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Grau, teurer Freund, ist alle Theorie, 

Und griin des Lebens goldner Baum. 

Grey, dearest friend, is all of Theory, 

And green, the golden Tree of Life. 
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Abstract 

The brain is perhaps the most complex system to have ever been subjected to rigorous scientific 

investigation. The scale is staggering: over 101 1 neurons, each making an average of 103 synapses, 

with computation occurring on scales ranging from a single dendritic spine, to an entire cortical 

area. Slowly, we are beginning to acquire experimental tools that can gather the massive amounts 

of data needed to characterize this system. However, to understand and interpret these data will 

also require substantial strides in inferential and statistical techniques. This dissertation attempts 

to meet this need, extending and applying the modern tools of latent variable modeling to problems 

in neural data analysis. 

It is divided into two parts. The first begins with an exposition of the general techniques of 

latent variable modeling. A new, extremely general, optimization algorithm is proposed - called 

Relaxation Expectation Maximization (REM) - that may be used to learn the optimal parameter 

values of arbitrary latent variable models. This algorithm appears to alleviate the common problem 

of convergence to local, sub-optimal, likelihood maxima. REM leads to a natural framework for 

model size selection; in combination with standard model selection techniques the quality of fits may 

be further improved, while the appropriate model size is automatically and efficiently determined. 

Next, a new latent variable model , the mixture of sparse hidden Markov models, is introduced, and 

approximate inference and learning algorithms are derived for it. This model is applied in the second 

part of the thesis. 

The second part brings the technology of part I to bear on two important problems in experi­

mental neuroscience. The first is known as spike sorting; this is the problem of separating the spikes 

from different neurons embedded within an extracellular recording. The dissertation offers the first 

thorough statistical analysis of this problem, which then yields the first powerful probabilistic solu­

tion. The second problem addressed is that of characterizing the distribution of spike trains recorded 

from the same neuron under identical experimental conditions. A latent variable model is proposed. 

Inference and learning in this model leads to new principled algorithms for smoothing and clustering 

of spike data. 
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Preface 

In the course of mid-graduate school angst about the direction of my research, I was offered the 

following advice by Professor Alan Barr. It is all too easy in multidisciplinary work, he warned, to 

take simple ideas from one field and use them to impress researchers in another. While sometimes 

producing useful work, this is not the most rewarding way to cross t he boundaries between fields. 

Instead, he urged me to strive to make solid contributions to both areas of research, so that workers 

in either might appreciate the advances made in the study of their own subject. It is my hope 

that the research described within this dissertation comes some distance towards this standard. In 

particular, I hope that both the statistician (or machine learning theorist) and t he experimental 

biologist will find within these pages original ideas and contributions of interest to them. 

In acknowledgement of this goal, the dissertation is arranged in two parts, very nearly equal in 

length. The first is ent irely concerned with the statistical modeling of data; the techniques described, 

including the novel proposals, are of general applicability. Nonetheless, the development of these 

techniques has been driven by the desire to solve very specific problems in biology. The second part 

presents models for the analysis of two different types of neural data; in both cases, this development 

draws heavily on the statistical tools presented in part I. 

The statistical content of this disser tation is as follows. 

• Chapter 1 begins with a review of a significant portion of the theory of statistical modeling. I 

treat both parameter estimation and model selection in the general case. The focus then shifts 

to latent variable models in particular, and the Expectation- Maximization (EM) algorithm for 

maximum-likelihood estimation. In one way or another, this algorithm will form the basis for 

most of the original work in the dissertation. The free energy formulation of EM is described 

along with resulting extensions, such as the generalized and incremental variants. 

• Chapter 2 introduces the problem of data clustering, and begins by reviewing some older 

algorithms. This leads to a restatement of the clustering objective as a problem in statistical 

modeling, thereby arriving at the simplest of latent variable models, the mi:>.."ture model. The 

standard EM algorithm for the mixture is derived. Finally, I raise and address a number of 

important practical issues that arise in the use of mixture models for clustering. 

Both chapters 1 and 2 contain, for the most part, reviews of the existing literature. The only 

novel contribution is to be found in the detailed analysis of the problem of outliers in clustering 

(section 2.7.1); and even this follows closely suggestions that have appeared before. 
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• In chapter 3, I introduce the R elaxation Expectation-Maxim ization (REM) algorithm. 

This is perhaps the single most significant and widely applicable of the original contributions 

to statistics. It provides a relaxation-based generalization of any EM algorithm, frequently 

leading to good maximum-likelihood solutions without convergence difficulties due to local 

maxima. Furthermore, it may be combined with standard model selection techniques to yield 

a novel framework called cascading mod el selection. This approach further improves the 

quality of the maxima found by REM, and also allows for the appropriate model size (for 

example, the number of components in a mixture) to be determined in parallel with the 

parameter optimization. 

• Chapter 4 opens with a brief review of the standard hidden Markov model (HMM) develop­

ment. I then introduce a special case of HMM, the sparse hidden Markov model (SHMM), 

in which most of the output symbols assume a single, null, value. The development of algo­

rithms specific to this model forms the original content of this chapter. It is shown that 

inference and learning in such models can be accelerated as a result of the sparse structure. 

The primary algorithmic interest in the SHMM, however, lies in the fact that a good approx­

imate learning scheme can be derived for mixtures of such models. In particular, I derive 

an EM algorithm for such a mixture, with a constrained E-step given by the novel coupled 

forward-backward algorithm. 

• Some novel statistical ideas also appear in the course of the second part of the dissertation. 

Section 5. 7.2 introduces both a scheme to approximate the optimal linear discriminant space 

for certain types of clustered data, without knowledge of the cluster memberships; and also ro­

bust principal component analysis , a version of the usual principal component analysis in 

which outlier points are gracefully discounted. Section 5.12 discusses incremental and adaptive 

versions of EM for mixtures and for SHMMs. Chapter 6 examines the inhomogeneous Polya 

point process in some detail. Finally, a novel Monte-Carlo goodn ess of fit procedure is 

proposed and applied in section 6.4. 

In the second half of the dissertation, the primary focus shifts to biology, and original solutions 

are proposed to two important problems in experimental neuroscience. 

• Chapter 5 addresses the problem of spike sorting; t hat is, distinguishing between the spike 

waveforms that arise from different neurons in an extracellular recording. Historically, this 

has, for the most part, been done by hand, and with relatively little understanding of the 

statistical properties of the data. No thorough statistical treatment of this subject has been 

presented, and in this dissertation I seek to rectify the omission. 

- A number of important signal processing issues that arise in the handling of spike data, 
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and that are often neglected, are addressed. These include the appropriate thresholding of 

multi-channel data (section 5.5); the alignment of spike waveforms to reduce discretization 

"noise" (section 5.7.1); and the reduction in dimensionality of the waveform space so as 

to maintain the greatest separability between clusters (section 5. 7 .2) . 

A novel latent variable model schema is proposed for the generating process, which cap­

tures the expected structure of the variation in spike shapes. Learning the parameters 

(that is, the firing statistics and distribution of spike waveforms) in this schema can be 

decoupled from the inference of the exact spike times: the first occurs in a mixture model 

in which overlapped spikes are simply treated as outliers, the second in a matched-filter­

based scheme where overlaps can be correctly resolved. 

Three specific models within the schema are examined, and learning and inference algo­

rithms for these derived. The first (section 5.8) presumes that all of the variability in 

observed spike shape is due to the addition of the background process: spikes from cells 

too distant to be distinguished and noise from electrical sources. The more sophisticated 

examples provide models for the intrinsic variability of spike waveforms. In particular, in 

section 5.10.2, an instance of the sparse hidden Markov model is used to explicitly model 

the change in spike waveform during a burst. 

The problem of on-line adaptation of the parameters of these models is discussed. This 

adaptation allows the algorithm to track slow drift in the spike waveforms that might 

occur due to motion of the electrode in neural tissue over a long timescale. 

Finally, a greedy, approximate filtering scheme is proposed for spike-time inference. This 

scheme is well-suited to real-time operation on parallel signal processors. 

These investigations result in a new tool-box of statistical techniques which can be applied to 

automatically resolve an extracellular recording into its constituent spikes. Such techniques 

are crucial, both to the reliable scaling of scientific data acquisition to the hundreds of cells 

or more, as well as to the realization of the biomedical engineering dream of neural prosthetic 

devices. 

• In chapter 6, I turn to the problem of characterizing the distribution of spike times invoked 

in a cortical neuron by constant experimental conditions. The model examined is an old one 

in the statistical literature, but appears to be new to this particular application: it is the 

randomly scaled inhomogeneous Poisson process, or Polya process. This choice is inspired by 

recent experiments which have suggested that, at least in part, the super-Poisson variability 

in firing rate can be accounted for by slow changes in the overall excitability of a neuron or 

cortical area. Combined with a Gaussian-process prior that enforces slow variation in firing 
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rate, learning in such a model leads to a statistically rigorous method for the smoothing of 

spike trains. Through Monte-Carlo simulations, it is shown that while the model is not exact , 

it is reasonably able to describe the data. A mixture of Polya processes can also be used as 

the basis for the clustering of spike trains, a problem which has been tackled unsatisfactorily 

by a number of authors in the past. The proposed approach avoids many of the difficulties 

which have hampered previous efforts, and it shown that this procedure leads to a believable 

grouping of real data. 

The material in chapter 6 was developed in collaboration with J. Linden, and more extensive 

applications demonstrating the value of this simple model appear in her doctoral dissertation. 
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Chapter 1 Latent Variable Models 

1.1 Statistical Modeling 

We are given a set of observations X = {xi I i = 1 ... lXI}· The data Xi may be multivariate and 

are not necessarily independent. We are interested in learning about the nature of the process that 

gave rise to these data. In particular, we believe that by investigating the relationships that exist 

between the various components of the Xi, or between the different Xi, we can arrive a succinct 

description of the data, and that this description will reveal the structure of the generating process. 

In this quest we shall follow a path that lies at the intersection of two fields: unsupervised learning 

and density estimation. 

In the machine learning literature, the project that we have laid out is known as unsuper vised 

learning. We shall focus on a subset of the machine learning techniques, defined by our belief that 

the underlying generative process is stochastic, where we seek to learn an explicit probabilistic 

model that describes the data. This will exclude from our purview some effective techniques, for 

example the Kohonen and ART networks; in general, however, there are probabilistic formulations 

that very closely resemble each of these, and so we expect the loss not to be too serious . In return, 

we gain access to a powerful collection of probabilistic analysis tools. 

Thus, we seek a description of the probability distribution (or density, for continuous observa­

tions) function P (X) 1 . As such, our objectives are similar to those of the field of density estima­

tion. However, it is not the resultant distribution (or density) function that holds our interest, but 

rather the structure of the function and what that structure reveals about the process that generated 

the data. Thus, we will not pursue many useful, "non-parametric" techniques of density estimation 

on the basis that these will give us little insight into the underlying process. 

It is important to note that the general task of density estimation - given data X, estimate 

P (X) - is not well formed unless something is known a priod about the probability function. This 

prior knowledge may be as simple as a belief that the function must be smooth, but in the absence 

of any prior, any scheme for ranking two candidate distributions will fail at least as often as it 

will succeed. This point is made clearly by Wolpert (1996). In our case, the prior knowledge, 

dictated by scientific experience and intuition, will go towards the selection of one or more families 

of parameterized probability functions Po (X). () here denotes a set of parameters, each of which 

1 We shall use the notation P (·)generically for probability distribution and density functions. The exact nature of 
the function should be clear from context and the arguments provided, when this is not so we shall identify particular 
functions with a subscript such as Pe (-) 
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may be discrete or continuous. There are two central problems to be addressed in the project of 

statistical modeling: the first, called learning or fitting, is to estimate a suitable set of parameters 

e, or, if one is of the Bayesian persuasion, a posterior distribution over the parameters p ( B I X) ' that 

is appropriate for the observed data. The second, model comparison, is to choose from among a 

group of candidate models the one which is better supported by, or more probable given, the data. It 

is worth noting that in the strict Bayesian viewpoint there is no difference between these operations: 

we can simply introduce a hyper-parameter that identifies which model is to be used and then 

infer its posterior distribution. However, we are interested in the properties of the particular model 

that best describes the data, and so although we might accept a distribution over parameters, we 

insist on identifying a single best model. 

