are stringent, we do show that in the strong-coupling regime, by

engineering the incoming photon’s wave function, it is possible to prepare a movable mirror into an

arbitrary quantum state of a multi-dimensional Hilbert space.

1.2.2.3 My specific contributions

I worked out the quantum evolution of the total system given the total Hamiltonian in Eq. (1.18)

and initial wave function of the single photon. I also discovered and analyzed the possibility of

preparing quantum states by modifying the input photon wave function. The initial draft of the

paper was written by me, and it was later significantly revised by Chen.
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1.2.3 Theory of non-Markovian quantum measurement processes (Chap-

ters 4 and 5)

Chapters 4 and 5 are based on one paper and one preprint:

• Huan Yang, Haixing Miao, and Yanbei Chen, Nonadiabatic elimination of auxiliary modes in

continuous quantum measurements, Physical Review A 85 , 040101 (2012).

• Huan Yang, Haixing Miao, Yanbei Chen, Reveal non-Markovianity of open quantum systems

via local operations, arXiv:1111.6079 [quantum-ph] (2011).

1.2.3.1 Motivation and significance

In many cases, scientists are interested in studying the interaction between a quantum object and its

surrounding bath. This interaction correlates the system and its bath, so that the bath also carries

quantum information about the system. For Markovian interactions, when we trace out the bath, the

evolution of system’s density matrix at any time t is independent of its previous history, because the

bath never feeds back its past information about the system (only instantaneous information is fed

back); for non-Markovian interactions, because the bath continuously feeds back its past information

to the system, knowing the system’s quantum state at one time t is not enough to determine its

later evolution. Although the mathematical definition for non-Markovianity was given in a rigorous

manner, there is still a great deal of effort, in the field, going into trying to identify and characterize

physical properties of non-Markovian dynamics. In Chapter 4, we construct two very general types

of continuous measurement models that exhibit non-Markovianity; for each scenario, we provide

theoretical tools that help obtain the system’s evolution equations. In Chapter 5, we propose a

new way to physically characterize non-Markovianity, by perturbing the system and watching how

its subsequent evolution differs from the unperturbed case; we show that this method is capable of

revealing some of the previously “hidden” non-Markovianity. Work in this chapter partly answers

the question of how to describe a measurement process involving non-Markovianity, which has been

argued back and forth for years, and in certain scenarios can lead to efficient algorithms for simulating

quantum evolutions.

1.2.3.2 Summary of main results

Non-Markovianity naturally arises in many interesting quantum systems, e.g., cavity QED [46],

photosynthesis [47] and cold atoms [48]. A common theoretical tool for investigating non-Markovian

open quantum systems is the non-Markovian stochastic Schröedinger equation (also called the state-

diffusion equation) or equivalently the master equation [52–54]. The underlying assumption usually

made is that no information concerning the environment (i.e., the bath) is collected; however, in
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most experimental setups, a measurement device is an indispensable part, especially when we want

to control the dynamics of the system via feedback [55]. While it is clear the Markovian quantum

measurement processes can be described by stochastic master equations, the physical meaning of

non-Markovian stochastic master equations had been controversial. Recent discussions between Diósi

and Wiseman et. al. [56, 57] highlight this issue: initially Diósi tried to give a quantum trajectory

interpretation of the non-Markovian Stochastic Schrödinger Equation (SSE), i.e., claiming that it

describes a pure state evolution under a continuous measurement of a particular operator of the

system that is non-local in time. It is now clear that this interpretation is incorrect, as was shown

explicitly by Wiseman et. al. [57] and later by Diósi himself [56].

In Chapter 4, instead of trying to find scenarios that can be described by non-Markovian SSEs, we

start with a quantum system under the continuous quantum measurement, and study two important

scenarios in which non-Markovianity can arise: the first one is an indirect measurement of the system

via a measurement of its bath, which has a finite memory; the second one is a direct measurement

of the system, but the measurement device has non-trivial quantum correlations in time.

In the first scenario, the total system is composed of a plant plus auxiliary degrees of freedom

(DOFs) plus Markovian probe field, and the dynamics of the auxiliary DOFs are linear. The

interaction between the plant and the auxiliary DOFs is non-Markovian, which means these auxiliary

DOFs store information about the plant, in other words, they are entangled with the plant. As a

result, if we trace out the auxiliary DOFs, the plant would be in a mixed state. In fact, in many

cases people are only interested in the quantum evolution of the plant, and it is often too expensive

to keep track of the whole systems’s evolution. The question is then whether one can trace out

the auxiliary DOFs and directly obtain a self-contained equation for the plant’s quantum evolution

under quantum measurement. The answer has been known to be affirmative in the case when

measurement result was discarded. The density matrix of the plant can be shown to satisfy its own

master equation, which can be deduced using a quantum trajectory technique developed by Strunz

and Diosi. In Chapter 4 we prove that with some modifications, this technique can be generalized

to incorporate continuous quantum measurement. In particular, with some tedious but nevertheless

straightforward calculations, we obtain explicit stochastic master equations for the plant in the limit

of weak coupling or linear coupling between the plant and the auxiliary DOFs. For more general

cases, the stochastic master equation can be written in the form of perturbative expansion, which

closes itself when the system has a finite-dimension Hilbert space. In short, this model not only

describes a general class of non-Markovian measurement scenarios, but also offers an efficient way

of simulating those systems numerically.

In the second scenario, we study systems composed by only a plant and a probe field, with probe-

field components that interact with the system at different times correlated with each other. In this

case, the non-Markovianity of the measurement process does not come from the interaction between
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the plant and the probe field, but rather arise from the statistical correlation between entangled probe

fields that interact with the plant at different times. There is no known master equation description

for this scenario, and we have to apply a path integral technique to describe the plant’s quantum

evolution. We deduce the evolution equation for the plant’s Wigner function (which has a one-to-

one correspondence with the density matrix) in two examples that are of particular experimental

relevance: (i) a linear continuous measurement, and (ii) a nonlinear energy measurement, both

with correlated input probe field. Other interesting cases in this category are subject to future

investigation.

The above two scenarios characterize two important aspects of non-Markovian quantum measure-

ment. By developing techniques that obtain evolution equations for the plant in these two scenarios,

we manage to develop a general understanding of non-Markovian quantum measurement.

Chapter 5 concerns how to characterize the non-Markovianity of plant-bath interaction. The

basic idea is to have two identical copies of the same plant-bath system. In copy (A), at a particular

moment in time, we instantaneously perturb the plant’s Hamiltonian and return it back afterwards,

and then watch the difference between the subsequent evolution of this copy’s density matrix ρA

and that of the other copy (B), ρB . In order to measure the difference between these two quantum

states or density matrices, we use the trace distance, which is defined as

d(ρA, ρB) = Tr|ρA − ρB |. (1.20)

For Markovian systems, this trace distance always decreases in time, as the plant gradually loses

information about its initial state to the bath. For non-Markovian systems, information can slosh

back and forth between the plant and the bath. In certain cases, the trace distance may temporarily

increase in time, as the plant recovers part of its information from the bath. As we perturb the plant’s

Hamiltonian at one time, its non-Markovian bath responds to the perturbation and feed backs some

of the information it stores at later times. The time retardation depends on the plant-bath coupling

strength, as well as the bath’s memory timescale. Using this “perturbation+observation” approach,

we are effectively investigating the “Green function” of the bath with respect to small perturbations.

In general, for any non-Markovian scenario, in which the bath stores a non-trivial amount of plant

information, by choosing an appropriate instantaneous perturbation in its Hamiltonian, the plant

can always restore part of its information from the bath — we refer to this effect as “dynamical

recovering” [58]. Dynamical recovering can be contrasted with “dynamical decoupling”, where a

series of instantaneous perturbative Hamiltonians are applied onto the plant to prevent it from losing

information to the bath. As “dynamical decoupling” has already been experimentally demonstrated

in the past [59, 60], we hope this “dynamical recovering” phenomenon will attract attention from

experimentalists in the near future.
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1.2.3.3 My specific contributions

For Chapter 4, I gave the initial formulation of non-Markovian measurement model and applied it

to the simple two-level-atom-in-cavity system. For Chapter 5, I found an example in which two

identical systems interact with two baths separately — one bath is clear Markovian while the other

has a memory, and hence non-Markovian. I also found a way to break the degeneracy between the

above two systems, by perturbing the system’s Hamiltonian and monitoring the response.

1.2.4 Probing mechanical oscillators near their zero points (Chapter 6)

Chapter 6 is based on a research paper published as:

• Farid Ya. Khalili, Haixing Miao, Huan Yang, Amir H. Safavi-Naeini, Oskar Painter, and Yanbei

Chen, Quantum back-action in measurements of zero-point mechanical oscillations, Physical

Review A 86, 033840 (2010).

1.2.4.1 Motivation and signficance

In this work, we analyzed an experiment done by Oskar Painter’s research group [62], which raised

a controversy at the time about whether experiment did reveal the “quantumness” of a mechanical

oscillator. By applying linear quantum measurement theory, we were able to establish firmly that:

(i) the oscillator in the experiment was indeed prepared at a level of displacement fluctuations that

was very close to being at the zero point, and that (ii) the quantum back-action noise of the light

used to probe the mechanical oscillator was correlated with its quantum sensing noise. Through

(ii), this experiment became the first to confirm the existence of back-action noise in optomechanics

experiments, and to demonstrate that it can be correlated with the sensing noise, a feature that will

be very useful for schemes of quantum measurement that requires “back-action evasion”.

1.2.4.2 Summary of main results

The main idea of the experiment by Safavi-Naeini et al. is to parametrically couple two optical modes

to a mechanical vibrational mode in a patterned silicon nano-beam. One optical mode — the cooling

mode — is pumped with a relatively high power at a “red” detuning (lower than resonance), and

is used to cool the mechanical mode via radiation pressure damping; the other optical mode — the

readout mode — has a much lower pumping power and is used for probing the mechanical motion.

The readout laser frequency ωlr is detuned from the resonant frequency ωr of the readout mode

by either −ωm or +ωm, where ωm is the mechanical resonant frequency. The observed spectrum

of the readout laser is asymmetric with respect to the detuning ∆ ≡ ωr − ωlr. Specifically, in

the positive-detuning case (∆ = +ωm), the spectrum has a smaller amplitude than that in the

negative-detuning case. The area I+ enclosed by the spectrum in the positive-detuning case, after
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subtracting out the noise floor away from the mechanical resonant frequency, is proportional to the

thermal occupation number 〈n〉 of the mechanical oscillator, while, in the negative-detuning case

(∆ = −ωm), the enclosed area is I− ∝ 〈n〉+ 1. The spectrum asymmetry is given by

η ≡ I−
I+
− 1 =

1
〈n〉

(1.21)

where the asymmetry was interpreted as arising from quantized motion of the mechanical oscil-

lator, and is related to the difference between the rate of phonon absorption from the oscillator,

proportional to 〈n〉, and phonon emission rate, proportional to 〈n〉+ 1 [62].

In Chapter 6, we provide an alternative viewpoint to Ref. [62], by emphasizing more the role of

quantum back-action and its relation to the quantization of the mechanical oscillator. First of all,

we separate the experimental system into two parts. The cooling mode, the mechanical oscillator,

and the environmental thermal bath couples to together forms the first part, which can be viewed

as providing an effective mechanical oscillator nearly at the ground state, but with a quality factor

significantly lower than the intrinsic quality factor of the mechanical mode. It is the zero-point

fluctuation of this effective oscillator that we shall be probing. The second part of the system

consists of the readout mode, which couples to the effective oscillator (the first part of the system)

through its displacement alone. The second part provides us with a probe-field output ŷ, which

contains information about the zero-point fluctuation of the effective mechanical oscillator.

Using linear quantum measurement theory, we show that the output spectra Syy for the two

opposite detunings, ∆ = ±ωm, are different from each other:

Syy(ω)|∆=−ωm 6= Syy(ω)|∆=ωm . (1.22)

This difference can be traced back to the correlation that exists between the sensing noise and

the back-reaction noise. This correlation in turn arises from the quantum coherence between the

mechanical oscillator and the measuring device, which builds up during the measurement process.

As earlier works had indicated, the correlation between sensing noise and back-action noise is key

to improving sensitivities beyond the standard quantum limit. As a consequence, this experiment

with nanomechanical oscillators demonstrates a effect much sought after by the gravitational-wave-

detection community.

1.2.4.3 My specific contributions

My contributions to the paper [61] was mainly at Section II, where we point out the connection

between this optomechanical experiment and previous experiments in atomic physics.
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1.2.5 Macroscopic quantum mechanics in a classical spacetime (Chapter

7)

Chapter 7 is based on the research paper published as:

• Huan Yang, Haixing Miao, Da-Shin Lee, Bassam Helou, Yanbei Chen, Macroscopic Quantum

Mechanics in a Classical Spacetime, Physical Review Letters, 110, 170401 (2013).

1.2.5.1 Motivations and significance

This work was initiated by Chen, who was thinking about the problem of scalar waves propagating

in a curved spacetime. He later realized that it was also a model for quantized matter coupled with

a classical spacetime, and urged me to think about the non-relativistic limit of this model and the

possibility of testing it with experiments. We analyzed the non-relativistic evolution equation of

a many-particle system in this model, and showed that the center-of-mass (CM) evolution can be

singled out from evolution of internal degrees of freedom — this enabled us to derive the evolution

equation for CM alone, which can be monitored and manipulated at quantum levels by state-of-the-

art optomechanics experiments. We further showed that mass concentration inside a crystal (around

the lattice sites) makes the CM motion deviate from standard quantum mechanics at a level that

might be visible by a carefully designed lab-scale optomechanics experiment.

1.2.5.2 Summary of main results

Testing the nature of gravity is a prominent problem in modern physics. Apart from the standard

formulation of linearized quantum gravity [68], which seems rather implausible to test in the lab,

several signatures have been conjectured: (i) gravity decoherence [70–80], where gravity introduces

decoherence to macroscopic quantum superpositions; (ii) modifications to canonical quantization

motivated by the existence of a minimum length scale [81–83], and (iii) semiclassical gravity [84–86],

which will be the subject of this chapter. As originally suggested by Møller [84] and Rosenfeld [85],

spacetime structure might still remain classical even if it is sourced by matters of quantum nature,

if we impose (G = c = 1):

Gµν = 8π〈ψ|T̂µν |ψ〉 . (1.23)

Here Gµν is the Einstein tensor of a (3+1)-dimensional classical spacetime, T̂µν is the operator

for the energy-stress tensor, and |ψ(t)〉 is the wave function of all matters that evolve within this

classical spacetime.

Equation. (7.1) reduces to the so-called Schrödinger-Newton equation in the non-relativistic limit.

For a system with n non-relativistic particles, if we denote their joint wave function as ϕ(t, X) with

3n-D vector X ≡ (x1, · · · , xn) and xk the 3-D spatial coordinate of k-th particle, then the many-
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particle SN equation, obtained by Diosi and Penrose [69, 73], can be written as

i~∂tϕ =
∑
k

[
−~2∇2

k

2mk
+
mk U(t,xk)

2

]
ϕ+ V (X)ϕ , (1.24)

where V (X) is the potential energy for non-gravitational interactions, while the Newtonian potential

U is given by

∇2U(t, x) = 4π
∑
j

∫
d3nX |ϕ(t,X)|2mj δ(x− xj) . (1.25)

Many-particle wave-functions are generally very fragile and difficult to model. Previously, it was

proposed to test the above equation in the single-particle case [86]. However, in order to satisfy

the single-particle approximation, the object’s size has to be smaller than the width of its wave

function. This requirement limits the mass of the object and hence the gravitational interaction

energy. In addition, the dynamical and decoherence timescales for a small object are usually too

short compared with its gravitational interaction timescale. As a result, it is very difficult for single

particle tests to achieve the desired sensitivity.

In Chapter 7, we show that it is possible to single out CM evolution from other degrees of freedom

(DOFs) for a macroscopic object with many particles. Moreover, in certain parameter regimes, the

CM wavefunction approximately satisfies the following SN equation:

i~
∂Ψ
∂t

=
[
−~2∇2

2M
+

1
2
Mω2

CMx
2 +

1
2
Mω2

SN(x− 〈x〉)2

]
Ψ. (1.26)

Here 〈x〉 ≡ 〈Ψ|x̂|Ψ〉 is the expectation value of the CM position; ωCM is the eigenfrequency in

absence of gravity, determined by how the CM is confined; and ωSN is a characteristic frequency due

to the self-gravitational effect, which depends on material properties and temperature. For silicon

crystal at low temperatures, ωSN is approximately ∼ 0.036s−1.

Using the CM Schrödinger-Newton equation (7.2), we solve the equations of motion for the first

(〈x〉, 〈p〉) and second (Vxx, Vpp, Vxp) moments of position and momentum, and find they oscillate at

different frequencies. The mean position and momentum 〈x〉, 〈p〉, which carry classical information

about the object, remain oscillating at frequency ωCM; the seconds moments, or more precisely

the noise ellipse, which is related to quantum uncertainties, oscillates at a new frequency ωq =√
ω2

SN + ω2
CM. Obviously, we can test this SN model by experimentally verifying if there are separate

oscillation frequencies for first and second moments of a mechanical oscillator. On the other hand, we

find an alternative way which is experimentally easier to implement — by sending a probe light and

measure the noise spectrum of the outgoing field. According to Eq. (7.2), there will be two resonant

peaks in the spectrum: one is driven by thermal noise and peaked at ωCM; the other is driven by

the quantum radiation pressure noise and resonant at ωq. The experimental goal is therefore to

distinguish these two (possible) peaks in the spectrum. To achieve this goal, we need the quantum
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radiation pressure noise to be comparable to thermal noise, and the separation between those two

peaks to be smaller than the peak width. The latter requirement is equivalent to

Q >∼ (ωCM/ωSN)2. (1.27)

For oscillators made from silicon crystals with ωSN ≈ 0.036 s−1, if ωCM ≈ 2π × 10 Hz, Eq. (7.24)

requires Q >∼ 3 × 106, which is challenging but possible [87]. If a lower-frequency oscillator, e.g., a

torsional pendulum with ωCM ≈ 2π × 0.1 Hz [88] can be probed with back-action noise comparable

to thermal noise, in that case we only require Q >∼ 3× 102.

By analyzing the CM motion of a macroscopic object under classical gravity, we have demon-

strated: (i) A model in which classical theory interfaces with a quantum theory. (ii) Optomechanics

for macroscopic object is the regime (probably the only known so far) in which both self-gravitational

effect and quantum effect are important. (iii) It is experimentally possible to use CM motion of a

macroscopic oscillator to test semiclassical gravity or more specifically the non-relativistic limit of

Eq. (7.1).

1.2.5.3 My specific contributions

I performed the derivation of the CM Schrödinger-Newton equation, while Chen greatly refined my

error estimates. I also wrote the initial draft of the paper, which was revised by Miao and Chen,

with a number of useful suggestions from Lee.

1.3 Black hole perturbation theory

1.3.1 Background

Many gravitational-wave-emitting processes end with the formation of a black hole. For example,

in the final stage of a binary black-hole merger, the spacetime is approximately a perturbed Kerr

spacetime. The metric perturbations gradually radiate to infinity or get absorbed by the black hole,

and eventually the whole spacetime settles down to a Kerr spacetime. In the past, various analytical

tools were developed to describe the evolution of a perturbed black holes’s spacetime.

For Schwarzschild black holes, Reggie and Wheeler [23] and Zerilli [24] showed the metric pertur-

bations can be decomposed into spherical harmonics and the different spherical harmonic components

evolve independently. For each spherical component with l,m, there are 10 metric quantities to be

determined (except for l = 0, 1 case). Because there are 4 Bianchi identities to be satisfied and

4 gauge freedoms for the coordinates choice, only 10 − 4 − 4 = 2 out of 10 metric quantities are

truly independent. They chose a specific gauge (usually referred as Reggie-Wheeler gauge) and it

turns out in this gauge one can derive evolution equations for the two independent metric quantities.



21

These results were further generalized by Moncrief, who recombined these 10 metric quantities to

obtain 2 independent gauge invariant quantities. He also derived separated evolution equations for

them:

∂2ψp

∂t2
− ∂2ψp

∂r2
∗

+ Vpψp = 0. (1.28)

Here r∗ = r + 2M log(r/2M − 1) and p corresponds to the parity of the field. ψp are the gauge

invariant quantities with even or odd parity and the potential terms Vp are given in Chapter 8. In

addition, the horizon is located at r = 2M or r∗ = −∞, whereas spatial infinity is at r = +∞ or

r∗ = +∞. .

Kerr black holes do not have spherical symmetry. There is as yet no way to write down a single

wave equation with separable angular and radial/time dependence which can be used to generate

all other metric perturbations. However, Teukolsky managed to show [26] that certain components

of curvature perturbations on the Kerr background obey separable wave equations in the frequency

domain (the wave equations are listed in Chapters 10–12). In particular, these curvature quantities

are the Newman-Penrose (NP) curvature scalars Ψ0 and Ψ4 [27], both of which are gauge invariant

under infinitesimal gauge transformations at linear perturbative order. Physically speaking, the

quantity Ψ0 originates from gravitational waves that go into the black horizon, whereas Ψ4 originates

from gravitational waves that radiate towards infinity. As a result, it is convenient to apply Ψ4 in

numerical relativity simulations for wave extraction at infinity. In addition, with certain gauge

choices, algorithms have been developed to reconstruct full metric perturbations from Ψ0 and Ψ4.

For example, Chrzanowski [28], Kegeles and Cohen [29], Stewart [30] and Wald [31] demonstrated

the metric reconstruction procedure in ingoing and outgoing radiation gauges. For systems with

quasi-periodic dynamics and adiabatic evolution (such as Extreme Mass Ratio Inspiral or EMRI in

Kerr spacetime), frequency domain analysis is accurate and much more efficient than time-domain

methods. In those cases, the Teukolsky formalism becomes very useful. In other cases, however,

where the adiabatic approximation does not hold or the frequency domain method is not accurate

enough, we still need to solve coupled wave equations for the 10 metric perturbation quantities in

order to determine the system’s evolution.

Although the perturbations of a Kerr black hole generically decay in time (see [32] for the proof

of Kerr spacetime’s linear stability), these perturbations can still be decomposed into eigenmodes,

each with a complex eigenfrequency. These eigenmodes are usually referred as Quasinormal Modes

(QNMs), and they serve as an important tool in black hole perturbation theory (see [33–36] for

reviews). In absence of external incoming waves, it is natural to require the boundary condition

of these modes to outgoing at infinity and ingoing at the horizon. For Eq. (1.28) which describes
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Schwarzschild perturbation, this is equivalent to requiring ψe/o ∝ e−iωln(t+r∗) when r∗ → −∞, and

ψe/o ∝ e−iωln(t−r∗) when r∗ →∞. With these boundary conditions Eq. (1.28) can be solved in the

frequency domain. There are a series of eigenmodes, which are indexed by angular number l and

overtone n. Their frequencies ωln are complex numbers with negative imaginary parts. This agrees

with [32] because ωI with positive imaginary parts corresponds to growing or unstable modes.

For Kerr black holes the boundary condition at horizon has to be modified to take into account

frame dragging effect. Ψ4 becomes (see Chapter 10 for more details)

Ψ4 ∝
1
r5
e−i(ωlmn−mω+)(t+r∗), r∗ → −∞,

∝ 1
r
e−iωlmn(t−r∗), r∗ → +∞ (1.29)

and Ψ0 becomes

Ψ0 ∝
1
r
e−i(ωlmn−mω+)(t+r∗), r∗ → −∞,

∝ 1
r5
e−iωlmn(t−r∗), r∗ → +∞ (1.30)

where ω+ = Ma/(2r+) is the horizon frequency, a = J/M is the black hole’s spin parameter

and r+ = M +
√
M2 − a2 is the outer-horizon radius. Similar to the Schwarzschild case, a series

of eigenmodes can be obtained by combining the Teukolsky equation Eq. (1.28) with boundary

conditions in Eq. (1.29). Since Kerr black holes do not have spherical symmetry, the degeneracy of

azimuthal degrees of freedom is broken and Kerr QNMs are indexed by l, n and azimuthal number m.

In general ωlmns are complex numbers with negative imaginary frequencies, with a few exceptions

for extreme Kerr black holes (a = M).

1.3.2 First-order perturbative Hamiltonian equations of motion for a

point particle orbiting a Schwarzschild black hole (Chapter 8)

Chapter 8 is based on the following preprint:

• Huan Yang, Haixing Miao, Yanbei Chen, First-Order Perturbative Hamiltonian Equations of

Motion for a Point Particle Orbiting a Schwarzschild Black Hole, arXiv:1211.5410 [gr-qc].

1.3.2.1 Motivation and significance

Chen was initially thinking about coherently evolving a test particle and the gravitational perturba-

tion in a Schwarzschild spacetime. One natural way is to include both the gravitational perturbation

and the test particle into the same Hamiltonian. Following this line, we successfully constructed a

Hamiltonian formalism for this problem, in which the particle’s equations of motion and the field’s
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wave equations can be naturally derived from the Hamilton-Jacobi equations, and the gauge choices

are no longer limited to Lorenz gauge. Our Hamiltonian formalism allows more flexible gauge choices

than other approaches, and introduces more efficient evolution schemes.

1.3.2.2 Summary of main results

Simulating Extreme Mass Ratio Inspirals (EMRIs) is one of the outstanding problems in gravitational

physics. A EMRI system often includes a supermassive black hole and an object with much smaller

mass. EMRI is astrophysically interesting because a supermassive black hole is believed to exist

in every galaxy; it is also conceptually intriguing because black-hole perturbation theory can be

naturally applied here. However, computationally this is a difficult problem for numerical relativity

simulations because of the large separation in length scales. Even in terms of black-hole perturbation

theory, since the small mass object is often approximated as a point mass to avoid dealing with

its equation of state, a special regularization procedure has to be performed to remove metric

singularities on the point mass’s worldline.

The most common approach for metric regularization was developed by Detweiler and Whiting

[90, 91]. The basic idea is to separate the metric perturbation h into a regular piece hR and a singular

piece hS . The singular piece diverges at the particle’s location but does not have any effect on the

particle’s motion; it can be obtained by a local expansion of the Green function. The regular field

satisfies the homogeneous Einstein’s equation and is responsible for the geodesic deviation of the

particle’s motion in the background spacetime; it is obtained by subtracting the singular field from

the full field. Using this regularization technique, there are two major approaches for numerically

evolving the test particle and the metric perturbation. One way is the mode sum approach, developed

by Barack and Ori [92], which decomposes each of the 10 metric components into spherical harmonics,

and solves 10 coupled 1+1 wave equations for each (l,m). The particle equation of motion is then

regularized mode-by-mode, by subtracting a series of regularization parameters for each (l,m). This

mode sum method has already been implemented by Warburton et al. [93] for the Schwarzschild

gravitational EMRI problem. In the second approach, one directly applies a 3+1 decomposition of

spacetime geometry, and tries to obtain the regular field directly — by obtaining a field h̃R which is

approximately the Detweiler-Whiting hR near the particle, but gradually becomes the full field at

null infinite and near horizon. As shown by Vega and Detweiler [94], the field h̃R satisfies a wave

equation with out-going boundary condition at infinity and horizon, but with a source that can be

computed from the Detweiler-Whiting singular field hS . Diener and Vega [95] have implemented

this method for a scalar particle orbiting a Schwarzschild black hole.

In Chapter 8, we formulate a Hamiltonian approach towards the EMRI problem in the Schwarzschild

background, with the aim of providing a new angle to view this problem. In our approach, the tra-

jectory of a point particle and its gravitational metric perturbation are self-consistently evolved in
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a spherically decomposed 1+1 scheme. Following the work of Moncrief, we write down an action

for perturbations in space-time geometry, combine that with the action for a point-particle moving

through this space-time, and then obtain Hamiltonian equations of motion for metric perturba-

tions and the particle’s coordinates, as well as their canonical momenta. Hamiltonian equations

for the metric-perturbation and their conjugate momenta, for even and odd parities, reduces to

Zerilli-Moncrief and Regge-Wheeler master equations with source terms, which are gauge invariant,

plus auxiliary equations that specify gauge. Hamiltonian equations for the particle, on the other

hand, now include effect of metric perturbations — with these new terms derived from the same

interaction Hamiltonian that had lead to those well-known source terms. In this way, space-time

geometry and particle motion can be evolved in a self-consistent manner, in principle in any gauge.

However, the point-particle nature of our source requires regularization, and we outline how the

Detweiler-Whiting approach can be applied. In this approach, a singular field can be obtained ana-

lytically using the Hadamard decomposition of the Green’s function; while the regular field, which

needs to be evolved numerically, is the result of subtracting the singular field from the total metric

perturbation. In principle, any gauge that has the singular-regular field decomposition is suitable

for our self-consistent scheme. In reality, however, this freedom is only possible if our singular field

has a high enough level of smoothness. For a singular field with minimum quality, one can adopt

the Lorenz gauge condition, which we have recast into our formalism: for each l and m, we have 2

wave equations to evolve odd and even parity gauge invariant quantities and 8 first order differential

equations to fix the Lorenz gauge and determine all the metric components.

1.3.2.3 My specific contributions

I performed most of the analytical calculations in this work, and also wrote the initial version of the

paper, which was greatly revised by Chen.

1.3.3 Quasinormal mode spectrum of Kerr black holes and its geometric

interpretation (Chapter 9)

Chapter 9 is a research paper published as:

• Huan Yang, David A. Nichols, Fan Zhang, Aaron Zimmerman, Zhongyang Zhang, and Yan-

bei Chen, Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation,

Physical Review D 86 104006 (2012).

1.3.3.1 Motivation and significance

Initially Chen found numerically that for certain Kerr black hole spins there are degenerate frequen-

cies among different sets of quasinormal modes (QNMs). In order to explain this degeneracy, an
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analytical understanding for Kerr QNM frequency is needed. We worked out the QNM frequency

formula in the eikonal limit l� 1 using WKB techniques, which agrees with numerical results very

well. Using the analytical formula, the mode degeneracies are naturally explained and moreover,

we showed these Kerr QNMs are intimately related to null particles moving in spherical orbits of

Kerr. In this work we have built up analytical tools which are not only applicable for analyzing Kerr

QNMs but has also been proved to be useful for the work in later Chapters 10–11.

1.3.3.2 Summary of main results

Quasinormal modes (QNMs) of black-hole spacetimes are the characteristic modes of linear per-

turbations of black holes that satisfy an outgoing boundary condition at infinity and an ingoing

boundary condition at the horizon. For generic Kerr black holes, they are well understood and can

be calculated quite accurately, for example using the numerical algorithm developed by Leaver [97].

In addition, for modes with l� 1, there is a well-known, intuitive geometric correspondence between

high-frequency quasinormal modes of slowly-rotating Kerr black holes and null geodesics that reside

on the light-ring (often called spherical photon orbits) [98]:

ωlmn ≈ L
1√

27M
+m

2a
27M2

− iN 1√
27M

(1.31)

where L ≡ l+ 1/2 and N = n+ 1/2. The real part of the mode’s frequency relates to the Keplerian

orbital frequency for the spherical photon orbit 1/(
√

27M), and the Lense-Thiring-precession fre-

quency of the orbit 2S/(3M)3 = 2a/(27M2) (S is the angular momentum of the Kerr black hole);

the imaginary part of the frequency corresponds to the Lyapunov exponent of the orbit 1/(
√

27M).

As a result, we may expect closed photon orbits to play an important role in the structure of a

spacetime’s QNM. It is however nontrivial to generalize this geometric correspondence to generic

Kerr black holes. The main difficulty comes from the fact that radial and angular Teukolsky equa-

tion both contain two constants to be determined by the boundary conditions — angular and radial

eigenvalues, and hence these two second-order differential equations have to be solved jointly.

Instead of directly solving the joint second-order differential equations, we try to derive the

algebraic relations between the two eigenvalues based on the two Teukolsky equations. The first

relation was worked out by Iyer and Will [99]. They used the fact that the radial Teukolsky equation

describes a scattering problem, and applied WKB techniques to show V (ωR, r0) = V ′(ωR, r0) = 0

and:

ωI = (n+ 1/2)

√
2d2Vr/dr2

∗
∂Vr/∂ω

∣∣∣∣∣
r0,ωR

(1.32)

where r0 is the peak position and ωlmn = ωR−iωI (the angular eigenvalue Alm is implicitly contained
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in the expression for Vr). The second relation was discovered by us, by noticing that the angular

Teukolsky equation can be transformed into a boundary state problem, which is extensively studied

in quantum mechanics. We apply a WKB approximation on this bound-state problem, and obtain

the second relation between angular eigenvalue Alm and QNM frequency ωR

∫ θ+

θ−

dθ

√
a2ω2

R cos2 θ − m2

sin2 θ
+ARlm = (L− |m|)π , (1.33)

where the integral is performed in the classical regime (integrand ≥ 0). Comparing our WKB calcu-

lation to the leading-order, geometric-optics approximation to scalar-wave propagation in the Kerr

spacetime, we then draw a correspondence between the real parts of the parameters of a quasinor-

mal mode and the conserved quantities of spherical photon orbits. At next-to-leading order in this

comparison, we relate the imaginary parts of the quasinormal-mode parameters to the Lyapunov

exponent of the scalar wave. In particular, the QNM frequency is

ωlmn = Lωorb +mωprec − iNγ +O(1/L) (1.34)

where ωorb is the orbital frequency of the corresponding photon orbit, ωprec is the corresponding

precession frequency and γ is the Lyapunov component of the orbit.

The above QNM formula is checked against numerical scalar QNM values and the relative errors

are shown to be under 0.06/L2. Moreover, it manifests the geometric correspondence between Kerr

QNMs and the null rays propagating in spherical orbits of Kerr spacetime. With the correspondence,

we also make other observations about features of the QNM spectrum of Kerr black holes that

have simple geometric interpretations. First, we find that for near extremal Kerr black holes with

a/M → 1, a significant fraction of the QNMs have their real frequencies approach m times the

angular frequency of the horizon and a decay rate that rapidly falls to zero; we explain this in terms

of a large number of spherical photon orbits that collect on the horizon for extremal Kerr holes.

This phenomenon will be further investigated in Chapter 10. Second, we use the geometric-optics

interpretation given by Eq. (9.3) to explain a degeneracy in the QNM spectrum of Kerr black holes, in

the eikonal limit, which also manifests itself, approximately, for small l. The degeneracy occurs when

the orbital and precession frequencies, ωorb and ωprec are rationally related (i.e., ωorb/ωprec = p/q

for integers p and q) for a hole of a specific spin parameter, and when the corresponding spherical

photon orbits close. By substituting this result into Eq. (9.3), one can easily see that modes with l

and m become degenerate with those of indexes l′ = l + kq and m′ = m− kp for any non-negative

integer k, in the eikonal limit.
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1.3.3.3 My specific contributions

I performed most of the analytical calculations in this work, and wrote the initial draft of the paper,

which was dramatically improved by all the authors.

1.3.4 Quasinormal mode bifurcation for near extreme Kerr black holes

(Chapter 10)

Chapter 10 is partially based on the following paper:

• Huan Yang, Fan Zhang, Aaron Zimmerman, David A. Nichols, Emanuele Berti, and Yanbei

Chen, Branching of quasinormal modes for nearly extremal Kerr black holes, Physical Review

D 87, 041502 (2013).

1.3.4.1 Motivations and significance

Chapter 10 is a natural extension of the findings we present in Chapter 9. We systematically

investigated the near extreme Kerr (NEK) QNMs, and found the criteria to separate two regimes

in the QNM spectrum. In one of the regimes we discovered mode-bifurcation phenomena at certain

black-hole spins, and we gave a physical interpretation — a single potential well splits into two

as we increase a/M and this causes the mode spectrum to bifurcate. We also applied our new

understanding about NEK QNMs to investigate late time tails of NEK spacetime, which turned out

to behave like 1/t at early times and exponentially at later times. Our work clarified long-standing

controversies in understanding NEK QNMs and suggested possibly a verifiable optical/GW-signal

for astrophysical NEK black holes.

1.3.4.2 Summary of main results

In 1980, Detweiler used an approximation to the radial Teukolsky equation for NEK BHs to show

that QNMs with angular indices l = m have a long decay time [101]. Using Detweiler’s result,

Sasaki and Nakamura [102] calculated QNM frequencies analytically and Andersson proposed long-

lived emission from NEK BHs [103]. However, there remains a long-standing controversy in the

literature about what set of QNMs decay slowly [104], whether long-lived radiation is possible [105],

and whether the imaginary part of the QNM frequencies vanishes as a→ 1 (compare [102, 105] with

[104]). Despite the importance of this problem, our present understanding of the QNM spectrum of

NEK BHs is inconclusive.

In Chapter 11, we show that the NEK geometry has two distinct sets of QNMs: zero-damping

modes (ZDMs) and damped modes (DMs). ZDMs are associated with the near-horizon geometry

of the BH, and they exist for all allowed values of l and m ≥ 0. DMs are associated with peaks of

the potential barrier; in the eikonal limit, they exist when µ ≡ m/(l + 1/2) ≤ 0.74. This implies
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that ZDMs and DMs coexist if 0 ≤ µ ≤ 0.74. For generic l, we argue that the existence of DM is

equivalent to the existence of a peak for the external potential barrier. It turns out that there is no

peak outside the horizon when (for simplicity we take M = 1)

7
4
m2 − s(s+ 1)− sAlm

(
ω =

m

2

)
> 0, (1.35)

where s is the spin of the perturbation field and sAlm is the angular eigenvalue. Equation (1.35) is

expected to separate the single-mode and double-mode regimes and this is numerically verified for

2 ≤ l ≤ 100 and s = (0,−2). Our results for modes of arbitrary l, m gives us the following, coherent

picture of the two phase regimes. An extrema of the potential always exists at the horizon of the

NEK black hole, supporting a family of QNMs whose damping is proportional to the surface gravity

and vanishes in the extremal limit. Meanwhile, for equatorial modes (m = l), there is a second

peak of the potential, away from the horizon, which supports a number of additional modes. The

decay of these modes is controlled by the width of this secondary peak, and remains nonzero even

for an extreme Kerr black hole. As we consider modes with higher m, which we can describe as

having progressively smaller inclination angles relative to the equator in the sense of the geometric

correspondence with null orbits, the secondary peak moves closer to the horizon. This second peak

joins onto the horizon and vanishes entirely for some m. For equatorial modes (m = l), there is

always only the horizon peak, supporting the ZDMs.

It is known that in the cases of Schwarzschild and slowly spinning Kerr black holes, the QNMs

of a given l, m are indexed by a single overtone number n and that their decay rate monotonically

increases with increasing n. This is in direct contrast to the results we have just obtained, where

there are two distinct families of modes for NEK, and no unique way to index them at a given spin.

We are led to the conclusion that there is some transitional behavior at a large spin, where in the

double phase regime a single family of QNMs branches into two families with different properties,

the DMs and ZDMs. In order to explore the bifurcation effect, we numerically compute QNM

frequency values as we increase a. We indeed observe the bifurcation of spectrum for various l’s, and

demonstrate the existence of bifurcation in the double-phase regime and the absence of bifurcation in

the single-phase regime. By developing a technique to transform the radial Teukolsky equation into a

bound-state problem, QNM wave functions become bounded (before the transformation QNM wave

functions diverge at r∗ → ±∞). By applying this technique and examining the QNM wavefunction,

we discuss an analytic model of the bifurcation in terms of the parametric potential-well splitting of

an oscillator in quantum mechanics.

Finally, we apply our new analytical expressions to study the power-law tail for the quasi normal

ringing of a NEK black hole. It was argued by Glampedakis and Anderson [106] that the perturbation

of rapidly rotating black holes decays as 1/t at late times. Their argument used a less accurate NEK
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QNM frequency formula. With our new understandings, we show that the collective ringing of ZDMs

generates a 1/t tail when t
√

1− a � 1, but eventually becomes an exponential decay in the long

run. On the other hand, for extreme Kerr black holes the 1/t tail lasts forever. Our formula fit

nicely with previous numerical results in [106, 107], where they see both 1/t and exponential tails.

1.3.4.3 My specific contributions

My contributions to this work are mainly the analytical part of the content: the derivation of the

phase boundaries, the physical interpretation and demonstration of the mode bifurcation and the

tail calculations.

1.3.5 An analytical approximation for the scalar Green function in Kerr

spacetime (Chapter 11)

Chapter 11 is a paper in preparation.

1.3.5.1 Motivation and significance

I had the idea of computing the scalar Green function of Kerr spacetime after reading the paper

by Dolan and Ottewill [108], which describes how to approximatly calculate the Green function of

Schwarzschild spacetime using QNMs. At that time it was difficult to generalize their technique

for Kerr spacetime, as Kerr QNMs were poorly understood. After finishing the work we present in

Chapter 10, I noticed that we have the right tools to compute the Kerr Green function and then

I performed the computation in this chapter. This work is not fully complete yet, with additional

numerical verification needed before submitting for publication.

1.3.5.2 Summary of main results

The scalar Green function G(x, x′) is defined as

2G(x, x′) =
1√
−g

∂µ
(√
−ggµν∂νGret

)
= δ(4)(x− x′) (1.36)

where gµν is given by the background’s metric, which is the Kerr metric in our case. For Schwarzschild

background spacetime, Dolan and Ottewill [108] used a spectra method to relate scalar Green func-

tion to quasinormal modes. By adopting a matched expansion technique, they managed to obtain

an approximate analytical form of the Green function. Moreover, they showed the Green’s function

is singular on the lightcone, and it has the four-fold singular structure as δ(σ), 1/σ,−δ(σ),−1/σ. σ

is the Synge’s world function. This four-fold singular structure matches the earlier expectation by

Casals et. al [109, 110], which is proved using the Hadamard ansatz of the direct part of the Green’s



30

function. On the other hand, Zenginoglu and Galley [111] used numerical method to obtain the

time domain scalar Green function in Schwarzschild background. They also observe the four-fold

singular structure as caustic echos.

In this work, I solve for the Green function by decomposing it in the frequency domain. Similar

to the Schwarzschild case, this quantity can be evaluated using residue theorem and divided into

three pieces. The first piece (“direct part”) is the integral on the high frequency arc, it is expected

to be zero after very short amount of time [97]. The second piece is the integral on the branch cut

on the imaginary frequency axis. It contributes to the power-law decay at later times and is also

non-negligible at early times [112]. The final piece comes form the QNM poles, and it is important

only at early and mid times. For simplicity, we focus on the QNM contribution to the Green’s

function and study its early time behavior.

With the knowledge we gained in Chapter 9, I wrote down the expression for Kerr QNM frequency

in the eikonal limit. WKB treatment for QNM wave function typically fails near the peak of the

potential barrier. As a result, I had to obtain WKB solutions on both sides of the potential barrier’s

peak and apply the asymptotic expansion technique to match them properly. Putting everything

together I obtained an approximate QNM part of Green function, which agreed with Dolan and

Ottewill’s result in the non-rotation limit. In addition, I show that the Green function is related

with spherical photon orbits, and it also recovers the four fold singular structure of Green functions

that are seen in Schwarzschild [108] and other spacetimes [112]. In future work I will check this

Green function against numerical results from Zenginoglu [113].

1.3.5.3 My specific contributions

I performed all the calculations up to this point and wrote an initial draft of the paper, with numerous

comments and suggestions from Chen.
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[53] L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A 58, 1699 (1998).
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Chapter 2

Brownian thermal noise in
multilayer coated mirrors

We analyze the Brownian thermal noise of a multi-layer dielectric coating, used in high-

precision optical measurements including interferometric gravitational-wave detectors.

We assume the coating material to be isotropic, and therefore study thermal noises aris-

ing from shear and bulk losses of the coating materials. We show that coating noise

arises not only from layer thickness fluctuations, but also from fluctuations of the in-

terface between the coating and substrate, driven by fluctuating shear stresses of the

coating. Although thickness fluctuations of different layers are statistically independent,

there exists a finite coherence between the layers and the substrate-coating interface. In

addition, photoeleastic coefficients of the thin layers (so far not accurately measured)

further influences the thermal noise, although at a relatively low level. Taking into ac-

count uncertainties in material parameters, we show that significant uncertainties still

exist in estimating coating Brownian noise.

Originally published as T. Hong, H. Yang, E. Gustafson, R. X. Adhikari, and Y. Chen,

Phys. Rev. D 87, 082001 (2013). Copyright 2013 by the American Physical Society.

2.1 Introduction

Brownian thermal noise in the dielectric coatings of mirrors limits some high precision experiments

which use optical metrology. This thermal noise is currently a limit for fixed spacer Fabry-Perots used

in optical clock experiments [1] and is estimated to be the dominant noise source in the most sensitive

band of modern gravitational wave detectors (e.g., advanced LIGO, GEO, Advanced VIRGO and

KAGRA) [2–6]. Recent work has indicated the possibility of reducing the various kinds of internal

thermal noise by redesigning the shape of the optical mode [7, 8] or the structure of the multi-layer
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coating [9, 10]. In this paper, we seek a more comprehensive understanding of coating Brownian

noise. We first identify all thermally fluctuating physical properties (e.g., different components of

the strain tensor) of the coating that can lead to coating Brownian noise, and calculate how each of

them contributes (linearly) to the total noise; we then calculate their individual levels of fluctuation,

as well as cross correlations between pairs of them, using the fluctuation dissipation theorem [11–

13]. In this way, as we compute the total coating Brownian noise, it will be clear how each factor

contributes, and we will be in a better position to take advantage of possible correlations between

different components of the noise.

As a starting point, we will assume each coating layer to be isotropic, and hence completely

characterized by its complex bulk modulus K and shear modulus µ—each with small imaginary

parts related to the energy loss in the bulk and shear motions. The complex arguments of these

moduli are often referred to as loss angles. While values of K and µ are generally known, loss

angles of thin optical layers vary significantly according to the details of the coating process (i.e.,

how coating materials are applied onto the substrate and their composition). Since the loss angles

are small, we will use K and µ to denote the real parts of the bulk and shear moduli, and write the

complex bulk and shear moduli, K̃ and µ̃ as

K̃ = K(1 + iφB) , µ̃ = µ(1 + iφS) . (2.1)

Here we have used subscripts B and S to denote bulk and shear, because these will be symbols for

bulk strain and shear strain.

Note that our definition differs from that in previous literature, which used φ‖ and φ⊥ to denote

losses induced by elastic deformations parallel and perpendicular to the coating-substrate inter-

face [14]. As we shall argue in Appendix 2.C, φ‖ and φ⊥ cannot be consistently used as independent

loss angles of a material. Only when assuming φ‖ = φ⊥ = φS = φB will the previous calculation

agree with ours — if we ignore light penetration into the coating. There is, a priori, no reason

why these loss angles should all be equal, although this assumption has so far been compatible with

existing ring-down measurements and direct measurements of coating thermal noise [15].

Brownian thermal fluctuations of a multilayer coating can be divided as follows: (i) thickness

fluctuation of the coating layers, (ii) fluctuation of the coating-substrate interface, and (iii) refractive

index fluctuations of the coating layers associated with longitudinal (thickness) and transverse (area)

elastic deformations—as illustrated in Figure 2.1. Using what is sometimes referred to as Levin’s

direct approach [12] (based on the fluctuation dissipation theorem), and writing the coating Brownian

noise as a linear combination of the above fluctuations, allows the construction of a corresponding set

of forces acting on the coating and calculation of the thermal noise spectrum from the the dissipation

associated with the simultaneous application of these forces. This has been carried out by Gurkovsky
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Figure 2.1: Drawing of a mirror coated with multiple dielectric layers. Shown here are the various
fluctuations that contribute to coating noise, i.e., fluctuations in the amplitude and phase of the
returning light caused by fluctuations in the geometry [including: layer thickness δlj , layer area
stretch (δA/A)j , interface height zs of the coating-substrate configuration] and in the refractive
indices δnj(x, y, z) of the layers.

and Vyatchanin [16], as well as Kondratiev, Gorkovsky and Gorodetsky [17]. However, in order to

obtain insights into coating noise that have proven useful we have chosen to calculate the cross

spectral densities for each of (i), (ii), and (iii), and provide intuitive interpretations of each. We

will show, in Sec. 2.4, that (i) and (ii) above are driven by both bulk and shear fluctuations in the

coating, in such a way that thickness fluctuations of the j-th layer δlj , or in transverse locations

separated by more than a coating thickness, are mutually statistically independent, yet each δlj is

correlated with the fluctuation of the coating-substrate interface zs—because zs is driven by the sum

of thermal stresses in the coating layers. We will also show that when coating thickness is much less

than the beam spot size, the only significant contribution to (iii) arises from longitudinal (thickness)

fluctuations, see Appendix 2.A.4 for details.

This paper is organized as follows. In Sec. 2.2, we express the amplitude and phase of the reflected

field in terms of fluctuations in the coating structure, thereby identifying the various components

of coating thermal noise. In Sec. 2.3, we introduce the loss angles of isotropic coating materials,

and use the fluctuation-dissipation theorem to calculate the cross spectral densities of the coating

thermal noise ignoring light penetration into the multi-layer coating. In Sec. 2.4, we discuss in detail

the cross spectra of all the components of the coating structure fluctuation, thereby obtaining the

full formula for coating thermal noise, taking light penetration within the muli-layers into account.
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The key formulas summarizing phase and amplitude noise spectrum are given in Eq. (2.94) and

Eq. (2.95). In Sec. 2.5, we discuss the effect of light penetration on coating thermal noise, using

typical optical coating structures. In Sec. 2.6, we discuss the dependence of thermal noise on the

material parameters, and optimize the coating structure in order to lower the thermal noise. In

Sec. 2.7, we discuss how only one combination of the two loss angles have been measured in past

experiments, and how other different combinations can be measured using a new experimental

geometry. Finally, we summarize our main conclusions in Sec. 2.8.

2.2 Components of the coating thermal noise

In this section, we express the coating thermal noise in terms of the elastic deformations of the

coated substrate.

2.2.1 Complex reflectivity

As illustrated in Figure 2.1, we consider a laser field normally incident (along the −z direction) onto

the mirror, with complex amplitude profile uin(x, y) at a fixed reference plane (dashed line in the

figure) and intensity profile I(x, y) = |uin(x, y)|2. Henceforth in the paper, we shall use arrows (e.g.,

~x) to denote the 2-dimensional vector (x, y) in the transverse plane, and boldface letters (e.g., x) to

denote 3-dimensional vectors.

Because the coating thickness is much less than the beam spot size, the reflected field (traveling

along the +z direction) at transverse location ~x has an amplitude given by

uout(~x) = ρtot(~x)uin(~x) , (2.2)

which only depends on the complex reflectivity ρtot(~x) and the complex amplitude of the incident

field uin(~x), at the same location ~x — assuming no incident light from the substrate (i.e., s2 = 0).

Here ρtot(~x) can be separated into three factors, as

ρtot(~x) =
uout(~x)
uin(~x)

=
[
uout(~x)
v2(~x)

] [
v1(~x)
uin(~x)

] [
v2(~x)
v1(~x)

]
(2.3)

in which v1(~x) is the incident complex amplitude at the coating-air interface, while v2(~x) is the

reflected complex amplitude at that interface.

The first two phase factors on the right-hand side of Eq. (2.3) are gained by the light when

traveling across the gap between the fixed reference plane (see Fig. 2.1) and the coating-air interface;
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we therefore obtain, up to a constant phase factor,

[
uout(~x)
v2(~x)

] [
v1(~x)
uin(~x)

]
= e−2ik0[δzs(~x)+

PN
j=1 δlj(~x)] (2.4)

where k0 = ω0/c is the wave number of the laser (ω0 its angular frequency) in vacuum, δzs(~x) is

the vertical displacement of the coating-substrate interface (from its zero point), and δlj(~x) is the

thickness fluctuation of the j-th coating layer — both evaluated at a transverse location ~x.

The remaining complex reflectivity v2(~x)/v1(~x) can be determined as a function of the phase

shift experienced by the field in each layer, as well as the reflectivity of each interface, as described

in detail in Sec. 2.5. We can write:

v2/v1 = ρ[φ1(~x), . . . , φN (~x); r01(~x), . . . , rNs(~x)]. (2.5)

Here ρ is the complex reflectivity of a multi-layer coating, measured at the coating-air interface,

which in turn depends on the optical thickness φj(~x) of each layer (j = 1, . . . , N) and the reflectivity

rp,p+1(~x) ≡ rp(~x) of each interface, (p = 0, . . . , N , with p = N + 1 representing the substrate, and

p = 0 the vacuum outside the coating). Assembling the above equations (2.3)–(2.5), we obtain:

ρtot(~x) = e−2ik0[δzs(~x)+
PN
j=1 δlj(~x)]ρ[{φj(~x)}; {rp(~x)}] (2.6)

Brownian thermal forces lead to fluctuations in both the real and imaginary parts of this complex

reflectivity. Fluctuations in the argument of the complex reflectivity phase modulates the outgo-

ing light and directly produce sensing noise. Fluctuations in the magnitude, on the other hand,

amplitude modulate the outgoing light, and produce a ponderomotive force noise.

2.2.2 Thermal Phase and Amplitude Noise

Brownian thermal fluctuations in coating geometry and refractive index modify the complex reflec-

tivity ρtot(~x) defined in Eq. (2.6). The real and imaginary parts of

δ log ρtot(~x) =
δρtot(~x)
ρtot(~x)

(2.7)

encode the amplitude/intensity and phase fluctuations of the reflected light at position ~x on the

mirror surface. In particular, intensity fluctuation of the reflected light is given by

δI(~x)
I(~x)

= 2
δ|ρtot(~x)|
|ρtot(~x)|

= 2Re [δ log ρtot(~x)] (2.8)
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while phase fluctuation is given by

δφ(~x) = δ arg [ρtot(~x)] = Im [δ log ρtot(~x)] . (2.9)

In this way, if we further write

ξ(~x)− iζ(~x) = − i

2k0
δ [log ρtot] , (2.10)

with both ξ and ζ real-valued functions of ~x, with the dimensionality of displacement; they will

represent phase and amplitude noise, respectively. In particular, from Eq. (2.9), we have

δφ(~x) = 2k0ξ(~x) . (2.11)

Because we measure the mirror’s position through the additional phase shift gained by the light after

being reflected, through the relation ∆φ = 2k0∆x, Eq. (2.11) indicates that ξ(~x) is the displacement

noise due to phase fluctuations of the reflected light imposed by the coating.

The quantity ζ (which, like ξ, is a length) is connected to amplitude/intensity noise via

2k0ζ(~x) = Re [δ log ρtot] =
δI(~x)
2I(~x)

. (2.12)

As we shall discuss in Sec. 2.2.5, ζ will cause a fluctuating force on the mirror, and can eventually

be converted to a displacement noise via a dimensionless factor, although the effect will turn out to

be small for gravitational-wave detectors.

Inserting the dependence of ρtot on ρ, lj and zs [Cf. Eq. (2.6)], we obtain

ξ(~x)− iζ(~x) = −δzs(~x)−
N∑
l=1

δlj(~x)

−
N∑
j=1

i

2k0

[
∂ log ρ
∂φj

· δφj(~x)
]

−
N∑
p=0

i

2k0

[
∂ log ρ
∂rp

· δrp(~x)
]
. (2.13)

The first two terms are due to the motion of the coating-air interface at location ~x and thickness

fluctuations of the layers, while the last two terms are due to light penetration into the coating layers

(see Fig. 2.5). In particular, the third term is due to fluctuations in the total phase the light gains

when propagating within the j-th layer, while the fourth term is due to the (effective) reflectivity

of the p-th interface (with p = 0 indicating the coating-air interface), whose origin will be explained

below.
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2.2.3 Fluctuations δφj and δrp

Light propagating within the coating layers are affected by the photoelastic effect, namely an isother-

mal fluctuation in δnj(x) (note here that x is a 3-D vector) due to fluctuating Brownian stresses

exerted onto the coating materials. Assuming isotropy of the coating materials, we can write

δnj(x) = βLj Szz(x) + βTj [Sxx(x) + Syy(x)] (2.14)

with

βLj ≡
(

∂nj
∂ log l

)
Aj

, βTj ≡
(

∂nj
∂ logA

)
lj

. (2.15)

Here L stands for longitudinal, and T stands for transverse, and the subscript Aj and lj indicate

fixing transverse area and longitudinal length, respectively. We have also used the usual strain

definition

Sij ≡
1
2

[
∂ui
∂xj

+
∂uj
∂xi

]
(2.16)

where ui(x), i = 1, 2, 3 are components of the displacement vector of the mass element at posi-

tion x. Refer to Appendix 2.B for more details regarding defining the elasticity quantities, and

Appendix 2.A.1 for more details on the photo elastic effect.

We note that in Eq. (2.14) Szz is the fractional increase in length (i.e., linear expansion) in the

longitudinal direction, while Sxx + Syy is the fractional increase in the transverse area. According

to Appendix 2.A.4, we can ignore the second term representing area fluctuations in Eq. (2.14) when

the beam spot size is much larger than the coating thickness. In this case, we write βj in place for

βLj , whose value can be expressed in terms of a particular component of the photo elastic tensor, see

Eq. (2.119).

As we discuss in Appendix 2.A.2, the first term of Eq. (2.14) causes two effects for light propa-

gating along each direction (i.e., +z and −z): it adds an additional phase shift, and it back-scatters

a fraction of the light into the opposite direction. As we show in Appendix 2.A.3 [c.f. Eqs. (2.130)–

(2.132)], these effects can be accounted for by modifying the phase shift δφj of each coating layer

and changing the reflectivity δrj of interface, in the following manner:

δφj = k0

[
(nj + βj)δlj −

1− r2
j

2rj
βjδl

c
j

+
1 + r2

j−1

2rj−1
βj−1δl

c
j−1

]
, (2.17)

δrj = k0t
2
jβjδl

s
j . (2.18)
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Here we have defined

δlcj = −
∫ lj

0

Szz(zj+1 + z) cos(2k0njz)dz , (2.19)

δlsj = −
∫ lj

0

Szz(zj+1 + z) sin(2k0njz)dz (2.20)

for j ≥ 1, δls0 = δlc0 = 0, and

zj ≡
N∑
n=j

ln (2.21)

marks the z-coordinate of the top surface of the j-th layer. We can also write

δlj =
∫ lj

0

Szz(zj+1 + z)dz . (2.22)

Note that
total coating

thickness
≡ z1 > z2 > . . . > zN+1 ≡ 0. (2.23)

Note that δrj , as well as the last two terms in δφj are due to back-scattering, and have not been

considered by previous authors.

Inserting Eqs. (2.17), (2.18) into Eq. (2.13), we obtain:

ξ(~x)− iζ(~x) = −zs(~x)−
N∑
j=1

∫ zj

zj+1

[
1 +

iεj(z)
2

]
uzz(~x, z)dz (2.24)

where

εj(z) = (nj + βj)
∂ log ρ
∂φj

− βj

[
1− r2

j

2rj
∂ log ρ
∂φj

−
1 + r2

j

2rj
∂ log ρ
∂φj+1

]
cos[2k0nj(z − zj)]

− t2jβj
∂ log ρ
∂rj

sin[2k0nj(z − zj+1)] , (2.25)

a term that accounts for all effects associated with light penetration. Here we need to formally define

∂ log ρ
∂φN+1

= 0 (2.26)

because φN+1 does not really exist. Alternatively, we can also write formulas separately for ξ and
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ζ, using only real-valued quantities. For ξ, we have,

ξ(~x) = −zs(~x)

−
N∑
j=1

[
T ξj δlj(~x) + T ξcj δlcj(~x) + T ξsj δlsj(~x)

]
, (2.27)

where

T ξj = 1− nj + βj
2

Im
(
∂ log ρ
∂φj

)
, (2.28)

T ξcj = −βj
4

Im
(
∂ log ρ
∂φj

)(
1− r2

j

rj

)

+
βj
4

Im
(
∂ log ρ
∂φj+1

)(
1 + r2

j

rj

)
, (2.29)

T ξsj = −
βjt

2
j

2
Im
(
∂ log ρ
∂rj

)
, (2.30)

are transfer functions from the various δl’s to the displacement-equivalent thermal noise (see Fig. 2.6).

For ζ, we have

ζ(~x) =
∑
j=1

[
T ζj δlj(~x) + T ζcj δlcj(~x) + T ζsj δlsj(~x)

]
(2.31)

where

T ζj =
nj + βj

2
Re
(
∂ log ρ
∂φj

)
, (2.32)

T ζcj =
βj
4

Re
(
∂ log ρ
∂φj

)(
1− r2

j

rj

)

− βj
4

Re
(
∂ log ρ
∂φj+1

)(
1 + r2

j

rj

)
, (2.33)

T ζsj =
βjt

2
j

2
Re
(
∂ log ρ
∂rj

)
. (2.34)

For an arbitrary stack of dielectrics, ζ is comparable to the part of ξ [c.f. Eq. (2.25)] that involves

light penetration into the layers. In practice, however, for highly reflective stacks, the real parts of

∂ log ρ/∂φj and ∂ log ρ/∂rj all turn out to be small, and therefore fluctuations in ζ (which correspond

to amplitude fluctuations) should be much less than fluctuations in ξ (which corresponds to phase

fluctuations).
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2.2.4 Mode selection for phase noise

So far we have dealt with phase and amplitude noise as functions at each location ~x on the mirror

surface. However, there is only one displacement noise that the light will sense. In this and the next

subsection, we show how ξ(~x) and ζ(~x) should be converted into measurement noise. In doing so, we

recognize that only one spatial optical mode is injected on resonance in the optical cavity, and this

mode has a complex amplitude of u0(~x) at the mirror surface. Now suppose we have uin = u0(~x)

incident on the mirror surface, we will then have uout(~x) = ρtot(~x)u0(~x), which contains not only

the resonant mode, but also other modes, which do not resonate in the cavity.

Let us select only the component of uout(~x) that is in the resonant spatial mode that is driven,

then we have a complex reflectivity of

ρ̄ =
∫
u∗0(~x)uout(~x)d2~x∫

u∗0u0d~x
=
∫
ρtot(~x)I(~x)d2~x∫

I(~x)d2~x
, (2.35)

specifically for the resonant mode, and hence independent of ~x. Here we have defined I(~x) ≡ |u0(~x)|2.

Note that the bar on top of ρ̄ represents averaging over the phase front, instead of averaging over

time.

Now, inserting Eq. (2.10) as definitions for ξ(~x) and ζ(~x) into Eq. (2.35), we obtain the fluctuating

part of ρ̄
δρ̄

ρ̄
= 2ik0(ξ̄ − iζ̄) , (2.36)

where

ξ̄ ≡
∫
ξ(~x)I(~x)d2~x∫
I(~x)d2~x

, ζ̄ ≡
∫
ζ(~x)I(~x)d2~x∫
I(~x)d2~x

. (2.37)

Note that 2ik0ξ̄ is the additional phase gained by the returning light, while 2k0ζ̄ is the relative

change in amplitude [see discussions in Sec. 2.2.2]. Focusing first on ξ̄, we note that this creates the

same phase change as that gained by the reflected light if the mirror does not deform but instead

is displaced along the beam by ξ̄. In this way, ξ̄ is an error in our measurement of the mirror’s

displacement.

2.2.5 Conversion of amplitude noise into displacement

The amplitude thermal noise can produce a spurious GW signal by modulating the radiation pressure

acting on the mirror, which in turn drives spurious mirror motion. Let us first consider a single-

bounce scenario, in which an incoming beam with intensity profile I(~x), unaffected by thermal noise,

is reflected with an intensity profile I(~x) + δI(~x), with δI(~x) induced by amplitude thermal noise.
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In this case, the mirror feels a thermal-noise-induced recoil force of

F single
th =

∫
δI(~x)
c

d2~x . (2.38)

Using Eqs. (2.12) and (2.37), we obtain

F single
th =

4I0k0

c
ζ̄ (2.39)

with I0 the power incident on the mirror. If the mirror is within a cavity, then we need to consider

both the increase in the circulating power (which we denote by Ic) with respect to the input power,

and the coherent build-up of amplitude modulation within the cavity. We also note that now both

the incident and reflected beams contain amplitude modulation, and that we must also consider the

effect of this amplitude modulation on the input mirror.

If we restrict ourselves to a single optical cavity on resonance, then the force thermal noise below

the cavity bandwidth is given by

F cav
th =

16k0Ic

c
√
Ti

ζ̄. (2.40)

Here Ic is the circulating power in the arm cavity. Suppose both input and end mirrors have the

same mass M , then the spectrum of cavity length modulation driven by the amplitude thermal noise

at angular frequency Ω is given by

√
Samp

th (Ω) =
2

MΩ2

√
SF cav

th
=

32ω0Ic

mΩ2c2
√
Ti

√
Sζ̄ . (2.41)

Note that ζ̄ has the units of displacement, and therefore the pre-factor in front of
√
Sζ̄ in Eq. (2.41)

is a dimensionless conversion factor from ζ̄ to displacement noise. For Advanced LIGO, this cannot

be completely dismissed at this stage, because

32ω0Ic

mΩ2c2
√
Ti

= 18 · Ic
800 kW

· 40 kg
m
·
[

10 Hz
Ω/(2π)

]2√0.03
Ti

. (2.42)

Nevertheless, as we will show in Sec. 2.5.2, the minor amplification factor here is not enough to make

amplitude noise significant, because ζ is much less than ξ, for the coatings we consider.

2.3 Thermal noise assuming no light penetration into the

coating

In this section, we compute the coating Brownian noise assuming that the incident light does not

penetrate into the coating. This means light is promptly reflected at the coating-air interface, and
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therefore we should only keep the first two terms on the right-hand side of Eq. (2.13), which leads

to ζ = 0. We therefore consider only coating phase noise ξ, in particular its weighted average over

the mirror surface, ξ̄, see Eq. (2.37).

2.3.1 The Fluctuation-Dissipation Theorem

The Fluctuation-Dissipation Theorem relates the near-equilibrium thermal noise spectrum of a gen-

eralized coordinate q to the rate of dissipation in the system when a generalized force acts directly

on this coordinate. More specifically, the thermal noise spectrum of q at temperature T is given

by [13]

Sq(f) =
kBT

π2f2
Re[Z(f)] (2.43)

where f is frequency, Z(f) is the mechanical impedance (inverse of admittance), or

Z(f) = −2πifq(f)/F (f). (2.44)

Alternatively, suppose we apply a sinusoidal force

F (t) = F0 cos(2πft) (2.45)

with amplitude F0 acting directly on q, Eq. (2.43) can also be written as

Sx(f) =
4kBT
πf

Wdiss

F 2
0

=
4kBT
πf

U

F 2
0

φ (2.46)

where Wdiss is the energy dissipated per cycle of oscillation divided by 2π (in other words, Wdiss is

the average energy loss per radian), U is the peak of the stored energy in the system, and φ is the

loss angle, defined by

φ = Re[Z(f)]/Im[Z(f)]. (2.47)

It is important to note that φ is, in general, frequency dependent. However, for an elastic body,

if the frequency is low enough (well below the first eigenfrequency), then U can be computed using

the quasi-static approximation, because it is equal to the elastic energy stored in the equilibrium

configuration when a constant force F0 is applied to the system.

2.3.2 Mechanical energy dissipations in elastic media

It is straightforward to apply Eq. (2.46) to calculate the thermal noise component due to fluctuation

of the position of the coating-air interface — the weighted average [c.f. Eq. (2.35)] of the first two
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terms of Eq. (2.13). This can be obtained by applying a force F with a pressure profile proportional

to I(~x) to the mirror surface (coating-air interface). In this case, elastic energy can be divided into

bulk energy UB and shear energy US [Chapter I of Ref. [18]], with

Ucoating = UB + US =
∫

coating

(
K

2
Θ2 + µΣijΣij

)
dV , (2.48)

where Θ is the expansion, and Σij is the shear tensor (see Appendix 2.B for details). If we give

small imaginary parts to K and µ, writing

K̃ = K(1 + iφB) , µ̃ = µ(1 + iφS) (2.49)

then Wdiss can be written as

Wdiss = φBUB + φSUS . (2.50)

Here have introduced the loss angles φB and φS , which are associated with the dissipation of expan-

sion energy density and the shear energy density, respectively. Note that our way of characterizing

loss differs from previous work by Harry, et. al. [14], because for isotropic materials, φB and φS are

the two fundamentally independent loss angles that characterize the dissipation of bulk and shear

elastic energy; were we to literally adopt φ⊥ and φ‖ as done in Ref. [14], and consider them inde-

pendent from each other, then the dissipated energy defined this way can turn out to be negative if

certain force distributions are applied onto the mirror, which would be unphysical. See Appendix 2.C

for more details.

Once we have introduced φB and φS, other elastic moduli also gain small imaginary parts corre-

spondingly. For example, for the most widely used Young’s modulus and Poisson ratio, because

K =
Y

3(1− 2σ)
, µ =

Y

2(1 + σ)
(2.51)

we can write

Ỹ = Y (1 + iφY ) (2.52)

with

φY =
(1− 2σ)φB + 2(1 + σ)φS

3
(2.53)

and

σ̃ = σ +
i

3
(1− 2σ)(1 + σ)(φB − φS) . (2.54)

Since −1 < σ < 1/2, we have (1− 2σ)(1 + σ) > 0, therefore σ̃ has a positive imaginary part as φB

is greater than φS , and vice versa. To understand the physical meaning of the imaginary part of
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the Poisson ratio, one has to realize that Young’s modulus and the Poisson ratio together describe

the elastic response of a rod. Suppose we apply an oscillatory tension uniformly along a rod at a

very low frequency, whether the area of the rod leads or lags the length of the rod depends on the

relative magnitudes of the bulk and shear loss angles. In the situation when the two loss angles φB

and φS are equal to each other, the Poisson’s ratio is real, and we only need to deal with one loss

angle φY — although there is reason to assume the equality of these two angles.

If the coating material is made into the shape of a one-dimensional rod, and if we only consider

its elongational, bending or torsional modes, then the Young’s modulus is the appropriate elastic

modulus associated with these modes, and φY is the appropriate loss angle to apply. However, this

is not directly relevant for coating thermal noise. An elastic modulus that will actually prove useful

is that of the two-dimensional (2-D) flexural rigidity of a thin plate made from the coating material,

D =
Y h

12(1− σ2)
= |D|(1 + iφD) (2.55)

where h is the thickness of the plate, with

φD =
(1− σ − 2σ2)φB + 2(1− σ + σ2)φS

3(1− σ)
. (2.56)

As we shall see in Sec. 2.7.1, this D is most easily measured through the quality factor of drum

modes of a thinly coated sample — although this will not turn out to be the combination of loss

angles that appears in the thermal noise of coated mirrors.

2.3.3 Thermal noise of a mirror coated with one thin layer

In the case where the coating thickness is much less than the size of the mirror substrate and the

beam spot size, the elastic deformation of the substrate is not affected by the presence of the coating.

As a consequence, if we include the elastic energy stored in the substrate Usub with loss angle φsub,

we can write

Wdiss = φsubUsub + φBUB + φSUS

≈
[
φsub + φB

UB
Usub

+ φS
US
Usub

]
Usub. (2.57)

With the assumption of thin coating and half-infinite substrate, the total strain energy stored in the

sample can be considered as Usub. In such a way the coating adds on to the substrate loss angle as

additional, effective angles

φcoated = φsub +
UB
Usub

φB +
US
Usub

φS . (2.58)
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Note that when the total coating thickness l is much less than the beam spot size w0, we have

UB/Usub ∼ US/Usub ∼ l/w0 � 1. Unfortunately, however, φB and φS are found to be so much

larger than the substrate loss angle φsub that in practice coating thermal noise still dominates over

substrate thermal noise.

Now suppose we would like to measure a weighted average of the position of the mirror surface,

q = ξ̄ =
∫
d2~xw(~x)z(~x) (2.59)

with [Cf. Eq. (2.37)]

w(~x) =
I(~x)∫
I(~x)d2~x

(2.60)

and z(~x) the position of the coating-air interface at transverse location ~x.

According to Sec. 2.3.1, we need to apply a pressure profile of

f(~x) = F0w(~x) (2.61)

onto the upper surface of the coating, which we shall also refer to as the coating-air interface.

Straightforward calculations give

UB
F 2

0

=
(1− 2σc)l

3

[
Yc
Y 2
s

(1− 2σs)2(1 + σs)2

(1− σc)2

+
1
Ys

2(1− 2σs)(1 + σs)(1 + σc)
(1− σc)2

+
1
Yc

(1 + σc)2

(1− σc)2

] ∫
w2(~x)d2~x, (2.62)

US
F 2

0

=
2l
3

[
Yc
Y 2
s

(1− σc + σ2
c )(1 + σs)2(1− 2σs)2

(1− σc)2(1 + σc)

− (1 + σc)(1− 2σc)(1− 2σs)(1 + σs)
Ys(1− σc)2

+
(1− 2σc)2(1 + σc)

Yc(1− σc)2

] ∫
w2(~x)d2~x. (2.63)

Here l is coating thickness; for Young’s modulus Y and Poisson’s ratio σ, substrates c and s represent

coating and substrate, respectively. Directly following Eqs. (2.46) and (2.50) will give rise to a noise

spectrum of

Sξ̄ =
4kBT
πf

[
φB

UB
F 2

0

+ φS
US
F 2

0

]
(2.64)

where UB/F 2
0 and US/F

2
0 are given by Eqs. (2.62) and (2.63) respectively.

Here we can define ∫
w2(~x)d2~x =

∫
d2~xI2(~x)[∫
d2~xI(~x)

]2 ≡ 1
Aeff

(2.65)
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as the inverse of an effective beam area. Therefore noise power in q is proportional to coating

thickness and inversely proportional to beam area. In particular, for a Gaussian beam with

I(~x) ∝ exp

(
−
~2x2

w2
0

)
(2.66)

the effective area is Aeff = πw2
0.

Let us compare our results to previous calculations using φ⊥ and φ‖. As it turns out, if we

assume φS = φB , then formulas for thermal noise agree with Eq. (22) in Ref. [14]. To illustrate

the different roles now played by φB and φS , let us take the very simple case of Y = Yc = Ys and

σ = σc = σs, where

δUB
F 2

0

=
4l

3YAeff
(1 + σ)2(1− 2σ), (2.67)

δUS
F 2

0

=
2l

3YAeff
(1 + σ)(1− 2σ)2. (2.68)

Using Eq. (2.64), we can get the power spectral density of the single layer non-penetration coating

thermal noise as

Sξ̄(f)

=
8kBT (1− σ − 2σ2)l

3πfYAeff
[2(1 + σ)φB + (1− 2σ)φS ]. (2.69)

From Eq. (2.69), we can see that the bulk loss and shear loss contribute differently to the total

noise. More importantly, at least in the simple case where Yc = Ys, the combination of φB and φS is

approximately 2φB +φS , which differs significantly from the combination φtot ≈ φB +2φS measured

by the ring-down experiments that have been performed so far [19–21]. This will be discussed in

detail in the rest of Sec. 2.7.

2.3.4 Discussions on the correlation structure of thermal noise

Before proceeding to more detailed calculations of Brownian noise that involve light penetrating into

the coating layers, we would like to gain more insight into thermal noise by inspecting our existing

expressions of coating thermal noise [Eqs. (2.62)–(2.64)] more carefully. We note that

Sξ̄ ∝ l
∫
w2(~x)d2~x. (2.70)

where the coefficient of proportionality depends only on material property. From such a dependence

on coating and beam geometries, we deduce that (i) each point on the coating-air interface fluctu-

ates along the z direction independently, and (ii) materials at different z’s within the coating also
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contribute independently to coating thermal noise. These observations will be confirmed below in

Sec. 2.4.

Finally, within the coefficient of proportionality [Cf. Eqs. (2.62) and (2.63)], we found three types

of dependence on the Young’s moduli of the coating and substrate materials: terms proportional to

1/Yc are expected to arise from fluctuations in coating thickness, terms proportional to Yc/Y 2
s can

be interpreted as arising from coating thermal stresses driving the substrate-coating interface, while

terms proportional to 1/Ys are therefore interpreted as correlations between the above two types of

noise.

2.4 Cross spectra of thermal noise components

In this section, we compute the cross spectra of each component of coating thermal noise, and

assemble the formula for the spectral density of the total noise. Specifically, in Sec. 2.4.1, we

compute the cross spectra of the thickness fluctuations between any two uniform sublayers of the

coating, and obtain the cross spectrum of Szz; in Sec. 2.4.2, we compute the cross spectra involving

height fluctuation zs of the coating-substrate interface, i.e., SSzzzs and Szszs ; in Sec. 2.4.3, we dissect

the above results and analyze the separate roles of bulk and shear fluctuations; in Sec. 2.4.4, we

write down the full formula for coating thermal noise.

2.4.1 Coating-thickness fluctuations

Let us start by calculating thickness fluctuations of individual layers and correlations between them.

Following Levin’s approach, we imagine applying two pairs of opposite pressures,

f1(~x) = F0w1(~x), f3(~x) = F0w3(~x) (2.71)

in the z direction on layer1 and layer 3, as shown in Fig. 2.2, with thickness of l1 and l3, respectively.

