New Technologies Driving Decade-Bandwidth Radio Astronomy:

Quad-Ridged Flared Horn & Compound-Semiconductor LNAs

Thesis by
Ahmed Halid Akgiray

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California

2013
(Defended April 19, 2013)
Acknowledgments

For the last three and one half years, I have had the privilege and honor of working with Dr. Sander Weinreb, my research advisor. I have learned so much from his unparalleled technical knowledge, his research philosophy, and his incredible humility, generosity, and kindness. I thank him for patiently listening to me—whether the subject matter was technical or not—and sharing his insight. I consider myself extremely lucky to have known such a technical pioneer and a wonderful person, yet at the same time I am saddened to be closing this chapter of my life. I am forever indebted to Dr. Sander Weinreb, a one-of-a-kind advisor, mentor, and confidant.

To Dr. William Imbriale: I thank him for his invaluable help and useful feedback throughout my PhD research and also for finding the time to serve on my thesis committee. I would also like to express my gratitude to the other members of my thesis committee, Prof. Ali Hajimiri, Prof. David Rutledge, and Prof. Jonas Zmuidzinas, who found the time in their busy schedules to review my work and provide valuable feedback. I extend a special note of appreciation to Prof. Ali Hajimiri for allowing me to borrow test equipment from his laboratory. I would also like to thank Prof. Anthony Readhead for serving as my academic advisor.

To Stephen Smith, I am especially grateful for the daily discussions and his invaluable feedback on both topics of my research, his patience in listening to me on everything related to microwave engineering and beyond, and his willingness to share his in-depth technical knowledge and insight on technical and non-technical topics alike. His friendship will be dearly missed.

I would like to thank Hector Navarette for assembly of the low-noise amplifiers and discrete transistors described in the second part of this thesis. I also appreciate the expert machining work of Mike Martin-Vegue, who fabricated all of the quad-ridged flared horns presented herein.

To Christopher Beaudoin, I thank him very much for carrying out the first on-telescope tests of the quad-ridged horn on a very long baseline interferometry antenna and demonstrating to the wider radio astronomy community its potential. He is not only our most loyal customer of the quad-ridged flared horns, but also a close collaborator with whom I enjoyed working.

A large portion of the second part of this thesis would not have been possible without the generosity of Dr. M. Rocchi of OMMIC. I am grateful to him for letting us evaluate our low-noise amplifier designs and discrete transistors on OMMIC’s process. I also thank R. Leblanc of OMMIC
for patiently answering my questions, providing documentation and helping with layouts of our amplifiers.

To Dr. Daniel Hoppe: I am grateful for his support both before and during my PhD tenure at Caltech. I have benefited much from his deep technical expertise and his personal advice.

I have sincerely enjoyed being the teaching assistant of the Caltech microwave class for two years and I thank Dr. Dimitrios Antsos for the opportunity, as well as the useful discussions we had on my PhD research. The students, who took the class in these two years, are also much appreciated for what I hope were mutually beneficial discussions and office hour sessions.

I would like to thank my peers at Caltech (and some who have since left) from whom I learned much, namely G. Jones (Columbia University), Prof. J. Bardin (University of Massachusetts Amherst), R. Reeves, K. Cleary, R. Gawande, A. Pai, K. Dasgupta, Prof. K. Sengupta (Princeton University), S. Bowers, J. Schleeh (Chalmers University of Technology), S. Romanenko, A. Safaripour, B. Abiri, F. Aflatouni, and P. Pal.

A special thank you to the administrative assistants who helped me so much throughout my time at Caltech: T. Owen, L. Acosta, S. Slattery.

For financial support, I thank the California Institute of Technology. The quad-ridged horn research was funded in part by the National Science Foundation.

My dream of obtaining a PhD would be so much harder if it were not for the constant support I received from my parents. I cannot thank them enough for all they have given me. I am also deeply indebted to my parents-in-law who have always supported us, this would all be much more difficult without their help.