1.2 Parameter Estimation 

We are given a set of observations X, along with a parameterized family of probability functions 

Po (X). We would like to infer an "optimal" value of the parameters such that the corresponding 

function describes the data best. There are many competing definitions of "optimal" in this context. 

It will be simplest to survey these definitions by starting from the Bayesian viewpoint. In the 

Bayesian framework, the parameters B are treated as random variables, to be handled on a similar 

footing to the observations X. In this case we can more aptly write our family of distributions as 

PM (X I B), where the subscript M identifies the particular model. Bayes' rule then allows us to find 

a posterior distribution of the B, 

p (B I X) = p M (X I B) p M (B) 
M PM (X) 

(1.1) 

The function PM (B) denotes the probability associated with particular value of the parameters 

under the model M a priori - that is, without reference to any observations. It is called the prior 

distribution. Similarly, PM (B I X) gives the probability of the parameter values B in the context of 

the observed data. This is the a posteriori or simply posterior distribution. The term PM (X I B) 

is the familiar function that describes the distributions within our model , however in the context of 

parameter estimation by (1.1) it is best viewed as a function of B, rather than of X. In this context 

it is given a different name; it is called the likelihood of the parameters in light of the data, and 

will be written .Cx ((:I) to emphasize the exchange of roles between B and X. I t is important to note 

that the the numerical value of the probability of data X under parameters B, P11 (X) or P (X I B) , 

is identical to that of the likelihood of parameters B given data X, .Cx (B). The difference is only 

one of interpretation. The final term in (1.1) is the denominator PM (X) . This is also given a name, 

but one that will only really be relevant when we discuss model selection below. It is called the 
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evidence for the model M, or else the marginal likelihood, since it is obtained by integrating 

the likelihood with respect to e. From the point of view of parameter estimation from observations 

it is usually of little importance, as it has a constant value with no dependence on the parameters. 

In the strict Bayesian point of view the equation (1.1) represents all that there is to be said 

about parameter estimation. Once we know the posterior distribution of the parameters we have 

exactly expressed the complete extent of our knowledge about their value. In this view, any attempt 

to provide a single parameter estimate as a description of the situation must give up some useful 

information. This is most apparent if we ask how the parameter estimate is to be used. Typically, 

we are interested in predicting the value of some statistic that is dependent on the parameters; it 

might, for example, be the next data point to be drawn from the distribution. In this case we need 

to integrate over the posterior (this will also be true for model selection, treated below). Let us call 

the statistic that we wish to predict k. The probability distribution that describes our prediction 

will be 

p M (k I X) = J dB~ M (k I B) p M (B I X) (1.2) 

I j 1:>.• t ' ' 

Here we see the practical difficulty in the strict Bayesian point of view. For many models, this 

integral is impossible to compute exactly. One approach taken is to approximate the integral by a 

Monte-Carlo sampling technique such as the Gibbs or Metropolis samplers, or by various so-called 

"hybrid" Monte-Carlo methods (Gelfand and Smith 1990; Smith and Roberts 1993; Neal1996). Such 

methods are asymptotically exact, although the number of samples needed to reach the asymptotic 

distribution can be probitively large. 

In practice, we often use a single estimate of the values of the parameters. This approach may 

be understood from one of two points of view. In the first case, we will argue below that a suitable 

choice of estimate can, under certain circumstances, actually provide a reasonable approximation to 

the correct Bayesian predictor. In the second, it may be that the problem we are trying to solve 

requires a single estimate. If that is so, the problem will have introduced (perhaps implicitly) a 

loss-function, which we can then optimize to obtain the appropriate estimate. 

In many cases the posterior distribution is very strongly peaked at its modal value, written eMP 

for maximum a posteriori. In this case we may assume that the only significant contribution to the 

integral comes from parameters very near the peak, and we may assume that the value of PM (x I B) 

is approximately constant for these values of e. Armed with these assumptions, along with the 

knowledge that J dB PM (B I X) = 1, we can make the approximation 

(1.3) 

That is, calculations made by simply plugging in the MAP estimator in the parameterized density 

approximate the Bayesian results. In general , this approximation improves with the number of 
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available data. The MAP value is also important in other, more accurate, approximations to the 

posterior which are based on the Laplace or saddle-point integral. In these techniques, t h e posterior 

is approximated by a Gaussian whose mean lies at the posterior mode and whose covariance is in 

the inverse of the Hessian of the posterior with respect to the parameters, evaluated at the mode 

(MacKay 1992). We will treat these in greater detail when we discuss model selection. 

The MAP estimator maximizes the posterior (1.1). The denominator on the right hand side 

of Bayes' rule does not depend on (), and so the maximization applies only to the numerator 

PM (X I ())PM(()). In many situations we may choose to neglect the prior and maximize only 

the first factor, the likelihood. This yields the maximum-likelihood or ML estimate, ()ML. The 

ML estimate occupies an extremely prominent position in the classical (non-Bayesian) approach to 

statistics. In particular, the ML estimate can be shown to be asymptotically efficient, that is, as 

the sample size grows the expected square error of the ML estimate approaches the fundamental 

lower bound on such errors (known as the Cramer-Rao bound). In the presence of a "vague" prior 

(for example, a uniform prior in cases where this is well defined) the ML estimate enjoys all the 

properties of MAP estimator discussed above. 

The MAP estimator can be seen to minimize the expected value of a probability-of-error loss 

function, which penalizes all errors equally. For continuous parameters we define the loss by the 

limit as E -+ 0 of the function taking the value 0 in an t:-ball around the true parameter values and 

1 elsewhere. An alternative loss function penalizes errors by the square of the departure from the 

true value. Minimizing the expected value of this Joss leads to the minimum-square-error (MSE) 

estimator. The fact that the second moment of any distribution is smallest about its mean implies 

that the MSE estimator is the mean of the posterior. Finding this value may well involve integration 

of the posterior, with all its attendent pratical difficulties. The result about the asymptotic efficiency 

of the ML estimator quoted above implies that as the number of data grow larger the mode and 

mean of the posterior must converge. 

We have argued that the MAP and ML parameter estimates are of considerable importance 

in statistical theory, either as Jegimate goals in their own part, or as inputs to approximations of 

Bayesian integrals. In much of this dissertation we shall focus on maximum-likelihood techniques, 

tacitly assuming a vague prior. In almost all cases, (in particular, in the EM algorithm that we shall 

encounter shortly and which will resurface throughout this dissertation) the techniques that we will 

discuss can easily be adapted in the presence of a strong prior to yield a MAP estimate. 

1.3 Model Selection 

We now consider the situation in which we do not have a single parameterized family of probability 

functions, but rather must choose between alternative families with different (and perhaps different 
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numbers of) parameters. These families might be very closely related. For example, we will discuss 

clustering models at some length in chapter 2, where the data are presumed to arise from some 

number of distinct distributions, one for each cluster. In this case we shall need to determine the 

appropriate number of clusters, given the data. This is a model selection problem. 

Hyperparameters and stacked generalization 

One approach to the model selection problem is to ignore it. We can combine the models into a 

single family, with a hyperparameter that selects between them. The parameter set is then the 

union of the parameters of the different models, along with the hyperparameter. In t he case of 

nested models, where one family is a proper subset of t he other, this is almost the same as selecting 

the most complex model with the addition of the new hyperparameter. If we proceed with the full 

Bayesian predictive procedure (1.2) this is, in fact, the correct approach. In t he case of clustering, 

for example, we should use an unbounded number of clusters (Neal 1991). However, with such 

models, the posterior distribution will tend to be far more complex than with a single, continuously 

parameterized family. In particular, we expect modes corresponding to the MAP estimator for each 

model, along wit h the corresponding value of the hyperparameter. In the face of sufficient data one 

of t hese modes is likely to dominate, in which case we will have selected one model after all . With 

less data, we generally need to integrate this posterior , for example when making predictions, by 

Monte-Carlo means (Neal 1991). 

A related approach , now termed stacked generalization, was proposed by Stone (1974) and has 

recently been explored by Wolpert (1992) and Breiman (1996). We can explicitly write the marginal 

of the predictive density over the model selection hyperparameter. If the models are labelled M; 

this is 
)-'~ p~ J .-·~ ,... ~ ... ~.. 

p (k I X)= 2:: p (M; I X) p M; (k I X) (1.4) 

where t he rightmost factor is the predictive distribution derived from the ith model. Thus, the 

predictive distribution is t he weighted sum of the predictions made by the different models. The 

weighting factor for the ith model is given by Bayes' rule, 

(1.5) 

that is , it is proportional to the product of the evidence or marginal likelihood P (X I M ;) = PM, (X) 

and the prior probability of the model. The weights are normalized to add to one. 
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Choosing one mod el : the dangers of maximum l ike lih ood 

Such combined model approaches are attractive in situations where the goal is predictive, and the 

true family is unknown. In the case of statistical modeling as we have laid it out, however, we 

are often interested in identifying the particular model that is best supported by the data. In the 

example of clustering, one of our goals may well be to _?etermine how many classes are present. If we 

are content with a probabilistic answer, then the marginal likelihood, or evidence, described above, 

indicates the relative probabilities of each model, as long as the prior weighting of each model is 

equal. If not, we may elect to choose the most probable model, thereby tacitly assuming a zero­

one loss function as in the case of the MAP parameter estimate. In the following discussion we 

shall assume the latter point of view, arguing for the selection of a single, most probable model; 

however most of the approximations we will discuss can equally well be used to estimate the posterior 

probabilities of various models and thus used in techniques such as stacked generalization. 

Note that choosing the model with the greatest marginal likelihood is different from choosing 

the model with the greatest maximum in the likelihood, which might have been the nai'vely favoured 

policy. In general, more complex models will exploit the greater flexibility of their parameterizations 

to achieve higher likelihood maxima on the same data; however, such models will be able to explain 

all sorts of different data by adjusting their parameters appropriately, and can thus only assign a 

relatively low probability to any particular data set. In other words, the complexity is penalized in 

the integral, as the region of parameter space that assigns high likelihood to the data is likely to 

be proportionately smaller. Thus, the Bayes approach leads to the selection of the simplest model, 

within the group considered, that is adequate to explain the data; as a result this approach has been 

compared with the philosophical "razor" of William of Ockham. 

We can express the difficulty with maximum-likelihood model choice in another way. The max­

imal likelihood for a given model, represents the suitability of one particular member of the model 

family to describe the data. The member chosen depends critically on the data provided. If the 

model is complex, and two equivalent, independent samples from the same probability distribution 

are available, the member functions chosen in the two cases may be very different. In either case, 

the function may well be far from the true density. 

An example appears in figure 1.1. To produce this figure, one dimensional data, shown as filled 

half-circles on the lower axis, were generated from the Gaussian density shown by the solid line. 

These data were fit by two different models: one, a simple Gaussian density with mean and variance 

estimated from the data; the other a three-component mixture of Gaussians (basically the weighted 

sum of three Gaussian densities). Both models were fit by maximum likelihood estimation (the 

details of fitting the mixture model will be discussed in a subsequent chapter). The optimal estimates 

are shown: the simple Gaussian estimate is plotted with dashes; the more complex mixture estiamte 

with dashes and dots - the faint dotted lines show the shapes of the three mixture components. 
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Figure 1.1: The dangers of over-fitting with a complex model. 

The mixture model has a higher likelihood than the simpler one. In this case, the log likelihood per 

point for the simple model is -2.54, while that of the mixture model is -2.41. In part, this increase 

in likelihood has been achieved by adapting to the cluster of data that appears near the value 4, 

assigning high probability to this region. Different data, unlikely to cluster near 4, will probably 

yield a very different estimate. 

It is obvious by inspection that the simple model has approximated the true density with greater 

accuracy. This tendency of complex models to fit the peculiarities of the given sample, rather than 

the underlying density funtion, is called over-fitting. 

Bayesian analysis 

We consider two candidate models, M 0 and M 1 , to be used to describe the data X. The two models 

have, respectively, Po and P1 parameters, with p0 ::; p 1 . The parameter vectors will be written Bo 

and 81 . In some cases we shall consider nested models, where the family of functions allowed under 

M 1 is a proper superset of the functions available in M 0 . In this case we shall further assume that 

Mo can be obtained from M 1 by fixing the values of p 1 - p0 parameters, and that the remaining 

Po parameters of M 1 are identical to the parameters of M 0 . Thus, M 1 is to be thought of as the 

more complex model, and, in the nested case, may be a direct generalization of M 0 . The Bayesian 

model selection procedure (sometimes called empirical Bayes) dictates that we select model M 1 

if and only if the posterior odds in favour of M 1 , P (M 1 I X) /P (Mo I X) are greater than one. 