Here w1(~x) and w3(~x), like the w(~x) used in Eq. (2.59), provide the shape of the pressure profiles.

Note that we apply pairs of forces, and each pair must be equal and opposite in direction because

we are interested in learning about the fluctuations of the thickness, instead of the location, of the

layers.

We assume that layers I and III are each made from a single type of material, yet there could be

arbitrary number of different material sub layers in II. As it will turn out, the precise locations of

layers I and III along the z direction does not affect the result, as long as they do not overlap, or in

other words, layer II has non-zero thickness.

Throughout this paper, we shall assume that the beam spot size is much less than the radius of the

mirror, so that we can make the approximation that the mirror surface is an infinite two-dimensional
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plane. In this case, we perform a spatial Fourier transformation for the applied pressure,

f̃j(~k) =
∫
ei
~k·~xfj(~x) d2~x = F0w̃j(~k) , j = 1, 3 , (2.72)

and carry out our calculations for strain and stress distributions in the coating-substrate system in

the Fourier domain.

We further assume that the coating thickness is much less than the beam spot size, which is the

inverse of the maximum spatial frequency contained in w̃1,3. This means we only need to consider

~k’s with |~k|l � 1, with l the total coating thickness. According to calculations in Appendix 2.B,

non-zero components of the stress and strain tensors in Layers I and III are found to be (in the

spatial Fourier domain)

T̃ I
xx = T̃ I

yy =
σ1w̃1

1− σ1
F0 , T̃ I

zz = w̃1F0 , (2.73)

S̃I
zz = − (1− 2σ1)(1 + σ1)w̃1

Y1(1− σ1)
F0 , (2.74)

and

T̃ III
xx = T̃ III

yy =
σ3w̃3

1− σ3
F0 , T̃ III

zz = w̃3F0 , (2.75)

S̃III
zz = − (1− 2σ3)(1 + σ3)w̃3

Y3(1− σ3)
F0 , (2.76)

respectively.

Note that deformations within layer I only depend on w̃1 (not w̃3), while deformations within

layer III only depends on w̃3 (not w̃1) — while regions outside these layers are found to have

vanishing strain and stress. This means we can treat deformations caused by each pair of forces

independently, as long as layer I and layer III do not overlap. The deformations are also independent

of the thickness of the layers. The vanishing of deformations outside these layers means that when we

introduce additional pairs of opposite forces, the new deformations introduced will be constrained

within those new layers — as long as those new layers do not overlap with existing ones. This

independence originates from the linearity of elastic response, and the fact that coating strains

induced by force applied on a single surface within the coating, as discussed in Appendix 2.B, do

not depend on distance away from that surface, as seen in Eqs. (2.159)–(2.166). The situation here

is analogous to the electrostatics of several pairs of oppositely-charged infinite parallel planes.

In terms of thermal noise, such a distribution of elastic deformations corresponds to a dissipation

energy that consists of two independent terms, each corresponding to one layer and proportional to

its thickness:
Wdiss

F 2
0

= W11l1

∫
w2

1d
2~x+W33l3

∫
w2

3d
2~x. (2.77)
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Here we have defined, for j = 1, 3:

Wjj ≡
(1− 2σj)(1 + σj)

3(1− σj)2Yj

[
1 + σj

2
φjB + (1− 2σj)φ

j
S

]
. (2.78)

This means the fluctuation of

q ≡
∫

[w1(~x)δl1(~x) + w3(~x)δl3(~x)] d2~x (2.79)

is given by

Sq =
4kBT
πf

∑
j=1,3

[
Wjj lj

∫
w2
j (~x)d2~x

]
. (2.80)

The absence of a cross term between w1 and w3 means that fluctuations in δl1(~x) and δl3(~x′) are

uncorrelated — and hence statistically independent. Furthermore, within each layer, in the same

spirit as the discussions in Sec. 2.3.4, the particular form of dependence on lj and wj(~x) indicates

that Szz fluctuations at different 3-D locations (within this layer) are all uncorrelated and have

the same spectrum. In this way, we obtain the cross spectral density of Szz at two arbitrary 3-D

locations within the coating:

SijSzzSzz (~x, z; ~x
′, z′) =

4kBT
πf

δijδ
(2)(~x− ~x′)δ(z − z′)Wjj . (2.81)

Here we have assumed that (~x, z) belongs to layer i, while (~x′, z′) belongs to layer j. (The association

to layers helps to identify the material property to be used in Wjj .)

2.4.2 Fluctuations of Coating-Substrate Interface and their correlations

with coating thickness

To investigate the correlation between the height of the coating-substrate interface, zs(~x) and the

thickness of each coating layer, δlj(~x), we apply an identical pair of pressures f1(~x) = F0w1(~x) at

opposite sides of layer 1, and force fs(x, y) = F0ws(~x) onto the coating-substrate interface (along

the −z direction), as shown in Fig. 1. The same strain and stress as in Eqs. (2.73) and (2.74) are

driven by f̃1, which are only non-vanishing within layer I. On the other hand, f̃s drives uniform

strain and stress over the entire coating, with non-vanishing components of stress and strain given

by,

‖T̃ij‖ =
w̃s(1− σs − 2σ2

s)Yc
(1 + σc)κ2Ys


k2
x+σck

2
y

1−σc kxky 0

kxky
σck

2
x+k2

y

1−σc 0

0 0 0

 , (2.82)
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Figure 2.2: Illustrations of forces applied onto various interfaces within the coating. Each of layers
I and III in the coating are assumed to be uniform (but they might each contain a different kind
of material); region II denotes the entire gap between them, which may well contain many different
dielectric layers. A pair of force distribution f1 (f3) with the same pressure profile but in opposite
directions is exerted on opposite sides of layer I (III), while fs is exerted on the coating-substrate
interface. (Although each pair has the same pressure profile, they may be different from each other.)
The three distributions may well have different profiles (as also illustrated in the figure).

‖S̃ij‖ = − w̃s(1− σs − 2σ2
s)

κ2Ys


k2
x kxky 0

kxky k2
y 0

0 0
−σc

1− σc

, (2.83)

where Young’s modulus Yc and Poisson’s ratio σc of the coating are given by values within layer I.

The total dissipation in this case will have the following structure,

Wdiss

F 2
0

= l1

[
W11

∫
w2

1d
2~x+ 2W1s

∫
w1wsd~x+Wss

∫
w2
sd

2~x

]
, (2.84)

with the first term arising from dissipation in layer I that is due to strain and stress driven by f1,

the second term also arising from dissipation in layer I arising from cross terms between strains

and stresses caused by f1 and fs, and the third term arises from dissipations throughout the entire

coating, due to strain and stress caused by fs. Here W11 is the same as defined by Eq. (2.78), and

Wjs =
(1− σs − 2σ2

s)(1− σj − 2σ2
j )

2(1− σj)2Ys
(φjB − φ

j
S) (2.85a)

W (j)
ss =

(1− σs − 2σ2
s)2Yj

(1− σj)2Y 2
s

[
1− 2σj

2
φjB +

1− σj + σ2
j

1 + σj
φjS

]
. (2.85b)
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Note that we have added a superscript (j) for Wss to indicate that here the dissipation is due to the

pair of forces applied on one thin layer alone.

Here again, the dependences on w2
1 and w2

s indicate that fluctuations at different transverse

locations, ~x 6= ~x′, are uncorrelated, while the l1 in front of W11, and the arbitrariness of l1 means

that Szz fluctuations at different z locations within the thin layers are uncorrelated. The l1 in front

of both W1s and Wss indicates that all Szz within layer I are correlated with zs the same way, even

though all of them are mutually uncorrelated.

This allows us to extract the following

Szszs(~x, ~x
′) =

4kBT
3πf

δ(2)(~x− ~x′)
∑
j

ljW
(j)
ss , (2.86a)

SSzz sz (~x; ~x′, z′) =
4kBT
3πf

δ2(~x− ~x′)Wjs . (2.86b)

Here for Eq. (2.86b), j is the layer with which z′ is associated; and this labeling is to help identify

which material parameter to use in Wjs.

2.4.3 The anatomy of coating thermal noise

Here let us assemble Eqs. (2.81), (2.86a) and (2.86b) from the previous sections, and write:

SijSzzSzz (~x, z; ~x
′, z′) =

4kBT
3πf

(1 + σj)(1− 2σj)
Yj(1− σj)2

[1 + σj
2

φBj + (1− 2σj)φSj
]
δijδ

(2)(~x− ~x′)δ(z − z′),

(2.87a)

Szszs(~x, ~x
′) =

4kBT
3πf

(1− σs − 2σ2
s)2

Y 2
s

∑
j

Yj lj
(1− σj)2

[1− 2σj
2

φBj +
1− σj + σ2

j

1 + σi
φSj

]
δ(2)(~x− ~x′),

(2.87b)

Szs Szz (~x; ~x′, z′) =
2kBT
3πf

(1− σs − 2σ2
s)(1− σj − 2σ2

i )
Ys(1− σj)2

[φBj − φSj ]δ2(~x− ~x′). (2.87c)

Here we have assumed that z belongs to the i-th layer and that z′ belongs to the j-th layer,

respectively. The thickness fluctuations of different layers are mutually independent [note the Kro-

necker delta in Eq. (2.87a)], while the thickness fluctuation of each layer is correlated with the height

fluctuation of the coating-substrate interface [Eq. (2.87c)].

Fluctuations in the strain Szz and the coating-substrate interface zs, described by Eqs. (2.87a)–

(2.87b), can be represented alternatively as being driven by a number of independent fluctuating

fields that exist throughout the coating. Such a representation allows us to better appreciate the

origin and the magnitude of these fluctuations.

In order to do so, let us first define 3N thermal noise fields (i.e., 3 for each coating layer), nBj (x),
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Thickness (δj) Surface height (zs)

Bulk CBj =

√
1 + σj

2
DB
j =

1− σs − 2σ2
s√

2(1 + σj)
Yj
Ys

Shear
A CSAj =

√
1− 2σj DSA

j = −1− σs − 2σ2
s

2
√

1− 2σj

Yj
Ys

Shear
B (none) DSB

j =
√

3(1− σj)(1− σs − 2σ2
s)

2
√

1− 2σj(1 + σj)
Yj
Ys

Table 2.1: Transfer functions from bulk and shear noise fields to layer thickness and surface height.

nSAj (x) and nSBj (x), all independent from each other, with

SnBj nBk =
4kBT (1− σj − 2σ2

j )
3πfYj(1− σj)2

φjBδjkδ
(3)(x− x′), (2.88a)

S
n
SA
j n

SA
k

= S
n
SB
j n

SB
k

=
4kBT (1− σj − 2σ2

j )
3πfYj(1− σj)2

φjSδjkδ
(3)(x− x′), (2.88b)

and all other cross spectra vanishing. Here j labels coating layer, the superscript B indicates bulk

fluctuation, while SA and SB label two types of shear fluctuations. The normalization of these fields

are chosen such that each of these fields, when integrated over a length lj along z, have a noise

spectrum that is roughly the same magnitude as a single-layer thermal noise.

Noise fields nBj (x), nSAj (x) and nSBj can be used to generate thickness fluctuations of the layers

and the interface fluctuation (2.87a)–(2.87b) if we define

uzz(~x, z) = CBj n
B
j (~x, z) + CSAj nSAj (~x, z) (2.89)

and

zs(~x) =
∑
j

∫ Lj

Lj+1

dz

[
DB
j n

B
j (~x, z) +DSA

j nSAj (~x, z)

+DSB
j nSBj (~x, z)

]
. (2.90)

For each coating layer, CBj and DB
j are transfer functions from the bulk noise field nBj to its own

thickness δlj and to surface height zs, respectively; CSAj and DSA
j are transfer functions from the

first type of shear noise to thickness and surface height; finally DSB
j is the transfer function from the

second type of shear noise to surface height (note that this noise field does not affect layer thickness).

Explicit forms of these transfer functions are listed in Table. 2.1.

Equations (2.89) and (2.90) owe their simple forms to the underlying physics of thermal fluctu-

ations:

For bulk noise, i.e., terms involving nBj , the form of Eqs. (2.89) and (2.90) indicates that the

interface fluctuation due to bulk dissipation is simply a sum of pieces that are directly proportional
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Figure 2.3: Illustration of the correlations between coating thickness δlj and the height of the coating-
substrate interface, zs. On the left, for a bulk deformation: when a coating element is expanding,
its expansion along the x-y plane lifts the coating-substrate interface upwards, causing additional
motion of the coating-air interface correlated to that caused by the increase in coating thickness. On
the right, a particular shear mode: when a coating element is expanding, its contraction along the x-
y plan pushes the coating-substrate interface downwards, causing addition motion of the coating-air
interface anti-correlated to that caused by the increase in coating thickenss.

to the bulk-induced thickness fluctuations of each layer. This means the thermal bulk stress in a layer

drive simultaneously the thickness fluctuation of that layer and a fluctuation of the coating-substrate

interface. The fact that DB
j and CBj have the same sign means that when thickness increases, the

interface also rises (with intuitive explanation shown in Figure 2.3). This sign of correlation is

generally unfavorable because the two noises add constructively towards the rise of the coating-air

interface.

For shear noise, the situation is a little more complicated, because unlike bulk deformations,

there are a total of five possible shear modes. From Eq. (2.73) and (2.74), it is clear that f1, applied

on opposites of Layer I (Figure 2.2), only drives the xx+ yy− 2zz shear mode and the xx+ yy+ zz

bulk mode, while from Eq. (2.82) and (2.83), the force distribution fs drives three shear modes of

xx− yy, xy + yx, and xx+ yy− 2zz. This means while thermal shear stresses in the xx+ yy− 2zz

mode drives layer thickness and interface fluctuation simultaneously, there are additional modes of

shear stress, xx − yy and xy + yx, that only drive the interface without driving layer thickness.

Our mode SA, which drives both layer thickness and interface height, therefore corresponds to the

physical shear mode of xx+ yy− 2zz; our mode SB , which only drives interface height, corresponds

to the joint effect of the physical shear modes xx− yy and xy+ yx. It is interesting to note that for

SA, its contributions to δlj and zs are anti correlated, because CSA and DSA have opposite signs.

This is intuitively explained in Fig. 2.3.

As an example application of Eqs. (2.89) and (2.90), if we ignore light penetration into the coating
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layers, namely, when thermal noise is equal to

ξnp ≡ −zs −
∑
j

δlj (2.91)

we have

ξnp = −
∑
j

Lj+1∫
Lj

dz
[ (
CBj +DB

j

)
nBj

+
(
CSAj +DSA

j

)
nSAj

+DSB
j nSBj

]
(2.92)

in which contributions from each layer have been divided into three mutually uncorrelated groups,

each arising from a different type of fluctuation. Here we see explicitly that CB and DB sharing

the same sign increases contributions from nB , and CSA and DSA having opposite signs suppresses

contributions from nSA .

Finally, we note that in the spectral density of ξnp, contributions directly from coating thickness

will be proportional to |CBj |2 and |CSAj |2, and hence proportional to 1/Yc, those from interface height

will be |DB
j |2, |DSA

j |2 and |DSB
j |2, and hence proportional to Yc/Y 2

s , while those from correlations

will be proportional to CBj D
B
j and CSAj DSA

j , and hence proportional to 1/Ys. This confirms our

anticipation at the end of Sec. 2.3.4.

2.4.4 Full formula for thermal noise

Now we give the complete formulas for amplitude and phase noise spectrum [Cf. Eq. (2.94) and

Eq. (2.95)]. As we consider light penetration into the coating, we resort to Eq. (2.24), and write:

ξ(~x)− iζ(~x)

= −
∑
j

∫ zj

zj+1

dz

{[[
1 +

iεj(z)
2

]
CBj +DB

j

]
nBj (~x, z)

+
[[

1 +
iεj(z)

2

]
CSAj +DSA

j

]
nSAj (~x, z)

+DSB
j nSBj (~x, z)

]}
. (2.93)

Here spectra of independent fields nBj , nSAj and nSBj have been given in Eqs. (2.88a)–(2.88b), ε is

defined in Eq. (2.25), while the transfer functions Cs and Ds are listed in Table. 2.1.

We can then obtain the spectrum of phase noise (after averaging over the mirror surface, weighted
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by the power profile of the optical mode) as

Sξ̄ =
∑
j

∫ zj

zj+1

dz

λj

[[
1− Im

εj(z)
2

]
CBj +DB

j

]2

SBj

+
∑
j

∫ zj

zj+1

dz

λj

[[
1− Im

εj(z)
2

]
CSAj +DSA

j

]2

SSj

+
∑
j

[
DSB
j

]2 lj
λj
SSj

≡
∑
j

qBj S
B
j + qSj S

S
j (2.94)

and spectrum of amplitude noise as

Sζ̄ =
∑
j

∫ zj

zj+1

dz

λj

{[
CBj Re

εj(z)
2

]2

SBj

+
[
CSAj Re

εj(z)
2

]2

SSj

}
. (2.95)

Here λj is the wavelength of light in layer j, and we have defined

SXj ≡
4kBTλjφ

j
X(1− σj − 2σ2

j )
3πfYj(1− σj)2Aeff

, X = B,S (2.96)

which is at the level of coating thickness fluctuation of a single layer of dielectrics with material

parameters identical to layer j and length equal to λj . Note that the quantity SXj only depends on

the material properties (and temperature) of the layer, and is independent to the length of that layer;

the quantities qXj (see Fig. 2.7), on the other hand, give us the relative thermal-noise contribution

of each layer in a dimensionless way.

Note that the reason for keeping the integrals in Eqs. (2.94) and (2.95) is because ε has a z

dependence, which originates from the fact that the back-scattering contributions to δφjs and δrjs

a weighted integral of uzz within each layer [Cf. (2.17) and (2.18)].

2.5 Effect of light penetration into the coating

In this section, we synthesize results from Sec. 2.2 and Sec. 2.4, and compute the full Brownian

thermal noise for coating configurations. We will illustrate how the light penetration affects the

total noise in highly reflective coatings.
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Figure 2.4: Two basic transformations involved in solving for optical fields in a multi-layer coating.

Parameter Tantala(Ti2O5) Silica(SiO2)
Refractive index 2.07 [22] 1.45 [22]
Poisson’s ratio 0.23 [23] 0.17[23]
Young’s modulus (Pa) 1.4× 1011[24] 7× 1010[23]
Loss angle (φB = φS) 2.3× 10−4[25] 4.0× 10−5[26]
Photoelastic coefficient -0.50 [27] -0.41[28]

Table 2.2: Baseline material parameters.

2.5.1 Optics of multi-layer coatings

For completeness of the paper, we briefly review how light penetration coefficient ∂ log ρ/∂φj can be

calculated.

From an interface from layer i to j (here j is either i+ 1 or i− 1), we denote the reflectivity and

transmissivity of different layers by rij and tij : r2
ij + t2ij = 1

rij =
ni − nj
ni + nj

. (2.97)

We also define nN+1 = n1, since that is the refractive index of the substrate.

A matrix approach can be applied to solve for the amplitude of light inside the layers, when we

view the coating as made up of two elementary transformations, each representable by a matrix. In

this approach, instead of writing out-going fields in terms of in-going fields, one writes fields to the

right of an optical element in terms of those to the left. As illustrated in Figure 2.4, for reflection

at an interface (left panel), we write

 c

d

 ≡ Rr =
1
t

 1 −r

−r 1

 a

b

 . (2.98)

On the other hand, for propagation across a gap with phase shift φ, we have c

d

 ≡ Tφ =

 eiφ 0

0 e−iφ

 a

b

 . (2.99)
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Figure 2.5: Real (solid curves) and imaginary (dashed curves) parts of ∂ log ρ/∂φj (upper panel)
and ∂ log ρ/∂rj (lower panel), for conventional (red dot) and Advanced LIGO (blue square) coatings.
[Note that Re(∂ log ρ/∂φj) = 0 for conventional coating.]

In this way, assuming the input and output field amplitude at the top surface of a multi-layer

coating to be v1 and v2, and writing those right inside the substrate to be s1 and s2, we have s1

s2

 =

 M11 M12

M21 M21

 v1

v2

 = M

 v1

v2

 , (2.100)

where M is given by

M = RrN,N+1TφN−1RrN−1,N . . .Rr12Tφ1Rr01 . (2.101)

The complex reflectivity is given by

ρ = −M21/M22. (2.102)

2.5.2 Levels of light penetration in Advanced LIGO ETM Coatings

In Advanced LIGO, the coating stack is made from alternating layers of two materials: SiO2 (n1 =

1.45) and Ta2O5 (n2 = 2.07). Here we consider the End Test-mass Mirror (ETM). In order to

achieve very high reflectivity, the coating is made of 19 successive pairs of alternating SiO2 and

Ta2O5 layers, all λ/4 in thickness except the top one, which is λ/2. We will refer to this as the

conventional coating. An alternative design has been made to allow the coating to operate at both
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Figure 2.6: Light penetration into the first 10 layers of a 38-layer coating (left panel for conventional
coating and right panel for Advanced LIGO coating). We plot the non-photoelastic part of Tj in
black sold curves, the photoelastic part of T sj in long-dashed red curves, as well as T sj (scaled by rms
value of δlcj with respect to the rms value of δlj , shown in short-dashed blue curves) and T sj (scaled
by rms value of δlsj , shown in dotted purple curves). These plots indicate that for both structures,
light penetration is restricted within the first 10 layers.

1064 nm and 532 nm. We shall refer to this as the Advanced LIGO coating (see Appendix. 2.D) [29].

In Fig. 2.5, we plot real and imaginary parts of ∂ log ρ/∂φj and ∂ log ρ/∂rj [see Eq. (2.13)], for

both conventional and Advanced LIGO coating. Here we note that the real parts of these derivatives

are at the order of 10−6, which means ζ̄ is less than ξ̄ by six orders of magnitude. This, together

with considerations in Sec. 2.2.5, will make amplitude coating noise negligible.

In Eq. (2.27), we have divided contributions to ξ into four terms, the first, zs, is the height of the

coating-substrate interface, while the other three are related to fluctuations in layer thickness, δlj ,

δlcj and δlsj , see Eqs. (2.27)–(2.30). We can illustrate the effect of light penetration by showing the

relative size of these three contributions for each layer. In Figure 2.6, we carry out this illustration,

for conventional coating on the left panel and for Advanced LIGO coating on the right. We use

a solid black line to indicate the non-photoelastic part of T ξj [i.e., terms not containing βj , see

Eq. (2.28)], and we use red-long-dashed, blue-short-dashed, and purple-dotted curves to indicate

the photoelastic part of T ξj , T ξcj
√
〈(δlcj)2〉/〈(δlj)2〉 and T ξsj

√
〈(δlsj)2〉/〈(δlj)2〉, respectively. The

weighting factors,

√
〈(δlcj)2〉/〈(δlj)2〉 =

1√
2

√
1 +

sin 4φj
4φj

, (2.103)

√
〈(δlsj)2〉/〈(δlj)2〉 =

1√
2

√
1− sin 4φj

4φj
, (2.104)
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Figure 2.7: (Color online.) A break-down of thermal noise contributions from silica (upper panels)
and tantala (lower panels) layers, from bulk (left panels) and shear (right panels) losses. Blue curves
correspond to β = −1, black β = 0 and red β = 1. Dashed curves indicate results calculated without
including back-scattering effects.

have been added for T ξcj and T ξsj , respectively, to correct for the fact that δlcj and δlsj have different

r.m.s. values compared to δl. Because of the lack of experimental data, we have assumed βj = −0.4

identically. Note that in order to focus on the effect of light penetration, we have only showed the

first 10 layers.

In the figure, the effect of light penetration into the coating layers is embodied in the deviation

of the black solid curve from unity in the first few layers, and in the existence of the other curves.

Although we cannot perceive the correlation between these contributions, we can clearly appreciate

that only the first few layers are penetrated, and that the total effect of light penetration will be

small. We should also expect the effect of photoelasticity (dashed curves) to be small, and the effect

of back-scattering (which gives rise to T ξcj and T ξsj , blue and purple dashed curves) to be even

smaller.

2.5.3 Thermal noise contributions from different layers

Let us now examine the breakdown of the total coating noise by plotting the coefficients qBj and qSj

in Eq. (2.94). In Fig. 2.7, we plot silica contributions on top panels, and tantala contributions on

lower panels, with bulk contributions on left panels, and shear contributions on right panels. Here

we use the baseline parameters shown in Table 2.2. As it turns out, the results for conventional
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Figure 2.8: (Color online.) Variations in thermal noise contributions when φB/φS is varied. Con-
tributions from tantala layers is shown in blue, those from silica layers are shown in red. The total
thermal noise is in black. Bulk contributions are shown in dotted curves, while shear contributions
are shown in dashed curves.

and Advanced LIGO coatings are hardly distinguishable from each other — therefore we only use

the Advanced LIGO coating. The red curve uses β = −1, black uses β = 0 and blue uses β = 1.

Superimposed onto the solid lines are dashed lines of each type, calculated without introducing the

back-scattering terms; the effect is noticeable for the first few layers.

2.6 Dependence of thermal noise on material parameters

Experimental knowledge of coating materials is limited. Most notably, values of Young’s moduli and

Poisson’s ratios of the coating materials are still uncertain, while only one combination of the two

loss angles have been experimentally measured by ring-down experiments. In this section, we explore

the possible variation in coating Brownian noise, away from the baseline configuration (Table 2.2),

considering these uncertainties. We shall use the Advanced LIGO coating structure mentioned in

the previous section.

2.6.1 Dependence on ratios between loss angles

In the baseline (Table 2.2), we have assumed that φB and φS are equal, but this is only out of our

ignorance: experiments have only been able to determine one particular combination of these two

angles. We now explore the consequence of having these loss angles not equal, while keeping fixed

the combination measured by ring down rate of drum modes [see Eq. (2.110)].

In Figure 2.8, while fixing all other baseline parameters, we plot how each type of thermal noise
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Figure 2.9: (Color online.) Variations in total noise when φB/φS is varied: (solid) total noise,
(dotted) total bulk noise, (dashed) total shear noise. The red (blue) curve corresponds to only
varying φB/φS for tantala (silica). With φB/φS of tantala or silica varying from 0.2 to 5, the change
in total noise is 58.1% and 10.6% respectively.

(i.e., silica vs tantala, bulk vs shear) varies when the ratio φB/φS for both tantala and silica layers

varies between 1/5 and 5. We use blue for tantala, red for silica, dotted for bulk, dashed for shear,

and solid for the total of bulk and shear. In this configuration, tantala layers’ contribution to thermal

noise always dominate over silica layers, mainly due to the higher loss angle. As we vary the ratio

between the loss angles, there is moderate variation of thermal noise. For the dominant tantala, as

φB/φS varies from 1/5 to 5, there is a 30% change in thermal noise, while for silica, the change is a

more significant 68%.

As we see from Fig. 2.8, a larger value of φB/φS gives rise to higher bulk, lower shear, and higher

total noise — this is reasonable because bulk fluctuations drive correlated noise between a layer’s

thickness and the height of coating-substrate interface, while shear fluctuations drive anti-correlated

noise, as shown in Fig. 2.3.

Moreover, the fact that variation is more significant for silica layers can be explained when we

recall that thickness-induced thermal noise is proportional to 1/Yc, while surface-height-induced

thermal noise is proportional to Yc/Y
2
s . For silica layers, Yc is assumed to be equal to Ys, so the

two types of noise being added (bulk) or subtracted (shear) are more comparable in magnitude; by

contrast, the Young’s modulus of tantala layers is significantly higher than that of the substrate,

causing the noise to be dominated by fluctuations of the height of the coating-substrate interface,

therefore making correlations between the two types of noise less important.

In Fig. 2.9, we plot variations in the total noise as we vary φB/φS for silica layers (blue) or

tantala layers (red) only, and fix the other one. It shows that the variance of the tantala’s loss angle
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Figure 2.10: Thermal noise contribution from tantala, as its Young’s modulus deviates from baseline
value, for φB/φS=5 (blue dashed), 2 (blue dotted), 1 (black solid), 1/2 (red dotted), and 1/5 (red
dashed).
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Figure 2.11: Thermal noise contribution from tantala, as its Poisson’s ratio deviates from baseline
value, for φB/φS=5 (blue dashed), 2 (blue dotted), 1 (black solid), 1/2 (red dotted), and 1/5 (red
dashed).
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Figure 2.12: Fractional change in the contribution to thermal noise from all silica layers (left panel)
and all tantala layers (right panel), due to bulk (blue) and shear (red) loss. Dashed lines indicate
results calculated without including back-scattering terms.

will generate larger change of the total noise.

2.6.2 Dependence on Young’s moduli and Poisson’s ratios

Since the Young’s modulus and Poisson’s ratios of coating materials, especially of tantala, are also

uncertain. In Fig. 2.10, we plot variations of tantala thermal noise when its Young’s modulus varies

from the baseline value by up to a factor of 2, for φB/φS = 0.2, 0.5, 1, 2 and 5. The noise is seen to

vary by ∼15% as Young’s modulus varies by a factor of ∼ 2.

We can also explain the way the thermal noise varies as a function of Yc. Starting from the

baseline value, a lower Yc leads to a lower thermal noise, until Yc becomes comparable to Ys (which

we fix at the baseline value, equal to 0.5YTa), and starts to increase again. Such a behavior is

reasonable because thickness noise spectrum and interface noise spectrum are proportional to ∼ 1/Yc

and ∼ Yc/Y
2
s , respectively — as we decrease Yc from the baseline YTa value, we transition from

interface fluctuation being dominant towards equal amount of both noises (which gives a minimum

total noise), and then towards thickness fluctuation becoming dominant.

In Fig. 2.11, we explore the effect of varying coating Poisson’s ratio, for the same values of φB/φS

chosen in Fig. 2.10. In the baseline assumption of φB = φS , when bulk and shear have the same

level of loss, thermal noise does not depend much on Poisson’s ratio. However, if φB/φS turns out

to differ significantly from 1, and if Poisson’s ratio can be larger than the baseline value by more

than ∼ 0.1, then thermal noise can vary by ∼ 10%.
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2.6.3 Dependence on photoelastic coefficients

Photoelastic properties of the coating materials are not yet well known. In Fig. 2.12, we plot the

fractional change in thermal noise, separately for silica (left panel) and tantala (right pane), and for

bulk (blue) and shear (red) losses, when we vary β between -1 and +1. Dashed curves are obtained

ignoring back-scattering effects.

It is interesting to note that for small values of β, the dependence of noise on β has different

trends for bulk and shear contributions. This is also related to the different types of correlations

between thickness and interface height fluctuations. As we can see from the Figure, the effect of

varying β is small, since it only affects thermal noise due to light penetration into the first few layers.

If bulk and shear losses are indeed comparable, then cancelation between these two types of noises

(especially for the more lossy tantala layers) will likely make the photo elastic effect completely

negligible. Even in the case when one particular type of loss dominates, we shall expect at most

∼2% contribution from photo-elasticity of the more lossy tantala — if we further assume that |β| ∼ 1

[right panel of Fig. 2.12].

2.6.4 Optimization of coating structure

Although a standard highly reflective coating consists of λ/4 layers of alternating material capped

by a λ/2 layer, this structure can be modified to lower thermal noise while still maintaining a

high reflectivity for the 1064 nm carrier light, e.g., as shown by Agresti et al. [30]. As their results

have indicated, for baseline coating parameters and neglecting light penetration into the coating

layers [14], the optimal structure is more close to a stack of pairs of λ/8 (Ta2O5) and 3λ/8 (SiO2)

layers, capped by a λ/2 (SiO2) layer. This alternative coating structure shortens the total thickness

of the more lossy tantala layers, while maintaining a high reflectivity for the light. The Advanced

LIGO type coating given in Appendix 2.D, on the other hand, has been optimized considering

reflectivity at both 1064 nm and 532 nm, as well as thermal noise — although light penetration into

the layers have not been considered.

In this section, we carry out a numerical optimization taking penetration into account. We first

fix the number N of layers (N is even, so we have N/2 pairs), and then for N , we use the Lagrange

multiplier method to search for the constrained minimum of Sth, fixing T1064 and T532 (namely the

power transmissivity, 1 − |ρ|2 assuming the coating is lossless, evaluated at 1064 nm and 532 nm,

respectively). The quantity we seek to minimize (or, the cost function) is

y ≡
√
Sth + µ1T1064 + µ2(T532 − 5%)2. (2.105)

As we vary µ1 and µ2 and minimizing y, we obtain the constrained minimum of
√
Sth for different

pairs of (T532, T1064). The aim is to obtain a series of coating configurations with approximately 5%
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transitivity for 532 nm, and with minimized thermal noise for a variable 3 – 20 ppm transmissivity

for 1064 nm. (Note that the choice of the cost function contains a certain level of arbitrariness.)

Since we are going to carry out minimization for a large number of multipliers over a large number

of degrees of freedom, we have chosen to proceed gradually allowing only the first n pairs and last

n pairs of layers to vary, while maintaining the same pair structure for N/2− n pairs in the middle

(repeating doublets). In other words, our coating structure looks like:

free︸ ︷︷ ︸
2n layers

repeating pair︸ ︷︷ ︸
N − 2n layers

free︸ ︷︷ ︸
2n layers

.

In this work, we found that it suffices to choose n = 2 (which corresponds to optimizing over 10

parameters); further increasing n does not lead to noticeable improvements. During our numerical

optimization, we have adopted the downhill simplex method [31, 32].

target Resulting Coating Structure
√
Sopt

th

√
S
λ/4
th

φB/φS N First 4 layers Repeated Pair Last 4 layers φB
φS

= 1
5

φB
φS

= 1 φB
φS

= 5
1/5 42 0.0479 0.1581 0.3430 0.1760 0.2919 0.1897 0.3164 0.1738 0.3178 0.1627 5.01 6.64 8.81 5.35
1 42 0.1020 0.1250 0.3267 0.1917 0.2911 0.1914 0.3110 0.1752 0.3196 0.1609 5.02 6.64 8.81 7.05
5 42 0.1118 0.0968 0.3353 0.1882 0.2893 0.1939 0.3135 0.1673 0.3199 0.1662 5.02 6.64 8.81 9.33

Table 2.3: Results of coating-structure optimization. We list optimized coating structures for T1064 =
5 ppm and T532 = 5%, for three target values of φB/φS while fixing the measured effective loss angle
φD [Eq. (2.56)] and other baseline material parameters [Table 2.2]. Thickness of coating layers are
given in units of wavelength (for 1064 nm light). For each optimized coating structure, thermal noise
is calculated separately for the same three values of φB/φS , and given in units of 10−21 m/

√
Hz

(thermal noise for the target φB/φS is given in boldface, and boldface numbers should be the
minimum within its column); thermal noise spectra of the 38-layer λ/4 stack assuming the target
φB/φS are also listed for comparison.
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Figure 2.13: Optimized thermal noise versus transmissivity at 1064 nm, for a coating of 38 (red), 40
(blue), and 42 (purple) layers.
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Results for baseline material parameters (Table. 2.2) and N =38, 40 and 42 have been shown

in Figure 2.13. This figure indicates that different numbers of layers should be chosen for different

target T1064 – more layers are required for lower transmissivity (higher reflectivity). Overall, the

optimal thermal noise varies by around ∼ 10% as for T1064 from 3 to 20 ppm. In particular, for the

standard Advanced LIGO requirement of 5 ppm (see first column of Table 2.3), 42 layers are found

to be optimal. This is two more pairs or four more layers than the 38-layer λ/4 doublet, which has

the minimum number of layers to reach 5 ppm. The larger number of layers here gets lower thermal

noise (by 6 %) because the more lossy tantala layers are shortened, and the less lossy silica layers

lengthened.

We have further optimized the structure when the ratio φB/φS is different from 1, while keeping

fixed the effective loss angle measured so far — as done in Sec. 2.6.1. For T1064 = 5 ppm, we have

listed results of optimized coating structure and thermal noise in the second and third columns of

Table 2.3. The extent of variation found here is comparable to those obtained in Sec. 2.6.1 using a

standard coating structure without optimization: the optimal coating structures consistently lower

thermal noise by about 6%. In addition, as shown in Table 2.3, the optimal coating structure is

robust against changes in φB/φS : structure obtained for any one of the values of the ratio is already

almost optimal for all other ratios.

2.7 Measurements of loss angles

In this section, we study possible mechanical ringdown experiments that can be used to measure

independently the bulk and shear loss angles, φB and φS of a coating material.

In a ringdown experiment, a sample with a high intrinsic Q is coated with a thin layer of the

coating material in question. Due to the mechanical losses in the coating, the quality factor of

the mechanical eigenmodes of the sample will be reduced [33, 34]. More specifically, for the nth

eigenmode with resonant frequency fn, if an e-folding decay time of τn is measured, then the quality

factor is

Qn = πfnτn , (2.106)

while correspondingly, the loss angle is given by

φ(fn) = 1/Qn , (2.107)

which is equal to the fraction of energy dissipated per radian.
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Figure 2.14: Rectangular shaped thin plate (a×b×c) with thin coating (thickness d): c� a, b; d� c.
The transverse vibration mode is considered in this case

2.7.1 Bending modes of a thin rectangular plate

Figure 2.14 shows the schematic geometry of a rectangularly shaped sample, in which a thin coating

layer with thickness d is deposited on a rectangular plate with dimensions a× b× c (c� a, b), and d

is much less than c. If we pay attention only to the bending (or, in other words, flexing) oscillations

of the plate, the amount of energy stored in the coating layer, in the form of bulk and shear energies

UB and US , as a fraction of the entire energy U , can be calculated as

UB
U

=
d

3c
Yc
Ys

(1− σ2
s)(1− 2σc)

(1− σc)2
, (2.108)

US
U

=
2d
3c
Yc
Ys

(1− σ2
s)(1− σc + σ2

c )
(1− σc)2(1 + σc)

. (2.109)

Using Eq. (2.58), the total loss angle of the sample is

φ = φsub

+
d

c

Yc
Ys

1− σ2
s

1− σ2
c

[
φB(1− σc − 2σ2

c ) + 2φS(1− σc + σ2
c )

3(1− σc)

]
= φsub +

|Dc|
|Ds|

φD. (2.110)

It is not surprising that only the 2-D flexural rigidity D and its imaginary part appear in Eq. (2.110).

During the bending of a thin plate with thin coating, both the substrate and the coating are described

by the 2-D flexural rigidity, first introduced in Sec. 2.3.2 [see Eqs. (2.55) and (2.56) and Sec. 13 of

Ref. [18]]. Because they both bend in the same way, the ratio of their elastic energies is given

directly by the ratio of their flexural rigidities (each proportional to their thickness). The fraction

of total energy lost in the coating needs to be multiplied by φD (of the coating material), and hence

Eq. (2.110). As the oscillation of a thicker object is considered, as long as the coating only bends

up and down (e.g., in a drum mode), then we expect the coating contribution to the loss angle to

still be proportional to φD.
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Figure 2.15: Thin cylindrical shell with thin coating outside. The first torsional eigenmodes of such
a shell can be used to measure the shear loss angle of the coating.

As it turns out, the part of coating thermal noise due to bending of the coating-substrate interface

[Szszs in Eq. (2.87b)] also depends directly on φD, because the loss mechanism in this case is the

same as during the oscillation of a drum mode — one only applies a perpendicular force from below

the coating layer, while keeping Tzz = 0 within the layer.

It proves less straightforward to connect the thickness fluctuation part of thermal noise [Suzuz

in Eq. (2.87a)] to the effective loss angle of either Y or D. Although the loss mechanism here is

due to the compressing of a thin membrane from both sides, this membrane is not characterized by

vanishing Txx and Tyy, because the coating is attached to a substrate which provides restoring forces

along the transverse (x and y) directions. However, in the case when the Poisson ratio σc of the

coating vanishes, the thickness fluctuation does depend on the loss angle of the Young’s modulus.

For our baseline parameters, mechanical dissipation is mostly contributed by the tantala layers,

and because the Young’s modulus of the tantala coating material is assumed to be much greater

than that of the substrate, the largest contribution to the LIGO mirrors’ Brownian noise is bending

noise Szszs . This explains why the noise only varies by 30% (as noted in Sec. 2.6.1) even if no further

measurements on the other loss angle is made.

2.7.2 Torsional modes of a coated hollow cylinder

Here we propose an approach with which we can measure another combination of loss angles. We

consider a cylindrical shell with a thin, uniform coating layer outside, as shown in Fig. 2.15(c� R,

d� c). In this configuration, the surface deformations produce strains in the plane of shell according

to the Donnell shell theory [35]. Here we assumed that there is only angular displacement in the

shell, which means the longitudinal position of the cross section won’t change. For a torsion mode,
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we only have shear strain energy, the expressions are given by

UB
U

= 0 (2.111)

US
U

=
d

c

Yc
Ys

(1 + σs)
(1 + σc)

. (2.112)

As a consequence, the total loss angle can be expressed as

φ = φsub +
d

c

Yc
Ys

(1 + σs)
(1 + σc)

φS . (2.113)

For a cylinder shell, according to the Donnell shell theory, the natural frequency of the n-th

torsional mode is given by [36]

fn =
n

2
3
2L

[
Y

ρ(1 + σ)

]1/2

. (2.114)

A more accurate calculation may be found by using the Flügge shell theory [37].

Using the values from Table 2.4, we can estimate the resonant frequency to be 9.2 kHz. The

coating contribution to loss angle, assuming a φS of at least 10−5, would be at least the order of

10−6, which seems plausible to be extracted from ring-down measurements.

Table 2.4: Example parameters of a thin, uniformly coated cylindrical shell (SiO2)

L R c d
unit(mm) 200 50 1 0.04

With the measurement of both the thin plate and cylinder shell, we can obtain φB and φS of the

coating.

2.8 Conclusions

In this paper, we applied the fluctuation-dissipation theorem to obtain a full set of correlation

functions (2.87a)–(2.87c) of Brownian thermal fluctuations of a multi-layer dielectric coating. In

particular, we have related fluctuations of the coating thickness and the coating-substrate interface

to independent bulk and shear thermal stresses associated with each coating layer. While those

stresses not only induce thickness fluctuations of the layers themselves, they bend the coating-

substrate interface and this bending noise had not been previously appreciated intuitively, although

its effect has been incorporated into formulas, e.g., in Ref. [14]. As a result, we found that although

thickness fluctuations of different coating layers are independent of each other, they each have

partial correlations with the height fluctuations of the coating-substrate interface. Moreover, bulk

loss creates a positive correlation between them, while shear loss creates a negative correlation.

The entire picture is succinctly written mathematically in Eqs. (2.89) and (2.90). This coherence
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material
parameter range

uncertainty
in
√
Sx

for details,
see

φB/φS 0.2 – 51 ±37% Sec. 2.6.1, Figs. 2.8, 2.9.
YTa factor of ∼ 2 ∼60% Sec. 2.6.2, Fig. 2.10.

σTa ± 0.2
up to 10% if
φB/φS 6= 1 Sec. 2.6.2, Fig. 2.11.

β −1 < β < +1 ±1% 2 Sec. 2.6.3, Fig. 2.12.

Table 2.5: Levels of thermal noise uncertainty caused by parameter uncertainties.

structure then gives coating Brownian noise in Eq. (2.93). Apart from having provided a pedagogical

and systematic derivation of these noise components, the most important conceptual consequence

of our work is to point out an uncertainty in coating loss angles. We have also incorporated the

photo-elastic effect, the reflectivity fluctuations of the interfaces within the multilayer coating, and

considered the effect of amplitude modulations caused by Brownian thermal noise. All of these

turned out to be rather unimportant.

We have applied our formalism to mirrors that are to be used in Advanced LIGO detectors.

As estimated in Sec. 2.6 and summarized in Table 2.5 (calculated for a typical candidate for the

Advanced LIGO end test-mass mirror coating configuration), parameter uncertainties could lead to

non-negligible corrections to coating Brownian noise calculations. The biggest uncertainties actually

arise from the elastic moduli of coating materials — for example, current uncertainties in Young’s

modulus of the tantala coating material might lead up to 60% increase in thermal noise. Although

photo-elastic coefficients for our coating materials are very uncertain, they do not significantly affect

thermal noise since light does not penetrate through many layers.

It is rather remarkable that our lack of experimental knowledge about the loss angles, beyond

what we had already obtained from the ring down of drum modes, would not give rise to a higher

uncertainty in thermal noise. This is rather serendipitous, considering our path of understanding

of the problem: for the baseline parameters of Advanced LIGO, the highest contribution to coating

Brownian noise arises from the coating-substrate bending noise caused by losses in tantala layers,

because these layers are much more lossy than the silica layers, and have been assumed to have

a much higher Young’s modulus than the substrate material. This bending noise, first elaborated

by this work, turns out to be associated with the loss angle of the 2-D flexural rigidity, which in

turn is directly connected to the decay of the drum modes of a thinly coated sample. This means

the currently existing program [14] has been measuring the predominant loss angle all along, and

has been compatible with direct measurements of coating thermal noise [15]. Nevertheless, the level

of uncertainty noted in our study still warrants further experiments seeking the other loss angle,

e.g., as outlined in Sec. 2.7. In addition, since future gravitational-wave detectors may use different

substrate and coating materials, situations may arise when the loss angle measured now does not

correlate with the total coating brownian noise.
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At this moment, it is worth looking once more at the previously used loss angles, φ‖ and φ⊥ —

although they are mathematically ill defined, they do correctly reflect the existence of two channels

of loss. The φ‖ was meant to characterize losses incurred by the x-y deformations of the coating

measurable when we do not compress the coating but instead drive its deformations using drum

modes of the substrate. This loss angle is now replaced by the (mathematically well-defined) imag-

inary part of the flexural rigidity, for which extensive measurements have already been carried out.

The φ⊥ was meant to characterize the losses incurred by compressing the coating layers. This

has not been measured because it had not been obvious how to easily excite this mode of coating

deformation (the most obvious way would be to compress the coating layer, but that is difficult);

however, because the Young’s modulus of the coating is much larger than that of the substrate, this

difficult-to-measure loss angle should not contribute as much to the total coating noise. This said,

in this work, we do come up with ways to measure both loss angles, φS and φB , without having to

compress the coating layers — but instead by exciting different modes of substrate deformation. Of

course, this is only possible because we have assumed that the material is isotropic — otherwise we

may have to compress the coating to directly access the loss induced by such a deformation.

On the other hand, one may think of the possibilities of using substrate materials with higher

Young’s modulus to reduce the bending noise. Sapphire and Silicon are two viable choices because

they both have higher Young’s modulus than tantala. Using Eq. (2.87a)–(2.87c), it is straightforward

to estimate the new coating brownian noise while replacing the substrate material by sapphire or

silicon but keeping the same Advanced LIGO coating design. It turns out that the coating brownian

noise will be reduced to 35% of its original power spectra value if we use silicon substrate or 32%

if we use sapphire. However, there are other disadvantages for sapphire or silicon substrate that

prevent us from using them for aLIGO mirrors. The main problem is that they both have very

high thermal conductivity - much higher than fused silica. As a result, the substrate thermoelastic

noise is one of the important noise source for both materials. For instance, if the aLIGO mirror

was made of sapphire, the bulk thermoelastic noise would have about the same magnitude as the

coating Brownian noise at 100 Hz. As for silicon substrate, the bulk thermoelastic noise is more

than twice the size of its corresponding coating Brownian noise because silicon has even higher

thermal conductivity than sapphire. One may refer to [40] for detailed methods to calculate bulk

thermoelastic noise. Setting up the experiment in a cryogenic enviroment is a possible way to reduce

the thermooptic noise.

Furthermore, our formula Eq. (2.93) can serve as a starting point for optimizing the material

choice and structure design of the multi-layer coating taking light penetration effects into account.

Our numerical results in Sec. 2.6.4 (see Table 2.3) have shown that optimization of the coating

structure consistently offers a ∼ 6% decrease in thermal noise, regardless of φB/φS . In fact, the

optimal structure for these ratios are quite similar, and configurations obtained for each presumed
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Coating
Ref. [14]

(no light penetration)
Ref. [17]

(β = 0 and no back scattering) This work

λ/4 7.18 7.08 7.08
Advanced LIGO 6.93 6.82 6.83

Optimal 6.73 6.62 6.64

Table 2.6: Comparison of thermal noise spectral density (assuming φB = φS and evaluated at 200 Hz,
in units of 10−21m/

√
Hz) between different works.

ratio of φB/φS are shown to work for other ratios interchangeably.

Upon completion of this manuscript, we noted that the optimization of the coating structure

for the case assuming φB = φS (and β = 0) has been carried out by Kondratiev, Gurkovsky and

Gorodetsky [17]. [We note that their formalism is capable to treating β 6= 0 and φB 6= φS , as well

as back-scattering induced by photo elasticity, but they did not explore the impact of these effects

in their optimization.] Our results are compatible with theirs, if we also use these restrictions in

parameter space and ignore back-scattering.

A comparison between our result, Kondratiev et al., and Harry et al. [14] (which ignores light

penetration into the layers, and also effectively assumes φS = φB) would therefore illustrate the

effects caused by ignoring photoelasticity and further ignoring light penetration into the coating.

This is shown in Table 2.6. This again confirms that for total coating thermal noise, light penetra-

tion causes noticeable difference in coating thermal noise, while photoelasticity causes a negligible

difference.
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2.A Fluctuations of the complex reflectivity due to refractive

index fluctuations

Brownian noise is not only caused by random strains, but also by the refractive-index fluctuations

induced by such strains, through the photoelastic effect [Cf. Eqs. (2.13) and (2.14)]. We will quantify

this contribution in this section.

2.A.1 The photoelastic effect

If we denote the displacement of coating mass elements as (ux, uy, uz), then the relative coating-

thickness change from its equilibrium value can be written as

δl/l = uz,z (2.115)

and the relative transverse area expansion can be written as

δA/A = ux,x + uy,y. (2.116)

If we denote 2-dimensional displacement vectors along the x-y plane as ~u = (ux, uy), and two-

dimensional gradient as ~∇, then we have

δA/A = ux,x + uy,y = ~∇ · ~u. (2.117)

We can then write the change in refractive index as

δn =
[

∂n

∂ log l

]
Aj

δl

l
+
[

∂n

∂ logA

]
lj

~∇ · ~u (2.118)

where ∂n/∂ log l and ∂n/∂ logA only depend on material properties. The two terms on the right-

hand side of Eq. (2.118) represent refractive index change driven by relative length and area changes,

respectively. The first term is given by [28]

βL =
[

∂n

∂ log l

]
A

= −1
2
n3CY (2.119)

where C is the photoelastic stress constant, Y is the Young’s modulus. For silica, CY ≈ 0.27,

therefore βL
SiO2

= −0.41. The photoelastic coefficient can also be written as

β = −1
2
n3pij (2.120)
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n1
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n3

r12

r23

∆lφ2

Figure 2.16: Light propagation across a thin layer (thickness of ∆l) with fluctuating refractive index
(from a uniform n2 to an average of n2 + δn2 within this thin layer). The propagation matrix
corresponding to this structure is given by Eq. (2.122).

where pij is the photo elastic tensor [39]. Some experiments have been done to measure this coefficient

for tantala [27]. Empirically, the value of pij varies from −0.15 to 0.45 for Ta2O5 thin film fabricated

in different ways. Here for the longitudinal photoelasticity, βL
Ta2O5

, we use −0.5 in our numerical

calculation.

We shall next obtain formulas that will allow us to convert fluctuations in n into fluctuations in

the complex reflectivity of the multi-layer coating.

2.A.2 Fluctuations in an infinitesimally thin layer

Because the coating is very thin compared with the Rayleigh associated with beam spot size, we

model the phase shift of light gained during propagation along z as only determined the local

refractive index. If the refractive index δn at a particular location δn(z) is driven by longitudinal

strain uzz at that location, the fact that 〈uzz(z′)uzz(z′′)〉 ∝ δ(z′ − z′′) causes concern, because this

indicates a high variance of δn at any given single point z, with a magnitude which is formally

infinity. If we naively consider the reflection of light across any interface within the coating, e.g., at

z = z0, then the independent and high-magnitude fluctuations of n(z0−) and n(z0+) would lead to

a dramatic fluctuation in the reflectivity

r =
n(z0−)− n(z0+)
n(z0+) + n(z0−)

(2.121)

because, naively, n(z0−) and n(z0+) are uncorrelated and both have a variance of infinity.

However, two effects prevent the above divergence from actually taking place: (i) there is a finite

correlation length for strain fluctuations (although not explicitly given in our current analysis) and
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(ii) propagation of light averages over those fluctuations. The most convenient way to circumvent

the above divergence is to always consider light propagation across a finite layer of materials. As

shown in Fig. 2.16, let us consider three regions in the coating, with refractive indices n1, n2 and n3

separated by two interfaces, with the length of the n2 layer given by ∆l — and here we only consider

fluctuations in n2. The entire transfer matrix (from below to above, in Fig. 2.16) is given by

M = Rr12Tφ2Rr23 (2.122)

following the same convention as in Sec. 2.2.3. Suppose the originally uniform n2 now fluctuates,

and after averaging over this thin layer, gives a mean refractive index of n2 + δn2, we use this as the

refractive index of the entire layer, and then have

δM =
n2√
n1n3

 i −i

i −i

 δn2 · k0∆l (2.123)

Note that when ∆l → 0, δn2 · ∆l has a variance that approaches zero, and therefore δM is an

infinitesimal matrix, and there is no divergence. [Note that when ∆l is small enough, δn2 has a

variance that is comparable to the total variance of n, which is finite — therefore δn2 ·∆l ∼ O(∆l).]

The physical meaning of Eq. (2.123) is the following: a random field of refractive index not only

gives rise to a random phase shift (diagonal term), but also gives rise to a random reflectivity (non-

diagonal term). The latter term is an additional contribution that has been ignored by previous

analytical calculations.

2.A.3 The entire coating stack

Now we are ready to consider the entire multi-layer coating. Let us first focus on layer j of the

coating stack, bounded by two interfaces with reflectivities rj−1 and rj , respectively. Since the total

transfer matrix of the entire stack is written as

M = · · ·Tφj+1RrjTφjRrj−1 · · · , (2.124)

the reflectivity fluctuations with this layer will contribute to the matrix Tφj above, which in turn

will contribute to fluctuations in the entire M. Consider a dz-thick sub-layer located at distance z′

from the rj boundary (lower boundary in Fig. 2.1), therefore at coordinate location z = zj+1 + z′

and integrate, we have

Tφj → Tφj + k0

∫ lj

0

δn(zj+1 + z)Tk0njz

 i −i

i −i

Tk0nj(lj−z) dz
′
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=

 1 δηj

δη∗j 1

Tφj+k0δn̄j lj (2.125)

where

δn̄j =
1
lj

∫ lj

0

δnj(zj+1 + z)dz (2.126)

and

δηj = −ik0

∫
δnj(zj+1 + z)e2ik0njzdz. (2.127)

Here we have defined

zj ≡
N∑
n=j

ln (2.128)

to be the z coordinate of the top surface of layer j.

We need to adapt the new transfer matrix into the old form, but with modified {rj} and {φj}.

From Eq. (2.125), since δηj is complex, we need to adjust φj , rj , as well as φj+1:

Tφj+1RrjTφj

→ Tφj+1+δψ+
j

Rrj+δrjTφj+k0ljδn̄j+δψ
−
j
. (2.129)

Here we have defined in addition

δrj = −t2jk0

∫ lj

0

δnj(zj+1 + z) sin(2k0njz)dz (2.130)

and

δψ±j =
r2
j ± 1
2rj

k0

∫ lj

0

δnj(zj+1 + z) cos(2k0njz)dz. (2.131)

As we consider photoelastic noise of all the layers together, δrj in Eq. (2.130) needs to be used for

the effective fluctuation in reflectivity of each layer, while

δφj = k0ljδn̄j + δψ−j + δψ+
j−1 (2.132)

should be used as the total fluctuation in the phase shift of each layer.
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2.A.4 Unimportance of transverse fluctuations

Connecting with the photoelastic effect, we have explicitly

δnj(z, ~x) = βLj uzz(z, ~x) + βTj ~∇ · ~u. (2.133)

Here the vector ~u is the two-dimensional displacement vector (ux, uy) and ~∇· is the 2-D diver-

gence along the x-y plane. For terms that contain the transverse vector ~u, we note that when a

weighted average of ξ is taken over the mirror surface [see Sec. 2.2.4], they yield the following type

of contribution

∫
M

I(~x)
(
~∇ · ~u

)
d2~x

=
∫
∂M

dl(~n · ~uI) +
∫
M

~u · ~∇I d2~x

=
∫
M

~u · ~∇I d2~x. (2.134)

Here M stands for the 2-d region occupied by the beam, and ∂M is the boundary on which power

vanishes. As a consequence, the first term is zero according to the boundary condition, while the

second term gains a factor of (li/w0) with respect to other types of coating Brownian noise; here lj is

the thickness of the j-th layer, and w0 the beam spot size. Since we always assume coating thickness

li to be much smaller than the beam radius rbeam, we can neglect refractive index fluctuation due

to area fluctuation.

2.B Elastic deformations In the coating

Throughout this paper, we assume the mirror substrate to be a half infinite space. We establish

a Cartesian coordinate system, with (x, y) directions along the coating-substrate interface, and z

direction orthogonal to the mirror surface (in the elasticity problem, we also ignore mirror curvature).

This allows us to calculate elastic deformations in the spatial frequency domain. We will also assume

the coating thickness to be much less than the beam spot size.

We denote the displacement along x, y and z directions as ux, uy and uz. It is then straightfor-

ward to express the 3× 3 strain tensor S in terms of their derivatives, and stress tensor T in terms

of Hooke’s Law:

Sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.135)

Θ = Sii, (2.136)

Σij =
1
2

[Sij + Sji]−
1
3
δijΘ, (2.137)
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Figure 2.17: Sample with single layer coating, force is applied perpendicular to the air/coating
interface.

Tij = −KΘδij − 2µΣij . (2.138)

Here we have xj = (x, y, z), with Latin indices (like i and j) running from 1 to 3. Within any layer,

it is straightforward to write down the most general solution of the elasticity equilibrium equation

Tij,j = 0 (2.139)

as

ũx = ikx[(α̃+ + κzβ̃+)eκz + (α̃− − κzβ̃−)e−κz]

− iky[γ̃+e
κz + γ̃−e

−κz], (2.140)

ũy = iky[(α̃+ + κzβ̃+)eκz + (α̃− − κzβ̃−)e−κz]

+ ikx[γ̃+e
κz + γ̃−e

−κz], (2.141)

ũz = −κ[α̃+ + β̃+(−3 + 4σ + κz)]eκz

+ κ[α̃− + β̃−(−3 + 4σ − κz)]e−κz, (2.142)

where tilde denotes quantities in the x-y spatial-frequency domain, and κ =
√
k2
x + k2

y. Namely

ux(x, y, z) =
∫
dkxdky
(2π)2

ũ(kx, ky, z)e−i(kxx+kyy). (2.143)

We now consider a single-layer coating on a substrate (see Fig. 2.17), with the coating-substrate

interface located at z = 0, and the coating-air interface at z = l. Suppose there is a force profile

F (x, y) exerted perpendicular to the surface at z = d, 0 < d < l, and let us calculate the elastic
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deformation field caused by F . The entire system is now divided into three regions, (a): d < z < l,

(b): 0 < z < d, and (s): z < 0. At the interfaces, we obtain the following 15 boundary conditions,

T aiz = 0 , z = l , (2.144)

T axz = T bxz , T
a
yz = T byz , T

b
zz − T azz = F , z = d , (2.145)

uaj = ubj , z = d , (2.146)

T biz = 0 , ubj = usj , z = 0 , (2.147)

as well as the condition that when z → −∞, usj → 0 (which leads to α̃s− = β̃s− = γ̃s− = 0). We are

left with 15 fields

(α̃a±, β̃
a
±, γ̃

a
±, α̃

b
±, β̃

b
±, γ̃

b
±, α̃

s
+, β̃

s
+, γ̃

s
+) (2.148)

which can be solved from the 15 boundary conditions. Assuming κd� 1 and κl � 1, we find that

all γ̃ vanish, and

α̃a+ =
F (1 + σs)[2− 3σs + σc(−3 + 4σs)]

2Ysκ2(−1 + σc)
, (2.149)

α̃a− =
F (σc − σs)(1 + σs)

2Ysκ2(−1 + σc)
, (2.150)

β̃a+ = −F (1 + σs)(−3 + 4σs)
4Ysκ2(−1 + σc)

, (2.151)

β̃a− =
F (1 + σs)

4Ysκ2(1− σc)
, (2.152)

α̃b+ =
F (1 + σs)[2− 3σs + σc(−3 + 4σs)]

2Ysκ2(−1 + σc)
, (2.153)

α̃b− =
F (σc − σs)(1 + σs)

2Ysκ2(−1 + σc)
, (2.154)

β̃b+ =
F [Ys(1 + σ)− Yc(−3 + σs + 4σ2

s)]
4Y Ysκ2(−1 + σc)

, (2.155)

β̃b− =
F [Ys(1 + σc)− Yc(1 + σs)]

4Y Ysκ2(−1 + σc)
, (2.156)

α̃s+ =
F (1 + σs)(−1 + 2σs)

Ysκ2
, (2.157)

β̃s+ = −F (1 + σs)
Ysκ2

. (2.158)

We can therefore obtain the stain tensor in the frequency domain for the coating. The non-zero

elements for region (a) are given by

Saxx =
Fk2

x(−1 + 2σs)(1 + σ2
s)

Ysκ2
, (2.159)

Sayy =
Fk2

y(−1 + 2σs)(1 + σ2
s)

Ysκ2
, (2.160)
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Saxy = Syx =
Fkxky(−1 + 2σs)(1 + σ2

s)
Ysκ2

, (2.161)

Sazz = F
σc(−1 + σs + 2σ2

s)
Ys(−1 + σc)

, (2.162)

while those in region (b) are given by

Sbxx =
Fk2

x(−1 + 2σs)(1 + σ2
s)

Ysκ2
, (2.163)

Sbyy =
Fk2

y(−1 + 2σs)(1 + σ2
s)

Ysκ2
, (2.164)

Sbxy = Syx =
Fkxky(−1 + 2σs)(1 + σ2

s)
Ysκ2

, (2.165)

Sbzz = F

[
−(1 + 2σc)

Yc
− σc(−1 + σs + 2σ2

s)
Ys(1− σc)

]
. (2.166)

Using linear superposition, as well as taking the appropriate limits of the above solution, it is

straightforward to obtain elastic deformations in all the scenarios in Sec. 2.4, with forces applied on

various surfaces, that are used to obtain cross spectra between different noises.

2.C Definition of loss angle

In the past [14], the coating loss angle was defined in association with the parallel and perpendicular

coating strains. The equation is written as

φcoated = φsub +
δU‖d

U
φ‖ +

δU⊥d

U
φ⊥ (2.167)

where δU‖ and δU⊥ are the energy density in parallel and perpendicular coating strains

δU‖ =
∫
s

1
2

(SxxTxx + SyyTyy) dxdy, (2.168)

δU⊥ =
∫
s

1
2
SzzTzz dxdy, (2.169)

and where Sij are the strains and Tij are the stresses. While such a definition seems to be compatible

with the symmetry of the system, the quantities δU‖ and δU⊥ cannot be used as energy, since in

certain scenarios they each can become negative.

For example, we consider cube with surface area of each side A (poisson ratio σ, Young’s modulus

Y), and we uniformly apply two pairs of forces, one pair with magnitude f on opposite yz planes, the

other with magnitude F on opposite xy planes, with f � F , as shown in Figure 2.18. According to

the definition of Young’s modulus and Poisson’s ratio, up to leading order in f/F the non-vanishing
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strains are,

Szz = −F/A
Y

, Sxx = Syy = σ
F/A

Y
. (2.170)

On the other hand, for stress, we have, up to leading order in f/F ,

Txx = −f/A , Tyy = 0 , Tzz = −F/A . (2.171)

As a consequence, we have

δU‖ = SxxTxx + SyyTyy = −σfF/(A2Y ) < 0 (2.172)

which means δU‖ is not a reasonable candidate for energy, at least with σ 6= 0. Since it is also true

that SxxTxx < 0 we will arrive at

δU⊥ = SzzTzz < 0 (2.173)

if we take this configuration and rotate by 90 degrees around the y axis, such that x rotates into z.

F

F

f f

x

z

Figure 2.18: Solid cube with two pairs of forces applied on the side: f � F .

One reasonable way of defining the loss angle is to derive it from the fundamental elastic energy

equation. The general form of the stored elastic energy density U can be written as

U =
1
2
KΘ2 + µΣijΣij , (2.174)

UB =
1
2
KΘ2, (2.175)

US = µΣijΣij , (2.176)

where K is called the bulk modulus and µ is the shear modulus. In the calculation, we use Young’s
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j lj
1–5 0.497325 0.208175 0.289623 0.237274 0.250176
6–10 0.245330 0.249806 0.240129 0.270968 0.224129
11–15 0.251081 0.259888 0.260826 0.213460 0.290468
16–20 0.214524 0.273240 0.230905 0.259924 0.230020
21–25 0.275429 0.233086 0.270385 0.208581 0.273798
26–30 0.249741 0.267864 0.204698 0.292317 0.209712
31–35 0.278560 0.220264 0.282694 0.221687 0.268559
36–38 0.233460 0.270419 0.223050

Table 2.7: Structure of an Advanced LIGO-like coating optimized jointly for dichroic operation
and thermal noise. Thickness of each layer, given in units of wavelength (for light with vacuum-
wavelength of 1064 nm), are listed here for the 38 layers. Note that l1,3,5,... are SiO2 layers, while
l2,4,6,... are Ta2O5 layers.

modulus Y and Poisson’s ratio σ instead of K and µ. Their relation is given in Eq. (2.51). The

expansion Θ and shear Σ are both irreducible tensorial parts of the strain tensor S,

Θ = Sii, (2.177)

Σ =
1
2

(Sij + Sji)−
1
3
δijSkk. (2.178)

Note that the expansion and shear energy UB and US are always positive, so it is consistent to define

the loss angles φB and φS .

2.D Advanced LIGO style coating

In Table 2.7, we provide the structure of the coating optimized jointly for dichroic operation and

thermal noise.
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Part II

Topics in macroscopic quantum

mechanics



92

Chapter 3

Open quantum dynamics of
single-photon optomechanical
devices

We study the quantum dynamics of a Michelson interferometer with Fabry-Perot cavity

arms and one movable end mirror, and driven by a single photon — an optomechan-

ical device previously studied by Marshall et al. as a device that searches for gravity

decoherence. We obtain an exact analytical solution for the system’s quantum me-

chanical equations of motion, including details about the exchange of the single photon

between the cavity mode and the external continuum. The resulting time evolution

of the interferometer’s fringe visibility displays interesting new features when the in-

coming photon’s frequency uncertainty is narrower or comparable to the cavity’s line

width — only in the limiting case of much broader-band photon does the result re-

turn to that of Marshall et al., but in this case the photon is not very likely to en-

ter the cavity and interact with the mirror, making the experiment less efficient and

more susceptible to imperfections. In addition, we show that in the strong-coupling

regime, by engineering the incoming photon’s wave function, it is possible to prepare the

movable mirror into an arbitrary quantum state of a multi-dimensional Hilbert space.

Paper preprint by T. Hong, H. Yang, H. Miao and Y. Chen, arXiv:1110.3348

3.1 Introduction

Recently, significant progress has been made in observing quantum effects in macroscopic mechanical

systems [1]. As presented in the work of O’Connell et al. [2], a 6-GHz nano-mechanical oscillator was

cooled down near its quantum ground state with dilution refrigeration, and later prepared into a Fock

state by coupling the oscillator to a superconducting qubit. States with thermal occupation numbers
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below unity have also been achieved with cavity-assisted radiation-pressure cooling, by Teufel et al. [3]

and Safavi-Naeini et al. [4]. Further more, as shown by Gupta et al. [5] and Thompson et al. [6], it

is possible to couple a single photon strongly with a mechanical degree of freedom, such that the

momentum imparted by a single photon to a mechanical degree of freedom can be comparable to

its initial momentum uncertainty.

In this paper, we study the open quantum dynamics of a nonlinear optomechanical device, namely

a Michelson interferometer with Fabry-Perot cavities, one of them with a movable end mirror (acting

as the mechanical oscillator). This device, driven by a single photon, was proposed by Marshall et

al. [7, 8] as an experiment to search for Penrose’s conjecture of gravity decoherence [9]. Such single-

photon driven devices have also been more recently studied by Rabl [10] and Nunnenkamp et al. [11].

By taking advantage of the conserved quantity—the total number of photons in the system, we can

obtain exact solutions to this system’s quantum dynamics. Unlike Rabl and Nunnenkamp et al.,

who studied systematically the statistics of the out-going photons and the steady state reached by

the mechanical oscillator, we focus instead on the fringe visibility of a single-photon interferometer,

and the conditional quantum state of the mechanical oscillator upon the detection of an out-going

photon.

The single-photon Michelson interferometer is shown schematically in Fig. 3.1, in which the port

on the left is the input port, towards which the single photon is injected; the photon, after interacting

with the Michelson interferometer, may exit either from the input port, or from the other open port.

Each of the two arms consists of a high-finesse optical cavity; the setup of these two cavities are

identical, except one of them has a movable end mirror, which acts as the mechanical oscillator that

interacts with light in the cavity. The 50/50 beam splitter splits the quantum state of the entire

mirror-light system into two components, one of them corresponding to the photon entering the fixed

cavity (and leaving the oscillator at its initial state), the other corresponding to the photon entering

the movable cavity (thereby modifying the oscillator’s state through radiation pressure). We will

set the displacement zero-point of the interferometer to have equal arm lengths, with each arm at

an equal distance to the beamsplitter. At such a zero point, the photon injected from the input

port will return to the input port with unit probability. Therefore we also call the input port the

“bright port” and the other open port the “dark port”. We can artificially tune the interferometer

away from its zero point, e.g., by adjusting the fixed microscopic distances between the front mirrors

and the beamsplitter. This changes the relative phase ϕ between the two superimposed components

in the wave function of the entire system; the resulting variations in the probability density of the

photon exiting the bright port at time t, quantified by the fringe visibility, is a measure of the degree

of coherence between these two components at this moment in time.

In the case of low environmental temperature and in the absence of unexpected mechanisms of

decoherence, Marshall et al. showed that the visibility will revive completely for every half of the
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mechanical oscillation period. In obtaining such a result, they assumed the photon was initially

already in either of the two cavity arms, and considered a closed evolution of the cavity mode

and the mechanical oscillator. This assumption has also been widely used in analysis of such a

nonlinear optomechanical device, e.g., by Bose et al. [12] and subsequent analysis of the Marshall

experiment [7] by Bassi et al [13].

Figure 3.1: (Color online.) A schematic showing the single-photon interferometer. The external
single photon excites the cavity mode which in turn interacts with the movable end mirror via
radiation pressure. This is adapted from Fig. 1 of Ref. [7] with small modifications.

In a realistic experimental setup, it is necessary to take full account of the open quantum dynamics

of this system, which involve the oscillator (the mirror), the cavity mode and the external continuous

field, including how the single photon is coupled into the cavity in the first place. The open quantum

dynamics depend on the wave function of the photon, whose Fourier transform is related to the

frequency content of the photon. For example, if the photon has a short-pulse wave function with

time-domain duration much less than the cavity storage time, which corresponds to a frequency

uncertainty much larger than the cavity line width, then the photon will only enter the cavity with

a small probability. By contrast, a narrowband photon (with frequency uncertainty below cavity

line width) must have a wave packet duration much longer than cavity storage time, and therefore

we must address the issue that the photon can be simultaneously inside and outside the cavity.

The latter scenario, although more complicated, might be experimentally more favorable, as in this

scenario the photon has a high probability to enter the cavity and to interact with the mirror much

more strongly.

The outline of this article goes as follows: in Sec. 11.2, we will write down the Hamiltonian of our

nonlinear optomechanical device and study the open quantum dynamics by solving the Shrödinger

equation exactly; in Sec. 11.3, we will give a detailed analysis of the single-photon interferometer,

and will calculate the interferometer’s fringe visibility; in Sec. 11.4, we will show that the mechanical

oscillator can be prepared to an arbitrary quantum state in a multi-dimensional Hilbert space, if we

inject the single photon with a properly-designed profile into the interferometer; in Sec. 11.5, we will

summarize our main results.
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3.2 A Single cavity with one movable mirror

Figure 3.2: (Color online.) A schematic showing a single-photon interferometer with Fabry-Perot
cavity and a movable mirror. The displacement of the mirror-endowed mechanical oscillator y is
parametrically coupled to the cavity mode a, which has an eigenfrequency ω0 with y = 0. The cavity
mode in turn couples to the ingoing continuous field c(x) and outgoing continuous field d(x).

Before studying the entire single-photon interferometer, we first consider a single cavity, as shown

schematically in Fig. 3.2. The cavity has one fixed mirror located at x = 0, and one movable mirror

which acts as a mechanical oscillator. Here, assuming the injected photon to have a frequency

content much less than the free spectral range of the cavity (which has a relatively high finesse), we

will only consider one optical mode of the cavity (which we shall refer to as the cavity mode). By

assuming a high finesse for the cavity, this mode couples to the external vacuum via single-photon

exchange. At linear order in the mirror’s motion and assuming low velocity, the coupling between the

mirror and the cavity mode is parametric: the position y of the mirror modifies the eigenfreqeuncy

of the cavity mode.

3.2.1 The Hamiltonian

Here we will write down the Hamiltonian of the system. For simplicity, we will use natural units

with ~ = 1 and c = 1 throughout this paper. The Hamiltonian of the external continuous optical

field, in the position space representation, is given by

Ĥo =
i

2

∫ 0

−∞
[(∂xĉ†x)ĉx − ĉ†x∂xĉx] dx

+
i

2

∫ 0

−∞
[(∂xd̂†x)d̂x − d̂†x∂xd̂x] dx (3.1)

where ĉx and d̂x are the annihilation operators for ingoing and outgoing fields at location x, respec-

tively. Note that for the actual setup shown in Fig. 3.2, the ingoing and outgoing fields are on the

same side of the front mirror, namely both at x < 0. Since the field operators at different locations

commute with each other—[ĉx ĉ
†
x′ ] = δ(x − x′), we can fold the outgoing field from [−∞, 0] into

[0,+∞], therefore just use ĉ to denote both the ingoing and outgoing fields, with ĉx(x < 0) for the
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ingoing field and ĉx(x > 0) for the outgoing field, namely

Ĥo =
i

2

∫ ∞
−∞

(∂xĉ†xĉx − ĉ†x∂xĉx) dx. (3.2)

The free Hamiltonian of the single cavity mode is given by

Ĥc = ω0â
†â. (3.3)

with â the annihilation operator and [â, â†] = 1.

The free Hamiltonian for the mechanical oscillator reads

Ĥm =
p̂2
y

2m
+

1
2
mω2

mŷ
2 (3.4)

where ŷ and p̂y are the position and momentum operators, respectively.

The total interaction Hamiltonian HI between the external continuum and the cavity mode in

the rotating-wave approximation, and between the cavity mode and the mechanical oscillator, is

given by

ĤI = i
√
γ(ĉ0â† − âĉ†0) + kâ†âŷ. (3.5)

Here γ = T
2L is the cavity bandwidth with L being the cavity length; k = ω0/L is the optomechanical

coupling constant. The interaction between the cavity mode and the external continuum takes place

at the front mirror with x = 0 and the Hamiltonian describes the exchange of photon between them.

The total Hamiltonian is a sum of the free and the interaction parts, namely,

Ĥ = Ĥo + Ĥc + Ĥm + ĤI . (3.6)

Note once more that by including only a single cavity mode resonant at frequency ω0/(2π), we must

make sure the frequency content of the injected light is focused well within a free spectral range,

c/(2L).

3.2.2 Structure of the Hilbert space

Even though the Hamiltonian contains a cubic term â†âŷ, which implies a nonlinear dynamics, we

have a conserved dynamical quantity—the total photon number:

â†â+
∫ +∞

−∞
ĉ†xĉx dx, (3.7)

which makes the system’s evolution still analytically solvable, as also recognized by Rabl [10] and

Nunnenkamp et al. [11]. Since the initial state of our system consists of one single photon, there can
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only be one photon throughout the entire evolution. Mathematically, this means we only need to

consider a one-photon subspace of the entire Hilbert space, which in turn consists of three disjoint

subspaces, which corresponds to: H1−, which corresponds to an incoming photon towards the cavity;

H2, which corresponds to a photon inside the cavity; andH1+, which corresponds to a photon leaving

the cavity. All quantum states in this space can be written as:

|ψ〉 =
∫ +∞

−∞
f(x, t)e−iω0(t−x)|x〉γ ⊗ |φ1(x, t)〉m dx

+ α(t)e−iω0tâ†|0〉γ ⊗ |φ2(t)〉m . (3.8)

Here

|x〉γ ≡ ĉ†x|0〉γ (3.9)

is the “position eigenstate” of the single photon outside of the cavity, and |0〉γ is the optical vacuum;

the subscripts γ and m indicate Hilbert spaces of light and movable mirror, respectively; f(x, t) is a

complex function of position (−∞ < x < +∞) and time, α(t) is a complex function of time t alone;

|φ1(x, t)〉m and |φ2(t)〉m are two families of state vectors that belong to the Hilbert space of the

mechanical oscillator. At any given time, the x < 0 part of the integral term on the right-hand side

corresponds to H1−, the x > 0 part of the integral term corresponds to H1+, while the non-integral

term corresponds to H2. In general, all three terms will be present, which means the entire system’s

quantum state is a superposition of having the photon simultaneously present in all three possible

locations. Note that the factors e−iω0(t−x) and e−iω0t are added to “factor out” the free oscillation

of the EM field, which has oscillation frequencies near ω0.