Last but certainly not the least, I would like to thank my precious family. To Ayşe Zeynep and Ömer Taha, thank you for somehow managing to brighten every day of my life. And to my wonderful wife Banu, I thank her for the encouragement and sacrifice during the last few years. Many people questioned my wisdom in pursuing a PhD with two children; she deserves much of the credit. I hope to return the favor in the following years.
Abstract

Among the branches of astronomy, radio astronomy is unique in that it spans the largest portion of the electromagnetic spectrum, e.g., from about 10 MHz to 300 GHz. On the other hand, due to scientific priorities as well as technological limitations, radio astronomy receivers have traditionally covered only about an octave bandwidth. This approach of “one specialized receiver for one primary science goal” is, however, not only becoming too expensive for next-generation radio telescopes comprising thousands of small antennas, but also is inadequate to answer some of the scientific questions of today which require simultaneous coverage of very large bandwidths.

This thesis presents significant improvements on the state of the art of two key receiver components in pursuit of decade-bandwidth radio astronomy: 1) reflector feed antennas; 2) low-noise amplifiers on compound-semiconductor technologies.

The first part of this thesis introduces the quadruple-ridged flared horn, a flexible, dual linear-polarization reflector feed antenna that achieves 5:1–7:1 frequency bandwidths while maintaining near-constant beamwidth. The horn is unique in that it is the only wideband feed antenna suitable for radio astronomy that: 1) can be designed to have nominal 10 dB beamwidth between 30 and 150 degrees; 2) requires one single-ended 50 Ω low-noise amplifier per polarization. Design, analysis, and measurements of several quad-ridged horns are presented to demonstrate its feasibility and flexibility.

The second part of the thesis focuses on modeling and measurements of discrete high-electron mobility transistors (HEMTs) and their applications in wideband, extremely low-noise amplifiers. The transistors and microwave monolithic integrated circuit low-noise amplifiers described herein have been fabricated on two state-of-the-art HEMT processes: 1) 35 nm indium phosphide; 2) 70 nm gallium arsenide. DC and microwave performance of transistors from both processes at room and cryogenic temperatures are included, as well as first-reported measurements of detailed noise characterization of the sub-micron HEMTs at both temperatures. Design and measurements of two low-noise amplifiers covering 1–20 and 8–50 GHz fabricated on both processes are also provided, which show that the 1–20 GHz amplifier improves the state of the art in cryogenic noise and bandwidth, while the 8–50 GHz amplifier achieves noise performance only slightly worse than the best published results but does so with nearly a decade bandwidth.
Contents

Acknowledgments iii

Abstract v

1 Introduction and Background 1
 1.1 State of the art in Wideband Feeds . 3
 1.2 State of the art in Wideband LNAs . 6
 1.3 Publications . 7

I The Quad-Ridged Flared Horn 9

2 Key Requirements of Radio Telescope Feeds 10
 2.1 Reflector Antenna Optics . 10
 2.2 Aperture Efficiency . 12
 2.3 Figure of Merit for a Radio Telescope . 17
 2.4 Requirements of Radio Telescope Feed Antennas . 17

3 Design, Analysis, and Fabrication of Quad-Ridged Horns 19
 3.1 Historical Overview . 19
 3.2 Numerical Design Approach . 20
 3.3 The QRFH Design: A Qualitative Look . 25
 3.4 Fabrication Considerations . 30
 3.5 Aperture Mode Content . 32

4 Example Designs 37
 4.1 Pattern Measurement Setup . 39
 4.2 Very-High Gain QRFH . 42
 4.2.1 Application . 42
 4.2.2 Simulations . 42
 4.2.3 Aperture mode content . 44
Compound-Semiconductor LNAs

5 Introduction to Two State-of-the-Art HEMT Processes

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 70 nm GaAs mHEMT</td>
<td>81</td>
</tr>
<tr>
<td>5.2 35 nm InP pHEMT</td>
<td>82</td>
</tr>
</tbody>
</table>