Using Bayes' rule, we can write this as 

p (Ml I X) 
P (Mo I X) 

9 

p M, (X) p (Ml) = X -'-----'-
p Mo (X) P (Mo) 

(1.6) 

The second term on the right hand side of this expression is the prior odds of M 1 being correct; the 

first term, which is the ratio of the marginal likelihoods, is called t he Bayes factor. It is convenient 

to work with logarithms, and so the empirical Bayes criterion for selecting M1, in the face of equal 

prior probabilities for the two models (prior odds = 1), is 

logB10 = log PM, (X) - log PMo (X)> 0 (1. 7) 

These are the same marginal likelihoods that appeared in the denominator of (1.1). While they do 

not play much of a role in parameter estimation, they can be seen to be vital to model selection. 

The marginal likelihood is an integral over the parameter vector 8i for t he model M i, 

(1.8) 

As in the case of predictions using the posterior (1.2) this integral is often difficult to compute. 

Analytic solutions can be found for simple exponential family models, including multivariate normal 

linear regression models, with so-called conjugate priors on the parameters (these being priors 

chosen in part for the simplicity of the resulting integral). In the general case we need to estimate 

the integral via Monto-Carlo techniques (which we will not discuss here, but see Gelfand and Smith 

(1990) , Smith and Roberts (1993) and Neal (1996)) or else employ analytic approximations which, 

while t hey may be asymptotically exact, yield biased estimates with realistic sample sizes. 

Approximations to the Bayes factor 

A simple and widely used approximation is called Laplace's m e thod (Tierney and Kadane 1986; 

MacKay 1992). Let us write <I>(8) for the logarithm of the integrand in (1.8), the unnormalized 

posterior over the parameters. We have dropped the subscript i for simplicity. We can expan d <I>(8) 

in a Taylor series about its maximum, which falls at aMP. I·~ ) ''. ·> ......... ) 

where the notation \7\l<I> denotes the Hessian matrix of second derivatives [8 2 <I> f88i8Bi] and should 

not be confused with the Laplacian, \72 <I> = Tr [\7\l<I>]. As gMP lies at a maximum of <I> , the 

gradient there is 0 and the linear term in the expansion vanishes. We ignore t he terms of higher 

order than quadratic, a choice tantamount to approximating the posterior by a Gaussian, and write 
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(KMP)-1 = -(\7\i'<I>(BMP))-1 for the covariance of the approximation. The integral of (1.8) is then 

( I MP 1-1/2 MP I MP 1-1/2 ( MP) ( MP) PM, X) ~ Ki /2~ A. exp <I>i (Bi ) = Ki /2-rr PM, X I Bi PM; Bi V 
, ., p 

7\ f\ -

(1.10) 

where we have reintroduced the model subscript. The log Bayes factor of (1.7) is thus approximated 

by 

(1.11) 

where A~ is similar to the log likelihood ratio statistic for classical model comparison, although 

evaluated at the MAP estimates, and II~ri is the difference in the log priors of the MAP estimators 

for the two models. Note that this is different to the log of the prior odds of M 1 , which we have 

assumed to be 0. The priors in this case are not the priors of the models , but rather the priors of 

the parameters of each model, evaluated at the maximum of the posterior. In general, the more 

complex model may be expected to spread its prior more thinly over a larger parameter space, and 

thus to provide a smaller prior density at any particular point. Thus, we expect the term II~ri to 

be negative, penalizing the likelihood ratio. Similarly, the determinant of the Hessian of the more 

complex model is likely to be larger (if t he parameters are all estimated with roughly equivalent 

errore and we rotate to a diagonal basis we see that it will scale as (1/e)P•) and so the ratio of IKI 
will be Jess than one, also penalizing t he likelihood. The Laplace approximation is asymptotically 

correct, with, under certain regularity conditions, relative error of order O(N-1 ) where N is the 

number of observations (Kass et al. 1990). 

In the discussion of parameter estimation, we argued t hat we would remain agnostic on the 

nature of the prior and choose the maximum-likelihood estimator, which is likely to be close to 

the MAP value for vague priors. Can we reduce (1.11) from the same standpoint? Assuming the 

prior is vague, and that (;IML is close to (;IMP, we can approximate A~ri by the more conventional 

likelihood ratio, A10 , evaluated at the respective maxima of the likelihoods. Also, the prior will not 

have strong curvature, and so the Hessian of the log unnormalized posterior, evaluated now at (;IML 

will be dominated by the likelihood term. Thus we can replace KrP by the observed information 

matrix Ki = -\7\7 P.x ( erL). This gives us 

ML 1 IKo/2-rrl 
logB10 ~ A1o + II10 + 2 Iog IKI/2-rrl (1.12) 

where II~L is the Jog ratio of priors evaluated at the maximum likelihood parameter values. This 

approximation exhibits relative error O(N- 112 ) . 

At first glance, it would seem that we cannot dispense with the term II~L as it reflects the differ­

ence in dimensionality of the two models and provides an important penalty. However, consideration 

of the asymptotic behaviour of (1.12) reveals that for large data sets it may be neglected. If we have 
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N data points, the likelihood ratio takes the form l::~=l log (PM, (xn I B~L) /P Mo (xn I Bfr'L)) and 

will therefore grow with N. A similar argument applies to the Hessian of the log-likelihood, so that 

the magnitude of the final term of (1.12) grows as log N. Thus the term rrnL, which is constant 

with changes in the number of data can be asymptotically neglected. 

We can further simplify the ratio of Hessians that appears in the final term of (1.12). With N 

data points, we have 

log IKi/27rl log 1- 2~ ~ 'V'VP M; (xn I Bi)l 

~ log INK/271"1 
= log ((N/27r)P; lkl) 
= Pi (log N - log 21r) +log lkl (1.13) 

where k is the expected value with respect to the distribution of x of the one-point Hessian 

'V'VP M; (x I Bi) evaulated at B~L . Again we drop the terms that do not grow with N, and ob­

tain 
1 

log B10 ~ A10- 2(PI -Po) log N (1.14) 

This approximation was introduced by Schwartz (1978) with a far more rigorous derivation in the 

case of multivariate linear regression with an exponential family noise distribution, and was extended 

by Haughton (1988) to regression on curves. The heuristic approach we have adopted here suggests 

that it should be useful for many model families, and indeed it is used quite widely. It is referred to 

in the literature as the Schwartz criterion, or as the Bayesian Information Criterion, BIC. 

In general the BIC approximation to the Bayes factor introduces relative errors of order 0(1). 

Some authors attempt to reduce the BIC error in the context of particular models by approximating 

the constant (with respect to N) term that we have neglected. One approach, practical in this 

modern day of the computer, is to determine a suitable value of the constant empirically by simulating 

and fitting data from known distributions. Other authors pay close attention to the definition of the 

number N . In the above, we simply took it to be the total count of data; on other hand, from the 

derivation it is clear that it is really the growth rate of the Hessian. In some models, the parameters 

are local and are only affected by data that fall within a small region. The clustering models of 

chapter 2, for example, fall into this category. In this case it may be argued that N is not the total 

number of data, but rather the average number of data falling into each cluster. In practice, however, 

all of these corrections are of order 0(1) and, provided that the number of data are large, the BIC 

alone has been found to produce reasonable results. We shall see, however, that in the context of 

latent variable models care must be taken in the choice of the number of parameters (Geiger et al. 

1998). We will postpone our discussion of this issue, along with treatment of another approximate 
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Bayes technique for latent variable models introduced by Cheeseman and Stutz (1996). Instead, we 

shall proceed to investigate another class of model selection methods based on direct estimates of 

the probability of over-fitting. 

Validation 

We have motivated much of our development of model selection criteria by the notion of predictive 

accuracy. One approach, then , is to try to measure the predictive performance of the various models 

directly by observing the probability they assign to data outside the observations used for training. 

This approach is called validation. In its simplest form the process of validation involves the 

division of the set of observations X into two parts, t he training data for which we will continue 

to use the symbol X, and the validation or test data for which we will write V. The posterior over 

parameters for each model (or the parameter estimates) are obtained on the training data, and the 

models are ranked by the probability that they assign to the validation set 

(1.15) 

The intuition behind this approach is appealing, but it is often a fairly noisy criterion. Vve usually 

have only a limited amount of data available, and the necessity to divide it in two means that both 

the estimate of the parameters, and the estimate of the expected off-training set error a re likely to 

be noisy. Once we have chosen a model by validation, we can combine the training and validation 

data sets and then reestimate the parameters to improve our predictions. However, the noise due 

to small X and V may lead to the incorrect model being selected. 

In the simplest validation procedure there is a single training set and a single validation set. 

However, we could equally well train on V and test on X. This would yield two independent 

estimates of the off-training-set performance of a particular model. The average of the two will thus 

have smaller variance than any one of t hem. In general, we can split up the data set into Nv disjoint 

subsets. One by one, we take each of these subsets, call it validation data, train on its complement 

in the data set, and validate the resulting model. Thus we obtain Nv independent estimates of Vi, 

which we can average to reduce the error in the estimate by 0(1/VNv). This simple improvement 

on the basic validation scheme is called cross-validation. In the extreme case where Nv = N, the 

number of data, the term leave-one-out cross-validation is applied. 

Non-Bayesian Penalties 

The spirit of such validation techniques, a long with approximations similar to those made during 

the Bayesian treatment above, can also be used to obtain alternative likelihood penalization schemes 

similar to the BIC. The goal here is to estimate by how much the observed t raining likelihood is 
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likely to differ from the likelihood of the validation set. 

Let us suppose that the true distribution of the data is some distribution P. (-), which we are 

attempting to fit with a family Pe (· ). Let B* represent the parameters that come closest to the true 

distribution in the sense of the Kullback-Leibler divergence, that is 

e· = arg~inKL[P.IIPe] = arg~in I dx P. (x)log : : ~:~ (1.16) 

If the true distribution is actually a member of the parametric family then the minimum KL di­

vergence will, of course, be 0. Asymptotically, the maximum likelihood estimator will approach 

B*. When discussing parameter estimation we made the well known observation that the maximum 

likelihood estimator is asymptotically efficient, which holds when the true distribution falls within 

the parameterized family. This result can be extended to the general case. 

The ML estimator given data ..-1' has the property that \lEx (BML) = 0. Assuming that eML is 

close to e·, we can make a linear approximation to the gradient at e· 

(1.17) 

where K is the observed information matrix, as before. Thus the errore· - BML ~ K- 1 \JEx (B*) 

Asymptotically, the expected value of the difference is 0. To calculate the variance we note that 

for iid data [ [K] = N k where N is the number of observations and k is the expected one-point 

Hessian. We write j = Var [\JE.,, (B*)] as the more conventional definition of the Fisher information, 

the variance of the one-point log likelihood gradient, so that Var ['VEx (B*)] = N j, and so 

(1.18) 

The expectations and variances are all with respect to the true density P. (-). If this is the same 

as Pe· ( ·) then the two definitions of the information are equivalent and j = k, so that the mean 

square error approaches the standard Cramer- Rao bound 1/N I 
Given the asymptotic behaviour of the ML estimate, we can ask what likelihood we will assign to 

a validation point, v generated from the true distribution P. (v). We expand around the "correct" 

validation value at B*. 

= 

Ev (8*) + (BML- B*)T\JeEv (8*) + ~(BML- B*)T\7\JoEv (B*) (BML- B*) (1.19) 

Ev (B*) + (BML- B*)T\JoEv (B*) + ~Tr [\7\JeEv (B*) (BML- B*)(BML- B*)T](1.20) 
2 

If we now take the expectation with respect to the true distribution of the training data and of v, 

we can take the expected gradient at B* to be 0. Also, since v is independent of X and therefore of 
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8ML, we can factor the expectation within the trace. 

£ [fv (8*)] + ~Tr [£ [\7\7 efv (8* )] £ [(8Ml - 8*)(8ML - (r)T]] 

£ [fv (8*)]- ~Tr [kvar [(8ML- 8*)J] 

£[£v (8*)] - ~Tr [k ~k-1Jk-1 ] 

£ [fv (8*)]- 2~ Tr [Jk-1
] (1.21) 

This expression shows the approximate bias in the validation likelihood. On t he training data we 

can expand lx (8*) around 8ML (where the gradient is always 0) to obtain 

(1.22) 

Now, the expected values of the Jog-likelihoods at the fixed point 8* are equal (up to a factor of the 

number of training data, N). Thus, we obtain 

(1.23) 

This can be viewed as a prediction of the expected difference between the validation likelihood 

and the training likelihood. We might therefore rank models according to their training likelihoods 

penalized by the trace term. 