By imposing normalization conditions of

m〈φ1(x, t)|φ1(x, t)〉m = m〈φ2(t)|φ2(t)〉m = 1 , (3.10)

the probability for finding the photon at location x (with x < 0 indicating a photon propagating

towards the cavity, and x > 0 a photon propagating away from the cavity) is given by

pγ(x, t) = |f(x, t)|2 (3.11)

while the probability that the photon is in the cavity is given by |α2(t)|. In this way, the normalization

condition of the joint quantum state

∫ +∞

−∞
|f(x, t)|2dx+ |α2(t)| = 1 (3.12)

is simply a statement about the conservation of total probability.
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The function f(x, t) can be viewed as the out-of-cavity photon’s wave function, while |φ1(x, t)〉m
for each x can be viewed as the oscillator state that is entangled with each possibility for the out-

of-cavity photon. On the other hand, α(t) can be viewed as the probability amplitude of the cavity

mode, while |φ2〉m can be viewed as the oscillator state that is entangled with the in-cavity photon.

To facilitate calculation, for any joint quantum state |ψ〉, we define

|ψ1(x, t)〉m ≡ γ〈x|ψ〉eiω0(t−x) = f(x, t)|φ1(x, t)〉m, (3.13)

|ψ2(t)〉m ≡ 〈0|a|ψ〉eiω0t = α(t)|φ2(t)〉m. (3.14)

Here |ψ1(x, t)〉m, −∞ < x < +∞, is a series of vectors, parametrized by x, in the Hilbert space of

the mechanical oscillator, while |ψ2(x, t)〉 is a single vector in the Hilbert space of the mechanical

oscillator. They together carry the full information of the quantum state of the entire system.

To further appreciate the role of |ψ1〉m and |ψ2〉m, we can project each of them into the position

eigenstate of the oscillator, |y〉m, obtaining

Φ1(t, x, y) ≡ m〈y|ψ1〉m = f(x, t)φ1(y, x, t), (3.15)

Φ2(t, y) ≡ m〈y|ψ2〉m = α(t)φ2(y, t), (3.16)

which can be viewed as the joint wave functions of the projection of the entire state into H1+⊕H1−

and H2, respectively. Note that although f(x, t) and |φ1(x, t)〉m [and similarly α(t) and |φ2(t)〉m]

share a phase ambiguity, |ψ1(x, t)〉m and |ψ2(t)〉m, and hence Φ1(t, x, y) and Φ2(t, y), are well defined

without ambiguity.

3.2.3 Initial, final States and photodetection

As special cases, we consider the quantum state of the system at t = 0 (the initial state), and at very

late times (the final state). For the initial state, the photon is propagating towards the cavity, and

the cavity is empty. This corresponds to α(0) = 0, and f(x, 0) = 0. In particular, we also presume

the initial state to be separable between the photon and the oscillator, with

|ψ(0)〉 =
∫
eiω0xF (x)|x〉γ dx⊗ |φ0〉m. (3.17)

Here F (x) is the slowly-varying part of the initial wave function of the photon, and |φ0〉m the initial

wave function of the oscillator. In other words, we have

|ψ1(t = 0)〉m = F (x)|φ0〉m, (3.18)

|ψ2(t = 0)〉m = 0 (3.19)
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with F (x) = 0 for x > 0. At a sufficiently late time T , the photon will leave the cavity with unity

probability, and we expect α(T ) = 0 and f(x, T ) = 0 for x < 0. Mathematically,

|ψ1(x, t ≥ T )〉m = Fout(x, t)|φ(x, t)〉m ,

|ψ2(t ≥ T )〉m = 0 (3.20)

with Fout(t, x) = 0 for x < 0 and t > T . This is an explicitly entangled state between the out-going

photon and the mirror, if |φ(x, t)〉m for different values of x are not all proportional to the same

state vector.

At an intermediate time t > 0, suppose a photodetector is placed at x = L > 0 (i.e., for out-going

photons from the cavity), then the probability density for photon arrival time at T is given by

pL(T ) = m〈ψ1(L, T )|ψ1(L, T )〉m. (3.21)

In addition, by detecting a photon at this particular instant, the oscillator is left at a condition

quantum state of |φ(x, T )〉m.

3.2.4 Evolution of the photon-mirror quantum state

Applying the operations γ〈x| and γ〈0|a onto the (joint) Schrödingier equation

i~
d|ψ〉
dt

= Ĥ|ψ〉 (3.22)

we will obtain coupled equations for |ψ1〉m and |ψ2〉m. Throughout this section, we will mostly

encounter states in the oscillator’s Hilbert space, therefore we will ignore the subscript “m” unless

otherwise necessary.

3.2.4.1 Free evolution

For |ψ1〉, by applying γ〈x| to both sides of Eq. (3.22) we obtain

[
∂t + ∂x + i Ĥm

]
|ψ1(x, t)〉 = −√γ δ(x)|ψ2(t)〉. (3.23)

Equation (3.23), without the δ-function term, simply describes the propagation of the initial photon

towards the cavity, and the free evolution of the oscillator. This is because when the single photon

is outside the cavity, its propagation is free, while the oscillator’s evolution is unaffected by light.

Equation (3.23), is a first-order partial differential equation with characteristics along x − t =

const. We hereby divide the t > 0 region of the t-x plane into three regions: (i) x < 0, (ii) x > 0 and

t > x, and (iii) x > 0 and t < x, as shown in Fig. 3.3. We can discard region (iii) right away, because
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region (i) region (ii)

region (iii)

Figure 3.3: (Color online.) Three regions of the t-x plane and the free evolutions of |ψ1〉. In region
(i), the photon has not yet entered the cavity; the joint quantum state of the system is a simple
free evolution of the initial quantum state, specified on t = 0, x < 0 (green horizontal half line), see
Eq. (3.25). In region (ii), the photon and the oscillator evolve freely after the photon emerges from
the cavity; the joint wave function depends on the wave function along x = 0, t > 0 (green vertical
half line). The red line dividing regions (i) and (ii) corresponds to the δ-function in Eq. (3.23),
which embodies the interaction between the outside photon and the in-cavity photon. Region (iii)
is causally irrelevant to our experiment.

it is not causally connected with our experiment. In the interiors of regions (i) and (ii) separately,

Eq. (3.23) has the following general solution,

|ψ1(x, t)〉 = e−
i
2 Ĥm(t+x)|C(t− x)〉 (3.24)

with |C(v)〉 an arbitrary state-valued function of v.

In region (i), |C(v)〉 can be specified by initial data along the half line of t = 0, x < 0; by using

Eq. (3.24) twice, at (t, x) and (0, x− t), we obtain [See Fig. 3.3]:

|ψ1(x < 0, t)〉 = F (x− t)Ûm(t)|φ0〉. (3.25)

Here Um is the evolution operator for the free oscillator, given by

Ûm(t) = e−iĤmt . (3.26)

In terms of the Fock states |n〉, we have

Ûm(t) =
∑
n

|n〉e−i(n+ 1
2 )ωmt〈n|. (3.27)

Equation (3.25) corresponds to the photon’s wave packet freely propagating along the positive direc-

tion of the x axis and the mechanical oscillator independently evolving under its own Hamiltonian.

In region (ii), |C(v)〉 is specified by boundary data along the half line of x = 0+, t > 0, which
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we denote by

|ψ1(t)〉0+ ≡ |ψ1(0+, t)〉 . (3.28)

By using Eq. (3.24) twice, at (t, x) and (t− x, 0), we obtain

|ψ1(x > 0, t)〉 = Ûm(x)|ψ1(t− x)〉0+ (3.29)

Henceforth in the paper, 0+ and 0− stand for x 7→ 0+ (x approaches 0 from positive side of the

axis) and x 7→ 0− (x approaches 0 from negative side of the axis) respectively. Equation (3.29)

corresponds to the free evolution of the out-going photon and the mechanical oscillator.

3.2.4.2 Junction condition

The δ-function on the right-hand side of Eq. (3.23) relates the out-going photon to the decay of the

in-cavity photon and the reflection of the in-going photon. To take this into account, we simply

integrate both sides from x = 0− to x = 0+, obtaining:

|ψ1(0+, t)〉 = |ψ1(0−, t)〉 − √γ|ψ2(t)〉 (3.30)

This expresses the out-going wave as a combination of the promptly reflected incoming wave and

the wave coming out from the cavity.

3.2.4.3 Coupled evolution

By applying γ〈0|a to both sides of Eq. (3.22) and using Eq. (3.30), we obtain:

[
∂t +

γ

2
+ iĤγ

]
|ψ2(t)〉 =

√
γ|ψ1(t)〉0− . (3.31)

Here as in Eq. (3.30), we have defined |ψ1〉0± ≡ |ψ1(0±, t)〉. We have also defined

Ĥγ ≡
p̂2
y

2m
+
mω2

m(ŷ − α)2

2
− β2ωm (3.32)

with

α = − k

mω2
m

, β =
k

ωm
√

2mωm
. (3.33)

The operator Ĥγ can be viewed as the modified Hamiltonian for the mirror when the photon is

present in the cavity. Here α characterizes the shift in equilibrium position of the harmonic oscillator

when the photon is inside the cavity and applies a constant force to the oscillator, while β (as seen

from this equation) modifies the eigenfrequency of the harmonic oscillator. It is easy to work out
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the eigenstates and eigenvalues of Ĥγ : the eigenstates are

|ñ〉 = eiαp̂y |n〉 = D̂(β)|n〉 (3.34)

which are simply displaced from the original Fock states in phase space, due to the change of

equilibrium position, with

Ĥγ |ñ〉 =
(
n+

1
2
− β2

)
ωm|ñ〉 (3.35)

which indicates an overall down-shift of eigenfrequency. Here we have further defined the displace-

ment operator

D̂(β) ≡ exp[β(b† − b)] (3.36)

with b and b† the annihilation and creation operators for the free mechanical oscillator (i.e., before it

couples to light). As we shall see in Sec. 11.5, β will become an important characterizing parameter

of our optomechanical device; for example, β >∼ 1 is the regime in which the device is nonlinear.

For the photon, Eq. (3.31) means that the in-cavity photon is continuously driven by the in-

coming photon (right-hand side) and decays towards the out-going photon (as indicated by the γ/2

term in the bracket on the left-hand side). The above discussion, together with the initial data of

|ψ2〉 = 0 at t = 0 gives

|ψ2〉 =
√
γ

∫ t

0

e−
γ
2 (t−t′)Ûγ(t− t′)|ψ1(t′)〉0− (3.37)

where

Ûγ(t) ≡ e−iĤγt =
∑
n

|ñ〉e−i(n+1/2−β2)ωmt〈ñ|, (3.38)

which is the modified evolution operator of the oscillator when the photon is in the cavity.

3.2.4.4 Full evolution

The full evolution of the entire system’s quantum state can now be obtained by combining Eqs. (3.29),

(3.25), (3.30) and (3.37). In order to study the out-going photon, we only need to consider the region

x > 0 and t > x (see Fig. 3.3), because it emerges from the cavity at t > 0, and it propagates with

c = 1. For this region, we obtain a compact-form solution of

|ψ1(x, t)〉 = M̂ |φ0〉 (3.39)

where |φ0〉 is the initial quantum state of the oscillator, and

M̂ =
∫ t−x

0

g(t− x, t′)Ûm(x)Ûγ(t− x− t′)Ûm(t′)dt′
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=
∫ t−x

0

g(t− x, t′)eiβ
2ωm(t−x−t′)

D̂(βe−iωmx)D̂(−βeiωm(t′−t))Ûm(t)dt′ (3.40)

where

g(t, t′) ≡ G(t− t′)F (−t′) (3.41)

with

G(t) = δ+(t) + γe−
γ
2 t (3.42)

the cavity’s optical Green function. Here the subscript + for the δ function indicates that its support

lies completely in the region t > 0. Within the operator M̂ [Eq. (3.40)], the factor g contains two

terms, the first contains a δ-function and the second an exponential decay over time. The first

term corresponds to the photon being promptly reflected by the cavity’s front mirror, while the

second term corresponds to the photon staying inside the cavity, for an amount of time equal to

t−x− t′, which ranges from 0 to t−x. As a sanity check, it is straightforward to see that when mass

of the oscillator approaches infinity, Ûγ coincides with Ûm, and M̂ simply describes the photon’s

propagation and the independent evolution of the oscillator.

3.3 Single-photon interferometer: Visibility

In this section, we will use the results of the previous section to analyze the single-photon interfer-

ometer.

3.3.1 The configuration

We consider a scheme proposed and analyzed by Marshall et al. [7], which is shown in Fig. 3.1.

This Michelson interferometer (with 50/50 beamsplitter) has two arms: in the north arm, the end

mirror in cavity A is movable, and initially prepared at a quantum state |φ0〉, whereas mirrors

in cavity B, or east arm, are fixed. We assume the photon is injected from the west port, while

a fixed photodetector is placed at the south port. Apart from mirror A being movable, the two

cavities are otherwise identical: with the same input-mirror power transmissivity T , length L (for

cavity A, counted from the zero-point of A’s displacement). The front mirrors are placed at equal

macroscopic distance from the beamsplitter, while there is a phase detuning of ϕ in arm B for ω0
1.

In our convention, if mirror A is at zero point and ϕ = 0, the photon will always return to the

west port. Henceforth in the paper, we shall refer to the west port as the input port, and the south

port the output port — although we may not always find the photon at the output port. Indeed,
1To give rise to a detuning, we assume that all optical frequencies we consider are centered around ω0, and we

offset the location of cavity B from symmetry by a length l such that ω0l = ϕ/2.
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whether and when the photon arrives at the photodetector is jointly determined by ϕ and the state

of motion of mirror A.

In particular, we shall use p(t) to denote the probability density for the photon to arrive at the

detector at t (which can be measured by repeating the experiment many times). If we idealize the

arrival time of the in-going photon (at the front mirror) to be t = 0, and ignore the macroscopic

distance between the front mirrors, the beamsplitter, and the photodetector, then we are interested

in p(t) at t ≥ 0. We further define an instantaneous fringe visibility

v(t) =
pmax(t)− pmin(t)
pmax(t) + pmin(t)

, (3.43)

which measures the degree of coherence between the two components of returning photons at the

beamsplitter, and can only become unity if at time t the joint mirror-photon quantum state is

separable, as we shall see more clearly in Sec. 3.3.4.

3.3.2 The role of the beamsplitter and a decomposition of field degrees

of freedom

In Sec. 3.2.3, we have studied in detail how the photon first affects the x < 0 components of the

optical field out-side of a cavity, then interacts with the mirror, and finally returns back to the

x > 0 components of the optical field. The scenario for a Michelson interferometer is slightly more

complicated: we now need to consider a set of input fields that replaces the x < 0 single field in the

single-cavity case, and a set of output fields which replaces the x > 0 single field.

As shown in Fig. 3.4, the annihilation operators of the input field for the two cavities are (ĵ−,

k̂−, â−, b̂−), while those of the output fields for the cavities are (ĵ+, k̂+, â+, b̂+). Each of these

fields are defined as a function of −∞ < x < +∞, with x = 0 corresponding to the position of

the beamsplitter, and positive direction along the arrow shown in Fig. 3.4. Ultimately, we need to

calculate the fields of ĵ+ and k̂+ in terms of ĵ− and k̂−.

Note that by allowing x to run through the entire real axis, we have assigned two input fields and

two output fields to each point along the optical path (note here that “input” and “output” refer

to the cavities, not the beamsplitter). This redundancy is necessary for a simplified treatment of the

beamsplitter: instead of treating its internal dynamics, we simply view it as a mapping between the

two different representations of the input and output fields. One representation (ĵ±, k̂±) corresponds

to the point of view of observers at the west and south ports, pretending that the beamsplitter does

not exist; the other (â±, b̂±) corresponds to the point of view of observers at the east and north

ports.

The conversion between the two representations takes the same form as the “input-output rela-
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A

B

Figure 3.4: We illustrate the fields entering and exiting each of the four ports of the interferometer.
We use arrows to define the positive sense of the coordinate used to label their locations. For each
of them x = 0 corresponds to the location of the beamsplitter.

tion” of the beamsplitter:

b̂±(x) =
ĵ±(x)− k̂±(x)√

2
, â±(x) =

ĵ±(x) + k̂±(x)√
2

. (3.44)

As an example, consider a quantum state in which an (instantaneous) photon is injected from the

input port, which, according to the mapping in Eq. (5.1), has two equivalent representations:

ĵ†−(x0)|0〉 =
â†−(x0) + b̂†−(x0)

√
2

|0〉 . (3.45)

As time goes on, the quantum state evolves as x0 → x0 + t. At any instant, the left-hand side

represents a single photon propagating from west to east, and continuing through the location of

the beamsplitter. The right-hand side represents a photon that has a two-component wave function,

the first component propagates northwards, the second eastwards.

Although the two representations are equivalent, we still prefer to use the south-west representa-

tion when treating the generation and detection of photons, and the north-east representation when

treating the light’s interaction with the cavities.

3.3.3 Interactions between light and cavities

For each individual cavity, we intend to apply the result of Sec. 3.2.1. We note that â−(x) (for

x < 0) and a+(x) (for x > 0) defined in this section maps to the ĉ(x) (for x < 0) and d̂(x) (for
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x > 0) respectively, as defined in Sec. 3.2.1 and illustrated in Fig. 3.2. For this reason, we define

â(x) ≡


â−(x) , x < 0 ,

â+(x) , x > 0 ,

(3.46)

and

b̂(x) ≡


b̂−(x) , x < 0 ,

b̂+(x) , x > 0 .

(3.47)

In this way, a(x) and b(x) here both map to c(x) defined in Sec. 3.2.1. [The a and b here are not

to be confused with operators of the optical mode and the mechanical oscillator — we shall always

explicitly include the argument (x) for these continuum operators.] We further define

ĵ(x) ≡


ĵ−(x) , x < 0 ,

ĵ+(x) , x > 0 ,

(3.48)

and

k̂(x) ≡


k̂−(x) , x < 0 ,

k̂+(x) , x > 0 .

(3.49)

Furthermore, for fields a, b, j and k, the transformation relations Ea. (5.1) also apply.

Now suppose at t = 0, we have a photon coming from the input (west) port with arbitrary wave

function F (x) [like in Eq. (3.17), here F (x) = 0 for x > 0]. The initial quantum state of the entire

optomechanical system is

|ψ(0)〉 =
∫ 0

−∞
dxF (x)ĵ†−(x)|0〉γ ⊗ |φ0〉A. (3.50)

Since we would like to investigate this state’s evolution when the photon reaches the cavity, we

covert into the north-east representation:

|ψ(0)〉 =
1√
2

[|ψA(0)〉+ |ψB(0)〉] . (3.51)

Here we have defined

|ψA(0)〉 =
∫ 0

−∞
dxF (x)â†(x)|0〉γ ⊗ |φ0〉A, (3.52)
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|ψB(0)〉 =
∫ 0

−∞
dxF (x)b̂†(x)|0〉γ ⊗ |φ0〉A, (3.53)

in which we have already taken Eqs. (10.32) and (3.47) into account.

Here |ψA(0)〉 corresponds to the case in which the photon enters cavity A with the movable

mirror, and |ψB(0)〉 the case in which the photon enters cavity B with the fixed mirror. As time

goes on, these two states evolve individually, and Eq. (3.51) remains true for t > 0. For the cavity

A component |ψ〉A, we have [cf. Eq. (3.39)]

|ψA(t)〉 =
∫ t−x

0

dt′g(t− x, t′)eiβ
2ωm(t−x−t′)D̂(βe−iωmx)

D̂(−βeiωm(t′−t))â†(x)|Φ(t)〉, (3.54)

where we have defined

|Φ(t)〉 ≡ Ûm(t)|0〉γ |φ0〉A , (3.55)

while for |ψ〉B , we set β → 0 and obtain

|ψB(t)〉 = eiϕ
∫ t−x

0

dt′g(t− x, t′)b̂†(x)|Φ(t)〉. (3.56)

3.3.4 The final state

In order to describe the quantum state seen by the photodetector, we map a and b into j and k, only

keeping the k component. We further project onto the single-photon basis of γ〈0|k(x), assuming

x = 0+, obtaining

|ψ(t)〉m =
1
2
[
|ψA(t)〉m + eiϕ|ψB(t)〉m

]
(3.57)

with

|ψA(t)〉m =
∫ t

0

dt′g(t, t′)Ô(t− t′)|φ0(t)〉, (3.58)

|ψB(t)〉m =
∫ t

0

dt′g(t, t′)|φ0(t)〉, (3.59)

with

|φ0(t)〉 ≡ Ûm(t)|φ0〉 (3.60)

and

Ô(t) ≡ eiβ
2ωmtD̂(β)D̂(−βe−iωmt) , (3.61)
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in particular Ô(0) = 1. In this way, we are using the same notation as Eq. (3.39), and we can use

Sec. 3.2.3 for obtaining the photo-detection probability density at each time t > 0, which is given by

p(t) =
‖|ψA〉m‖2 + ‖|ψB〉m‖2 + 2Re

(
eiϕm〈ψA|ψB〉m

)
4

, (3.62)

which, when adjusting values of ϕ, leads to an instantaneous visibility of [Cf. (3.43)]:

v(t) =
2|m〈ψA|ψB〉m|

‖|ψA〉m‖2 + ‖|ψB〉m‖2
. (3.63)

It relies on how different ψA is from ψB , which indicates how much the movable mirror in cavity

A is capable of “learning” about the existence of the photon in cavity A. At any instant, if ψA

is proportional to ψB (differ by a phase), the state of the movable mirror does not change, and

therefore we have a perfect visibility. By contrast, if the photon is able to transform the movable

mirror into a state substantially different from its freely evolving state, e.g., the orthogonal state in

the extreme case, then we will have a significantly reduced visibility.

Similar to Eq. (3.39), here ψA and ψB each has a promptly reflected part [which arises from the

δ-function part of g(t, t′)], and a part in which the photon enters the cavity [which arises from the

exponential decay part of g(t, t′)]. It is the second part that contributes to the reduction of visibility.

3.3.5 Examples

We consider an experimental situation with the central frequency of the injecting photon tuned to

the resonant frequency of the cavity, with a wave function of

F (x) =
√

2ΓeΓxΘ(−x) . (3.64)

Here Γ measures the frequency-domain width of the photon. We further assume that the mechanical

oscillator’s eigenfrequency (when uncoupled with light) is equal to the cavity bandwidth, or ωm = γ.

As in Ref. [7], we assume that the mechanical oscillator, i.e., the mirror, is initially prepared at its

ground state:

|φ0〉 = |0〉A. (3.65)

With these specializations, we have

|ψA(t)〉m = C(t) [|0〉+ γ|M(t)〉] , (3.66)

|ψA(t)〉m = C(t)
[
|0〉+ γ

∫ t

0

dt′ f(t− t′)|0〉
]
, (3.67)
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Figure 3.5: (Color online.) (left) Probability density and (right) fringe visibility for the photon to
come out with different β (top-to-bottom: first row, β = 0.5; second row, β = 1.2; third row, β = 2).
For each β, three different values of Γ are considered for comparison: Γ = 0.2 (red dotted), 1(blue
dashed), 2(black solid). All the calculations assume γ = 1, ωm = 1. For probability density plots,
the upper line of the same color is the maximum value of the probability density, the lower one is
the minimum value.
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with

C(t) ≡
√

2Γe−(Γ+iωm/2)t , f(t) ≡ e(Γ−γ/2)t (3.68)

, and

|M(t)〉 ≡
∫ t

0

dt′ f(t− t′)eiβ
2[ωm(t−t′)−sinωm(t−t′)]

×
∣∣∣β − βeiωm(t′−t)

〉
. (3.69)

By comparing with Sec. 3.3.4, we first find that visibility depends on the similarity between |M(t)〉

and its counterpart in Eq. (3.67): when they are similar to each other (e.g., when β <∼ 1 ) or when

they do not contribute significantly to |ψA,B(t)〉m, the visibility will tend to be high. By contrast,

in order to achieve a complete incoherence, we need |M(t)〉 to contribute significantly, and nearly

orthogonal to |0〉 — and this requires β >∼ 1. The arrival probability density (3.62) and contrast

defect (3.63) can be computed if we use

〈0|β〉 = 〈0|D̂(β)|0〉 = e−β
2/2. (3.70)

In Fig. 3.5, we plot the maximum and minimum of the probability density in the left panels, and

visibility in the right panels, both as functions of time. We have chosen β = 0.5 for upper panels,

β = 1.2 for middle panels and β = 2 for lower panels. In each panel, we have also shown curves

with Γ = 0.2 (red dotted), Γ = 1 (blue dashed) and Γ = 2 (solid black). As β increases (as we move

from upper to lower panels), the photon’s ponderomotive effect on the movable mirror increases,

therefore the visibility is able to vary more. This means β >∼ 1 is necessary (but not sufficient, see

below) for visibility to substantially decay and then revive — a feature Ref. [7] has used to search

for decoherence effects.

On the other hand, another condition for visibility to first decrease and then revive, and repeat

on, seems to be Γ >∼ 1, as also indicated by each of the right panels of Fig. 3.5. In addition, as Γ� 1,

our result becomes comparable to Ref. [7]. Qualitatively, this is because for Γ� 1, if a photon does

arrive at a time around ∼ 1, we can be sure the photon has interacted with the mirror — and we

can roughly treat the photon as already within the cavity at t = 0.

Mathematically, for t� 1/Γ, the conditional quantum state of the mirror given photon detection

at time t could be approximately written as :

|ψ〉m =
γ√
2a
e−(γ+iωm)t/2[

eiϕ|0〉+ eiβ
2ωmtD̂(β)

∣∣−βe−iωmt〉] (3.71)

=
γ√
2a
e−(γ+iωm)t/2
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eiϕ|0〉+ eiβ

2(ωmt−sinωmt)
∣∣β − βe−iωmt〉] . (3.72)

This is consistent with results of Ref. [7].

However, in order for a � 1 and to observe a revival of visibility, we have to wait till t ≥ 2π.

The probability for detecting the photon at such late times is exponentially small — as indicated

by the left panels of Fig. 3.5. This means we may have to make a trade off between having a very

sharp revival of visibility and being robust against loss and able to cumulate enough statistics within

reasonable amount of time.

3.4 Conditional quantum-state preparation

In this section, we show how to engineer an arbitrary quantum state of the mechanical oscillator by

injecting a single photon with specifically designed wave function and by post selecting the arrival

time of the output photon. Note that unlike Refs. [10, 11], our state preparation procedure is

conditional. This guarantees a pure quantum state for the mechanical oscillator, but requires a low

decoherence rate and a high detection quantum efficiency for the out-going photon.

3.4.1 The configuration

The scheme is shown in Fig. 3.6. It is very similar to the single-photon interferometer discussed in

the previous section, except that in the east arm we replace the cavity B with a perfectly reflected

mirror B. In this case, most of the previous analyses are still valid: Eq. (3.57) to Eq. (3.59). The

only difference is that the g(t, t′) function in Eq. (3.59) needs to be replaced by δ(t− t′), as we have

a perfectly reflecting mirror instead of a cavity here, namely,

|ψB(t)〉m = |φ0(t)〉. (3.73)

To proceed, we further adjust the detuning phase ϕ in Eq. (3.57) such that at the dark port,

the promptly reflected wave from the front mirror of cavity A exactly cancels the promptly reflected

wave from the mirror B. In this case, having a photon emerging from our detection port (Fig. 3.6)

automatically indicates that the photon has entered the cavity and interacted with the mirror, and

Eq. (3.57) or the conditional quantum state of the mechanical oscillator (unnormalized) is given by:

|ψ(t)〉m =
1
2

∫ t

0

dt′ gp(t, t′)Ô(t− t′)|φ0(t′)〉 (3.74)

with

gp(t, t′) = γe−γ/2(t−t′)F (−t′). (3.75)
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Single-Photon
      Source

Detection

A

B

Figure 3.6: (Color online.) The sample device which uses a single photon to prepare a mechanical
oscillator quantum state. Here the the detuning phase for the mirror on the east arm is adjusted
such that the promptly reflected photon will come out from west port, with 0 probability coming
out from south port.

As gp(t, t′) is related to the input photon wave function F (x), by modifying input photon wave

function, we can therefore engineer the conditioning mechanical oscillator quantum state |ψ(t)〉m.

Even if there is a finite probability that the photon will come out through the west arm or the bright

port, once we detect a photon at time t at the dark port, we know that it must come from arm A

and it also has stayed in the cavity A for a certain amount of time.

3.4.2 Preparation of a single displaced-Fock state

First of all, we notice that when different in-coming photon wave function F ’s are used, if we keep

conditioning over the same photon arrival time t, the conditional quantum states we obtain for the

mechanical oscillator will depend linearly on F . In other words, if F1 allows us to prepare |φ1〉,

and F2 allows us to prepare |φ2〉, then injecting a new photon with a superimposed wavefunction

F = α1F1 + α2F2 will allow us to prepare α1|φ1〉+ α2|φ2〉.

This means we only need to show how members of a complete basis can be prepared, and we

choose this to be

|ψ(t)〉m = |ñ〉 = D̂(β)|n〉 , n = 0, 1, 2 . . . . (3.76)

These displaced Fock states are simply Fock states of the oscillator when the photon is inside the

cavity, see Eq. (3.34).

Let us assume that the mechanical oscillator is initially prepared at its ground state. Before

studying preparation of an arbitrary conditional quantum state for the mechanical oscillator, we

first show that we can prepare a conditional state with an arbitrary quantum number n, by injecting

a photon with the following wave function:

F (x) =
√
γe(γ/2−iβ2ωm+inωm)xΘ(−x). (3.77)
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Im(b)

Re(b)β

initial
state

trajectory of evolution
with photon in cavity

Figure 3.7: A sketch of the phase-space trajectory of the mechanical oscillator. The Wigner function
of the initial state |0〉 is represented by the shaded disk, the dot marked with β on the real axis is the
new equilibrium position of the oscillator when the photon is in the cavity, while the dashed circle
is the trajectory of the oscillator’s Wigner function when the photon is inside the cavity. Detection
of the out-going photon at t = 2nπ/ωm corresponds to superimposing all mechanical-oscillator
quantum states along the dashed trajectory, weighted by the photon’s wave function.

As we plug Eq.(3.77) into Eq.(3.74) we obtain the conditional quantum state of

|ψ(t)〉m =
D̂(β)γ3/2e−

γ
2 t+iβ

2τ

2ωm

∫ τ

0

dτ ′e−inτ
′
| − βei(τ

′−τ)〉 (3.78)

with τ ≡ ωt. This is a coherent superposition of coherent states, which in the complex amplitude

domain all line up in a circle with radius β around the center located at complex amplitude equal

to β; these states are parametrized mathematically by D̂(β)| − βeiφ〉. These states are superposed

with the same magnitude, but different phases, due to the decay rate of γ/2 in the F chosen by

Eq. (3.77). Obtaining such a state is understandable, as given the photon detection at t, the actually

time t′ for the photon staying inside the cavity is uncertain, and we have to sum up all the possible

contributions from 0 to t. This situation is illustrated in Fig. 3.7.

One important feature in the above expression is that the integrand is a periodic function. We

denote

τ ≡ ωmt = 2πN + ∆φ , (3.79)

where N is some integer and ∆φ is the residual phase ranging from 0 to 2π. In this way, the integral

in Eq. (3.78) then becomes [
N

∫ 2π

0

+
∫ ∆φ

0

]
dφ e−inφ| − βeiφ〉. (3.80)

In the limit of N � 1, when the photon arrives at the photodetector with a delay large compared

to the oscillator’s oscillation period, the first term in Eq. (3.80) always dominates. This means we

obtain the same conditional state if we restrict τ around an integer multiple of 2π, or make sure
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Figure 3.8: Probability for obtaining displaced Fock states |1̃〉 (red solid), |2̃〉 (blue dashed), |5̃〉
(magenta dotted) and |1̃0〉 (black dash-dotted), a range of β and minimum state overlap of 1 − ε.
Vertical gridlines are draw for β = 1,

√
2,
√

5 and
√

10; these are the locations where maxima of
P1,2,5,10 are reached.

it is large enough. This leads to the interesting effect that in the asymptotic limit of τ → +∞,

the conditional state will be independent of τ . In practice, however, although the integral (3.80)

increases with N , the exponential decay factor in Eq. (3.78) always favors simply choosing N = 1.

It is straightforward to evaluate this conditional state; using

∫ 2π

0

dφ e−inφee
iφâ† |0〉 =

1
n!

(â†)n|0〉 , (3.81)

we have

∫ 2π

0

dφ e−inφ| − βeiφ〉 =
2π(−β)ne−

β2

2

√
n!

|n〉

= 2π|n〉〈n| − β〉 , (3.82)

which means

|ψ〉m =
πγ3/2e−

πγ
ωm e2πiβ2

ωm

(−β)ne−
β2

2

√
n!

|ñ〉 . (3.83)

This is indeed proportional to |ñ〉, as promised. Here we have used

〈−β|n〉 =
(−β)ne−β

2/2

√
n!

. (3.84)

Since the probability for the returning photon to arrive at precisely 2π/ωm is zero, we must allow

an interval around this target, which on the one hand provides us with a non-zero probability, but

on the other hand makes the conditional state imprecise. If we require the actual conditional state
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to have a high overlap with the target state (or high fidelity)

|m〈ψ|ñ〉|√
m〈ψ|ψ〉m

≥ 1− ε , (3.85)

then, by perturbing the integration upper bound of Eq. (3.82), we obtain the following requirement

on the allowed photon arrival time

|τ − 2π| ≤ ∆τ ≡
√

8π2ε
|〈−β|n〉|√

1− 〈−β|n〉2
, (3.86)

which, for each trial of the experiment, would happen with a probability of

P = |m〈ψ|ψ〉m|2
2∆τ
ωm

= 2
√

8ε
(
πγ

ωm

)3

e−
2πγ
ωm

|〈−β|n〉|3√
1− |〈−β|n〉|2

. (3.87)

And this would be the probability with which we can create a conditional state with an overlap of

at least 1− ε with the target.

From Eq. (3.87), we further notice that we should fix

γ/ωm = 3/(2π) (3.88)

in order to obtain a maximized success probability of

Pn =
√

8ε
27
4e3

|〈−β|n〉|3√
1− |〈−β|n〉|2

. (3.89)

For each n, the maximum of Pn is reached at β =
√
n. In Fig. 3.9, we plot Pn for a range of β, for

ε = 0.1, or a state overlap of ≥ 90%. We can see that the probability of producing |ñ〉 decreases

rather quickly as n increases.

This dependence (3.89) on β comes from two sources, which we can understand better by going

to the phase-space reference frame centered at the equilibrium position of the oscillator when the

photon is inside the cavity. In this reference frame, the complex amplitude of the coherent states

being superimposed are located on a circle with distance β away from the center, while the target

we would like to prepare is simply the Fock state |n〉. Although the photon’s wave function selects

out an oscillator state proportional to |n〉, this post-selection does not improve the intrinsic overlap

between all those that participate the superposition, which is actually proportional to

|〈−βeiφ|n〉|2 = |〈−β|n〉|2 . (3.90)
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This explains the dependence of m〈ψ|ψ〉m on beta. The other factor of dependence on β is that when

the target state has a very low overlap with the individual members |βeiφ〉 of the superposition, the

requirement for accuracy of photon arrival time, or ∆τ , increases, as shown in Eq. (3.86).

3.4.3 Preparation of an arbitrary state

Since the displaced number states form a complete basis we can expand any target state as

|ψtg〉 =
+∞∑
n=0

cn|ñ〉 ,
+∞∑
n=0

|cn|2 = 1 . (3.91)

Since a linear combination of F ’s leads to a linear combination of conditional states, we simply need

to apply the result of the last subsection and have

F (x) =
√
γe(γ/2−iβ2ωm)x

Z

+∞∑
n=0

c̃ne
inωmx , (3.92)

with

Z ≡

 +∞∑
j,k=0

c̃j c̃
∗
k

1 + i(j − k)ωmγ

1/2

, (3.93)

c̃n ≡ cn
〈−β|n〉

=
√
n!(−β)neβ

2/2cn . (3.94)

This is an additional periodic modulation (with period 2π/ωm) of the photon’s wave function. We

caution that in order for the summation in Eq. (3.92) to converge, if cn does not go to zero for all

n ≥ N , then it must decay very fast when n → +∞, due to the presence of the
√
n! factor (which

grows faster than β−n).

As in the previous subsection, we obtain the conditional state at τ ≡ ωmt = 2π, 4π, . . ., as well

as any τ that is substantially large. Again, let us consider τ = 2π; this gives the conditional state of

|ψ〉m =
πγ3/2e−

πγ
ωm e2πiβ2

ωmZ
|ψtg〉 . (3.95)

We can use the same approach as the previous subsection to evaluate the probability with which

this conditional state is achieved with a high overlap. For a minimum overlap of 1− ε, we require

|2π − τ | ≤ ∆τ =
√

8πε∣∣∣∑+∞
m=0 c̃m

∣∣∣√1− |〈−β|ψtg〉|2
. (3.96)

Note that this ∆τ diverges if
∑+∞
m=0 c̃m = 0, because in this case the overlap does not vary at

O[(τ − 2π)2] order. Assuming the target state to be generic, then the probability for obtaining this
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Figure 3.9: Minimum success probability for states in Hilbert spaces H1,2,...7 (solid curves with
markers), together with success probability for producing single displaced Fock states, P0,1,2,...,7

(dashed curves without markers). Fidelity is fixed at 10%. Note that P0 would become greater than
1 at low values of β — but in this case our approximation in obtaining ∆τ breaks down.

state is

P|ψ〉 = 2
√

8ε

(
πγ
ωm

)3

e−
2πγ
ωm

[
1−

∣∣∣∑+∞
n=0〈−β|n〉2c̃n

∣∣∣2]−1/2

∣∣∣∑+∞
m=0 c̃m

∣∣∣ +∞∑
j,k=0

c̃j c̃
∗
k

1 + i (j−k)ωm
γ

. (3.97)

Here the choice of γ/ωm depends on the target quantum state, but if we assume this dependence is

weaker than the pre-factor, and continue to use Eq. (3.88), then we obtain

P|ψ〉 =
27
e3

√
ε

2

[
1−

∣∣∣∑+∞
n=0〈−β|n〉2c̃n

∣∣∣2]−1/2

∣∣∣∑+∞
m=0 c̃m

∣∣∣ +∞∑
j,k=0

c̃j c̃
∗
k

1 + 2πi(j−k)
3

. (3.98)

As it turns out, P|ψ〉 depends on the detail of |ψ〉— even if we only try to create a combination of

|0̃〉 and |1̃〉, the combination coefficients would lead to very different success probabilities. In order to

provide a concrete measure of the ability of our state-preparation scheme, we have chosen to compute

the minimum success probabilities of creating all the states in the mechanical oscillator’s Hilbert

subspaces spanned by the lowest displaced Fock states, e.g., H1 ≡ Sp{|0̃〉, |1̃〉}, H2 ≡ Sp{|0̃〉, |1̃〉, |2̃〉},

etc. We define

PHj = min
|ψ〉∈Hj

P|ψ〉 , Hj =

{
j∑
l=0

αl|l̃〉 : αl ∈ C

}
. (3.99)

In Fig. 3.9, we plot PH1 , PH2 , . . . , PH7 as functions of β (in solid purple curves). Because

H1 ⊂ H2 ⊂ · · · ⊂ H7, it is increasingly difficult to create all states in Hj with higher values of j, and

therefore PH1 ≥ PH2 ≥ . . . PH7 , namely our success probability decreases globally when j increases.

In fact, as we overlay the single-Fock-state success probabilities P0, P1, . . . , P5, we also discover

that for any PHj (β), it asymptotes to P0 at higher β, and to Pj at lower β; moreover, the transition

between these two asymptotic regions are brief, and the PHj (β) curves do not lie much below the
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minimum of P0 and Pj .

This asymptotic behavior can be understood from the behavior of Pn, the success probability for

single (displaced) Fock states. For smaller β, it is much more difficult to prepare a higher Fock state,

therefore, if β is sufficiently small, the difficulty of preparing Hj is dominated by the preparation

of |j̃〉, the single most difficult state in the space to prepare — and therefore PHj agrees with Pj .

Vice versa, for sufficiently large β, the difficulty of preparing Hj lies in the preparation of 0̃〉, and

therefore PHj would agree with P0. The fast transition between the two extremes indicates that

when trying to prepare states in Hj , the difficulty either lies in |0̃〉, or in |j̃〉, and only for a small

region of β the two difficulties might compete with each other — while none of the intermediate

states contribute to the difficulty of state preparation. This is consistent with the relative locations

of the Pn curves in Fig. 3.9: (i) for any β, P1,2,...,j−1 are always much greater than the minimum

of P0 and Pj , and (ii) as we move away from the β at which P0 and Pj cross each other, their

discrepancy increases quickly.

As a matter of practicality, we see that if we choose β ≈ 0.87, the probability of achieving, with

an overlap (or fidelity) above 90%, any superposition of |0̃〉 and |1̃〉 (i.e., any member of the subspace

H1) is guaranteed to be above 6.3%. On the other end, with a probability of at least 0.1%, we can

produce all states in the 8-dimensional subspace of H7.

3.5 Practical considerations

In order to realize such a state-preparation scheme, we need to fulfill the following three requirements.

The first requirement is that the series in Eq. (3.92) be converging. This can be satisfied if β ≥ 1.

To see what this means, we restore all the physical units:

β =
k/(2ωm)√
~mωm/2

=
[

~ω0

c

]√
2

~mωm

[
2ωm

L

c

]−1

. (3.100)

It characterizes the momentum kick of photon ~ω0/c to the oscillator during one oscillation period

compared to the ground state momentum uncertainty
√

~mωm/2. The momentum kick from the

photon needs to be big enough to substantially change the mirror state. The second requirement is

that the cavity bandwidth be smaller than the mechanical frequency

γ < ωm. (3.101)

This is because we need to wait at least several oscillation periods to approach the asymptotic state,

and the photon should have sufficient duration such that we have a finite probability of detecting a

photon at t > ω−1
m .
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Combining the above two conditions, we obtain the following relation

λ

F
<

√
~

2mωm
(3.102)

where λ is the optical wavelength of the photon, F is the cavity finesse. This means the cavity

linear dynamical range must be less than the zero point uncertainty to realize the optomechanical

nonlinearity. An alternative scheme has been proposed to make it more achievable experimentally

[16].

The third requirement is that the thermal decoherence effect be small within one mechanical

oscillation period, namely [cf. also Eq. (5) in Ref. [7]]:

Q >
kTE
~ωm

, (3.103)

where Q is the mechanical quality factor of the oscillator and TE is the environmental temperature.

These three requirements can be achieved experimentally, e.g., the current setups shown in Refs. [3, 4]

and the one proposed in Ref. [6].

Finally, we require the the capability of generating a single photon with an arbitrary wave

function with duration comparable to the mechanical oscillation frequency of the photon. This is

possible with cavity QED systems, as has been discussed by Ref. [17–19].

3.6 Conclusions

We have presented an exact solution to the open quantum dynamics of an single-photon interferom-

eter with a movable mirror. Since the photon number is preserved, we have been able to write the

total wave function of the photon as three components: incoming photon, inside-cavity photon and

out-going photon. We analyzed the details of how the photon exchanges between the cavity mode

and the external continuous field.

We studied the fringe visibility of the interferometer in a specific case by injecting a single photon

with exponentially decaying profile and with the movable mirror initially prepared at the ground

state. This scheme has been proposed by Ref. [7] to explore decoherence of a macroscopic oscillator,

although in that proposal the photon has been assumed to start off from inside the cavity. In the

limit when the photon pulse is short (or a� γ), we did recover the result of Ref. [7], although our

result deviates significantly when a becomes comparable to γ. We believe this is experimentally

relevant, because in the case a� γ, the probability of the photon exiting from the detection port is

very small, and therefore the experiment may suffer significantly from imperfections.

We have also studied the use of such nonlinear optomechanical interactions to prepare the me-

chanical oscillator into an arbitrary quantum state — similar to the proposal of Ref. [12], although
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not having the requirement that the photon starts off from within the cavity. To realize this, we

require that: (i) the optomechanical cavity must be working in the nonlinearity regime [i.e., the

cavity’s spatial line width must be less than the oscillator’s zero-point position fluctuation, see

discussions above Eq. (3.102)], (ii) the cavity’s frequency width must be less than the mechanical

oscillator’s angular frequency, (iii) the thermal decoherence time must be less than several times the

mirror’s period of oscillation, and (iv) we must be able to engineer the single-photon wave function

arbitrarily, at a time scale comparable to the mirror’s oscillation period and with coherence time

longer than the cavity storage time. Although we have shown mathematically that all quantum

states whose expansion coefficients in the displaced Fock states |ñ〉 drop sufficiently fast as n→ +∞

can be prepared by modulating the wave function of the incoming photon and conditioning over

the arrival time of the returning photon, in practice we will be confined to the superposition of a

handful of nearby displaced Fock states.
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Chapter 4

Towards understanding
non-Markovian quantum
measurement

In quantum measurement or control processes, there are often auxiliary modes coupling

to the quantum system that we are interested in—they together form a bath or an envi-

ronment for the system. The bath can have finite memory (non-Markovian), and simply

ignoring its dynamics, i.e., adiabatically eliminating it, will prevent us from predicting the

true quantum behavior of the system. We generalize the technique introduced by Strunz

et. al. [Phys. Rev. Lett 82, 1801 (1999)], and develop a formalism that allows us to elim-

inate the bath non-adiabatically in continuous quantum measurements, and obtain a non-

Markovian stochastic master equation for the system which we focus on. This formalism

also illuminates how to design the bath—acting as a quantum filter—to effectively probe

interesting system observables, e.g., the Quantum-Nondemolition (QND) observable.

Based on paper by H. Yang, H. Miao and Y. Chen, Phys. Rev. A 85, 040101 (R) (2013)

and an unpublished note by the same set of authors. Copyright 2013 by the American

Physical Society.

4.1 Introduction

Non-Markovianity naturally arises in many interesting quantum systems, e.g., cavity QED. In the

theoretical side of the study, the common approach is to investigate the decoherence of the quantum

system by using either the non-Markovian stochastic Schrödinger equation (also called the state

diffusion equation) or equivalently the master equation [1–3]. The underlying assumption usually

made is that no information concerning the environment (i.e., the bath) is collected; however, in

most experimental setups, the measurement device is an indispensable part, especially when we want
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to have good control over the dynamics of the system by implementing feedback control [4]. There

are some ambiguities concerning how to correctly quantify the system dynamics under a continuous

measurement when there is non-Markorvianity involved. Recent interesting discussions among Diósi

and Wiseman et. al. [5, 6] highlight this issue. Diósi tried to give a quantum trajectory interpretation

of the non-Markovian stochastic Schrödinger equation (SSE), i.e., claiming that it describes a pure

state evolution under a continuous measurement of the system operator. It is now clear to us that

this is not case, as shown explicitly by Wiseman et. al. and later by Diósi.

In this note, instead of trying to find the measurement correspondence of non-Markovian SSE,

we start with a physical model for the continuous quantum measurement, and study two important

scenarios in which non-Markovianity can arise: the first one is an indirect measurement of the system

via a measurement of its bath which has finite memory; the second one is a direct measurement

of the system, but where the measurement device initially has non-trivial quantum correlation.

By clarifying the issues in these two scenarios, we try to develop a better understanding of non-

Markovian quantum measurement in more general cases.

The outline of this note goes as follows: in section 11.2, we will build a physical model for

a continuous measurement process, and point out the above scenarios in which non-Markovianity

can arise; in section 11.3, we first use our model to reconsider a direct Markovian measurement of

cavity mode, and recover the result in the literature; in section 11.4, we consider the first scenario

of indirect measurement and derive the stochastic master equation, instead of pure-state SSE which

generally does not exist for a non-Markovian measurement, as pointed out by Wiseman [6]. We

solve two interesting examples in cavity QED and optomechanical systems exactly, and also present

a perturbation method for more general systems when the coupling is weak; in section 11.5, we

consider the second scenario of correlated measurement and derive the Wigner function by using a

path-integral approach developed in Ref. [7]; in section 11.6, we will briefly mention more general

scenarios of non-Markovian quantum measurement, and finnally conclude in section 4.7.

4.2 Quantum-classical interface: the measurement device

probe
classical

domain
system

bath

detector

Measurement device

Quantum to classical interface

Figure 4.1: A schematic showing a general class of quantum measurement process. The probe and
the detector together forms a measurement device that serves as a quantum-to-classical interface.
The output of the quantum probe Ẑ(t) becomes a c-number Z(t) after the detection.
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In this section, we will build a physical model for continuous measurement and derive the essential

elements for an appropriate mathematical description. A general quantum measurement process is

shown schematically in Fig. 4.1. The system is interacting with its bath which can have finite or

infinite degrees of freedom (field). The bath degrees of freedom are partially or entirely coupled

to a quantum probe. In order to be an adequate quantum probe, its output needs to be precisely

measured by the detector (i.e., a von Neumann projective measurement), and there is no further

quantum back action of the detector on the probe 1. For this to be true, the probe output Ẑ(t) has

to commute at different times in the Heisenberg picture [9, 10], namely

[Ẑ(t), Ẑ(t′)] = 0. (4.1)

A continuous projective measurement of it by the detector gives a classical c-number data string

Z(t), which is then processed in the classical domain. This condition puts a rather tight constraint

on the property of the probe. As shown in Ref. [9] and briefly discussed in appendix 6.4, in a

continuous linear quantum measurement, the probe that links the quantum and classical domains

needs to be a continuous field with different degrees of freedom at different times. Measurement

performed on the probe by the detector at one moment will therefore not have any dynamical back

action on the measurement results at later moments. Its output gives rise to a well-defined measurable

trajectory that has a classical reality. To make it more concrete, in the later discussions, we will use

a continuous optical field as a model for the probe field, of which the canonical quantities are the

amplitude quadrature ô1 ≡ (ô+ ô†)/
√

2 and the phase quadrature ô2 ≡ (ô− ô†)/(i
√

2) with ô being

the annihilation operator, which satisfies 2:

[ô1(t), ô1(t′)] = [ô2(t), ô2(t′)] = 0, [ô1(t), ô2(t)] = i δ(t− t′). (4.2)

Those different degrees of freedom, even though they are dynamical independent, can be statistically

correlated. There are two cases: (i) the input probe field (before interacting with the bath and

system) are uncorrelated; (ii) the input probe field are either classical or quantum mechanically

correlated (quantum entanglement). Give such a model for the measurement device, there are three

scenarios in which the effective dynamics of the system can be non-Markovian (after tracing out the

bath and probe field):

1. The input probe field is uncorrelated, but the bath has a finite memory, i.e, non-Markovian

dynamics.
1If it were not the case, we have to insert another additional probe in between the original probe and the detector

such that this becomes true, and enlarge the original system. This serves as the Heisenberg cut [8], which is essential
in order to have an unambiguous interpretation of the measurement result.

2We have neglected the spatial dependence of the field, as we use the interaction picture of the free Hamiltonian
for the field, and compare the field at the same location but at different times. The propagation of the field is encoded
in the time delay.
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2. The input probe field is correlated, but the bath has no memory 3.

3. The input probe field is correlated and the system-bath dynamics is non-Markovian.

We will consider the first two scenarios by using physical models for the system and bath, and briefly

discuss the last scenario.

4.3 Markovian measurement of a cavity mode

system

detector

input probe fielddetector

Laser

cavity

Figure 4.2: Schematics showing a Markovian measurement of a cavity mode with setup (left) and
model (right).

Before considering non-Markovian measurement, we first study Markovian measurement of a

cavity mode. From this example, not only can we recover the previous result in the literature, but is

also an important step in studying the non-Markovian case in later sections, when the cavity mode

acts as a intermediate bath that couples to the system. The Hamiltonian for such a measurement

process in the rotating wave approximation is given by

Ĥ = ~ωcâ†â+ ~
√
γ[â ô†(t)eiω0t + â† ô(t)e−iω0t]. (4.3)

Here â is the annihilation operator for the cavity mode (system) and [â, â†] = 1; ωc is the resonant

frequency of the cavity mode; ô(t) is the annihilation operator for the external continuous optical

field (probe field) in the interaction picture; ω0 is the laser frequency. In the rotating frame of the

laser frequency ω0 (i.e., in the interaction picture of ~ω0â
†â), it can be rewritten as

Ĥ = ~ ∆â†â+ ~
√
γ[â ô†(t) + â† ô(t)], (4.4)

where detune frequency ∆ ≡ ωc − ω0 describes the offset between the laser and cavity resonant

frequency.

We assume that the amplitude quadrature ô1 of the optical field is measured by using a homodyne

detection, and y(t) is the measurement result. The evolution of the joint density matrix from t to

t+ dt is given by

ρ̂(t+ dt) = P̂Û ρ̂(t)Û†P̂/P [y(t)]. (4.5)
3In this case, the bath degrees of freedom can be adiabatically eliminated; the system can be viewed as direct

coupling to the probe field. One particular example of this scenario was considered by Diósi [5], which assumes a
Gaussian correlated input probe field.
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Here the projection operator P̂ = |y(t)〉〈y(t)| with |y(t)〉 is the eigenstate of ô1; the evolution operator

Û = e−iĤdt/~; P [y(t)] is the probability for measurement result. By tracing out the probe field, we

obtain the reduced density matrix for the cavity mode conditional on the measurement result:

ρ̂a(t+ dt) = Tro[ρ̂(t+ dt)] = Tro
{
δ[ô1 − y(t)]Û ρ̂(t)Û†

}
/P [y(t)], (4.6)

where we have used the fact that Tr[P̂ ρ̂P̂] = Tr[P̂ ρ̂] = Tr {δ[ô1 − y(t)]ρ̂}. Before the interaction, we

assume that the probe field and the cavity mode are separable, i.e., ρ̂(t) = ρ̂a(t) ⊗ ρ̂o(t), and the

input probe field is in vacuum state ρ̂o(t) = |0〉〈0| 4. Up to the first order of dt, we have

ρ̂a(t+dt) =
1

2π

∫
dξ e−iξy(t)Tro

[
eiξô1(t)

{
ρ̂(t)− i

~
[Ĥ, ρ̂(t)]dt− 1

2~2
[Ĥint, [Ĥint, ρ̂(t)]]dt2

}]
+O[dt2],

(4.7)

where we introduce an auxiliary parameter ξ to rewrite the delta function; Ĥint ≡ ~√γ[â ô†(t) +

â† ô(t)] and it is kept up to the second order in dt, because 〈ô†ô〉 ∼ dt−1 and [ô(t), ô†(t′)] = δ(t− t′).

After some lengthy but straightforward calculations, as shown in the Appendix 6.B, we obtain the

stochastic master equation (SME):

dρ̂a(t) = −i[∆â†â, ρ̂a(t)]dt−γ[â†âρ̂a(t)+ρ̂a(t)â†â−2âρ̂a(t)â†]dt−i
√

2γ[âρ̂a(t)−ρ̂a(t)â†−〈â−â†〉ρ̂a(t)]dW,

(4.8)

where 〈â〉 ≡ Tra[ρ̂a(t)â] and dW is the Wiener increment and dW 2 = dt. The measurement result

y(t) satisfies

y(t)dt = −i√γ〈â− â†〉dt+ dW/
√

2. (4.9)

This simply recovers the result obtained by Wiseman and Milburn [34] but from a different approach.

If we ignore the fact that the measurement result and mean of dW is equal to zero, we simply obtain

the Markovian master equation. We therefore can call the above SME Markovian SME.

Since, for this Markovian measurement, a pure initial state for the cavity mode will remain pure,

we can write down the corresponding stochastic Schrödinger equation (an stochastic unraveling of

the SME):

d|ψ〉 = −i∆â†â|ψ〉dt− γ(â†â− 2〈â†〉â+ 〈â†〉〈â〉)|ψ〉dt− i
√

2γ(â− 〈â〉)|ψ〉dW (4.10)

with |ψ〉 defined through |ψ〉〈ψ| ≡ ρ̂a.

4One should not be confused by the time dependence of ρ̂o(t), as we are in the interaction picture. It can be viewed
as introducing a new degree of freedom to interact with the system at each moment, and tracing it out afterwards
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4.4 Non-Markovian quantum measurement: the first sce-

nario

In this section, we will consider the first scenario of non-Markovian quantum measurement—an indi-

rect measurement of the system via a measurement of its bath which has non-Markovian dynamics.

To be concrete, we will consider specific examples to illustrate the measurement process. In sub-

section 4.4.1, we study the cavity QED model with atom-cavity interaction; in subsection 4.4.2, we

consider a typical cavity-assisted optomechanical device, in which a mechanical oscillator is coupled

to a cavity mode via radiation pressure.

4.4.1 Cavity QED: atom-cavity interaction

system bath

detector

input probe fielddetector

Laser

cavity

atom

Figure 4.3: Schematics showing the cavity QED model under consideration. A two-level atom
interacts with a cavity mode that is continuously interacting with an external continuous field.
The cavity mode now becomes a bath instead of system as considered in the previous Markovian
measurement case.

The model is shown schematically in Fig. 4.3. A two-level atom (system) is coupled to a cavity

mode (bath) which, in turn, is coupled to the external continuous optical field (probe field). Such

a system can exhibit a strong non-Markovianity if the cavity bandwidth is small—a long memory.

The Hamiltonian can be written as

Ĥ = ~
ωq
2
σ̂z + ~ ∆â†â+ ~g(σ̂−â† + σ̂+â) + ~

√
γ[â ô†(t) + â† ô(t)], (4.11)

where σ̂z is the Pauli matrix and σ̂− = σ̂x − iσ̂y and σ+ = σ̂x + iσy. Apart from the last additional

term, it is the famous Jaynes-Cummings model. We again assume that the amplitude quadrature of

the optical filed is measured. By using the result obtained in the previous section, we can immediately

write down the stochastic master equation for the atom and the cavity mode:

dρ̂σa = − i
~

[Ĥσ+Ĥa+Ĥint, ρ̂σa]dt−γ[â†âρ̂σa+ρ̂σaâ†â−2âρ̂σaâ†]dt−i
√

2γ[âρ̂σa−ρ̂σaâ†−〈â−â†〉ρ̂σa]dW.

(4.12)

In order to obtain the equation for the atom only, we need to trace out the cavity mode. We

will use the technics developed by Diósi and Strunz [3]. We first write the above equation in the
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non-normalized Bargmann coherent state basis |α〉 ≡ eαâ† |0〉 and obtain

dρ̂σa =− i

~
[Ĥσ, ρ̂σa]dt− i∆(α∗∂α∗ − α∂α)ρ̂σadt− i g(σ̂−α∗ + σ̂+∂α∗)ρ̂σadt+ i g(ρ̂σaσ̂+α+ ∂αρ̂σaσ̂−)dt

− γ(α∗∂α∗ + α∂α − 2 ∂α∂α∗)ρ̂σa dt− i
√

2γ[∂α − ∂α∗ − 〈â− â†〉]ρ̂σa dW. (4.13)

The reduced atom density matrix is given by

ρ̂σ =
∫

d2α e−|α
2|〈α|ρ̂σa|α〉 ≡

∫
d2α e−|α|

2
ρ̂σa(α∗, α). (4.14)

Instead of interpreting this as the standard tracing procedure, in Ref. [2], the authors interpret

ρ̂σa(α, α∗) as the system state under a different parametrization of the Hamiltonian Ĥ(α) with α

being the parameter, which is a random variable with the joint Gaussian distribution P (α, α∗) =

e−|α|
2
, and Eq. (4.14) is a classical ensemble average, namely

ρ̂σ =
∫

d2αP (α)ρ̂σ(α∗, α) ≡Mα[ρ̂σ(α∗, α)]. (4.15)

By using the fact that, for a Gaussian probability distribution, Mα[α ρ̂x(α∗, α)] = Mα[∂α∗ ρ̂x(α∗, α)],

we have

dρ̂σ = − i
~

[Ĥσ, ρ̂σ]dt−ig(σ̂−∂̄α+σ̂+∂̄α∗)ρ̂σdt+i g(∂̄α∗ ρ̂σσ̂++∂̄αρ̂σσ̂−)dt−i
√

2γ[∂̄α−∂̄α∗−〈â−â†〉]ρ̂xdW,

(4.16)

where we have defined ∂̄α∗ ρ̂x ≡Mα[∂α∗ ρ̂x(α∗, α)].

To obtain something meaningful for the study of the state of atom, we need to replace ∂α∗ in the

term of the operator for the atom. This has been extensively studied in Refs. [2, 33] for deriving SSE

unraveling of the master equation. Here we will apply this technic. We first assume the following

ansatz:

∂α∗ ρ̂x(α∗, α) = −iÔ(t, α∗)ρ̂x(α∗, α) (4.17)

where Ô is only a function of the operators for an atom. The exact form for Ô can be derived by

using the consistent condition:

d
dt

[∂α∗ ρ̂x(α∗, α)] = ∂α∗ [
d
dt
ρ̂x(α∗, α)]. (4.18)

As shown in Appendix 4.C, we obtain

Ô(t, α∗) = ei(ωq−∆+iγ)tf(t)σ̂− ≡ Ô0(t), (4.19)
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where function f(t) satisfies the following nonlinear Riccati equation:

ḟ(t) = g e−i(ωq−∆+iγ)t + g ei(ωq−∆+iγ)tf2(t) , (4.20)

with initial condition f(0) = 0. There is a closed-form solution for f(t), but it is too cumbersome

to show. Since Ô(t, α∗) = Ô0(t) is independent of α∗ we can easily obtain ∂̄α∗ ρ̂x ≡ Ô0ρ̂x. Finally,

we obtain the non-Markovian stochastic master equation for the atom only:

dρ̂σ =− i
[ωq

2
σ̂z, ρ̂σ

]
dt− g

(
σ̂+Ô0ρ̂σ + ρ̂σÔ

†
0σ̂− − Ô0ρ̂σσ̂+ − σ̂−ρ̂σÔ†0

)
dt

+
√

2γ[Ô0ρ̂σ + ρ̂σÔ
†
0 − 〈Ô0 + Ô†0〉ρ̂σ]dW. (4.21)

This equation describes a quantum measurement of Ô0+Ô† which is equal to the atomic polarization

σ̂x filtered by the cavity mode, or a retarded observable in the description of Diósi [5].

It is rather remarkable in the sense it only involves the time-local density matrix, and this

significantly reduces the computation effort for studying the atom dynamics. Instead of evolving the

cavity mode and the atom all together as in the usual approach, we only need to consider a finite

dimensional density matrix for the atom.

In addition, there is an important difference from the usual Markovian SME in the fact that

the decoherence part is not exactly in a Lindblad form, and it can be effectively viewed as a non-

Markovian quantum measurement of σ̂−. We can recover the Markovian case by taking the large

cavity bandwidth limit γ � ∆, ωq, g. In this case, the cavity mode enslaves to the dynamics of the

atom, and it is easy to find

Ô0(t) ≈ g

γ
σ̂−, (4.22)

and we simply have

dρ̂σ =− i
[ωq

2
σ̂z, ρ̂σ

]
dt− (g2/γ) (σ̂+σ̂−ρ̂σ + ρ̂σσ̂+σ̂− − 2σ̂−ρ̂σσ̂+) dt

+
√

2g2/γ[σ̂−ρ̂σ + ρ̂σσ̂+ − 〈σ̂− + σ̂+〉ρ̂σ]dW. (4.23)

This also recovers the result with adiabatic elimination of the cavity mode in the literature, which

corresponds to a direct Markovian measurement of σ̂x with an effective measurement strength given

by g2/γ.

To confirm that Eq. (4.112) is the SME that correctly describes the conditional dynamics of the

atom, we numerically solve and compare (i) the Markovian SSE for the joint atom-cavity wavefunc-

tion and (ii) the non-Makovian SME for the atom density matrix, to see whether they both give

the same conditional means of σ̂x, σ̂y and σ̂z. The numerical results are shown in Fig. 4.4. We have

chosen ωq = 1, ∆ = 1 and γ = 2, and the atom-cavity initial state is [|+〉z + |−〉z]/
√

2⊗ |0〉. They
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Figure 4.4: (Color online.) The top panel shows simulation results for the time evolution of 〈σx〉,
〈σy〉 and 〈σz〉 for one realization of dW . The bottom panel is the convergency of the accumulated
numerical difference between the SSE and SME simulation results given different number of grid
points for the cavity mode.

indeed agree with each other as shown by the convergency of their accumulated numerical difference.

4.4.2 Optomechanical device

system bath

detector

input probe fielddetector

Laser

cavity

oscillator

Figure 4.5: Schematics showing a typical optomechanical device. The displacement x̂ of the me-
chanical oscillator is coupled to the cavity mode via radiation pressure.

There is another interesting system that has been studied extensively in the literature recently—

an optomechanical device, which is shown schematically in Fig. 4.5. The interaction between the

oscillator (system) and the cavity mode (bath) is mediated by radiation pressure. For a small cavity

bandwidth (smaller than the mechanical oscillator frequency), the information can slosh back and

forth between the oscillator and the cavity mode for many mechanical oscillator periods—again a

strong non-Markovianity. The procedure to derive the reduced dynamics for the oscillator is similar

to the atom case.

The corresponding Hamiltonian can be written as

Ĥ =
p̂2

2m
+

1
2
mω2

mx̂
2 + ~ ∆â†â+ ~ gx̂â†â+ ~

√
γ[â b̂†(t) + â† b̂(t)]. (4.24)

Usually, the cavity mode is pumped by the laser with a large steady-state amplitude ᾱ, and we can
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then obtain the linearized Hamiltonian by studying the change around ᾱ:

Ĥ =
p̂2

2m
+

1
2
mω2

mx̂
2 + ~ ∆â†â+ ~Gx̂(â† + â) + ~

√
γ[â b̂†(t) + â† b̂(t)] (4.25)

with G ≡ gᾱ. This is the quantum Brownian motion with a single-degree-of-freedom bath under

continuous measurement. We again assume that we measure the amplitude quadrature of the optical

field. Similar to the previous case, after tracing out the cavity mode and continuous optical field,

the reduced non-Markovian SME is given by

dρ̂x = − i
~

[
p̂2

2m
+

1
2
mω2

mx̂
2, ρ̂x

]
dt−G(x̂Ôρ̂x + ρ̂xÔ

†x̂− Ôρ̂xx̂− x̂ρ̂xÔ†)dt

+
√

2γ[Ôρ̂x + ρ̂xÔ
† − 〈Ô + Ô†〉ρ̂x]dW, (4.26)

where

Ôρ̂x = [O1(t)ρ̂xÔ
†
0 + Ô0ρ̂x]/[1− |O1(t)|2], (4.27)

ρ̂xÔ
† = [O∗1(t)Ô0ρ̂x + ρ̂xÔ

†
0]/[1− |O1(t)|2] (4.28)

with details of Ô0 and O1(t) shown in Appendix 4.D.

In the large cavity bandwidth limit γ � ωm,∆, and G, Ô is simply given by:

Ô = Gx̂/γ, (4.29)

and we again recovers the Markovian SME:

dρ̂x = − i
~

[
p̂2

2m
+

1
2
mω2

mx̂
2, ρ̂x

]
dt−G2/γ[x̂, [x̂, ρ̂x]]dt+

√
2G2/γ[x̂ρ̂x + ρ̂xx̂− 2〈x̂〉ρ̂x]dW. (4.30)

If we ignore the the measurement result (by averaging over dW which has zero mean), we have

dρ̂x = − i
~

[
p̂2

2m
+

1
2
mω2

mx̂
2, ρ̂x

]
dt− G2

γ
[x̂, [x̂, ρ̂x]]dt, (4.31)

which recovers the Markovian master equation for quantum Brownian motion.

4.4.3 Generalization to bath with many degrees of freedom

In the previous two sections, we used two specific examples to illustrate non-Markovian measurement

in the first scenario—due to non-Markovian dynamics between the system and bath, a measurement

on the bath gives rise to non-Markovian stochastic (conditional) evolution of the system quantum

state. In those examples, the cavity mode serves as the bath, and it only has one degree of freedom.
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In this section, we will generalize the result to the case with a many-degrees-of-freedom bath which

is linearly coupled to the probe field. We consider the following Hamiltonian for such a case:

Ĥ = Ĥs +
∑
k

~ωkâ†kâk +
∑
k

~ gk (L̂â†k + L̂†âk) +
∑
k

~
√
γk[âk ô†(t) + â†k ô(t)]. (4.32)

Here Ĥs is the free part of the system Hamiltonian; L̂ is an arbitrary operator of the system; gk

is the coupling strength between the system and the bath which consists of different modes with

frequency ωk; γk is the coupling strength between the bath and the probe field ô. Note that this

Hamiltonian is still quite special. It excludes other possibilities: (i) some of the bath modes might

not be coupled to the probe field, in which case we cannot access the information of those modes and

they will contribute to decoherence of the system; (ii) different modes might be coupled to different

probe fields, in which case we have multiple measurement output channels. In principle, we can

include those complicated cases, but right now, we will just focus on this specific Hamiltonian, and

postpone the discussion of more general cases until later.

The derivation of non-Markovian SME for the system is almost parallel to the single-degree-

of-freedom case, and we can formally write down the reduced stochastic master equation for the

system:

dρ̂s = − i
~

[Ĥs, ρ̂s] dt−
∑
k

gk(L̂†Ôsρ̂s+ρ̂sÔ
†
kL̂−Ôkρ̂sL̂

†−L̂ρ̂sÔ†k)dt+
∑
k

√
2γk[Ôkρ̂s+ρ̂sÔ

†
k−〈Ôk+Ô†k〉ρ̂s]dW.

(4.33)

The operator Ôk is defined through the following ansatz:

M~α[∂α∗k ρ̂s(t, ~α)] = −iÔk(t)ρ̂s(t). (4.34)

Generally, it is quite difficult to find a closed form for Ôk in terms of the system operator. Only in

the following two cases, can we obtain relatively a simple expression for Ôk: (i) L̂ is a linear function

of the canonical variables of the system—linear coupling case; (ii) gk/γk < 1—the weak coupling

case, which allows us to find a perturbative solution. We will discuss these two cases in more detail.

Linear coupling.— We use the atom as an example with Ĥs = ~ωq2 σ̂z, and choose L̂ = σ̂−. As shown

in the Appendix 4.E, we can obtain

Ôk(t) =
∑
k′

[ei(ωqI−M)t]kk′fk′(t)σ̂−, (4.35)

with

ḟk(t) =
∑
k′

gk′ [e−i(ωqI−M)t]kk′ − fk(t)
∑
k′k′′

gk′ [ei(ωqI−M)t]kk′fk′′(t) (4.36)
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and initial condition fk(0) = 0. Here we have introduced identity matrix I and matrix M:

M ≡


ω1 − iγ1 −i√γ1γ2 · · ·

−i√γ1γ2 ω2 − iγ2

...
... · · ·

. . .

 . (4.37)

This recovers the result in subsection 4.4.1 when the bath has only one mode.

Similarly, if the system is a harmonic oscillator and L̂ = b̂ is the annihilation operator, we will end

with the same expression, expect that ωq is replaced by the oscillator frequency and σ̂− is replaced

by b̂.

Weak coupling— When the operator L̂ is a nonlinear function of the system canonical variables, there

will be no straightforward route to derive Ôk. If the coupling is weak, we can use the perturbation

method and expand the solution in series of coupling strength. As shown in Appendix 4.F, we obtain

Ôk(t) =
∑
k′

∫ t

0

dτ [e−iMτ ]kk′gk′ L̂(−τ)ρ̂s(t) +O[g2
k], (4.38)

where L̂(−τ) = e−iĤsτ/~L̂ eiĤsτ/~ under free evolution and the matrix element Mkk′ = ωk δkk′ −

i
√
γkγk′ with δkk′ being the Kronecker delta. Basically, %̂k is equal to L̂ ρ̂s convoluted with the

Green’s function of the bath. In other words, we are effectively coupled to a dynamical quantity of

the system that is shaped by the bath—a quantum filter. One can therefore engineer the bath to

measure desired observables of the system, e.g., a QND observable, as illustrated in the following

two examples.

The first example is measuring mechanical energy quantization considered in Refs. [16–19], aiming

at unequivocally demonstrating the quantumness of a macroscopic mechanical oscillator. In the

proposed experiment, the position of a mechanical oscillator is quadratically coupled to a cavity

mode, namely,

Ĥint = ~ g x̂2(â+ â†). (4.39)

If the cavity bandwidth γ is less than the mechanical frequency ωm, we expect a direct probe of

the slowly-varying part of x̂2 which is proportional to the QND variable (energy or equivalently the

phonon number N̂). Indeed, from x̂(−τ) = x̂ cosωmτ − p̂ sinωmτ ,

Ô = g

∫ t

0

dτ e−γτ x̂2(−τ)ρ̂ ≈ g

γ
N̂ ρ̂, (4.40)

where we have ignored terms proportional to e−γt, as the characteristic measurement time scale is
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γ−1. The leading-order SME for the oscillator reads:

dρ̂ =− i[ωmN̂ , ρ̂] dt− geff [X̂2, [N̂ , ρ̂]]dt

+
√

2geff [{N̂ , ρ̂} − 2〈N̂〉ρ̂]dW (4.41)

with geff = g2/γ. Note that such a measurement is not an exact QND measurement, because we

have [X̂2, [N̂ , ρ̂]] instead of the usual Lindblad term [N̂ , [N̂ , ρ̂]]. This term describes a two-phonon

process that induces quantum jumps. However, after numerically solving this SME, we find that it

does not have significant effects, and a QND measurement can indeed be effectively realized. This

is in accord with the argument by Martin and Zurek [16]—the two-photon process happens at 2ωm,

which is strongly suppressed due to a small cavity bandwidth γ.

The second example is measuring the QND observable of a free mass—the momentum p̂. This is

of particular interest in quantum-limited force measurement with mechanical probes, e.g., detecting

gravitational waves [20]. By monitoring the momentum change, one can detect the force signal

without quantum back action, enabling surpassing of the Standard Quantum Limit (SQL) [21]. To

achieve this, we can couple the position x̂ of the free mass with two coupled cavity modes â1 and

â2, of which the interaction Hamiltonian is given by:

Ĥint = ~ωs(â1â
†
2 + â†1â2) + ~ g x̂(â1 + â†1), (4.42)

where ωs is the coupling constant between two cavity modes. The cavity mode â1 is coupled to

external probe field. From Eq. (4.8), we derive that:

Ô = 2g
∫ t

0

dτ e−γτ cos
(ωsτ

2

)
x̂(−τ)ρ̂ ≈ 4g

ω2
s

˙̂x(0) ρ̂, (4.43)

where we have used the stationary-phase approximation by assuming ωs � γ, and also ignored terms

proportional to e−γt. The effective observable is therefore equal to the momentum, as p̂ = m ˙̂x(0).

Indeed, such a coupled-cavity scheme has been proposed as the so-called “speed-meter” for advanced

gravitational-wave detectors [22].

4.5 Non-Markovian quantum measurement: The second sce-

nario

In this section, we will consider the second scenario: the system-bath dynamics is Markovian but the

input probe field is correlated before interacting the bath—such a correlation can be either classical

or quantum (entanglement). Since the bath would simply follow the system dynamics in this case,



135

we will ignore the bath and consider a direct coupling between the system and the probe field.

In Ref. [5], Diósi tried to construct correlated infinity von Neumann detectors (correlated in-

put field in our model) in order to prove that non-Markovian SSE describes the this kind of non-

Markovian quantum measurement. Later on, Wiseman et al. [6] used two initially entangled de-

tectors to disprove this. He showed that measurement on the first detector can create quantum

entanglement between the system and the second unmeasured detectors. Therefore the system state

is not pure anymore once we trace out the unmeasured detectors, and hence can not be described

by non-Markovian SSE, namely, nonexistence of a pure-state quantum trajectory.

Here, we will use the formalism described in Ref. [7] to derive the system Wigner representation

of the density matrix, i.e., the Wigner function in two cases: (i) linear continuous measurement, and

(ii) nonlinear measurement of system energy, both with correlated input field.

4.5.1 linear continuous measurement

system

detector

input probe field

Figure 4.6: Schematic showing a non-Markovian quantum measurement with correlated input field
(wiggly line denoting correlation schematically).