6 Discrete HEMT Characterization

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Measurement Setup for DC and S-Parameters</td>
<td>85</td>
</tr>
<tr>
<td>6.2 DC Measurements</td>
<td>86</td>
</tr>
<tr>
<td>6.3 S-Parameter Measurements</td>
<td>95</td>
</tr>
<tr>
<td>6.3.1 Inductive drain impedance</td>
<td>95</td>
</tr>
<tr>
<td>6.3.2 Small-Signal model extraction</td>
<td>95</td>
</tr>
<tr>
<td>6.3.2.1 Parasitic resistances</td>
<td>97</td>
</tr>
<tr>
<td>6.3.2.2 Simplified hot-FET method: r_{ds} and g_m</td>
<td>100</td>
</tr>
<tr>
<td>6.3.2.3 Remaining elements of the small-signal model: Capacitors and r_i</td>
<td>102</td>
</tr>
<tr>
<td>6.4 T_{drain} Measurements</td>
<td>103</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Measurement setup</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Theory</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Results</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td>7</td>
<td>Wideband, Cryogenic, Very-Low Noise Amplifiers</td>
</tr>
<tr>
<td>7.1</td>
<td>Measurement Setups</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Wafer-probed S-Parameters at 300 K</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Cryogenic noise</td>
</tr>
<tr>
<td>7.2</td>
<td>NGC 1–20 GHz LNA</td>
</tr>
<tr>
<td>7.3</td>
<td>OMMIC 1–20 GHz LNA</td>
</tr>
<tr>
<td>7.4</td>
<td>NGC 8–50 GHz LNA</td>
</tr>
<tr>
<td>7.5</td>
<td>OMMIC 8–50 GHz LNA</td>
</tr>
<tr>
<td>7.6</td>
<td>Revised Designs</td>
</tr>
<tr>
<td>7.7</td>
<td>Cryogenic Performance of Coupling Capacitors</td>
</tr>
<tr>
<td>7.8</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>

Bibliography | 148 |

A Geometries of the Example Quad-Ridged Horns | 156 |

B Sample MATLAB Codes for QRFH Design | 162 |
List of Figures

1.1 Receiver room of the Green Bank Telescope ... 2
1.2 Photographs of wideband feeds under consideration for the SKA project 4
2.1 The most common reflector antenna optical configurations in radio astronomy 11
2.2 Field distribution and resultant far-field patterns of a circular aperture 13
2.3 Illumination and spillover efficiencies for a prime-focus parabolic reflector 16
3.1 The optimization algorithm used for QRFH design 21
3.2 Quad-ridged horn geometry ... 24
3.3 Typical plots of the QRFH profiles .. 25
3.4 Magnitude and phase of x-directed aperture fields of a horn (a) with ridges, (b) without ridges .. 28
3.5 Side view of the ridge as: (a) flare angle and (b) aperture diameter are varied ... 29
3.6 Coaxial feed geometry in the throat of quad-ridged horn 31
3.7 Aperture distributions and the resultant radiation patterns with 10 dB beamwidth of 90 degrees .. 34
3.8 TE and TM modes required to realize the desired radiation patterns 35
4.1 A world map showing locations of the quad-ridge horns delivered to date 39
4.2 Overlay of profiles of the profiles of the five QRFHs presented herein 40
4.3 Photo and block diagram of the pattern measurement setup 40
4.4 Three-dimensional CAD drawings of the very high gain quad-ridge horn. Feed diameter is 230 cm (3.83λo) and length is 400.5 cm (6.68λo) with f1o = 0.5 GHz 42
4.5 Simulated S-parameters of the very high gain QRFH 43
4.6 Simulated far-fields of the very high gain QRFH 43
4.7 Three dimensional radiation patterns of the very high gain QRFH. 45
4.8 Intensity plots of Ex on the x = 0 plane in the very high gain quad-ridge horn which is excited in the x-polarization. ... 46
4.9 Aperture mode coefficients of the very high gain QRFH 47
4.10 Predicted aperture efficiency of the DSS-14 antenna with the very high gain QRFH . 47
4.11 Three-dimensional CAD drawings of the high-gain quad-ridge horn. Feed diameter is 82 cm (1.9λlo) and length is 73.2 cm (1.7λlo) with \(f_{lo} = 0.7 \) GHz ...