This is the NIC (Network Information Criterion) of Murata et al. (1991, 1993, 1994). To use it 

we replace the expected values of the information measures J and k by their observed values, 

(1.24) 

with K the observed information and J = Li('Vfx, (8ML))2 /(N- p) where pis the number of 

parameters. If the true distribution lies within the parameterized family then J = k and we can 

replace the trace penalty by the number of parameters p. This is the AIC of Akaike (1974). Akaike 

used AIC as an abbreviation for An Information Criterion, although it is usually taken to stand for 

the Akaike Information Criterion. 

1.4 Graphical Representations 

In most experiments we measure more than one variable simultaneously. Thus the observations Xi 

that we have described above are usually multivariate. It is often useful to partition the observations 

into a number of distinct random variables, each of which may still be multivariate. For example, 
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Figure 1.2: Graphical representation of conditional independence. 

we may make measurements with different instruments and regard the output of each instrument, 

whether a single number or a vector, as a random variable. The advantage to such a partition is 

that it is often possible to write the parameterized model distribution Pe (x;) more easily in terms 

of the partitioned variables. Why would this be so? 

Let us consider a case where the observation x; is partitioned into three random variables 

xt' X~' xr. In general any probability function of the Xi may be written in conditional form: 

(1.25) 

However, it might be that x~ is independent of x} and so we replace the second term on the right 

above with just p (xt). Another possibility is that xr is conditionally independent of X~ given xt 

so that we can write P (xr I xt) in place of the first right hand term. This might seem like only a 

notational convenience, but, in fact, if we are to parameterize the probability distribution we have 

saved ourself some parameters. The factorized function is simpler (in the sense of model selection) 

than before. 

The factorized structure of the distribution can be shown graphically as in figure 1.2. In panel A 

the case of no conditional or marginal independencies is shown as a fully connected undirected graph. 

Panel B represents the marginal independence of xt and x~ . Panel C represents the conditional 

independence of X~ and xr. Each of the latter two cases is represented by a directed acyclic 

graph or DAG. 

It should be noted that the connection between probabilistic models and DAGs is far from 

cosmetic. An important and deep theory is available connecting reasoning about the probability 

distribution with algorithmic manipulations of the graph (Pearl1988; Lauritzen 1996). However, we 

shall not exploit this theory at all; for us the graph will simply be a convenient tool for visualization. 

When representing parameterized probability functions Pe (xi) we will find it useful to introduce 

nodes in our graphical representation corresponding to the parameters. Since we have factorized our 

probability functions, we need to partition the parameters () into the groups appropriate for each 
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Figure 1.3: Graphical representations of repeated observation models. 

factor function. In general, we might write 

(1.26) 

where 8 is the union of er , T = 1 ... 3. Figure 1.3A illustrates the representation. Whereas before it 

was sufficient to show the variables involved in a single observation i, with the implicit information 

that each observation is independent and identically distributed, we now need to make clear that 

the parameters are chosen exactly once and have the same value over all observations, whereas each 

observation has its own set of random variables xi. This time the fact that the xi are independent 

(conditioned on the parameters) is shown explicitly by the lack of edges between nodes at different 

values of i. 

\i\le can condense the representation as shown in Figure 1.3B2 . The rectangle represents a single 

2 To the best of my knowledge, this representation was introduced in the computer program BUGS from the MRC 
biostatistics unit at Cambridge (Thomas 1994; Spiegelhalter et at. 1996). 
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i 

Figure 1.4: Graphical representation of a latent variable model. 

observation with an index indicated its lower right hand corner; variables that appear within the 

rectangle are repeated across observations, while the parameters which are chosen only once for all 

observations appear outside it. As before, the lack of edges between nodes at differing i indicates 

that the observations are independent. Now, our decision to represent all the functions Po (xi) by a 

single subgraph indicates further that they are identical. 

If the observations are not independent, say t here are correlations between the variables xt at 

different i, we may represent this fact by an edge that crosses out of, and then back into, the 

rectangle, as in figure 1.3C. However, we cannot show the limits of this interaction. For example, if 

xt is generated by a Markov process, so that xt is condit ionally independent of xi ... xL2 given xL1 

we need the expanded time view of figure 1.3A, with additional edges for the Markovian dependence, 

to distinguish this from the other possible cross-observation dependency structures. 

1.5 Latent Variables 

We have seen that it can be useful to partition the observed variables so as to simplify the expres­

sion of the probability function by exploiting the conditional dependency structure of the problem. 

Another manipulation that can assist in this simplification is the introduction of latent variables. 

These are variables which are not observed. The parameters, of course, are also not observed; the 

latent variables are different in that they are presumed to be instantiated once for every observation, 

that is there is a latent Yi for each observation Xi- In graphical terms, the simplest latent variable 

model is sketched in figure 1.4. Note that the latent variable node appears within the rectangle. 

In a latent variable model we can add a third operation to our pair of learning and model 
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selection, inference. This will refer to the estimation of value of the latent variables Yi g iven known 

parameters and the observations Xi· The difference from fitting, that is, estimating the parameters, 

is simply one of scale. 

Again, it h as been shown that certain algorithmic manipulations on the graph that defines the 

latent variable model can yield the correct form of inference (Pearl 1988). For most of the models 

we shall discuss, however, inference will be a simple matter of the application of Bayes' rule: 

p ( · \ ·) _ Pe(xi \yi) Pe(Yi) 
0 y, x, - Po (xi) (1.27) 

1.6 The Expectation- Maximization Algorithm 

How do we go about learning the parameter values of a latent variable model? It is possible to define 

a likelihood function for the parameters by integrating over the latent variables3 . 

f.x (8) =log j dY Po (X I Y) Po (Y) (1.28) 

where the integral is over all the Yi in the set Y. However, in many cases this likelihood is quite 

difficult to optimize in closed form. Gradient- or Hessian-based numerical optimization schemes 

can be very effective for a number of problems. In the case of latent variable models, however, 

another algorithm exists that is frequently more straightforward and of comparable efficiency. This 

is the Expectation-Maximization (or EM) algorithm (Dempster et al. 1977). Quite complicated 

models may be fit efficiently by use of EM (Xu and Jordan 1996). 

We shall first lay out the steps of the EM algorithm and only then offer two (informal) proofs of 

its validity. The second of these proofs will a lso provide the justification for various extensions. 

If we had, in fact, observed the variables Yi we would be able to write the joint data log 

likelihood 

f.x,y (8 , 8) =log Po (X I Y) +log Po (Y) (1.29) 

This likelihood is often much easier to manipulate than the true likelihood of (1.28), since it avoids 

the awkward log-of-integral (or log-of-sum) expression. It will be the starting point for EM. 

To begin the EM algorithm we provide seed guesses for the parameters. Vve will label successive 

outputs of the iterations by the iteration number in the superscript. Thus, the initial guesses will 

be called 8°. At the nth iteration we estimate new values of t he parameters by the following two 

steps. 

E-step: Find the expectation of the joint data log-likelihood under the distribution of the Yi given 

3 In this general introduction we shall assume that the y; are continuous, but d iscrete latent variables may be 
handled in the same fashion with the integral replaced by a sum. 
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the n - lth parameter estimates and the observations. 

(1.30) 

M-step: Then maximize this expected joint data log-likelihood with respect to the parameters to 

obtain the new estimates. 

(1.31) 

Why does EM work? Let us consider the effect of the iterations on the true log-likelihood function 

given in (1.28). In each iteration we start with parameters gn-1 and estimate new parameters en. 

For notational simplicity we will write P n-1 (-) for the various probability functions with parameters 

en-1 and similarly for Pn (·). The resulting log-likelihood is 

fx (Bn) =log I dy Pn (Y) Pn (X I Y) 

We introduce a factor of :n-1 ~y : X~ within the integral and rearrange to obtain 
n-1 Y X 

e (en)=l ld p (YIX)(Pn(Y)Pn(XIY)) 
X og y n-1 Pn-1 (Y I X) 

(1.32) 

(1.33) 

We can now use Jensen's inequality (see, for example, Cover and Thomas (1991)) applied to the 

convex function log(-) to exchange the logarithm and integral. In this context, Jensen's inequality 

states that, for positive weights ai that sum to 1, 

(1.34) 

We can generalize this for a positive continuous weight function with unit integral, in our case 

Pn-1 (Y I X), to obtain 

> I d P (Y I X) 1 ( P n (Y) P n (X I Y) ) 
y n-1 og Pn-1 (Y I X) (1.35) 

I dy Pn-1 (Y I X) log (Pn (Y) Pn (X I Y))-

I dy Pn-1 (Y I X) log (Pn-1 (Y I X)) (1.36) 

Thus the quantity on the right hand side of (1.36) is a lower bound on the likelihood at the nth 

iteration. The first term is readily identified as the quantity Qn(B) from our statement of the EM 

algorithm (1.30). The second term has no dependence on en. Thus by maximizing Qn(e) as dictated 

by them-step (1.31) we are maximizing a lower bound on the likelihood. Further, we know that the 
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maximum must be ~ lx (Bn-1 ) since we can obtain that value by simply putting Bn = Bn-1 . Thus 

we can be sure that as long as the EM algorithm does not converge, the likelihood of the model 

must increase. 

We need also to show that when the EM algorithm does converge, we have reached a maximum 

of the true likelihood. This proof appears in (Dempster et al. 1977), and we will not reproduce it. 

Instead, we will follow Neal and Hinton (1998) and take a slightly different view of t he algorithm; 

this approach will yield the necessary second component of the proof. 

1. 7 Free Energy and EM 

Let us define a more general form of the function Q in (1.30) by taking the expectation with respect 

to an arbitrary probability function p(Y), in place of the particular probability P n-1 (Y I X). 

Q(p, B) = Ep [fx,y (B)] (1.37) 

We can then introduce a function that we will call the free energy by analogy with statistical 

mechanics , 

F(p, B) = Q(p, B) + H (p) (1.38) 

where H(p) = -£P [logp] is the entropy of p. This function is familiar from above; it is the right 

hand side of (1.36) with the arbitrary function p replacing P n-1 (Y I X) . Furthermore, in arriving 

at that expression our choice of weighting function to use in J ensen's inequality was arbitrary, so F 

also bounds the likelihood fx (B) below. In drawing the physical analogy we should note that our F 

should, in fact , be regarded as the negative of the conventional free energy, which is consistent with 

the fact that we are interested in maximizing F , while physical systems evolve to minimize t heir free 

energy. 

We observe (Neal and Hinton 1998) that, if B is held constant, the free energy is, in fact, maxi­

mized by choosing p(Y) =Po (Y I X). To see this, we maximize the quantity 

Lo(P) F(p, B) - -\ j dY p(Y) (1.39) 

j dY p(Y) (fx,y (B) - logp(Y) - -\) (1.40) 

where A is a Lagrange multiplier enforcing the normalization constraint. From t he t heory of the 

calculus of variations (Mathews and Walker 1970) we find that at the maximum with respect top the 

functional derivative of the integrand must be 0 (this is a trivial special case of the Euler-Lagrange 
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equations). Thus the maximum occurs when 

0 

and so 

a -a (p(Y) (lx y (B)- logp(Y)- .A)) 
p ' 

p(Y) 
(lx,y (B) - logp(Y)- .A) - p(Y) (1.41) 

(1.42) 

The requirement that p be normalized determines the multiplier .A and yields p(Y) = Po (Y I X). 

Thus we obtain a new interpretation of the EM algorithm. 

E-step: Maximize F with respect top holding B constant. 

M-step: Maximize F with respect to B holding p constant. 

