Spatial, Temporal, and Chemical Aspects of Vapor Detection Using Conductive Composite Chemically Sensitive Resistors

Thesis by
Shawn M. Briglin

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California
2003
(Defended February 19, 2003)
When I first arrived at Caltech I was unsure of what group I wanted to join, but after I walked past the Lewis group labs for the first time, I was immediately certain of where I wanted to do my thesis research, and I’ve never regretted it. I am grateful to my thesis advisor, Prof. Nathan Lewis, whom I thank for his support and for his supply of many excellent suggestions. He’s there when you need him and not when you don’t... the two most important qualities in a thesis advisor and mentor.

Every member in the Lewis group and several other people at Caltech have also helped me out at some point, making it impractical to thank them all. Greg Sotzing and Mike Freund got me started, and I am indebted to both of them for getting me over the first few hurdles.

I thank my parents for teaching me so much when I was growing up. They provided me with just the right combination of science books, Lego’s™, and broken-down kitchen appliances necessary to prepare me for graduate school.

Contrary to what you see in film and television about how boring people are at places like Caltech, I met some unbelievably cool people there. They know who they are, and I thank them for the many diversions.
Abstract

We have investigated the vapor response properties of chemically sensitive thin film resistors prepared from conductor-insulator composites. A new sensor type was developed from alkylamine-capped gold nanocrystals, and films of this composite, which are composed of nanometer-scale gold cores separated by regions of insulating alkylamine chains, exhibit small reversible resistance increases upon exposure to vapors such as water, acetone, or toluene. However, these films exhibit large irreversible resistance decreases in exposure to vapors possessing the thiol (-SH) functionality. The resistance change is shown useful for determination of the mercaptan concentration, and readily permits the detection of methylmercaptan at concentrations as low as 4 ppb (parts per billion), and hydrogen sulfide at concentrations as low as 9 ppm (parts per million). We have also investigated the geometric, spatial, and temporal response properties of chemically sensitive resistors prepared from polymer-carbon black composites in exposure to common organic vapors. The reversible resistance responses of these detectors were evaluated with short rise-time pulses of vapor, and detectors formed from very thin (< 200 nm) films of polyethylene-co-vinyl acetate (PEVA)-carbon black composites produced steady-state responses within 17 ms for methanol exposures and within 90 ms for toluene, acetone, or n-hexane. In accord with Fickian diffusion, the response times of PEVA-carbon black detectors were proportional to the square of the film thickness, \(l \), in the range \(510 \leq l \leq 5700 \) nm, and the response vs. time profiles were well fit by a simple finite difference model based on Fickian diffusion. The temporal response also provides useful information for the identification or discrimination of solvent vapors beyond that available solely in the steady-state response employed in previous studies of this sensor type. We also demonstrate that there is an optimum detector volume to produce the highest signal/noise ratio for a given composite when exposed to a fixed volume of analyte vapor, and we show that useful information and optimizations can be obtained from the spatiotemporal response profile of an analyte moving in a controlled path across an array of chemically identical, but spatially nonequivalent, detectors.
Table of Contents

Acknowledgements... iii
Abstract.. iv
Table of Contents... v
List of Tables.. vii
List of Figures... viii

Chapter 1: Introduction.. 1-1

Overview.. 1-2
Organization of Thesis.. 1-6
References.. 1-7

Chapter 2: Detection of Mercaptan Vapors Using Thin Films of Alkylamine-
Passivated Gold Nanocrystals.. 2-1

Abstract... 2-2
Introduction... 2-3
Experimental... 2-7
Results and Discussion... 2-11
Conclusions.. 2-15
Acknowledgements... 2-15
Tables... 2-16
Schemes and Figures... 2-17
References.. 2-27

Chapter 3: Exploitation of Spatiotemporal Information and Geometric
Optimization of Signal/Noise Performance Using Arrays of Carbon Black-Polymer
Composite Vapor Detectors... 3-1

Abstract.. 3-2
Introduction... 3-3
Theoretical Considerations... 3-5
Experimental... 3-9
Chapter 4: Characterization of the Temporal Response Profile of Carbon Black-Polymer Composite Detectors to Volatile Organic Vapors