4.12 Simulated S-parameters of the high-gain QRFH

4.13 Simulated far-fields of the high-gain QRFH

4.14 Three-dimensional radiation patterns of the high-gain QRFH

4.15 Intensity plots of \(E_x \) on the \(x = 0 \) plane in the high-gain quad-ridge horn which is excited in the \(x \)-polarization ...

4.16 Aperture mode coefficients of the high-gain QRFH

4.17 Predicted aperture efficiency of the GAVRT with the high-gain QRFH

4.18 A photo and three-dimensional CAD drawing of the medium-gain quad-ridge horn. Feed diameter is 18 cm (1.2λlo) and length is 16.4 cm (1.1λlo) with \(f_{lo} = 2 \) GHz ...

4.19 Measured S-parameters of the medium-gain QRFH

4.20 Measured far-fields of the medium-gain QRFH

4.21 Comparison of measured and simulated far-fields of the medium-gain QRFH

4.22 Three-dimensional simulated far-field patterns of the medium-gain QRFH.

4.23 Intensity plots of \(E_x \) on the \(x = 0 \) plane in the medium-gain quad-ridge horn which is excited in the \(x \)-polarization ...

4.24 Aperture mode coefficients of the medium-gain QRFH

4.25 (a) 12 meter Patriot antenna at GGAO (left) and integration of the circular QRFH into the dewar (calibration couplers not shown; right), (b) block diagram of the 12 meter radio telescope front-end showing RF electronics for one linear polarization only ...

4.26 The measured system noise temperature and aperture efficiency of the circular QRFH installed on the GGAO 12m telescope ...

4.27 Photo and three-dimensional CAD drawing of the low-gain QRFH. Feed diameter is 20 cm (1.5λlo) and length is 13.4 cm (1.03λlo) with \(f_{lo} = 2.3 \) GHz ...

4.28 Measured S-parameters of the low-gain QRFH

4.29 Measured far-fields of the low-gain QRFH

4.30 Three-dimensional simulated far-field patterns of the low-gain QRFH

4.31 Intensity plots of \(E_x \) on the \(x = 0 \) plane in the low-gain quad-ridge horn which is excited in the \(x \)-polarization ...

4.32 Predicted aperture efficiency and antenna noise temperature of the Twin-Wettzell telescope with the low-gain QRFH ...

4.33 Photo and three-dimensional CAD drawing of the very low gain quad-ridge horn. Feed diameter is 14.3 cm (1.1λlo) and length is 11.9 cm (0.91λlo) with \(f_{lo} = 2.3 \) GHz ...

4.34 Measured S-parameters of the very low gain QRFH

4.35 Measured far-fields of the very low gain QRFH
4.36 Three-dimensional simulated far-field patterns of the very low gain QRFH 76
4.37 Intensity plots of E_x on the $x = 0$ plane in the very low gain quad-ridge horn which is excited in the x-polarization 77
4.38 Predicted aperture efficiency of a symmetric parabolic reflector of 18.3 meter diameter with the very low gain QRFH 78

5.1 Active layer profile of OMMIC’s 70 nm GaAs mHEMT 83
5.2 Micrograph of the OMMIC calibration chip 83
5.3 Active layer profile of NGC’s 35 nm InP pHEMT 84
5.4 Micrograph of the NGC calibration chip 84