To be concrete, we study a continuous measurement of the position of an oscillator with the

following Hamiltonian

Ĥ =
p̂2

2m
+

1
2
mω2

mx̂
2 + ~

√
γ x̂ ô1(t). (4.44)

This is similar to what has been studied in Section 11.4, except that the cavity mode is now replaced

by the oscillator and also the input optical field is correlated, as shown schematically in Fig. 4.6. To

derive the conditional quantum state of the oscillator, we follow the general formalism outlined in

Ref. [7]. The first step is to divide the process from 0 to t into N segments with dt = t/N and then

to take the continuous limit. The n-th segment consists of: (i) a free evolution, which is described by

the evolution operator: Ûn ≡ exp[−iĤndt/~] with Ĥn being the entire Hamiltonian at t = ndt, and

(ii) measurement of the output phase quadrature ŷ = ô2, which is described by a projection operator:

P̂n = |yn〉〈yn| with yn the measurement result of ô2. After the entire process and conditioning on

the measurement results y = (y1, · · · , yN ), the oscillator is projected into a conditional quantum

state with density matrix:

ρ̂x(t|y) = Tro[P̂yρ̂(0) P̂y]/P [y]. (4.45)

Here Tro indicates tracing over the optical field; P̂y ≡ P̂N ÛN · · · P̂1Û1; P [y] the probability for
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obtaining measurement results y. ρ̂(0) is the initial state for the system and input field, and here

we apply the usual assumption that the initial state is separable ρ̂(0) = ρ̂x(0) ⊗ ρ̂o(0), but this is

not a necessary requirement.

To derive the analytical expression for ρ̂(t|y), the usual applied approach is to use the path-

integral approach by expressing the evolution operator in terms of a path integral, and derive the

influence functional. Here, instead, we take the advantage of linear dynamics, in which case the

Heisenberg equation of motion can be solved exactly. By inserting identity operator Î = Û [(n −

1)dt]Û†[(n− 1)dt] in between P̂n−1 and P̂n, we obtain

P̂y = Û(t)P̂H
N P̂H

N−1 · · · P̂H
1 ≡ Û(t)P̂H

y (4.46)

where Û(t) ≡
∏N
n=1Ûn(dt) (time-ordered) and P̂H

n ≡ δ(ŷH
n − yn) with ŷH

n ≡ Û†(ndt) ŷ Û(ndt).

To obtain the Wigner function, we first evaluate its Fourier transform—the generating function:

J [αx, αp] = Trx[eiαxx̂+iαpp̂ ρ̂x(t|y)]

= Trxo[P̂H
y Û
†(t)eiαxx̂+iαpp̂Û(t)P̂H

y ρ̂(0)]/P [y]

= Trxo[eiαxx̂(t)+iαpp̂(t)PH
y ρ̂(0)]/P [y]. (4.47)

Here we have used the fact that, for general linear measurement,

[x̂(t), ŷH(t′)] = 0, ∀ t′ < t ; (4.48)

therefore x̂(t), p̂(t) and P̂H
y commute; we also use P̂H

y P̂H
y = P̂H

y which is equal to a product of the

Dirac delta function
∏
n δ(ŷn − yn) inside Tr. Since the output field at different times commutes

[ŷH
n , y

H
n′ ] = 0, (4.49)

the projection operator can be written as a path integral and, in the continuous limit, it is equal to

P̂H
y =

∏
n

δ(ŷH
n − yn) =

∫
D[ξ] exp

{
i

∫ t

0

dt′ ξ(t′)[ŷ(t′)− y(t′)]
}
. (4.50)

This is one of the most important steps for treating the correlated input field. Basically, instead

of tracing out the optical field at each moment, we sum up the measurement result in terms of a

trajectory in time and trace out the optical field all together after each moment.

The generating function is then

J [αx, αp] =
∫
D[ξ] Trxo

[
exp

{
iαxx̂(t) + iαpp̂(t) + i

∫ t

0

dt ξ(t′)[ŷ(t′)− y(t′)]
}
ρ̂(0)

]
P [y(t)]. (4.51)
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Given the Hamiltonian in Eq. (4.44), the Heisenberg equation can be easily solved, and we have

x̂(t) = x̂q(t) +
∫ t

0

dt′Gx(t− t′)~√γ ô1(t′), (4.52)

p̂(t) = p̂q(t) +
∫ t

0

dt′Gp(t− t′)~
√
γ ô1(t′), (4.53)

ŷ(t) = ô2(t) +
√
γ x̂(t). (4.54)

Here x̂q(t) = x̂(0) cosωmt+ (mωm)−1p̂(0) sinωmt is the the oscillator position under free evolution

and Gx(t) ≡ (mωm)−1 sinωmt is the Green’s function, and similar for p̂; the time in ô1,2(t) is only for

denoting the optical fields at different times, as we ignore their free evolution—optical detection is

made right after their interaction with the oscillator; therefore, the statistics of ô1,2(t) are determined

by the initial quantum state ρ̂o(0) of the optical field.

Since all the Heisenberg operators can be solved exactly in terms of their initial value, the gen-

erating function can be solved once we specify the initial quantum state. In the special case of

ρ̂o(0) =
∏
⊗|0〉〈0|, a vacuum input, we will simply return to the previous case of uncorrelated input

field.

Gaussian-entangled state—we now consider the first non-trivial case that is studied by Diósi in Ref.

[5]; the oscillator is in a Gaussian state and the input field is initially in a Gaussian entangled state.

Since the linear dynamics will preserve the Gaussianity, the only relevant quantities are mean and

the covariance. To derive the generating function more easily, it is better to simplify the statistics

of the output field while keeping the information about the oscillator motion. We make a causal

whitening of its correlation function, and introduce ẑ as

ẑ(t) =
∫ t

0

dt′σ−1/2(t, t′)ŷ(t) (4.55)

where σ(t, t′) is the correlation function and σ(t, t′) ≡ 〈ŷ(t)ŷ(t′)〉 = 〈ô2(t)ô2(t′)〉+γ〈x̂(t)x̂(t′)〉. From

its definition, ẑ satisfies

〈z(t)ẑ(t′)〉 = δ(t− t′). (4.56)

We can then decompose the oscillator position and momentum into two parts,

x̂(t) ≡ R̂x(t) +
∫ t

0

dt′Kx(t, t′)ẑ(t′), p̂(t) ≡ R̂p(t) +
∫ t

0

dt′Kp(t, t′)ẑ(t′), (4.57)

where the residue parts R̂x(t) and R̂p(t) are not correlated with the output field, namely 〈R̂x,p(t)ŷ(t′)〉 =



138

0. Kx and Kp are the Wiener filter

Kx(t, t′) = 〈x̂(t)ẑ(t′)〉, Kp(t, t′) = 〈p̂(t)ẑ(t′)〉. (4.58)

With these new defined quantities, the generating function is proportional to (we ignore the

unimportant normalization factor and normalize the Wigner function in the final step):

J [α] ∝
∫
D[ξ] Trxo

[
exp

{
iα[R̂(t) +

∫ t

0

dt′K(t, t′)ẑ(t′)]T + i

∫ t

0

dt′ ξ(t′)[ŷ(t′)− y(t′)]
}
ρ̂(0)

]
∝
∫
D[ξ̃] Trxo

[
exp

{
iαR̂T(t) + i

∫ t

0

dt′ ξ̃(t′)[ẑ(t′)− z(t′)] + i

∫ t

0

dt′αKT(t, t′)z(t′)
}
ρ̂(0)

]
(4.59)

where vectors α ≡ (αx, αp), K = (Kx, Kp), ξ̃(t) ≡
∫

dt′σ1/2(t, t′)ξ(t′)+αKT(t, t′) and superscript

T denotes transpose. By using Eq. (4.56) and 〈eiÂ〉 = e−〈Â
2〉/2 for the Gaussian state, we obtain

J [α] ∝
∫
D[ξ̃] exp

{
−1

2
α〈R̂T(t)R̂(t)〉αT − 1

2

∫ t

0

dt′ ξ̃2(t′)− i
∫ t

0

dt′ ξ̃(t′)z(t′) + i

∫ t

0

dt′αKT(t, t′)z(t′)
}

∝ exp
{
−1

2
α〈R̂T(t)R̂(t)〉αT + i

∫ t

0

dt′αKT(t, t′)z(t′)
}
. (4.60)

Finally, the Wigner function for the oscillator W (x, p) is simply the inverse Fourier transform of

J and we can easily obtain:

W (x, p) =
1

2π
√

det Vc(t)
exp

[
−1

2
(x− xc, p− pc)Vc

−1(x− xc, p− pc)T

]
, (4.61)

where the conditional covariance matrix

Vc(t) ≡ 〈R̂T(t)R̂(t)〉, (4.62)

and the conditional mean

xc =
∫ t

0

dt′Kx(t, t′)z(t′), pc =
∫ t

0

dt′Kp(t, t′)z(t′). (4.63)

We therefore obtain the expression for the oscillator Wigner function given a general Gaussian

correlated input field.

More explicitly, we can express the covariance matrix Vc(t) in terms of the correlation func-

tion among known quantities—x̂(t), p̂(t) and ŷ(t) in Eq. (4.52), Eq. (4.53) and Eq. (4.54). Taking
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〈R̂x(t)R̂x(t)〉 for instance, we have

〈R̂x(t)R̂x(t)〉 = 〈x2(t)〉 −
∫ t

0

dt′K2
x(t, t′) = 〈x2(t)〉 −

∫ t

0

dt′
∫ t

0

dt′′〈x̂(t)ŷ(t′)〉σ−1(t′, t′′)〈ŷ(t′′)x̂(t)〉,

(4.64)

where

〈x̂2(t)〉 = 〈x̂2
q(t)〉+ ~2γ

∫ t

0

dt′
∫ t

0

dt′′Gx(t− t′)C11(t′, t′′)Gx(t− t′′), (4.65)

〈x̂(t)ŷ(t′)〉 =
√
γ 〈x̂(t)x̂(t′)〉 =

√
γ 〈x̂q(t)x̂q(t′)〉+ ~2γ3/2

∫ t

0

dτ
∫ t′

0

dτ ′Gx(t− τ)C11(τ, τ ′)Gx(t′ − τ ′),

(4.66)

and C11(t′, t′′) ≡ Tro[ô1(t′)ô1(t′′)ρ̂o(0)] is the initial correlation function for the amplitude quadra-

ture of the input optical field. Similarly, we can obtain 〈R̂x(t)R̂p(t)〉 and 〈R̂p(t)R̂p(t)〉. The key

is to invert the correlation function of the output field σ(t, t′). It amounts to, instead of a local

differential equation, an integral equation. This is the price we paid for solving the situation of a

general correlated input field. In general, we have to resort to numerical tools for solving it. When

the system approaches to a steady state with t→ +∞, this can be solved in the frequency domain

by using the Wiener-Hopf method, of which the details in such a stationary case is shown in Ref. [11].

Non-Gaussian entangled stat.—in the case of non-Gaussian entangled input field, e.g., a single photon

state, the optical field at different times has a non-trivial quantum correlation—mean and correlation

are not enough to quantify the quantum state. To treat this situation, we apply the same approach

outlined in Ref. [7], but with a small modification due to the fact that here we are considering a

non-stationary scenario with interaction starting from 0 instead of −∞.

In the same manneras Ref. [7], we assume an arbitrary function f(x) for the photon mode, and

define the corresponding operator for creating such a photon:

Γ̂† ≡
∫ ∞
−∞

dx f(x)ô†(x) =
∫ ∞
−∞

dt f(t)ô†(t). (4.67)

The general non-Gaussian quantum state of such a photon mode, in the P-presentation, can be

written as

ρ̂o(0) =
∫
dζ|ζ〉〈ζ|P (ζ) =

∫
dζ eζΓ̂

†−ζ∗Γ̂|0〉〈0|e−ζΓ̂
†+ζ∗Γ̂P (ζ). (4.68)

By substituting it into Eq. (4.59) and using the Baker-Campbell-Hausdorff formula, we obtain

J [α] ∝
∫
d2ζD[ξ] ei[ζ

∗Γ̂−ζ Γ̂†, B̂]Trxo
[
eiB̂ ρ̂x(0)⊗ |0〉〈0|

]
P (ζ), (4.69)

with B̂ ≡ αR̂T(t) + i
∫ t

0
dt′ ξ̃(t′)[ẑ(t′) − z(t′)] + i

∫ t
0

dt′αKT(t, t′)z(t′). Written in this way, B̂
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averaging over the non-Gaussian state is transformed into averaging over the vacuum Gaussian

state. The only addition term [ζ∗Γ̂− ζ Γ̂†, B̂] is a c-number, as B̂ is a linear function of the optical

field operator; we can therefore directly use the result that we obtain in the previous case with the

Gaussian input field.

Apart from the actual value for specific terms, the final result for the oscillator Wigner function

is formally identical to Eq. (16) in Ref. [7]:

W (x) =
∫

dζ exp
{
−1

2
(x− xζ)V−1

c (x− xζ)T − 1
2

∫ t

0

dt′
(
z(t′)− ζ∗[Γ̂, ẑ(t′)] + ζ[Γ̂†, ẑ(t′)]

)2
}
P (ζ),

(4.70)

where Vc is given by Eq. (4.62), vector x = (x, p) and xζ ≡ xc + ζ∗[Γ̂, R̂(t)] − ζ[Γ̂†, R̂(t)] with

xc defined in Eq. (4.63). This formula gives the conditional Wigner function for the oscillator as a

function of the initial non-Gaussian state of the input field. The dependence on the initial Gaussian

state of the oscillator is contained in the Vc(t).

To conclude, we have derived the conditional Wigner function of the oscillator in both cases of

correlated Gaussian and more general non-Gaussian input probe fields. The assumption that we

have made is linearity of the system dynamics such that the system operator can be solved by using

the Heisenberg equation of motion. It can therefore be easily generalized to a linear system with

many degrees of freedom.

4.5.2 Phonon number measurement

In the previous section, we consider position measurement with a correlated input field. Since posi-

tion is not a conserved quantity for the oscillator, it is difficult to gain a straightforward insight into

the final structure of the result. Here we consider a simpler example of phonon number measure-

ment, which is a quantum non-demolition measurement. In addition, the operator is a nonlinear

function of the oscillator position and momentum, though in a trivial way. The total Hamiltonian

is given by

Ĥ =
p̂2

2m
+

1
2
mω2

mx̂
2 +

√
γ/ω2

m

(
p̂2

2m
+

1
2
mω2

mx̂
2

)
ô1(t) = ~ωmN̂ + ~

√
γN̂ ô1(t), (4.71)

where N̂ is the phonon number operator.

Similarly, we assume measurement of the outgoing phase quadrature. Most of the steps are

therefore the same as what as shown in the previous section, and the reduced density matrix for the

oscillator, in the number state basis, is given by

ρmn(t) =
∫
D[ξ]Trxo

[
Û†(t)|n〉〈m|Û(t) exp

{
i

∫ t

0

dt ξ(t′)[ŷ(t′)− y(t′)]
}
ρ̂(0)

]
/P [y(t)]. (4.72)
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Note here we again used the fact that U†(t)|n〉〈m|U(t), which is a system operator at time t,

commutes with the previous measurement output, and we also used PHy PHy = P̂Hy .

To make the analysis simple, we consider initially the oscillator and the input field are separable

and study only a Gaussian entangled input field, which can be generalized to the case with a non-

Gaussian input field as shown previously. Further, by using the fact that N̂ is a conserved quantity,

we have

ρmn(t) ∝
∫
D[ξ]Tro

[
exp

{
iωm(n−m)t+ i

√
γ

∫ t

0

dt′(n−m)ô1(t′)i
∫ t

0

dt ξ(t′)[ŷ(t′)− y(t′)]
}
ρ̂o(0)

]
ρmn(0)

(4.73)

where we again ignore unimportant normalization factor and ŷ(t) = ô2(t)−√γ n. Again, for Gaussian

state, 〈eiÂ〉 = e−〈Â
2〉/2, the tracing over the input field can be worked out, and we have

ρmn(t) ∝
∫
D[ξ] exp

{
iωm(n−m)t− i

∫ t

0

dt′ξ(t′)[
√
γ n+ y(t′)]−

∫ t

0

dt′
∫ t

0

dt′′
γ

2
(n−m)2C11(t′, t′′)

−
∫ t

0

dt′
∫ t

0

dt′′
√
γ(n−m)C12(t′, t′′)ξ(t′)− 1

2

∫ t

0

dt′
∫ t

0

dt′′ξ(t′)C22(t′, t′′)ξ(t′′)
}
ρmn(0)

(4.74)

where the correlation function for the input optical field is given by Cjk(t′, t′′) = Tro[ôj(t′)ôk(t′′)ρ̂o(0)].

After finishing the Gaussian path integral over ξ, we finally get

ρmn(t) ∝ exp {iωm(n−m)t}×

exp
{
−
∫ t

0

dt′
∫ t

0

dt′′
[
γ

2
(n−m)2C11(t′, t′′) +

1
2
f(m,n, t, t′)C−1

22 (t′, t′′)f(m,n, t, t′′)
]}

ρmn(0)

(4.75)

where f(m,n, t, t′) ≡ √γ n + y(t′) − i
∫ t

0
dτ
√
γ (n − m)C1,2(t′, τ), To obtain ρmn(t) explicitly, we

again need to invert the correlation function C22(t′, t′′) of the input field, and this is the same as

the case considered in the previous section, which is a general feature of non-Markovianity.

We can recover the result for Markovian measurement by plugging in the following correlation

function for the input field:

C1,1(t, t′) = C22(t, t′) =
1
2
δ(t− t′), C12(t, t′) = 0. (4.76)

where the fact 1/2 arises from the normalization we have used that gives [ô1(t), ô2(t′)] = iδ(t− t′).

In this case, Eq. (4.75) can be rewritten as

ρmn(t) ∝ exp
{
iωm(n−m)t− γ

2
(n−m)2t−

∫ t

0

dt′[
√
γ n+ y(t′)]2

}
ρmn(0). (4.77)
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We can now recover the normalization factor P [y(t)] by using Trx[ρ̂x] = 1, and we have 5

P [y(t)] = exp
{
−
∫ t

0

dt′[
√
γ〈N̂〉+ y(t′)]2

}
. (4.78)

We therefore can write y(t) in terms of a classical random process

y(t)dt = −√γ〈N̂〉dt+ dW/
√

2, (4.79)

with dW 2 = dt the Wiener increment. From Eq. (4.77) and (4.79), we can obtain a differential

equation for the normalized density matrix, and up to the first order of dt, we get

ρmn(t+ dt) =
[
1 + iωm(n−m)dt− γ

2
(n−m)2dt−

√
2γ(n− 〈N̂〉)dW

]
ρmn(t) (4.80)

In the operator representation, we recover the standard Markovian stochastic master equation for

phonon-number measurement:

dρ̂x(t) = − i
~

[Ĥx, ρ̂x(t)]dt− γ

2
[N̂ , [N̂ , ρ̂x(t)]]dt−

√
2γ(N̂ − 〈N̂〉)ρ̂x(t)dW. (4.81)

4.5.3 Nonlinear measurement with initially entangled detector state

In previous sections we solved the case for linear measurement and energy measurement. The energy

measurement example is instructive because the interaction is nonlinear although the calculation is

simple. Now we try to study the case with interaction term γΩ(x̂)a1. The system density matrix in

the x representation at time t is

ρ̂(x, x′) = Trs,o[||x′〉〈x|ρ̂]

=
∫
Da2〈x|〈a2|U(t, t−∆t)P (t−∆t)U(t−∆t, t− 2∆t)· · · ρ̂i· · ·P (t−∆t)U−1(t, t−∆t)|x′〉|a2〉

(4.82)

The nice thing one can see from the last formula is that the evolution and projection operators

can be viewed as acting on some initially factorized state |a2〉|x〉. As a result, this part of expression

can be evaluated by using the usual stochastic Schrodinger’s equation method. Thus the density

matrix becomes
5To derive this formula, we have replaced n in the exponent directly by 〈N̂〉. This is due to the fact that for

continuous measurement the variance is of the order of dt−1 at time t—a very weak measurement at any moment.



143

ρ̂(x, x′) = Trleft[
∫ ∫

dx1dx2φ(x, x1, t)φ(x′, x2, t)〈x1|〈y2 − γΩ(x1)|ρ̂i|y2 − γΩ(x2)〉|x2〉]. (4.83)

where φ(x, x1, t) satisfies the free evolution Schrodinger’s equation

i
∂|ψ〉
∂t

= Ĥx|ψ〉

φ(x, x1, t) = 〈x1|ψ〉, φ(x, x1, 0) = δ(x− x1). (4.84)

4.6 Non-Markovian quantum measurement: General case

system bath

detector

input probe field

Figure 4.7: Schematic showing non-Markovian quantum measurement in a more general case with
both non-Markovian dynamics and correlated input probe field.

After studying the first and second scenario, we now discuss briefly the general scenario: the input

probe field is correlated and the system-bath dynamics is non-Markovian, as shown schematically

in Fig. 4.7. There is no universal analytical method to solve the most general case. Only if the

dynamics of the entire system is linear, can we then directly apply the approach used for treating

the second scenario. We first solve the Heisenberg equation for the system, bath, and probe field,

and express the operators at time t in terms of operators at t = 0, of which the quantum statistics

can be easily determined from the initial quantum state. By tracing out the optical field and the

bath degrees of freedom, we can then obtain the conditional Wigner function for the system only,

in the same way as we derive Eq. (4.70).

4.7 Conclusion

To conclude, we have studied two important scenarios that give rise to an effective non-Markovian

quantum measurement of the system: (i) a direct continuous measurement of the bath which couples

to the system with non-Markovian dynamics; (ii) a direct measurement of the system with correlated

probe field. For treating the first scenario, we used Strunz’s method to eliminate the bath degrees

of freedom to derive an effective non-Markovian stochastic master equation for the system. We

explicitly worked out two interesting examples in cavity QED and optomechanical devices. In

addition, we showed the perturbation approach for treating more general nonlinear system-bath
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interaction. For the second scenario, we consider both a Gaussian and a non-Gaussian correlated

input field. By taking advantage of linear dynamics and converting the influence of measurement

in terms of a path integral, we can study non-local correlation of the input field, and derive the

conditional Wigner function for the system. It seems to us that there is no transparent way to

rewrite it in terms of a solution to a differential equation or Wigner transformation of some master

equation, in contrast to the Markovian case. By studying these two scenarios, we can gain a better

insight into non-Markovian quantum measurement for more general cases.
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4.A Linear continuous quantum measurement

Here we will show how the condition in Eq. (4.1) imposes the requirement that the probe should

be a field in a linear continuous quantum measurement. This is adapted from Ref. [9] with small

modifications to fit into the context of quantum measurement.

In a linear measurement, we couple the system and the probe linearly. The total Hamiltonian of

the system and the probe can be then written as

Ĥtot = Ĥs + Ĥp + ~ g L̂⊗ F̂ . (4.85)

Here Ĥs and Ĥp are the free Hamiltonians for the system and probe; L̂ and F̂ are some arbitrary

operators for the system and probe, respectively; g is the coupling constant.

In order to obtain information about L, the output needs be another operator of the probe,

e.g., we denote it by Ẑ and it does not commute with F̂ ; otherwise, Ẑ will simply undergo free

evolution and contain no information about L̂. We can then study the dynamics of the output from

the Heisenberg equation of motion, and in the interaction picture, it is given by

˙̂
ZI(t) =

i

~
[ẐI(t), ĤI(t)]. (4.86)

The solution reads

ẐI(t) = Ẑ(0) + i g

∫ t

0

dt′[ẐI(t), F̂I(t′)]L̂I(t′). (4.87)
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Similarly for F̂I(t) and L̂I(t), we have

F̂I(t) = F̂ (0) + i g

∫ t

0

dt′[F̂I(t), F̂I(t′)]L̂I(t′), (4.88)

L̂I(t) = L̂(0) + i g

∫ t

0

dt′[L̂I(t), L̂I(t′)]F̂I(t′). (4.89)

Due to the interaction term being bilinear—L̂⊗ F̂ , we have

[ẐI(t), F̂I(t′)] ≡ CZF (t, t′), [F̂I(t), F̂I(t′)] ≡ CFF (t, t′), [L̂I(t), L̂I(t′)] ≡ CLL(t, t′), (4.90)

which are all c-numbers. Eqs. (4.87), (4.88), (4.89) are therefore a set of linear equations, and can

be easily solved.

By applying a linear causal filter K(t) to the output ẐI(t), we can introduce a Ẑ(t) that is

directly equal to L̂(t) plus additional noise terms, and

Ẑ(t) =
∫ t

0

dt′K(t− t′)ẐI(t) = g−1L̂(t) + Ẑ0(t) + i g

∫ t

0

dt′CLL(t, t′)F̂0(t′) (4.91)

where

CLL(t, t′) ≡ [L̂0(t), L̂0(t′)] = [eiĤ0t/~L̂e−iĤ0t/~, eiĤ0t
′/~L̂e−iĤ0t

′/~] (4.92)

is the response function. In general CLL(t, t′) is non zero, one example being the harmonic oscillator

and Cxx(t, t′) = [x̂(t), x̂(t′)] = (mωm)−1 sinωm(t− t′) with ωm being the eigenfrequency.

Since Ẑ(t) commutes at different times, Ẑ(t) also commutes at different times:

0 = [Ẑ(t), Ẑ(t′)] = CLL(t, t′) + [Ẑ(t), Ẑ(t′)] + i g

{∫ t′

0

dτ CLL(t′, τ)[Ẑ(t), F̂(τ)] +
∫ t

0

dτ CLL(t, τ)[F̂(τ), Ẑ(t′)]

}

− g2

∫ t

0

∫ t′

0

dτdτ ′ CLL(t, τ)CLL(t′, τ ′)[F̂(τ), F̂(τ ′)]. (4.93)

As those terms on the left-hand side are different orders of some arbitrary coupling constant g, in

order to for this to be satisfied, we therefore require

[Ẑ(t), Ẑ(t′)] = 0, [F̂(t), F̂(t′)] = 0, [Ẑ(t), F̂(t′)] = i δ(t− t′), (4.94)

which has been proved in a more rigorous way in Ref [9]. This basically means that we can treat Ẑ(t)

at different times as different degrees of freedom (a continuous field); Ẑ and F̂ are the corresponding

canonical conjugate variables.
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4.B SME for measurement of cavity mode

Here we add the details for deriving SME as shown in Eq. (4.8). We start from Eq. (4.9):

ρ̂a(t+ dt) =
1

2πP [y(t)]

∫
dξ e−iξy(t)Tro

[
eiξô1(t)

{
ρ̂(t)− i

~
[Ĥ, ρ̂(t)]dt− 1

2~2
[Ĥint, [Ĥint, ρ̂(t)]]dt2

}]
+O[dt2]. (4.95)

By plugging in the expression for Ĥ and Ĥint, we have

Tro
{
eiξô1 ρ̂

}
= 〈eiξô1〉ρ̂a, (4.96)

Tro
{
eiξô1 [Ĥint, ρ̂]

}
= ~
√
γ(〈eiξô1 ô†〉âρ̂a + 〈eiξô1 ô〉â†ρ̂o − 〈ô†eiξô1〉ρ̂aâ− 〈ô eiξô1(t)〉ρ̂â†), (4.97)

and

Tro
{
eiξô1 [Ĥint, [Ĥint, ρ̂]]

}
= ~2γ(〈eiξô1 ô†2〉â2 + 〈eiξô1 ô†ô〉ââ† + 〈eiξô1 ô†ô〉ââ† + 〈eiξô1 ôô†〉â†â+ 〈eiξô1 ô2〉â†2)ρ̂a (4.98)

+ ~2γρ̂a(〈eiξô1 ô†2〉â2 + 〈eiξô1 ô†ô〉ââ† + 〈eiξô1 ô†ô〉ââ† + 〈eiξô1 ôô†〉â†â+ 〈eiξô1 ô2〉â†2)

+ 2~2γ(〈ô†eiξô1 ô†〉âρ̂aâ+ 〈ô eiξô1 ô†〉âρ̂aâ† + 〈ô†eiξô1 ô〉â†ρ̂aâ+ 〈ô eiξô1 ô〉â†ρ̂aâ†) (4.99)

where the average 〈Â〉 ≡ Tro[Âρo(t)] is over the continuous optical field. Since we assume that the

optical field is in a vacuum state6, we have 〈ô2
1〉 = 〈ô2

2〉 = 1
2dt

7 and those averages over the optical

field can be easily worked out explicitly. Specifically,

〈eiξô1〉 = e
−ξ2
4dt , 〈eiξô1 ô〉 = 0, 〈eiξô1 ô†〉 =

iξ√
2 dt

e
−ξ2
4dt ,

〈eiξô1 ô2〉 = 0, 〈eiξô1 ô†2〉 = − ξ2

2dt2
e
−ξ2

4dt2 , 〈eiξô1 ô ô†〉 =
1

2dt
e
−ξ2

4dt2 ,

〈eiξô1 ô†ô〉 = 0, 〈ô eiξô1 ô†〉 =
(

1
dt
− ξ2

2dt

)
e
−ξ2

4dt2 , 〈ô†eiξô1 ô〉 =
ξ2

4dt2
e
−ξ2
4dt .

All the other terms, e.g. 〈ôeiξô1〉, can be obtained by taking the complex conjugate of 〈eiξô1 ô†〉 and

setting ξ → −ξ, so we will not list all of them. We then need to integrate over ξ, and we have

∫
dξe−iξy−

ξ2

4dt ξ = −4iydt
√
πdt e−y

2dt, (4.100)∫
dξe−iξy−

ξ2

4dt ξ2 = 4(dt− 2y2dt2)
√
πdt e−y

2dt. (4.101)

6In reality, it is a coherent state, but we are only interested in fluctuation around the steady-state amplitude.
7We have used the fact that δ(0)dt = 1
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By taking the trace of Eq. (4.95) and using the fact that Tra[ρ̂a(t)] = 1, we obtain, up to the order

of dt,

P [y(t)] =

√
dt
π
e−y

2dt(1− 2i
√
γ〈â+ â†〉ydt) ≈

√
dt
π
e−(y+i

√
γ〈â−â†〉)2dt. (4.102)

Therefore, the measurement result can be viewed as a classical random process, as written in Eq.

(4.9):

y(t)dt = −i√γ〈â− â†〉dt+ dW/
√

2 (4.103)

where dW is the Wiener increment and dW 2 = dt. After replacing y(t) inthe above formula by

Eq. (4.95), it turns out all the counter rotating terms vanishe because the right-hand-side of Eq.

(4.101) vanishes to the first order of dt, and finally we get the stochastic master equation for the

cavity mode, shown in Eq. (4.8):

dρ̂a(t) =− i[∆â†â, ρ̂a(t)]dt− γ[â†âρ̂a(t) + ρ̂a(t)â†â− 2âρ̂a(t)â†]dt

− i
√

2γ[âρ̂a(t)− ρ̂a(t)â† − 〈â− â†〉ρ̂a(t)]dW. (4.104)

4.C Operator Ô in the linear coupling case

To derive the operator Ô, it is most convenient to use the stochastic Schrödinger equation counterpart

of Eq. (4.12) and derive directly ∂α∗ |ψ(α∗)〉. The stochastic Schrödinger equation reads

d|ψ〉 = − i
~

(Ĥx + Ĥa + Ĥint)|ψ〉dt− γ(â†â− 2〈â†〉â+ 〈â†〉〈â〉)|ψ〉dt− i
√

2γ(â− 〈â〉)|ψ〉dW. (4.105)

We move into the interaction picture of Ĥx + Ĥa + i~γâ†â, and define the evolution operator

Û(t) = exp
[
− i

~
(Ĥx + Ĥa − i~γâ†â)t

]
. (4.106)

The wave function in the Schrödinger and the interaction picture are related by

|ψ〉 = Û(t)|ψ〉I . (4.107)

In contrast to the usual interaction picture, Û is not unitary and the operator transforms as âI(t) =

Û−1(t)âÛ(t), instead of âI = Û†â Û . In the interaction picture, we have

d|ψ〉I = −ig(L̂I â
†
I + L̂†I âI) + γ(2〈â†〉âI − 〈â†〉〈â〉)|ψ〉dt− i

√
2γ(âI − 〈â〉)|ψ〉dW. (4.108)
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In the coherence basis of the cavity mode, it can be rewritten as

d|ψ(α∗)〉I =− ig(L̂Iei(∆−iγ)tα∗ + L̂†Ie
−i(∆−iγ)t∂α∗)|ψ(α∗)〉Idt

+ γ[2e−i(∆−iγ)t〈â†〉∂α∗ − 〈â†〉〈â〉]|ψ(α∗)〉Idt (4.109)

− i
√

2γ[e−i(∆−iγ)t∂α∗ − 〈â〉]|ψ(α∗)〉IdW ≡ Ĥeff(α∗)|ψ(α∗)〉Idt. (4.110)

We use the following Ansatz:

∂α∗ |ψ(α∗)〉I ≡ −iÔI(t, α∗)|ψ(α∗)〉I . (4.111)

By comparing the resulting equation, we find out that the Schrödinger picture operator Ô(t, α∗),

which is defined in Eq. (4.17), and the interaction picture operator ÔI(t, α∗) are related by

Ô(t, α∗) = e−i(∆−iγ)te−
i
~ ĤxtÔI(t, α∗)e

i
~ Ĥxt. (4.112)

To derive Ô, we use the consistent condition [2]:

d
dt

[∂α∗ |ψ(α∗)〉I ] = ∂α∗

[
d
dt
|ψ(α∗)〉I

]
, (4.113)

which gives

d
dt
ÔI(t, α∗) = i ∂α∗Ĥeff(α∗) + [Ĥeff(α∗), ÔI(t, α∗)]

= gL̂Ie
i(∆−iγ)t +

√
2γe−i(∆−iγ)t(〈â†〉 − i

√
2γdW )∂α∗Ô(t, α∗)

− ig[L̂Iei(∆−iγ)tα∗ − iL̂†Ie
−i(∆−iγ)tÔI(t, α∗), ÔI(t, α∗)]. (4.114)

For the case considered in the main text, L̂ = σ̂− and σ̂I− = σ̂ e−iωqt. We assume that

ÔI(t, α∗) = f(t)σ̂− ≡ Ô0(t), (4.115)

which is independent of α∗. A more systematic approach is to expand ÔI(t, α∗) in terms of α∗ as

in Ref. [33]. From the consistent condition, we obtain

ḟ(t) = g e−i(ωq−∆+iγ)t + g ei(ωm−∆+iγ)tf2(t) . (4.116)

with initial condition f(0) = 0. Finally, by using Eq. (4.112), one can easily find out that

Ô0(t) = ei(ωq−∆+iγ)tf(t)σ̂− . (4.117)
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4.D Operator Ô for optomechanical interaction

Here we show the details for deriving the Ô operator for the optomechanical device considered in

Section 11.3. The general procedure is similar the atom-cavity case, and the only complexity arises

due to the dependence of Ô on α∗, but only to the linear order.

We again use the stochastic Schrödiner equation in the interaction picture of ~(ω0− iγ)â†â which

is

d|ψ(α∗)〉I = − i
~

(
p̂2

2m
+

1
2
mω2

mx̂
2

)
|ψ(α∗)〉Idt− ig[ei(ω0−iγ)tα∗ + e−i(ω0−iγt)∂α∗ ]x̂|ψ(α∗)〉Idt

+ γ[2e−i(∆−iγ)t〈â†〉∂α∗ − 〈â†〉〈â〉]|ψ(α∗)〉Idt− i
√

2γ[e−i(∆−iγ)t∂α∗ − 〈â〉]|ψ(α∗)〉IdW.

(4.118)

The Ô operator is similar to that which was obtained in Ref. [2] and it is a linear function of x̂, p̂

and α∗. We use the following ansatz and derive those functions by using the consistent condition:

∂α∗ |ψ(α∗)〉I = −i[f0(t) + fx(t)x̂+ fp(t)p̂+ f1(t)α∗]|ψ(α∗)〉I ≡ −iÔI(t, α)|ψ(α∗)〉I . (4.119)

The Schrodinger picture operator Ô(t, α∗) and the interaction picture operator ÔI(t, α∗) here are

related by

Ô(t, α∗) = e−i(∆−iγ)t[f0(t) + fx(t)x̂+ fp(t)p̂+ e−i(∆−iγ)tf1(t)α∗] ≡ Ô0(t) +O1(t)α∗, (4.120)

in which we define operator Ô0 and function O1 by using the notation similar to Ref. [33]—subscripts

0 and 1 indicate the power dependence of α. From the consistent condition, those functions f satisfy

the following equations

ḟ0(t)dt = e−i(∆−iγ)t[2γ〈â†〉f1(t)dt− i
√

2γ f1(t)dW − i g f0(t)fp(t)dt] , (4.121)

ḟx(t) = ωmfp(t) + g ei(∆−iγ)t − i g e−i(∆−iγ)t[f1(t) + fx(t)fp(t)] , (4.122)

ḟp(t) = −ωmfx(t)− i g f2
p (t)e−i(∆−iγ)t , (4.123)

ḟ1(t) = g f2(t)ei(∆−iγ)t − i g f2(t)f3(t)e−i(∆−iγ)t (4.124)

with null initial condition.

To derive the SME, we need to average over α. By using the fact that Mα[α∗ρ̂x(α∗, α)] =

Mα[∂αρ̂x(α∗, α)] = ρ̂Ô†, we obtain

Ôρ̂ = Ô0ρ̂+O1ρ̂Ô
†, (4.125)

ρ̂Ô† = ρ̂Ô†0 +O∗1Ô
†
0ρ̂. (4.126)
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We can then obtain Eqs. (4.27) and (4.28), namely

Ôρ̂x = [O1ρ̂xÔ
†
0 + Ô0ρ̂x]/[1− |O1|2], (4.127)

ρ̂xÔ
† = [O∗1Ô0ρ̂x + ρ̂xÔ

†
0]/[1− |O1|2]. (4.128)

4.E Operator Ôk in the linear coupling case

Here we derive the Ôk in the linear coupling case. The corresponding stochastic Schrödinger equation

reads

d|ψ〉 = − i
~

(Ĥx + Ĥa)|ψ〉dt− i
∑
k

gk(L̂â†k + L̂†âk)|ψ〉dt

−
∑
kk′

√
γkγk′(â

†
kâk′ − 2〈â†k〉âk′ + 〈â†k〉〈âk′〉)|ψ〉dt+

∑√
2γk(âk − 〈âk〉)|ψ〉dW. (4.129)

Similar to the single-mode case, we move into the interaction picture of Ĥx+Ĥa+i~
∑
kk′
√
γkγk′ â

†
kâk′ ,

and define the evolution operator

Û(t) = exp

[
− i

~

(
Ĥx + Ĥa + i~

∑
kk′

√
γkγk′ â

†
kâk′

)
t

]
. (4.130)

The wave function and the operator in the Schrödinger and the interaction picture are related by

|ψ〉 = Û |ψ〉I , ôI = Û−1ô Û . (4.131)

Specifically, the annihilation operator for the bath âk transforms as

Û−1(t)âk Û(t) =
∑
k′

e−iMkk′ tâk′ , Û−1(t)â†k Û(t) =
∑
k′

eiMkk′ tâ†k′ (4.132)

where the dynamical matrix M is defined in Eq. (5.9). By using the coherent state basis for the

bath, the stochastic master equation in the interaction picture reads

d|ψ(~α∗)〉I =− i
∑
kk′

gk

(
L̂Ie

iMkk′ tα∗k′ + L̂†Ie
−iMkk′ t∂α∗

k′

)
|ψ(~α∗)〉Idt+

∑
kk′k′′

√
γkγk′(2〈â†k〉e

−iMk′k′′ t∂α∗
k′′

− 〈â†k〉〈âk′〉)|ψ(~α∗)〉Idt+
∑
kk′

√
2γk(e−iMkk′ t∂α∗

k′
− 〈âk〉)|ψ(~α∗)〉I dW ≡ Heff(~α∗)|ψ(~α∗)〉I .

(4.133)

Similarly, we use the following ansatz

∂α∗k |ψ(~α∗)〉I = −iÔ′Ik(t, ~α∗)|ψ(~α∗)〉I . (4.134)
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It is related to the Schrödinger picture operator Ô′k(t, α∗) by

Ô′k(t, ~α∗) =
∑
k′

e−iMkk′ te−
i
~ ĤxtÔ′Ik′(t, ~α

∗)e
i
~ Ĥxt. (4.135)

From the consistent condition:

d
dt

[∂α∗k |ψ(~α∗)〉I ] = ∂α∗k

[
d
dt
|ψ(~α∗)〉I

]
, (4.136)

we get

d
dt
Ô′Ik(t, α∗) = i ∂α∗kĤeff(~α∗) + [Ĥeff(~α∗), Ô′Ik(t, ~α∗)]

=
∑
k′

gk′L̂Ie
iMkk′ t − i

∑
k′k′′

gk′
[
L̂Ie

iMk′k′′ tα∗k′′ − iL̂
†
Ie
−iMk′k′′ tÔ′Ik′′(t, ~α

∗), Ô′Ik(t, ~α∗)
]
.

(4.137)

For the simple case considered in the main text, L̂ = b̂, it is straightforward to get

Ô′Ik(t, ~α) = fk(t)b̂ (4.138)

with

ḟk(t) =
∑
k′

gk′e
−i(ωm−Mkk′ )t − fk(t)

∑
k′k′′

gk′e
i(ωmt−Mk′k′′ )tfk′′(t). (4.139)

By using Eq. (4.135), the Schrödinger picture operator is given by

Ôk(t) =
∑
k′

ei(ωm−Mkk′ )tfk′(t)b̂. (4.140)

This gives rise to Eq. (4.117) in the single-mode case.

4.F Perturbative solution of Ôk

In this section, we will try to derive ∂α∗k ρ̂x and 〈âk〉 in the case of the many-degrees-of-freedom

bath. To illustrate the procedure, we first consider the case of the single-degree-of-freedom bath.

The corresponding stochastic Schrödinger equation in the coherence basis of the cavity mode reads

d|ψ(α∗)〉 =− i

~
(Ĥx + Ĥa)|ψ(α∗)〉dt− ig(L̂α∗ + L̂†∂α∗)|ψ(α∗)〉dt

− γ(α∗∂α∗ − 2〈â†〉∂α∗ + 〈â†〉〈â〉)|ψ(α∗)〉dt

+
√

2γ(∂α∗ − 〈â〉)|ψ(α∗)〉dW. (4.141)
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We do not use the interaction picture, as it is more convenient to study in the Schrödinger picture

for this case.

In order to seek a perturbative solution to ∂α∗ |ψ(α∗)〉, we need to find a small dimensionless

parameter. We notice that the characteristic memory time scale for the oscillator interacting with

the cavity mode is γ−1, after which the cavity mode is refreshed by the external field. Since the

coupling strength between the oscillator and the cavity mode is g, the small dimensionless parameter

is ε ≡ g/γ. In addition, we know that g enters |ψ(α∗)〉 as of gα∗ (from the interaction term), we can

make a Taylor expansion of |ψ(α∗)〉 as α, which is equivalent to expansion in terms of ε 8, i.e.,

|ψ(α∗)〉 = |ψ〉(ε0) + α∗∂α∗ |ψ〉(ε1) +
1
2
α∗2∂2

α∗ |ψ〉(ε2) + · · · . (4.142)

By taking the partial derivative of Eq. (4.146), up to the first order of g, we have

d(∂α∗ |ψ〉) = − i
~

(Ĥx + ~∆− i~γ)(∂α∗ |ψ〉)dt− igL̂|ψ〉dt, (4.143)

and we obtain

(∂α∗ |ψ(t)〉) = (∂α∗ |ψ(0)〉)− ig
∫ t

0

dt′e−i(∆−iγ)(t−t′)e−iĤx(t−t′)/~L̂|ψ(t′)〉

= −ig
∫ t

0

dt′e−i(∆−iγ)(t−t′)L̂(t′ − t)|ψ(t)〉 (4.144)

with L̂(t′ − t) ≡ e−iĤx(t−t′)/~L̂eiĤx(t−t′)/~. We assume that the oscillator and the cavity mode are

separable initially, and the cavity mode is in a vacuum state, in which case |ψ(0)〉 is independent of

α∗ and ∂α∗ |ψ(0)〉 = 0. Up to the first order of the interaction strength, we get

Ô(t) = g

∫ t

0

dt′e−i(∆−iγ)(t−t′)L̂(t′ − t) +O[g2]. (4.145)

Now, we can move on the the case of the bath with many degrees of freedom. The corresponding

stochastic Schrödinger equation in the coherent state basis is

d|ψ(α∗)〉 =− i

~
(Ĥx + Ĥa)|ψ(α∗)〉dt− i

∑
k

gk(L̂α∗k + L̂†∂α∗k)|ψ(α∗)〉dt−
∑
kk′

√
γkγk′(α∗k∂α∗k′ − 2〈â†k〉∂α∗k′

+ 〈â†k〉〈âk′〉)|ψ(α∗)〉dt+
∑
k

√
2γk(∂α∗k − 〈âk〉)|ψ(α∗)〉dW. (4.146)

Up to the first order of interaction strength gk, we have

d(∂α∗k |ψ〉) = − i
~

(Ĥx + ~ωk)(∂α∗k |ψ〉)dt−
√
γk
∑
k′

√
γk′(∂α∗

k′
|ψ〉)dt− igkL̂|ψ〉dt+O[g2

k]. (4.147)

8This is identical to Ting’s expansion of Ô in terms of the random process [33].
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It is a linearly coupled equation for ∂α∗k |ψ〉. The solution can be formally written as

∂~α∗ |ψ(t)〉 = −i
∫ t

0

dt′ exp
[
− i

~
(ĤxI + ~ M)(t− t′)

]
~g L̂|ψ(t′)〉 = −i

∫ t

0

dt′e−iM(t−t′)~g L̂(t′−t)|ψ(t)〉,

(4.148)

where matrix M is defined in Eq. (5.9). We therefore obtain

Ô(t) =
∑
k′

∫ t

0

dt′e−iMkk′ (t−t
′)gk L̂(t′ − t)ρ̂x +O[g2

k]. (4.149)
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Chapter 5

Revealing non-Markovianity of
open quantum systems via local
operations

Non-Markovianity, as an important feature of general open quantum systems, is usually

difficult to quantify with limited knowledge of how the plant, which we are interested in,

interacts with its environment, the bath. It often happens that the reduced dynamics of

the plant attached to a non-Markovian bath becomes indistinguishable from the one with

a Markovian bath, if we let the plant-bath system freely evolve. Here we show that non-

Markovianity can be revealed via applying local unitary operations on the plant—they

will influence the plant dynamics at later times due to memory of the bath. This not

only allows us to show non-Markovianity in those systems that are perviously considered

as being Markovian, but also sheds light on protecting and recovering quantum coher-

ence in non-Markovian systems, which will be useful for quantum-information processing.

Based on preprint by H. Yang, H. Miao, and Y. Chen, arXiv:1111.6079

5.1 Introduction

Recently, there have been many important theoretical and experimental studies of non-Markovian

open quantum systems in the literature [1–5]. This is largely motivated by the quest for quantum

information processing protocols that are robust under decoherence, as the basic information stor-

ing unit—the qubit—often interacts with a non-Markovian environment with which the noises at

different times are correlated. If we can arbitrarily control the plant, e.g., the atomic spin, the

non-Markovianity of the bath, in principle, allows us to completely decouple the spin from the envi-

ronment, which is known as dynamical decoupling [6–8]. A good understanding and quantification of

non-Markovian dynamics in open quantum systems can therefore lead to novel designs of quantum
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devices that are less susceptible to environmentally-induced decoherence.

To quantify non-Markovianity, Breuer et al. proposed a measure based upon the evolution of the

trace distance Tr|ρ̂1(t)− ρ̂2(t)|/2 between two different initial quantum states of the plant ρ̂1(0) and

ρ̂2(0) [3]. An increase in the trace distance gives a unequivocal signature of non-Markovianity, as it

indicates that information flows from the environment back to the plant. There is another measure

proposed by Rivas et al.[4]. The authors introduced an ancilla to entangle but not interact with the

plant, whereas the plant is still interacting with the bath—an increase in the entanglement between

the plant and the ancilla during evolution signifies the existence of non-Markovian dynamics between

the plant and bath. Both measures have been compared theoretically [9, 10] and also tested in a

recent novel experiment by Liu et al. [5].

These two measures focus on the reduced dynamics of the plant and do not provide details on how

the bath and plant interact with each other. As the reduced dynamics contain limited knowledge of

the bath and also critically depend on the initial state, it often happens that the plant dynamics is

highly degenerate among different non-Markovian systems. In other words, the plant can effectively

behave in the same way even when it is attached to vastly different baths—e.g., one a Markovian bath

and the other a non-Markovian bath. In this letter, we propose a new criterion for non-Markivianity

by exploring the memory effect in non-Markovian dynamics: the dynamics is non-Markovian if a

local unitary operation on the plant at a given moment can induce non-local influence on the plant

dynamics at later times. This allows us to reveal non-Markovianity in systems in which the reduced

dynamics of the plant appear to be Markovian before applying local operations—e.g., it satisfies the

time-local master equation with effective damping rates γi(t) > 0:

˙̂ρp(t) = −(i/~)[Ĥp(t), ρ̂p(t)] +
∑
iγi(t)L̂iρ̂p(t) , (5.1)

where Lindblad terms L̂iρ̂p = 2Âiρ̂pÂ
†
i − {Â

†
i Âi, ρ̂p} with Âi being plant operators [11, 12].

Figure 5.1: (Color online.) A schematic showing how the reduced dynamics of the plant emerges
from the full dynamics of the plant-bath system by tracing over the bath state at each step.
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5.2 Plant – bath dynamics

Reduced dynamics of the plant.—To introduce our new criterion for non-Markovianity, we first con-

sider the reduced dynamics of the plant. Suppose the plant-bath system evolves from t = 0 to t = T .

We divide this process into N small segments with increment dt = T/N . The plant-bath system

undergoes a unitary evolution:

ρ̂pb(T ) = ÛN (dt) · · · Û1(dt)ρ̂pb(0)Û†1 (dt) · · · Û†N (dt) , (5.2)

where ρ̂pb is the plant-bath density matrix and Ûi(dt) is the unitary evolution under the total

Hamiltonian at ti. The plant reduced dynamics is obtained by tracing over the bath at each step,

as shown schematically in Fig. 5.1, and the reduced density matrix for the plant evolves as:

ρ̂p(T ) = Φ̂N (dt) · · · Φ̂i(dt) · · · Φ̂1(dt)ρ̂p(0) , (5.3)

where ρ̂p ≡ Trb[ρ̂pb] and the super-operator Φ̂i(dt) is a trace-preserving dynamical map at t = ti.

For general non-Markovian dynamics, the dynamical map Φ̂i(dt) relies on the history of the plant-

bath state ρ̂pb(tk) (tk < ti). For Markovian dynamics, Φ̂i(dt) only locally depends on the plant-bath

state, i.e., no memory, in a similar manner to the classical Markovian process. In the simplest

case, Φ̂i(dt) is independent of time and the plant state—the dynamical map forms a semigroup

with Φ̂(t + τ) = Φ̂(t)Φ̂(τ). The corresponding generator is the Lindblad super-operator L̂, namely

Φ̂(t) = eL̂t, and the master equation for the plant is in the standard Lindblad form: ˙̂ρp(t) =

−(i/~)[Ĥp, ρ̂p(t)] + L̂ρ̂p(t).

Criterion for non-Markovianity—to explore non-Markovianity, the key is to show the memory

effect—the non-local dependence of the dynamical map on the plant-bath state. A natural way is to

apply a certain local unitary operation on the plant-bath system at one moment and to study how

it influences the plant dynamics at later times. In usual cases, only the plant can be manipulated

and the bath, i.e., the environment, is not fully controllable. This leads to our new criterion for

non-Markovianity in general open quantum systems:

The plant dynamics is non-Markovian if its dynamical maps at later times change under any

local unitary operation Ûp⊗ Îb on the plant at any earlier moment tk (Îb is the identity operator for

the bath), namely, when ρ̂pb(tk)→ Ûp ⊗ Îb ρ̂pb(tk)Û†p ⊗ Îb, the plant state at T :

ρ̂p(T ) 6= Φ̂N (dt) · · · Φ̂i(dt) · · · Φ̂k+1(dt)Ûpρ̂p(tk)Û†p . (5.4)

Here Φ̂ are dynamical maps before applying Ûp ⊗ Îb. The fact that the dynamical maps change at

later times clearly indicates non-Markovianity, as we know for Markovian dynamics the dynamics
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maps are invariant under such operations. If the dynamical maps do not change, it means that

all the dynamical variables of the plant will follow the same equations of motion, before and after

applying the unitary operations. Solely from the dynamical point of view, the dynamics cannot be

treated as non-Markovian, as it is difficult to reveal the memory effect by studying dynamics of the

plant variables alone. In the following, we will use two examples to illustrate this new criterion,

and show that it can reveal non-Markovianity in systems inwhich the unperturbed dynamics (before

applying the unitary operation) is indistinguishable from the Markovian one.

The first example—the first such example is the interesting spin-cavity system as shown in

Fig. 5.2—a two-level atom coupled to a cavity mode which in turn couples to external continuum—a

quantum Wiener process that is equivalent to a zero-temperature Markovian bath [13]. If we view

the cavity mode and the external continuum together as the bath, the two-level atom—the plant—

is effectively coupled to a damped cavity mode which is a non-Markovian dissipative bath. The

corresponding Hamiltonian for this system is given by [14]:

Ĥ =~(ωq/2)σ̂z + ~ ∆â†â+ ~ g(σ̂−â† + σ̂+â)

+ ~
√
γ[â b̂†in(t) + â† b̂in(t)]. (5.5)

Here σ̂z is the Pauli matrix and σ̂± = σ̂x± iσ̂y; â and b̂in are the annihilation operators of the cavity

mode and the in-going field of the external continuum with [â, â†] = 1 and [b̂in(t), b̂†in(t′)] = δ(t− t′);

ωq is the atom transition frequency and ∆ is detune frequency of the cavity mode; g and γ are

the corresponding coupling constants. After tracing over the external continuum, the joint density

matrix of the atom and cavity satisfies the following Markovian master equation:

˙̂ρ(t) =− i
[
(ωq/2)σ̂z + ∆â†â+ g(σ̂−â† + σ̂+â), ρ̂(t)

]
+ γ[2âρ̂(t)â† − {â†â, ρ̂(t)}]. (5.6)

To further obtain the master equation for the atom by eliminating the cavity mode, we need to

know the initial state of the atom and the cavity mode. In the simplest case when they initially are

separable and the cavity mode is in the vacuum state, namely |ψ〉 = |ψa〉⊗ |0〉, as shown in Ref. [14],
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Figure 5.2: (Color online.) A schematic showing the atom-cavity system. The cavity mode is
coupled to the external continuum field (a Markovian bath), and they together form an effective
non-Markovian bath for the atom. (Adapted from Ref. [14]).
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the reduced density matrix of the atom ρ̂a(t) satisfies a time-local master equation:

˙̂ρa(t) =− i
[ωq

2
σ̂z + g={f(t)} σ̂+σ̂−, ρ̂a(t)

]
+ g<{f(t)} [2 σ̂−ρ̂a(t)σ̂+ − {σ̂+σ̂−, ρ̂a(t)}], (5.7)

where the time-dependent function f(t) satisfies a Riccati equation: ḟ(t) − i(ωq − ∆ + iγ)f(t) −

g f2(t) = g with an initial condition f(0) = 0, of which the solution is well-known. In the case with

ωq = ∆ and strong dissipation γ ≥ 2g, f(t) is real and positive, and we simply have

˙̂ρa(t) = −i
[ωq

2
σ̂z, ρ̂a(t)

]
+ g f(t)L̂ρ̂a(t) (5.8)

with L̂ρ̂a(t) = 2 σ̂−ρ̂a(t)σ̂+ − {σ̂+σ̂−, ρ̂a(t)}. Such a master equation can also describe the case

when the atom is directly coupled to the Markovian bath but with a time-dependent coupling rate,

of which the Hamiltonian is

Ĥ = ~(ωq/2)σ̂z + ~
√
gf(t)[σ̂− b̂

†
in(t) + σ̂+ b̂in(t)]. (5.9)

Basically, from this reduced dynamics alone, we cannot tell whether the underlying dynamics is

Markovian or not, even though the atom-cavity interaction is highly non-Markovian when the cavity

decay rate γ becomes comparable to the atom transition frequency ωq. This master equation is

simply an artifact of a specially-chosen initial state for the atom and the cavity. If we perturb the

atom, e.g., by applying a π-pulse, the dynamics of the atom will deviate from the one described by

Eq. (5.7) due to the memory of the cavity mode.

To show the change in the dynamical map for the plant after applying local operations, we
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Figure 5.3: (Color online.) The left panel shows the change in the trace distance after applying
a local unitary operation; the right panel shows the concurrence for the entanglement between
the atom and a two-level ancilla. The black line shows the Markovian dynamics described by
Eq. (5.8). We have chosen ωq = ∆ = g = 1, and γ = 2g. For evaluating the trace distance
Tr|ρ̂1(t)− ρ̂2(t)|/2, the two initial quantum states of the atom are ρ̂1(0) = |1〉〈1| and ρ̂2(0) = |0〉〈0|.
For evaluating the concurrence, the atom and ancilla are initially in the maximally entangled state:
1√
2
[|0〉| ⊗ |0〉+ |1〉| ⊗ |1〉].
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Figure 5.4: (Color online.) Plot showing the time evolution of 〈σ̂z〉 according to Markovian dynamics
given in Eq. (5.10) (black) and to non-Markovian dynamics (red) with σ̂z ⊗ Îc applied at t = 1. The
initial atom-cavity state is (|0〉+ |1〉)/

√
2⊗ |0〉.

numerically solve the master equation in Eq. (9.54a) for the joint atom-cavity density matrix. We

use the same initially-separable quantum state for deriving Eq. (5.8) and in addition impose γ = 2g,

so that when there is no unitary operation on the atom, the reduced density matrix of the atom

simply follows Eq. (5.8) with f(t) > 0, which is a time-local Markovian master equation. In Fig. 5.3,

we show the change of the trace distance and also the concurrence with and without introducing a

local unitary operation on the atom Û = σ̂z ⊗ Îc at t = 1 (Îc is the identity operator of the cavity

mode). As we can see, after introducing a local operation on the atom, there is an increase in both

the trace distance and the concurrence, which manifests the memory effect of the cavity mode. In

contrast, if the atom were coupled to a Markovian bath with Hamiltonian given by Eq. (5.9), a local

perturbation as σ̂z ⊗ Îc will change neither the trace distance nor the concurrence.

Apart from the change of the trace distance or the concurrence, the change in the dynamical map

can also show up in the expectation values of plant dynamical variables. Here, we take 〈σ̂z〉 ≡ Tr[ρ̂ σ̂z]

for illustration. In Fig. 5.4, we show the non-Markovian evolution Tr[ρ̂ σ̂z] due to the full dynamics

described in Eq. (9.54a) and the Markovian evolution Trp[ρ̂pσ̂z] from Eq.(5.8) which gives:

〈 ˙̂σz〉 = −2gf(t)[1 + 〈σ̂z〉]. (5.10)

Before applying the local operation there is no difference between them, as the reduced dynamics

is indistinguishable from the Markovian case. They start to deviate from each other after the local

unitary operation.

The second example—this new criterion can also be applied to study the recent experiment by

Liu et al. [5]. In their setup, the polarization degree of freedom of photons acts as the plant, and

it couples to the frequency degree of freedom which acts as the bath. They jointly undergo the

following unitary evolution:

Û(t)|λ〉 ⊗ |ω〉 = einλωt|λ〉 ⊗ |ω〉. (5.11)

Here λ = H,V representing the horizontal and vertical polarization states and |ω〉 is the frequency
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Figure 5.5: (Color online.) The left panel shows the time evolution of the trace distance of directly
decoupling at t = 1 by applying a sequence of unitary operations on the plant in a short time
interval, or a delay decoupling after applying σ̂z ⊗ Îc in the atom-cavity example; the right panel
shows that the maximal recovering is achieved when the atom and cavity mode are disentangled
[solid curve is the trace distance (same as left panel) and the dashed curve is the concurrence for
the atom-cavity entanglement].

eigenstate. In the experiment, the intial polarization state |φ〉 = (|H〉± |V 〉)/
√

2 and the bath state

|χ〉 =
∫

dω g(ω)|ω〉. After evolving for duration t, the joint state is Û(t)|φ〉 ⊗ |χ〉 which forms an

entangled state:

1√
2

∫
dω g(ω)(einHωt|H〉 ± einV ωt|V 〉)⊗ |ω〉. (5.12)

If we trace out the bath state |ω〉, the polarization state starts decohering and its dynamics depends

on the actual form of g(ω). By controlling g(ω), the time evolution of the trace distance can either

monotonically decrease or oscillate. This was claimed to be the signature of switching between

the Markovian and the non-Markovian regime in Ref. [5]. Interestingly, if we apply the unitary

operation σ̂x⊗ Îω on the polarization at t and let it evolve for another time t, the final state is given

by Û(t)(σ̂x ⊗ Îω)Û(t)|φ〉 ⊗ |χ〉 which is equal to

|φ〉 ⊗
∫

dω g(ω)ei(nH+nV )ωt|ω〉. (5.13)

It is a separable state and the polarization state returns to its initial value |φ〉, independent of the

actual form of g(ω). This indicates that the dynamics is indeed non-Markovian regardless of the

initial state of the bath, otherwise we would not recover the plant initial state at later times after

applying the local unitary operation.

Dynamical recoverin—the increase of quantum coherence, when the plant is perturbed with local

unitary operations, can be important for quantum-information processing. This allows us to recover

information concerning the plant that is stored in the bath, which we can call dynamical recovering.

More importantly, by combining local operations with the dynamical decoupling protocols [6–8], we

can characterize the bath dynamics by studying the maximal amount of information that we can

recover at any given moment, which can help us find the optimal strategies for maintaining quantum
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coherence. Take the atom-cavity system for example, in the left panel of Fig. 5.5, we show the time

evolution of the trace distance for two different dynamical decoupling procedures—the first one is

a direct decoupling at t = 1 while the second one is a delayed decoupling after a local operation at

t = 1. The maximal difference in the trace distance not only can tell us the memory time scale of

the bath but also information about the plant-bath entanglement dynamics. Indeed, we find that

in this atom-cavity case, the maximal difference is achieved when the atom becomes disentangled

with the cavity mode as shown in right panel of Fig. 5.5. In general, starting from any time t in

the evolution, there should exist an optimal sequence of local operations on the plant for maximally

recovering its information, which critically depends on the details of the plant-bath interaction.

Operationally, one can also define a measure for non-Markovianity based on such dynamical

recovering. We introduce the set of plant state pairs with the initial trace distance D that is equal

to 1: M = {{ρ̂1(0), ρ̂2(0)}, ∀D{ρ̂1(0), ρ̂2(0)} = 1}. Suppose at moment t, D{ρ̂1(t), ρ̂2(t)} = α < 1,

the measure is:

Nα = max
∀τ,Uτ

D{Φ̂Uτ ρ̂1(t), Φ̂Uτ ρ̂2(t)} − α
1− α

, (5.14)

where Φ̂Uτ ρ̂(t) ≡ Trb[Ûp(τ) ⊗ Îb ρ̂pb(t)Û†p(τ) ⊗ Îb] is a sequence of unitary maps for the plant from

t to t + τ . Obviously for Markovian systems N is equal to 0, and for the non-Markovian systems

in which the plant can recover its initial states via local operations, the measure is equal to 1. In

general, Nα ranges between 0 and 1 depending on how strong the bath memory is, and also the

moment t at which we start to apply unitary operations.

Experimental test—this new criterion can be tested experimentally, e.g. using the existing setup

of Liu et al. [5]. The first step is the same as the one outlined by Breueret al. [3]—one needs to carry

out state tomography of the plant to measure the trace distance as a function of time. If there is an

increase of trace distance, one can assert that the dynamics is non-Markovian by using the criterions

of Breueret al. However, if the trace distance decreases monotonically, one will need to take the next

step by applying different unitary operations onto the plant at different times, and then repeat the

tomography procedure to see whether the trace distance increases.

5.3 Conclusion

We have presented a new criterion for the existence of non-Markovianity in general open quantum

systems—the non-Markovianity manifests in terms of non-local change in the dynamical map after

applying local unitary operations on the plant. With this criterion, we can tell whether a time-local

positive map is only an artifact of a special initial quantum state of the plant-bath system or not,

and we have used the analytical solvable atom-cavity model and a recent experimental scheme to

illustrate this point. This work, on the one hand, helps clarify some subtleties of non-Markovianity
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in open quantum systems; on the other hand, it sheds light on designing appropriate non-Markovian

baths for enhancing coherence in quantum information processing.
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Chapter 6

Quantum back-action in
measurements of zero-point
mechanical oscillations

Measurement-induced back action, a direct consequence of the Heisenberg uncertainty

principle, is the defining feature of quantum measurements. We use quantum measure-

ment theory to analyze the recent experiment of Safavi-Naeini et al. [Phys. Rev. Lett.

108, 033602 (2012)], and show that results of this experiment not only characterize the

zero-point fluctuation of a near-ground-state nanomechanical oscillator, but also demon-

strate the existence of quantum back-action noise — through correlations that exist

between sensing noise and back-action noise. These correlations arise from the quantum

coherence between the mechanical oscillator and the measuring device, which build up

during the measurement process, and are key to improving sensitivities beyond the Stan-

dard Quantum Limit.

Based on paper by F. Khalili, H. Miao, H. Yang, A. Safavi-Naeini, O. Painter and Y.

Chen, Phys. Rev. A 86, 033840 (2012). Copyright 2013 by the American Physical

Society.

6.1 Introduction

Quantum mechanics dictates that no matter or field can stay absolutely at rest, even at the ground

state, for which energy is at minimum. A starting point for deducing this inevitable fluctuation is

to write down the Heisenberg uncertainty principle

[x̂, p̂] = i ~ , (6.1)
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which leads to:

∆x ·∆p ≥ ~/2 . (6.2)

Here x̂ and p̂ are the position and momentum operators, while ∆x and ∆p are standard deviations

of position and momentum for an arbitrary quantum state. Eq. (6.2) means we cannot specify the

position and momentum of a harmonic oscillator simultaneously, as a point in a classical phase space

— the oscillator must at least occupy ~/2 area in the phase space. If the oscillator has mass of m

and eigenfrequency of ωm, then in the Heisenberg picture we can write

[x̂q(t), x̂q(t′)] =
i~ sinωm(t′ − t)

mωm
, (6.3)

which leads to:

∆xq(t) ·∆xq(t′) ≥
~| sinωm(t′ − t)|

2mωm
. (6.4)

with x̂q(t) the Heisenberg operator of the oscillator’s position, quantum-mechanically evolving under

the free Hamiltonian. Here ∆xq(t) is the standard deviation of x̂q(t) for an arbitrary quantum state.

Eq. (6.4) means the position of a freely evolving quantum harmonic oscillator cannot continuously

assume precise values, but instead, must fluctuate. This fluctuation carries the zero-point mechanical

energy of ~ωm/2.

As a key feature of quantum mechanics, zero-point fluctuation of displacement is an impor-

tant effect to verify when we bring macroscopic mechanical degrees of freedom into their ground

states [1–8]. Needless to say, a continuous observation of the zero-point fluctuation of a macroscopic

mechanical oscillator requires superb displacement sensitivity.

However, what constitutes an “observation of the quantum zero-point fluctuation” is conceptually

subtle. Eqs. (6.3) and (6.4), which argue for the inevitability of the zero-point fluctuation, also

dictate that the “exact amount” of the zero-point fluctuation cannot be determined precisely. More

specifically, if we use a linear measurement device to probe the zero-point fluctuation, which has an

output field of ŷ(t), then we must at least have

[ŷ(t), ŷ(t′)] = 0 (6.5)

at all times, in order for y to be able to represent experimental data — with measurement noise

simply due to the projection of the device’s quantum state into simultaneous eigenstates of all

{ŷ(t) : t ∈ R}. This means ŷ must be written as

ŷ(t) = ε̂(t) + x̂q(t) (6.6)

with non-vanishing additional noise (error) ε̂(t), which consists of degrees of freedom of the mea-
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surement device and compensates the non-vanishing commutator of x̂q 3. In addition, during the

measurement process, actual evolution of the mechanical displacement x̂ must differ from its free

evolution x̂q. This is because
[x̂(t), x̂(t′)]

i~
≡ χ(t′ − t) (6.7)

is also the classical response function of x to an external force: any device that attempts to measure

x̂ by coupling it with an external observable F̂ , e.g., by adding a term proportional to x̂F̂ into

the Hamiltonian, will have to cause non-zero disturbance. For this reason, we can expand the

measurement error ε̂ into two parts: ẑ — the sensing noise that is independent of mechanical motion,

and x̂BA — additional disturbance to the mechanical motion from the measurement-induced back-

action, and rewrite ŷ(t) as:

ŷ(t) = ẑ(t) + x̂BA(t)︸ ︷︷ ︸
ε̂(t)

+x̂q(t) = ẑ(t) + x̂(t) . (6.8)

The mechanical displacement under measurement is therefore a sum of the freely-evolving operator

x̂q plus the disturbance x̂BA due to back action noise, namely, x̂(t) = x̂q(t) + x̂BA(t).

The above lines of reasoning lies very much at the heart of linear quantum measurement theory,

pioneered by Braginsky in the late 1960s and aimed at describing resonant-bar gravitational-wave de-

tectors [11, 12], and later adapted to the analysis of laser interferometer gravitational-wave detectors

by Caves [13]. A key concept in linear quantum measurement theory is the trade-off between sens-

ing noise and back-action noise, which gives rise to the so-called Standard Quantum Limit (SQL).

For optomechanical devices, sensing noise takes the form of quantum shot noise due to discreteness

of photons, while the quantum back action is enforced by quantum fluctuations in the radiation

pressure acting on the mechanical oscillators [13], which is therefore also called quantum radiation-

pressure noise. It has been shown that the SQL, although not a strict limit for sensitivity, can only

be surpassed by carefully designed linear measurement devices which take advantage of quantum

correlations between the sensing noise and the back-action noise.

Observing signatures of quantum back-action, achieving and surpassing the associated SQL in

mechanical systems are of great importance for the future of quantum-limited metrology, e.g.,

gravitational-wave detection [14–22]. At the moment, it is still experimentally challenging to di-

rectly observe quantum radiation-pressure noise in optomechanical devices due to high levels of

environmental thermal fluctuations, and significant efforts are being made [4–8, 23]. One approach

proposed by Verlot et al. [4] is, instead, to probe the quantum correlation between the shot noise

and the radiation-pressure noise, which, in principle, is totally immune to thermal fluctuations.
3We note that Ozawa has developed a different formalism to quantify the issues that arise when attempts are made

to measure non-commuting observables like x̂q(t) [9, 10]. However, we have chosen to adopt the Braginsky-Khalili
approach [11], because it is immediately applicable when the non-commuting observable is acting as a probe for an
external classical force.
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In this article, we analyze a recent experiment performed by Safavi-Naeini et al. [24], in which a

radiation-pressure-cooled nanomechanical oscillator and a movable mirror of a high-finesse cavity is

probed by a second beam of light, which is detuned from the cavity, for its zero-point mechanical

oscillation. The out-going power spectrum of the second beam, near the mechanical resonant fre-

quency, serves as an indicator of the oscillator’s zero-point motion. It was experimentally observed

that when the second beam is detuned on opposite sides to the cavity resonance, the out-going

power spectra turn out to be different. Using theory of linear quantum measurements, we will

show that this experiment not only probes the zero-point fluctuation of the mechanical oscillator

at nearly ground state, but also illustrates vividly the non-trivial correlations between sensing noise

and back-action noise — a much sought-after effect in the gravitational-wave-detection community.

We further argue that what Ref. [24] observed is generic for attempts to measure the zero-point

fluctuation: as soon as one tries to directly probe quantum zero-point fluctuation, that experiment

will automatically introduce back-action noise, whose correlation with the sensing noise may give

rise to an additional noise contribution at a similar level to the zero-point fluctuation of the oscilla-

tor. In the experiment reported by Ref. [24], this contribution is equal to the oscillator’s zero-point

fluctuation for one detuning of the readout beam, and exactly opposite for the other detuning. In

addition, we will discuss quantum measurement devices that use a near-ground-state mechanical

oscillator as a probe for an external classical force near its resonant frequency. We will focus on

limitations imposed by the mechanical oscillator’s zero-point fluctuation.

The outline of this article goes as follows: in Sec. 6.2, we will give a brief overview of the experi-

ment by Safavi-Naeini et al., and present an analysis of this experiment using quantum measurement

theory; in Sec. 6.3, we will more broadly discuss the nature of mechanical zero-point fluctuation, show

that in attempts to measure the zero-point fluctuation the contributions from sensing–back-action

noise correlations can generically be comparable to the zero-point fluctuation itself, and discuss the

connection between zero-point fluctuation and the SQL; we will conclude in Sec. 6.4.

6.2 A two-beam experiment that measures zero-point me-

chanical oscillation

In this section, we describe in Sec. 6.2.1 the experiment performed by Safavi-Naeini et al. reported in

Ref. [24], put its results into the framework of linear quantum measurement theory in Sec. 6.2.2, and

provide a detailed analysis in Sec. 6.2.3. In Sec. 6.2.4, we will comment on the connection between

this viewpoint from quantum measurement and the scattering picture presented in Ref. [24].
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6.2.1 Experimental setup and results

In the experiment, two spatial optical modes are coupled to a mechanical vibrational mode in a

patterned silicon nanobeam. One spatial mode — the cooling mode — is pumped with a relatively

high power at a “red” detuning (lower than resonance), and is used to cool the mechanical mode

via radiation pressure damping [2]; the other cavity mode — the readout mode — has a much lower

pumping power and is used for probing the mechanical motion. The readout laser frequency ωlr is

detuned from the resonant frequency ωr of the readout mode by either +ωm or −ωm. The observed

spectrum of the readout laser is asymmetric with respect to the detuning ∆ ≡ ωr−ωlr. Specifically,

in the positive-detuning case — ∆ = ωm, the spectrum has a smaller amplitude than that in the

negative-detuning case. The area I+ enclosed by the spectrum in the positive-detuning case, after

subtracting out the noise floor away from the mechanical resonant frequency, is proportional to the

thermal occupation number 〈n〉 of the mechanical oscillator, while, in the negative-detuning case, the

enclosed area is I− ∝ 〈n〉+ 1. Such asymmetry is illustrated in Fig. 6.1. In Ref. [24], we introduced

the following figure of merit to quantify the asymmetry:

η ≡ I−
I+
− 1 =

1
〈n〉

. (6.9)

We interpreted this asymmetry as arising from quantized motion of the mechanical oscillator-phonon,

and is related to the difference between the rate of phonon absorption from the oscillator, propor-

tional to 〈n〉, and phonon emission rate, proportional to 〈n〉+ 1. It has been used for calibrating the

thermal excitation of the vibrational mode of ions or cold atoms in electrical/optical traps [25–28]. If

we view the measurement process as scattering between photons and phonons, the underlying physics

is similar to the Raman scattering, e.g., in the spectroscopic analysis of crystals [29, 30]. The absorp-

tion of a phonon from the mechanical oscillator at frequency ωm is associated with up-conversion of

a pumping photon at ωlr to a higher-frequency photon at ωlr + ωm due to energy conservation —

the so-called the anti-Stokes process; while the emission of a phonon into the mechanical oscillator

is associated with down-conversion of a pumping photon to a lower-frequency photon at ωlr−ωm —

noise floor noise floor

Figure 6.1: Figure illustrating the observed spectra of the readout laser in the positive-detuning case
(left) and the negative-detuning case (right).
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Figure 6.2: Figure illustrating the relation among different parts of the optomechanical system in
the experiment. The thermal heat bath and the cooling mode together create an effective quantum
heat bath for the mechanical oscillator which in turn couples to the readout mode.

the Stokes process. To probe the rates of these two processes from which we can infer 〈n〉, we need

to take a photon-counting-type measurement to detect the emission spectra of (anti-)Stokes pho-

tons. However, in the experiment, we instead used the heterodyne scheme to measure the amplitude

quadrature of the readout mode, which is the most convenient to realize with the setup that we had.

Interestingly, by choosing the detuning ∆ = ±ωm and in the resolved-sideband regime, spectra of

the amplitude quadrature are equal to emission spectra of the (anti-)Stokes photons plus a constant

noise floor due to vacuum fluctuation of the light — the shot noise. We will elaborate on this point

in Sec. 6.2.4 and show explicitly such a connection. Intuitively, one can view the cavity mode as an

optical filter to selectively measure the emission spectra — for ∆ = ωm, the anti-Stokes process is

significantly enhanced as the emitted photon is on resonance with respect to the cavity mode, and

one therefore measures the spectrum for the anti-Stoke photons; while for ∆ = −ωm, the spectrum

of the Stokes photon is measured.