We can now sketch the proof that ifF achieves a local maximum at p*, B* then lx (B) achieves a 

local maximum at B" (Theorem 2 of Neal and Hinton (1998)). We first note that if p(Y) = P 8 (Y I X) 

then 

F(Pe (Y I X) ,B) = Q(Pe (Y I X) ,B)+ H(P8 (Y I X)) 

£yiX;8 [lx,y (B)]- £yiX;8 [log P8 (Y I X)] 

[
log Po (Y,X)] 

£ylx;e log p8 (Y I X) 

= [YIX;O (log Po (X)] 

= log Pe (X) 

lx (B) (1.43) 

Thus, writing p*(Y) for Po· (Y I X), we have lx (B*) = F(p" , B*). Suppose there is some B** t:-close 

to B* at which the log-likelihood is larger, and that p** is the corresponding P 8·· (Y I X). Then it 

must be that F(p**, B*") > F(p•, B*). But, assuming that Po· (Y I X) varies continuously with B*, 

if B** is t:-close to B* then p"* is <5-close to p*. This violates the assumption that F achieves a local 

maximum at p*, B*, and so there can be no such B*" close to B* with larger likelihood. Thus lx (B*) 

is a local maximum. A similar argument can be made for the global maximum (and we don't even 

need the continuity assumption). 

1.8 Generalizations of EM 

This formulation does not just provide straightforward access to the above proof; it also justifies 

a number of generalizations of the EM algorithm. The first actually follows from the argument 
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following (1.36) and appeared in (Dempster et al. 1977) . This is the generalized M-step. As long 

as, at each iteration, the function Q is increased relative to its value at gn-1 , all of the guarantees 

of increasing the likelihood are maintained. We do not need to maximize Q at each iteration, we 

can instead just take a step in the direction of its gradient (provided we are guaranteed that Q will 

indeed be maximized at convergence- see the comments below). This variant is called gradient or 

generalized EM (usually written GEM): 

E-step: Find the expectation of the joint data log-likelihood under the distribution of the Yi given 

the n- lth parameter estimates and the observations. (This is unchanged.) 

(1.44) 

GM-step: Change e in the direction of the gradient of Q. 

(1.45) 

where TJ is some learning rate parameter chosen in accordance with the usual principles of gradient 

ascent. Clearly, this is useful when Q cannot be maximized in closed form. In such situations it is 

usually computationally more efficient to use GEM rather than numerically optimizing Q in each 

M-step. 

The free energy formulation suggests an alternative generalization. In principle, we could make 

a corresponding generalized E-step, and choose a function p different from Pn_1 (Y I X), provided it 

increases the free energy. We must be careful, however. We have shown that when the free energy 

reaches a local maximum, so does the likelihood. If we generate functions p by an algorithm that 

can converge even though F is not at a true local maximum, our guarantees of maximal likelihood 

evaporate. Such a situation arises when the functions p are restricted in functional form so that for 

most values of 8 the function Pe (Y I X) does not lie within the family of possibilities. In this case 

we can at best optimize F on the surface of constraint defined by the function family. An example 

is found in the Helmholtz machine (Dayan et al. 1995). The wake-sleep learning algorithm (Hinton 

et al. 1995) for the Helmholtz machine involves exactly such a constrained generalized E-step where 

the estimate p must be the output of a sigmoid belief network. As a result, it cannot guarantee 

convergence to the maximum likelihood parameters. 

A similar caution, of course, can apply to generalized M-steps too. The usual choice of a gradient 

M-step, however, is guaranteed to converge to a local stationary point of F. 

One example of an approximate E-step that maintains the convergence properties is provided 

by Neal and Hinton (1998). This is the incremental E-step, applicable when the Xi and Yi are 

independent. In this case, we can restrict the functions p to the family of functions with the form 
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p(Y) = Il p; (y;) since the independence of the Yi guarantees that the optimal p will be in the family. 

We can now write 

F(p,B) L F;(p;,B) 

L £71 , [io (xi, Yi)] + H(pi) (1.46) 

and maximize each component Fin turn. T4e incremental EM algorithm now proceeds from initial 

guesses 8° and p~ so: 

IE-step: Choose some i. Maximize Fi (Pi, en-l) and leave the remaining Pj, j f= i unchanged. 

Pi(Yi) 

Pj(yj) 

P n-1 (Yi I X;) 

pj-l(yj) 

M -step: Maximize F with respect to 8 holding p constant. 

(1.47) 

In practice, for many distributions of interest, the M-step can be performed from sufficient 

statistics of the data, which are efficiently updated with respect to Pi (Neal and Hinton 1998). We 

shall, in fact, use a similar approach to track non-stationary mixture distributions efficiently. 
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Chapter 2 Clustering and Mixture Models 

2.1 Clustering of Data 

We have laid out our overall goal as follows: given a group of observations X= {xi I i = 1 . .. N}, 

Xi not necessarily univariate or independent, discover the structure of the stochastic process from 

which the data arose. In this chapter we will investigate one particular form of structure: we will 

examine ways to discover if the data fall naturally into distinct clusters of points. 

Clustering has a long history of essentially ad hoc techniques (Duda and Hart 1973; Jain and 

Dubes 1988). In recent years, however, considerable progress has been made with various statistically 

well-founded techniques. In our treatment of the problem we will pass very quickly to one particular 

statistical model, the mixture, which will be seen to be a particularly simple example of a latent 

variable model. 

In general, the clustering problem assumes that the observations are independent and identically 

distributed (iid), and further that some measure of dissimilarity between observations is available. 

This measure may be quite general; there is no need for it be symmetric, to obey the triangle 

inequality, or even to be always nonnegative. Many of the techniques which work with these weak 

assumptions are fundamentally agglomerative, that is they form the data into progressively larger 

clusters by merging together smaller groups that display significant similarity. We shall not discuss 

such algorithms; many examples are reviewed by Jain and Dubes (1988). 

Probabilistic models require well-defined measures in the space of observations, which in turn 

require a defined metric. Thus, we will examine clustering problems where the similarity measure 

obeys all the requirements of a metric. Indeed, we will go further and assume that each of our 

observations defines a point in RD , and that the similarity measure is simply the Euclidean distance 

between the points. In particular, this assumption allows us to speak of distances to points that were 

not observed, and thus to speak quantitatively of the process that generated the data, something 

not always possible in the extremely general spaces. 

In this early treatment we shall also assume that the number of clusters , M, is known. Once we 

have achieved a properly probabilistic framework, the problem of determining the number of clusters 

will be reduced to that of model selection and so the techniques of the previous chapter will become 

applicable. 

A particularly straightforward criterion for the assignment of D-dimensional observations {xi} 

to M clusters is as follows. We associate with each cluster a central point f.Lm E R D, m = 1 .. . M, 



25 

and then require that the sum of the squared distances from each point to the center of its assigned 

cluster be minimal. For this to be the case, it is clear that Jl.m must be the mean of the observations 

assigned to the mth cluster, hence this approach is often referred to as the k-rneans clustering 

criterion (McQueen 1967). (The 'k' ink-means refers to the number of clusters, a quantity for which 

we have chosen the symbol M.) 

The clustering is fully specified by the location of the J-Lm, since the assignments of the Xi are 

then determined by which mean is closest. How are we to find the optimal locations of the Jl.m? 

Iterative algorithms to do this have been known since the 60's. The basic approach was provided 

by Forgy (1965) (this approach is also known, in the related vector quantization literature, as the 

Lloyd-Max algorithm). We begin with an initial, random partitioning of the data into M sets. The 

J-Lm are placed at the means of these data sets. We then iterate the following two steps 

1. Re-assign all data points to the closest Jl.m· 

2. Move each Jl.m is the mean of its assigned data. 

This basic iteration (which, as we will see, is quite reminiscient of the EM algorithm) is what we 

shall call the k-means algorithm. 

A number of variants of this basic approach have been suggested. For completeness, we mention 

them here; no details will be provided and we will not encounter them again in this dissertation, 

preferring instead the probabilistic approach described below. A more complete review is available 

in Duda and Hart (1973) , Jain and Dubes (1988) or Ripley (1996). 

The ISODATA algorithm (Hall and Ball 1965; see also Duda and Hart 1973) introduces an 

additional step to the iteration above, in which the number of clusters may be adjusted. Hartigan 

and Wong (1979) re-assign only one data point at a time, updating the means each time a point 

changes hands. McQueen (1967) gives an incremental algorithm, in which data are considered one­

by-one in a single pass and the corresponding cluster mean updated after each assignment. Adaptive 

resonance theory (ART) (Carpenter and Grossberg 1987a, 1987b, 1990) provides a similar scheme 

within a "neural" framework; rather than choosing the closest mean, the data point is compared 

to each in a set order and the assignment is made to the first cluster for which the data point falls 

within a distance threshold. In addition, the distortion measures involved in ART are not exactly 

the squared-distance measures of the other techniques. 

2.2 A Statistical Interpretation 

As presented, the k-means and related algorithms appear ad hoc, but in fact they can be given a 

statistical interpretation (Scott and Symons 1971). We note that the sum of squared distance from 

J-Lm is (up to a normalization constant) the negative log-likelihood of the model that the data are 
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generated by an isotropic (that is, identity covariance matrix) multivariate Gaussian distribution 

with mean J.Lm. Thus, we can introduce the following likelihood function 

(2.1) 

where Y = {yi} is a set of assignment variables taking values between 1 and M, which tell us in which 

cluster the each observation falls, while G( ·) denotes a standard multivariate Gaussian density with 

mean 0 and covariance I. The values of {J.Lm} and Y which maximize this likelihood are precisely 

the solutions to the k-means sum-of-squares criterion. We have therefore converted our clustering 

problem into maximum-likelihood estimation. 

This viewpoint also allows us to easily generalize the sum-of-squares criterion. In place of the 

isotropic Gaussian, we might choose Gaussians with arbitrary covariance matrices, so that each 

cluster is ellipsoidal but can have a different size and orientation. Indeed, we can in general choose 

any parameterized family of densities, and require that each cluster be represented by one of them 

(Scott and Symons 1971; Banfield and Raftery 1993). The likelihood is then 

(2.2) 

where the 8m, m = 1 ... M parameterize the densities. If we are to retain the intuitive notion of a 

cluster being spatially compact we would expect the densities to all be well localized. Algorithms 

to maximize these likelihoods are exactly analogous to the procedures we discussed above in what 

we now see was the isotropic Gaussian case. 

In this framework we maximize the likelihood with respect to both the density parameters and 

the assignment variables simultaneously. This is appropriate if our goal is to group the data at hand, 

as is often the case. However, the project we laid out was to discover the nature of the process that 

generated the data. The process is characterized only by the density parameters, along with the 

probability distribution of the Yi · The particular choices of the Yi are not important, and indeed we 

wish to maximize not the likelihood (2.2), but its marginal taken over all the possible assignments 

Y. This leads to the mixture model. 

2.3 Mixture Models 

The mixture model is perhaps the simplest example of a latent variable statistical model. It 

consists of a single observed vector variable and one discrete scalar latent variable. Both observations 

and latent variables are iid. This model is represented by the graph in figure 2.1a, using all the 
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Figure 2.1: A mixture model. 

conventions introduced in section 1.4. The marginal density of the ith observation xi is 

Po (xi) = L Po (yi) Po (xi I Yi) (2.3) 
y; 

where the sum is taken over all the possible values the latent variable might assume. The choice of 

discrete values available to Yi is arbitrary, although the number of such values is not. We will write 

M for the number of distinct values the latent variable can take, and will assume that these values lie 

in the range 1 ... M. The distribution function of the Yi is unconstrained, and so is parameterized by 

the probabilities associated with each value (strictly, by the probabilities of the first M- 1 values). 

We will write 7rm for Po (Yi = m) and Pem (xi) or even just Pm (xi) for Po (xi I Yi = m). We can 

then rewrite the marginal density thus, 

M 

Pe (xi) = L 7rmPem (xi) (2.4) 
m=l 

where the parameter set 8 = { 7rl ... 7r M, 81 ... 8 M}. 

Why the name "mixture model"? The latent variable can be viewed as a gate that, for each 

observation, selects one of the densities Pm (-),from which the Xi is then drawn. Thus, the resultant 

set of observations is formed by mixing together sets of data drawn from each of the component 

densities Pm (-). The relative sizes of these sets are defined by the mixing parameters 7rm· 
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2.4 EM for Mixtures 

The EM algorithm for mixture distributions has a particularly appealing form. The log-likelihood 

function for the parameters is 

M 

Ex (8) = I: log I: 7TmPem (xi) (2.5) 
m=l 

which has the log-of-sum structure common to latent variable models. The joint data log likelihood 

is 

(2.6) 

Written in this way, it is hard to manipulate. For this reason we will first re-express the mixture 

density in a way more conducive to application of EM. 