6.1 Photo of a discrete transistor in the coaxial module with K-connectors 86
6.2 Measured $I_{DS} - V_{DS}$ of NGC 100% 2f50 μm (top), NGC 75% 2f50 μm (middle), and OMMIC 2f40 μm devices 88
6.3 Measured $I_{DS} - V_{DS}$ of NGC 100% 2f200 μm (top), NGC 75% 2f200 μm (middle), and OMMIC 2f150 μm devices 89
6.4 Measured extrinsic DC transconductance of NGC 100% 2f50 μm (top), NGC 75% 2f50 μm (middle), and OMMIC 2f40 μm devices 90
6.5 Measured extrinsic DC transconductance of NGC 100% 2f200 μm (top), NGC 75% 2f200 μm (middle), and OMMIC 2f150 μm devices 91
6.6 Measured $I_{GS} - V_{GS}$ of NGC 100% 2f50 μm (top), NGC 75% 2f50 μm (middle), and OMMIC 2f40 μm devices 93
6.7 Measured $I_{GS} - V_{GS}$ of NGC 100% 2f200 μm (top), NGC 75% 2f200 μm (middle), and OMMIC 2f150 μm devices 94
6.8 Measured, cryogenic S_{22} and S_{21} of the 2f50 and 2f200 μm NGC 100% transistors 96
6.9 The HEMT small-signal model used in this work 96
6.10 Comparison of DC and RF (a) g_{ds} and (b) g_m (intrinsic) of the NGC 100%, NGC 75% and OMMIC transistors 101
6.11 T_{drain} measurement setup block diagram. 104
6.12 Simplified HEMT small-signal model used for T_{drain} extraction. 106
6.13 Measured g_m, r_{ds}, $T_{50,1GHz}$, and derived T_{drain} of the NGC and OMMIC devices 109
6.14 Minimum cascaded noise temperature and available gain at 6 and 100 GHz of the NGC and OMMIC transistors 110
6.15 Drain noise current (normalized to gate periphery), f_T, and f_{max} of the NGC and OMMIC transistors 111
6.16 \(T_{\text{CASmin}} \) (solid) and \(\Re\{Z_{\text{gen,M}}\} \) (dashed) of the three processes versus frequency at 300 K (top) and 25 K (bottom). \(I_{DS} = 100, 150 \) mA/mm at 300 K and \(I_{DS} = 25, 40 \) mA/mm at 25 K for NGC and OMMIC devices, respectively.

7.1 Photo of the test setup for wafer-probed \(S \)-parameter measurements at 300 K.

7.2 Block diagrams of the (a) cold attenuator, (b) hot/cold load test setups used for LNA noise temperature measurements.

7.3 (a) Schematic, and (b) chip micrograph of the 1–20 GHz NGC LNA.

7.4 Wafer-probed \(S \)-parameters of NGC 1–20 GHz LNAs from (a) 100% and (b) 75% In wafers.

7.5 Photograph of the NGC 100% In 1–20 GHz LNA.

7.6 Simulated and measured performance of the 1–20 GHz NGC 100% In LNA.

7.7 (a) Schematic, and (b) chip micrograph of the 1–20 GHz OMMIC LNA.

7.8 Wafer-probed \(S \)-parameters of eight OMMIC 1–20 GHz LNAs.

7.9 Photograph of the OMMIC 1–20 GHz LNA.

7.10 Simulated and measured room-temperature performance of the 1–20 GHz OMMIC LNA.

7.11 Measured cryogenic noise and gain of the 1–20 GHz OMMIC LNA.

7.12 Measured cryogenic scattering parameters of the 1–20 GHz OMMIC LNA.

7.13 Measured cryogenic noise and gain of the 1–20 GHz OMMIC LNA under low power operation.

7.14 (a) Schematic, and (b) chip micrograph of the 8–50 GHz NGC LNA.