6.2.2 Interpretation in terms of quantum measurement

Here we provide an alternative viewpoint to Ref. [24], but emphasizing more on the role of quantum

back-action and its relation to quantization of the mechanical oscillator. First of all, we separate

the experimental system into two parts. The cooling mode, the mechanical oscillator, and the

environmental thermal bath the oscillator couples to (the left and middle boxes in Fig. 6.2) together

is the first part, which can be viewed as providing an effective mechanical oscillator nearly at the

ground state, but with a quality factor significantly lower than the intrinsic quality factor of the

mechanical mode. It is the zero-point fluctuation of this effective oscillator that we shall be probing.

The second part of the system consists of the readout mode (the box on the right of Fig. 6.2),

which couples to the effective oscillator (the first part of the system) through displacement x̂ alone.

The second part provides us with an output ŷ, which contains information about the zero-point

fluctuation of the effective mechanical oscillator.

6.2.2.1 The mechanical oscillator near ground state

Let us focus on the first part of the system (left two boxes of Fig. 6.2), the effective mechanical

oscillator (because this will be a stand-alone subject of study in later discussions, we shall often

ignore the word “effective”). The environmental heat bath and the cooling mode together form
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a quantum heat bath with fluctuation close to the zero-point value. In steady state, the “free”

mechanical displacement is determined by its coupling to this bath (“free” means in absence of the

readout mode):

x̂q(t) =
∫ t

−∞
χ(t− t′)F̂q(t′)dt′ . (6.10)

Here χ is the response function of the mechanical oscillator:

χ(t− t′) = − [x̂(t), x̂(t′)]
i~

= e−κm|t−t
′|/2 sinωm(t− t′)

mωm
. (6.11)

Note that we have an additional decay factor compared with Eq. (6.3), which describes an idealized

free oscillator. The decay rate κm here is determined jointly by the intrinsic decay rate of the

mechanical mode, and the optomechanical interaction between the mechanical mode and the cooling

optical mode. The force F̂q lumps together the fluctuating force acting on the mechanical mode by

the environmental heat bath and the cooling mode. If the oscillator approaches the ground state

only after applying the cooling mode, then one can show that F̂q is dominated by fluctuation of the

cooling mode.

The above two equations state that for a realistic mechanical oscillator with non-zero decay rate,

its zero-point fluctuation in the steady state can be viewed as driven by the quantum heat bath

surrounding it. We will returning to this prominent feature of linear quantum systems later in

Sec. 6.3.1.

6.2.2.2 The quantum-measurement process

Let us now move on to the second part of the system (right box of Fig. 6.2), in which the readout

mode serves as a linear position meter that measures the mechanical displacement. We can rewrite

the disturbance x̂BA in Eq. (6.8) in terms of the back-action force F̂BA arising from radiation-pressure

fluctuation of the readout mode, namely,

x̂BA(t) =
∫ t

−∞
χ(t− t′)F̂BA(t′)dt′ , (6.12)

We have assumed that the readout mode does not modify the dynamics of the oscillator, which is a

good approximation for the low pumping power used in the experiment. Written in the frequency

domain, the readout mode output ŷ [cf. Eq.(6.8)] is

ŷ(ω) = ẑ(ω) + χ(ω)F̂BA(ω) + χ(ω)F̂q(ω). (6.13)

where

χ(ω) = − 1
m(ω2 − ω2

m + iκmω)
(6.14)
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is the Fourier transform of Θ(t)χ(t), with Θ the Heaviside function, i.e., the positive half of χ(t)

(even though χ(t) exists for both t > 0 and t < 0). The spectral density Syy(ω) of ŷ then reads:

Syy = Szz + 2Re[χ∗SzF ] + |χ|2SBA
FF + |χ|2SqFF . (6.15)

Here these single-sided spectral densities are defined in a symmetrized way (see Appendix 6.4),

which guarantees bilinearity for the cross spectrum and positivity for self spectrum; Szz and SBA
FF

are the sensing-noise and back-action force noise spectrum, respectively; SzF is the cross correlation

between ẑ and F̂BA; the force spectrum of the effective quantum heat bath made up by the cooling

mode and the environmental heat bath is given by

SqFF = (4〈n〉+ 2)~mκmωm, (6.16)

and 〈n〉 is the thermal occupation number.

6.2.2.3 Asymmetry between spectra

Experimentally, it was observed that the output spectra Syy for the two opposite detunings, ∆ =

±ωm, are different — given the same thermal occupation number for the oscillator,

Syy(ω)|∆=−ωm 6= Syy(ω)|∆=ωm . (6.17)

As we will show in the Section. 6.2.3 (following), when we flip the sign of the detuning ∆ of the

readout beam, the only term in Syy that changes is SzF — the correlation between the sensing noise

and the back-action noise. In fact, according to Eq. (6.34), we have

SzF (ω) ≈ −i ~ ω
∆
, (6.18)

in the resolved-sideband regime with the cavity bandwidth κr � ωm, which is the case in the

experiment [24]. The asymmetry factor defined in Eq.(6.9) is given by:

η =
2
∫

Re[χ∗(S−zF − S
+
zF )]dω∫ [

|χ|2SqFF + 2Re(χ∗S+
zF )
]

dω
=

1
〈n〉

. (6.19)

Here S±zF is defined by S±zF ≡ SzF |∆=±ωm , and in particular around the mechanical resonant fre-

quency ωm, where S±zF contributes to the above integral,

S±zF ≈ ∓i ~. (6.20)
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The asymmetry, or effect of quantum correlation SzF , is most prominent when the thermal

occupation number approaches zero. Indeed, if we focus on the quantum fluctuation by taking the

limit of 〈n〉 → 0, we obtain

∫
2Re(χ∗S±zF )dω = ∓

∫
|χ|2SqFF |〈n〉=0 dω . (6.21)

In other words, at the quantum ground state, contribution of the quantum correlation SzF to the

readout spectrum Syy has the same magnitude as that of the zero-point fluctuation, while the sign

of the correlation term depends on the sign of the detuning of the readout beam. This means not

only has the experiment probed the zero-point fluctuation of the mechanical oscillator, it has also

demonstrated non-trivial correlations between sensing noise and back action at the quantum level.

6.2.3 Detailed theoretical analysis

In this section, we supply a detailed calculation of the quantum dynamics and the output spectrum

of the experiment. The dynamics for a typical linear optomechanical device has been studied ex-

tensively in the literature [31–33]; however, they have been focusing on the quantum state of the

mechanical oscillator in ground-state cooling experiments, instead of treating the optomechanical

device as a measurement device. Here we will follow Ref. [34] and derive the corresponding input-

output relation — the analysis is the same as the one of quantum noise in a detuned signal-recycling

laser interferometer which can be mapped into a detuned cavity [15, 35, 36]. We will focus only

on the interaction between the readout cavity mode and the mechanical oscillator — the cooling

mode and the thermal heat bath is taken into account by the effective dynamics of the oscillator as

mentioned earlier.

The Hamiltonian of our optomechanical system can be written as [31–33]:

Ĥ = ~ωrâ†â+ Ĥκr + ~G0x̂â
†â+

p̂2

2m
+

1
2
mω2

mx̂
2 + Ĥκm . (6.22)

Here the first two terms describe the cavity mode including its coupling to the external continuum,

the third term is the coupling between the cavity mode and the mechanical oscillator, G0 = ωr/Lc

is the coupling constant with Lc the cavity length, the rest of the terms describes the dynamics of

the effective oscillator (left and middle boxes in Fig. 6.2), with Ĥκm summarizing the dynamics of

the cooling mode and the thermal heat bath, as well as their coupling with the original mechanical

oscillator.

In the rotating frame at the laser frequency, the linearized equations of motion for the perturbed
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part — variation around the steady-state amplitude — read:

m(¨̂x+ κm ˙̂x+ ω2
mx̂) = F̂BA + F̂q, (6.23)

˙̂a+ (κr/2 + i∆)â = −i Ḡ0x̂+
√
κr âin, (6.24)

where the back-action force F̂BA is defined as:

F̂BA ≡ −~ Ḡ0(â+ â†), (6.25)

and we introduce Ḡ0 = āG0 with ā being the steady-state amplitude of the cavity mode and âin

being the annihilation operator of the input vacuum field. The cavity output âout is related to the

cavity mode by:

âout = −âin +
√
κr â , (6.26)

with κr the decay rate (the bandwidth) of the readout mode.

In the steady state, these equations of motion can be solved more easily in the frequency domain.

Starting from the mechanical displacement, we get

x̂(ω) = χ(ω)[F̂BA(ω) + F̂q(ω)] . (6.27)

Here we have ignored modification to the mechanical response function χ due to the readout mode—

a term proportional to Ḡ2
0, assuming that the pumping power is low. For the cavity mode, we invert

Eq. (6.24) and obtain

â(ω) =
Ḡ0 x̂(ω) + i

√
κr âin(ω)

ω −∆ + iκr/2
, (6.28)

which leads to

F̂BA(ω) =
2 ~ Ḡ0

√
κr/2[(κr/2− iω)v̂1 + ∆ v̂2]

(ω −∆ + iκr/2)(ω + ∆ + iκr/2)
, (6.29)

with v̂1 ≡ (âin + â†in)/
√

2 and v2 ≡ (âin − â†in)/(
√

2 i) being the amplitude quadrature and the

phase quadrature of the input vacuum field. When combining with Eq. (6.26), we obtain the output

amplitude quadrature

Ŷ1(ω) = [âout(ω) + â†out(−ω)]/
√

2

=
(∆2 − κ2

r/4− ω2)v̂1 − κr∆ v̂2 +
√

2κr Ḡ0∆ x̂

(ω −∆ + iκr/2)(ω + ∆ + iκr/2)
, (6.30)

whose spectrum is measured experimentally. We put the above formula into the same format as

Eq.(6.13) by normalizing Ŷ1 with respect to the mechanical displacement x̂, and introduce ŷ(ω) and
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the corresponding sensing noise ẑ(ω):

ŷ(ω) =
(∆2 − κ2

r/4− ω2)v̂1 − κr∆v̂2√
2κr Ḡ0∆

+ x̂(ω)

≡ ẑ(ω) + χ(ω)[F̂BA(ω) + F̂q(ω)] . (6.31)

Taking single-sided symmetrized spectral density of ŷ (see Appendix 6.4), we obtain

Syy(ω) = Szz + 2Re[χ∗SzF ] + |χ|2[SBA
FF + SqFF ] , (6.32)

where

Szz(ω) =
(∆2 − κ2

r/4− ω2)2 + κ2
r∆

2

2κrḠ2
0∆2

, (6.33)

SzF (ω) =
~(κr/2− i ω)

∆
, (6.34)

SBA
FF (ω) =

2~2Ḡ2
0κr(κ

2
r/4 + ω2 + ∆2)

(∆2 − κ2
r/4− ω2)2 + κ2

r∆2
.f (6.35)

Here we have used

〈0|v̂j(ω)v̂†k(ω′)|0〉sym = π δjk δ(ω − ω′) (j, k = 1, 2). (6.36)

Indeed, only SzF depends on the sign of detuning and contributes to the asymmetry. In the

resolved-sideband case κr � ωm, and choosing detuning |∆| = ωm, SzF can be approximated as the

one shown in Eq. (6.18). For a weak readout beam, we can ignore SBA
FF , which is proportional to Ḡ2

0,

and the output spectra around ωm for the positive- and negative-detuning cases can be approximated

as

Syy(ω)|∆=±ωm ≈
κr

2Ḡ2
0

+
~κm(2〈n〉+ 1∓ 1)

2mωm[(ω − ωm)2 + (κm/2)2]
, (6.37)

from which one can easily obtain the dependence of the asymmetry factor η on 〈n〉 shown in Eq. (6.9).

Interestingly, even if the quantum back-action term SBA
FF is much smaller than SqFF and has been

ignored, given the weak readout mode used in the experiment, the asymmetry induced by quantum

correlation is always visible as long as 〈n〉 is small. In addition, any optical loss in the readout

mode only contributes a constant background — that is symmetric with respect to detuning — to

the overall spectrum; therefore, the asymmetry is very robust against optical loss, and it can be

observed without a quantum-limited readout mode, which is the case in the experiment.

6.2.4 Connection with the scattering picture

In the above, we have been emphasizing the viewpoint of position measurement, and interpreting

the asymmetry as due to the quantum correlation between the sensing noise and the back-action
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noise. Here we would like to show the connection between this viewpoint and the scattering picture

in Ref. [24] that focuses on the photon-phonon coupling, and in addition, show how spectra of the

amplitude quadrature measured in the experiment are related to emission spectra of the (anti-)Stokes

photons that would have been obtained if we instead take a photon-counting measurement.

To illustrate these, we introduce the annihilation operator b̂ for the phonon through the standard

definition:

x̂ ≡
√

~/(2mωm)(b̂+ b̂†) , (6.38)

which satisfies the commutator relation: [b̂, b̂†] = 1. In the rotating frame at the laser frequency,

the Hamiltonian in Eq. (6.22) after linearization is given by:

Ĥ = ~∆â†â+ Ĥκr + ~ḡ0(â+ â†)(b̂+ b̂†) + ~ωmb̂†b̂+ Ĥκm , (6.39)

where ḡ0 ≡ Ḡ0

√
~/(2mωm). The third term is the photon-phonon coupling: â†b̂ describes the

anti-Stokes process — the absorption of a phonon is accompanied by emission of a higher-frequency

photon; and â†b̂† describes the Stokes process — the emission of a phonon is accompanied by emission

of a lower-frequency photon. The photon emission rate of these two processes can be estimated by

using the Fermi’s golden rule. Specifically, taking into account the finite bandwidth for the photon

and phonon due to coupling to the continuum, the emission rate of the anti-Stokes photon at ωlr+ω

reads

ΓAS(ω) = ḡ2
0

∫
dτ eiωτD(ω)〈b̂†(τ)b̂(0)〉

=
ḡ2

0κm〈n〉D(ω)
(ω − ωm)2 + (κm/2)2

; (6.40)

and the emission rate of the Stokes photon at ωlr − ω reads

ΓS(ω) = ḡ2
0

∫
dτ e−iωτD(−ω)〈b̂(τ)b̂†(0)〉

=
ḡ2

0κm(〈n〉+ 1)D(−ω)
(ω − ωm)2 + (κm/2)2

. (6.41)

Here the density of state for the photons is determined by the cavity decay rate and detuning:

D(ω) ≡ κr/2
(ω −∆)2 + (κr/2)2

. (6.42)

Were the cavity bandwidth much larger than the mechanical frequency ωm, the density of state

D(ω) would become flat for frequencies around ±ωm, and we would effectively have a scenario that

is similar to the free-space Raman scattering as in the spectroscopic measurements of crystals [30].

By making a photon-counting-type measurement of the emitted (anti-)Stokes photons, one could
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observe an asymmetric spectrum with two peaks (sidebands) around ωr ± ωm of which the profiles

are given by the above emission rates.

The situation of our experiment is however different from the usual free-space Raman scattering

spectroscopic measurement in the following two aspects: (i) We are operating in the resolved-sideband

regime where the cavity bandwidth is much smaller than the mechanical frequency and the photon

density of state is highly asymmetric for positive and negative sideband frequencies depending on

the detuning. This basically dictates that we cannot measure two sidebands simultaneously, and

we have to take two separate spectra by tuning the laser frequency. In the positive-detuning case

∆ = ωm, the anti-Stokes sideband is enhanced while the Stokes sideband is highly suppressed, as

the photon density of state is peak around ω = ωm; while in the negative-detuning case ∆ = −ωm,

the situation for these two sidebands swaps. (ii) We are using heterodyne detection scheme instead

of photon counting, where the outgoing field is mixed with a large coherent optical field (reference

light) before the photodetector, to measure the output amplitude quadrature. On the one hand,

this validates the picture of linear position measurement discussed in the previous sections. On the

other hand, this introduces a noise floor due to vacuum fluctuation of the amplitude quadrature.

Only by subtracting this noise floor, can we recover the emission spectra obtained by taking a

photon-counting measurement. To illustrate this, we use the fact that

[Ŷ1(ω), Ŷ †1 (ω′)] = 0 (6.43)

which is a direct consequence of [ŷ(t), ŷ(t′)] = 0 (ŷ is equal to Ŷ1 normalized with respect to the

mechanical displacement [cf. Eq. (6.31)]), and we have

〈Ŷ1(ω)Ŷ †1 (ω′)〉sym = 〈Ŷ †1 (ω′)Ŷ1(ω)〉

=
1
2

[〈âout(−ω′)â†out(−ω)〉+ 〈â†out(ω
′)âout(ω)〉] . (6.44)

This allows us to relate the output spectrum of the amplitude quadrature to the emission spectrum.

Taking the positive-detuning case, ∆ = ωm for instance, âout(−ω) contains mostly vacuum and

negligible sideband signal due to suppression of the Stokes sideband around ωlr − ωm by the cavity,

namely, 〈âout(−ω′)â†out(−ω)〉 ≈ 2π δ(ω−ω′). Since the second term gives the emission spectrum for

the output photons, the single-sided spectral density of the output amplitude quadrature reads:

SY Y (ω) = 1 + 2Γout(ω) ≈ 1 + 2ΓAS(ω) , (6.45)

where we have used the fact that, given weak pumping power for the readout mode, Γout =

1/[(2/κr) + (1/ΓAS)] ≈ ΓAS. By normalizing the spectrum with respect to the mechanical dis-
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placement, we have

Syy(ω)|∆=ωm =
κr

2Ḡ2
0

[1 + 2ΓAS(ω)] . (6.46)

Similarly, by following the same line of thought, we get

Syy(ω)|∆=−ωm =
κr

2Ḡ2
0

[1 + 2ΓS(ω)] . (6.47)

The above two equations give identical results to Eq. (6.37). We therefore make a direct connection

between the spectra of amplitude quadrature measured in the experiment and the photon emission

spectra that is obtained if making photon-counting measurements.

6.3 General linear measurements of the zero-point fluctua-

tion

Based on the analysis of the specific experiment of Ref. [24] in the previous section, here we comment

on the general features of linear quantum measurements including measuring zero-point fluctuation

of a mechanical oscillator. We start by discussing the nature of the zero-point mechanical fluctuation

in Sec. 6.3.1, proceed to discussion of measurements of it in Sec. 6.3.2, and finally end in Sec. 6.3.3

which discusses its effect on sensitivity for measuring external forces and the connection to the SQL.

6.3.1 The nature of zero-point mechanical fluctuation

First of all, let us take a closer look at the nature of the zero-point fluctuation of a realistic harmonic

oscillator, which consists of a mechanical mode with eigenfrequency ωm and finite decay rate κm.

Suppose we initially decouple the oscillator from its environmental heat bath and turn on the coupling

at t = 0. In the Heinserberg picture, the position and momentum of the oscillator at t > 0 will be

x̂q(t) = x̂free(t) +
∫ t

0

χ(t− t′)F̂q(t′)dt′ , (6.48a)

p̂q(t) = p̂free(t) +m

∫ t

0

∂tχ(t− t′)F̂q(t′)dt′ , (6.48b)

where

x̂free(t) = e−κmt/2
[
x̂(0) cosωmt+

p̂(0)
mωm

sinωmt
]
, (6.49a)

p̂free(t)
mωm

= e−κmt/2
[
−x̂(0) sinωmt+

p̂(0)
mωm

cosωmt
]

− mκm
2

x̂free(t) , (6.49b)
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are contributions from the free evolution of the initial Schrödingier operators (i.e., undisturbed by

the environment), which decay over time, and get replaced by contributions from the environmental

heat bath [integrals on the right-hand side of Eqs. (6.48a) and (6.48b)]. Note that for any oscillator

with non-zero decay rate, it is essential to have bath operators entering over time, otherwise the

commutation relation between position and momentum:

[x̂q(t), p̂q(t)] = i ~ (6.50)

will not hold at t > 0 because of

[x̂free(t), p̂free(t)] = i ~ e−κmt . (6.51)

This dictates that the heat bath must be such that the additional commutator from terms containing

F̂q exactly compensate for the decay in Eq. (6.51), which leads to the quantum fluctuation-dissipation

theorem (see e.g., Ref. [37]).

It is interesting to note that this “replenishing” of commutators has a classical counterpart, since

commutators are after all proportional to the classical Poisson Bracket. More specifically, for a

classical oscillator with decay, we can write a similar relation for Poisson Brackets using the position

and momentum of the oscillator, plus environmental degrees of freedom. The replenishing of the

position-momentum Poisson Bracket by environmental variables, in classical mechanics, can also be

viewed as a consequence of the conservation of phase-space volume, following the Liouville theorem.

A decaying oscillator’s phase-space volume will shrink, and violate the Liouville theorem — unless

additional phase-space volume from the environmental degrees of freedom is introduced.

Nevertheless, the definitively quantum feature in our situation is a fundamental scale in the

volume of phase space, ~. Here we note that if κm � ωm, when reaching the steady state with x̂free

and q̂free decayed away, we have

∆xq ·∆pq ≈ mωm
∫
dω

2π
Sqxx(ω) , (6.52)

where Sqxx ≡ |χ|2S
q
FF . Although Sqxx depends on the specific scenario, they are all constrained by a

Heisenberg-like relation of,

Sqxx(ω) ≥ 2~ Imχ(ω), (6.53)

which is a straightforward consequence of the commutation relation in Eq. (6.11). The equality is

achieved at the ground state 3. This enforces the same Heisenberg uncertainty relation:

∆xq ·∆pq ≥ ~/2, (6.54)

3A generalization of this to thermal states will be the fluctuation-dissipation theorem [37].
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as an ideal harmonic oscillator whose quantum fluctuations arise “on its own”, instead of having to

be driven by the surrounding environment. Therefore, in the steady state, the zero-point fluctuation

of the mechanical oscillator can be viewed as being imposed by the environment due to linearity of

the dynamics.

6.3.2 Measuring the zero-point fluctuation

Having clarified the nature of quantum zero-point fluctuations of a mechanical oscillator in the

steady state, let us argue that the effects seen in Ref. [24] are actually generic when one tries to

probe such fluctuations, namely: the correlation between sensing and back-action noise can be at

the level of the zero-point fluctuation itself.

Let us start our discussion here from Eq. (6.5), namely,

[ŷ(t), ŷ(t′)] = 0 , (6.55)

and the fact that ŷ consists of sensing noise, back-action noise, and finally the zero-point fluctuation

of the mechanical oscillator [cf. Eq. (6.8)]:

ŷ(t) =
ẑ(t)
α

+ α

∫ t

−∞
χ(t− τ)F̂BA(τ)dτ + x̂q(t) . (6.56)

Here we have added a factor α, which labels the scaling of each term as the measurement strength

which is proportional to the square root of the readout beam power. Let us assume that Eq. (6.55)

continues to hold for the same set of ẑ and F̂BA, for a large set of α and χ: basically the measuring

device works for different mechanical oscillators with different measuring strengths.

Since Eq. (6.55) remains valid for all values of α, we extract terms with different powers of

scaling, and obtain

[ẑ(t), ẑ(t′)] =
[
F̂BA(t), F̂BA(t′)

]
= 0 , (6.57)

and

∫ t′

−∞
χ(t′ − τ)

[
ẑ(t), F̂BA(τ)

]
dτ

−
∫ t

−∞
χ(t− τ)

[
ẑ(t′), F̂BA(τ)

]
dτ

+ [x̂q(t), x̂q(t′)] = 0 , ∀ t, t′ . (6.58)

This becomes

∫ +∞

0

χ(τ) [CzF (t− τ)− CzF (−t− τ)] dτ = −i ~χ(t) , (6.59)
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for all values of t, where we have defined

CzF (t′ − t) ≡
[
ẑ(t), F̂BA(t′)

]
. (6.60)

Here the dependence is only through t′ − t because the system is time-invariant. We also note

that since ẑ is an out-going field, CzF must vanish when t > 0 — otherwise any generalized force

applied on ẑ can still affect F̂ at a later time [11, 35], which violates the causality. As proved

in Appendix. 6.B, in order for Eq. (6.59) to be satisfied for all possible response functions of the

oscillator, we must have

CzF (t) = −i ~δ−(t) , (6.61)

where δ−(t) is the Dirac delta function with support only for t < 0. In other words,

[ẑ(t), F̂BA(t′)] = −i ~ δ−(t′ − t). (6.62)

Eq. (6.56), plus the commutation relations in Eqs. (6.57) and (6.62), then provide a general

description of linear measuring devices which do not modify the dynamics of the mechanical oscillator

— simply from the requirement that the out-going field operators at different times must commute

[cf. Eq. (6.55)]. In particular, the non-vanishing commutator [x̂q(t), x̂q(t′)], which underlies the

existence of the zero-point fluctuation, is canceled in a simple way by the non-vanishing commutator

between the sensing noise and the back-action noise [cf. Eq. (6.62)].

Now turn to the noise content of the output ŷ(t):

Syy =
Szz
α2

+ 2Re[χ∗SzF ] + α2SBA
FF + Sqxx. (6.63)

Let us consider experiments with relatively low measurement strength, so that the first term Szz/α
2

from the sensing noise dominates the output noise. The next-order terms contain: (i) correlation

between the sensing noise and the back-action noise — SzF ; and (ii) the mechanical fluctuation —

Sqxx. We assume nearly ground state for the mechanical oscillator

Sqxx(ω) ≈ 2~ Imχ(ω) , (6.64)

which, for κm � ωm, gives ∫
dω
2π
Sqxx(ω) ≈ ~

2mωm
. (6.65)
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If SzF (ω) does not change noticeably within the mechanical bandwidth, then

∫
dω
2π

2Re[χ∗(ω)SzF (ω)] ≈ − 1
2mωm

ImSzF (ωm) . (6.66)

Because of Eq. (6.62), the typical magnitude for SzF is naturally

|SzF | ∼ ~ . (6.67)

Therefore, contributions to the output noise from quantum correlation SzF and mechanical fluc-

tuation Sqxx can generically become comparable to each other when the mechanical oscillator is

approaching the quantum ground state. The result presented in Ref. [24] therefore illustrates two

typical cases of this generic behavior [cf. Eq. (6.20)].

6.3.3 Measuring an external classical force in presence of zero-point fluc-

tuation

Finally, let us discuss the role of zero-point fluctuation in force measurement, when the mechanical

oscillator is used as a probe of an external classical force not far away from the mechanical resonant

frequency. Because of the commutation relations shown in Eqs. (6.57) and (6.62), a Heisenberg

uncertainty relation exists between ẑ and F̂BA, which, in terms of the single-sided symmetrized

spectrum density, can be written as

Szz(ω)SBA
FF (ω)− SzF (ω)SFz(ω) ≥ ~2 . (6.68)

Note that because of Eq. (6.57), symmetrization is not necessary in the definition of Szz and SBA
FF .

When the two noises are not correlated — SzF = SFz = 0, the above inequality represents a trade-off

between sensing noise ẑ and back-action noise F̂BA. Correspondingly, the force sensitivity SF , which

is obtained by normalizing the displacement sensitivity Syy with respect to the mechanical response

function χ, will have a lower bound:

SF (ω) ≡ Syy(ω)
|χ(ω)|2

=
Szz(ω)
|χ(ω)|2

+ SBA
FF (ω) + SqFF (ω)

≥ 2~
|χ(ω)|

+ (4〈n〉+ 2)~mκmωm . (6.69)

If the mechanical oscillator is in its quantum ground state, namely 〈n〉 = 0, we obtain:

SF (ω) ≥ 2~
|χ(ω)|

+ 2~mκmωm ≡ SQtot
F . (6.70)
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Figure 6.3: (Color online.) Figure illustrating that total quantum limitation SQtot
F (red) for force

sensitivity and contribution from zero-point fluctuation Szp
F (blue). For clarity, we divide both by

the SQL and use log-log scale.

The first term is the Standard quantum limit for force sensitivity with mechanical probes [11, 12]:

SSQL
F ≡ 2~

|χ(ω)|
= 2~m

√
(ω2 − ω2

m)2 + κ2
mω

2 . (6.71)

The second term,

Szp
F ≡ 2~mκmωm , (6.72)

arising from the zero-point fluctuation due to mechanical quantization, also limits the sensitivity. As

we can learn from Eqs. (6.68) and (6.69), the SQL SSQL
F can be surpassed, in principle indefinitely,

by building up quantum correlations between the sensing noise ẑ and the back-action noise F̂BA

— although in practice the beating factor will be limited by the available optical power and the

level of optical losses. However, the limit imposed by zero-point fluctuation cannot be surpassed —

although can be mitigated by lowering κm.

Braginsky et al. [38] argued that mechanical quantization does not influence the force sensitivity

when measuring a classical force with mechanical probes — one only needs to evaluate the quantum

noise due to the readout field. But these authors had specifically pointed out that they were focusing

on ideal mechanical probes with infinitely narrow bandwidth (κm → 0) and observations outside of

that frequency band. This corresponds to the situation of free-mass gravitational-wave detectors,

in which the mechanical oscillator is the differential mode of four mirror-endowed test masses hung

as pendulums with eigenfrequencies around 1 Hz and very high quality factor, while the detection

band is above 10 Hz, well outside the pendulum resonance. Indeed, from Eqs. (6.71) and (6.72), we

see that the effect of zero-point fluctuation is only significant not far away from resonance — which

confirms Braginsky et al.’s result. More specifically, if κm � ωm, we can write, for |ω − ωm| � ωm,

SSQL
F ≈ Szp

F

√
1 +

(
ω − ωm
κm/2

)2

. (6.73)
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Figure 6.4: (Color online.) Figure illustrating effect of the mechanical decay rate (bandwidth) κm
on SQtot

F (solid) and Szp
F (dashed) — the larger the mechanical bandwidth, the lower the force

sensitivity (This plot is also in the log-log scale).

In particular, the limit imposed by zero-point fluctuation is equal to SQL on resonance, and becomes

less important as |ω − ωm| becomes comparable to or larger than the half bandwidth κm/2, as

illustrated in Fig. 6.3.

Although the above relative comparison between the SQL and zero-point fluctuation indicates

that the later plays a more important role near the oscillator’s resonant frequency, it is straightfor-

ward to see from Eqs. (6.71) and (6.72) that on an absolute scale: (i) for a given oscillator at ground

state, SSQL
F (ω) is lower near mechanical resonance, while Szp

F (ω) is independent from frequency, and

(ii) at any frequency, lowering κm, while fixing ωm and keeping the oscillator at ground state, always

results in lower noise, as illustrated in Fig. 6.4. Now suppose we are free to choose from ground-state

mechanical oscillators with different ωm and κm as our probe, and that we are always able to reach

the SQL at all frequencies, then: (i) if we know the frequency content of target signals, we should

choose probes that are more resonant with the target, and (ii) regardless of signal frequency, we

should always use probes with lower κm, or equivalently, higher mechanical quality factor.

6.4 Conclusion

We have shown, within the framework of quantum measurement theory, that the asymmetry in

output spectra observed by Safavi-Naeini et al. can be explained as due to the quantum correlation

between the sensing noise and the quantum back-action noise; this experiment therefore provides a

clear signature of quantum back-action onto mechanical systems.

More broadly, we have shown that having quantum-noise correlations showing up at the same

level as the zero-point fluctuations is a generic feature of measurements that attempt to measure the

zero-point fluctuation. We have further shown that when an experimentally prepared ground-state

mechanical oscillator is used as probe for classical forces near its resonant frequency, its mechani-
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cal quantization — through zero-point displacement fluctuation — does impose an addition noise

background. This additional noise does vanish when the oscillator’s bandwidth approaches zero, i.e.,

when the oscillator becomes ideal.
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6.A Symmetrized cross spectral density

In this article, as in Ref. [14], we use the single-sided symmetrized cross spectral density, which,

given a quantum state |ψ〉, is defined between a pair of operators Â and B̂ as:

SAB(ω)δ(ω − ω′) ≡ 1
π
〈ψ|Â(ω)B̂†(ω′)|ψ〉sym

=
1

2π
〈ψ|Â(ω)B̂†(ω′) + B̂†(ω′)Â(ω)|ψ〉 . (6.74)

The symmetrization process here allows us to preserves bilinearity of S̃ on its entries, i.e.,

SA,c1B+c2C = c∗1SAB + c∗2SAC , (6.75a)

Sc1A+c2B,C = c1SAC + c2SBC . (6.75b)

More importantly, we can show that

SAA > 0 (6.76)

for any field Â, even if
[
Â(ω), Â†(ω′)

]
6= 0. The positivity (6.76) allows us to interpret SAA as the

fluctuation variance per unit frequency band — as in the classical case.

6.B Commutation relation between ẑ and F̂

Defining

f(t) ≡ CzF (t) + i~δ−(t) (6.77)
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we convert Eq. (6.59) into

∫ +∞

0

χ(τ) [f(t− τ)− f(−t− τ)] dτ = 0 . (6.78)

Assuming analyticity of the Fourier transform of f(t), it must be written as

f̃(ω) =
∑
k

fk
ω − ωk

(6.79)

with ωk all located on the upper half of the complex plane (not including the real axis). Fourier

transforming Eq. (6.78) gives us

χ̃+(ω)
∑
k

[
fk

ω − ωk
− f∗k
ω − ω∗k

]
= 0 , ω ∈ R . (6.80)

Because the set {ωk} is within the upper-half complex plane (excluding the real axis), the set {ω∗k}

must be within the lower-half complex plane (excluding the real axis) — and the two sets do not

intersect. For this reason, Eq. (6.80) requires fk to all vanish, and hence

CzF (t) = −i~ δ−(t) . (6.81)
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Chapter 7

Macroscopic quantum mechanics in
a classical spacetime

We apply the many-particle Schrödinger-Newton equation, which describes the co-evolution

of an many-particle quantum wave function and a classical space-time geometry, to

macroscopic mechanical objects. By averaging over motions of the objects’ internal

degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers

of mass, which can be monitored and manipulated at quantum levels by state-of-the-art

optomechanics experiments. For a single macroscopic object moving quantum mechan-

ically within a harmonic potential well, its quantum uncertainty is found to evolve at

a frequency different from its classical eigenfrequency — with a difference that depends

on the internal structure of the object, and can be observable using current technology.

For several objects, the Schrödinger-Newton equation predicts semiclassical motions just

like Newtonian physics, yet quantum uncertainty cannot transferred from one object to

another.

Based on paper by H. Yang, H. Miao, Da-Shin Lee, B. Helou and Y. Chen, Phys. Rev.

Lett 85, 040101 (2013). Copyright 2013 by the American Physical Society.

7.1 Introduction

Testing non-relativistic quantum mechanics on macroscopic objects has has been a minor approach

in the search for effects of quantum gravity. Apart from the standard formulation of linearized

quantum gravity [1], which seems rather implausible to test in the lab, several signatures have been

conjectured: (i) gravity decoherence [2–12], where gravity introduces decoherence to macroscopic

quantum superpositions; (ii) modifications to canonical quantization motivated by the existence of

a minimum length scale [13–15]; and (iii) semiclassical gravity [16–18], which will be the subject of
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Figure 7.1: (Color online.) Left Panel: according to standard quantum mechanics, both the vector
(〈x〉, 〈p〉) and the uncertainty ellipse of a Gaussian state for the CM of a macroscopic object rotate
clockwise in phase space, at the same frequency ω = ωCM. Right panel: according to the CM
Schrödinger-Newton equation (7.2), (〈x〉, 〈p〉) still rotates at ωCM, but the uncertainty ellipse rotates
at ωq ≡ (ω2

CM + ω2
SN)1/2 > ωCM.

this paper. As originally suggested by Møller [16] and Rosenfeld [17], spacetime structure might still

remain classical even if it is sourced by matters of quantum nature, if we impose (G = c = 1):

Gµν = 8π〈ψ|T̂µν |ψ〉 . (7.1)

Here Gµν is the Einstein tensor of a (3+1)-dimensional classical spacetime, T̂µν is the operator

for the energy-stress tensor, and |ψ(t)〉 is the wave function of all matters that evolve within this

classical spacetime.

Many arguments exist against semiclassical gravity. Some rely on the conviction that a classical

system cannot properly integrate with a quantum system without creating contradictions. Others

are based on “intrinsic” mathematical inconsistencies, the most famous one between Eq. (7.1),

state collapse, and ∇νGµν = 0 [19]. Towards the former argument, it is the aim of this paper to

explicitly work out the effects of classical gravity on the quantum mechanics of macroscopic objects;

which, although we will find them counterintuitive, do not seem dismissible right away. In fact,

we shall find these effects “right on the horizon of testability” of current experimental technology.

Towards the latter argument, we shall remain open minded regarding the possibility of getting rid of

quantum state reduction while at the same time avoiding the many-world interpretation of quantum

mechanics [20, 21] (also see the appendix).

The non-relativistic version of Eq. (7.1), the so-called Schrödinger-Newton (SN) equation, has

been extensively studied for single particles [22–28]. In this paper, we consider instead a macroscopic

object consisting of many particles, and will show that within certain parameter regimes, the Center-
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of-Mass (CM) wavefunction approximately satisfies the following SN equation:

i~
∂Ψ
∂t

=
[
−~2∇2

2M
+

1
2
Mω2

CMx
2 +

1
2
C(x− 〈x〉)2

]
Ψ. (7.2)

Here 〈x〉 ≡ 〈Ψ|x̂|Ψ〉 is the expectation value of the CM position; ωCM is the eigenfrequency in

absence of gravity, determined by how the CM is confined; C is the SN coupling constant, from

which we introduce ωSN ≡
√
C/M . For Si crystal at 10 K, we estimate ωSN ∼ 0.036 s−1, much larger

than the naively expected
√
Gρ0 from the object’s mean density ρ0, due to the high concentration

of mass near lattice points.

For a single macroscopic object prepared in a squeezed Gaussian state, Eq. (7.2) leads to different

evolutions of expectation values and quantum uncertainties, as illustrated in Fig. 7.1. Such a devia-

tion can be tested by optomechanical devices in the quantum regime [29–33]. For two macroscopic

objects interacting through gravity, we show further, using the two-body counterpart of Eq. (7.2),

that classical gravity cannot be used to transfer quantum uncertainties — experimental demon-

stration of this effect will be much more difficult than demonstrating modifications in single-object

dynamics.

We emphasize that it is not our aim to use the SN equation to explain the collapse of quan-

tum states, or to provide a pointer basis for gravity decoherence, as has been attempted in the

literature [22–28]. We will take a conservative strategy, avoiding experimental regimes with exotic

wavefunctions [10–12], and restraining ourselves to Gaussian states whose evolutions deviate little

from predictions of standard quantum mechanics: just enough to be picked up by precision mea-

surements. In this way, the solutions to SN equation we consider are much less complex than those

in previous literature [22–28].

Many-particle SN equation— for n non-relativistic particles, if we denote their joint wave function

as ϕ(t, X) with 3n-D vector X ≡ (x1, · · · , xn) and xk the 3-D spatial coordinate of k-th particle,

then the many-particle SN equation, obtained by Diosi and Penrose [5, 22], is

i~∂tϕ =
∑
k

[
−~2∇2

k

2mk
+
mk U(t,xk)

2

]
ϕ+ V (X)ϕ , (7.3)

where V (X) is potential energy for non-gravitational interactions, while the Newtonian potential U

is given by

∇2U(t, x) = 4π
∑
j

∫
d3nX |ϕ(t,X)|2mj δ(x− xj) . (7.4)

7.2 SN theory for macroscopic objects

The center of mass and the separation of scales.— equations (7.3) and (7.4) are still not suitable for

experimental studies, because we cannot separately access each particle in a macroscopic object. In
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optomechanical devices, a light beam often probes (hence acts back onto) the average displacements

of atoms within the first few layers of the reflective coating of a mirror-endowed mass. Motion of

this effective surface can often be well-approximated by the CM motion of the entire object; the

error of this approximation is referred to as the “internal thermal noise”, and has been shown to

be suppressible below the free-mass Standard Quantum Limit (SQL) [34], a quantum level of CM

motion defined by the object’s total mass and the measurement time scale [35]. This suppression is

possible because: (i) we tend to measure CM motion by averaging over a large number of atoms at

the surface of the object, and (ii) we measure CM motion over a time scale much longer than the

ones at which atoms oscillate due to thermal or zero-point fluctuations. Obtaining the SN equation

for the CM is therefore central to the experimental test of this model. Before doing so, let us consider

the separation of temporal and spatial scales in the motion of a macroscopic piece of crystal.

The scales of CM motion are determined externally by how we confine the object during mea-

surement, and by how we measure it. Here we consider motions with ωCM/(2π) from Hz to kHz

scale. If thermal noise level is below the free-mass SQL [34], then one can either use optical or feed-

back trapping to create mechanical oscillators with coherence time τCM longer than 1/ωCM [36, 37].

Although not yet achieved, research towards sub-SQL devices in the Hz – kHz regime is being ac-

tively pursued [38, 39, 41]. In this regime, we have ∆xCM ∼
√

~/(MωCM); for 1 g< M < 10 kg,

∆xCM ∼ 10−19–10−17 m.

By contrast, the internal motions of atoms are due to excitation of phonons [44], with a total

variance of [45]

〈x2〉 ≡ B2

8π2
=

~2

mkBT

∫ +∞

0

g(ν)
ξ

(
1
2

+
1

eξ − 1

)
dν (7.5)

where B is also known as the “B-factor” in X-ray diffraction, ξ = hν/kBT , g(ν) is the phonon

density of states, the first term in the bracket gives rise to zero-point uncertainty ∆x2
zp, while

the second gives rise to thermal uncertainty ∆x2
th. These have been studied experimentally by

X-ray diffraction, through measurements of the Debye-Waller factor [46], and modeled precisely

(for Si crystal, see Ref. [47]). Much below the Debye temperature, one can reach ∆xth � ∆xzp,

with most atomic motion due to zero-point fluctuations near the Debye frequency ωD. For Si

crystal, ωD ∼ 1014 s−1, ∆xzp = 4.86 × 10−12 m, and ∆xth(293 K) = 5.78 × 10−12 m [47]. At lower

temperatures, ∆xth ∝ T , therefore on the scale of ∼ 10 K, at which our proposed experiment

operates, we have ∆xzp � ∆xth � ∆xCM.

SN equation for the CM— for a crystal with n atoms, the CM is at xCM = (1/n)
∑
k xk, motion

of the k-th atom in CM frame is yk ≡ xk − xCM. In standard quantum mechanics, for inter-atom

interaction that only depends on the separation of atoms, the CM and internal DOFs are separable:

ϕ(t,X) = ΨCM(t,x)Ψint(t, Y), with 3(n−1)-D vector Y ≡ (y1, · · · , yn−1). The two wavefunctions
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evolve independently:

i~∂tΨCM(t,x) = HCMΨCM(t,x) , (7.6)

i~∂tΨint(t,Y) = HintΨint(t,Y) . (7.7)

For classical gravity, let us first still assume separability: ϕ = ΨCMΨint, and we will show this

remains true (with negligible error) under evolution. Specifically, the sum of SN terms in Eq. (7.3)

becomes

VSN(x,Y) =
∑
k

mkU(xk)/2

=
∑
k

∫
ε [x− z + yk] Ψ2

CM(z)d3z . (7.8)

Here we have suppressed dependence on time and defined

ε(z) = −Gm
2

∫
ρ̃int(y)
|z− y|

d3y (7.9)

as half the gravitational potential energy of a mass m at location z (in CM frame), due to the entire

lattice, and

ρ̃int(y) = m

n∑
j=1

∫
δ(y − y′j)|Ψint(Y′)|2d3n−3Y′ (7.10)

is the CM-frame mass density. (Note: yn ≡ −
∑n−1
j=1 yj .) We will now have to show that VSN

approximately separates into a sum of terms that either only depend on Y, or only on x. Taylor

expansion of VSN in x and z leads to (for one direction):

VSN =
∑
k

ε(yk) + (xCM − 〈xCM〉)
∑
k

ε′(yk)

+
x2

CM − 2xCM〈xCM〉+ 〈x2
CM〉

2

∑
k

ε′′(yk) , (7.11)

with higher orders falling as powers of ∆xCM/∆xzp � 1. Here in VSN, the first term describes the

leading SN correction to internal motion, and can be absorbed into Hint. The second term describes

the interaction between CM motion and each individual atom — it can be shown to have negligible

effects, because internal motions of different atoms are largely independent, and at much faster time

scales. The third term is largely a correction to the CM motion; its main effect is captured if we

replace it by its ensemble average over internal motion (again allowed by approximate independence
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between atoms, see Supplementary Material):
∑
k ε
′′(yk)→ C ≡

〈∑
k ε
′′(yk)

〉
, with

C = −1
2
∂2

∂z2

[∫
Gρ̃int(y)ρ̃int(y′)
|z + y − y′|

dydy′
]
z=0

, (7.12)

which is half the double spatial derivative of the “self-gravitational energy” of the lattice as it is

being translated. As this is independent from the internal motion Y, we therefore obtain the leading

correction to HCM, which justifies Eq. (7.2) introduced at the beginning.

Estimates for ωSN— Let us now estimate the magnitude of ωSN from Eq. (7.12). We naively assume

a homogeneous mass distribution with constant density ρ0 leads to

Chom ≈ GMρ0, ω
hom
SN ≈

√
Gρ0, (7.13)

up to a geometric factor that depends on the shape of the object. This is a typical estimate for the

gravity-decoherence time scale for a homogeneous object prepared in a nearly Gaussian quantum

state with position uncertainty much less than its size [12]. Using the mean density of Si crystal,

this is roughly 4× 10−4 s−1. However, mass in a lattice is highly concentrated near lattice sites; the

realistic ρ̃int at low temperatures contains a total mass of m around each lattice point, Gaussian

distributed with uncertainty of ∆xzp in each direction. This gives, through Eq. (7.12),

ωcrystal
SN =

√
Gm/(12

√
π∆x3

zp) . (7.14)

For ∆xzp ≈ 4.86× 10−12 m, we obtain ωSi
SN ≈ 0.036s−1, nearly 100 times ωhom

SN . If we define

Λ =
(
ωcrystal

SN /ωhom
SN

)2 = m/(12
√
πρ0∆x3

zp) , (7.15)

then Λ = 8.3× 103 for Si crystal.

Evolutions of gaussian states and experimental Tests— As one can easily prove, Gaussian states

remain Gaussian under Eq. (7.2); the self-contained evolution equations for first and second moments

of x̂ and p̂, which completely determine the evolving Gaussian state, are given by:

〈 ˙̂x〉 = 〈p̂〉/M, 〈 ˙̂p〉 = −Mω2
CM〈x̂〉 , (7.16)

V̇xx = 2Vxp/M , V̇pp = −2M(ω2
CM + ω2

SN)Vxp , (7.17)

V̇xp = Vpp/M −M(ω2
CM + ω2

SN)Vxx . (7.18)

For covariance we have defined VAB ≡ 〈ÂB̂ + B̂Â〉/2 − 〈Â〉〈B̂〉. Eq. (7.16) indicates that 〈x̂〉 and

〈p̂〉 evolve the same way as a harmonic oscillator with angular frequency ωCM — any semiclassical

measurement of on 〈x̂〉 and 〈p̂〉 will confirm classical physics. On the other hand, evolution of second
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moments (which represent quantum uncertainty), is modified to that of a harmonic oscillator with

a different frequency (see Fig. 7.1):

ωq ≡
√
ω2

CM + ω2
SN . (7.19)

Equations (7.16)–(7.18) for Gaussian states can also be reproduced by a set of effective Heisenberg

equations that contain expectation values:

˙̂x = p̂/M , ˙̂p =−Mω2
CMx̂− C(x̂− 〈x̂〉) . (7.20)

Classical gravity introduces a C-dependent term to Eq. (7.20), in a way that only affects quantum

uncertainty.

The most obvious test for the SN effect is to prepare a mechanical oscillator into a squeezed

initial state, let it evolve for a duration τ , and carry out state tomography. We need to detect an

extra phase ∆θ = ωCMτ(ω2
SN/ω

2
CM) in the rotation of the quantum uncertainty ellipse. This seems

rather difficult because ωSN/ωCM is often a very small number, yet ωCMτ is often not large, either.

However, we have not taken advantage of the fact that ∆θ is deterministic and repeatable. One

way of doing so is to carry out a frequency-domain experiment. Suppose we use light (at ω0) to

continuously probe a mechanical object’s position, with quantum back-action noise (in the form of

radiation-pressure noise) comparable in level to thermal noise, as has been achieved by Purdy et

al. [33]. The effective Heisenberg equations (valid for Gaussian states) for such an optomechanical

device is given by:

˙̂x =p̂/M , (7.21)

˙̂p =−Mω2
CMx̂− 2γmp̂− C(x̂− 〈x̂〉) + F̂BA + Fth (7.22)

b̂2 =â2 + nx + (α/~)x̂ , b̂1 = â1 . (7.23)

Here γm is the damping rate, α is the optomechanical coupling constant, F̂BA ≡ α â1 is the quantum

back action, and Fth is the classical driving force (e.g., due to thermal noise). â1,2 represents

quadratures of the in-going optical field, and b̂1,2 those of the out-going field. (They correspond to

amplitude and phase modulations of the carrier field at ω0.) We have used nx to denote sensing noise.

As we show in the appedix, the outgoing quadrature b̂2 contains two prominent frequency contents,

peaked at ωCM (due to classical motion driven by thermal forces) and at ωq (due to quantum motion

driven by quantum fluctuation of light), respectively. Both have the same width (γm), and height

(if thermal and back-action noises are comparable). In order to distinguish them, we require

SFth ≈ SFBA , Q >∼ (ωCM/ωSN)2 . (7.24)
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This indicates a SN-induced shift of ∆θ ≈ 2π/Q per cycle can be picked up by the frequency domain

experiment, even in presence of classical thermal noise Fth.

For Si oscillators with ωSN ≈ 0.036 s−1, if ωCM ≈ 2π × 10 Hz, Eq. (7.24) requires Q >∼ 3 × 106,

which is challenging but possible [41]. If a lower-frequency oscillator, e.g., a torsional pendulum

with ωCM ≈ 2π × 0.1 Hz [48] can be probed with back-action noise above thermal noise, then we

only require Q >∼ 3× 102.

SN equation for two macroscopic objects— Now suppose we have two objects confined within poten-

tial wells frequencies ω1,2, and moving along the same direction as the separation vector L connecting

their equilibrium positions (from 1 to 2). The standard approach for describing this interaction is

to add a potential

Vg = E ′12

[
x

(1)
CM − x

(2)
CM

]
+ (C12/2)

[
x

(1)
CM − x

(2)
CM

]2 (7.25)

into the Schrödinger equation, with

E12≡−
∫
d3xd3y

Gρ̃
(1)
tot(x)ρ̃(2)

tot(y)
|L + y − x|

, C12 ≡
∂2E12

∂L2
, (7.26)

with ρ̃(1)
tot and ρ̃(2)

tot the mass densities of objects 1 and 2, respectively. As has been argued by Feynman,

this way of including gravity tacitly assumes that gravity is quantum. Although quantum operators

have not been assigned for the gravitational field, they can be viewed as having been adiabatically

eliminated due to their fast response: quantum information can transfer between these objects via

gravity. Suppose ω1 = ω2 = ω, then Vg modifies the frequency of the two objects’ differential mode

— allowing quantum state to slosh between them, at a frequency of ∆ = |ω+ − ω−| = C12/(2Mω).

Suppose we instead use the SN equation for the two macroscopic objects. In addition to modifying

each object’s own motion, we add a mutual term of

VSN =E ′12

[
x

(1)
CM − x

(2)
CM

]
+
C12

2

[(
x

(1)
CM − 〈x

(2)
CM〉

)2 +
(
x

(2)
CM − 〈x

(1)
CM〉

)2]
. (7.27)

This VSN makes sure that only 〈xCM〉 gets transferred between the two objects the same way as in

classical physics: quantum uncertainty does not transfer from one object to the other. To see this

more explicitly for Gaussian states, we can write down the full set of effective Heisenberg equations

governing these two CMs:

˙̂xj =p̂j/Mj ,

˙̂pj =−Mjω
2
CMx̂j −

∑
k,j

[
E ′kj + Ckj (x̂j − 〈x̂k〉)

]
. (7.28)
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It is clear that expectation values follow classical physics, and quantum uncertainties are confined

within each object — and evolve with a shifted frequency. Although we have shown theoretically

that the inability to transfer quantum uncertainty and the shift between ωCM and ωq share the same

origin, in practice, observing the frequency shift for a single object will be much easier, because

C12 ∼ GM2/L3 <∼ GMρ0 � C11, C22, due to the lack of the amplification factor Λ in C12 [cf.

Eq. (7.15)].

7.3 Discussion and conclusion

The lack of experimental tests on the quantum coherence of dynamical gravity makes us believe

that semiclassical gravity is still worth testing [18]. Our calculations have shown that signatures of

classical gravity in macroscopic quantum mechanics, although extremely weak, can be detectable

with current technology. In particular, the classical self gravity of a single macroscopic object causes

a much stronger signature than the classical mutual gravity between two separate objects: simply

because the mass of a cold crystal is concentrated near lattice sites. We also speculate that the

rate of gravity decoherence should also be expedited by Λ1/2 ∼ 100 — if it is indeed determined by

gravitational self energy [5, 6]. However, due to the lack of a widely-accepted microscopic model

for gravity decoherence, this only makes it more hopeful for experimental attempts, but would not

enforce a powerful bound if decoherence were not to be found.

Finally, since classical gravity requires the existence of a global wave function of the universe that

does not collapse, (the unlikely case of) a positive experimental result will open up new opportunities

of investigating the nature of quantum measurement.
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7.A Supplementary material for macroscopic quantum me-

chanics in a classical spacetime

7.A.1 A. Incompatibility between the many-world interpretation of quan-

tum mechanics and classical gravity

At this moment, the only well-known (and widely accepted) interpretation of quantum mechan-

ics that explains the phenomenology of quantum measurement without resorting to quantum-state

reduction is the many-world interpretation of quantum mechanics [20]: the entire universe’s wave-

function contains many branches, incorporating all possible measurement outcomes; each observer,

however, can only perceive one of the branches, therefore experiencing the phenomenon of quantum-

state reduction.

If we were to combine the many-world interpretation of quantum mechanics and classical gravity,

the classical spacetime geometry will have to be determined by the expectation value of stress-energy

tensor, which effectively averages over all possible measurement outcomes. Following Page and

Geilker [21], let us consider the following gedankenexperiment. Suppose quantum measurement of

σ̂z of a spin-1/2 particle at a state of (|+〉+ |−〉)/
√

2 determines whether we put a mass on the left

or right side of a scale, then the combination of the many-world interpretation and classical gravity

will predict a leveled scale, because the expectation value of matter densities on both sides are equal.

This is in stark contrast with experimental facts.

Nevertheless, for many, including some of the authors, neither the concept of state reduction nor

the many-world interpretation seems a satisfactory explanation of why we cannot predict the outcome

of a quantum measurement. We therefore remain open minded towards the possibility of further

interpretations/clarifications/modifications of quantum mechanics and the quantum measurement

process that offer better explanations. For us, the Schrödinger-Newton equation is not ruled out

right away, and is therefore still worth testing.

7.A.2 B. Separation between CM and internal degrees of freedom

In Eq. (11), we obtained the Schrödinger-Newton potential kept at quadratic order (in ∆xCM/∆xzp �

1):

VSN =
∑
k

ε(yk) + (xCM − 〈xCM〉)
∑
k

ε′(yk)

+
1
2

(x2
CM − xCM〈xCM〉+ 〈x2

CM〉)
∑
k

ε′′(yk) . (B.1)
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As we shall argue, truncation at this order will give us the leading correction to CM motion, and

it is also separable from corrections to the internal motion, therefore justifying the assumption of

separability between the CM motion and internal DOFs. Higher order terms, being suppressed by

powers of ∆x/∆xzp are therefore negligible.

The first term

V
(0)
SN =

∑
k

ε(yk) (B.2)

is readily absorbed into Hint, which now becomes nonlinear. This is already the leading correction

for the internal motion. Let us calculate the modulus of its contribution,

‖V (0)
SN ϕ‖ =

∫ ∑
k,j

ε(yk)ε(yj)|Ψint(Y)|2d3n−3Y

1/2

≈ n
(
Gm2/∆xzp

)
. (B.3)

The second term

V
(1)
SN = (xCM − 〈xCM〉)

∑
k

ε′(yk) (B.4)

describes the interaction between the CM and the internal motion of each of the atoms. In order to

estimate its effect, let us first calculate the modulus of the change in ϕ it induces:

‖V (1)
SN ϕ‖ =∆xCM

∫ ∑
k,j

ε′(yk)ε′(yj)|Ψint(Y)|2d3n−3Y

1/2

≈
√
n
(
Gm2/∆xzp

)
(∆xCM/∆xzp) . (B.5)

Here we only have
√
n (instead of n) because the integral will not vanish only when distribution

of yk and yj are correlated, which only happens for nearby atoms. The other factor ∆xCM/∆xzp

is due to the fact that this is the next order in the Taylor expansion. From the point of view of

internal motion, V (1)
SN clearly gives a higher-order correction than V

(0)
SN , hence negligible. We will

show that, even for CM motion, the contribution of V (1)
SN is also less than contribution from the next

Taylor-expansion term V
(2)
SN .

Now turning to V (2)
SN , let us split it into two terms

V
(2)
SN = V̄

(2)
SN + δV

(2)
SN , (B.6)

with

V̄
(2)
SN =

1
2

(x2
CM − 2xCM〈xCM〉+ 〈x2

CM〉)
〈∑

k

ε′′(yk)
〉
, (B.7)
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defined as the ensemble average, where

〈∑
k

ε′′(yk)
〉
≡
∫ ∑

k

ε′′(yk)|Ψint(Y)|2d3n−3Y ≡ C , (B.8)

and

C = −1
2
∂2

∂z2

[∫
Gρ̃int(y)ρ̃int(y′)
|z + y − y′|

dydy′
]
z=0

. (B.9)

Note that V̄ (2)
SN does not depend explicitly on Y, and hence is a correction to the Hamiltonian

for the CM motion. It is straightforward to estimate that

‖V̄ (2)
SN ϕ‖ = nGm2/∆xzp (∆xCM/∆xzp)2

. (B.10)

This means, at any given time,

‖V (1)
SN ϕ‖/‖V̄

(2)
SN ϕ‖ ≈

1√
n

∆xzp

∆xCM
≈
√
ωCM

ωD
� 1 . (B.11)

In addition, as we evolve in time, the effect of V (1)
SN oscillates around zero over a very fast time

scale, while the effect of V̄ (2)
SN does not oscillate around zero — this further suppresses the relative

contribution of V (1)
SN . For this reason, we ignore V (1)

SN completely.

As for δV (2)
SN , its effect is suppressed from V̄

(2)
SN by

√
n, because, much similar to Eq. (B.5), effects

of different atoms do not accumulate unless they are very close to each other.

7.A.3 C. Effective Heisenberg equations of motion and coupling with

optical field

The fact that Gaussian states leads to Gaussian states encourages us to look for effective Heisenberg

equations of motion, which will at least be valid for Gaussian states. It is easy to find that

˙̂x =p̂/M , (C.1)

˙̂p =−Mω2
CMx̂− C(x̂− 〈x̂〉) (C.2)

will give the same set of first- and second-moment equations of motion as the SN equation. Note

that in the Heisenberg picture, the initial state of the oscillator remains constant.

Let us now consider a more realistic scenario, in which the oscillator is damped with decay rate

γm, driven with classical thermal noise and other classical driving; we also consider using light to

sense the position of the mirror, in which we also suffer from sensing noise. The entire process can
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be described by the following set of equations [cf. Eqs. (21), (22) and (23)]:

˙̂x =p̂/M , (C.3)

˙̂p =−Mω2
CMx̂− 2γmp̂− C(x̂− 〈x̂〉) + F̂BA + Fth , (C.4)

b̂2 =â2 + nx + (α/~)x̂ , b̂1 = â1 . (C.5)

This set of equations can be solved first for 〈x̂〉 by taking the expectation value of the first two

equations, and then insert this back to obtain the entire solution. If we define

χ0 = − 1
M(ω2 + 2iγmω − ω2

CM)
(C.6)

χg = − 1
M(ω2 + 2iγmω − ω2

q)
, (C.7)

then we can write, in the frequency domain,

b̂2 = â2 + (α/~)χgF̂BA + (α/~)χ0Fth + nx . (C.8)

Because both χg and χ0 in the time domain are Green functions of stable systems, Eq. (C.8)

represents the steady-state solution for the outgoing field, which is only determined by the ingoing

optical field and the classical driving field — initial states of the mechanical oscillator do not matter

(similar to the case of Ref. [49, 50]).

Equation (C.8) carries the separation between classical and quantum rotation frequencies in the

previous section (Fig. 1) into the frequency spectrum of our measuring device: quantum back-action

(radiation-pressure) noise F̂BA spectrum in the output port of the continuous measuring device is

the same as an oscillator with frequency ωq, and therefore peaks around ωq — while classical noise

Fth follows that of an oscillator with frequency ωCM, and peaks at ωCM. In order to look for such

a signature, we will need classical force noise to be comparable in level to quantum noise, and have

the two peaks to be resolvable,

ωq − ωCM
>∼ γm (C.9)

which means

Q >∼ (ωCM/ωSN)2 (C.10)

where Q is the quality factor of the mechanical oscillator.
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7.A.4 D. SN Equation for two macroscopic objects

Following the analysis in Appendix. A, here we deal with two macroscopic objects, and define

x(I)
k = X(I) + y(I)

k + x(I)
CM , k = 1, . . . , nI , I = 1, 2. (D.1)

Here X(I) is the zero point we use for describing object I, and nI is the number of atoms object

I contains. Following the same argument for deriving the single-object SN equation, we can still

write the joint wavefunction as a product between the joint CM wavefunction and the internal

wavefunctions,

ϕ = ΨCM

[
x(1),x(2)

]
Ψ(1)

int

[
Y(1)

]
Ψ(2)

int

[
Y(2)

]
. (D.2)

and show that this form will be preserved during evolution, even adding the SN term, which is now

VSN =
Gm2

2

2∑
I,J=1

nI∑
i=1

nJ∑
j=1

∣∣∣ΨCM(z̃(1), z̃(2))Ψ(1)
int(Ỹ(1))Ψ(2)

int(Ỹ(2))
∣∣∣2∣∣∣L(JI) + x(I) + y(I)

i − z̃(J) + ỹ(J)
j

∣∣∣ dz̃(1)dz̃(2)dỸ(1)dỸ(2). (D.3)

Here we have denoted

L(IJ) ≡ X(J) −X(I) . (D.4)

Terms with I = J have already been dealt with, and give rise to the SN correction within object I.

We will only have to deal with cross terms. In doing so, we shall assume each object’s CM moves

very little from its zero point, and carry out Taylor expansion. Note that because these objects are

already macroscopically separated, with L(IJ) comparable to or greater than the size of each object,

the expansion here will be valid for the cross term as long as the CM motion of each object is much

less than its size.

The zeroth order expansion in CM motion, V (0)
SN , gives rise to SN coupling between the objects’

internal motions. Fortunately, that does not entangle their internal motions, and preserves the form

of Eq. (D.2).

The first order in CM motion gives (after conversion of summation over atoms into ensemble

average, the same as we did in Appendix B, and removing a constant):

V̄
(1)
SN = −x(1)

CME
′
21 − x

(2)
CME

′
12 =

[
x

(1)
CM − x

(2)
CM

]
E ′12 (D.5)

where E12 is the interaction energy between the objects, as a function of their separation

E12(x) ≡ −
∫
d3yd3z

G%̃
(1)
int(y) %̃(2)

int(z)
|z + x− y + L(12)|

. (D.6)
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This describes the tendency of these objects to fall into each other. Similarly, we obtain the second

order, which gives (apart from a constant)

V̄
(2)
SN =

E ′′12

2

[(
x

(1)
CM − 〈x

(2)
CM〉

)2

+
(
x

(2)
CM − 〈x

(1)
CM〉

)2
]
, (D.7)

which justifies Eq. (27).
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[22] L. Diósi, Phys. Lett. A 105, 199 (1984).

[23] I. M. Moroz, R. Penrose, and P. Tod, Class. Quantum Grav. 15, 2733 (1999).

[24] R. Harrison, I. Moroz, and K. P. Tod, Nonlinearity 16, 101 (2002).

[25] P. J. Salzman and S. Carlip, arXiv:gr-qc/0606120 (2006).

[26] S. L. Adler, J. Phys. A 40, 755 (2007).

[27] F. S. Guzmán and L. A. Urena-López. Phys. Rev. D 69, 124033 (2004).
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Chapter 8

First-order perturbative
hamiltonian equations of motion
for a point particle orbiting a
Schwarzschild black hole

We formulate a spherical harmonically decomposed 1+1 scheme to self-consistently evolve

the trajectory of a point particle and its gravitational metric perturbation to a Schwarzschild

background spacetime. Following the work of Moncrief, we write down an action for per-

turbations in space-time geometry, combine that with the action for a point-particle

moving through this space-time, and then obtain Hamiltonian equations of motion for

metric perturbations and the particle’s coordinates as well as their canonical momenta.

Hamiltonian equations for the metric-perturbation and their conjugate momenta, for

even and odd parities, reduce to Zerilli-Moncrief and Regge-Wheeler master equations

with source terms, which are gauge invariant, plus auxiliary equations that specify gauge.

Hamiltonian equations for the particle, on the other hand, now include the effect of met-

ric perturbations — with these new terms derived from the same interaction Hamiltonian

that had lead to those well-known source terms. In this way, space-time geometry and

particle motion can be evolved in a self-consistent manner, in principle in any gauge.

However, the point-particle nature of our source requires regularization, and we outline

how the Detweiler-Whiting approach can be applied. In this approach, a singular field

can be obtained analytically using Hadamard decomposition of the Green’s function;

and the regular field, which needs to be evolved numerically, is the result of subtracting

the singular field from the total metric perturbation. In principle, any gauge that has

singular-regular field decomposition is suitable for our self-consistent scheme. In real-

ity, however, this freedom is only possible if our singular field has a high enough level

of smoothness. For a singular field with minimum quality, one can adopt the Lorenz
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gauge condition, which we have recast into our formalism: for each l and m, we have

2 wave equations to evolve odd and even parity gauge invariant quantities and 8 first

order differential equations to fix the Lorenz gauge and determine the metric components.

Preprint paper by H. Yang, H. Miao and Y. Chen, arXiv:1211.5410.

8.1 Introduction

In this paper, we discuss the motion of a small compact object (idealizing a black hole or neutron

star) moving around a much more massive, Schwarzschild black hole — and the gravitational waves

such a system would emit. In gravitational-wave astrophysics, this process is often referred to as an

Extreme Mass-Ratio Inspiral (EMRI). This problem has attracted a lot of attention in recent years

due to the possibility of directly detecting these waves using space-based [1–3] and even ground-

based laser interferometer gravitational-wave detectors [4]. In EMRIs, the small object stays for

a long time outside of the big black hole, emitting many cycles of gravitational waves — even in

the strong-field region very close to the big black hole. This wave, if detected, will provide accurate

information about the mass and the spin of big black hole, as well as parameters of the small object’s

orbit; one might even test whether the big black hole is indeed a Kerr background spacetime [5–8].

On the other hand, because it is the many cycles that would together lead to a detectable signal, it

will be crucial (at least for the weaker sources) to get very accurate models for the waveforms (e.g.,

at the level of one or a few radians for the entire waveform, which may be up to 106 cycles) in order

to be able to extract them from data [9].

Because the orbiting object is much smaller in mass, one expects the application of black-hole

perturbation theory [10–12], successively to higher orders in mass ratio, would be a viable program

towards solving the EMRI problem, just like Post-Newtonian theory has worked for the inspiral of

comparable-mass compact objects [13]— although a direct application of post-Newtonian theory to

EMRIs will not be very efficient because one expects the most interesting waves to be generated

when the small object moves very close to the big black hole, with where post-Newtonian theory

breaks down very fast. By contrast, full numerical simulation of the entire EMRI spacetime would

be very expensive due to the large separation of scales and very long integration time that is required

to providing meaningful information regarding the evolution of the orbit. Nevertheless, the most

extreme mass ratio achieved so far in numerical relativity simulations is 1 : 100 [14].

When computing the leading-order waveform emitted by a small compact object moving in a

black-hole background, one can idealize the small object as a test particle moving along a geodesic,

and perturbations to the black-hole spacetime are sourced by a δ-function stress-energy tensor along

that geodesic — with all other multipoles of the object ignored. However, if we would like to further
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calculate the evolution of the object via coupling to the radiation field, we need to consider space-

time geometry near the object, which formally diverges if we still use the point-particle model. From

this point of view, a regularization procedure is necessary.

Historically there are two approaches toward regularization. The first involves matching the ex-

ternal (point-particle-generated perturbed black-hole) spacetime to the internal perturbed Schwarzschild

spacetime of the small object — in a region where both are valid. This was proposed and carried

out by Mino, Sasaki and Tanaka [15] as well as by Quinn and Wald [16], and later by Gralla, Pound,

Poisson and others [17–19]. This approach, for the external spacetime of the object, has led to the

separation of the total metric perturbation field into two pieces: h = hdir + htail; hdir is the light-

cone contribution to metric perturbation from the point particle’s δ-function stress energy tensor

(the Hadamard direct part) and htail is the contribution inside the future light cone of the particle

(the tail part). Mino et al. [15] and Quinn and Wald [16] proved that the regularized radiation

reaction is solely contributed by hret which is everywhere continuous but not necessarily smoothly

differentiable. This approach is useful when one knows the Green’s function of the background

spacetime.

The second method, usually called Detweiler-Whiting decomposition, keeps the point-particle

description of the problem, but instead separates the total metric perturabtion field h into a regular

piece hR and a singular piece hS [20]. The singular piece diverges at the particles’s location but does

not have any effect on the particle’s motion. It can be obtained by either transforming its expression

in the local THZ (Thorne-Hartle-Zhang) coordinate system [21] to the background coordinate system

or applying the Hadamard decomposition of the Green’s function [22]. The regular field satisfies

the homogeneous Einstein’s equation and is responsible for the geodesic deviation of the particle’s

motion in background spacetime; it is obtained by subtracting the singular field from the full field.

The regularization procedures above normally provide, in a particular gauge, a force in terms

of a geodesic orbit of a particle. In order to obtain the evolution of the particle and the out-going

wave, one must construct an algorithm to compute the force, and use it to drive one’s particle

trajectory away from geodesic motion [17]. There are two major approaches towards the numerical

implementation. One way is the mode sum approach, developed by Barack and Ori [23], which

decomposes each of the 10 metric components into spherical harmonics, and solves 10 coupled

1+1 wave equations for each (l,m). Because of the modal decomposition, the metric component

for each (l,m) is finite even at the particle’s location. The particle equation of motion is then

regularized mode-by-mode, by subtracting a series of regularization parameters for each (l,m) —

these regularization parameters can be calculated either from the singular field of Detweiler and

Whiting, or to the direct part of Mino, Sasaki and Tanaka. This mode sum method has already

been implemented by Warburton et al. [24] for Schwarzschild gravitational EMRI problem.

In the second approach, one directly applies a 3+1 decomposition of spacetime, and tries to
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obtain the regular field directly — by obtaining a field h̃R which is approximately the Detweiler-

Whiting hR near the particle, but gradually becomes the full field at null infinite and near horizon.

As shown by Vega and Detweiler [25], the field h̃R satisfies a wave equation with out-going boundary

condition at infinity and horizon, but with a source that can be computed from the Detweiler-Whiting

singular field hS . Diener and Vega [26] have implemented this method for a scalar particle orbiting

a Schwarzschild black hole. In principal, this effective source method is also suitable for the 1+1

evolution scheme. In practice, translating the 3+1 effective source into spherical decomposed form

and implementing it into a working code still requires a substantial amount of work.

In this paper, we formulate a Hamiltonian approach towards the EMRI problem in Schwarzschild

background, with the aim of providing a new angle to view this problem. We will only write down

the equations, but not attempt to solve them numerically. We start by generalizing Moncrief’s

(already spherical harmonic decomposed) quadratic action of perturbative Schwarzschild spacetime

to include a point particle, and write down a joint Hamiltonian for the particle and the spherical

harmonic decomposed field.

The total Hamiltonian leads naturally to a set of canonical equations that describe the joint

evolution of the particle and the field. Moreover, since we are adopting Moncrief’s formalism,

the gauge invariant part of the perturbation fields are separated out from the rest of the degrees of

freedom — these fields, together with lapse and shift, drive the rest of the fields. For each (l,m), there

are 6 pairs of canonical quantities; 2 pairs are always gauge invariant, and evolve independently (but

driven by the particle); among the other 4 pairs, 3 canonical momenta and 1 canonical coordinate

correspond to the momentum and Hamiltonian constraints, while the other 3 canonical coordinate

and 1 canonical momentum can be fixed by gauge choices.

Although the Hamiltonian approach provides a rather good way of organizing the fields, we have

not found any stand-alone regularization technique — and must instead adopt an existing one. In

principle, taking the 4 dimensional Detweiler-Whiting singular field hS in any gauge, as long as their

continuity survives the differential operations required for constructing our canonical field quantities,

they can be readily used to obtain effective sources for h̃R, the effective regular field. However, the

currently available singular field only allows the use of Lorenz gauge, which means we will have to

fix that gauge, evolving the 8 above mentioned equations.

This paper is organized as follows. In Sec. 11.3 we briefly review Moncrief’s Hamiltonian approach

for gravitational perturbations of the Schwarzschild metric. After that we introduce additional terms

into the action that describe the point particle. From this new action, we rederive the odd and

even parity metric perturbation master equations as well as the point mass equations of motion in

Sec. 11.4. Note that for both odd and even parities, wave equations agree with the known master

equations for Regge-Wheeler and Zerilli-Monrief functions with a point-particle source [27–29]. On

the other hand, the point mass equations of motion are now subject to the influence of the background
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metric and both odd and even parity metric perturbations. They have the physical meaning of the

geodesic motion in the perturbed background spacetime. In Sec. 11.5, we will discuss possible ways

to regularize the gauge invariant quantities and specific gauge choice, and hence obtain a fully

regularized set of equations for both the metric perturbations and the point mass. We conclude in

Sec. 11.6.

8.2 Review of Moncrief’s Hamiltonian approach

The Arnowitt, Deser, and Misner (ADM) approach to general relativity [48] was established more

than fifty years ago. In this approach, the Einstein-Hilbert action is written in a 3+1 format similar

to a constrained Hamiltonian dynamical system: the spatial 3-metric components are treated as

canonical coordinates, while their conjugate momenta are related to components of the extrinsic

curvature. The lapse and shift functions serve as Lagrange multipliers for the Hamiltonian and

momentum constraints. As one varies the action with respect to the canonical coordinates (not

including lapse and shift functions) and their conjugate momenta, a set of evolution equations can

be obtained. As one varies the action with respect to the lapse and shift functions, a set of constraint

equations are obtained — these equations are to be satisfied at the initial time, and will keep being

satisfied if the above-mentioned evolution equations are followed. This approach rewrites Einstein’s

equations as an initial-value problem; it is closely related to the modern development of numerical

relativity [47].

8.2.1 First-order perturbation of a static space-time in 3+1 form

Starting from this section, we review Moncrief’s implementation of the ADM formalism to perturbed

Schwarzschild spacetimes [30]. In general, for a static background spacetime, if we take spatial slices

orthogonal to the time-like Killing vector ~∂t, and use integration curves of ~∂t to identify points

with the same spatial coordinates (on the spatial slices), we will have a constant 3-metric γij (with

determinant γ), vanishing extrinsic curvature, a lapse N that only depends on spatial coordinates,

and a vanishing shift vector Nj = 0. Here and henceforth in the paper, we shall use i, j, k, ... = 1, 2, 3

to label spatial coordinates on each slice. If we have a perturbed 3-metric hij , their canonical

conjugates pij , lapse perturbation N ′, and shift perturbation N ′j , then the perturbative part of the

Einstein-Hilbert action, up to quadratic order in these perturbative quantities, can be written as:

[30]

J =
∫
d4x

[
pij

∂hij
∂t
−N ′iH′

i −N ′H′ −NH∗
]
. (8.1)
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Here H′ and H′i are the Hamiltonian and momentum constraints, respectively,

H′i =− 2pij|j , (8.2a)

H′ =− γ1/2
[
hij
|ij − h|i|i − hij(3)Rij

]
(8.2b)

and

H∗ = γ−1/2
[
pijpij − 1

2p
2
]

+ 1
2γ

1/2 1
2hij|kh

ij|k

+ 1
2γ

1/2
[
−hij|khik|j − 1

2h|ih
|i + 2h|ihij |j

]
+ 1

2γ
1/2
[
hhij |ij − hhij(3)Rij

]
. (8.3)

Here (3)Rij is the Ricci tensor associated with γij . The covariant derivative “|” here is with respect

to the background 3 metric γij .