In place of the single M -valued latent variable Yi we introduce a set of M binary-valued indicator 

latent variables Zm,i· For any observation, the one of these corresponding to the value of Yi takes 

the value 1, while the others are all 0. This version of the model is drawn in figure 2.1b. The 

Zm,i are all dependent on each other. A random variable Xm,i is drawn from the mth component 

distribution and multiplied by the value of Zm,i· All of these products are summed to produce the 

final observation. The square nodes in the graph represent deterministic combinations of random 

variables. 

Armed with the variables Zm,i we can rewrite the joint data log-likelihood 

(2.7) 
m 

with only one term in the inner sum being non-zero. The fact that this expression is linear in the 

Zm,i makes the E-step of t he EM algorithm quite straightforward. 

Qn(8) = [ziX,0"-1 [fx,y (8)) 

[zlx,on-> [ ~ ~_>m,i log7TmPem (xi)] 

I: I: [zm,;lx;,On-1 [zm,i)log7TmPem (xi) 
m 

2::::2:::: r~,i log7TmPem (xi) 
m 

(2.8) 

where we have written r;;:,,i for [zm,<lx;,0"-1 [zm,i) · The variable Zm,i is binary, and so its expected 

value is just the probability that it assumes the value 1, which it does when the gating variable Yi 
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Pon-1 (yi = m I Xi) 

Pon-1 (xi I Yi = m) Pon-1 (Yi = m) 
P IJn-1 (xi) 

1r;;-1 P e;:,-1 (xi) 

2:::1 1r~-
1 P 0 n -l (xi) 

I 

(2.9) 

In other words, the number r:::, ,i is the posterior probability that the ith observation was generated 

from mth component, under the (n-1)th iteration of the parameters. It is called the responsibility 

of the mth component for the ith observation. In clustering terms it can be thought of as the degree 

to which observation Xi is associated with cluster m. 

We can also say some general things about theM-step without knowing the form of the component 

densities. Rewriting (2.8), we have 

(2.10) 
m m 

and so the maximization with respect to 1r m and Bm can proceed separately. We can find the new 

values of the 1r m directly. We impose the constraint I:; 1r m = 1 using a Lagrange multiplier >. and 

differentiate to obtain 

(2.11) 

and so 1r;; is proportional to Li r;;,i. The normalization constraint then gives us 

(2.12) 

where the denominator is the number of observations and we have used the fact that Lm r;;,i = 1. 

We cannot, of course, solve for the o;::, without knowing the forms of the component densities, 

but even here we can make a little headway. First, note that the Bm (unlike the 7rm) are independent 

of each other, and so we can maximize with respect to each component separately. Furthermore, 

the only term in (2.10) that depends on Bm is Li r;; ,i log Pem (xi)· Now, if we were to fit the mth 

component density alone to all of the observations, we would find the parameters by maximizing the 

log-likelihood Li log Pem (xi)· Thus, we can interpret the M-step as fitting each of the component 

distributions to all of the observations, weighting the contribution of the ith datum to the log­

likelihood by the responsibility r:::,,i. 

Here, then, is the EM algorithm for mixture distributions: 
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E-step: Calculate the responsibilities at the nth iteration 

r~,i = (2.13) 

M -step : Estimate the new mixing parameters 

(2.14) 

and the new component distribution parameters 

(2.15) 

2.5 Applications of Mixture Models 

We have introduced the mixture model from the point of view of clustering. The component densities 

are thus taken to represent different physical processes, the observed data being a mixture of points 

generated by these processes. The mixture-model likelihood and the EM algorithm used to optimize 

it, differ in focus from the clustering likelihood of (2.2) and the k-means algorithms: the mixture 

parameter estimates describe the generating process, while the sum-of-squares and related methods 

find the best grouping of the observed data. In general, if we consider many sets of data that 

generated by mixing the outputs of the same group of processes, we expect the mixture parameter 

estimates to exhibit much tighter variance than their clustering analogues. In situations where we 

expect to classify new data, or to make predictions, it is clear that the former approach is to be 

preferred. 

The difference may also be viewed in another way. The likelihood of (2.2) dictates a "hard" 

clustering scheme - the solution involves an explicit assignment of observations into clusters. In 

contrast, fitting the mixture model describes a "soft" or "fuzzy" clustering scheme where observations 

are not, in fact, classified, but are partially associated with clusters through the responsibilities. We 

might intuitively expect these techniques to yield different answers. Fuzzy clustering schemes have 

been proposed, without the probabilistic interpretation, within the theory of fuzzy sets (Backer 1978; 

Bezdek 1981). 

The clustering view of mixture modeling is only really meaningful in situations where the com­

ponent densities are reasonably well separated. In such cases the likelihood landscape generally 

exhibits sharp maxima to which EM converges quickly. 

Mixture models can also be employed in situations where the component densities overlap for 

the purposes of density estimation. The mixture density (2.4) can be quite complex, even when 
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Figure 2.2: Two views of a mixture model. 

the component distributions are relatively simple. As a result, complicated densities can be "non­

parametrically" fit, with mixtures of Gaussians for instance, by t he EM algorithm. From this 

viewpoint, there is no significance to the gating variable or to the component distributions - there 

is only one process with a complicated density and the mixture is just a convenient and flexible rep­

resentation of the unknown density function. Indeed, one could view the familiar kernel-estimat ion 

technique as a particular case of a mixture model used in this way. The two views of the mix­

ture model are illustrated in figure 2.2 where mixture models (the scaled components are shown 

by the dashed lines, the resulting mixture density by the solid lines) are fit to different types of 

one-dimensional data (histogrammed and shown by the grey bars). 

We should make a short observation on our choice of the EM algorithm for learning the mixture 

model. If the component distributions overlap considerably it has been argued (Redner and Walker 

1984) that the convergence of the EM algorithm to the optimal parameters of the mixture is slow 

(first order) and that superlinear methods should be preferred. However Redner and Walker (1984) 

themselves point out, and Xu and Jordan (1996) later elaborate, that the convergence of the likelihood 

of the mixture model is rapid, and that the mixture density approximates the true density quite 

quickly under EM. Thus, when the mixture model is used for clustering and thus the estimates 

of parameters are of importance, the components are likely to be reasonably well separated and 

therefore EM will converge well; while in the density estimation case, the criterion of importance is 

the convergence of the density estimate, and again t his is rapid under EM. 

2.6 Mixtures of Gaussians 

A particularly fruitful mixture model, both in the context of clustering and of density estimation, 

arises when the components are (possibly multivariate) Gaussian densities. The parameters Bm are 
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then a mean vector 11-m and a covariance matrix :Em. The log-likelihood of the model is 

M 

ix (B) = L log L 1T'm l27r:Eml-1/2 e-!(X-~Jm)TE;;-,1 (X-~Jm) (2.16) 
m=1 

The joint data log-likelihood with the indicator latent variables (2.7) is then 

lx,z (B)= LLZm,i (log7rm- ~logl27r:Eml- ~(xi- 11-m)T:E;:;;,I(xi- P,m)) 
t m 

(2.17) 

where the exchange of the logarithm and the sum has eliminated the exponentials. The E-step is as 

for a generic mixture distribution (2.13), in this case given by 

1 I 11
-1/2 l.( n-1}T('<"'n-1}-l( n-1} rn . (X 1T'n- 27r:En- e-2 X-~Jm .<..m X-~Jm 

m,~ m m (2.18) 

with the responsibilities normalized so as to sum to 1. In the M-step, the estimation of the mixing 

parameters is as for the generic mixture (2.14). The estimation of the mth component parameters 

is achieved by maximizing 

Q;::, (B) = - L r;::,,i (~log l27r:Eml + ~(xi - /1-m)T:E;:;,/ (xi - P,m)) 
t 

Differentiating and equating to 0 we obtain 

Ei r~,iXi 
L:i r~,i 

and (differentiating with respect to Rm = :E;:;-,1) 

~ r;::,,i (~(R:::,)- 1 -~(xi- p,;::,)(xi- J.L;::,)T) = 0 
t 

Li r;;:.,i(xi- p,;;:.)(xi- p,;;:. )T 

Li r~ ,i 

(2.19) 

(2.20) 

(2.21) 

Thus the mean is updated to the responsibility-weighted mean of the observations, and the covariance 

to their responsibility-weighted covariance. This is a particularly elegant and fast update. 

2. 7 Practical Issues 

We have argued that in situations where predictive power is desired, or where the parameters of 

the generating model are to be estimated as accurately as possible, the mixture model approach 
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to clustering is to be preferred. Can we then blindly fit (with the EM algorithm) a basic mixture 

model to solve all clustering problems that confront us? Unfortunately, we will find that a number 

of practical issues need to be examined quite closely before we can achieve robust and repeatable 

parameter estimates. 

We shall raise the issues one by one, discussing briefly some of the possible solutions to them as 

we proceed. The order is arbitrary, and some of the more basic and serious points are not discussed 

until last. In chapter 3 we will discuss in depth an elaboration of the EM algorithm which provides 

a new way to address a number of these issues. 

2.7.1 Outliers 

It is often the case that some of the data under consideration do not fall into any of the data clusters. 

These outliers may be caused by measurement errors, such as sensor artifacts or data mis-entry, 

or may be due to an additional data generating process which is diffuse and for which no model is 

available. The outliers may have a considerable effect on the estimates of the cluster parameters. 

For example, in a mixture of Gaussians clustering algorithm, the estimate of the mean for each 

Gaussian component is disproportionally sensitive to data from the tails of the distribution. The 

outliers fall far from all of the Gaussian clusters but nevertheless must be assigned to one or the 

other of them. As such, they will perturb the estimates of the means. 

We can resolve this problem by introducing an additional generative component in the mixture 

which can take responsibility for the outliers1 . This component density must be far more diffuse 

that the cluster densities, and must perturb the component density estimates as little as possible. 

The most suitable choice for the outlier component probability is found in the uniform density. 

More precisely, 

if X; E A 

if X; ~A 
(2.22) 

for some region A. This choice correctly embodies (in the Bayesian sense) our utter lack of knowl­

edge of the distribution from which the outliers are drawn. Furthermore, it tends to minimize the 

pertubation in the cluster parameter estimates. We will make this assertion more precise in the 

particular case of Gaussian clusters. 

Without loss of generality, we consider data drawn from a single Gaussian cluster, with mean 

f-L and covariance :E, corrupted by the addition of some outliers. We fit a model that has two 

components: one Gaussian and the other uniform. For simplicity in this analysis, assume that any 

outliers fall far from the center of the cluster and, as a result , have negligible responsibility assigned 

to the Gaussian. Under this assumption, the outliers themselves do not disturb the estimates of 

1 Banfield and Raftery (1993) take a similar approach in the context of hard clustering, introducing a Poisson 
distribution for outlier generation 
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the Gaussian parameters. However, the density of the uniform component within the region of 

the cluster is not negligible, and so responsibility for points that were, in fact, generated from the 

Gaussian is shared between the Gaussian and the uniform component. How will this sharing affect 

the estimates of the parameters of the Gaussian? 

Consider the transform E-112 applied to the data space. Both the Gaussian and the Uniform 

densities enjoy the property of mapping to another member of their respective families under a 

linear transformation, so that the nature of the mixture is unchanged. In this space, the data that 

belong to the cluster will be distributed according to a unit Gaussian (one with a covariance matrix 

equal to the identity). Without loss of generality, take the mean to be 0. We write jl and f; for 

the estimated mean and covariance, respectively, of the Gaussian component. Let the value of the 

uniform density in this space be ii. The mixing probabilities are 1r9 and 7ru for the Gaussian and 

uniform components respectively. 

The following system of equations must hold at the maximum likelihood parameter values, 

rg,i 
1ruii 

1 - -;--------;-----"----------------

( 1r uii + 1r 9 121rf: ~ - 1 

exp (- ~ (x; - jj)Tf;-1 (x; - jj))) 

L; r 9 ,;x; 

I:;; rg, i 

2:::; r9,;(x; - jj)(x;- jj)T 

(2.23) 

It is difficult to derive expressions for the estimates jj and f; directly, however we can make 

some arguments based on the symmetry of the situation. The data within the cluster are generated 

from a spherically symmetric distribution. Neglecting edge effects, the uniform density is also 

completely symmetric. Thus, on the average, there cannot be any directional bias to the estimates. 

This means that the expected value of jj must be 0, since any other value would break symmetry. 