7.15 Wafer-probed \(S \)-parameters of NGC 100% In 8–50 GHz LNAs.

7.16 Photograph of the NGC 100% In 8–50 GHz LNA.

7.17 Simulated and measured performance of the 8–50 GHz NGC 100% In LNA.

7.18 (a) Schematic and (b) chip micrograph of the 8–50 GHz OMMIC LNA.

7.19 Wafer-probed \(S \)-parameters of nine OMMIC 8–50 GHz MMICs.

7.20 Photograph of the OMMIC 8–50 GHz LNA.

7.21 Simulated and measured performance of the 8–50 GHz OMMIC LNA at 300 K.

7.22 Measured cryogenic noise and gain of the 8–50 GHz OMMIC LNA.

7.23 Measurement setup for cryogenic capacitor tests.

7.24 Effective noise contribution due to ohmic loss of five microwave capacitors at 300 and 22 K.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of key features of the five ultra-wideband feeds under consideration for the SKA project</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Key performance specifications of four cryogenic LNAs covering 1–20 GHz</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Profile options considered in this work.</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Amplitudes of TE and TM modes, normalized to that of TE_{11}, required to realize the desired radiation pattern of Figure 3.7 with a circular aperture of radius $a = 0.6\lambda_{lo}$. All modes are in phase with TE_{11}.</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>List of QRFH antennas delivered to telescopes around the world as well as those currently in discussion. The designs that are in bold print are presented herein.</td>
<td>38</td>
</tr>
<tr>
<td>5.1</td>
<td>Key features, provided by the foundries, of the NGC and OMMIC HEMT processes at 300K</td>
<td>82</td>
</tr>
<tr>
<td>6.1</td>
<td>Values of extrinsic resistors for OMMIC and NGC devices</td>
<td>99</td>
</tr>
<tr>
<td>6.2</td>
<td>Small-signal model parameters at $V_{DS} = 0.4$ V.</td>
<td>114</td>
</tr>
<tr>
<td>6.3</td>
<td>Small-signal model parameters at $V_{DS} = 0.6$ V.</td>
<td>115</td>
</tr>
<tr>
<td>6.4</td>
<td>Small-signal model parameters at $V_{DS} = 0.8$ V.</td>
<td>116</td>
</tr>
<tr>
<td>6.5</td>
<td>Measured and corrected $T_{50,1GHz}$ and derived parameters at $V_{DS} = 0.4$ V.</td>
<td>117</td>
</tr>
<tr>
<td>6.6</td>
<td>Measured and corrected $T_{50,1GHz}$ and derived parameters at $V_{DS} = 0.6$ V.</td>
<td>118</td>
</tr>
<tr>
<td>6.7</td>
<td>Measured and corrected $T_{50,1GHz}$ and derived parameters at $V_{DS} = 0.8$ V.</td>
<td>119</td>
</tr>
<tr>
<td>A.1</td>
<td>$x-y$ coordinates of the ridge and horn profiles of the very high gain QRFH for $f_{lo} = 0.5$ GHz. Dimensions are in millimeters.</td>
<td>157</td>
</tr>
<tr>
<td>A.2</td>
<td>$x-y$ coordinates of the ridge and horn profiles of the high-gain QRFH for $f_{lo} = 0.7$ GHz. Dimensions are in millimeters.</td>
<td>158</td>
</tr>
<tr>
<td>A.3</td>
<td>$x-y$ coordinates of the ridge and horn profiles of the medium-gain QRFH for $f_{lo} = 2$ GHz. Dimensions are in millimeters.</td>
<td>159</td>
</tr>
</tbody>
</table>
A.4 $x - y$ coordinates of the ridge and horn profiles of the low-gain QRFH for $f_{lo} = 2.3$ GHz. Dimensions are in millimeters. 160

A.5 $x - y$ coordinates of the ridge and horn profiles of the very low gain QRFH for $f_{lo} = 2.3$ GHz. Dimensions are in millimeters. 161