The action J in Eq. (8.1) leads to a Hamiltonian system with constraints. In particular, variations

with respect to the lapse function N ′ and shift function N ′j give rise to the constraint equations,

H′i = 0, H′ = 0 (8.4)

while variations with respect to hij and πij give rise to the evolution equations:

∂hij
∂t

=
δHT

δπij
,
∂πij

∂t
= −δHT

δhij
. (8.5)

Here we have defined

HT =
∫
d3x

[
NH∗ +N ′H′ +N ′iH′

i
]

(8.6)

8.2.2 Degrees of freedom

Let us now count the number of degrees of freedom of this Hamiltonian system. Nominally, we start

from 6 metric perturbations, plus 6 canonical momenta, governed by 6 pairs (i.e., 12) equations of

motion. However, we have 4 constraints and 4 gauge degrees of freedom at all times; so in principle

we should be able to cut down to 4 gauge independent functions, or 2 pairs of canonical degrees of

freedom — this is what Moncrief worked out explicitly for Schwarzschild.

From a 3+1 point of view, we need to show that we indeed only have 4 independent data to

specify for free at the initial time slice — and the evolution of these 4 independent data can already

describe all solutions. For this, we note that when specifying the 12 initial perturbation functions,

we need to subject them to 4 constraints, so there are 8 independent remaining degrees of freedom.

However, we have 3 dimensional gauge within the slice, as well as an extra parameter determining
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the slicing, so we have 4 additional functions that can be used to reveal initial data that are actually

equivalent to each other — with 4 truly independent degrees of freedom left. The evolution these 4

functions will be supplemented by the 4 constraints and the 4 lapse/shift functions to complete the

12 functions.

In fact, we can make the above arguments a little more precise. Suppose, after a canonical trans-

formation, we can transform the Hamiltonian and momentum constraints to become independent

canonical coordinates and momenta. More specifically, let us label the Hamiltonian constraint the

first canonical coordinate Q0, denote the conjugate momentum of Q0 as P0; let us then label the

momentum constraints as P1,2,3, and label their conjugate coordinates as Q1,2,3. In other words, we

have

Q0 = H′ , Pi = H′i , i = 1, 2, 3. (8.7)

We will label the rest of the canonical coordinates Q4,5 and momenta P4,5. Noting that all compo-

nents of the momentum constraints already have vanishing Poisson brackets with each other,

{
H′i,H′j

}
= 0 , i, j = 1, 2, 3, (8.8)

we only need to make sure that the Hamiltonian constraint have a vanishing Poisson bracket with

all components of the momentum constraint:

{
H′,H′j

}
= 0 . j = 1, 2, 3. (8.9)

Thus it is rather straightforward to show if we look at the evolution equation for the Hamiltonian

constraint:
d

dt
H′ =

{
H′,H′j

}
N ′j + (terms not involving shift) . (8.10)

Now imagine we already have vanishing constraints initially, then in order to guarantee vanishing

constraints during the subsequent evolution — regardless of the shift function N ′j we must ensure

that the Poisson bracket
{
H′,H′j

}
vanishes numerically. However, for linear perturbation theory,

H′ and H′j are linear in the canonical coordinates and momenta, hij and pij , their Poisson brackets

are simply numbers (or rather, functions of the spatial coordinate) that do not depend on these

perturbative fields. In this way, the numerical vanishing of
{
H′,H′j

}
in Eq. (8.10) is equivalent to

Eq. (8.9) — hence Eq. (8.7) is always possible.

Next, let us consider the consequence of the important property that once Q0 and P1,2,3 start

from 0, they must stay at 0. This means their time derivatives must only contain themselves —

which means, in the Hamiltonian, quantities P0 and Q1,2,3 must only multiply Q0 and P1,2,3

P0 · [only Q0 and P1,2,3] &Q1,2,3 · [only Q0 and P1,2,3] . (8.11)
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Odd Parity Even Parity
Lapse H0

Shift h0 (l ≥ 1) H1, h∗0 (l ≥ 1)
3-Metric h1 (l ≥ 1), h2 (l ≥ 2) H2, K, h∗1 (l ≥ 1) , G (l ≥ 2)

Table 8.1: List of lapse, shift and 3-metric perturbations

The absence of Q4,5 and P4,5 in the above terms means that the derivatives of P4,5 and Q4,5 cannot

include P0 or Q1,2,3. This, plus the fact that Q0 and P1,2,3 vanish, means that the evolution of P4,5

and Q4,5 must be self contained, or:

d

dt
P4,5 ∼ P4,5&Q4,5 ,

d

dt
Q4,5 ∼ P4,5&Q4,5 . (8.12)

In this way, these 4 are the gauge-invariant canonical variables. Another 4 equations are driven by

the above gauge-invariant quantities, plus lapse and shift:

d

dt
P0 ∼ P4,5 &Q4,5 &P0 &Q1,2,3&N ′ (8.13)

d

dt
Q1,2,3 ∼ P4,5 &Q4,5 &P0 &Q1,2,3&N ′1,2,3 . (8.14)

The final 4 equations are simply that the constraints vanish.

As we shall see below, in his treatment of Schwarzschild perturbations, Moncrief did follow the

above general prescription — by directly using constraints as canonical coordinates and momenta.

Note that this structure seems rather generic, and does not seem to be limited to Schwarzschild or

even static spacetimes — of course, the question of whether one can separate these into different

(l,m) components is another issue.

8.2.3 Schwarzschild perturbations

Let us return to perturbations of Schwarzschild. In our case, the background metric is

ds2 = −
(

1− 2M
r

)
dt2 +

dr2

1− 2M
r

+ r2(dθ2 + sin2 θdφ2) (8.15)

and we choose to start with constant-t slices in this Schwarzschild coordinate system, and adopt

spatial coordinates

(x1, x2, x3) = (r, θ, φ). (8.16)

In this way, we have N =
√
−1/g00 =

√
1− 2M/r, and non-zero components of γij given by

γ11 =
1

1− 2M/r
, γ22 = r2 , γ33 = r2 sin2 θ . (8.17)
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We shall use i, j, k = 1, 2, 3 to label these spatial coordinates, and write components of the met-

ric perturbation hij as functions of spacetime coordinates (t, r, θ, φ) — and separate the angular

dependence by decomposing them into scalar, vectorial and tensorial spherical harmonics [27]

hlmAB = r2
[
K(t, r)U lmAB +G(t, r)V lmAB

]
+ h2(t, r)W lm

AB , (8.18a)

hlmrr = 1/fH2(t, r)Y lm, (8.18b)

hrA = h∗1(t, r)ZlmA + h1(t, r)X lm
A . (8.18c)

Here we have defined f ≡ 1− 2M/r, and shall use A,B, ... = 1, 2 to label angular coordinates

(Ω1,Ω2) = (θ, φ). (8.19)

The conjugate momenta pij can be similarly decomposed, while the decomposition of lapse and shift

perturbations N ′, N ′i are [27]

hlmtt =fH0(t, r)Y lm, (8.20a)

hlmtr =H1(t, r)Y lm, (8.20b)

hlmtA =h∗0(t, r)ZlmA + h0(t, r)X lm
A . (8.20c)

Here we have used odd parity vector and tensor spherical harmonics X lm
A ,W lm

AB , as well as even

parity ones, ZlmA , U lmAB , V
lm
AB ; their definitions can be found in [27, 28]; we have also listed them in

Appendix 8.A. For each (l,m), (l ≥ 2), we have a total of 10 independent functions characterizing 10

independent metric components; 4 of them are lapse and shift perturbations: H0 is lapse perturbation

and H1, h
∗
0, h0 are shift perturbations. The other 6 functions are spatial metric perturbations:

K,G, h2, H2, h
∗
1, h1. For even parity, there is 1 lapse perturbation function H0, 2 shift perturbation

functions H1, h
∗
0 and 4 spatial metric perturbation functions K,G,H2, h

∗
1. For odd parity, there are

no lapse perturbation, 1 shift perturbation function h0 and 2 spatial metric perturbation functions

h1, h2 for odd parity. This list is shown in Table 8.1.

8.2.4 Odd parity (l ≥ 2)

Let us first look at odd-parity perturbations, which contain spatial-metric perturbations h1, h2

[Eq. (8.18)] and shift perturbation h0 [Eq. (8.20)]. All odd-parity infinitesimal coordinate transfor-

mations within the spatial slice can be represented using the odd-parity vector harmonic X lm
A ,

Ω′A = ΩA +
∑
lm

Clm(r, t)X lm
A = ΩA + CA , (8.21)
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which, after applying

δhij = Ci|j + Cj|i (8.22)

lead to

δh1 = C,r −
2
r
C, δh2 = −2C . (8.23)

Moncrief defined new perturbation functions

k1 = h1 +
1
2

(
h2,r −

2
r
h2

)
, k2 = h2, (8.24)

which transform as

δk1 = 0, δk2 = −2C. (8.25)

In other words, k1 is invariant under infinitesimal coordinate transformations while k2 is vulner-

able to the specific choice of gauge. In terms of k1,2, and their canonical conjugates τ1,2, the the

odd-parity Hamiltonian [Eq. (8.6)] can now be expressed as

HT =
1

λ+ 1

∫
dr

{
τ2
1 +

r2f

λ

[
τ2 −

1
2
τ1,r −

1
r
τ1

]}
+ 2λ(λ+ 1)

∫
dr

f

r2
k2

1 − 2
∫
dr h0τ2 (8.26)

with

λ ≡ (l − 1)(l + 2)/2. (8.27)

Variation of the shift function h0 in the Hamiltonian gives the odd-parity momentum constraint

equation

τ2 = 0. (8.28)

Equations of motion for the dynamical variables take the form [30]

∂k1

∂t
=
δHT

δτ1
=

τ1
2(λ+ 1)

+

r2

[
f

(
τ2 −

(r2τ1),r
2r2

)]
,r

2λ(λ+ 1)
, (8.29a)

∂τ1
∂t

=− δHT

δk1
= −4λ(λ+ 1)

r2
fk1, (8.29b)

∂k2

∂t
=
δHT

δτ2
=

fr2

λ(λ+ 1)

[
τ2 −

(r2τ1),r
2r2

]
− 2h0, (8.29c)

∂τ2
∂t

=− δHT

δk2
= 0. (8.29d)
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Here τ2 = 0 is constraint; (k1, τ1) is the gauge-invariant sector, which evolves independently (once

setting τ2 = 0). The gauge is fixed by choosing h0, which correspondingly fixes the evolution of k2.

(Note that τ2 is constraint and should vanish.) As an example, the Regge-Wheeler gauge is obtained

by imposing that k2 = 0, which requires setting

h0 =
f(r2τ1),r
4λ(λ+ 1)

. (8.30)

These odd-parity perturbation equations determine 2 out of the 6 spatial 3-metric components,

and 3 out of the total 10 spacetime 4-metric components.

The Regge-Wheeler function frequently used in the literature to describe odd-parity perturba-

tions [27–29, 41–43] is related to k1 by

ψRW = fk1/r : (8.31)

ψRW is invariant under infinitesimal gauge transformations.

8.2.5 Even parity (l ≥ 2)

For even parity, there are 4 spatial-metric perturbations, K,G,H2, h
∗
1 [Eq. (8.18)], 1 lapse pertur-

bation H0 and 2 shift perturbations H1, h
∗
0 [Eq. (8.20)]. Moncrief found it convenient to recombine

K,G,H2, h
∗
1 and define a new set of variables q1, q2, q3, q4. Like k1 for odd parity perturbation,

q1 is invariant under the infinitesimal gauge transformation whereas q2, q3, q4 are gauge dependent.

The conversion between K,G,H2, h
∗
1 and q1, q2, q3, q4 can be found in [30] and Appendix 8.B of

this paper. In terms of the new coordinates and their conjugate momenta, π1,2,3,4, the even parity

Hamiltonian is given by:

HT =
∫
dr

{
−2
r
fπ4

[
r(π1 − π2,r) +

(
1− M

fr

)
π2

]}
+

∫
dr

{
f

2r2λ

[
π2

3

λ+ 1
+ 2π3 [rΛπ1 + π2(rΛ),r]

]}
+

∫
dr

{
λ+ 1

2λ
fΛ2π2

1 +
π2

4

4(λ+ 1)
− λ

rΛ2
q1q2

}
+

∫
dr

{
λf

2(λ+ 1)Λ2
(q2 − q1,r)2 +

2λ2

r2Λ3
q2
1

}
−

∫
dr

{
Mq2(q2 − q1,r)

2(λ+ 1)Λr
+
Mq2

2r
(rq3,r −

2
r
q4)
}

+
∫
dr

{
H0q2

2
+H1π4 + h∗0

[
2π3

r2
− (r2π4),r

r2

]}
. (8.32)

Here Λ is defined as

Λ ≡ 2
(
λ+

3M
r

)
= (l − 1)(l + 2) +

6M
r

. (8.33)
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From this Hamiltonian, it is straightforward to obtain the following canonical equations of motion:

q̇1 =− 2fπ4 +
fΛ
λr
π3 +

λ+ 1
λ

fΛ2π1, (8.34a)

π̇1 =
λq2

rΛ2
− 4λ2

r2Λ3
q1 −

[
λf

(λ+ 1)Λ2
(q2 − q1,r)

]
,r

,

+
[

Mq2

2(λ+ 1)Λr

]
,r

, (8.34b)

q̇2 =
2f
r2
π3 −

2
r

(
f − M

r

)
π4 − 2(fπ4),r, (8.34c)

π̇2 =
λ

rΛ2
q1 −

λf

(λ+ 1)Λ2
(q2 − q1,r)−

M

2r

(
rq3,r −

2
r
q4

)
,

+
M(2q2 − q1,r)

2(λ+ 1)Λr
− H0

2
, (8.34d)

q̇3 =
fπ3

r2λ(λ+ 1)
+

f

r2λ
[rΛπ1 + 2λπ2] +

2h∗0
r2

, (8.34e)

π̇3 =− M

2
q2,r, (8.34f)

q̇4 =
π4

2(λ+ 1)
+H1 + r2

(
h∗0
r2

)
,r

,

−2f(π1 − π2,r)−
2
r

(
f − M

r

)
π2, (8.34g)

π̇4 =− M

r2
q2. (8.34h)

By varying the lapse perturbation H0 and the shift perturbations H1, h
∗
0, it is straightforward to

obtain the Hamiltonian constraint equation

q2 = 0 (8.35)

as well as the even-parity momentum constraint equations

π3 = π4 = 0. (8.36)

Note that (q1, τ1) is the even-parity gauge-invariant sectors; (π2, q3, q4) are the gauge-dependent

sector, which are determined after the lapse H0 and shifts (H1, h
∗) are fixed.

For example, the even-parity Regge-Wheeler gauge is described by q3 = q4 = π2 = 0, which

requires initially setting q3 = q4 = π2 = 0, and keeping it true by imposing q̇3 = q̇4 = π̇2 = 0

through setting the appropriate h∗0 [Eq. (8.34e)], H1 [Eq. (8.34g)] and H0 [Eq. (8.34d)]. These even-

parity perturbation equations determine the other 4 of the 6 spatial 3-metric perturbations, and the

other 7 out of the the 10 spacetime 4-metric perturbations.

Gauge invariant quantity ψZM is commonly [27–29, 41–43] used for even parity perturbation and
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it is defined by q1/(λ+ 1)/Λ or equivalently [42]

ψZM =
r

λ+ 1

[
K +

2f
Λ

(
H2 − r

∂K

∂r

)]
+

2f
Λ

[
r2∂G

∂r
− 2h∗1

]
. (8.37)

8.2.6 Monopole and dipole perturbations

For l ≤ 1, the evolution of 3-metric perturbations can all be fixed by the constraint equations plus

arbitrary choices of lapse and shift functions. More specifically:

For l = 0, there are only even-parity perturbations. We have lapse perturbation H0 and shift

perturbation H1, plus metric perturbations H2 and K — while lapse perturbation h0∗ and 3-metric

perturbations G and h∗1 all vanish due to the non-existence of the vector and tensor harmonics

Z and V . However, there still exists one Hamiltonian constraint and one momentum constraint.

We can transform (H2,K) into two new canonical coordinates, one of them the Hamiltonian con-

straint, the other the canonical conjugate of the momentum constraint — leaving no gauge-invariant

perturbation fields.

For l = 1, even-parity perturbation, we have lapse perturbation H0, shift perturbations H1 and

h∗0, plus three non-vanishing 3-metric perturbation fields, namely H2, K and h∗1. However, there

exists 1 Hamiltonian constraint and two momentum constraints, and we can transform (H2,K, h
∗
1)

into the Hamiltonian constraint and the canonical conjugate of the two momentum constraints, also

leaving no gauge-invariant perturbation fields.

For l = 1, odd-parity perturbation, we shift perturbation h0, and one metric perturbation field,

which is h1. We also have one momentum constraint, therefore a spatial operation on h1 will

become the canonical conjugate of the momentum constraint, meaning we have no gauge-invariant

perturbation field as well.

8.3 3+1 approach with point mass source

In this paper, we are interested in the joint evolution metric perturbations and the motion of a point

particle. In this section, we will augment Moncrief’s formalism with a point particle.

8.3.1 3+1 Formulation

Since Eq. (8.1) is the action for free metric perturbations alone, we need to add the action for the

point particle. Using the prescriptions in [48], we can write:

Jm = m

∫
dτ

=
∫
d4x δ(3)(r−Q(t))

[
Pi
∂xi

∂t
−N

(
gijPiPj +m2

)1/2]



219

+
[
N iPiδ

(3)(r−Q(t))
]
. (8.38)

Here, regarding quantities of space-time geometry, we have gij = γij + hij , the total perturbed

spatial metric; N = N + N ′ the total lapse; and Ni = N ′i the total shift (recall that Ni = 0).

Regarding the particle, Pj (j=1,2,3) are components of the 3-momentum, and Q(t) represents the

spatial coordinates of the particle, which are, more specifically, (R(t),Θ(t),Φ(t)). The δ function is

more explicitly written as

δ(3)(r−Q(t)) = δ(r −R(t))δ(θ −Θ(t))δ(φ− Φ(t)). (8.39)

From this action, we can read off the part of the Hamiltonian that involves the point particle,

which includes the Hamiltonian of the point particle alone,

Hm(Qk, Pk) = N(Qk)
√
γij(Qk)PiPj +m2, (8.40)

which describes the geodesic motion of the particle, plus the interaction Hamiltonian that couples

the particle and metric perturbations,

Hint(Qk, Pk, N ′, N ′j , hij)

=N ′
√
γijPiPj +m2 − N

2
hijγ

ilγjmPlPm√
γijPiPj +m2

.

−N ′jP j (8.41)

Here we have suppressed N ′, N , N ′j , γ
ij and hij ’s dependence on Qk, for simplicity — but the reader

is reminded that Qk enters this interaction Hamiltonian through these quantities’ dependence on

Qk. Note that Hint is linear in the metric perturbations N ′, N ′j and hij .

The total Hamiltonian for the combined system of point particle plus metric perturbations is

Htot =
∑
lm

(H lm
oddT +H lm

evenT) + 16πHm + 16πHint. (8.42)

The 16π is actually the 2κ = 2(8πG) factor in the Einstein-Hilbert action and we are taking the

Newton’s constant G to be unity. We have now enlarged the set of canonical coordinates and

momenta to include (Qk, Pk).

The field-alone term in Htot describes the free propagation of metric perturbations around

Schwarzschild, the Hm term describes the geodesic motion of the point particle. It is Hint that

couples the fields and the particle together: it allows the particle’s motion to drive field perturba-

tions, and field perturbations to act back onto the particle — with action and back-action described
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in a self-consistent way.

Due to spherical symmetry of the background spacetime, we can assume that the point particle

is confined within the equatorial plane, with Θ = π/2, Pθ = 0 — and we only need to deal with

R(t),Φ(t). In addition, because Hint is linear in metric perturbations, we can divide it into the sum

of an odd-parity component and an even-parity component — each component only involving one

type of metric perturbations.

8.3.2 Odd parity (l ≥ 2)

Odd-Parity metric perturbations are described in terms of odd-parity vector and tensor harmonics

X lm
A ,W lm

AB in Eq. (8.18) and Eq. (8.20). For later convenience, we denote by Π and Ξ,

Π = W lm
ABP

APB , Ξ = X lm
A PA, (8.43)

the contractions of these harmonics with angular components of momentum. Plugging odd-parity

perturbations in Eqs. (8.18) and (8.20) into Eq. (8.41), and taking Eq. (8.43) into account, we obtain,

for each (l,m),

Hodd
int

=

[
−h0Ξ−

√
f

2
2h1P

rΞ + h2Π√
γijP iP j +m2

]∣∣∣∣∣
r=R(t),Ω=Ω̃(t)

,

=
∫
dr

∫
d2Ω δ(r −R(t))δ(2)(Ω− Ω̃(t))[

−h0Ξ−
√
f

2
2(k1 − 1

2k2,r + 1
rk2)P rΞ + k2Π√

γijP iP j +m2

]
. (8.44)

Here we have used Ω to represent (θ, φ), and Ω̃(t) to represent (Θ(t),Φ(t)).

For any expression inside the definition of Hodd
int , for example γij , it always appears along with

a δ(r − R(t)) function; therefore being a function of (r, θ, φ) instead of (R,Θ,Φ) does not seem to

make a difference. However, because derivatives of fields are involved, we will encounter derivatives

of δ functions in further calculations, and for a generic function G(r)

G(r)δ′(r −R(t)) 6= G(R(t))δ′(r −R(t)) . (8.45)

This does not indicate an ambiguity in the equations of motion that we are ultimately going to

obtain, but creates intermediate steps that may differ. This requires us to be careful with our

conventions. Here we shall use the convention that all terms in the integrand on the right-hand side

of Eq. (8.44), apart from the δ functions, only depend explicitly on (r, θ, φ), not on (R,Θ,Φ).
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Taking the above convention for Eq. (8.44), the new constraint equation is

τ2 = −1
2

Ξ δ(r −R(t)). (8.46)

The right-hand side is singular at the location of the point particle but zero elsewhere. Because

Hint only contains metric perturbations, not their conjugate momenta, only the evolution of the

momenta are affected. The evolution equations for τ1 gains an additional term of:

∂τ1
∂t

∣∣∣∣
add

= −16π
δHint

δk1
= 16π Ξ

P r

P 0
δ(r −R(t)). (8.47)

Similarly for τ2, the additional term is

∂τ2
∂t

∣∣∣∣
add

= −16π
δHint

δk2
=

16π
P 0

(
Π
2
− P r

r
Ξ
)
δ(r −R(t))

+
[

8πP r

P 0
Ξ δ(r −R(t))

]
,r

,

=
16π
P 0

Π
2
δ(r −R(t))− 1

r

∂τ1
∂t

∣∣∣∣
add

− 1
2

[
∂τ1
∂t

]
add,r

. (8.48)

It is easy to check that, up to linear order (i.e., inserting background geodesic equations of motion

for the particle) this equation is consistent with the new constraint equation Eq (8.46). Combining

the evolution equations for k1, k2, τ1, τ2 and noting ψRW = fk1/r, we can derive the following master

equation for ψRW [
− ∂2

∂t2
+

∂2

∂r∗2
− V lodd(r)

]
ψRW(r, t) = Sodd(r, t) , (8.49)

where we have defined

r∗ = r + 2M log (r/2M − 1) , (8.50)

and

V lodd =
2f
r2

(
λ+ 1− 3M

r

)
. (8.51)

The source term is

Sodd =
4πf

(λ+ 1)r

[
r2

λ

[
fΠδ(r −R(t))

P 0

]
,r

− 2P rΞδ(r −R(t))
P 0

]
. (8.52)

Here the subscript “odd” means odd parity. This source term agrees with those derived in literature

[11, 27, 28] as expected.

On the other hand, Hodd
int introduces the following additional terms to the rate of change of the
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point particle’s coordinates:

dR

dt

∣∣∣∣
odd

= 16π
∂Hodd

int

∂Pr
=− 16πh1

f Ξ
P 0

[
1− (Pr)2

(P 0)2

]
+ 8π

h2ΠPr
(P 0)3

(8.53a)

dΦ
dt

∣∣∣∣
odd

= 16π
∂Hodd

int

∂Pφ
,=− 16π

[
h0X

φ − Pφ[2h1P
rΞ + h2Π]

2fr2 sin θ(P 0)3

]
−16π
P 0

[
h1P

rXφ + h2W
φφPφ

]
, (8.53b)

where components of XA,WAB can be found in Appendix 8.A. Similarly, the rate of change of the

point particle’s momenta also gains the following additional terms:

dPr
dt

∣∣∣∣
odd

= −16π
∂Hodd

int

∂R
=16π

[
h0,rΞ +

2h1,rP
rΞ + h2,rΠ
2P 0

]
+16π [2h1P

rΞ + h2Π]
[

1
P 0

]
,r

, (8.54a)

dPφ
dt

∣∣∣∣
odd

= −16π
∂Hodd

int

∂Φ
=16π h0PφX

φ
,φ

+16π

[
2h1P

rPφX
φ
,φ + h2W

φφ
,φ (Pφ)2

2P 0

]
. (8.54b)

Note that such a term exists for each (l,m) with l ≥ 2.

From the above equations of motion it is clear that the effect of odd-parity perturbations on the

test particle’s motion is determined once we know h0, h1, h2 or h0, k1, k2 and their spatial derivatives

at r = R(t); here h0 and k2 are related with the actual gauge choice and k1 is gauge invariant. If

we track back to the wave equation for ψRW or k1, it is easy to see that k1 must be discontinuous at

r = R(t) in order to obtain a source function δ′(r−R(t)). On the other hand, the equation of motion

for dPr/dt|odd contains a term proportional to k1,r. That means that this equation of motion is

singular because it contains δ(r − R(t)). This means the full metric perturbation is singular at the

point particle’s location, and directly applying full metric perturbation to the particle’s equations

of motion will introduce divergence. One has to apply a regularization scheme before one can use

these equations for computation. This scheme must regularize gauge-invariant quantity k1 as well as

gauge-dependent terms h2, h0, since they all enter the particle’s equation of motion. We will discuss

possible regularization methods in Sec. 11.5.

8.3.3 Even parity (l ≥ 2)

Even-parity metric perturbations are described in terms of the scalar harmonics Y lm, vector har-

monics ZlmA and tensor harmonics U lmAB and V lmAB [see Eqs. (8.18) and (8.20)]. For later convenience,
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we define the following quantities,

Π1 = U lmABP
APB , Π2 = V lmABP

APB , Ξ′ = ZlmA PA , (8.55)

which are contractions of the harmonics with angular components of the momentum. Even-parity

metric perturbation fields include:

N ′ =− 1
2
f1/2H0Y

lm, N ′r = H1Y
lm, N ′A = h∗0Z

lm
A , (8.56a)

hlmrr =
H2

f
Y lm, hlmrA = h∗1Z

lm
A , hlmAB = r2(KU lmAB +GV lmAB) . (8.56b)

The (l,m) component of the even-parity Hamiltonian is

Heven
int =

∫
dr

∫
d2Ω δ(r −R(t))δ(2)(Ω− Ω̃(t))[
− h∗0Ξ′ −H1Y

lmP r +H0Y
lmP0/2

− f−1(P r)2H2Y
lm + 2h∗1P

rΞ′

2P 0

− +r2(KΠ1 +GΠ2)
2P 0

]
. (8.57)

Here again we have used Ω to represent (θ, φ), and Ω̃(t) to represent (Θ(t),Φ(t)), and have defined

P0 = −fP 0. In addition, h∗0, H1 and H0 are the lapse and shift perturbations, they serve as Lagrange

multipliers in the Hamiltonian; K, H2, h∗1 and G are 3-metric perturbations, they couple with the

point-particle dynamical variables at its location, sourcing the interaction between the field and the

test mass. The relation between K, H2, h∗1, G and Moncrief’s q1, q2, q3, q4 are shown in Appendix

8.B. We recall the subtlety involving the δ function and its derivative mentioned below Eq. (8.44),

and note that all terms in the integrand of Eq. (8.57), with the exception of the δ function, only

depend explicitly on (r, θ, φ), but not on (R,Θ,Φ).

By varying h∗0, H1, H0, we can obtain the new constraint equations:

q2 =− 16πP0Y
lmδ(r −R(t)) , (8.58a)

π4 =16πY lmP rδ(r −R(t)) , (8.58b)

π3 =8πr2Ξ′δ(r −R(t)) + 8πY lm[r2P rδ(r −R(t))],r. (8.58c)

This means q2, π3 and π4 are all divergent at the test particle’s location and vanish everywhere else.

From Heven
int [Eq. (8.57)], the evolution equation for π1 gains the additional term of

∂π1

∂t

∣∣∣∣
add

= −λ+ 1
rf

∂π2

∂t

∣∣∣∣
add

+
∂π2

∂t

∣∣∣∣
add,r
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+
4π(P r)2Ylm

P 0f2
δ(r −R(t)) (8.59)

and the evolution equation of π2 gains

∂π2

∂t

∣∣∣∣
add

=
4π[(P r)2YlmΛ + 2(P 0)2r2f2Π]

P 0f(1 + λ)Λ
δ(r −R(t))

+
16πf

(λ+ 1)Λ

[
r(P r)2Ylm

2fP 0
δ(r −R(t))

]′
. (8.60)

Similar to the odd-parity case, the evolution equations for π3, π4 (up to linear order) are consistent

with the constraint equations (8.58).

Combing the evolution equation for q1, q2, π1, π2 and the constraint equations, we will find that

the gauge-invariant field ψZM satisfies a wave equation with source term coming from the point

particle: [
− ∂2

∂t2
+

∂2

∂r∗2
− V leven(r)

]
ψZM(r, t) = Seven(r, t) , (8.61)

with the potential V leven given by

V leven =
4f
r2Λ2

[
2λ2

(
λ+ 1 +

3M
r

)
+

18M2

r2

(
λ+

M

r

)]
, (8.62)

and the source term Se given by

Se =
2

(λ+ 1)Λ

{
r2f(f2 ∂

∂r
Qtt − ∂

∂r
Qrr) + r(Λ/2− f)Qrr

− 2f2

rΛ
[λ(λ− 1)r2 + (4λ− 9)Mr + 15M2]Qtt

}
+

2rf2

(λ+ 1)Λ
Q[ +

4f
Λ
Qr − f

r
Q] . (8.63)

Here the Qs are master functions describing spherical-harmonic decompositions of the point mass

stress energy tensor. They are defined by

Qtt = 8π
∫
T ttY lm∗dΩ =

8πP 0

r2
δ[r −R(t)]Y lm∗[Ω(t)], (8.64a)

Qrr = 8π
∫
T rrY lm∗dΩ =

8π(P r)2δ[r −R(t)]Y lm∗[Ω(t)]
r2P 0

, (8.64b)

Qr =
8πr2

λ+ 1

∫
T rAZlm∗A dΩ =

8πP rΞ′

(λ+ 1)P 0
δ[r −R(t)], (8.64c)

Q[ = 8πr2

∫
TABU lm∗AB dΩ =

8πΠ1

P 0
δ[r −R(t)], (8.64d)

Q] =
8πr4

λ(λ+ 1)

∫
TABV lm∗AB dΩ =

8πr2Π2δ[r −R(t)]
λ(λ+ 1)P 0

. (8.64e)



225

The source term in Eqs. (8.63) and (8.64) agrees with the previous derivation of Martel and Pois-

son [27, 28], and here we have adopted their notation.

In addition to the source term in the constraint equations and the field evolution equations, the

particle-field interaction Hamiltonian also generates additional terms in the particle’s equation of

motion, which causes radiation reaction. These terms can be obtained by varying the interaction

Hamiltonian with respect to point mass dynamical variables, in a similar manner as the odd parity

case, for the canonical coordinate

dR

dt

∣∣∣∣
even

= 16π
∂Hint

∂Pr

= −16π
[
H1Y

lmf +
H0Y

lmP r

2P 0
+
fPrH2Y

lm

P 0
+
fh∗1Ξ′

P 0

]
+ 16πPr

(P r)2/fH2Y
lm + 2h∗1Ξ′P r + r2(KΠ1 +GΠ2)

2(P 0)3
, (8.65a)

dΦ
dt

∣∣∣∣
even

= 16π
∂Hint

∂Pφ

= 16π
{
−h∗0Z

φ
lm −

H0Y
lmPφ

2r2P 0 sin2 θ
+

Pφ

2fr2 sin2 θ(P 0)3

[
f−1(P r)2H2Y

lm + 2h∗1P
rΞ′ + r2(KΠ1 +GΠ2)

]}
− 16π

h∗1P
rZφ + r2(KUφφPφ +GV φφPφ)

P 0
, (8.65b)

and their conjugate momentum

dPr
dt

∣∣∣∣
even

= −16π
∂Hint

∂R

= 16π
{

Ξ′
∂h∗0(R)
∂R

+ Y lmPr
∂(fH1(R))

∂R
− 1

2
Y lm

∂(H0(R)P0)
∂R

}
+ 16π

{
1

2P 0

[
(Pr)2Y lm

∂(fH2(R))
∂R

+ 2PrΞ′
∂(fh∗1(R))

∂R
+ Π1

∂(R2K(R))
∂R

+ Π2
∂(R2G(R))

∂R

]}
− 8π

(P 0)2

∂P 0

∂R

[
f−1(P r)2H2Y

lm + 2h∗1P
rΞ′ + r2(KΠ1 +GΠ2)

]
, (8.65c)

dPφ
dt

∣∣∣∣
even

= −16π
∂Hint

∂φ

= 16π
[
h∗0
∂Ξ′

∂φ
+H1P

r ∂Y
lm

∂φ
− 1

2
H0P0

∂Y lm

∂φ

]
+

8π
P 0

[
f−1(P r)2H2

∂Y lm

∂φ
+ 2h∗1P

r ∂Ξ′

∂φ
+ r2G

∂Π2

∂φ
+ r2K

∂Π1

∂φ

]
. (8.65d)

We have defined

P 0(R) =

√
(Pr)2 +

(Pφ)2

R2(1− 2M/R) sin2 θ
+

m2

1− 2M/R
. (8.66)
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This set of equations, together with the even-parity wave equation (8.61) and the odd-parity equa-

tions (8.49), (8.53a), (8.54a) and (8.54b), form a complete set of self-consistent evolution equations

for both the point particle and the metric-perturbation fields.

Similar to the odd parity case, the even parity equations of motion also have a divergence problem.

Because the wave equation (8.61) for ψZM contains a source term as singular as δ′(r − R(t)), ψZM,

or q1, must be discontinuous at the point particle’s location. According to the relation between

H2, G, h
∗
1,K and q1, q2, q3, q4 shown in Appendix 8.A, K contains a δ(r − R(t))-type term and H2

even contains a δ′(r−R(t))-type term. This means terms added to the particle’s equation of motion

are all singular at the particle’s location. As a result, one has to regularize these equations of motion

before they can be used for actual computations.

8.3.4 Monopole and dipole perturbations

Even though there are no gauge-invariant perturbations for these low-l components, metric pertur-

bations at these orders do couple to the particle. The particle’s perturbation to fields at these orders

have been solved explicitly by Detweiler and Poisson [50], while their back-action to the particle’s

canonical equations can be obtained from expressions obtained for l ≥ 2, simply removing those

terms that do not exist in these low l’s.

8.4 Regularization of test particle equation of motion

In order to obtain regular equations of motion for the point particle, we must carry out a regulariza-

tion procedure that appropriately removes the divergences from the metric perturbation fields. While

we have not been able to find a stand-alone regularization procedure in the 3+1 picture, currently

existing regularization schemes can be adapted to our formalism. In this section, we shall outline,

but not carry out, the procedure with which such a regularization could be done.

8.4.1 General Discussion

In particular, we shall discuss how the Detweiler-Whiting (DW) singular-regular decomposition [20,

21] approach could be used to regularize our canonical equations of motion.

In the DW approach, a metric perturbation field in a small but finite region around the point

particle is decomposed into the sum of a regular piece (superscript “R”) and a singular piece (su-

perscript “S”):

hµν = hRµν + hSµν . (8.67)

The singular piece hSµν corresponds to the deformed Schwarzschild solution around the small test

mass as seen by a locally free falling observer on the background spacetime — it is singular as we
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approach the location of the point particle; the regular piece hR satisfies the linearized vacuum

Einstein’s equation and is everywhere regular (although it does not satisfy the out-going boundary

condition at the null infinity and the down-going boundary condition at the future horizon). It is

shown that hSµν is the appropriate singularity to remove, and the point particle should travel along

a geodesic of the perturbed spacetime that differs from the background by hRµν .

DW has shown that hSµν can be approximated analytically in a local normal coordinate system

built around the particle — such as the one introduced by Thorne and Hartle [36] and developed to

higher orders by Zhang [44] (usually referred to as the THZ coordinate system). Another approach

towards obtaining hSµν is through the Hadamard singular Green function, as carried out by Hass

and Poisson [22] as well as Warburton et al. [24]. The computation for hSµν is carried out as an

expansion in the proper distance away from the particle — and depending on the order to which

this expansion is carried out, the corresponding hRµν will only have a finite order of smoothness.

Among components of hSµν , hStt is a lapse perturbation, hStr and hStA are shift perturbations, while

hSrr, h
S
rA, and hSAB are 3-metric perturbations. One can carry out (l,m) decompositions of these

quantities, using the appropriate harmonics, to obtain the singular pieces of our odd-parity metric-

perturbation fields (hS0 , h
S
1 , h

S
2 ) and even-parity metric-perturbation fields (HS

0 , H
S
1 , h

∗S
0 , h∗S1 , HS

2 ,K
S ,

GS). In this way, the singular metric-perturbation fields come with a choice of gauge (through the

singular pieces for lapse and shift) as well as 3-metric perturbations, around the worldline of the

point particle. The (l,m)-decomposition coefficients of the singular metric fields are also referred to

as regularization parameters.

It is anticipated that the mode-decomposed versions of these singular metric-perturbations fields

should in general be discontinuous or singular at the radial location of the particle — but it is exactly

these singularities that will cancel the ones we obtain for the full perturbations (i.e., hfull
µν ), yielding

hRµν = hfull
µν − hSµν (8.68)

which is regular.

More specifically in the 3+1 approach, we must first obtain the full metric (including lapse, shift

and 3-metric perturbations), and then subtract the singular piece — resulting in the regular piece.

A subtlety here is the choice of gauge: we obtain hfull
µν using a particular choice of lapse and shift

perturbations, and the arbitrariness of the choice suggests that the subtraction (8.68) will yield a

regular result only if the full metric and the singular metric are computed in gauges that are related

to each other through a smooth transformation in the region near the particle.

Note that the singular field is only defined in a region around the point particle — because the

normal coordinate system (e.g., the THZ coordinate system), as well as the Hadamard decomposition

of the Green function, is only valid within a distance away from the particle that is comparable to
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space-time curvature. This does not prevent us from obtaining a regularized set of equations of

motion for the point particle, because for that we will only need to obtain hRµν around the location

of the particle.

However, this has lead Vega and Detweiler (VD) [25] to develop a slight variant of the DW

regularization approach, which further simplifies the regularization procedure. VD first assumed

that we can obtain an hSµν that has a definition everywhere in the spacetime, although this definition

is physically meaningful only around the particle. They then proposed the application of a window

function W , which is very flat around the location of the particle, but decays rapidly towards the

horizon and infinity. In this way, if one defines an effective regular field, or effective field for short,

h̃Rµν ≡ hfull
µν −WhSµν , (8.69)

then the effective field h̃Rµν satisfies a wave equation with a regular source (the full source subtracted

by the result obtained by inserting h̃Sµν ≡ WhSµν into the wave equation), as well as the out-going

boundary condition at the future null infinity and the down-going boundary condition at the future

horizon.

In this paper, we shall discuss how the effective-source approach can be adapted to our 3+1

Hamiltonian formalism — in even- and odd-parity cases.

8.4.2 Odd parity

Odd parity effective fields are h̃0R, h̃1R, h̃2R, and their smoothness depends on the quality of our

approximations for h0S , h1S and h2S . We shall refer the regular field to be n-th order smooth if it

has a smooth n-th order derivative. Right now, the singular field is available for the regular field to

have 4-th order smoothness [49]. Let us first assume the order of smoothness is not an issue (e.g.,

assuming the singular piece to be available up to a rather high order), and later discuss options

when the order of smoothness is limited.

8.4.2.1 An algebraic gauge

Out of the three metric quantities, one can construct a gauge invariant quantity — the Regge-

Wheeler (RW) function and the other two degrees of freedom are fixed by one gauge choice and one

constraint equation. First consider the gauge invariant quantity, its effective regularized piece ψ̃RWR

given by

ψ̃RWR =
f

r

[
h̃1R +

1
2

(
∂h̃2R

∂r
− 2
r
h̃2R

)]
, (8.70)

while its effective singular piece ψ̃SRW(r, t) is given similarly by h̃1S , h̃2S (which are singular field

components multiplied by the window functions).
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The effective RW function satisfies the same wave equation as before [See Eq. (8.49)] but with a

new source [
− ∂2

∂t2
+

∂2

∂r∗2
− Vodd(r)

]
ψ̃RWR(r, t) = SoddR(r, t) (8.71)

where the new source SRodd is simply the effective source, given by

SoddR(r, t) = Sodd(r, t)−
[
− ∂2

∂t2
+

∂2

∂r∗2
− Vodd(r)

]
ψ̃RWS(r, t) . (8.72)

Given enough smoothness on the singular piece, a smooth enough ψ̃RWR can be obtained by solving

Eq. (8.71) and imposing the out-going and down-going boundary conditions and infinity an the

horizon. This ψ̃RWR can then be used to construct the rest of the gauge-dependent fields, imposing

the gauge condition of, for example, h̃1R = 0. We then obtain regular values for all the metric

perturbation fields, as well as their derivatives, at the location of the point particle, and will be

able to drive its motion. To carry out this computation, we will need the regular field to be 2-order

smooth.

To be more specific, we can always do the coordinate transformation similar to Eq. (8.21) to

shift h̃1R to 0. The gauge transformation function is given by

Clm,r −
2
r
Clm = −h̃1R → Clm = −r2

∫
dr
h̃1R

r2
(8.73a)

x′A = xA +
∑
lm

ClmX lm
A = xA − r2

∫
dr
h̃odd
rA

r2
. (8.73b)

After the gauge transformation, according to Eq. (8.21), the new h̃′0R, h̃
′
1R, h̃

′
2R are

h̃′1R =0, (8.74a)

h̃′2R =h̃2R + 2r2

∫
dr
h̃1R

r2
, (8.74b)

h̃′0R =h̃0R − r2

∫
dr
∂th̃1R

r2
. (8.74c)

Suppose the original effective field h̃R is a Cn function on the test mass’s worldline, the coor-

dinate transformation must be Cn smooth (Eq. (8.73)) and the new effective field is Cn−1 smooth

(Eq. (8.74)). Therefore h̃1R = 0 is also a viable gauge for evolution because it can be smoothly trans-

formed from the Lorenz gauge. For n ≥ 2 the spatial derivative of the metric components would

still be continuous. By imposing the h̃1R = 0 algebraic gauge condition, h̃2R can be immediately

obtained by solving
∂h̃2R

∂r
− 2
r
h̃2R =

2r
f
ψ̃RWR . (8.75)

As τ2 is fixed by the constraint equation Eq. (8.46) and τ1 can be obtained by solving Eq. (8.84),
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it is then straightforward to obtain h̃0R through Eq. (8.29)

h̃0R = −h̃0S −
1
2
∂(h̃2R + h̃2S)

∂t
+

fr2

2λ(λ+ 1)

[
τ2 −

1
2r2

∂(r2τ1)
∂r

]
. (8.76)

Compared to the Lorenz gauge condition (in the following section), computing metric perturba-

tions in this algebraic gauge is relatively easier although the effective fields are one order worse in

smoothness.

8.4.2.2 Fixing Lorenz gauge

Another way to ensure the smoothness of the regular field is to resort to the known conclusion that

if we keep the full field in the Lorenz gauge, the existing n = 1 singular field should be sufficient.

This has been demonstrated by Refs. [15, 21, 37].

The Lorenz gauge condition,

Oµh̄µν = 0 (8.77)

where h̄µν is the trace reversed metric perturbation h̄µν = hµν − 1/2 gµνhαβgαβ , converts into

r
∂h0

∂t
+ 2f

(
M

r
− 1
)
h1 − f2r

∂h1

∂r
+ λfh2 = 0 (8.78)

for the (l,m) odd-parity perturbation fields. As we break this into singular and regular pieces, we

obtain

r
∂h̃0R

∂t
+ 2f

(
M

r
− 1
)
h̃1R − f2r

∂h̃1R

∂r
+ λfh̃2R = A (8.79)

for the effective regular field components, where A is given by

A = −r ∂h̃0S

∂t
− 2f

(
M

r
− 1
)
h̃1S + f2r

∂h̃1S

∂r
− λfh̃2S . (8.80)

Combining Eqs. (8.70), (8.79) and (8.29), we have a set of first-order differential equations for h̃0R

and h̃2R

∂t

 h̃0R

h̃2R

 =

 M11 M12

M21 M21

 h̃0R

h̃2R

+

 N1

N2

 (8.81)

with

M11 =M22 = 0 (8.82a)

M12 =− λf

r
+
[
f2 ∂

∂r
− 2f

r

(
M

r
− 1
)][

1
r
− ∂

2∂r

]
(8.82b)

M21 =− 2, (8.82c)
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and

N1 =
A

r
+
[
f2 ∂

∂r
− 2f

r

(
M

r
− 1
)]

k̃1R, (8.83a)

N2 =
fr2

λ(λ+ 1)

(
τ2 −

1
2r2

∂(r2τ1)
∂r

)
. (8.83b)

Here τ2 is fixed by the constraint equation Eq. (8.46) and τ1 can be obtained by solving Eq. (8.29)

∂(k̃1R + k̃1S)
∂t

=
τ1

2(λ+ 1)
+

r2

2λ(λ+ 1)
∂

∂r

[
f(τ2 −

1
2r2

∂(r2τ1)
∂r

)
]
. (8.84)

At the initial time slice t = 0, we can impose the initial gauge condition that h̃0R(t = 0) =

h̃2R(t = 0) = 0 and Eq. (8.81) determines the gauge condition evolution later on. Given h̃0R, h̃2R,

Eq. (8.70) determines the value for h̃1R and therefore we can obtain the full set of regularized

odd-parity fields.

8.4.3 Even parity

For even parity, we will follow similar procedures to the odd-parity case. Here we are dealing with

seven effective field quantities: K̃R, G̃R, H̃2R, H̃1R, H̃0R, h̃
∗
1R, h̃

∗
0R, compared to three field quantities

in the odd-parity case. Out of these seven quantities, one can construct one gauge invariant pertur-

bation quantity – Zerilli-Moncrief quantity; and the other six degrees of freedom are fixed by three

gauge conditions and three constraint equations. The regular piece of the Zerilli-Moncrief function

is given by

ψ̃ZMR =
r

λ+ 1

[
K̃R +

2f
Λ

(
H̃2R − r

∂K̃R

∂r

)]

+
2f
Λ

(
r2∂G̃R
∂r

− 2h̃1R

)
. (8.85)

It satisfies the following wave equation

[
− ∂2

∂t2
+

∂2

∂r∗2
− Veven(r)

]
ψ̃ZMR(r, t) = SeR(r, t) (8.86)

with the effective source term SeR given by

SeR(r, t) = Se(r, t)−
[
− ∂2

∂t2
+

∂2

∂r∗2
− Veven(r)

]
ψ̃ZMS(r, t) . (8.87)
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With the outgoing wave boundary condition at spatial infinity and black hole horizon, one can solve

the wave equation and obtain the numerical value for ψ̃ZMR or q̃1R. On the other hand, the effective

field q̃2R is fixed by the constraint equation

q̃2R = q2 − q̃2S = −16πP0Y
lmδ(r −R(t))− q̃2S . (8.88)

Similar to the odd parity case, if the quality of the singular field is high enough, we can simply set

the additional lapse H̃0R and shifts (H̃1R, h̃
∗
0R) to zero, or to use an algebraic gauge for the gauge-

dependent fields. Also similar to the odd parity, one way to limit our requirement for smoothness is

to apply the Lorenz gauge condition Eq. (8.77), similar to what we did for the odd-parity case. In

this case these Lorenz gauge conditions are given by

0 = (λ+ 1)
h∗0
r2

+
(
M

r
− 1
)
H1

r
− f

2
∂H1

∂r

+
1
4
∂(H0 +H2 + 2K)

∂t
, (8.89a)

0 =
M

r
H0 − 2(λ+ 1)

fh∗1
r

+
(

2− 3M
r

)
H2 − 2fK

+
1
2
rf
∂(H0 +H2 − 2K)

∂r
− r ∂H1

∂t
, (8.89b)

0 = f

[(
M

r
− 1
)
h∗1 +

(
λ

2
G+

H2 −H0

4

)
r

]
+
rf2

2
∂h∗1
∂r

− r

2
∂h∗0
∂t

. (8.89c)

Combing the above equations with Appendix 8.A, Eq. (8.34) as well as the constraint Eq.(8.58), one

can write down the evolution equation for G̃R, h̃∗1R, π2, H̃1R, h̃
∗
0R and a combination of effective field

functions IR = H̃0R + H̃2R + 2K̃R. We also correspondingly define IS = H̃0S + H̃2S + 2K̃S .

∂t



G̃R

h̃∗1R

π2

IR

H̃1R

h̃∗0R


= M′



G̃R

h̃∗1R

π2

IR

H̃1R

h̃∗0R


+ N′ (8.90)

Non-zero components of the matrix M′ in Eq. (8.90) are given by

M ′13 =
2f
r2
, M ′16 =

2
r2

; (8.91a)

M ′23 = 2f∂r −
2
r

(
f − M

r

)
, M ′25 = 1, M ′26 = ∂r −

2
r

; (8.91b)
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M ′31 = −r
2

2
f∂2

r , M ′32 =
f

r
(2− r∂r), M ′34 = −1

2
; (8.91c)

M ′45 = −4
(
M

r2
− 1
r

)
+ 2f∂r, M ′46 = −4(λ+ 1)

r2
r; (8.91d)

M ′51 =
M

r2
+
f

2
∂r, M ′52 = −4Mf

r
∂r,

M ′54 = −2f
r3

(4M + r + λr); (8.91e)

M ′61 =
λf

r
− (3− 5M/r)f∂r − rf2∂2

r , M ′62 = 3f2∂r,

M ′64 = − f

2r
. (8.91f)

Those of N′ are given by

N ′1 =
fπ3

r2λ(λ+ 1)
+
fΛπ1

rλ
+

2h̃∗0S
r2
− ∂G̃S

∂t
, (8.92a)

N ′2 =
π4

2(λ+ 1)
− 2fπ1 + H̃1S + r2

(
h̃∗0S
r2

)
,r

− ∂h̃∗1S
∂t

, (8.92b)

N ′3 =
λ

rΛ2
q1 −

λf

(λ+ 1)Λ2
(q2 − q1,r)−

M

2r
(r
∂G̃S
∂r
− 2
r
h̃∗1S)

+
M(2q2 − q1,r)

2(λ+ 1)Λr
− H̃0S

2
+

4π
P 0

(P r)2Y lm

f(λ+ 1)
δ(r −R(t))

+
8πf

Λ(λ+ 1)

[
(P r)2Y lm

fP 0
δ(r −R(t))

]
r

− 8π
P 0

r2fΠ1

(λ+ 1)Λ
δ(r −R(t)) +

1
4r(λ+ 1)Λ

{
6(λ+ 1)q̃1R

+ [12M − r(4 + Λ)]q̃2R + 2(r − 6M)q̃1R,r

}
+

1
4(λ+ 1)Λ

[(Λ− 2λ)q̃1R,r + 2rf(q̃2R,r − q̃1R,rr)] , (8.92c)

N ′4 = −4(λ+ 1)
h̃∗0S
r2
− 4

(
M

r
− 1
)
H̃1S

r
+ 2f

∂H̃1S

∂r
− ∂IS

∂t
(8.92d)

N ′5 =
M

r2
H̃0S − 2(λ+ 1)

fh̃∗1S
r2

+
(

2
r
− 3M

r2

)
H̃2S −

2f
r
K̃S

+
2(M − r)(1 + λ)q̃1R + rf(r(2 + Λ)− 2M)(q̃2R − q̃1R,r)

r3(1 + λ)Λ

+
1
2
f
∂(H̃0S + H̃2S − K̃S)

∂r
− ∂H̃1S

∂t
, (8.92e)

N ′6 =
2f
r

[(
M

r
− 1
)
h̃∗1S +

(
λ

2
G̃S +

H̃2S − H̃0S

4

)
r

]

+ f2 ∂h̃
∗
1S

∂r
− ∂h̃∗0S

∂t
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+ f

{
q̃2R − q̃1R,r

2(λ+ 1)

+
(

1 + r
∂

∂r

)[
q̃1R

rΛ
− f

(λ+ 1)Λ

(
q̃2R −

∂q̃1R

∂r

)]}
. (8.92f)

We can pick the initial condition that G̃R = h̃∗1R = H̃1R = h̃∗0R = IR = π2 = 0. Eq. (8.90)

determines their evolution later on. Once G̃R and h̃∗1R are known, K̃R and H̃2R can be obtained

using Eq. (8.98). H̃1R is just IR − H̃2R − 2K̃R and then all effective fields for even parity are

obtained following the above procedure. In reality, one may let the test particle freely evolve for a

few cycles before turning on the radiation reaction in order for the initial junk radiation to go away.

Another subtlety here is although G̃R, h̃
∗
1R, ĨR, H̃1R, h̃

∗
0R are all regular functions, π2 may actually

be divergent at r = R(t). However, as long as the particle trajectory does not hit the grid point

(which is the generic case and can be guaranteed by using some numerical algorithms), Eq. (8.90)

can still be used for harmonic gauge evolution.

8.4.4 Monopole and dipole perturbations

Although there is no wave equation in the monopole and dipole cases, regularization does involve

these orders. We need to carry out the steps described in the above, simply ignoring the step of

solving the wave equation. This is discussed by Detweiler and Poisson [50], but unfortunately there

is no known unique way to remove the singular piece of contribution from the l = 0, 1 modes. We

will leave this for future investigation.

8.5 Conclusions and discussions

In this article we have taken a 3 + 1 Hamiltonian approach toward the motion of a point particle

around a Schwarzschild black hole. For the metric perturbation fields, we have simply adopted

Moncrief’s perturbative Hamiltonian (quadratic in these fields), and his canonical transformation to

a new set of canonical coordinates and momenta which are either the Hamiltonian and momentum

constraints themselves, their canonical conjugates, or gauge-invariant (see Sec. 8.2.2). For the point

particle, we have inserted its own Hamiltonian plus an interaction Hamiltonian, with the former de-

scribing geodesic motion and the latter describing both (i) the particle sourcing metric perturbations

and (ii) the metric perturbations acting back onto the particle. We have obtained these equations

of motion explicitly — decomposed into (l,m) components (l ≥ 2) and even and odd parities. For

(i), the equations we obtain agree with the previous literature, obtaining wave equations for gauge-

invariant functions that are sourced by the particle. In this way, we have obtained self-consistent

evolution equations for both the particle and the metric-perturbation fields. In principle, depending
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on the lapse and shift functions we choose, these self-consistent equations can be written for any

gauge. The field equations we have will be in 1+1 (t and r) dimensions, and the gauge-invariant

metric-perturbation fields are also decoupled from the rest of the fields.

As can be anticipated, this set of equations are singular due to the use of a point particle. While

we have not been able to find a stand-alone 3+1 approach for regularization, we have shown that

existing regularization schemes can be adopted to our scheme. The most straightforward approach

would be to use the Detweiler-Whiting’s singular-regular decomposition [21], combined with the

Vega-Detweiler effective-source approach [25]. In the case when we have a high order approximation

of the singular field, one can (i) solve the wave equation for the even- and odd-parity effective

gauge-invariant fields, and (ii) fix an algebraically simple gauge for the effective metric, obtain all

effective metric components, and calculate generalized forces acting on the particle. In this way,

we will only have evolved one wave equation for each parity and each l (and all m’s can be taken

care of simultaneously) with an effective source, and will have used these waves, plus regularized

gauge-fixing terms, to drive the motion of the particle in the self-consistent way. However, since we

have not carried out this computation explicitly, it is not known up to what level of approximation

we shall require for the singular field — although it may be substantially higher than what has been

required before due to the multiple spatial derivatives used in defining the gauge-invariant quantities.

In case the requirement for the singular field in (ii) turns out to be too high, we have proposed to

replace (ii) by (iii): choosing the Lorenz gauge for the full field, in which case it was known that the

currently available approximations for the singular field is sufficient. In this case, in addition to the

two wave equations, we require 2 odd-parity gauge-fixing equations, and 6 even-parity gauge fixing

equations. This will be equivalent to decomposing Vega-Detweiler’s and Warburton et al. [24]’s 3+1

calculations into a 1+1 form.

For l = 0, 1 metric perturbation fields do not have gauge-invariant components: a canonical

transformation exists to transform them into either the constraints or their canonical conjugates.

In this way, we only need step (ii) or (iii) in the above discussion — which we have not explicitly

carried out.
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8.A Various tensor spherical harmonics

Here we list the components of the vector and tensor harmonics X lm
A , ZlmA ,W lm

AB , U
lm
AB , V

lm
AB in terms

of scalar spherical harmonics and their partial derivatives. For the odd-parity vector harmonics X lm
A ,

we have

X lm
θ = − 1

sin θ
∂Y lm

∂φ
, X lm

φ = sin θ
∂Y lm

∂θ
. (8.93)

For the even-parity vector harmonic ZlmA :

Zlmθ =
∂Y lm

∂θ
, Zlmφ =

∂Y lm

∂φ
. (8.94)

For the identity tensor U lmAB :

U lmθθ = Y lm, U lmφφ = sin2 θY lm, U lmθφ = U lmφθ = 0 . (8.95)

For the even-parity, symmetric trace-free (STF) tensor harmonic V lmAB :

V lmθθ =
[
∂2

∂θ2
+

1
2
l(l + 1)

]
Y lm , (8.96a)

V lmφφ =
[
∂2

∂φ2
+ cos θ sin θ

∂

∂θ
+

1
2
l(l + 1) sin2 θ

]
Y lm , (8.96b)

V lmθφ = V lmφθ =
[
∂2

∂θ∂φ
− cos θ

sin θ
∂

∂φ

]
Y lm . (8.96c)

And finally for the odd-parity tensor harmonic W lm
AB :

W lm
θθ =

−1
sin θ

[
∂2

∂θ∂φ
− cos θ

sin θ
∂

∂φ

]
Y lm ,

W lm
φφ =

[
sin θ

∂2

∂θ∂φ
− cos θ

∂

∂φ

]
Y lm ,

W lm
θφ = W lm

φθ =
1
2

[
sin θ

∂2

∂θ2
− 1

sin θ
∂2

∂φ2
− cos θ

∂

∂θ

]
Y lm . (8.97)

8.B Conversion of fields for even parity perturbations

The even parity perturbation quantities K,H2, h
∗
1, G and q1, q2, q3, q4 are related to each other by

K =
q1

rΛ
− f

(λ+ 1)Λ
(q2 − q1,r)− rf

(
q3,r −

2q4

r2

)
,

H2 =
(Λ− 1)(Λ− 2− 2λ)

2frΛ
q1 +

q2 − q1,r

2(λ+ 1)
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+ r

[
q1

rΛ
− f

(λ+ 1)Λ
(q2 − q1,r)

]
,r

− f [r2q3,r − 2q4],r −
M

r2
(r2q3,r − 2q4)

=
q2 − q1,r

2(λ+ 1)
+ (rK),r −K −

1
r

(1− 3M
r

)
[
r2q3,r − 2q4

]
G = q3 ,

h∗1 = q4 . (8.98)
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Chapter 9

Quasinormal-mode spectrum of
Kerr black holes and its geometric
interpretation

There is a well-known, intuitive geometric correspondence between high-frequency quasi-

normal modes of Schwarzschild black holes and null geodesics that reside on the light-ring

(often called spherical photon orbit): the real part of the mode’s frequency relates to the

geodesic’s orbital frequency, and the imaginary part of the frequency corresponds to the

Lyapunov exponent of the orbit. For slowly rotating black holes, the quasinormal-mode’s

real frequency is a linear combination of the orbit’s precessional and orbital frequencies,

but the correspondence is otherwise unchanged. In this paper, we find a relationship be-

tween the quasinormal-mode frequencies of Kerr black holes of arbitrary (astrophysical)

spins and general spherical photon orbits, which is analogous to the relationship for slowly

rotating holes. To derive this result, we first use the WKB approximation to compute

accurate algebraic expressions for large-l quasinormal-mode frequencies. Comparing our

WKB calculation to the leading-order, geometric-optics approximation to scalar-wave

propagation in Kerr spacetime, we then draw a correspondence between the real parts of

the parameters of a quasinormal mode and the conserved quantities of spherical photon

orbits. At next-to-leading order in this comparison, we relate the imaginary parts of

the quasinormal-mode parameters to coefficients that modify the amplitude of the scalar

wave. With this correspondence, we find a geometric interpretation of two features of

the quasinormal-mode spectrum of Kerr black holes: First, for Kerr holes rotating near

the maximal rate, a large number of modes have nearly zero damping; we connect this

characteristic to the fact that a large number of spherical photon orbits approach the

horizon in this limit. Second, for black holes of any spins, the frequencies of specific sets

of modes are degenerate; we find that this feature arises when the spherical photon or-
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bits corresponding to these modes form closed (as opposed to ergodically winding) curves.

Based on paper by H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang, and

Y. Chen, Phys. Rev. D 86, 104006 (2012). Copyright 2013 by the American Physical

Society.

9.1 Introduction

Quasinormal modes (QNMs) of black-hole spacetimes are the characteristic modes of linear per-

turbations of black holes that satisfy an outgoing boundary condition at infinity and an ingoing

boundary condition at the horizon (they are the natural, resonant modes of black-hole perturba-

tions). These oscillatory and decaying modes are represented by complex characteristic frequencies

ω = ωR− iωI , which are typically indexed by three numbers, n, l, and m. The decay rate of the per-

turbation increases with the overtone number n, and l and m are multipolar indexes of the angular

eigenfunctions of the QNM.

9.1.1 Overview of quasinormal modes and their geometric interpretation

Since their discovery, numerically, in the scattering of gravitational waves in the Schwarzschild

spacetime by Vishveshwara [1], QNMs have been thoroughly studied in a wide range of spacetimes,

and they have found many applications. There are several reviews [2–6] that summarize the many

discoveries about QNMs. They describe how QNMs are defined, the many methods used to cal-

culate QNMs (e.g., estimating them from time-domain solutions [7], using shooting methods in

frequency-domain calculations [8], approximating them with inverse-potential approaches [9] and

WKB methods [10, 11], numerically solving for them with continued-fraction techniques [12, 13],

and calculating them with confluent Huen functions [14, 15]), and the ways to quantify the excitation

of QNMs (see, e.g., [16, 17]). They also discuss the prospects for detecting them in gravitational

waves using interferometric gravitational-wave detectors, such as LIGO [18] and VIRGO [19], and

for inferring astrophysical information from them (see, e.g., [20, 21] for finding the mass and spin

of black holes using QNMs, [22, 23] for quantifying the excitation of QNMs in numerical-relativity

simulations binary-black-hole mergers, and [24, 25] for testing the no-hair theorem with QNMs).

There have also been several other recent applications of QNMs. For example, Zimmerman and

Chen [26] (based on work by Mino and Brink [27]) study extensions to the usual spectrum of modes

generated in generic ringdowns. Dolan and Ottewill use eikonal methods to approximate the modal

wave function, and they use these functions to study the Green’s function and to help understand

wave propagation in the Schwarzschild spacetime [28–30].

Although QNMs are well understood and can be calculated quite precisely, it remains useful to
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develop intuitive and analytical descriptions of these modes. Analytical insights into QNMs have

come largely from two limits: the high-overtone limit (n� 1) and the eikonal limit (l � 1). In the

high-overtone limit, the frequencies of a QNM are related to the surface gravity of the horizon (see

e.g., [31, 32] for the numerical discovery for Schwarzschild black holes, [33] for an analytical proof for

Schwarzschild holes, and [34, 35] for proofs for other spherically symmetric black-hole spacetimes).

In this paper, we focus on the eikonal limit.

An important calculation in the eikonal limit (l � 1) was performed by Ferrari and Mashhoon

[9], who showed that for a Schwarzschild black hole, the QNM’s frequency (which depends only on

a multipolar index l and an overtone index n) can be written as

ω ≈ (l + 1/2)Ω− iγL(n+ 1/2) . (9.1)

The quantities Ω and γL are, respectively, the Keplerian frequency of the circular photon orbit and

the Lyapunov exponent of the orbit, the latter of which characterizes how quickly a congruence

of null geodesics on the circular photon orbit increases its cross section under infinitesimal radial

perturbations [30, 36]. Equation (9.1) hints at an intriguing physical description of QNMs, first

suggested by Goebel [37]: for modes with wavelengths much shorter than the background curvature,

the mode behaves as if it were sourced by a perturbation that orbits on and diffuses away from the

light ring on the time scale of the Lyapunov exponent. Thus, photon surfaces [38] play an important

role in the structure of a spacetime’s QNMs.

Ferrari and Mashhoon [9] also derived an analogous result to Eq. (9.1) for slowly rotating black

holes. They showed for l & m� 1, the real part of the frequency is given by

Ω ≈ ωorb +
m

l + 1/2
ωprec , (9.2)

where ωorb is now the Keplerian orbital frequency for the spherical photon orbit 1 and ωprec is

the Lense-Thiring-precession frequency of the orbit (which arises because of the slow rotation of the

black hole). The term proportional to ωprec also has a simple geometric-optics interpretation. Inertial

frames near the high-frequency wave at the light ring are dragged with respect to inertial frames at

infinity, and this frame dragging causes the perturbation’s orbit to precess about the spin axis of the

black hole with a frequency ωprec. If the orbit is inclined at an angle of sin2 θ = m2/l(l+1) (the ratio

of angular momenta L2
z/L

2 for quantized waves in flat space), then the projection of the precessional

velocity onto the orbital plane scales the precessional frequency by a factor of ∼ m/(l + 1/2).

Why the QNM frequency is multiplied by (l+1/2) is a feature that we will explain in greater detail

in this paper. Intuitively, this term arises because the in the high-frequency limit, any wavefront
1By “spherical photon orbits”, we mean those orbits that remain on a sphere of constant radius, but do not

necessarily close or explore the whole sphere.
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Figure 9.1: Low-overtone QNM spectrum of three Kerr black holes of different spins with approx-
imate degeneracies in their spectra. From left to right, we plot the three lowest-overtone QNM
excitations for (i) a/M = 0.69 in which (l,m) = (j, 2) are black traignles and (l′,m′) = (j + 1,−2)
are blue squares, where j = 3, . . . , 9; (ii) a/M = 0.47 in which (l,m) = (j, 3) are magenta dots and
(l′,m′) = (j+1,−3) are cyan cycles, where j = 3, . . . , 9; (iii) a/M = 0.35 in which (l,m) = (j, 4) are
red diamonds and (l′,m′) = (j + 1,−4) are purple stars, where j = 5, . . . , 10. For these spin param-
eters, the mode with positive values of m and ωR (a corotating mode) of index l is approximately
degenerate with the mode with m′ = −m, and ωR (a counterrotating mode) of index l′ = l + 1.

traveling on null orbits will have an integral number of oscillations in the θ and φ directions. For

the wave to be periodic and single-valued, there must be m oscillations in the φ direction. For the θ

direction, it is a Bohr-Sommerfeld quantization condition that requires l − |m|+ 1/2 oscillations in

this direction, which implies that there should be a net spatial frequency of roughly (l+ 1/2). This

increases the frequency of the radiation seen far from the hole by the same factor.

From this intuitive argument, we expect that the real part of the mode should be

ωR = L
(
ωorb +

m

L
ωprec

)
, (9.3)

where we define L = l + 1/2. In this paper, we will show that an equation of the form of Eq. (9.3)

does, in fact, describe the QNM frequencies of Kerr black holes of arbitrary astrophysical spins (and

it recovers the result of Ferrari and Mashhoon for slowly spinning black holes). As we mention in

the next part of this section, the exact details of the correspondence between QNMs and photon

orbits is richer for rapidly rotating black holes than for slowly rotating or static black holes.

9.1.2 Methods and results of this article

To derive Eq. (9.3) requires that we develop a geometric-optics interpretation of the QNMs of

Kerr black holes with arbitrary astrophysical spins. Finding the correspondence requires two steps:

first, we need to calculate the approximate frequencies using the WKB method; next, we must

articulate a connection between the mathematics of waves propagating in the Kerr spacetime in the

geometric-optics approximation and those of the WKB approximation (the first step). Finally, with

the geometric-optics description of QNMs, we can make a physical interpretation of the spectrum

(for example, the degeneracy or the lack of damping in the extremal limit).

In Sec. 9.2, we describe how we solve the eigenvalue problem that arises from separating the



244

Teukolsky equation [39] (a linear partial differential equation that describes the evolution of scalar,

vector, and gravitational perturbations of Kerr black holes) into two nontrivial linear ordinary

differential equations. The two differential equations, the radial and angular Teukolsky equations,

share two unknown constants—the frequency, ω, and the angular separation constant, Alm—that

are fixed by the boundary conditions that the ordinary differential equations must satisfy (ingoing

at the horizon and outgoing at infinity for the radial equation, and well-behaved at the poles for

the angular equation). The goal of the WKB method is to compute the frequency and separation

constant approximately.

Although there has been work by Kokkotas [40] and Iyer and Seidel [41] using WKB methods

to compute QNM frequencies of rotating black holes, their results were limited to slowly rotating

black holes, because they performed an expansion of the angular separation constant, Alm, for small,

dimensionless spin parameters, a/M , and only applied the WKB method to the radial Teukolsky

equation to solve for the frequency. In a different approach, Dolan developed a matched-expansion

formalism for Kerr black holes of arbitrary spins that can be applied to compute the frequency of

QNMs, but only for modes with l = |m| and m = 0 [29].

Therefore, it remains an outstanding problem to compute a WKB approximation to the quasi-

normal modes of Kerr black holes of large spins and for any multipolar index m. In Sec. 9.2, we solve

the joint eigenvalue problem of the radial and angular Teukolsky equations by applying a change of

variables to the angular equation that brings it into the form of a bound-state problem in quantum

mechanics. Applying the WKB method to the angular equation, we arrive at a Bohr-Sommerfeld

condition that constrains the angular constant in terms of the frequency (and the indices l and

m). Simultaneously, we can analyze the radial equation in the WKB approximation, and the two

equations together define a system of integral equations, which can be solved for the eigenvalues.

When we expand the Bohr-Sommerfeld condition in a Taylor series in terms of the numerically small

parameter, aω/l, the system of integral equations reduces to an algebraic system (which, in turn,

leads to a simpler expression for the frequency). The approximate frequency agrees very well with

the result that includes all powers of aω/l, and, in the eikonal limit, it is accurate to order 1/l for

Kerr black holes of arbitrary spins, for modes with any value of m, and for both the real and the

imaginary parts of the frequency.

To interpret the WKB calculation of Sec. 9.2 in the language of propagating waves in the

geometric-optics limit within the Kerr spacetime, we analyze waves around a Kerr black hole in

Sec. 9.3 using the geometric-optics approximation and the Hamilton-Jacobi formalism. We con-

firm that the leading-order pieces of the WKB frequencies and angular constants correspond to the

conserved quantities of the leading-order, geodesic behavior of the geometric-optics approximation

(specifically, the real part of ω, the index m, and the real part of Alm are equivalent to the energy

E , the z-component of the specific angular momentum Lz, and Carter’s constant Q plus L2
z, respec-
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tively). The specific geodesics corresponding to a QNM are, in fact, spherical photon orbits. The

next-to-leading-order WKB quantities (the imaginary parts of ω and Alm) correspond to dispersive,

wavelike corrections to the geodesic motion (they are the Lyapunov exponent and the product of

this exponent with the change in Carter’s constant with respect to the energy). Table 9.1 in Sec.

9.3 summarizes this geometric-optics correspondence.

In Sec. 9.4, we make several observations about features of the QNM spectrum of Kerr black

holes that have simple geometric interpretations. First, we find that for extremal Kerr black holes,

a significant fraction of the QNMs have a real frequency proportional to the angular frequency of

the horizon and a decay rate that rapidly falls to zero; we explain this in terms of a large number

of spherical photon orbits that collect on the horizon for extremal Kerr holes. Second, we expand

the WKB expression for the real part of the frequency as in Eq. (9.3), and we interpret these terms

as an orbital and a precessional frequency of the corresponding spherical photon orbit. These two

frequencies depend on the spin of the black hole and the value of m/L very weakly for slowly-rotating

black holes, though quite strongly when the spin of the black hole is nearly extremal. Finally, we use

the geometric-optics interpretation given by Eq. (9.3) to explain a degeneracy in the QNM spectrum

of Kerr black holes, in the eikonal limit, which also manifests itself, approximately, for small l (see

Fig. 9.1). The degeneracy occurs when the orbital and precession frequencies, ωorb and ωprec are

rationally related (i.e., ωorb/ωprec = p/q for integers p and q) for a hole of a specific spin parameter,

and when the corresponding spherical photon orbits close. By substituting this result into Eq. (9.3)

one can easily see that modes with multipolar indexes l and m become degenerate with those of

indexes l′ = l + kq and m′ = m− kp for any non-negative integer k, in the eikonal limit (note that

in Fig. 9.1, we show an approximate degeneracy for k = 1 and for three spin parameters, such that

q/p = 1/4, 1/6, and 1/8, respectively.)

9.1.3 Organization of the paper

To conclude this introduction, we briefly summarize the organization of this paper: In Sec. 9.2, we

review the Teukolsky equations, and we then describe the WKB formalism that we use to calculate

an accurate approximation to the angular eigenvalues Alm = ARlm + iAIlm and QNM frequencies

ω = ωR − iωI , in the eikonal limit L � 1 and for holes of arbitrary spins. We verify the accuracy

of our expressions in Sec. 9.2.4 by comparing the WKB frequencies to exact, numerically calculated

frequencies. In Sec. 9.3, we develop a correspondence between the WKB calculation and mathematics

of wave propagation within the Kerr spacetime in the geometric-optics limit, using the geometric-

optics approximation and the Hamilton-Jacobi formalism. At leading-order, the QNM frequencies

and angular eigenvalues correspond to the conserved quantities of motion in the Kerr spacetime for

spherical photon orbits; at next-to-leading order in the geometric-optics approximation, we connect

the the decaying behavior of the QNMs to dispersive behaviors of the waves. Finally, in Sec. 9.4,
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we interpret aspects of the QNM spectrum geometrically, such as the vanishing of the damping

rate for many modes of extremal black holes, the decomposition of the frequency into orbital and

precessional parts, and the degeneracies in the QNM frequency spectrum. Finally, in Sec. 9.5, we

conclude. We use geometrized units in which G = c = 1 and the Einstein summation convention

throughout this paper.

9.2 WKB approximation for the quasinormal-mode spectrum

of Kerr black holes

In this section, we will derive expressions for the frequencies of quasinormal modes of Kerr black

holes using the WKB approximation. We will need to compute the real and imaginary parts to an

accuracy of O(1) in terms of l� 1, which implies that we must calculate ωR to leading and next-to-

leading order and ωI to leading order. Here, we will focus on obtaining an analytic approximation

to the frequency spectrum, and we will leave the geometrical interpretation of our results until the

next section.

Before specializing our results to the angular and radial Teukolsky equations, we will review a

basic result about the WKB expansion that we will use frequently throughout this paper; a more

complete discussion of WKB methods can be found in [11]. Given a wave equation for ψ(x)

ε2
d2ψ

dx2
+ U(x)ψ = 0 , (9.4)

we will expand the solution as ψ = eS0/ε+S1+εS2+..., where the leading and next-to-leading action

variables are given by

S0 = ±i
∫ x√

U(x)dx , (9.5a)

S1 = −1
4

logU(x) . (9.5b)

The formulas above will be the basis for our analysis of the radial and angular Teukolsky equations

in the next sections.

9.2.1 The Teukolsky equations

Teukolsky showed that scalar, vector, and tensor perturbations of the Kerr spacetime all satisfy

a single master equation for scalar variables of spin weight s; moreover, the master equation can

be solved by separation of variables [39]. We will use u to denote our scalar variable, and we will

separate this scalar wave as

u(t, r, θ, φ) = e−iωteimφR(r)uθ(θ) . (9.6)
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Then, at the relevant order in l� 1, the angular equation for uθ(θ) can be written as

1
sin θ

d

dθ

[
sin θ

duθ
dθ

]
+
[
a2ω2 cos2 θ − m2

sin2 θ
+Alm

]
uθ = 0 , (9.7)

where Alm is the angular eigenvalue of this equation. Following the definition in [42], we use the

renormalized radial function given by ur = ∆s/2
√
r2 + a2R. The equation obeyed by the radial

function ur(r) is
d2ur
dr2
∗

+
K2 −∆λ0

lm

(r2 + a2)2
ur = 0 ,

d

dr∗
≡ ∆
r2 + a2

d

dr
(9.8a)

with

K = −ω(r2 + a2) + am , (9.8b)

λ0
lm = Alm + a2ω2 − 2amω , (9.8c)

∆ = r2 − 2Mr + a2 . (9.8d)

Here we have used the facts that ωR ∼ O(l), ωI ∼ O(1), m ∼ O(l) to drop terms that are of higher

orders in the expansion than those that we treat. Note that the spin s of the perturbation no longer

enters into these equations after neglecting the higher-order terms. The only subtlety here is that

the s-dependent terms 2ms cos θ/ sin2 θ and s2 cot2 θ diverge at the poles, θ = 0, π. For non-polar

modes it will be shown in the following section that the wave function asymptotes to zero near

the poles, and therefore these s dependent corrections are not important. For polar modes m = 0,

the angular wave functions do not vanish at the pole, and so it is not as clear that these terms

can be neglected as small. However, numerical evidence presented in Sec. 9.2.4 also shows that

neglecting the s dependent terms in the angular Teukolsky equation only contributes a relative error

proportional to 1/L2.