Similarly, the expected value of f; must be isotropic, and will generally be slightly smaller than the 

true covariance in the transformed space I. These comments are about the expected values of the 

estimates, particular values of the estimates will be different based on the particular data instances 

being fit. 

What do these results tell us about the estimated Gaussian in the original space? The linear 

transform E 112 maps from the whitened space to the original one. Since expectations are linear 

functions, the expected values of the parameter estimates are simply the transforms of the corre­

sponding values in the whitened space. The estimated mean is thus distributed around the true 

value of the mean. The expected value of the covariance estimate is slightly smaller than the true 

covariance, but has the same shape in the sense of the same eigenvectors, and eigenvalue ratios. 

It is important to note that this invariance came as a result of the uniform density being sub-
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stantially symmetric under any linear transform. Any other distribution would have had to have 

been carefully crafted to be symmetric. Furthermore, we would have to know a good deal about the 

cluster distribution to do so. With many, differently shaped, clusters only the uniform density will 

suffice. 

2.7.2 Multiple maxima 

The likelihood surface associated with a typical mixture model tends to exhibit multiple maxima. 

Trivially, given locally optimal parameters { 1r m, Bm}, another maximum can be identified by retaining 

the same numerical values but permuting the component indices. In this case, the different maxima 

are equivalent in all practical senses and any one of them provides an equally good fit . Unfortunately, 

the system also exhibits non-trivial multiplicity. 

Figure 2.3 illustrates the problem. Two-dimensional data are generated from the Gaussian 

mixture shown in A (each Gaussian in the mixture is represented by its 1-sigma contour). Panels 

B-F show the results of 5 separate fits to these data. The average log likelihood per point for each 

model (including the generating model) is recorded in the bottom right corner. Each model is the 

result of an EM optimization, and each optimization has converged. The difference between the 

results lies in the initial values of the parameters which are used to seed the EM process. (As an 

aside note that the best optimum (C) has a larger log-likelihood than the generating model - the 
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Figure 2.4: Likelihoods obtained from random restarts 

data have permitted a small degree of over-fitting). 

How are these initial values chosen? One generic approach, that does not depend on the type of 

component densities, is to randomly assign responsibilities for each data point and then derive the 

initial parameters using the M-step update rules. In large data sets, this approach tends to make 

the initial parameter values for each component virtually identical. This initial condition is similar 

to that of the REM algorithm to be discussed in chapter 3, however applying it in the standard EM 

context does not seem to be efficient. Convergence from such an initial point tends to be slow, and 

is no more reliable at finding a good maximum than the other techniques mentioned below. 

An alternative approach, particularly useful in the case of mixtures of Gaussians (or the similar, 

well-localized, densities that are commonly used for clustering), is to pick a single covariance matrix 

(scale parameter) and initialize the means (location parameters) to randomly chosen data points. 

This is the method that was used to generate the fits in figure 2.3. We can refine the technique 

slightly by using these initial locations as the seed for a k-means clustering algorithm, and then 

using the output of that algorithm to provide the initial values of location parameters of the mixture 

model. K-means algorithms are also sensitive to the seed parameter values, but often less so than 

the full mixture, and so this initial stage tends to stabilize the estimates slightly. Nevertheless, 

experiments (an example appears in figure 2.4, to be described more completely below) suggest that 

in many situations the improvement is only very slight. 

In general, optimization problems of this sort are known to be NP-hard, and so no entirely 

reliable, efficient solution can be found. Various approximate approaches are well-known in the 

optimization literature, and most may be adapted to the present problem. We will not dicuss most 
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of these here, instead referring the reader to the books by Hertz et al. (1991), for general techniques 

and McLacHlan and Krishnan (1996) for EM specific approaches. One general method, simulated 

annealing (Kirkpatrick et al. 1983), will be described briefly in chapter 3, although we will not 

elaborate on the application of this approach to mixture models. However, the principal subject of 

chapter 3, relaxation EM, is extremely pertinant to this issue and application to mixture models 

will be discussed in some detail. 

For the moment, we note one quite straightforward approach, which is often remarkably effective. 

This is simply to choose a number of random starting conditions by one of the means described above, 

maximize the mixture likelihood starting from each of these initial values, and then choose the result 

that provides the largest likelihood. Figure 2.4 shows a histogram of the different values of the log­

likelihood per point obtain by running 100 optimizations on the data of figure 2.3. The dark bars 

show the results when the EM algorithm started directly from randomly chosen parameter values; 

the lighter bars show the results obtained when a simple k-means algorithm was run first. On the 

basis of this experiment, we conclude that approximately one-third of the random selected conditions 

yield the best maximum (given either initialization). Thus, in only 10 restarts of the algorithm, the 

probability of finding the best optimum is 0.985. Of course, this probability will be dependent on 

the problem being examined: an appropriate number of restarts will need to be determined through 

simulation for each new type of problem. 

2.7.3 The number of clusters 

In general, when presented with a clustering problem we have no a priori information about how 

many different clusters we will encounter. This number , along with the optimal parameters to 

describe each cluster, must be estimated from the available data. This is a classic example of the 

general problem of model selection, which was addressed at some length in section 1.3. All of 

the analysis of that section applies to the present problem, and the methods described there are 

frequently employed. 

In this section we will add another result to the battery of approximations to the marginal 

likelihood. This new approximation, introduced by (Cheeseman and Stutz 1996), is peculiar to 

mixture models and related latent variable models. In the following chapter, we shall introduce a 

novel framework, cascading model selection, for the efficient application of these various techniques. 

The Cheeseman-Stutz criterion 

The marginal likelihood for a mixture model with M components is given by 

(2.24) 
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Even if the individual cluster likelihood Pom (x;) can be integrated with respect to Bm, the overall 

integral proves to be intractable due to the MN terms that appear once the product is distributed 

over the sum. 

On the other, hand, if the latent variable values (expressed as the indicators Zm,i) were known, the 

marginal likelihood in this case could be written in a simpler form (compare the joint log-likelihood 

(2. 7)) 

N M 

PM (X) = J dB PM (B) II II (7rmP8m (x;))z<.m 
i=l m=l 

(2.25) 

M N f dB PM (B) II 7r~iZi,m) II (Pom (x;))Zi,m 
m=l i=l 

(2.26) 

This integral is more likely to be tractable. If the prior factors over the different cluster parameters 

Bm the expression above reduces to the product of the marginal likelihoods of each cluster, given 

only the data assigned to that cluster. 

Cheeseman and Stutz (1996) propose that we use this form, with the indicator values Zm,i 

replaced by their expected values at the optimum, r;,.,;, as the basis for an approximation of the 

true integral. In fact, direct substitution of the responsibilities into (2.26) will under-estimate the 

correct integral; however, the size of the error can be estimated from the mismatch between the 

value of the approximate integrand and the true likelihood at the estimated parameter values, B*. 

The complete approximation is 

(2.27) 

where we have written Rm* = ""' . r* .. L...,t m ,t 
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Chapter 3 Relaxation Expectation- Maximization 

In chapter 2 we noted a number of practical difficulties that arise in the use of the Expectation­

Maximization (EM) algorithm to find maximum likelihood fits of mixture models. Two among these 

were the sensitivity to initial conditions and the computational overhead involved in carrying out 

model selection. In this chapter we shall introduce a modified EM algorithm which addresses both 

of these issues in a natural fashion. Our modifications will rely on the statistical mechanics notion 

of relaxation. 

3.1 A nnealing and R elaxat ion 

3 .1.1 Sim ulated annealing 

Relaxation methods are well known in data analysis, primarily due to the popularity of the simu­

lated annealing technique for the solution of non-convex optimization problems (Kirkpatrick et al. 

1983). This being the most common example, we will review it briefly so as to provide a point of 

departure for our discussion. 

The objective is to find the global minimum of a function E(x). The approach taken is to 

simulate the motion (in x space) of a thermally excited particle under the influence of a potential 

energy landscape given by E(x). In principle, at zero temperature the particle will be found at the 

global minimum. Of course, in practice, if it starts at a position far from the lowest energy point 

it will most likely travel to a local minimum and come to rest there. At higher temperatures, the 

particle will travel rapidly all over the landscape, spending relatively more time in regions where 

the function E(x) is minimal. The annealing procedure lowers the simulated temperature gradually. 

As the temperature falls, the bias towards regions of lower energy increases, while the particle is 

still able to cross barrier regions of higher energy. If the rate of cooling is sufficiently gradual, these 

two tendencies - the attraction to regions of low energy and the thermal activation to cross energy 

barriers- combine in such a way as to inevitably leave the particle at the global minimum once 

the temperature reaches 0. Cooling schedules which guarantee this result can be shown to exist in 

principle (Geman and Geman 1984); however, they invariably take impractically long. Fortunately, 

less than perfect cooling schedules usually yield good results. 

This physical picture of the optimization process is appealing, but it is difficult to build intuition 

for why the trade-off between activation energy and attraction to potential wells should work out so 

conveniently. Also, while it will be valuable to contrast this view with the "deterministic annealing" 
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or relaxation procedure we will discuss later, it is not the most convenient starting point for the 

development of the new approach. Therefore we reexamine the algorithm from a more statistical 

viewpoint. 

3.1.2 Annealed sampling 

The fundamental logic behind annealing schemes is best illustrated by the simulated annealing of 

Markov chain Monte-Carlo (MCMC) samplers (Neal 1993; Bertsimas and Tsitsiklis 1993). The 

objective here is to sample from some complicated target probability function P (x). For con­

venience, we will introduce an energy function given, up to an arbitrary additive constant, by 

E(x) = -log P (x). The density is thus given by the Boltzmann equation P (x) = ~ exp( -E(x)), 

for some normalizing constant Z. We are able to evaluate E(x) for any point x, but the energy does 

not have a simple functional form that makes direct sampling by analytic means tractable. The 

MCMC sampling approach constructs an ergodic Markov-chain1 over the target space such that 

the stationary distribution of the chain is P (x) . In other words, we obtain a scheme for making 

probabilistic transitions from one point in the space to another in a memory-less (Markov) fashion, 

and such that, in the long run, the probability of visiting some point x is exactly P ( x). A number of 

schemes to construct a suitable Markov chain exist, the most prominent being the Gibbs sampling 

and the Metropolis algorithms. The details of the process are unimportant for our purposes; we 

seek only to gain an intuitive picture of the value of annealing; the reader interested in more detail 

is referred to the excellent review by Neal (1993). 

When using an MCMC sampler, we need to begin the chain at some point in the domain, 

say xo . Since we cannot sample directly from the target density, this point must be chosen from 

an arbitrary density, probably quite different to the target one. Let us say this initial density is 

uniform on the domain of interest, although the argument is not crucially dependent on this choice. 

The density of the next point, call it x1 , is then the product of this uniform distribution and the 

transition density of the Markov chain, marginalized over x0 , P1 (x1 ) = J dx0 Po (x0 ) P (x1 I x0 ). 

(For discrete domains we can picture multiplying a vector representing the uniform distribution by 

a transition matrix.) The resultant density will also be far from the target, as will the densities of 

many subsequent samples. Thus, our necessarily poor choice of Po (x0 ) results in a "burn-in" period 

of incorrectly distributed samples. The typical length of this period is related to the mismatch 

between the initial distribution and the target (or stationary) distribution, and to the magnitude of 

the non-unit eigenvalues of the transition operator, which set the decay rate of the non-stationary 

modes in Po(·). In general, the mixing time cannot easily be calculated, but in experiments with 

practical examples it is often impractically long. 

The difficulty is that in many problems P0 (x0 ) is likely to ascribe a relatively large mass to 

1The basic theory of Markov chains will be reviewed in section 4.1.1. 
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regions where the target function is vanishingly small, and furthermore, has small log-gradients. 

For domains of high dimensionality, the probability of falling in such regions can approach 1. The 

structure of the usual MCMC samplers (in particular, a feature called detailed balance which is 

needed to guarantee ergodicity) results in the sampler executing an almost unbiased random walk 

within that region until it finally emerges into a region of higher probability. 