Abstract... 4-2
Introduction.. 4-3
Theoretical Considerations... 4-6
Experimental.. 4-10
Results... 4-19
Discussion... 4-23
Conclusions.. 4-28
Acknowledgements... 4-29
Tables... 4-29
Schemes and Figures.. 4-32
References... 4-49
Appendices.. 4-51
List of Tables

Chapter 2

Table 1 Standardized Human Olfactory Thresholds and Maximum Workplace Concentrations for Several Mercaptan Gases and Vapors .. 2-16

Chapter 3

Table 1 Responses, Noise, and S/N for Two Types of Polymer-Carbon Black Composite Detectors with Geometrically Optimized Form Factors.. 3-37
Table 2 Limits of Detection for Carbon Black Polymer Composite Detectors and Polymer Film SAW Detectors................................. 3-38

Chapter 4

Table 1 Parameters for, and Results of, Comparisons between Time Profiles of Calculated Responses and the Experimental Responses of Four Different Film Thickness PEVA Detectors......... 4-30
Table 2 Response Times and Effective Film Thickness Calculations for a Minimized Film Thickness PEVA Detector......................... 4-31
List of Figures

Chapter 2

Fig. 1 UV-VIS Absorbance Spectra of a Dodecylamine-Capped Gold Nanocrystal Film Sensor before and after Exposure to Propanethiol Vapor. ... 2-19
Fig. 2 Resistance vs. Time of a Typical Dodecylamine-Capped Gold Nanocrystal Sensor on Exposure to 4 ppb CH₃SH 2-20
Fig. 3 Resistance vs. Time of a Typical Dodecylamine-Capped Gold Nanocrystal Sensor on Exposure to 150 ppb CH₃SH 2-21
Fig. 4 Explanation of the Response Descriptor 2-22
Fig. 5 Response Descriptor vs. Concentration of CH₃SH 2-23
Fig. 6 Resistance vs. Time of a Dodecylamine-Capped Gold Nanocrystal Sensor on Exposure to 20 ppm Octanethiol Vapor 2-24
Fig. 7 Resistance vs. Time of a Dodecylamine-Capped Gold Nanocrystal Sensor on Exposure to 8.6 ppm H₂S 2-25
Fig. 8 Resistance vs. Time of a Dodecylamine-Capped Gold Nanocrystal Sensor on Exposure to Vapors of Acetone, Toluene, and Acetic Acid .. 2-26

Chapter 3

Fig. 1 Noise Power Spectral Density vs. Frequency for Seven Different Area PEVA Detector Films ... 3-45
Fig. 2 Relative Noise Power Spectral Density vs. Film Volume for Seven PEVA and Seven PCL Detector Films 3-46
Fig. 3 QCM Frequency Shift vs. Methanol and Hexane Concentration for PEVA and PCL Films ... 3-47
Fig. 4 Position Sensitive Responses of PEVA Detectors for Three Different Vapor Pressure Analyte ... 3-49
Fig. 5 Position Sensitive Responses of PEVA Detectors for Different Vapor Pressure Analyte as a Function of Time 3-51
Fig. 6 Resistance Response vs. Time for a PEVA Detector 3-53
Chapter 4

Fig. 1 Shapes of Short Vapor Pulses...4-35
Fig. 2 Experimental and Calculated Sensor Responses on an Ultrathin PEVA Detector Film..4-37
Fig. 3 Experimental and Calculated Sensor Responses on a 510 nm Thick PEVA Detector Film..4-39
Fig. 4 Experimental and Calculated Sensor Responses on an 870 nm Thick PEVA Detector Film..4-41
Fig. 5 Experimental and Calculated Sensor Responses on a 1030 nm Thick PEVA Detector Film..4-43
Fig. 6 Experimental and Calculated Sensor Responses on a 5700 nm Thick PEVA Detector Film..4-45
Fig. 7 Log-Log Plot of Sensor Response Times vs. the Squared Film Thickness..4-47