9.2.2 The angular eigenvalue problem

We will first find an expression for Alm in terms of ω, l, and m, by analyzing the angular equation

in the WKB approximation. By defining

x = log
(

tan
θ

2

)
(9.9)

and dx = dθ/ sin θ, we can write the angular equation as

d2uθ
dx2

+ V θuθ = 0 , (9.10a)
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where

V θ = a2ω2 cos2 θ sin2 θ −m2 +Alm sin2 θ . (9.10b)

When written in this form, it is clear that, aside from polar modes where m = 0, uθ must satisfy a

boundary condition that it be 0 as x → ±∞ (which corresponds to θ → 0, π). In the special case

when m = 0, uθ approaches a constant instead. Furthermore, the angular equation is now in a form

that is amenable to a WKB analysis (which will be the subject of the next part).

First, however, we outline how we will perform the calculation. Because the frequency ω =

ωR − iωI is complex, the angular eigenvalue Alm, a function of ω, must also be complex. We will

write

Alm = ARlm + iAIlm , (9.11)

to indicate the split between real and imaginary parts. We will treat a real-valued ω = ωR in the first

part of this section, and, therefore, a real-valued ARlm(ωR); we shall account for −iωI by including

it as an additional perturbation in the next part of this section.

9.2.2.1 Real part of Alm for a real-valued ω

For ωR ∈ R, we will compute the eigenvalues ARlm(ωR), of Eq. (9.10a) for standing-wave solutions

that satisfy physical boundary conditions. At the boundary, θ = 0, π (or x = ∓∞) the potential

satisfies V θ = −m2 independent of the value of ARlm; this implies that the solutions to Eq. (9.10a)

behave like decaying exponential functions at these points (i.e., the wave does not propagate). For

there to be a region where the solutions oscillate (i.e., where the wave would propagate), Alm must

be sufficiently large to make V θ > 0 in some region. Depending on the relative amplitudes of Alm

and a2ω2, V θ either has one maximum at θ = π/2 (when Alm ≥ a2ω2), or two identical maxima

at two locations symmetrically situated around θ = π/2 (when Alm < a2ω2). It turns out that the

region where the maximum of V θ > m2 is centered around π/2; therefore, all solutions fall into the

former category rather than the latter.

The length scale over which the function uθ varies is 1/
√
V θ, and the WKB approximation is valid

only if the potential V θ does not vary much at this scale. Therefore, to use the WKB approximation,

we require that ∣∣∣∣ 1√
V θ

dV θ

dθ

∣∣∣∣� |V θ| . (9.12)

This condition applies regardless of the sign of V θ. Empirically, we find this condition to hold for

V θ in Eq. (9.10a), except around points at which V θ = 0. We will refer to these as turning points,

and they can be found by solving for the zeros of the potential,

a2ω2
R cos2 θ sin2 θ −m2 +ARlm sin2 θ = 0 , (9.13)
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which are given by

sin2 θ± =
2m2

Alm + a2ω2
lm +

√
(Alm + a2ω2

lm)2 + 4m2
, (9.14)

where we only kept the physical solution and assume 0 < θ− < π/2. It is obvious to see that

θ+ = π− θ−. Using the leading and next-to-leading WKB approximation, we can write the solution

to the wave equation in the propagative region, x− < x < x+, as

uθ(x) =
a+e

i
R x
0 dx′
√
V θ(x′) + a−e

−i
R x
0 dx′
√
V θ(x′)

[V θ(x)]1/4
, (9.15)

where a± are constants that must be fixed by the boundary conditions that the solution approach

zero at θ = 0, π. For x > x+, we find

uθ(x) =
c+e
−

R x
x+

dx′
√
−V θ(x′)

[V θ(x)]1/4
, (9.16a)

and x < x−,

uθ(x) =
c−e
−

R x−
x dx′

√
−V θ(x′)

[V θ(x)]1/4
, (9.16b)

with c± also being constants set by the boundary conditions. Note that outside of the turning

points, we have only allowed the solution that decays towards x→ ±∞.

Around the turning points x±, the WKB approximation breaks down, but uθ can be solved

separately by using the fact that Vθ(x ∼ x±) ∝ x− x±. Solutions obtained in these regions can be

matched to Eqs. (9.15)–(9.16b); the matching condition leads to the Bohr-Sommerfeld quantization

condition [43] ∫ θ+

θ−

dθ

√
a2ω2

R cos2 θ − m2

sin2 θ
+ARlm = (L− |m|)π . (9.17)

Here we have defined

L ≡ l +
1
2
, (9.18)

which will be used frequently throughout this paper. The limits of the integration are the values of

θ where the integrand vanishes [the turning points of Eq. (9.14)].

If we define

µ ≡ m

L
, αR(a, µ) ≡ ARlm

L2
, ΩR(a, µ) ≡ ωR

L
, (9.19)

then all three of these quantities are O(1) in our expansion in L. From these definitions, we can

re-express the limits of integration as

sin2 θ± =
2µ2

α+ a2Ω2 +
√

(α+ a2Ω2
R)2 + 4µ2

, (9.20)
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and the integral as ∫ θ+

θ−

dθ

√
αR −

µ2

sin2 θ
+ a2Ω2 cos2 θ = (1− |µ|)π . (9.21)

For each set of quantities (αR, µ,ΩR), we can express αR as an implicit function involving elliptic

integrals; however, if we treat aΩR as a small parameter, then the first two terms in the expansion

are

αR ≈ 1− a2Ω2
R

2
(
1− µ2

)
. (9.22)

We derive and discuss this approximation in greater detail in Appendix 9.A. Higher order corrections

are on the order of (aΩR)4. For a = 0, we note that this is accurate with a relative error of O(1/L2),

because for a Schwarzschild black hole

ASchw
lm = l(l + 1)− s(s+ 1) . (9.23)

As we will confirm later in Figs. 9.2 and 9.4, Eq. (9.22) is an excellent approximation even for highly

spinning black holes.

To understand intuitively why the approximation works so well, we will focus on corotating

modes (i.e., those with positive and large m, or µ near unity), which have the highest frequencies

and, therefore, the largest possible values for aΩR. For a fixed value of (l,m), ωR is a monotonically

increasing function of a, and

ωlmR (a) ≤ ωlmR (a = M) = mΩa=1
H =

m

2M
. (9.24)

In setting this upper bound, we have used the result that the low-overtone QNM frequencies approach

mΩH for m > 0 and for extremal black holes (first discussed by Detweiler [44], and discussed further

by, e.g. [45, 46]); we have also used ΩH to denote the horizon frequency of the Kerr black hole,

ΩH =
a

2Mr+
, (9.25)

and r+ to indicate the position of the horizon [note that r+(a = M) = M ]. Normalizing Eq. (9.24)

by L, we find

aΩR ≤ (µ/2)(a/M) ≤ 1/2 . (9.26)

Even for the upper bound aΩR = 1/2, as can be checked numerically against Eq. (9.21), the relative

accuracy of Eq. (9.22) is still better than 0.2%.
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9.2.2.2 Complex Alm for a complex ω

To solve for the next-to-leading-order corrections to Alm, we must compute the imaginary part AIlm.

Because ωI � ωR, when we allow ω = ωR − iωI to be a complex number in the angular eigenvalue

problem (9.7), we can treat the term linear in ωI as a perturbation to the angular equation. Using

the perturbation theory of eigenvalue equations, we find that

AIlm = −2a2ωRωI〈cos2 θ〉 , (9.27)

where

〈cos2 θ〉 =

∫
cos2 θ|uθ|2 sin θdθ∫
|uθ|2 sin θdθ

=

∫ θ+

θ−

cos2 θ√
a2ω2

R cos2 θ − m2

sin2 θ
+ARlm

dθ

∫ θ+

θ−

1√
a2ω2

R cos2 θ − m2

sin2 θ
+ARlm

dθ

. (9.28)

By taking the derivative of both sides of the Bohr-Sommerfeld condition (9.17) with respect to the

variable z = aωR and by treating Alm as a function of z, we can rewrite the above expression as

〈cos2 θ〉 = − 1
2z
∂ARlm(z)
∂z

∣∣∣∣
z=aωR

. (9.29)

Substituting this expectation value into Eq. (9.27), we find

AIlm = aωI

[
∂ARlm(z)
∂z

]
z=aωR

. (9.30)

Equation (9.30) defines a numerical prescription for computing Alm = ARlm + iAIlm. This approach

is quite natural: as ω becomes complex, Alm is the analytic function whose value on the real axis is

given by ARlm. The approximate formula (9.22), therefore, becomes

Alm ≈ L2 − a2ω2

2

[
1− m2

L2

]
, (9.31a)

or

α ≈ 1− a2Ω2

2
(
1− µ2

)
, (9.31b)

for a complex frequency ω, where we have defined Ω to be ω/L.
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9.2.3 The radial eigenvalue problem

Now that we have solved for the angular eigenvalues Alm in terms of ω, we turn to the radial

Teukolsky equation. From Eq. (10.4a), we see that the radial equation is already in the form

d2ur
dr2
∗

+ V rur = 0 , (9.32a)

if we define

V r(r, ω) =
[ω(r2 + a2)−ma]2 −∆

[
Alm(aω) + a2ω2 − 2maω

]
(r2 + a2)2

. (9.32b)

Note here that V r is an analytic function of ω, and that it is real-valued when ω is real.

In general, the WKB approximant for ur is given at leading order by

ur = b+e
i

R r∗√V r(r′∗)dr
′
∗ + b−e

−i
R r∗√V r(r′∗)dr

′
∗ , (9.33)

although in order to obtain a mode which is outgoing at r∗ → +∞ (the same as r →∞) and ingoing

at r∗ → −∞ (r → r+), we must have

ur = b+e
i

R r∗√V r(r′∗)dr′∗ , (9.34a)

for the region containing r → +∞, and

ur = b−e
−i

R r∗√V r(r′∗)dr′∗ , (9.34b)

for the region containing r∗ → −∞. Intuitively speaking, a solution to Eq. (9.32a) will satisfy the

asymptotic behavior above if V r ≈ 0 around a point r = r0, and Vr > 0 on both sides. Then, the

WKB expansion (9.33) is valid in the two regions on both sides of r = r0, and the solution in the

vicinity of r0 must be obtained separately by matching to the WKB approximation. The matching

will constrain the frequency, thereby giving a method to determine ω. A detailed calculation of this

procedure has been carried out by Iyer and Will [11] to high orders in the WKB approximation; the

only difference between our calculation and their result at lower orders comes from the more complex

dependence of V r on ω in our case (particularly because Alm depends on ω in a more involved way).

9.2.3.1 Computing ωR

From Iyer and Will [11], the conditions at the leading and next-to-leading order that must be solved

to find ωR are

V r(r0, ωR) =
∂V r

∂r

∣∣∣∣
(r0,ωR)

= 0 . (9.35)
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After a short calculation, these conditions can be expressed as

ΩR =
µa

r2
0 + a2

±
√

∆(r0)
r2
0 + a2

β(aΩR) , (9.36a)

0 =
∂

∂r

[
ΩR(r2 + a2)− µa√

∆(r)

]
r=r0

, (9.36b)

where we have defined

β(z) =
√
α(z) + z2 − 2µz (9.37a)

≈
√

1 +
z2

2
− 2µz +

µ2z2

2
. (9.37b)

In deriving Eq. (9.36b), we have used the fact that at r > r+, (r2 + a2)2/∆ is a monotonically

increasing function, and, therefore the extrema of V r are the same as those of V r(r2 + a2)2/∆; we

then also used the fact that the quantity within the square brackets in Eq. (9.36b) is always nonzero

at points at which V r = 0.

One method of jointly solving Eqs. (9.36a) and (9.36b) would be to use Eq. (9.36b) to express

ΩR in terms of r0

ΩR =
(M − r0)µa

(r0 − 3M)r2
0 + (r0 +M)a2

, (9.38)

and then insert this into Eq. (9.36a) to obtain r0; finally ΩR can be obtained by substituting this

r0 back into Eq. (9.38). If we use the approximate formula (9.37b) in this process, the equation for

r0 becomes a sixth-order polynomial in x = r0/M , the roots of which can be found efficiently. For

convenience, we write this polynomial here

2x4(x− 3)2 + 4x2[(1− µ2)x2 − 2x− 3(1− µ2)](a/M)2

+(1− µ2)[(2− µ2)x2 + 2(2 + µ2)x+ (2− µ2)](a/M)4 . (9.39)

For each pair (µ, a/M), there are in general two real roots for x, which correspond to the two possible

values of r0/M (and the two real frequencies with opposite signs).

Note that the procedure above will not work when m = 0 [when both the numerator and

denominator of Eq. (9.38) vanish]. In this case, we can directly require that

(rp − 3M)r2
p + (rp +M)a2 = 0 . (9.40)

The solution, rp, can be found in closed form [29, 47]. Inserting it into Eq. (9.36a) the result can be



254

-1.0 -0.5 0.0 0.5 1.0
-4

-2

0

2

4

6

Μ

W
Rap

p
-
W

W
´

1
0

5

Figure 9.2: Difference in ΩR(a, µ) [Eq. (9.38)] that arises from using the approximate formula for
Alm [Eq. (9.31a)] as opposed to the exact formula. Here a/M = 0.7, 0.9,0.95, and 0.99 correspond
to black solid, red dashed, blue dotted, and purple long-dashed curves, respectively. The quantity
plotted on the vertical axis has been scaled by 105.

expressed in terms of elliptic integrals

ΩR(a, µ = 0) = ±1
2

π
√

∆(rp)

(r2
p + a2)EllipE

[
a2∆(rp)

(r2
p + a2)2

] , (9.41)

where EllipE denotes an elliptic integral of the second kind. Here we have used the subscript p for

this special case, because this mode will turn out to correspond to polar orbits. Note this formula

agrees with the one derived in [29].

We plot in Fig. 9.2 the relative error in ΩR that comes from using the approximate expression

for Alm [Eq. (9.31a)] rather than the exact Bohr-Sommerfeld condition. The error is always less

than ∼ 10−4 (we scale the quantity plotted on the vertical axis by 105), and therefore, we will use

the approximate expression for Alm for the remaining calculations involving ΩR throughout this

paper. In Fig. 9.3, we plot ΩR for a/M = 0, 0.3, 0.5, 0.9, 0.99, and 1 (the flat curve corresponds to

a/M = 0, and those with increasing slopes are the increasing values of a/M). While for low values

of a/M below ∼ 0.5, ΩR depends roughly linearly upon µ, for higher values of a/M (and for µ > 0),

ΩR grows more rapidly than linearly. For a/M = 1, ΩR → 1/2 when µ→ 1, as anticipated.
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Figure 9.3: Real part of the QNM spectra from the WKB approximation. Black solid curves show
Ω for a/M = 0 (the flat curve) and a/M = 1 (the curve that increases towards 0.5); red (light gray)
dashed and dotted curves show a/M = 0.3 and 0.5, while blue (dark gray) dotted and dashed curves
show a/M = 0.9 and 0.99.

9.2.3.2 Computing ωI

At leading order, the imaginary part ωI can be calculated using the same procedure set forth by

Iyer and Will [11]. They find that

ωI = −(n+ 1/2)

√
2
(
d2V r

dr2
∗

)
r0,ωR(

∂V r

∂ω

)
r0,ωR

,

= −(n+ 1/2)ΩI(a, µ) . (9.42)

In our calculation, we must also take into account that V r also depends on ω through the angular

eigenvalue’s dependence on ω. If we use the approximate formula for α, we obtain a reasonably

compact expression for ΩI :

ΩI = ∆(r0)

√
4(6r2

0Ω2
R − 1) + 2a2Ω2

R(3− µ2)
2r4

0ΩR − 4aMr0µ+ a2r0ΩR[r0(3− µ2) + 2M(1 + µ2)] + a4ΩR(1− µ2)
. (9.43)

In Fig. 9.4, we plot the relative error in ΩI from using the approximate formula for Alm identically

to that in Fig. 9.2 (although here we scale the quantity plotted on the vertical axis by 104). Because

the error is always less than ∼ 10−3, we will use the approximate expression for Alm for computing

ΩI in the remainder of this paper. In [29], an alternate expression for ωI (for m = 0) was computed

by finding an analytic expression for the Lyapunov exponent (see Sec. 9.3.3.2, where we discuss the

exponent’s connection to the QNM’s decay rate); this expression gives the same result as (9.43) for
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µ = 0 to a high accuracy. In Fig. 9.5, we plot ΩI(a, µ) for several values of a/M (the same as those

in Fig. 9.3, though not a/M = 0.3). The curve for a/M = 0 is flat, and those with larger spins have

more rapidly decreasing slopes for increasing values of a/M . It is interesting to note that in the

limit a → 1, ΩI becomes zero for values of µ in a finite interval 0.74 . µ ≤ 1 (not only for µ = 1

does ΩI vanish). We will put forward an explanation for this phenomenon in Sec. 9.4, after we make

connections between QNMs and wave propagation in the Kerr spacetime.

The vanishing of the QNM’s decay rate for extremal black holes has been discussed by many

authors in the past. Detweiler [44] first showed that modes with l = m had vanishing decay.

Mashhoon [48] extended the work of Goebel [37] to Kerr-Newman black holes when he calculated the

frequency and Lyapunov exponent of equatorial unstable photon orbits. He found that for extremal

Kerr-Newman holes (which have M2 = a2 + Q2, with Q the charge of the hole) when a ≥ M/2,

the Lyapynov exponent vanished, in analogy with the vanishing decay for µ & 0.74 discussed above.

For QNMs of a massive scalar field around an extremal Kerr black hole, Hod [49] found that the

modes have vanishing damping when the mass of the scalar field is smaller than a critical value.

Berti and Kokkotas [50] numerically calculated QNM frequencies for Kerr-Newman black holes using

continued fractions, and found good agreement with Mashhoon’s result for l = m = 2, s = 2 modes

(i.e., for extremal holes there was zero decay). Cardoso [45] explored Detweiler’s calculation of the

decay of extremal modes, and could show that some but not all modes with m 6= l and m > 0

have vanishing decay rates. Hod also extended Detweiler’s calculation to m ≥ 0 and found that all

such modes have zero decay in the extremal Kerr case [46], in contrast to our findings. Hod also

computed QNM frequencies and decays for eikonal QNMs in the extremal Kerr limit [51] and found

agreement with Mashhoon’s result. In the end, the particular value of m at which the QNM mode

decay rate for an extremal black hole vanishes is not a settled issue; our results here indicate that

for L� 1, only some subset of the m > 0 modes have vanishing decay rates.

9.2.4 Accuracy of the WKB approximation

Because we calculated the leading and next-to-leading orders in the WKB approximation to ωR,

we expect that the relative error for increasing L should scale as O(1/L2). For the imaginary part,

we computed only the leading-order expression, and we would expect that the relative error might

scale as O(1/L). In addition, because at this order of approximation we do not account for the spin

of the wave, we anticipate that the error for the gravitational modes may be larger than those for

scalar modes. In Figs. 9.6–9.9, we confirm most of these expectations, but we find the somewhat

unexpected result that the relative error for the imaginary part also scales as O(1/L2). In fact,

this finding is consistent with Eqs. (52) and (53) of [29], where the next order contributions are

calculated for the special cases of m = l and m = −l, respectively.

In Fig. 9.6, we compare the WKB approximation to ωR with numerical computations of the
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Figure 9.4: Difference in ΩI(a, µ) [Eq. (9.42)] from using the approximate formula for Alm
[Eq. (9.31a)] rather than the exact formula. Here a/M = 0.7, 0.9, 0.95, and 0.99 correspond to
black solid, red dashed, blue dotted, and purple long-dashed curves, respectively. We scale the
quantity plotted along the vertical axis by 104 in this figure.
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Figure 9.5: Imaginary part of the QNM spectrum computed in the WKB approximation. Black
solid curves show ΩI for a/M = 0 (again the flat curve) and a/M = 1 the curve that decreases and
heads to zero. The red dashed curve shows a/M = 0.5, while blue dotted and dashed curves show
a/M = 0.9 and 0.99, respectively. For a/M = 1, modes with µ & 0.74 approach zero (modes that
do no decay), while others still decay.

s = 2, gravitational-wave, quasinormal-mode spectra; specifically, we plot the fractional error against

µ = m/L, for l = 2, 3, . . . , 14, and for black holes of spins a/M = 0.3, 0.5, 0.9, and 0.95. The relative

error clearly converges to O(L2). Even for l = 2, the relative error tends to be . 30%, and at l ≥ 3

the relative error stays below ∼ 1.5L−2 (this means error is . 10% for l = 3 and higher).
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Figure 9.6: Fractional error, δωR/ωR, of the WKB approximation to the s = 2, gravitational-wave,
quasinormal-mode spectrum, multiplied by L2. The four panels correspond to four different spins
which (going clockwise from the top left) are a/M = 0.3, 0.5, 0.95, and 0.9. Errors for l = 2, 3, 4
are highlighted as red solid, brown dashed, and pink dotted lines, while the rest (l = 5, . . . , 14) are
shown in gray. This shows that the relative error approaches the O(1/L2) scaling quite quickly.
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Figure 9.7: Fractional error, δωR/ωR, of the WKB approximation to the s = 0, scalar-wave,
quasinormal-mode spectrum, again scaled by L2. The four panels correspond to the same four
spins in Fig. 9.6. The points shown in the four panels are for values of l in the range l = 2, 3, . . . , 14.
Because all values of l nearly lie on the same curve, the relative error has converged at an order
O(1/L2) even for very low l. The overall error is also significantly lower than that for the s = 2
modes.
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Figure 9.8: Fractional error, δωI/ωI , of the WKB approximation to the s = 2, gravitational-wave,
quasinormal-mode spectrum, also scaled by L2. The panels and the curves are plotted in the same
way as in Fig. 9.6, and the error scales similarly.
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Figure 9.9: Fractional error, δωI/ωI , of the WKB approximation to the s = 0, scalar-wave,
quasinormal-mode spectrum, again multiplied by L2. The four panels and the points are shown
in the same way as in Fig. 9.7, and there is a similar rapid convergence of the error.
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In Fig. 9.7, we compare the WKB spectra with s = 0 scalar quasinormal-mode spectra, for the

same values of l and the same black-hole spins. We find a much better agreement. For all l ≥ 2

modes, the relative error stays below 4× 10−2L−2. This suggests that coupling between the spin of

the wave (i.e., its tensor polarization) and the background curvature of the Kerr black hole is the

main source of error in our WKB approximation.

In Figs. 9.8 and 9.9, we perform the same comparisons as in Figs. 9.6 and 9.7 for the imaginary

part of frequency. Surprisingly, we find that for both s = 0 and 2, the relative error in ωI is O(L−2).

For s = 0, the relative error is . 6× 10−2L−2, while for s = 2, the error is . L−2.

With this comparison, we conclude our direct calculation of the QNM spectrum by WKB tech-

niques. We will discuss additional features of the QNM spectrum in Sec. 9.4, but before doing so,

we will develop a geometric interpretation of our WKB results. Doing so will help us to develop

more intuition about our WKB expressions.

9.3 Geometric optics in the Kerr spacetime

In this section, we first briefly review the formalism of geometric optics, which describes the prop-

agation of waves with reduced wavelengths λ that are much shorter than the spacetime radius of

curvature, R, and the size of the phase front, L. In the geometric-optics approximation, the phase

of the waves remains constant along null geodesics (rays), while the amplitude can be expressed

in terms of the expansion and contraction of the cross-sectional area of bundles of null rays. We

will then specialize the geometric-optics formalism to the Kerr spacetime, and we will write down

the most general form of propagating waves in the geometric-optics approximation. Using the

Hamilton-Jacobi method, we see that the waves’ motion can be related to the null geodesics in the

spacetime. By applying boundary conditions to the approximate wave, we obtain expressions for

the quasinormal-mode waveforms and their corresponding complex frequency spectra and angular

separation constants, in the eikonal limit.

9.3.1 Geometric optics: general theory

Here we briefly review the geometric-optics approximation to scalar-wave propagation (see, e.g.,

Section 22.5 of Ref. [52] for details). A massless scalar wave u propagating in curved spacetime

satisfies the wave equation

gµν∇µ∇νu = 0 . (9.44)

If we write

u = AeiΦ , (9.45)
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then at leading order in λ/L, we have

gµνkµkν = 0 , kµ ≡ ∂µΦ , (9.46)

while at next-to-leading order,

2kµ∂µ logA+∇µkµ = 0 . (9.47)

Note that Eq. (9.46) also implies that kµ is geodesic,

kµ∇µkν = kµ∇µ∇νΦ = kµ∇ν∇µΦ = kµ∇νkµ = 0 . (9.48)

Equations (9.45)–(9.48) encode information about the transport of the amplitude A and phase

Φ along a null geodesic (or a ray). The phase should be kept constant, because Eq. (9.46) states

kµ∂µΦ = 0 , (9.49)

while the amplitude is transported along the ray in a manner that depends upon the propagation

of neighboring rays. Because the 2D area, A, of a small bundle of null rays around the central ray

satisfies the equation

∇µkµ = kµ∂µ logA , (9.50)

it is possible to show from Eq. (9.47) that

kµ∂µ

(
A1/2A

)
= 0 , (9.51)

which implies A ∝ A−1/2.

The transport equations (9.49) and (9.51) provide a way to construct a wave solution from a

single ray; therefore, any solution to the wave equation (9.44) in a 4D spacetime region can be found

from a three-parameter family of null rays (with smoothly varying initial positions and wave vectors)

by assigning smoothly varying initial values of (Φ, A) and then transporting these values along the

rays. (We use the phrase “smoothly varying” to mean that the values of (Φ, A) must change on

the scale of L � λ.) We note it is often convenient to divide the three-parameter family of initial

positions of the null rays into two-parameter families of rays with constant initial values of Φ. The

constant-Φ surfaces are the initial phase fronts, which, upon propagation along the rays, become

3D phase fronts of the globally defined wave. The more usual 2D phase fronts, at a given time, are

obtained if we take a particular time slicing of the spacetime and find the 2D cross sections of the

3D phase fronts in this slicing.

The above formalism describes wave propagation up to next-to-leading order in L/λ, which will
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be enough for us to build a geometric correspondence for both the real frequency, the decay rate,

and the angular separation constant of QNMs in the Kerr spacetime.

9.3.2 Null geodesics in the Kerr spacetime

Now let us review the description of null geodesics in the Kerr spacetime using the Hamilton-Jacobi

formalism. In general, the Hamilton-Jacobi equation states

gµν(∂µS)(∂νS) = 0 , (9.52)

where S(xµ) is called the principal function. For the Kerr spacetime, the Hamilton-Jacobi equation

can be solved via separation of variables (see, e.g., [53]), through which the principal function can

be expressed as

S(t, θ, φ, r) = Sθ(θ) + Lzφ+ Sr(r)− Et , (9.53)

where E and Lz are constants that are conserved because of the the timelike and axial Killing vectors

of the Kerr spacetime. Physically, E and Lz represent the energy and z-directed specific angular

momentum of the massless scalar particle. The functions Sr(r) and Sθ(θ) are given by

Sr(r) =
∫ r

√
R(r′)

∆(r′)
dr′, Sθ(θ) =

∫ θ√
Θ(θ′)dθ′ , (9.54a)

where R(r) and Θ(θ) are given by

R(r) = [E(r2 + a2)− Lza]2 −∆[(Lz − aE)2 +Q] , (9.54b)

Θ(θ) = Q− cos2 θ(L2
z/ sin2 θ − a2E2) , (9.54c)

and ∆(r) is given in Eq. (10.4b). The constant Q is the Carter constant of the trajectory, which is

a third conserved quantity along geodesics in the Kerr spacetime.

The principal function S(xµ; E , Lz,Q) contains information about all null geodesics; equations

of motion for individual null geodesics are given by first choosing a particular set of (E , Lz,Q), and

then imposing
∂S

∂E
= 0 ,

∂S

∂Lz
= 0 ,

∂S

∂Q
= 0 . (9.55)

These conditions lead to a set of first-order differential equations

dt

dλ
=
r2 + a2

∆
[
E(r2 + a2)− Lza

]
− a(aE sin2 θ − Lz) , (9.56a)

dφ

dλ
=−

(
aE − Lz

sin2 θ

)
+
a
[
E(r2 + a2)− Lza

]
∆

, (9.56b)
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dr

dλ
=
√
R, dθ

dλ
=
√

Θ , (9.56c)

where we have defined
d

dλ
≡ Σ

d

dζ
, Σ = r2 + a2 cos2 θ , (9.57)

and ζ is an affine parameter along the null geodesics.

9.3.3 Correspondence with quasinormal modes

Table 9.1: Geometric-optics correspondence between the parameters of a quasinormal mode, (ω,
Alm, l, and m), and the conserved quantities along geodesics, (E , Lz, and Q). To establish a corre-
spondence with the next-to-leading-order, geometric-optics approximation, the geodesic quantities
E and Q must be complex.

Wave Quantity Ray Quantity Interpretation

ωR E Wave frequency is same as energy of null ray
(determined by spherical photon orbit).

m Lz
Azimuthal quantum number → z angular momentum

(quantized to get standing wave in φ direction).

ARlm Q+ L2
z

Real part of angular eigenvalue → Carter constant
(quantized to get standing wave in θ direction).

ωI γ = −EI
Wave decay rate is proportional to Lyapunov exponent

of rays neighboring the light sphere.

AIlm QI
Nonzero because ωI 6= 0

(see Secs. 9.2.2.2 and 9.3.3.3 for further discussion).

Here we will find connection between the general set of wave solutions in the previous section,

and the particular solutions that correspond to a quasinormal modes, in the geometric-optics limit.

Specifically, we will look for waves that propagate outwards at infinity and down the horizon. With

this correspondence, we will be able to make a geometric interpretation of our WKB results from

Sec. 9.2.

9.3.3.1 Leading order: conserved quantities of rays and the real parts of quasinormal-

mode parameters

It is straightforward to note that the Hamilton-Jacobi equation (9.52) is identical to the leading-order

geometric-optics equations, if we identify the phase, Φ, with the principal function, S. Therefore,

at leading order, we can write

u = eiS = e−iEteiLzφe±iSθe±iSr , (9.58)

where we recall that the amplitude A differs from unity only at next-to-leading order (we will treat

it in the following subsections). Here, we have a chosen set of conserved quantities, (E ,Q, Lz), to



264

identify the wave we wish to connect with a quasinormal-mode solution. The region in which the

wave propagates is identical to the region in which geodesics with these conserved quantities can

propagate. In addition, for each point in this region, there is one (and only one) geodesic passing

through it; that we have ± in front of Sθ and Sr means only that either propagation direction could

be a solution to the wave equation.

Now we note that u, a scalar wave in the Kerr spacetime, must separate as in Eq. (9.6). By

comparing Eq. (9.6) and Eq. (9.58), we can immediately identify that

E = ωR . (9.59)

Because E is a real quantity (the conserved energy of the null geodesic), we see that at leading order,

the wave does not decay. Next, we also observe that in order for u to be consistently defined in the

azimuthal direction, Lz (of the null geodesics that S describes) must be an integer. This allows us

to make the second identification

Lz = m. (9.60)

Comparing Sθ from Eq. (9.54a) and uθ from Eqs. (9.15) and (9.10b) (focusing on one direction of θ

propagation, and ignoring next-to-leading-order terms), we can also conclude that

Q = ARlm −m2 . (9.61)

At this stage, given any set of (E ,Q, Lz), we will be able to find a wave solution that exists in

the region in which the geodesics travel. Not all such sets of conserved quantities correspond to

quasinormal modes, however, because they may not satisfy the correct boundary conditions of

QNMs.

We will first explain the conditions on the radial motion of the geodesics that will allow these

particular geodesics to correspond to a wave that satisfies outgoing and downgoing conditions at

r∗ → ±∞, respectively. If the radial geodesics satisfy R > 0 everywhere, then there will be traveling

waves across the entire r∗ axis, which will not satisfy the boundary conditions; if there are two

disconnected regions of traveling waves, however, waves will scatter off the potential on each side,

and they will also fail to satisfy the boundary conditions. The only way to satisfy the boundary

conditions is to have a point r0 at which R = 0 and R′ = 0, in which case there will be a family of

geodesics on each side of r = r0 (with each member a homoclinic orbit which has r → r0 on one end)

and a spherical orbit with constant r = r0. The corresponding wave has zero radial spatial frequency

at r = r0, and this frequency increases towards r < r0 and decreases towards r > r0. Noting that

R = V r
(
r2 + a2

)2
, (9.62)
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the condition

R = R′ = 0 (9.63)

is the same as the condition, Eq. (9.35), which determines ωR in terms of L and m in the WKB ap-

proximation. It is worth mentioning that although the condition of Eq. (9.63) imposed on (E ,Q, Lz)

can be interpreted most easily as the condition for a spherical photon orbit, the wave function for

the quasinormal mode we are considering is not localized around that orbit. The wave function at

leading order, in fact, has a constant magnitude at every location that homoclinic orbits reach (i.e.,

the entire r axis). We will derive the amplitude corrections in the next section.

The quantization of the frequency ωR in terms of the multipolar indices l and m arises from the

quantization of the motion in the angular directions. For the azimuthal direction, it is easy to see

that for the wave function to be single-valued, we need to impose Lz = m ∈ Z. For the θ direction,

we note that

Θ = V θ sin2 θ , (9.64)

and the θ-quantization condition for the wave, Eq. (9.17), is

∫ θ+

θ−

√
Θ dθ = (L− |m|)π . (9.65)

This corresponds to the Bohr-Sommerfeld condition for a particle moving in a potential given by Θ.

Consequently, the condition for a standing wave along the θ direction (at leading order) is equivalent

to

Q = Alm(ωRa)−m2

≈ L2 −m2 − a2ω2
R

2

[
1− m2

L2

]
. (9.66)

In summary, we connected the QNM’s wave function to the Hamilton-Jacobi principal function

of homoclinic null geodesics (at leading order). These geodesics have the same energy, Carter

constant, and z-component of its angular momentum as a spherical photon orbit; however only

spherical orbits with quantized Carter constants and z-angular momenta correspond to quasinormal

modes. In Table 9.1, we summarize our geometric-optics correspondence; so far we have identified

the first three entries on the table. We can find the next two correspondences by investigating

next-to-leading-order geometric optics in the next part.
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Figure 9.10: Schematic plot of trajectories in the r-θ plane of homoclinic orbits outside of the peak
of the potential (specifically for a black hole with spin a/M = 0.7 and a photon orbit with radius
r0/M = 2.584). The two horizontal grid lines mark the turning points, θ = θ±; between these
turning points, there are two homoclinic orbits passing through every point, while at turning points
only one orbit passes through. Vertical grid lines indicate when the value of parameter λ has changed
along the orbit by (an arbitrarily chosen value) ∆λ = 0.046M . Near the spherical photon orbit, each
homoclinic orbit undergoes an infinite number of periodic oscillations in θ while r − r0 is growing
exponentially as a function of λ.

9.3.3.2 Next-to-leading order: radial amplitude corrections and the imaginary part of

the frequency

We showed in the previous part that the conserved quantities of a spherical photon orbit, (E ,Q, Lz),

correspond simply to the real parts of the quasinormal-mode parameters, (ωR, ARlm,m), which are

the leading-order quantities of a quasinormal mode. Here, we will show that the behavior of the

homoclinic orbits—namely, how the orbits propagate away from the spherical orbit, and how they

move between θ±—reveals the spatiotemporal variation of the wave (i.e, the decay rate and the

shape of its wave function in space). In Fig. 9.10, we plot the trajectory of a particular series of

homoclinic orbits on the r-θ plane, to which we will refer at several points in the discussion below.

With the appropriate values of (E ,Q, Lz), the function u in Eq. (9.58) solves the wave equation

to leading order and satisfies the required boundary conditions. To recover the decaying behavior

of quasinormal modes, however, we make corrections to the amplitude of the wave, which appear at

next-to-leading order in the geometric-optics approximation. Because of symmetry, there should not

be any correction to the amplitude in the φ direction, and the correction in the t direction should

be a simple decay; therefore, we write

u = A exp(iS) = e−γtAr(r)Aθ(θ)︸ ︷︷ ︸
A(t,r,θ)

e−iEteiLzφe±iSθe±iSr . (9.67)

This general expression contains four possible directions in which the wave could be propagating:
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the ±θ direction and the ±r direction (depending on the signs in front of Sr and Sθ). Because the

boundary conditions require that the waves propagate towards r∗ → +∞ for r > r0 and r∗ → −∞

for r < r0, the sign in front of Sr should be positive for r > r0 and negative for r < r0. For θ

motion, however, we insist that both directions (signs) be present, because a quasinormal mode is a

standing wave in the θ direction. Focusing on r > r0, we write

u = e−γtAr(r)
[
A+
θ e

iSθ +A−θ e
−iSθ

]
e−iEt+iLzφ+iSr

≡ u+ + u− . (9.68)

We will next require that both u+ and u− satisfy the wave equation to next-to-leading order,

separately. By explicitly computing Eq. (9.47) (or A
√
A = const) in the Kerr spacetime, we find

the amplitude satisfies the relation

Σ
d logA
dζ

= −1
2

[
∂r(∆(r)∂rSr) +

1
sin θ

∂θ(sin θ∂θSθ)
]
. (9.69)

Here ζ is an affine parameter along the geodesic specified by (E ,Q,Lz). If we use the parameter λ

defined by d/dλ = Σd/dζ then we can separate the left-hand side of the equation as

Σ
d logA
dζ

=
d

dλ
logAr(r) +

d

dλ
logAθ(θ)− γ

dt

dλ
. (9.70)

Because the right-hand side of Eq. (9.56a) for dt/dλ, separates into a piece that depends only

upon r and one that depends only upon θ, we will write Eq. (9.56a) schematically as

dt

dλ
= ṫ+ ˜̇t , (9.71)

where ṫ is only a function of r and ˜̇t is only a function of θ. Unlike in Eq. (9.56a), we will require

that ˜̇t average to zero when integrating over λ for half a period of motion in the θ direction (i.e.,

from θ− to θ+). We can ensure this condition is satisfied by subtracting an appropriate constant

from ˜̇t and adding it to ṫ. Combining Eqs. (9.69)–(9.71) and performing a separation of variables,

we obtain

√
Rd logAr

dr
− γṫ = − R

′

4
√
R
, (9.72a)

√
Θ
d logA±θ
dθ

∓ γ˜̇t = − 1
2 sin θ

(
√

Θ sin θ)′ , (9.72b)

where a prime denotes a derivative with respect to r for functions of r only, and a derivative with

respect to θ for functions of θ only (whether it is a θ or r derivative should be clear from the context).

While it might at first seem possible to add a constant to the definition of ṫ, and subtract it from ˜̇t
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and still have both u+ and u− satisfy the next-to-leading order geometric optics, because we have

already chosen to have ˜̇t average to zero,

∫ θ+

θ−

γ˜̇t
dθ√
Θ

=
∫
γ˜̇tdλ = 0 , (9.73)

this separation is the only way to guarantee that |A±θ | match each other at both ends. We will

discuss the angular wave function in greater detail in the next part of this section.

Let us now turn to the radial equation, from which we will be able to compute the decay rate.

Close to r0, we can expand R(r) to leading order as

R(r) ≈ (r − r0)2

2
R′′(r0) . (9.74)

Substituting this result into Eq. (9.72a), we find

d logAr
dr

=
1

r − r0

[
γṫ

√
2
R′′0
− 1

2

]
, (9.75)

where we used the notation R′′0 ≡ R′′(r0). For Ar to be a function that scales as Ar ∼ (r − r0)n

around r0 for some integer n (namely it scales like a well-behaved function), we need to have

γ =
(
n+

1
2

) √
R′′0/2
ṫ

= (n+ 1/2) lim
r→r0

1
r − r0

dr/dλ

〈dt/dλ〉θ
. (9.76)

To arrive at the second line, we used Eq. (9.74), the fact that dr/dλ =
√
R, and that ṫ is the part

of dt/dλ that does not vanish when averaging over one cycle of motion in the θ direction; the limit

in the expression comes from the fact that the approximation in Eq. (9.74) becomes more accurate

as r → r0.

The physical interpretation of the rate that multiplies (n+1/2) is somewhat subtle. Because the

θ motion is independent from the r motion, a bundle of geodesics at the same r slightly larger than

r0, but at different locations in θ will return to their respective initial values of θ with a slightly

increased value of r after one period of motion in the θ direction. The area of this bundle increases

in the process, and by Eq. 9.51, the amplitude of the wave must decay; the rate of decay is governed

by the quantity that multiplies (n+ 1/2) in Eq. (9.76).

In addition, as shown in Fig. 9.10, the homoclinic orbits do pass through an infinite number of

such oscillations near r0, because the radial motion is indefinitely slower than the θ motion as r
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approaches r0. It is clear from Fig. 9.10 that

1
r − r0

∆r
∆λ

=
∆ log(r − r0)

∆λ
(9.77)

approaches a constant as r → r0. By multiplying the above equation by the constant value of

(∆λ)/(∆t) over one orbit of motion in the θ direction,

1
r − r0

∆r
∆t

=
∆ log(r − r0)

∆t
≡ γL (9.78)

also approaches a constant. This is usually defined as the Lyapunov exponent of one-dimensional

motion; here, however, we emphasize that it is defined only after averaging over entire cycle of θ

motion. By comparing Eq. (9.78) with the second line of Eq. (9.76), and bearing in mind that the

Lyapunov exponent is defined after averaging over one period of θ motion, one can write Eq. (9.76)

as

γ = (n+ 1
2 )γL . (9.79)

To put Eq. (9.76) into a form that relates more clearly to Eq. (9.42), we use the conditions on

the phase function,
∂S

∂E
= 0 ,

∂S

∂Q
= 0 , (9.80)

which hold for any point on the trajectory of the particle. We will apply this condition to two points

on the particle’s trajectory: one at (t, r, θ, φ) and the second at (t+ ∆t, r+ ∆r, θ, φ+ ∆φ), where ∆t

is chosen such that the particle completes a cycle in θ in this time (and it moves to a new location

shifted ∆r and ∆φ). Substituting in the explicit expressions for the principal function in Eqs. (9.53)

and (9.54a), we find

∂

∂E

[∫ r+∆r

r

√
R(r′)

∆(r′)
dr′ + ∆Sθ

]
= ∆t , (9.81a)

∂

∂Q

[∫ r+∆r

r

√
R(r′)

∆(r′)
dr′ + ∆Sθ

]
= 0 (9.81b)

where we have defined

∆Sθ ≡ 2
∫ θ+

θ−

√
Θ(θ′)dθ′ ≡

∮ √
Θ(θ′)dθ′. (9.82)

Because the change ∆r is infinitesimal for r near r0, the integrand is roughly constant, and the

r-dependent part of the integral becomes the product of the integrand with ∆r. Then, one can use

Eq. (9.74) to write Eqs. (9.81a) and (9.81b) as

1√
2R′′0∆0

∂R
∂E

∆r
r − r0

+
∂∆Sθ
∂E

= ∆t , (9.83a)
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1√
2R′′0∆0

∂R
∂Q

∆r
r − r0

+
∂∆Sθ
∂Q

= 0 . (9.83b)

Now, we also note that for a given fixed Lz = m, the angular Bohr-Sommerfeld condition in Eq.

(9.65) makes Q a function of E through the condition that ∆Sθ = (L − |m|)π. Because ∆Sθ is a

function of E , its total derivative with respect to E must vanish,

∂∆Sθ
∂E

+
∂∆Sθ
∂Q

(
dQ
dE

)
BS

= 0 . (9.84)

Therefore, when we multiply Eq. (9.83b) by (dQ/dE)BS and add it to Eq. (9.83a), we obtain the

condition that
1√

2R′′0∆0

[
∂R
∂E

+
∂R
∂Q

(
dQ
dE

)
BS

]
∆r
r − r0

= ∆t . (9.85)

Combining this fact with the definition of the Lyapunov exponent in Eq. (9.78) and Eq. (9.79), we

find that

γ =
(
n+

1
2

) √
2R′′0∆0[

∂R
∂E

+
∂R
∂Q

(
dQ
dE

)
BS

]
r0

, (9.86)

where we recall that the quantities should be evaluated at r0. Equation (9.86) is equivalent to

Eq. (9.42). Note, however, that in Eq. (9.86) we explicitly highlight the dependence of Q on E

through the term (dQ/dE)BS. There is an analogous term in Eq. (9.42) from the dependence of

Alm on ω in the expression for the potential V r, which we must take into account when computing

∂V r/∂ω; however, we did not write it out explicitly in Eq. (9.42).

Summarizing the physical interpretation of the results in this subsection, we note that the Lya-

punov exponent γL is the rate at which the cross-sectional area of a bundle of homoclinic rays

expand, when averaged over one period of motion in the θ direction in the vicinity of r0. The spa-

tial Killing symmetry along φ means the extension of the ray bundle remains the same along that

direction. This, therefore, allows us to write

A ∼ eγLt . (9.87)

Correspondingly, the A
√
A = const law requires that

A ∼ e−γLt/2 , (9.88)

which agrees with the decay rate of the least-damped QNM. The higher decay rates given by

Eq. (9.76) come from an effect related to the intrinsic expansion of the area of a phase front.

More specifically, if the amplitude is already nonuniform at points with different r−r0 (but same θ),

then shifting the spatial locations of the nonuniform distribution gives the appearance of additional
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decay.

9.3.3.3 Next-to-leading order: angular amplitude corrections and the imaginary part

of Carter’s constant

Having found a relation in Eq. (9.72a) between the imaginary part of the energy, ωI , and the rate

of divergence of rays, we now turn to Eq. (9.72b) to understand the geometric meaning of the

complex part of Alm. We recall from Sec. 9.3.3.1 that Q = ARlm −m2, at leading order, for a real

Carter constant Q. Because Alm becomes complex at next to leading order (and because m remains

unchanged), if the correspondence Q = Alm−m2 holds for a complex Alm, then the Carter constant

should also be complex, and its imaginary part should be equivalent to AIlm. In this part, we argue

that this relationship holds.

By integrating Eq. (9.72b), we find that

A±θ =

√
1

sin θ
√

Θ
exp

[
±
∫ θ

θ−

γ˜̇t√
Θ
dθ′

]
. (9.89)

To interpret this equation, we will assume that the orbit is sufficiently close to r0 that the change

in r over the course of a period of motion in θ is negligible. Under this assumption (and with the

fact that dλ = dθ/
√

Θ) we can write the integral in the exponent in Eq. (9.89) as

∫ θ

θ−

γ˜̇t√
Θ
dθ′

=γ
[
[t(θ)− t(θ−)]−

(
∆t
∆λ

)
[λ(θ)− λ(θ−)]

]
, (9.90)

where ∆t/∆λ is the average of dt/dλ over a cycle of θ motion. We obtain this expression by using

the fact that dt/dλ is equivalent to ˜̇t plus a constant when r (and hence ṫ) does not change. Because
˜̇t has zero average (by definition) over a period of θ motion, then when written in the form above,

the constant must be (∆t)/(∆λ). We can write this average rate of change in a useful form by noting

that, from Eq. (9.56a) and Eqs. (9.54b),

dt

dλ
=

1
2∆

∂R
∂E

+ a2E cos2 θ . (9.91)

Averaging this expression over a cycle of θ motion, noting that the first term on the right-hand side

is independent of θ, and using Eq. (9.54b) gives

∆t
∆λ

=
1

2∆
∂R
∂E

+ a2E

(∫ θ+

θ−

cos2 θ√
Θ

dθ

)(∫ θ+

θ−

dθ√
Θ

)−1

=
1

2∆
∂R
∂E

+
∂∆Sθ/∂E

2∂∆Sθ/∂Q



272

=
1

2∆
∂R
∂E
− 1

2

(
dQ
dE

)
BS

. (9.92)

In the last step we have used the Bohr-Sommerfeld condition (9.84). Also according to Eq. (9.56a)

and Eq. (9.56c), we can find

t(θ)− t(θ−) =
∂

∂E

∫ θ

θ−

√
Θ(θ′)dθ′

+
1

2∆
∂R
∂E

(λ(θ)− λ(θ−)) , (9.93a)

λ(θ)− λ(θ−) =2
∂

∂Q

∫ θ

θ−

√
Θ(θ′)dθ′ , (9.93b)

where to derive these two equations, we can again use the fact that dλ = dθ/
√

Θ and also use the

definition of Θ; for the first we also make use of Eq. (9.91).

Finally, we insert Eqs. (9.93a), (9.93b), and (9.92) into Eq. (9.90) to find

∫ θ

θ−

γ˜̇t√
Θ
dθ′ = (−iγ)

[
∂

∂E
+
(
dQ
dE

)
BS

∂

∂Q

]
[iSθ(θ)] . (9.94)

Substituting Eq. (9.94) into the solution for A±θ in Eq. (9.89) gives that

A±θ =
exp

{
(±iγ)

[
∂
∂E +

(
dQ
dE
)

BS
∂
∂Q
]

[iSθ(θ)]
}√

sin θ
√

Θ
. (9.95)

The phase in this equation, however, is precisely the correction to the leading-order expression for

the phase eiSθ(θ) if we allow E and Q to be complex, where their imaginary parts are given by

ImE = −γ = −ωI , ImQ =
(
dQ
dE

)
BS

(−γ) . (9.96)

Through next-to-leading order, therefore, the θ portion of the wave is given by

A+
θ e

iSθ(θ) +A−θ e
−iSθ(θ) =

eiSθ(θ) + e−iSθ(θ)√
sin θ
√

Θ
, (9.97)

where E and Q used in Sθ are complex.

In the geometric-optics approximation, therefore, we have shown that we can account for the

amplitude corrections to the wave by allowing the conserved quantities, E and Q, to be complex

[with their imaginary parts given in Eq. (9.96)]. Furthermore, through the geometric-optics corre-

spondence, and the definition of AIlm in Eq. (9.30) we can confirm that AIlm = QI ; therefore, the

relationship

Q = Alm −m2 , (9.98)
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is true for a complex Q and Alm.

In closing, we note that at the same θ, the magnitude of the two components of the wave in Eq.

(9.95) are not equal. More specifically, the integral involving ˜̇t makes A+ have a larger amplitude at

θ < π/2 and a smaller amplitude at θ > π/2; A− has the opposite profile. Therefore, the net wave

function remains symmetric about θ = π/2.

9.4 Features of the spectra of Kerr black holes

In this section, we will use the WKB formula and the geometric-optics correspondence in the first

two sections of this paper to explain several aspects of the quasinormal-mode spectrum of Kerr

black holes. Specifically, we will explain the absence of damping for a significant fraction of modes

of extremal Kerr holes. We will also decompose the frequency into orbital and precessional parts and

explain a degeneracy in the spectra of Kerr holes in terms of a rational relation of these frequencies

when the corresponding photon orbits close.

9.4.1 Spherical photon orbits and extremal Kerr black holes

We will first review the properties of spherical photon orbits. These orbits can be found by setting

R(r) = R′(r) = 0 (see, e.g., [53]), and their conserved quantities are fixed by the radius of the orbit

r and the spin of the black hole a to be

Q/E2 = −r
3(r3 − 6Mr2 + 9M2r − 4a2M)

a2(r −M)2
, (9.99a)

Lz/E = −r
3 − 3Mr2 + a2r + a2M

a(r −M)
. (9.99b)

We will next discuss additional features of these orbits.

For a given spin parameter a, there is a unique spherical photon orbit with parameters (E , Lz,Q)

for any radius between the outermost and innermost photon orbits (the retrograde and prograde

equatorial photon orbits). Their radii (which we denote r1 for prograde and r2 for retrograde orbits)

are given by

r1 = 2M
[
1 + cos

(
2
3

arccos
(
−|a|
M

))]
, (9.100a)

r2 = 2M
[
1 + cos

(
2
3

arccos
(
|a|
M

))]
. (9.100b)

At each r1 ≤ r ≤ r2, the spherical orbit’s inclination angle reaches a maximum and minimum of θ±
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Figure 9.11: The values of r and cos θ+ of spherical orbits, for a/M = 0 (black, solid vertical line),
0.5 [red (light gray) dashed curve], 0.9 [blue (dark gray) dashed curve] and 0.99999 (black, solid
curve). Note that for a = 0, all such orbits have r = 3M , while for a = M , a significant fraction
reside at r = M .

(at which Θ = 0). These angles are given by

cos2θ± =[
2
√
M∆(2r3 − 3Mr2 +Ma2)− (r3 − 3M2r + 2Ma2)

]
r

a2(r −M)2
, (9.101)

which are equivalent to the turning points of the integral (9.17) (and, therefore, we use the same

symbols for these angles).

Using the geometric-optics correspondence between (E , Lz,Q) and (ΩR, µ, αRlm), we see that

equatorial orbits at r1 and r2 correspond to modes with µ = −1 and +1, respectively, or modes

with m = ±l and l� 1 (strictly speaking, though, µ = m/(l+ 1/2) never precisely reaches ±1). We

can also relate rp, the real root of Eq. (9.40), to the polar orbit and modes with m = 0. For orbits

between the equatorial and polar ones, we can use Eqs. (9.36a) and (9.36b) to obtain a µ between

−1 and +1. Then, only those modes that can be written as m/(l + 1/2) with the allowed integer

values of l and m correspond to a QNM (though the photon orbits that correspond to QNMs are a

dense subset of all photon orbits).

Note in Fig. 9.11 that for a ∼ M , a significant fraction of spherical photon orbits of different

inclination angles all have nearly the same radius, r ≈ M . Through the geometric-optics corre-

spondence, a large fraction of modes (a finite range of values of µ) relate to this set of modes with

r ≈ M . In Fig. 9.12, we explicitly show the relation between modes characterized by µ and their

corresponding spherical-photon-orbit radii (normalized by the horizon radius) for several values of

a/M of slightly less than unity. The radius exhibits an interesting transition between two kinds of

behaviors: for µ > µ∗ ≈ 0.744, the value of r is very close to M (the horizon radius for an extremal
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Figure 9.12: Radii of corotating spherical photon orbits as a function of µ, for a/M = 0.9 (black
solid line), 0.99 (red dashed curve), 0.9999 (blue dotted line). For extremal Kerr black holes, a
nonzero fraction of all spherical photon orbits are on the horizon.

Kerr black hole), and for µ < µ∗ the radii increase linearly. The orbits with µ > µ∗ have a range of

inclination angles. Their sin θ± span from 0.731 (at µ∗, the most inclined orbit) to 1 (at µ = 1, the

prograde equatorial orbit).

For the extremal black holes, therefore, a nonzero fraction of corotating spherical photon orbits

appear to coincide with the horizon in the Boyer-Lindquist coordinate system. Although the proper

distance between these orbits will not vanish (see [54]), this does not seem to be a coordinate effect,

because there is a definite physical change of the modes for these values of µ > µ∗. By comparing

with Fig. 9.12 with Fig. 9.5, we see that these orbits also have ΩI ≈ 0. A vanishing imaginary part

of the frequency corresponds to a vanishing of the radial Lyapunov exponent for this entire nonzero

region of spherical photon orbits. This, therefore, would lead to a curious effect for a highly spinning

black hole: for perturbations with µ ≥ µ∗, modes do not move away from or into the horizon very

quickly. If we were to solve an initial-data problem containing these modes, we would find that

they live for a long time. One subtlety here is that QNMs with low damping rates are generally

difficult to excite: the black hole excitation factor for a generic Kerr black hole can be proved to be

proportional to ωI (See [30] for Schwarzschild case and [55] for Kerr; see also [56] for Kerr). In the

long run the exponential factor e−iωIt over the linear factor ωI dominates and we would eventually

see these long-lived perturbations. Moreover, as these modes are centered around the equatorial

plane, we would see these perturbations escaping roughly near the equatorial direction. In fact [56]

showed that a long-lived emission in the form of superposed QNMs with zero decay results from the

perturbations of an extremal Kerr black hole; their work was for l = m modes only, and together

with our eikonal results for generic m can provide a basis for future studies of zero-decay modes.
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9.4.2 A mode’s orbital and precessional frequencies

In this part, we will define two frequencies associated with individual spherical photon orbits (the

orbital and precessional frequencies) and understand their connection to the real part of the QNM

frequency. We begin by noting that because spherical photon orbits have only two independent

degrees of freedom describing their motion [see, e.g., Eq. (9.99)], the orbit can be characterized

by two frequencies. The first is the θ-frequency, Ωθ, the frequency at which the particle oscillates

below and above the equatorial plane. During each θ-cycle, which takes an amount of time given

by Tθ = 2π/Ωθ, the particle also moves in the azimuthal (or φ) direction. If this angle is 2π for a

corotating orbit (m > 0) or −2π for a counterrotating orbit (m < 0), then there is no precession (and

these simple, closed orbits have effectively one frequency describing their motion, as the spherical

photon orbits of a Schwarzschild black hole do). The difference between the ∆φ and ±2π (its

precession-free value) we will denote as the precession angle,

∆φprec ≡ ∆φ− 2π sgnm, (9.102)

where sgnm is the sign of m. We can also associate the rate of change of φprec with a frequency,

Ωprec ≡ ∆φprec/Tθ = ∆φprecΩθ/(2π) . (9.103)

Both Tθ and ∆φprec can be computed from geodesic motion [see the formulas for Ωθ and ∆φprec in

Eq. (9.106)].

It is possible to perform a split of the real part of the QNM into two analogous frequencies. To

derive this split, start from a single ray, along which the phase of the wave must be constant. Also

suppose that the ray originates from θ− and ends at θ+ after traveling only one-half of a cycle of

motion in the θ direction. During this time, the statement that the phase is unchanged is that

0 = −ωRTθ/2 + (L− |m|)π +m∆φ/2 . (9.104)

Using (half of) Eq. (9.102), the real part of the frequency is

ωR = LΩθ(m/L) +mΩprec(m/L) . (9.105)

Note that Ωθ and Ωprec both depend on m/L.

More explicitly, given the orbital parameters (E ,Q, Lz), the quantities Tθ and ∆φ can be obtained

by computing

Tθ =
∂

∂E

∮ √
Θdθ +

1
2∆

∂R
∂E

∮
dθ√
Θ
, (9.106a)
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Figure 9.13: Orbital frequency, Ωθ, plotted against µ, for a/M = 0.3 [red (light gray) solid curve],
0.7 [blue (dark gray) solid curve], 0.9 (purple dashed line), and 1 (black dotted line). The orbital
frequency vanishes for a significant range of µ for extremal black holes.

∆φ = − 1
Lz

[
1− ∂

∂ log E

] ∮ √
Θdθ +

1
2∆

∂R
∂Lz

∮
dθ√
Θ
, (9.106b)

(expressions that hold for any spherical photon orbit—not simply orbits that satisfy the Bohr-

Sommerfeld condition) and the two frequencies are given by

Ωθ = 2π
(
∂

∂E

∮ √
Θdθ +

1
2∆

∂R
∂E

∮
dθ√
Θ

)−1

(9.107a)

Ωprec = Ωθ
∆φ
2π
− (sgnLz)Ωθ . (9.107b)

These can be expressed in terms of (E ,Q, Lz) using elliptic integrals (as was done in [47]), but we

will not carry this out explicitly.

For very slowly spinning black holes, a short calculation shows that

Ωθ ≈
1√

27M
=

√
M

r3
0

, (9.108a)

Ωprec ≈
2a

27M2
=

2S
r3
0

, (9.108b)

where r0 is the circular-photon-orbit radius for a Schwarzschild black hole, r0 = 3M , and S = aM .

The expression for Ωθ is the Keplerian frequency of the spherical photon orbit, and Ωprec = 2S/r3
0 is

the Lense-Thirring precessional frequency. In the slow-rotation limit, therefore, our formula recovers

Ferrari and Mashhoon’s result Eq. (9.2).

For any value of a, we can normalize Eq. (9.105) by L, and write

ΩR(a, µ) = Ωθ(a, µ) + µΩprec(a, µ) . (9.109)
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Figure 9.14: Precessional frequency, Ωφ, versus µ plotted identically to those curves in Fig. 9.13
representing the same black-hole spins. The precessional frequency approaches the horizon frequency,
ΩH , for a range of values of µ for extremal black holes.

In Figs. 9.13 and 9.14, we explore the two frequencies in the decomposition of ΩR by separately

plotting Ωθ and Ωprec, for different values of a.

For small values of a/M , Ωθ and Ωprec are consistent with the constant values predicted by

Eqs. (9.108a) and (9.108b). For larger values of a/M , Ωθ does not vary much as a function of µ

until a ∼ 0.7M ; for spins greater than this value, it is only for larger values of µ that Ωθ changes

significantly by decreasing from the equivalent values for a = 0. Finally, as a→M , Ωθ vanishes for

µ ≥ µ∗ ≈ 0.744. The precessional frequency, Ωprec, on the other hand, monotonically increases as

a function of µ even for small values of a/M ; as a → M , Ωprec grows to ΩH at µ ∼ µ∗, and stays

there for all values of µ > µ∗. For a ∼M and µ > µ∗, there is one additional feature worth noting:

because Ωθ ∼ 0 and Ωφ ∼ ΩH , this gives rise to the interpretation of the mode as a ray that sticks

on the horizon and corotates with the horizon at its angular frequency of ΩH ; moreover, there seems

to be no restoring force along the θ direction.

9.4.3 Degenerate quasinormal modes and closed spherical photon orbits

Finally, in this section, we interpret the degeneracy of QNM frequencies (of which Fig. 9.1 was an

example). Recall that in that figure, for a/M ≈ 0.7, we found pairs of modes such as (2, 2) and

(3,−2), (3, 2) and (4,−2), (4, 2) and (5,−2), and so on, all have approximately the same frequency.

For another, lower spin a/M ≈ 0.4, pairs like (3, 3) and (4,−3), (4, 3) and (5,−3), et cetera, have

approximately the same frequency.

The approximate degeneracy exists because the ratio between Ωθ and Ωprec can be rational, and

the photon orbits close. If for a certain mode of a black hole with spin a, with m and L, and for
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Figure 9.15: A diagram showing the spin parameters, a, and the ratios of the multipolar indexes
m/L, at which the orbital and precessional frequencies have a ratio of p/q. Although we only perform
our numerical calculations at a discrete set of m/L values (shown by the dots), in the eikonal limit,
each set of points for a given ratio of p/q approaches a continuous curve.

Figure 9.16: For black holes with spins a/M = 0.768, 0.612, and 0.502, the spherical photon orbits
with ωorb = 2ωprec, on the left, ωorb = 3ωprec in the center, and ωorb = 4ωprec on the right,
respectively. These orbits correspond to quasinormal modes in the eikonal limit with m/L = 0.5.
The top figures show the photon orbit, the red, solid curve, on its photon sphere (represented by a
transparent sphere). The dashed black line is the equatorial (θ = π/2) plane, which was inserted for
reference. The bottom figures are the same photon orbits, but plotted in the φ-θ plane, instead.
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integers p and q,

qΩθ
(
a,
m

L

)
= pΩprec

(
a,
m

L

)
, (9.110)

this means that there exists a closed spherical photon orbit that satisfies the conditions necessary

to correspond to a QNM. Equation (9.110) implies that

LΩθ
(
a,
m

L

)
+mΩprec

(
a,
m

L

)
=(L+ kq)Ωθ

(
a,
m

L

)
+ (m− kp)Ωprec

(
a,
m

L

)
. (9.111)

If Ωθ and Ωprec do not change much from µ = m/L to µ′ = (m− kp)/(L+ kq) (either because spin

is small—and therefore Ωθ and Ωprec depend weakly on µ—or because L� kq and m� kp), then

ωl,mR ≈ ωl+kq,m−kpR . (9.112)

Because ΩI depends similarly on µ, under the same conditions,

ωl,mI ≈ ωl+kq,m−kpI ; (9.113)

therefore, the modes are degenerate. It is also clear from Eq. (9.110) that the degeneracy happens

at the same time that the corresponding orbit is closed. The three series mentioned at the beginning

of the paper correspond to p/q = 4, 6, and 8, respectively (for k = 1).

9.4.3.1 Slowly spinning black holes

For a/M � 1, when Eqs. (9.108a) and (9.108b) apply, the condition for degenerate modes becomes

q
√

27
2p

=
a

M
� 1 (9.114)

(a statement that holds independent of µ). This implies that orbits of all inclinations close for these

spins.

For these specific spins, the QNM spectrum is completely degenerate, by which we mean that all

modes have the same decay rate, and all real parts of the frequencies are integer multiples of only

one frequency (similar to those of a Schwarzschild black hole). Using this approximate formula to

find a for the three instances of degeneracy in Fig. 9.1, we find

a4/1 ≈ 0.65M, a6/1 ≈ 0.43M, a8/1 ≈ 0.32M. (9.115)

These are not very far away from spins we found empirically.
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9.4.3.2 Generic black holes

For a generic spin parameter a, we will explain degeneracies that exist around a mode with L � 1

and |m| � 1. If the condition in Eq. (9.110) holds for p, q � min(L, |m|), then there is a range of

|k| � min(L, |m|)/max(p, q) in which there is a degeneracy between all (L+kq,m−kp) and (L,m).

These modes must be those close to the mode of indices (L,m), because, strictly speaking, it is only

the orbit corresponding to m/L which is precisely closed.

To find this degeneracy, we will search for spin parameters a for which Eq. (9.110) holds for

any set of indexes (L,m) and integers (p, q) that satisfy L, |m| � p, q (we generally either find

one or zero solutions). To visualize this degeneracy, for each pair (p, q), we will mark all possible

pairs of (m/L, a) in a 2D plot; the values of the spins are sufficiently dense for each value of m/L

that they form a smooth curve when plotted against m/L. Some of these curves are shown in

Fig. 9.15. Because for a fixed p/q the degenerate spins for a/M . 0.3 are nearly independent of

m/L, Eq. (9.114) should be an accurate prediction for spins less that value. As a concrete illustration

of the orbits corresponding to these degenerate modes, we plot closed orbits for m/L = 0.5 and for

a/M ≈ 0.5, 0.61, and 0.77 in Fig. 9.16. The values of the spins agree quite well with those predicted

in Fig. 9.15.

9.5 Conclusions and discussion

In this paper, we extended the results of several earlier works [9, 29, 40, 41] to compute the

quasinormal-mode frequencies and wave functions of a Kerr black hole of arbitrary astrophysical

spins, in the eikonal limit (l � 1). We focused on developing a greater intuitive understanding of

their behavior, but, in the process, we calculated expressions for large-l quasinormal-mode frequen-

cies that are reasonably accurate even at low l. Specifically, we applied a WKB analysis to the system

of equations defined by the angular and radial Teukolsky equations. Using a Bohr-Sommerfeld con-

dition for the angular equation, we related the angular separation constant to the frequency; when

we expanded the constraint to leading order in aω/l, we found an equally accurate and algebraically

simpler relation between the frequency and angular eigenvalue. We then used a well-known WKB

analysis on the radial Teukolsky equation to obtain expressions for the QNM frequencies and the

angular separation constants. The accuracy of the approximate expressions for the QNM frequency

are observed to be of order O(L−2) even though we had only expected a O(L−1) convergence for

the imaginary part.

Next, we reviewed that a massless scalar wave in the leading-order, geometric-optics approx-

imation obeys the Hamilton-Jacobi equations, which are very similar to the Teukolsky equations

when l � 1. By identifying terms in the Hamilton-Jacobi equations and Teukolsky equations, we

related the conserved quantities of the Hamilton-Jacobi equations to the eigenvalues of the sepa-
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rated Teukolsky equations. Specifically, we confirmed that the energy, angular momentum in the z

direction, and Carter constant in the Hamilton-Jacobi equations correspond to the real frequency,

the index m, and the angular eigenvalue minus m2 in the Teukolsky equations, respectively. Fur-

thermore, we found that the conditions that define a quasinormal mode in the WKB approximation

are equivalent to the conditions in the geometric-optics approximation that determine a spherical

photon orbit that satisfies an identical Bohr-Sommerfeld quantization condition.

By analyzing the next-to-leading-order, geometric-optics approximation, we showed that the

corrections to the amplitude of the scalar wave correspond to the imaginary parts of the WKB

quantities. Specifically, we saw that the imaginary part of the frequency is equal to a positive half-

integer multiplied by the Lyapunov exponent averaged over a period of motion in the θ direction.

The imaginary part of the angular eigenvalue is equal to the imaginary part of the Carter constant,

which is, in turn, related to an amplitude correction to geometric-optics approximation to the angular

function for θ.

We then applied these results to study properties of the QNM spectra of Kerr black holes. We

observed that for extremal Kerr black holes a significant fraction of the QNMs have nearly zero

imaginary part (vanishing damping) and their corresponding spherical photon orbits are stuck on

the horizon (in Boyer-Lindquist coordinates). We plan to study this unusual feature of extremal Kerr

black holes in future work. In addition, we showed that for Kerr black holes of any spin, the modes’

frequencies (in the eikonal limit) are a linear combination of the orbital and precession frequencies of

the corresponding spherical photon orbits. This allows us to study an intriguing feature of the QNM

spectrum: namely, when the orbital and precession frequencies are rationally related—i.e, when the

spherical photon orbits are closed—then the corresponding quasinormal-mode frequencies are also

degenerate.

We hope that the approximate expressions for the quasinormal-mode frequencies in this paper

will prove helpful for understanding wave propagation in the Kerr spacetime. This not unreasonable

to suppose, because Dolan and Ottewill have shown in [28, 30] that to calculate the Green’s function

analytically in the Schwarzschild spacetime, one needs to know analytical expressions for the fre-

quency of the quasinormal modes (specifically, this comes from the fact that the frequencies of the

quasinormal mode are the poles of the Green’s function in the frequency domain). We, therefore,

think that our approximate formulas could assist with the calculation of the Green’s function in the

Kerr spacetime, in future work.
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9.A The Taylor expanded Bohr-Sommerfeld condition

The Bohr-Sommerfeld constraint (9.17) gives us a way to evaluate Alm in terms of l, m, and ω; the

error in this approximation scales as 1/l. Because it is an integral equation, it is not particularly

convenient to solve, and it is beneficial to have an approximate, but algebraic expression for the

frequency of a QNM. With the benefit of hindsight, one can confirm through numerical calculations

of exact QNM frequencies performed using Leaver’s method that the parameter aω/l is numerically

a small number for all black hole spins. We can then expand the angular separation constant, Alm,

in a series in aω/l as Alm = A0
lm + δAlm, where A0

lm satisfies the equation

∫ θ0
+

θ0
−

√
A0
lm −

m2

sin2 θ
= π

(
l +

1
2
− |m|

)
, (9.116)

and at leading order, θ0
+, θ

0
− = ± arcsin[m/(l+ 1/2)]. One can easily verify that the solution to this

equation is the angular eigenvalue of a Schwarzschild black hole, A0
lm = (l+ 1/2)2 (note that we are

assuming l � 1). Now we will compute the lowest-order perturbation in aω/l, which turns out to

be quadratic in this parameter [i.e., (aω/l)2] below:

∫ θ0
+

θ0
−

δAlm + a2ω2 cos2 θ√
(l + 1/2)2 −m2/ sin2 θ

dθ = 0 . (9.117)

The integration limits θ+, θ− also can be expanded in a series in aω/l, and the lowest-order

terms of this series are given by θ0
+, θ

0
−; The perturbation in θ+, θ− would result in some quartic

corrections in aω/l [i.e., (aω/l)4] when we evaluate the integrals of Eqs. (9.117) and (9.116), because

the integrand is of order (aω/l)2 and the width of the correction in θ+, θ− are also of order (aω/l)2.

As a result, we will not need it here. Evaluating the integral in Eq. (9.117) is straightforward, and

we find

Alm = A0
lm + δAlm = l(l + 1)− a2ω2

2

[
1− m2

l(l + 1)

]
. (9.118)

Interestingly, the above expression is consistent with the expansion of Alm for small aω given in

[58], even in the eikonal limit, where aω is large. The reason for this fortuitous agreement is again
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that for QNMs of Kerr black holes of any spin, aω/l is small, and the expansion only involves even

powers of this parameter, (aω/l)2. Because the coefficients in the expansion of aω scale as 1/lk

for even powers of (aω)k and 1/lk+1 for odd powers of (aω)k, in the limit of large l, the two series

actually are equivalent in the eikonal limit. In principle, one can also expand and solve Eq. (9.17) to

higher orders in the parameter aω/l and compare with the expansion in aω in [58]; we expect that

the two series should agree. This would be useful, because it would effectively let one use the small

aω expansion in the eikonal limit, where the series would, ostensibly, not be valid.

Bibliography

[1] C. V. Vishveshwara, Nature 227, 936 (1970).

[2] K. D. Kokkotas and B. Schmidt, Living Rev. Relativity 2, 2 (1999),

http://www.livingreviews.org/lrr-1999-2.

[3] H.-P. Nollert, Classical Quantum Gravity 16, R159 (1999).

[4] V. Ferrari and L. Gualtieri, Gen. Relativ. Gravit. 40, 945 (2008).

[5] E. Berti, V. Cardoso, A. O. Starinets, Classical Quantum Gravity 26, 163001 (2009).

[6] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011).

[7] M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys. Rev. Lett. 27, 1466 (1971).

[8] S. Chandrasekhar and S. Detweiler, Proc. R. Soc. Lond. A 344, 441 (1975).

[9] V. Ferrari and B. Mashhoon, Phys. Rev. D 30, 295 (1984).

[10] B. F. Schutz and C. M. Will, Astrophys. J. 291, L33 (1985).

[11] S. Iyer and C. M. Will, Phys. Rev. D 35, 3621 (1987).

[12] E. W. Leaver, Proc. R. Soc. Lond. A 402, 285 (1985).

[13] H.-P. Nollert, Phys. Rev. D 47, 5253 (1993).

[14] P. P. Fiziev, Classical Quantum Gravity 27, 135001 (2010).

[15] D. Staicova and P. P. Fiziev, arXiv:1112.0310 (2011).

[16] E. W. Leaver, Phys. Rev. D 34, 384 (1986).

[17] Y. Sun and R. H. Price, Phys. Rev. D 38, 1040 (1988).

[18] http://www.ligo.caltech.edu/.



285

[19] http://www.ego-gw.it/public/virgo/virgo.aspx.

[20] F. Echeverria, Phys. Rev. D 40, 3194 (1989).

[21] E. E. Flanagan, and S. A. Hughes, Phys. Rev. D 57, 4566 (1998).

[22] A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D 75, 124018 (2007).

[23] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, and B. Brügmann,
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Chapter 10

Branching of quasinormal modes
for nearly extremal Kerr black
holes

We show that a nearly extremal Kerr black hole has two distinct types of quasinormal

mode frequencies. One set of frequency modes, the zero-damping modes, approach zero

decay in the extremal limit, and exist for all corotating modes (m ≥ 0). The other set, the

damped modes, retain finite decay even for extreme Kerr black holes, and they exist for all

counter-rotating modes (m < 0) and for a subset of corotating modes. We also show that

as the spin approaches its extremal value, when both zero-damping and damped modes

are present, the frequency spectrum bifurcates into two distinct branches. We numeri-

cally explore the specific case of the fundamental l = 2 modes, which have the greatest as-

trophysical interest, and also discuss the physical reason for the mode branching, in terms

of an analogy to the double-well harmonic oscillator of quantum mechanics. Finally, we

apply our new analytic expressions to confirm that many superimposed frequency over-

tones result in a power-law decay for the quasinormal ringing of a nearly extremal Kerr

black hole.

Based on paper by H. Yang, F. Zhang, A. Zimmerman, D. A. Nichols, E. Berti, and Y.

Chen, Phys. Rev. D 85, 040101 (R) (2013). Copyright 2013 by the American Physical

Society.

10.1 Introduction

Nearly extremal Kerr (NEK) black holes (BHs)—i.e., BHs for which the dimensionless angular

momentum a ≈ 1 in the geometrical units, G = c = M = 1, used in this paper—have drawn much

attention recently. Besides the mounting evidence for fast-rotating BHs in astronomy [1], NEK
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Figure 10.1: (Color online.) Phase diagram for the separation between the single- and double-branch
regime for NEK BHs. Large purple dots and gold crosses correspond to (l,m) pairs with only ZDMs
for perturbations with spin −2 and 0, respectively. Smaller blue dots correspond to (l,m) pairs
with both ZDMs and DMs. The green line is the phase boundary, computed using the eikonal
approximation.

BHs have considerable theoretical significance, e.g., in studies of weak cosmic censorship [2] and in

calculations of black-hole entropy [3].

For extremal Kerr BHs (a = 1) the near-horizon geometry reduces to AdS2× S2 [4]. This

observation led to the Kerr/CFT conjecture, which states that extremal Kerr BHs are dual to the

chiral limit of a two-dimensional conformal field theory [5]. In the past few years the extremal Kerr

spacetime and spacetimes violating the Kerr bound were shown to be unstable [6]. The stability

of BHs depends on the sign of the imaginary part of their complex free vibration modes, called

quasinormal modes (QNMs) [7]. Therefore the NEK QNM frequencies studied here can shed light

on the onset of extremal Kerr instabilities and prove useful in quantum field theory (for example, in

the calculation of two-point functions [8]).

Detweiler first used an approximation to the radial Teukolsky equation for NEK BHs (see also [9])

to show that QNMs with angular indices l = m have a long decay time [10]. Using Detweiler’s result,

Sasaki and Nakamura [11] calculated QNM frequencies analytically and Andersson and Glampedakis

proposed long-lived emission from NEK BHs [12]. However, there remains a long-standing contro-

versy in the literature about what set of QNMs decay slowly [13], whether long-lived radiation is

possible [14], and whether the imaginary part of the QNM frequencies vanishes as a→ 1 (compare

[11, 14] with [13]). Despite the importance of this problem, our present understanding of the QNM

spectrum of NEK BHs is inconclusive.

In a recent paper [15], some of us used a WKB analysis to relate Kerr QNMs in the eikonal limit

to spherical photon orbits around Kerr BHs. We pointed out that a subset of spherical photon orbits

of extremal Kerr BHs reside on the horizon and that the corresponding QNMs have zero damping.

This happens when the parameter µ ≡ m/(l + 1/2) & µc ' 0.74. Hod [16] computed µc in the
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eikonal limit, finding an approximate analytical result in agreement with [15].

In this work, we will show that the NEK geometry has two distinct sets of QNMs: zero-damping

modes (ZDMs) and damped modes (DMs). ZDMs are associated with the near-horizon geometry

of the BH, and they exist for all allowed values of l and m ≥ 0 (we classify modes using Leaver’s

conventions [17], but we use units in which the BH has mass M = 1). DMs are associated with

peaks of the potential barrier; in the eikonal limit, they exist when µ ≤ 0.74. This implies that

ZDMs and DMs coexist if 0 ≤ µ ≤ 0.74. Figure 10.1 is a “phase diagram” in QNM space, showing

the regions where either the ZDMs or both the DMs and the ZDMs exist for scalar and gravitational

perturbations with l ≤ 15. We will discuss this phase diagram further below. When the ZDMs and

DMs coexist, and when the BH spin a is small, for each (l, m) there is only a single set of QNMs

characterized by the overtone number n (where modes with larger n have stronger damping). For

larger a, this set of QNMs appears to break into two branches. The DM branch originates from

lower-overtone modes at smaller a, and its modes retain a finite decay rate as a → 1. The ZDM

branch originates from higher-overtone modes whose imaginary part becomes smaller than that of

DMs as a → 1, thereby forming the second branch. This is similar to the behavior of eigenmodes

in quantum mechanics when we parametrically split a single potential well into two potential wells

(cf. Fig. 10.2 below, as well as [18] for a somewhat analogous phenomenon in the theory of oscillations

of ultracompact stars).

10.2 Matched expansions

For ε ≡ 1− a� 1 and ω −m/2� 1, the radial Teukolsky equation can be written in a self-similar

form when (r − 1) � 1 and in an asymptotic form (by setting a = 1) when (r − 1) �
√
ε (cf.

[9, 10, 19]). The solutions of the Teukolsky equation in these regions (hypergeometric and confluent

hypergeometric functions, respectively) can be matched at
√
ε� (r−1)� 1 to provide the following

condition for QNM frequencies:

e−πδ−2iδ ln(m)−iδ ln(8ε) Γ2(2iδ)Γ(1/2 + s− im− iδ)
Γ2(−2iδ)Γ(1/2 + s− im+ iδ)

×Γ(1/2− s− im− iδ)Γ[1/2 + i(m− δ −
√

2ω̃)]
Γ(1/2− s− im+ iδ)Γ[1/2 + i(m+ δ −

√
2ω̃)]

= 1. (10.1)

Here we denote the eigenvalues of the angular Teukolsky equation by sAlm, and we define δ2 ≡

7m2/4 − (s + 1/2)2 − sAlm and ω̃ ≡ (ω −mΩH)/
√
ε [note that ΩH = a/(r2

+ + a2) is the horizon

frequency and r+ = 1 +
√

1− a2 is the horizon radius]. Scalar, electromagnetic, and gravitational

perturbations correspond to spin s = 0,−1,−2, respectively. If we choose the conventions that

Re(δ) ≥ 0 and Im(δ) ≥ 0 when δ2 is positive and negative, respectively, then the left-hand side of
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Figure 10.2: (Color online.) Plot of the potential term for a = 1, Eq. (10.6), for µ = 0.4, 0.5, 0.6,
0.7, 0.8, and 0.9 (black-solid, red-dashed, red-dotted, blue-dotted, blue-dashed, and magenta-solid
curves, respectively). The transition from single-branch to double-branch happens between µ = 0.7
and µ = 0.8.

Eq. (10.1) is usually a very small number, except when it is near the poles of the Γ-functions in the

numerator. When m ≥ 0, we can always find the solution near the poles at negative integers:

1/2 + i(m− δ −
√

2ω̃) ≈ −n, (10.2)

or

ω ≈ m

2
− δ
√
ε√

2
− i
(
n+

1
2

) √
ε√
2
. (10.3)

Note that the overtone index n of these ZDM frequencies need not correspond precisely to the same

overtone index of Kerr QNMs at lower spins. This set of solutions was first discovered by Hod [13].

The matched-expansion derivation shows that this set of modes depends on the near-horizon region

of the Kerr BH. Equation (10.3) is quite accurate when |δ| � 1, but when |δ| < 1 it needs an

additional correction [19]. However, the
√
ε scaling of the decay rate is still correct when |δ| < 1.

The solutions to Eq. (10.3) with m < 0 are those that arise from the symmetry ωl,m = −ω∗l,−m;

there are no solutions with m < 0 and Re(ω) > 0, when ω −m/2 is not small. Thus, the ZDMs

only exist in the corotating regime m ≥ 0.

Another set of solutions of Eq. (10.1) may exist when δ2 < 0 and 2iδ ≈ −n, with n a positive

integer. A more detailed analysis shows that, in this case, two nearly degenerate hypergeometric

functions have comparable contribution to the near-horizon solution [19]. As a result, Eq. (10.1) is

no longer valid when 2iδ ≈ −n. As a consistency check, we looked for solutions with 2iδ ≈ −n using

Leaver’s method and we did not find any.
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10.3 WKB analysis

The matched-expansion method assumes that ω ≈ m/2, but Eq. (10.1) does not hold for modes

which do not meet this requirement (i.e., DMs). To compute these modes, we will instead use a

WKB analysis in the eikonal limit l� 1. The radial Teukolsky equation when l� 1 is [15]

d2ur
dr2
∗

+ Vrur =
d2ur
dr2
∗

+
K2 −∆λ0

lm

(r2 + a2)2
ur = 0 , (10.4a)

with

K = −ω(r2 + a2) + am,
d

dr∗
≡ ∆
r2 + a2

d

dr
,

λ0
lm = Alm + a2ω2 − 2amω, ∆ = r2 − 2r + a2 . (10.4b)

We define ω ≡ ωR− iωI , and we note that the real and imaginary parts scale as ωR ∝ l and ωI ∝ l0,

while the angular constant scales as Alm ∝ l2. We only keep the leading-order terms in the eikonal

limit in the following discussion (therefore all s-dependent terms are neglected, and the Alm are real).

In Fig. 10.2 and below, we will refer to −Vr as “the potential”. According to the WKB analysis and

its geometric correspondence in [15], the position of the peak of the potential asymptotes the horizon

as a → 1 for some of the corotating modes. For this set of QNMs, one can verify that V ′′r (where

primes denote derivatives with respect to r∗) scales as ∆2; thus, the peak r0 of the potential becomes

broad as r0 approaches the horizon. It then follows that ωI ∝
√
V ′′r /∂ωVr → 0, and ωR → m/2 in

order to satisfy Vr(ωR, r0) = 0 for these modes. Assuming that r0 = 1 + c
√
ε for the nearly extremal

modes, where c is some constant, we can apply the eikonal equations in [15] and obtain

r0 ≈ 1 +
m
√

2ε
F0

, ωR ≈
m

2
− F0

√
ε√

2
, ωI ≈

(
n+

1
2

) √
ε√
2
, (10.5)

with F0 =
√

7m2/4−Alm(ω = m/2). Comparing this result with Eqs. (10.3) and (10.5), we can

see the two sets of frequencies are essentially the same modes, although obtained in very different

ways. Here F2
0 and δ2 differ by 1/4, which is reasonable because in the eikonal limit F0 ∝ l and

δ ∝ l (making 1/4 a higher-order correction).

To build intuition about F0 and δ, we look at Vr for extreme Kerr BHs, with ω replaced by m/2:

Vr = L2 (r − 1)2

(r2 + 1)2

[
(r + 1)2

4
µ2 − α(µ) +

3
4
µ2

]
, (10.6)

where L ≡ l + 1/2 and α(µ) ≡ Alm/L
2. According to the WKB analysis of the radial Teukolsky

equation [20], the QNM frequencies are determined by the peak of the potential. As shown in

Fig. 10.2, when µ is large the maximum of the potential is at the horizon, r = 1, as expected for
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ZDMs. As µ decreases and falls below some critical value µc, the peak moves outside the horizon,

and the horizon becomes a local minimum of the potential. At the peak ωI is nonzero because

d2Vr/dr
2
∗|r0 6= 0, so we have DMs. The criterion for having no peak outside the horizon is

(r + 1)2

4
µ2 − α(µ) +

3
4
µ2 > 0 for r = 1 , (10.7)

i.e., F2
0 > 0 (or δ2 > 0). The values at which F2

0 (or δ2) vanish lead to the condition for the critical

µc: α(µc) = 7
4µ

2
c . If we use the approximation α(µ) ≈ 1−a2ω2(1−µ2)/(2L2) [15], this will reproduce

Hod’s approximate analytical result µc ≈ [(15 −
√

193)/2]1/2 [16]. We can obtain the exact µc (in

the eikonal limit) by inserting α(µc) = 7
4µ

2
c into the Bohr-Sommerfeld condition for α derived in

[15]: ∫ θ+

θ−

√
α− µ2

sin2 θ
+
µ2

4
cos2 θ = (1− |µ|)π, (10.8)

where θ+ = π−θ− and θ− = arcsin(
√

3−1) are the angles at which the integrand vanishes. Therefore

we have

µc =
1

1 + I/π
, I =

∫ θ+

θ−

dθ

√
7
4
− 1

sin2 θ
+

1
4

cos2 θ, (10.9)

which yields the numerical value µc ' 0.74398. In the eikonal limit, when µ > µc NEK BHs have

only ZDMs (“single-phase regime”) ; when 0 ≤ µ ≤ µc, both DMs and ZDMs exist (“double-phase

regime”).

10.4 Phase boundary

Although there is a clear criterion for determining the boundary between the single-phase regime

and the double-phase regime in the eikonal limit (when µ < µc, the peak of the potential no longer

resides on the horizon) it is not immediately clear if a similar criterion holds when l is small. For

scalar perturbations, however, we can write the radial Teukolsky potential for extreme-Kerr BHs

with generic l,m, under the assumption that ω = m/2 (and, therefore, the 0Alm remain real for the

ZDMs):

Vr =
(r − 1)2

(r2 + 1)2

[
(r + 1)2

4
m2 − 0Alm

]
+

(r − 1)2

(r2 + 1)2

[
3
4
m2 +

(r − 1)(2r2 + 3r − 1)
(1 + r2)2

]
. (10.10)

It is not difficult to see that there is still no peak outside the horizon when 7
4m

2 > 0Alm, or

F2
0 > 0. For electromagnetic and gravitational perturbations the potential terms −Vr are complex

functions, thereby making the positions of their extrema more difficult to define. Detweiler [21],
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however, has shown that the radial function can be transformed so that it satisfies a differential

equation with a real potential. Using this potential, the criterion to exclude peaks outside the

horizon is [19]:

F2
s ≡

7
4
m2 − s(s+ 1)− sAlm

(
ω =

m

2

)
> 0. (10.11)

Note that this expression respects the pairing symmetry −sAlm = sAlm + 2s, and that for all s,

F2
s and δ2 differ from each other only by 1/4. For s = 0,−2 and 2 ≤ l ≤ 100, we have searched

all QNMs numerically and have not found any mode simultaneously satisfying δ2 < 0 and F2
s > 0;

therefore, the sign of δ2 also determines whether a peak exists outside the horizon. In addition, we

have used Leaver’s continued-fraction algorithm to determine the phase boundary numerically. As

shown in Fig. 10.1, the actual phase boundary matches the criterion predicted by the eikonal limit,

µ = µc. In addition, for scalar and gravitational perturbations, we find numerically that modes are

in the single-phase regime when F2
s > 0 for all l ≤ 15. This reinforces our physical understanding

that DMs are associated with a peak of the potential outside the horizon, while ZDMs are somewhat

similar in nature to the s-modes in ultracompact stars [18].

10.5 Bifurcation

10.5.1 Numerical investigation

Schwarzschild and slowly spinning Kerr BHs have a single set of QNMs for each l,m that are

characterized by their overtone number n. If the ZDMs originate from modes at higher-n than the

DMs when the BH spin is low, then when the spin increases beyond a critical value as = 1 − εs, a

single set of QNMs may split into two branches.

We numerically investigate this bifurcation effect by examining the complex QNM frequency

plane to search for solutions of Leaver’s continued-fraction equations [17, 19]. In Fig. 10.3, we plot

the contours of constant value of the logarithm of the continued-fraction expansion, truncating at

N = 800 terms. The QNM frequencies correspond to the local minima of this sum, where the

contours cluster. The shading indicates the value of the fraction, with darker values nearly zero.

When µ < µc, a single set of QNMs splits into two branches for increasing a (see the left-hand

panels of Fig. 10.3, where l = 10, m = 7, as the spin increases from a = 0.9990 to a = 0.9999 from

the upper panel to the lower). The ZDM branch is quite accurately described by Eq. (10.3); the

imaginary part of the ZDMs scales like
√
ε, and they move towards the real axis as ε→ 0. The DM

branch changes relatively little with increasing spin (it is expected that the WKB peak can only

support a finite number of modes [19], and there are only 3 DMs in the lower-left panel). In this

case, the WKB formulae of [15] are in good agreement with the lowest-overtone DM (marked with

a × in the figure).
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Figure 10.3: (Color online.) QNM frequencies with l = 10 for NEK BHs. Contours are constant
values of the logarithm of the continued fraction in the complex plane; darker shading indicates values
near zero. The + symbols are the ZDM predictions, a × is the lowest-overtone WKB prediction
from [15], and the box is centered at the WKB prediction from Eq. (10.5). No branching is observed
for modes with m = 8. Note that the closed contours with light shading have large values and do
not correspond to any QNM. Further discussion of the figure is in the text.

For µ > µc there is no bifurcation, and the modes are predicted fairly well by Eq. (10.3). We can

see this in the right-hand panels of Fig. 10.3, where l = 10, m = 8 and we again raise the spin from

a = 0.9990 to a = 0.9999. For the m = 8 modes, we also mark the leading-order WKB prediction of

Eq. (10.5) with a box. For the bifurcation effect, we can define a benchmark ac = 1− εc as the BH

spin at which the imaginary part of the fundamental ZDM is equal to that of the fundamental DM:

√
εc

2
√

2
(1 + 2|δ|) =

1
2

√
2V ′′r

∂ωVr

∣∣∣∣∣
r0

. (10.12)

The right-hand side of Eq. (10.12) can be evaluated using the approximate WKB formula in [15].

Since both sides of Eq. (10.12) depend on ε, we solve for εc iteratively; this converges quickly for

a variety of initial spins. By computing εc for l ≤ 15 and 0 < m < (l + 1/2)µc, we find that

L2εc = 10−3(11.6 − 3.12µ − 18.0µ2) is a reasonable fitting formula. For the l = 10, m = 7 case,

Eq. (10.12) gives εc ∼ 10−5, which is in agreement with numerical results; for the l = 2, m = 1 case

it gives εc ∼ 10−3.

In Fig. 10.3, however, it is clear that the bifurcation actually starts when the fundamental ZDM’s

imaginary part equals the imaginary part of the highest-overtone DM (in Fig. 10.3 it is the third

overtone). This happens at a spin as < ac. Because we do not have a good estimate of the number
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of modes in the DM branch (beyond the fact that it should be proportional to L and a function of

µ in the eikonal limit [19]) and because WKB techniques are not accurate for these high-overtone

DMs, finding an analytic solution for as remains an open problem.

10.5.2 Bound state formulation of the radial Teukolsky equation

The radial Teukolsky equation generally describes a scattering problem, in the WKB approximation.

When the boundary condition is specified as describing outgoing waves at infinity and ingoing waves

at the horizon, the corresponding eigenmodes are just QNMs. It is often interesting to transform

this scattering problem to a bound-state problem, as shown by Mashhoon [25] for slowly rotating

BHs in the eikonal approximation. Here we describe a transformation procedure for perturbations

of generic Kerr BHs that is similar to Mashoon’s for slowly rotating BHs. For generic Kerr BHs, the

radial Teukolsky equation is given in Eq. (10.4a) (with general s). The angular eigenvalue can be

expressed as a function of L ≡ l + 1/2, m, and ω: Alm = A(L,m, ω, a). After the transformations:

r → −ir,M → −iM,m→ −im,L→ −iL,

a→ −ia, s→ s, ω → Ω , (10.13)

the new radial equation becomes

d2u

dr2
∗
−

[
K̃2 + 2s(r −M)K̃ −∆(4ωrs+ λ̃slm)

(r2 + a2)2

]
u

+
[
G2 +

dG

dr∗

]
u = 0 , (10.14)

K̃ = Ω(r2 + a2)−ma, (10.15)

λ̃slm = −A(−iL,−im,Ω,−ia) + a2Ω2 − 2maΩ . (10.16)

Note in the equation above we restored the black hole mass M , because it is also transformed.

Because the angular separation constant has the functional form, A(L,m, ω, a) = A(L,m/L, aω/L),

then A(−iL,−im,Ω,−ia) and λ̃0
lm are real if Ω is real. Now Eq. (11.21) describes a bound state

problem; when r∗ → ±∞, the wavefunction asymptotes to eΩr∗ or e−(Ω−ma/(2Mr+))r∗ . The eigen-

value Ω = Ω(L,m, n, a) should be a real-valued function depending on L, m, and a (n is the overtone

number). Knowing the functional form of Ω, we can then apply the inverse transform to obtain ω:

ω = ωR − iωI = Ω(iL, im, n, ia, iM) . (10.17)
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As an example of this idea, we shall take the formula for the QNM frequency in the eikonal limit

and study the DMs. In this case, A(−iL,−im,Ω,−ia) = −A(L,m,Ω, a) and Eq. (11.21) becomes

d2u

dr2
∗
−

[
K̃2 −∆(A+ a2Ω2 − 2amΩ)

(r2 + a2)2

]
u =

d2u

dr2
∗
− Vru = 0 (10.18)

where we have only kept leading-order terms in L. Because the potential well is very deep as L� 1,

the fundamental mode and the first few overtones should be located near the bottom of the potential

well: Vr(Ω0, rpeak) = ∂rVr(Ω0, rpeak) = 0. We shall Taylor expand Vr near its extrema:

Vr(Ω0 + δΩ, r∗peak + δr∗) ≈ ∂ΩVrδΩ +
1
2
V ′′r δr

2
∗ , (10.19)

where primes denote derivatives with respect to r∗. The new equation becomes

d2u

dr2
∗

=
(
∂ΩVrδΩ +

1
2
V ′′r δr

2
∗

)
u . (10.20)

This is now a standard bound-state eigenvalue problem, and the solution is

δΩ =
(
n+

1
2

) √
2V ′′r

∂ΩVr
, (10.21)

or

Ω = Ω0 +
(
n+

1
2

) √
2V ′′r

∂ΩVr

=
1
M

[
Lω0(µ) +

(
n+

1
2

)
ω1(µ)

]
. (10.22)

It is then straightforward to obtain

ω = Ω(iL, im, n, ia, iM)

= Ω0 − i
(
n+

1
2

) √
2V ′′r

∂ΩVr
, (10.23)

which agrees with the eikonal limit QNM formula in [20].

Besides DMs, the ZDMs can also be examined in the dual bound-state picture. For simplicity,

we focus on scalar perturbation s = 0 and make the approximation that A → −A. 1 After the

transformation in Eq. (10.13), the near-horizon-limit Teukolsky equation becomes:

y2 d
2ur
dy2

+ y
du

dy
−

[
ω̃2 +

2
√

2my
1− y

(
ω̃ − m√

2

)
+

2F2
0 y

(1− y)2

]
ur = 0 (10.24)

1In reality A → −A′,F2
0 → F2

0
′

and A′ 6= A for generic s, l,m, and the value of A′ can be obtained using the
expansion in [28]. Here for illustration purposes we take the approximation A′ = A.
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Figure 10.4: l = 2, m = 1, s = 0, ZDM wavefunctions in the bound-state picture. Black solid, red
dashed, blue dashed, blue dotted and magenta solid lines correspond to n = 0, 1, 2, 3, 4 respectively.
The wavefunctions approach 0 when r → r+ or

√
εr∗ → 0, and stay negligibly small for r− 1�

√
ε.

Therefore the wavefunction is bounded in the near horizon regime, as we expected. In addition, as
we increase the overtone n, the wavefunctions monotonically move away from the horizon. This is
a general feature for all ZDMs.

The solution can be written as Hypergeometric functions

ur = y−p(1− y)−q2F1(α, β, γ, y), (10.25)

but with

p = −ω̃/
√

2, q = −1/2− δ′,

α = 1/2 + (m+ δ′ +
√

2ω̄), β = 1/2−m+ δ′,

γ = 1 +
√

2ω̃, (10.26)

where y = e
√

2εr∗ and δ′ =
√
F2

0 − 1/2. The resonant (bound state) condition is still γ − β ≈ −n or

ω̃ ≈ 1√
2

(
n+

1
2

+m− δ′
)

(10.27)

which will transform back to Eq. (10.3) if we apply the inverse transformation of Eq. (10.13). In

Fig. (10.4) we plot the wavefunction for the first five overtones of the ZDMs with (l = 2, m = 1).

The wavefunction in the regime r − 1 �
√
ε can be obtained using the matching method as shown

in Sec (10.2). It is approximately zero, and is not shown in the plot. One can similarly evaluate the

DM wavefunctions in this dual picture, and see their support being close to the WKB peak, which

is well separated from these ZDMs as a→ 1. Therefore this bound-state transformation serves as a

useful technique to study mode bifurcation.
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10.6 Late time tails of NEK excitations

It was argued by Glampedakis and Anderson [26] that the perturbation of rapidly rotating black

holes decays as 1/t at late times. Their argument used the NEK QNM frequency formula which is

less accurate. Therefore it would be interesting to reconsider this problem taking advantage of our

current understanding of NEK QNM spectrum.

We will consider a generic scalar perturbation of a NEK spacetime at an initial Boyer-Lindquist

time slice, and we initially follow the calculation of [26] closely. Suppose we have initial data given

in terms of the initial scalar field values Φ(t = 0, r, θ, φ) and time derivative ∂tΦ(t = 0, r, θ, φ). This

gives a corresponding source function T which we can separate into angular harmonics, using the

spheriodal harmonics,

Tlm =
∫

sin θdθdφ S̄lm(θ)e−imφT (r, θ, φ) . (10.28)

By expanding Φ(x) in the frequency domain, we can write the scalar field at times t > r∗ + r′∗ by

integrating the source term using the radial Green function G(r∗, r′∗) for the radial function u(r).

The result is [26]

Φ(x) =
∑

l,|m|≤l

Φl(t, r, θ)√
r2 + a2

eimφ (10.29)

Φm =
1

2π

∫
dωdr′e−iωtSlm(ω, θ)

G(r∗, r′∗)Tlm(ω, r′)
(r′)2 + a2

. (10.30)

Focusing on the QNM contribution to the scalar field, we deform the contour of integration over ω

into the lower half plane. Each QNM frequency ωlmn is a simple pole in the lower-half plane, and

the contour is converted into a sum over the residues of these poles. For simplicity, we will assume

that the source is localized at a large radius and that the observer is also at a large radius. In this

case the contour integral resolves as

Φm ≈−
i

2

∫
dr′
∑
n

Aout
lmn

αlmn
e−iωlmn(t−r∗−r′∗)Slm

Tlm(r′)
iωlmn

(10.31)

where αlmn = dAin/dω |ω=ωlmn . The terms Aout and Ain are the amplitudes for the ingoing and

outgoing waves in the “in” wave solution,

uin ∼


e−ikr∗ , r → r+ ,

Aouteiωr∗ +Aine−iωr∗ , r → +∞ ,

. (10.32)

For the ZDMs, expressions for Ain and Aout can be obtained by using the matched-expansion tech-
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niques. The important point for the current discussion is that, keeping only the leading order terms

in ε� 1 and η � 1, we can write

− i
2
Aout

α

∣∣∣∣
ZDM

≈ C(m, δ)
eiδ ln 8ε+inπ

√
ε

n!Γ[−n+ 2iδ]
, (10.33)

where the constant C(m, δ) is only weakly dependent on the overtone number n, through higher order

terms in ε. Inserting this into Eq. (10.31) allows us to perform the sum over overtones explicitly,

Φm ≈ Ceiδ ln 8ε
√
ε

∫
dr′

e−imT/2−
√
ε/8T

r′
Slm

×
∑
n

e−n
√
ε/2T+inπ

n!Γ[−n+ 2iδ]
2Tlm
im

(10.34)

≈ Ceiδ ln 8ε

Γ[2iδ]

∫
dr′
√
ε e−imT/2−

√
ε/8T

1− e−
√
ε/2T

(
1− e

√
ε/2T

)2iδ

× Slm
2Tlm
im

. (10.35)

For early times, T > 0 and T
√
ε/2� 1, the integrand in Eq. (10.35) reduces to

e−imT/2
√

2
T
Slm

2Tlm
im

(√
ε/2T

)2iδ

. (10.36)

For a fixed r∗, this gives the ∼ 1/t dependence of the amplitude of the QNM ringing, provided

δ2 > 0. We see that the power-law decay is only valid for a short period of time, which is ∼ 1/
√
ε.

At larger times, the decay transitions to an exponential decay, which is quickly dominated by the

n = 0 overtone decay rate. This explains recent results by Harms et al. [27], whose numerical

investigations of perturbed, rapidly rotating Kerr holes shows exponential decay at late times unless

ε→ 0. In this case, the limit of the integrand gives a decay for the response function equal to
√

2/T .

A careful examination of Fig. 17 of [27] show that for large spins at early times, while T
√
ε/2 < 1,

the asymptotic perturbation decays slower than exponential, and in fact seems to obey a roughly

1/T dependence (that figure actually plots the gravitational, s = −2 ringdown, but it is clear that

the spin dependence enters in only in the coefficient C).

As an example, we take for our initial data Φ̇0 = 0 and let Φm(0, r, θ) = Aδ(r − r0)S22(θ)δm2.

This simplifies the source term to l

Tlm = iωlmnAr
2δ(r − r0)δm2 , (10.37)
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Figure 10.5: The scalar QNM response to an initial perturbation, as described by Eq. (10.35) for
a scalar l = 2, m = 2 perturbation with a radial δ-function distribution. The initial amplitude is
normalized to unity. The blue curve plots the logarithm of <[Φ](T ), and its envelope is shown by a
black dotted line. Also plotted is a curve 1/T (purple dot-dashed line) and the decay envelope for
the n = 0 ZDM (red dashed line).

and the asymptotic scalar field at r →∞ is then

Φ(x) ≈ Ar0

r
S22(θ)e2iφ C ′eiδ ln 8ε

(1− e
√
ε/2T )2iδ

√
εe−iT−

√
ε/8T

1− e−
√
ε/2T

. (10.38)

In Fig. 10.5 we illustrate the time dependence of this QNM ringing by plotting the time dependent

amplitude of <[Φ] at some fixed radius and angle, with the amplitude normalized to unity at T =

t− r∗− r0∗ = 0, so that at this time the functional behavior limits to 1/T . Of course, the divergence

at T = 0 is an artifact of summing the full geometric series from n = 0 to n = ∞; the ringdown

amplitude is in fact finite and proportional to N if the sum is terminated at overtone number N .

We can similarly evaluate DM contribution to Eq. (10.31) according to the WKB QNM frequency

formulas [15]. It will be straightforward to see that DM will induce exponential fall off (∝ e−ωIt),

which will be buried under other parts of the tail (ZDM contribution, branch cut contribution and

so on).

10.7 Conclusion

We identified two different regimes in the NEK QNM spectrum. In the double-phase regime, we

found that the lowest ZDM becomes less damped than the lowest DM at some critical ac, for which

we provided an analytical estimate. For sufficiently large a, Eq. (10.3) is accurate at the least for

those ZDMs with smaller decays than the point where the branches bifurcate. We estimate that the

number of ZDMs below the bifurcation is ∝
√
εs/ε [19]. In the future, we would like to investigate

the behavior of the ZDM branch in the high-overtone limit [22], where these approximations break
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down.

Acknowledgement

We thank Sam Dolan for advice on the WKB method, and Zhongyang Zhang for discussions during

the early stages of this work. This research is funded by NSF Grants PHY-1068881 and PHY-

1005655, CAREER Grants PHY-0956189 and PHY-1055103, NASA Grant No.NNX09AF97G, the

Sherman Fairchild Foundation, the Brinson Foundation, and the David and Barbara Groce Startup

Fund at Caltech.

10.A Numerical methods

To compute the QNM frequencies more accurately when a . 1, we use a modified version of Leaver’s

continued-fraction algorithm [17] which we describe below. The most significant difference between

Leaver’s and our methods arises in the solution to the angular Teukolsky equation. When s 6= 0,

we use the series expansion of Fackerell and Crossman [23] (see also Appendix B of Fujita and

Tagoshi [24]) to express the angular eigenvalue in terms of a continued fraction that depends upon

the frequency of the mode. (Fackerell and Crossman expand the angular Teukolsky function in a

series of Jacobi polynomials, whereas Leaver finds his solution in terms of powers of 1+cos θ.) When

s = 0, we use Mathematica’s built-in function for the eigenvalue of the spheroidal harmonic equation

to find 0Alm. For the radial Teukolsky function, we compute Leaver’s expansion, but we specialize

his expressions for nearly extremal spins, a = 1−ε. We then compute the continued-fraction solution

for the frequency in terms of the angular separation constant. When explicitly find a QNM, we use

a nonlinear root-finding algorithm. We can then solve the set of two continued-fraction equations to

find the frequency and separation constant of a mode. Because nonlinear root finding often requires

an initial condition for the algorithm that is close to the actual solution, we seed the inital conditions

at nearly extremal spins using solutions at lower spins.

10.B Criteria for phase boundaries for electromagnetic and

gravitational modes

For electromagnetic and gravitational perturbations, the radial Teukolsky potential is a complex

function. To obtain a real potential and a well defined peak, we apply the transformations described
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in [21]. Before the transformation, the radial Teukolsky equation is

∆−s
d

dr

(
∆s+1 d

dr
Rs

)
+
K2 + is∆′K −∆(2isK ′ + λslm)

∆
Rs

= 0 , (10.39)

where Rs and u are related by u = ∆s/2(r2 + a2)s/2Rs. A new field variable X can be defined by

X = ∆s/2(r2 + a2)1/2

[
α(r)Rs + β(r)∆s+1 dRs

dr

]
. (10.40)

The functions α(r) and β(r) can be chosen such that the master equation satisfied by X has a real

valued potential. For electromagnetic perturbations (s = −1) the corresponding transformation is

α =
ã∆ + 1

κ1/2[Re(ã∆) + 1]1/2
, β =

b̃∆
κ1/2[Re(ã∆) + 1]1/2

, (10.41)

where

a = [4K2 + 2∆(iK ′ − λ)]/∆2κ, b = −4iK/∆κ ,

κ = (4λ2 − 16a2ω2 + 16aωm)
1
2 , (10.42)

and λ ≡ λslm ≡ Aslm + a2ω2 − 2amω. The potential term is

Vr =
−K2 + λ∆
(r2 + a2)2

− ∆r(∆r + 4Ma2)
(r2 + a2)4

+
∆[∆(10r2 + 2ν2)− (r2 + ν2)(11r2 − 10rM + ν2)]

(r2 + a2)2[(r2 + ν2)2 + η∆]

+
12∆r(r2 + ν2)2[∆r − (r2 + ν2)(r −M)]

(r2 + a2)2[(r2 + ν2)2 + η∆]2

− ∆(r −M)2η[2(r2 + ν2)2 − η∆]
(r2 + a2)2[(r2 + ν2)2 + η∆]2

, (10.43)

where

ν2 = a2 − am/ω, η = (κ− 2λ)/(4ω2). (10.44)

As with our analysis of scalar modes, we take the limits a→ 1 and ω → m/2 and check whether there

is a peak in the potential outside the horizon. After some calculation, we arrive at the condition for

the existence of such a peak:

−1Alm >
7
4
m2 . (10.45)
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For gravitational perturbations (s = −2) the transformation involves the functions

α =
2(a1∆2i1a2∆2 + |κ|)
|κ|(a1∆2 + |κ|) 1

2
, β =

2ib2∆2

|κ|(a1∆2 + |κ|) 1
2
, (10.46)

with

a1 =
8K4

∆4
+

8K2

∆3

(
M2 − a2

∆
− λ
)

+
4ωK
∆3

(3r2 + 2Mr − 5a2) +
12r2ω2 + λ(λ+ 2)

∆2
,

a2 =
−24ωrK2

∆3
− 4λ(r −M)K

∆
+ 4ωrλ+ 12ωM ,

b2 = −8K3

∆2
− 4K

∆

[
2(M2 − a2)

∆
− λ
]
− 8ω

∆
(Mr − a2) , (10.47)

and

κ = [λ2(λ+ 2)2 + 144a2ω2(m− aω)2 − a2ω2(40λ2 − 48λ)

+ aωm(40λ2 + 48λ)]
1
2 + 12iωM , (10.48)

and the new potential term is

Vr =
−K2 + ∆λ
(r2 + a2)2

+
∆(b2p′∆)′

(r2 + a2)2b2p
+G2 +

dG

dr∗
, (10.49)

where p = (a1∆2 + |κ|)− 1
2 . It turns out this potential gives the following criterion for existence of a

peak outside the horizon:

−2Alm >
7
4
m2 − 2 . (10.50)

There is another transformation listed in [21] which also gives a master equation with real-valued

potential. After repeating the calculation above for the alternative transformation, it can be shown

that Eq. (10.50) remains valid for the new potential. Combining Eq. (10.45), Eq. (10.50) and the

criterion for the scalar modes, the condition for generic spin of the perturbations can be summarized

by Eq. (10.11). If there is indeed a peak outside the horizon in the critical-BH-spin limit, it is often

helpful to view the radial Teukolsky equation as a bound-state problem, as discussed in Sec. 10.5.2.

For a standard bound state problem in quantum mechanics, no matter how shallow the potential

well is, there is always at least one bound state. For generic Kerr BHs (except Schwarzschild BHs),

however, the dual bound-state problem has more complicated dependence on the eigenvalue, and it

is nontrivial that any shallow potential well can support at least one bound state. In the original

scattering problem, this means that even if there is a potential peak outside the horizon, there may

not exist a DM associated with it. As the potential well becomes deeper and wider (δ2 becomes
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more and more negative), we know from WKB analysis that DMs must exist for these peaks. Based

on our numerical investigations of gravitational QNMs up to l = 15 (summarized in Fig. 10.1), the

presence of a peak outside the horizon is a necessary and sufficient condition for the existence of

DMs.
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Chapter 11

Scalar wave propagation in Kerr
spacetime

In this article we try to obtain an analytical understanding of the scalar Green function

of the Kerr spacetime. We first apply the spectral representation of the Green function,

and obtain an approximate form of the part of Green function due to quasinormal mode

contribution. This approximate analytical Green function diverges between points that

are connected by null geodesics, and recovers the four-fold singular structure of Green

functions that are seen in Schwarzschild [5] and other spacetimes [6]. This Green func-

tion also carries signatures of Kerr spacetime such as frame-dragging. We expect this

work to benefit the understanding of wave propagation in Kerr spacetime, and perhaps

the Kerr self-force problem in the long run.

Based on paper in preparation by H. Yang, A. Zimmerman, F. Zhang, and Y. Chen.

11.1 Introduction

Supermassive Black Holes (SMBHs), sometimes also referred to as Massive Black Holes (MBHs) are

the black holes with masses higher than 105M�; they are believed to exist in almost all galaxies.

The closest example, Sagittarius A*, is the one at the center of our own galaxy, discovered by

radio observations [1]. These stars usually are more than ∼ 1000 Schwarzschild radii away from the

SMBH, and possible to be driven much closer to the SMBH via the Kozai-mechanism [2] or or due

to chaotic 3-body interaction [3]. Once a star moves into orbits close enough to the central SMBH,

gravitational wave radiation takes over and the star will eventually merge into the SMBH due to

radiation reaction.

One way to compute the effects of radiation reaction for a small object moving in a SMBH

background (also referred as extreme mass ratio inspiral or EMRI) was proposed by Mino, Sasaki
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and Tanaka [4]. The basic idea is to express the tail part of the metric perturbation as the convolution

between Kerr gravitational Green function and the small object’s stress energy tensor, and hence

obtain the radiation reaction. In this formalism, it is physically clear how the test object sources

gravitational perturbation which propagates in the curved spacetime and back-reacts onto its source.

However, for realistic EMRI evolutions, it is highly nontrivial to obtain the Green function.

For a Schwarzschild background spacetime, Dolan and Ottewill [5] used a spectral method to

relate the scalar Green function to quasinormal modes. By adopting a matched expansion technique,

they managed to obtain an approximate analytical form of the Green function. Moreover, they

showed the Green’s function is singular on the lightcone, and that it has a four-fold singular structure

as δ(σ), 1/σ,−δ(σ),−1/σ (see Sec. V for detailed discussions), where σ is the Synge’s world function.

This four-fold singular structure matches the earlier expectation by Casals et al. [7, 8], which was

proved by using the Hadamard ansatz for the Direct part of the Green’s function. On the other

hand, Zenginoglu and Galley [10] used numerical methods to obtain the time-domain scalar Green

function in Schwarzschild background. They also observed the four-fold singular structure as caustic

echoes.

In this work, we focus on studying the scalar Green function for a generic Kerr background. We

use a spectral representation of the Green function similar to [5], and apply the WKB techniques

developed in [12] to compute the quasinormal mode (QNM) contribution to the Green function. We

will then show that this Green function is related to spherical photon orbits. In addition, we will

compare our analytical Green functions with numerical computations.

This paper is organized as follows. In Sec. 11.2 we discuss the spectral representation of the

scalar Green function. In Sec. 11.3 we review the WKB approximation for QNM frequencies and

wavefunctions which are useful for later computations. In Sec. 11.4 we explicitly obtain the so-called

excitation factors from WKB wave functions. We combine all results in Sec. 11.5, and deduce an

approximate formula for the scalar Green function. We then discuss its four-fold singular structure,

as well as its relation to trapped photons in spherical orbits. In Sec.V we compare our results with

numerical simulations for several configurations. In Sec. 11.6, we summarize our conclusions.

11.2 Spectral decomposition

In this section we review the spectral decomposition of the scalar Green function and discuss its

different components. In a generic spacetime, the scalar Green function satisfies the following equa-

tion:

2Gret(x, x′) =
1√
−g

∂µ
(√
−ggµν∂νGret

)
= δ(4)(x− x′) . (11.1)
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We only consider the retarded Green function Gret(x, x′), for which x′ lies on or within the future

lightcone of x. We shall use the Boyer-Lindquist coordinate, in which the line element is written as:

ds2 = −
(

1− 2Mr

ρ2

)
dt2− 4aMr sin2 θ

ρ2
dtdφ+

ρ2

∆
dr2 +ρ2dθ2 +sin2 θ

(
r2 + a2 +

2Ma2r sin2 θ

ρ2

)
dφ2 .

(11.2)

Here ∆ ≡ r2−2Mr+a2 and ρ2 = r2 +a2 cos2 θ, M is the mass of the background black hole and a is

its spin parameter. The scalar wave equation (11.1) in Kerr spacetime is separable in the frequency

domain, and we can write down the following spectral decomposition of the Green function (see

Appendix A for detailed derivations):

Gret(x, x′) =
1

2π
√
r2 + a2

√
r′2 + a2

∫
dωe−iω(t−t′)

∑
m

eim(φ−φ′)
∑
l

Slmω(θ)S∗lmω(θ′)G̃lmω(r, r′) .

(11.3)

For a = 0, the above expression clearly recovers the Schwarzschild limit in [5]. Here Slmω(θ) is the

spheroidal harmonic function; in [12], we obtained its analytical approximation in the case of l� 1

(we will also review this in Sec. 11.3). The function, G̃ is the radial Green function which satisfies

d2G̃

dr2
∗

+
[
K2 −∆λ0

(r2 + a2)2
−H2 − dH

dr∗

]
G̃ = −δ(r∗ − r′∗) , (11.4)

where

H = r∆/(r2 + a2)2, K = ma− ω(r2 + a2), (11.5)

dr∗

dr
=

(r2 + a2)
∆

, λ0 = Alm + a2ω2 − 2am , (11.6)

together with Alm being the eigenvalue of the angular Teukolsky equation (11.20) and in-going

(out-going) boundary condition at horizon (spatial infinity).

In order to solve for the Green’s function, it is useful to look at the homogeneous solutions of the

above equation. The in-going solution uin satisfies Eq. (11.4) but without the source term on the

right hand side. Moreover, uin satisfies the in-going boundary condition at the background black

hole’s horizon

uin(ω, r) =


e−iω̄r

∗
, r∗ → −∞ ,

C−lmωe
−iωr∗ + C+

lmωe
iωr∗ , r∗ →∞ ,

(11.7)

where ω̄ = ω−ma/(2Mr+) and r+ is the horizon radius. Similarly, we can define out-going solution
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uout which satisfies the out-going boundary condition at spatial infinity:

uout(ω, r) ≡


D−lmωe

−iω̄r∗ +D+
lmωe

iω̄r∗ , r∗ → −∞ ,

eiωr
∗
, r∗ →∞ .

(11.8)

The radial Green function can be constructed using the in-going and out-going homogeneous

solutions above

G̃lmω(r, r′) = −uin(r<)uout(r>)
Wlω

, (11.9)

with r< given by min(r, r′) and r> given by max(r, r′); the Wronskian Wlm is given by

Wlω = uin
duout

dr∗
− uout

duin

dr∗
. (11.10)

At some particular complex-valued frequencies ωlmn, the in-going wave solution uin also satisfies

out-going boundary condition at infinity: C−lmω = 0. Given the boundary condition, apparently this

solution must be a multiple of the out-going solution. In other words, uin and uout are degenerate

with each other at these frequencies. As a consequence, the outgoing wave solution uout must

correspondingly satisfy the ingoing wave condition at the horizon: D+
lmω = 0. This set of solutions

is called the Quasinormal Mode (QNM), and from construction it is easy to see that at these QNM

frequencies D−lωlmnC
+
lωlmn

= 1 [apply equation (11.7), equation (11.8) and the degeneracy condition].

We can plug Eq. (11.9) back to Eq. (11.3) to perform the integral over frequency ω. Similar to the

Schwarzschild case, this integral can be evaluated using the residue theorem and divided into three

pieces. The first piece (“direct part”) is the integral on the high frequency arc, it is expected to

quickly approach zero after the initial pulse [11]. The second piece is the integral on the branch cut

on the imaginary frequency axis, it contributes to the power-law decay at later times and is also

non-negligible at early times [6]. The final piece comes from residues at poles whose frequencies

correspond to those of the QNMs, and it is important only at early and mid times. In this work

we shall focus on the QNM contribution to the Green’s function and study its early to midtime

behavior. It has the following form (with uout replaced by uin for simplicity, as they are degenerate

at QNM frequencies):

GQNM(x, x′) =
1

2π
√
r2 + a2

√
r′2 + a2

×[
Re
∑
m

eim(φ−φ′)
∑
l

Slmω(θ)S∗lmω(θ′)
∑
n

Blmnũin(r)ũin(r′)e−iωlmn(t−t′−r∗−r′∗)

]
.

(11.11)

As appeared earlier, ωlmn is the quasi-normal mode frequency with spheroidal harmonic index l,m
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and overtone number n (except for near extreme Kerr black holes, which may have two branches of

QNMs). The coefficient Blmn is usually referred to as the “black hole excitation number ”, because

it is the multiplication constant characterizing each QNM’s contribution to the Green function. It

is given by

Blmn ≡

[
C+
lmω

2ω

(
∂C−lmω
∂ω

)−1
]
ω=ωlmn

. (11.12)

Apparently, Blmn depends on the gauge freedom of r∗: if r∗ → r∗ + C [see Eq. (11.6)], we have

Blmn → Blmne−2iωlmnC . In this paper, we will choose

r∗ = r +
2r+

r+ − r−
log
(
r

r+
− 1
)
− 2r−
r+ − r−

log
(
r

r−
− 1
)
, (11.13)

where r± = 1 ±
√

1− a2 are the outer- and inner-horizon radii. It is also easy to check that for

a = 0 the above expression reduces to the commonly used relation: r∗ = r + 2 log(r/2 − 1) for

Schwarzschild black holes. In Eq. (11.11), we have also used a normalized in-going wave solution

ũin(r) (see also [5])

ũin(r) ≡ uin(r)×
[
C+
lmωe

iωlmnr∗
]−1

(11.14)

such that it asymptotically approaches 1 when r → +∞. In the following sections, we will use WKB

analysis and matched expansion techniques to obtain approximate analytical forms of Slmω, ũin and

Blmn. After that we will evaluate the summation in Eq. (11.11) for GQNM(x, x′) and discuss its

implications.

11.3 QNMs in the eikonal limit

In order to evaluate the summation in Eq. (11.11) to obtain the QNM part of the Green function,

we have to insert the frequencies and wavefunctions of all QNMs. While the exact frequencies and

wavefunctions can only be obtained numerically, analytical approximations for them are available

in the eikonal limit l � 1. In this section, we will review the WKB analysis on Kerr BH’s QNM

frequencies and wave functions based on [12]. The same technique will be applied in the next section.

Before we proceed, let us define a set of variables for later convenience: L ≡ l+1/2, N ≡ n+1/2

(where n is the overtone number), β ≡ m/L. In the eikonal limit, QNM frequencies are given by

ωlmn = ωR − iωI = Lf(β, a)− iNλ(β, a) +O(1/L) (11.15)

The function dependence of f(β, a) and λ(β, a) can be found in [12] (in which f, λ are referred as

ΩR,ΩI respectively). In the case of a Schwarzschild background with a = 0, f = λ = 1/
√

27, they

are both constants. In fact, for generic Kerr black holes, the function f(β, a) can be determined by
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the orbital and precession frequencies of some particular spherical photon orbit (β can be viewed as

parameterization of all spherical photon orbits), while λ(β, a) is given by the Lyapunov exponent

of the same orbit. This correspondence gives a geometric meaning to QNMs and interested readers

can find more details in [12].

11.3.1 The radial wavefunction

As shown by Teukolsky [9], the angular and radial dependencies can be separated in the frequency

domain. QNM wave functions can also be approximated analytically using WKB analysis. The

radial wavefunction uin describes a scattering problem

d2uin

dr2
∗

+Q(ω, r)uin =
d2uin

dr2
∗

+
K2 −∆λ0

(r2 + a2)2
uin = 0 . (11.16)

It is easy to see that Q(ω, r) is on the order of L2 and lower order terms of L have been dropped

out from the potential (Here ω is a QNM frequency). It is natural to apply a WKB expansion with

expansion parameter scaling as 1/L:

u(r) ∼ eS0+S1+...

S0 = ±i
∫ r∗√

Q(ω, r)dr∗,

S1 = −1
4

log[Q(ω, r)] . (11.17)

S0 contributes mostly to the phase and S1 contributes mostly to the amplitude. Since S0 scales

as L and S1 scales as logL, the phase varies much faster than the amplitude. In addition, because

ω = ωR − iωI is a complex number and ωR ∝ L1, ωI ∝ L0 (ωR � ωI), Q(ωlmn, r) is mostly real

and S0 also contains a relatively small real part, which contributes to the amplitude factor. We

can single it out by further expanding Q(ωlmn, r) as Q(ωR, r)− iωI∂Q/∂ω and correspondingly S0

becomes

S0 ≈ ±i
∫ r∗√

Q(ωR, r)dr∗ ±
∫ r∗ 1

2
∂ωQ|ωRωI√
Q(ωR, r)

dr∗ , (11.18)

and for obvious reasons we only keep the leading order term for S1

S1 ≈ −
1
4

log[Q(ωR, r)] . (11.19)

According to [12] (also see Fig. 11.2), Q(ωR, r) is a positive function except at its extrema

(also referred as the peak of the potential in [12]), where r = rpeak and Q(ωR, rpeak) = 0. It is

important to notice that this WKB analysis breaks down near the peak of the potential function

where Q(ωR, rpeak) → 0. This means Eq. (11.17) only works well outside the peak regime, and we
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need a separate treatment for the wavefunction in the peak regime to connect to solutions on both

sides of the peak. This matched-expansion procedure will be carried out in the next section, where

we work out the “black hole excitation factor”.

11.3.2 The angular wavefunction

The angular Teukolsky equation has the following form

d

sin θdθ

(
sin θ

duθ
dθ

)
+ (a2ω2 cos2 θ − m2

sin2 θ
+s Alm)uθ

+
(
−2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ + s

)
uθ = 0 . (11.20)

where s is the spin index for the perturbation field: s = 0, −1, −2 corresponds to scalar, electromag-

netic and gravitational perturbations respectively. All the terms containing s in the potential are

sub-leading in L and we shall neglect them from now on. This angular Teukolsky equation can also

be written in a form suitable for WKB analysis. Define x ≡ log[tan(θ/2)], the angular Teukolsky

equation becomes
d2uθ
dx2

+ V θuθ = 0 , (11.21)

with

V θ = a2ω2 cos2 θ sin2 θ −m2 +Alm sin2 θ ≡ Θ sin2 θ . (11.22)

It is straightforward to show that this equation describes a bound state problem with V θ serving as

the potential well [12]. For x→ ±∞ (θ → π/0), V θ becomes negative and the wave solution tends

to decay to zero: uθ → e−|mx|, so the wavefunction is trapped inside the potential well. By applying

WKB expansion to the second order it is straightforward to obtain

uθ ≈
1

(Θ sin2 θ)1/4
e±i

R θ √Θdθ . (11.23)

Similar to the radial potential, we can expand Θ as ΘR + iΘI and they are separately given by

ΘR = a2ω2
R cos2 θ − m2

sin2 θ
+AR , (11.24)

ΘI = AI − 2a2ωRωI cos2 θ , (11.25)

where Alm = AR + iAI . Here AR ∝ L2 and AI ∝ L, and hence ΘR ∝ L2 and ΘI ∝ L. Using the

expansion for Θ, we can then separate the phase and amplitude contributions in the wavefunction

uθ, and write as

uθ ≈
1

(ΘR sin2 θ)1/4
e±i

R θ √ΘRdθ∓1/2
R θ ΘI/

√
ΘRdθ . (11.26)
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Figure 11.1: (Color online.) WKB approximated wavefunction for l = 10,m = 6 spherical harmonics.
The red dashed line corresponds to the WKB wavefunction described by Eq. (11.27), it blows up at
the classical boundary and values outside the boundary are set to zero. The blue dotted line is the
exact Ylm function. The solid black line corresponds to the solution we obtained by matching the
Airy function near the classical boundary with Eq. (11.27).

We recall that the solutions for Eq. (11.20) are the spin-weighted spheroidal harmonics. After

neglecting the spin index s, uθ should just be the spheroidal harmonic function Slm(ω, θ). More

precisely speaking, Slm(ω, θ) is a linear combination of the above two solutions

Slmω =
C

(ΘR sin2 θ)1/4
(ei

R θ
π/2

√
ΘRdθ−1/2

R θ
π/2 ΘI/

√
ΘRdθ + (−1)l+me−i

R θ
π/2

√
ΘRdθ+1/2

R θ
π/2 ΘI/

√
ΘRdθ) ,

(11.27)

where C is some constant which can be fixed by normalization condition
∫
SlmωS

∗
lmωdΩ = 1, or

2πC2

∫
dθ√
ΘR

(e−
R θ
0 ΘI/

√
ΘRdθ + e

R θ
0 ΘI/

√
ΘRdθ) = 1 . (11.28)

According to [12], dθ/
√

ΘR = dξ where ξ is the “Mino time”, and the integral is performed in

the “classical regime” where ΘR ≥ 0. In addition, we have

AI = 2a2ωRωI〈cos2 θ〉

= 2a2ωRωI

∫
dξ cos2 θ∫

dξ
= 2a2ωRωI

∫
dξ cos2 θ

ξ0
. (11.29)

As a result, Eq. (11.28) can be rewritten in a form that is related to geometric optics and spherical

photon orbits

2πC2

∫
one cycle

dξ(e−2a2ωRωI
R ξ
0 (cos2 θ−〈cos2 θ〉)dξ′ + e2a2ωRωI

R ξ
0 (cos2 θ−〈cos2 θ〉)dξ′) = 1 . (11.30)
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Because black hole “rotation” breaks parity symmetry, Slmω no longer satisfies the parity rela-

tion Slmω(π − θ, π + φ) 6= (−1)lSlmω(θ, φ) [ although for spherical harmonics Ylm(π − θ, π + φ) =

(−1)lYlm(θ, φ) is true].

As WKB approximation breaks down near the classical boundary ΘR(θ±) = 0, separate treat-

ment has to be taken if we want to extend the wavefunction outside the classical regime. In Fig.

11.1, we compare the wavefunction generated by Eq. (11.27) with exact spherical harmonics (for

simplicity, we take a = 0). The dashed red line is predicted by Eq. (11.27). It fits the exact spher-

ical harmonic function (blue dotted line) pretty well except near the classical boundary, where the

WKB approximation breaks down and the WKB wavefunction blows up. In order to take care of

the wavefunction near the classical boundary, we can expand Vθ as (x − x±)V ′ ≈ ∂xV |x±(x − x±)

and try to solve
d2u

dx2
+ (x− x±)V ′u = 0 . (11.31)

The solution turns out to be an Airy function,

u ∼ Airy[(2L2β2
√

1− β2)1/3(x− x±)] (11.32)

which can be matched with Eq. (11.27) in some buffer zone to fix its coefficient. In the end we

can just replace Eq. (11.27) with the above wavefunction near the classical boundary and obtain a

better estimate. The solid black line in Fig 11.1 is generated using this method, and it fits with Ylm

pretty well globally. Since one can show that the boundary treatment only contributes sub-leading

WKB terms for Green function, later in the paper we will just use Eq. (11.27) to approximate the

angular wavefunction.

11.4 Matched expansions

Given the frequency and wave function of each QNM, the last quantity that needs to be computed is

the “black hole excitation factor” Blmn defined in Eq. (11.12). This quantity determines the weight

of each QNM’s contribution to the Green function [Cf. Eq. (11.11)]. Because the amplitude of the

wave can be expressed as the convolution between the Green function and source, this “black hole

excitation factor” also determines the weights of each QNM excitation due to a source distribution.

According to Eq. (11.12), in order to compute Blmn, we have to obtain the frequency dependence

of the reflection coefficients of both in-going and out-going wave solutions (i.e. C−lωlmn and C+
lωlmn

).

As we recall from WKB analysis on radial Teukolsky equations in Sec. 11.3, the scattering potential

term Q(ωR, r) is approximately zero near its peak, and that is where all the WKB expansions fail.

In fact, the WKB approximation works in two separate regions: one on each side of the scattering

potential. In order to relate the boundary conditions at the horizon to those at spatial infinity we
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I II III IV V

Figure 11.2: (Color online.) Different regimes for the radial wavefunction. WKB analysis are valid
in regime I, II, IV and V. The scattering-peak regime is located at II,III and IV. Regime II and IV
are the buffer zones to match near-peak and WKB solutions.

have to connect the WKB solutions on both sides of the scattering potential. This can be done by

writing down a separate solution near the peak of the potential and then, matching it separately with

WKB solutions on both sides and then fixing the reflection coefficients. This matched expansion

procedure is also illustrated in Fig 11.2.

11.4.1 Wavefunction near the peak of the scattering potential

We start the matching procedure by solving the radial Teukolsky in the potential-peak regime

(regions II, III & IV in Fig. 11.2). Suppose the peak is located at r = rp or r∗ = r∗p. By definition,

we have
∂Q(ωR, r)

∂r

∣∣∣∣
r=rp

= 0 . (11.33)

Combing with the fact that the potential term also equals zero at its peak Q(ωR, rp) = 0 [12] 1, we

can Taylor-expand Q(ω, r) in the potential-peak regime (assuming ω = ωR − iωI + ε) [12],

Q(ω, r) =
1
2
Q′′0(ωR, rp)(r∗ − r∗p)2 +

∂Q

∂ω

∣∣∣∣
ωR

(ε− iωI)

=
1
2
Q′′0(r∗ − r∗p)2 + (n+

1
2

)
√

2Q′′0(−i+
ε

ωI
)

≡
√
kz2 + 2N

√
k(−i+

ε

ωI
) , (11.34)

where Q′′0 ≡ ∂2
r∗Q|r=rp is positive near the peak of the potential, and

z = (k)1/4(r∗ − r∗p) = (k)1/4(r − rp)
r2
p + a2

∆p
, k ≡ 1

2
Q′′0 ≡ κL2 . (11.35)

Since k ∝ L2, the rescaled radial position parameter z is proportional to
√
L. Therefore for small

1Note in the geometric correspondence picture, Q = Q′ = 0 is the condition for a massless particle to stay on the
unstable spherical photon orbit



316

but finite r − rp, in which case the leading order Taylor expansion is accurate, the corresponding z

goes from 0 to infinity as we take the eikonal limit L → ∞. In order to perform the matching, we

need to set boundary conditions for the peak-regime. This can be done by taking z → ±∞, which

is satisfied in region II and IV of Fig. 11.2.

Defining ψ ≡ ur as the radial wavefunction, with the new set of variables defined above, the

radial Teukolsky equation can be re-written in a more compact form

d2ψ

dz2
+
[
z2 + 2N(−i+

ε

ωI
)
]
ψ = 0 . (11.36)

The solutions of the above equation can be expressed by parabolic cylinder functions (see the ex-

pressions below). The two independent solutions are given by

ψ1 = Dn+η(z(−1 + i)), ψ2 = Dn+η(z(1− i)) , (11.37)

where η = iε/λ and n is the overtone number. In order to satisfy the ingoing boundary condition

at the horizon, we have to pick ψ1 as the solution (see the following section). In regime II and IV of

Fig.2, the asymptotic behavior of ψ1 is

ψ1 ≡


2n/2e−inπ/4|z|neiz2/2 , z → −∞ ,

2n/2e3inπ/4|z|neiz2/2 + ηΓ(n+ 1)(2π)1/2e−3iπ(n+1)/42−(n+1)/2|z|−(n+1)e−iz
2/2 , z →∞ .

(11.38)

11.4.2 WKB wavefunctions away from the peak of the scattering poten-

tial

We must match ψ1 with the WKB solution away from the peak of the scattering potential. Let us

recall the WKB solutions in Eq. (11.17), and single out part of the r dependence for later convenience:

u± =
1

(Q(ωR, r))1/4
|r∗ − r∗p|±(n+1/2)eS̄0 , (11.39)

where S̄0 is given by

S̄0 =


±i
∫ r∗
r∗p

√
Q(ωR, r)dr∗ ±

∫ r∗
r∗p

[
1
2

∂Q
∂ω |ωRωI√
Q(ωR,r)

− n+1/2
|r∗−r∗p|

]
dr∗ , z > 0 ,

±i
∫ r∗p
rp

√
Q(ωR, r)dr∗ ±

∫ r∗p
rp

[
1
2

∂Q
∂ω |ωRωI√
Q(ωR,r)

− n+1/2
|r∗−r∗p|

]
dr∗ , z < 0 .

(11.40)
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The r → rp limit of this solution should match with the z → ±∞ limit of ψ1. As discussed in

Sec. 11.3, the first integral in the above expression for S̄0 corresponds to the phase and the second

integral contributes to the amplitude. With the (r∗ − r∗p)±(n+1/2) being singled out, the amplitude

factor in S̄0 asymptotes zero in the r → rp limit. Taking the limit that r → rp but keeping |z| → ∞,
2, i.e, in the buffer zone II and IV, the WKB solution in Eq. (11.39) can be greatly simplified using

the rescaled radial position z:

u± = k−1/4

(
|z|
k1/4

)−1/2±(n+1/2)

e±iz
2/2 . (11.41)

It is worth pointing out that u+ is the “out-going” solution when r > rp and the “in-going”

solution when r < rp (and vice versa for u−). This is because
√
Q(ωR, r) ≈ k1/4z for z > 0 and

−k1/4z for z < 0. With this property, we will show that for QNMs u+ will be the only surviving

solution.

For generic frequencies, in order to compute the “black hole excitation factor”, we also have to

know the asymptotic behavior of u± in the limit r∗ → ±∞. For later convenience we will define the

following phase factor:

−ωRr∗p +
∫ ∞
r∗p

(
√
Q(ωR, r)− ωR)dr∗ ≡ Lα1(β, a) ,

ω̄Rr∗p +
∫ r∗p

−∞
(
√
Q(ωR, r)− ω̄R)dr∗ ≡ Lα2(β, a) . (11.42)

Here ω̄R ≡ ωR−ma/(2Mr+) is the radial frequency for QNMs approaching the horizon. The phases

α1 and α2 are both finite numbers, which have the physical meaning of the accumulated phase errors

at the position of the peak, if we were to extrapolate the |r∗| → ∞ wavefunctions to the near zone.

Similarly, we can define the accumulated amplitude factor as follows:

∫ r1

r∗p

[
1
2

∂Q
∂ω |ωRωI√
Q(ωR, r)

− N

r∗ − r∗p

]
dr∗ +N log(r1 − r∗p)− ωIr1 +

∫ ∞
r1

[
1
2

∂Q
∂ω |ωRωI√
Q(ωR, r)

− ωI

]
dr∗

≡ Nγ1(β, a) ,∫ r∗p

r2

[
1
2

∂Q
∂ω |ωRωI√
Q(ωR, r)

− N

r∗p − r∗

]
dr∗ +N log(r∗p − r2) + ωIr2 +

∫ r2

−∞

[
1
2

∂Q
∂ω |ωRωI√
Q(ωR, r)

− ωI

]
dr∗

≡ Nγ2(β, a) , (11.43)

where r1, r2 are two constants satisfying r1 > r∗p and r2 < r∗p. By taking the derivative of the

above expressions with respect to r1, r2, it is straightforward to show that γ1 and γ2 are independent

of the choices of r1, r2. We introduce extra terms N/(r∗ − r∗p) and ωI into the integrands to make

2For example, this can be achieved by requiring r∗ − r∗p ∝ L−1/4. In the L→∞ limit, obviously we have r → rp
and |z| → ∞.
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Figure 11.3: (Color online.) Amplitude and phase factors for different a and µ. Black solid lines
correspond to a = 0, they are flat because of the spherical symmetry. Red dashed lines correspond
to a = 0.4. Blue dotted lines correspond to a = 0.6. Magenta solid lines are for a = 0.9.

sure the integrals are well defined in the r → rp or |r∗| → ∞ limit.

We explore the dependence of α1, α2, γ1, γ2 on a and β in Fig. 11.3. For Schwarzschild black

holes with a = 0, the corresponding γ1, γ2, α1, α2 are all constants, because Schwarzschild QNMs do

not depend on β or azimuthal quantum number m. As a increases towards 1, all these phase and

amplitude factors quickly gain their dependence on β.

11.4.3 Matching solutions

The next step is to match the interior and exterior solutions in the buffer zone II and IV. The

solution ψ1 of the scattering-peak regime can be written as

ψ1 ≡


Cinu+ z → −∞ ,

Binu− +Boutu+ , z →∞ ,

(11.44)
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by comparing it with Eq. (11.41), we can read off the coefficients Cin, Bin, Bout,

Cin = k(n+1)/42n/2e−inπ/4, Bout = Cin(−1)n , (11.45)

Bin = ηΓ(n+ 1)(2π)1/2e−3iπ(n+1)/42−(n+1)/2k−n/4 . (11.46)

For QNMs η and ε are both zero. According to Eq. (11.45), Bin is zero and u+ is the only

surviving solution, as we expected. Now we can write down the asymptotic behavior of u+ near

horizon or spatial infinity:

u+ =


(ω̄R)−1/2e−iω̄lmnr∗+iLα2+Nγ2 , r∗ → −∞ ,

(ωR)−1/2eiωlmnr∗+iLα1+Nγ1 , r∗ → +∞ ,

(11.47)

and similarly for u− in the case of r∗ → +∞ (u− in the r∗ → −∞ limit turns out to be not useful

in our case);

u− = (ωR)−1/2e−iωlmnr∗−iLα1−Nγ1 , r∗ → +∞ . (11.48)

By comparing Eq. (11.47) and Eq. (11.48) with Eq. (11.7), Eq. (11.44) and Eq. (11.45), we can

show that

C+
lmω =

√
ω̄R
ωR

Bout

Cin
eiL(α1−α2)+N(γ1−γ2)

C−lmω =
√
ω̄R
ωR

Bin

Cin
eiL(−α1−α2)+N(−γ1−γ2) . (11.49)

Therefore the back hole excitation factor is just given by

Blmn =

[
C+
lmω

2ω

(
∂C−lmω
∂ω

)−1
]
ω=ωlmn

= e2iLα1+2Nγ1
λ

2ωlmn
2nkn/2

√
i
√
k

π

(−i)n

n!

≈ e2iLα1+2Nγ1
λ
√
L

2ωR

√
i
√
κ

π

(−i2
√
κL)n

n!

≡ B√
L
e2iLα1

(−iξL)n

n!
(11.50)

with the constants B, ξ given by (note ωR = Lf(β, a)) ,

B =
eγ1ΩI
2ΩR

√
i
√
κ

π
, ξ = 2

√
κe2γ1 . (11.51)

As we neglected the sub-leading terms in L, the error of the expression for Blmn scales as Ln−3/2
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(relative error 1/L). For a = 0, it is straightforward to check that Blmn recovers the Schwarzschild

”black hole excitation factor” derived in [5]. For generic Kerr black holes, we can check our WKB

“black hole excitation factor” against the numerical value obtained using Leaver’s methods [13], and

the agreement is decent, even for a close to 1.

11.5 The Green fucntion

In this section, we will combine all previous results on QNM frequencies, wave functions and the

“black hole excitation factor” to obtain an approximate Green function in the analytical form.

11.5.1 Summation over of all QNM contributions and the singular struc-

ture

Now we are ready to evaluate the summation in Eq. (11.11) to obtain the Green function in the

eikonal limit. The spheroidal harmonic function Slmω(θ) in the eikonal is discussed in Sec. 11.3 and

the normalized “in-going” radial function ũin(r) can be expressed by (for now we are only interested

in the case r, r′ both outside potential barrier)

ũin(r) = U(r)[ρ(r)]ne−iLα̃1(r) , (11.52)

with U(r), ρ(r) and α̃1(r) given by

α̃1(r) ≡ 1
L

∫ ∞
r∗

(
√
Q(ωR, r)− ωR)dr∗ (11.53)

log(ρ(r)) ≡ −
∫ ∞
r∗

λ(β, a)

[
1
2

∂Q
∂ω |ωR√
Q(ωR, r)

− 1

]
dr∗ (11.54)

U(r) ≡ ω1/2
R

√
ρ(r)√
Q(ωR, r)

. (11.55)

Note that ρ(r) ∝ (r∗ − r∗p) and Q(ωR, r) ∝ k(r∗ − rp∗)2 when r → rp, so U(r) converges to a

constant when r → rp. Equation (11.11) contains the summation over n,m, l. We can first evaluate

the summation over overtone in Eq. (11.11)

∑
n

Blmne±
R θ
0 ΘI/

√
ΘRdθũin(r)ũin(r′)e−N(t−t′−r∗−r′∗)

=
B√
L
eiL(2α1−α̃1(r)−α̃(r

′))eλ/2T e±Υ(θ,θ′)/2U(r)U(r′)

×
∑
n

(−iκγ1ρ(r)ρ(r′)L)ne−nλ(β,a)T e±nΥ(θ,θ′) +O(Ln−1)
n!
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≈ B√
L
e
iL

h
ᾱ1(r)+ᾱ1(r′)−κγ1ρ(r)ρ(r

′)e−λ(β,a)T±Υ(θ,θ′)
i
eλ/2TU(r)U(r′)e±Υ(θ,θ′)/2 (11.56)

with T = t− t′ − r∗ − r∗′ and

Υ(θ, θ′) =
∫ θ

π/2

2a2ωRλ(β, a)(〈cos2 θ〉 − cos2 θ)√
ΘR

+
∫ θ′

π/2

2a2ωRλ(β, a)(〈cos2 θ〉 − cos2 θ)√
ΘR

ᾱ1(r) ≡ 1
L

∫ r∗

r∗p

(
√
Q(ωR, r)− ωR)dr∗ . (11.57)

After dealing with the summation over overtone n, we compute the summation over m next.

Now the relevant terms are

∑
m

e−iωRT+im(φ−φ′)e±i
R θ
θ′
√

ΘRdθ̃eiL(ᾱ1(r)+ᾱ1(r′)−κγ1ρ(r)ρ(r
′)e−λ(β,a)T±Υ(θ,θ′))

× B√
L
eλ/2TU(r)U(r′)e±Υ(θ,θ′)/2 C2

(ΘR(θ) sin2 θ)1/4(ΘR(θ′) sin2 θ′)1/4
. (11.58)

All the terms in the first line are rapidly changing in phase, because the exponential indices

are all ∝ O(L). The functions in the second line also depend on m but they are slowly changing

in amplitude. In addition, we recall that β = m/L and we will apply the approximation that∑
m → L

∫
dβ, as L� 1. As a result, we can apply the method of steepest descent to evaluate the

summation, which basically says in the eikonal limit

∫
dβeiLg(β) ≈

√
2π

iLg′′(β0)
eiLg(β0) , (11.59)

with β0 being the extrema point of g(β): g′(β)|β0
= 0. In fact, one can view the above integral as a

simplified version of path integral, and in the classical limit L� 1, we only pick the paths near the

classical trajectory g′(β) = 0, where g(β) here is explicitly given by

Lg±(β) = −ωRT +m(φ− φ′)±
∫ θ

θ′

√
ΘRdθ + L[ᾱ1(r) + ᾱ1(r′)− κγ1ρ(r)ρ(r′)e−λ(β,a)T±Υ(θ,θ′)] .

(11.60)

As argued in [5], the Schwarzschild Green function becomes singular when all terms in the sum-

mation over l are resonant in phase. This can be translated into g(β0) = 2πj where j is an integer.

On the other hand, the Green function should be singular along the null geodesic [6]. This observa-

tion gives a consistent check of our method, by examining whether g(β0) = 2πj gives a null geodesic

connecting points (r, θ, φ) and (r′, θ′, φ′). It may be helpful to first look at some special cases:

1. Suppose r = r′ = rp(β0), and we have ᾱ1(r) = ᾱ1(r′) = ρ(r) = ρ(r′) = 0. Consequently

Lg(β) = −ωRT+Sφ±Sθ, and the requirement that g′(β)|β0
= 0 basically means that the stationary-
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phase trajectory is the Kerr spherical photon geodesic.

2. For a = 0, i.e., Schwarzschild spacetime, Eq. (11.60) agrees with the one derived by Dolan et

al. [5]. It is actually easy to see this point: when a = 0, only m(φ − φ′) ±
∫ θ
θ′

√
ΘRdθ = Sφ ± Sθ

in Eq. (11.60) depends on m and its extrema are just ±Lγ, where γ is the angle between (θ, φ)

and (θ′, φ′) on the photon sphere and it satisfies cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′). So

g(β0) = 2πj (j is an integer) reduces to Eq. (41) in [5], hence the results are consistent with each

other.

3. For arbitrary r, r′, we believe the optimal trajectory is a null geodesic connecting points

(r, θ, φ) and (r′, θ′, φ′). But since we made an approximation when computing the black hole excita-

tion number Blmn, Eq. (11.60) is only an approximate formula for the total phase factor and the best

way to demonstrate this point maybe through numerical investigation. Dolan et al. [5] encountered

the same problem for Schwarzschild Green’s function. They found that g(β0) = 2πj in Schwarzschild

gives a slightly different prediction to the geodesic requirement but nevertheless the error is very

small. In principle we can do the same thing here and demonstrate g(β0) = 2πj is also a good ap-

proximation for a geodesic in Kerr. This part of the numerical verification will be left to future work.

11.5.2 The Green function

In order to compute the Green function (not only its singular structure), we still need to evaluate

the summation in L. We will apply the trick in [5, 7] by converting the summation over L to an

integral. The QNM Green’s function under eikonal approximation is just

Geik = Re
∑
l

i1/2(χ+(l, x, x′)eiπ/4eiLg+(β0) + χ−(l, x, x′)e−iπ/4eiLg−(β0))

=
k=+∞∑
k=−∞

(−1)sRe
∫ ∞

0

dνe2πikν(χ+ie
iνg+(β0) + χ−e

iνg−(β0)) (11.61)

with χ±(l, x, x′) given by

χ±(l, x, x′) =
L

2π
√
r2 + a2

√
r′2 + a2

√
2π

Lg′′(β0)

×
{
|B|√
L
eλ/2TU(r)U(r′)e±Υ(θ,θ′)/2 C2

(ΘR(θ) sin2 θΘR(θ′) sin2 θ′)1/4

}
β=β0(x,x′)

. (11.62)

Since C ∝ L1/2 and ΘR ∝ L2, χ(l, x, x′) is independent of l and we can move it out of the
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integral in Eq. (11.61)

Geik = Re
s=∞∑
k=0

Ik (11.63)

where

Is′ =


∫∞

0
dν(−1)k/2

(
χ−e

ikπνeiνg−(β0) + iχ+e
−ikπνeiνg+(β0)

)
, k even ,

∫∞
0
dν(−1)(k+1)/2

(
χ+ie

i(k+1)πνeiνg+(β0) + χ−e
−i(k+1)πνeiνg−(β0)

)
, k odd .

(11.64)

The integral can be evaluated using the identity

∫ ∞
0

dνeiν(q+iε+) =
i

q
+ πδ(q) , (11.65)

where ε+ is a positive infinitesimal running constant and the Green function is singular when the

phase factor q becomes zero. Here we are only interested in the case that T > 0 (required for the

QNM sum to converge) and the singular time T increases with increasing m. Therefore we drop the

latter terms in Eq. (11.64) and it becomes

Re Ik =


(−1)k/2χ−πδ[πk + g−(β0)], k even ,

−iχ+(−1)(k+1)/2

π(k+1)+g+(β0) , k odd ,

(11.66)

which recovers the four-fold singular structure similar to the Schwarzschild background case [5] and

other spacetimes [6]. In addition, it confirms our earlier argument that the Green function becomes

singular when g(β0) = 2πj, where j is an integer.

11.6 Conclusion and future work

In this chapter, we applied a WKB method and obtained an approximate expression for the QNM

part of Kerr spacetime’s scalar Green function, which arises due waves scattering off the strong-

field-region of the Kerr black hole. An immediate next step of this work would be to compare our

analytical formula with numerical Green functions [14]. Besides the application in EMRI modeling,

we also think this Green function could be useful for electromagnetic (EM) observation from stars

near SMBHs. More specifically, if the star moves in the strong-gravity regime of the SMBH, it is

natural to expect a series of pulses to arrive at the earth at different times, as the EM signal can

orbit around the black hole a few times before propagating towards the earth. The time interval



324

between these pulses can be obtained by examining the singular structure of the Green function,

or equivalently by solving the geodesics in Kerr spacetime. More importantly, the shapes of these

sequential pulses depend strongly on the non-singular part of the Green function. As a result, given

the signal from a series of pulses, one can try to decode the information about the orbit of the star

as well as the spin of the central SMBH. In the future, we plan to explore the application of the

Kerr Green function in this direction.
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