How can annealing help reduce this burn-in period? We create a sequence of probability functions 

Po (x), P1 (x), . .. , P (x) which starts with the uniform distribution and ends in the target. In the 

case of the Boltzmann distribution this sequence is easily constructed using a "inverse-temperature" 

parameter, [3. We choose a sequence of f3i, starting with 0 and ending in 1, and write P; (x) = 

Z(~.) exp( -[3;E(x)), where Z({3;) is the partition function. By analogy with statistical physics, 

these densities correspond to the canonical distributions of a system with energy E cooled through 

a sequence of temperatures T = 1/{3. We now choose an initial point from P0 (x) as before, but 

then use the MCMC sampler corresponding to the density P1 (x), with 0 < {31 « 1, rather than 

the target sampler. The mismatch between these two distributions is small by construction, and so 

this Markov chain will soon achieve the stationary distribution for P1 (x). Once enough time has 

elapsed to make convergence likely, we switch to sampling from P2 (x), where the same argument 

about quick convergence holds. Eventually, we reach the target distribution (at f3 = 1). In many 

situations, the total burn-in time for all of the annealing steps is much smaller than the burn-in 

encountered stepping directly to the target. 

What does all this have to do with the physical picture of optimization by simulated annealing 

that we saw before? The Metropolis sampling algorithm used in some MCMC simulations has 

its origins in the physical simulation of particle motion, and, indeed, is precisely the simulation 

algorithm used by Kirkpatrick et al. (1983). If we extend to temperatures close to 0 ([3 » 1) the 

sequence of distributions discussed above, virtually all of the probability mass becomes concentrated 

near the global energy minimum. Provided the MCMC sampler is maintained in equilibrium, then, 

samples drawn in this limit will be arbitrarily close to the optimum. This is precisely the simulated 

annealing optimization algorithm. 

3.1.3 Relaxation 

We have examined the simulated annealing algorithm from two different points of view. In the first, 

the underlying energy landscape was fixed by the function to be optimized, while the motion of a 

thermally active particle in the landscape was simulated at steadily decreasing temperatures. In the 

second, the energy landscape was transformed from a flat initial condition to the target function and 

beyond, while samples were drawn from the corresponding Boltzmann distribution. This gradual 

transformation of the energy surface is called relaxation; for this reason, simulated annealing is 

also known as stochastic relaxation. 
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Optimization within a relaxation framework need not be stochastic. Let us focus on the energy 

functions themselves rather than on the implied Boltzmann densities. We can construct a sequence 

of functions, E0 (x) . . . E(x) such that the first function E0 (x) is easily optimized - it might, for 

example, have a single extremum - while the final function is the target. Our goal in constructing 

this sequence is for the global optimum of the ith function Ei(x) to lie within the domain of con­

vergence of the global optimum of the next function Ei+1 (x). We then pass along the sequence of 

functions, optimizing each one by a hill-climbing (or, for minima, descending) algorithm, which is 

seeded with the location of the previous optimum. Thus, we hope to track the global optimum from 

E 0 (x), where it was easily found, to E(x). Unfortunately, unlike the case of stochastic relaxation, 

there is no simple strategy that is guaranteed to provide a suitable sequence of functions in the 

case of such deterministic relaxation, even with exponentially long relaxation schedules, and indeed 

schemes devised for particular classes of energy (say mixture likelihoods) may not work even in all 

examples of that class. Nevertheless, in practice, this approach often does yield good results. 

3. 2 Deterministic Annealing 

One example of a non-stochastic relaxation process has been called deterministic annealing. This 

algorithm was introduced by Rose et al. (1990) as a maximum entropy approach to clustering and 

vector quantization, following earlier work on elastic net algorithms for the traveling salesman 

problem (Durbin and Willshaw 1987; Durbin et al. 1989; Simic 1990; Yuille 1990). In this form, the 

algorithm is strongly motivated by physical analogy. Below, we will see that it can be generalized 

beyond its statistical physics origins, to yield a powerful procedure that can be applied to any 

problem in which the EM algorithm is used for learning. We shall refer to the generalization as 

Relaxation Expectation- Maximization, reserving the term "deterministic annealing" for the original 

formulation. 

Rose et al. view clustering as a squared-distance distortion minimization operation. They 

introduce a cost function , Em(xi), describing the distortion due to association of the the ith 

data point with the mth cluster. We shall take this cost to be the squared Euclidean distance 

Em(xi) = llf.Lm- xdJ2
, although other distortions may be considered. The cost of adopting a partic­

ular set of cluster parameters B = {f.Lm} and a particular assignment of points to clusters, represented 

by indicator variables Z = { Zm,i}, is given by 

(3.1) 
m 

We have chosen notation different from that of Rose et al. (1990) in order to highlight the similarity 

to the mixture model development in chapter 2. This cost, E(B, Z), may be viewed as the energy 
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of a microstate, identified by the pair (B, Z), of a physical system and we may proceed by analogy 

to statistical physics (as we will see below, this analogy is not vital; the results follow directly from 

the maximum-likelihood framework and the EM algorithm). We expect the system to display a 

distribution over microstates P (B,Z). For a fixed average energy, E, this distribution will maximize 

the entropy under the constraint £ [E(B, Z)] = E (see, for example, Kittel and Kroemer (1980)). 

We can find this maximizer by the method of Lagrange multipliers, optimizing the entropy H = 

- J dB Lz P (B, Z) log P (B, Z) while enforcing the constraint E- J dB Lz P (B, Z) E(B, Z) = 0 

with the multiplier {3. Doing so, we obtain the well-known Boltzmann distribution 

p/3 (B,Z) ex e-IJE(B,Z) (3.2) 

The value of the multiplier {3 can be obtained by solving for the constraint energy. Rose et al. argue, 

as we have, that the distribution of interest in the case of modeling or prediction problems is not 

the joint, but rather the marginal 

P13 (B) = L P (B, Z) ex IT L e-IJE~(xi) (3.3) 
Z m 

For the case of the squared distance cost, t his is seen to be the same as the likelihood of a mixture 

of Gaussians with mixing probabilities 11'm = /.r and covariances :Em= 2~1. 
Given this "likelihood", they proceed to derive heuristically re-estimation equations similar to 

those of the EM algorithm (written here for the squared error distortion metric): 

(3.4) 

We have again chosen notation to emphasize the connection to our previous development. The 

deterministic annealing algorithm then involves varying the value of the parameter {3 from 0 to a 

final value chosen either through some knowledge of the expected final distortion (due, say, to a 

known noise-floor), or else by a validation-based stopping criterion (or else by operator fiat). At 

each step the re-estimations (3.4) are iterated to convergence. 

The intuitions that underlie this algorithm can be used to obtain similar solutions to a number 

of other problems (Rose et al. 1993; Buhmann and Kuhne! 1993; Miller et al. 1996; Kloppenburg 

and Tavan 1997; Rao et al. 1997; Rao et al. 1999). Many of these are reviewed by Rose (1998). In 

general, however, each such problem presents the need for a fresh derivation. Furthermore, it is not 

always clear how best to generalize the approach to some problems. For example, Kloppenburg and 

Tavan (1997) provide an extension to a mixture of multivariate Gaussians with arbitrary covariances; 

but they are forced to introduce multiple annealing parameters, leaving serious questions about the 
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choice of relative annealing schedules. 

In the next section we will encounter a generalized relaxation method which subsumes the various 

deterministic annealing algorithms, and allows extremely straightforward generalization . 

3.3 REM-1 

In this section, we will develop a novel relaxation scheme within the framework of the EM algorithm, 

to obtain an algorithm that we call the first Relaxation Expectation-Maximization algorithm2 

(REM-1). 

In section 1. 7 we introduced a free-energy F , a function of the model parameters, e, and a 

probability distribution on the latent variables, p, 

F(p, e)= Q(p,e) + H(p) = Ep [fx,y (8)]- Ep [logp(Y)] (3.5) 

We showed that if this function achieved a maximum at ( e• , p*) the true model likelihood (marginal­

ized over the latent variables) achieved a maximum at e• . This allowed us to interpret the EM 

algorithm as an alternation of optimization steps, maximizing F first with respect to p, and then 

with respect to e. This view of EM forms the basis for our relaxation scheme. 

Let us introduce an annealing parameter f3 so as to construct a family of free-energy functions, 

Ff3(p,e) = f3Q(p,e) + H (p) (3.6) 

The analogy to statistical mechanics inherent in the term "free-energy" is maintained by this choice 

(modulo an overall minus sign). We may view f3 as the inverse of a (dimensionless) temperature, in 

which case it enters into the free-energy definition in the physically appropriate position. When f3 

takes the value 1 (that is, T = 1) we recover the original free-energy, which is the target function 

whose maximum we seek. On the other hand, when f3 is 0 (T ~ oo) F is equal to the entropy 

H(p). In general, there is a single, easy to find, global maximum of this entropy. For discrete latent 

variables, for example, it is achieved by the uniform distribut ion. For the case of the mixture model, 

in which the latent variables indicate with which cluster each point is associated, and we see that F0 

is maximized by associating all of the points uniformly with all of the clusters. The f3 = 0 case does 

not constrain the parameters e at all, however it is convenient to choose e as before, maximizing Q 

with p fixed at its maximum-entropy value. 

Thus, the sequence of functions Ff3, (p, e), 0 = {30 < /31 < · · · < f3R = 1 satisfies at least two of 

the conditions we desired for a relaxation progression: it starts with an easily maximized function 

2 The same formulation has been independently proposed under the name "Deterministic Annealing Expectation 
Maximization" by Ueda and Nakano (1998). A slightly different development, which we call REM-2, will appear 
below. 
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and ends with the target. To be sure of finding the global maximum of the target function we need 

another condition to be satisfied: the global maximum of each function in the sequence must lie 

within the basin of attraction of the global maximum of the next function. Provided that the location 

of global maximum changes continuously with (3, this can be assured by choosing sufficiently small 

annealing steps.3 Unfortunately, we will see below that even for the particularly simple example 

of the mixture model, the maximum does not move smoothly. In general it is not guaranteed that 

REM will find the global maximum of the target. However, in many common examples it does find 

a good maximum. 

Any hill-climbing technique may be used to find the optimum of each succeeding free-energy in 

the relaxation sequence; however, we choose to employ the same approach as in the EM algorithm, 

alternately optimizing with respect top and B, in each case holding the other variable fixed. Note 

first that, for fixed p, the relaxation factor (3 has no effect on the optimal value of B. Thus, the 

M-step of the algorithm is exactly as for the normal EM algorithm. The E-step, however, does 

differ. 

We showed previously (1.42) that the target free-energy is maximized with respect top (for fixed 

B) by choosing p(Y) = P e (Y I X). In the case of the relaxation free-energies we can proceed in the 

same fashion as we did at that point. We introduce a Lagrange multiplier >. enforcing the constraint 

J dY p(Y) = 1 and obtain 

o = :P (Fc(p,B) - >. j dYp(Y)) 

= :P (/ dY p(Y)(f3fx,y (B) -logp(Y)- >-)) (3.7) 

from which, by the calculus of variations, 

0 
a 
op (p(Y)(f3fx,y (B) -logp(Y)- >.)) 

• p*(Y) 
(f3fx y (B) - logp (Y)- >.)- -( -) ' p• y (3.8) = 

and so 

(3.9) 

But Po (X,Y) =Po (X I Y) Po (Y) and so 

p*(Y) = zt(3) (Po (X I Y) Po (Y))f3 (3.10) 

3 This assertion can be proved by noting that a global maximum must have at least an €-sized basin of attraction 
and that continuity guarantees that there exists some 6 so that for a 6-sized step in /3 the change in global maximum 
is smaller than this f. 
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with Z({3) and appropriate normalizing constant. 

Thus we obtain the steps of the REM-1 algorithm, repeated until {3 = 1. 

R-step: Increment {3 according to the relaxation schedule. 

Repeat the following EM steps until convergence: 

E-step: Maximize Ff3 with respect top holding() fixed. 

1 
P(Y) ~ Z({3) (Pe (X I Y) Pe (Y))f3 (3.11) 

M-step: Maximize Ff3 with respect to () holding p fixed. 

B ~ argmaxt'p [f!x,y (B)] (3.12) 

Relationship to deterministic annealing 

The deterministic annealing algorithm for vector quantization described in section 3.2 is easily seen 

to arise from REM-1 applied to a simple mixture model. Consider an M-component model in which 

each component is a Gaussian with identity covariance matrix and mean 11-m· We will refer to this 

as a mixture of unit Gaussians. Any model in which the all of the components are known to share 

the covariance matrix :E can be transformed to this canonical form by multiplying each data vector 

by the whitening matrix :E- 112 . The relaxation free-energy for such a model is 

Ff3 (p,B) = f32:':2::.>m,i(log'll'm- ~~~Xi- 11-mW)- LLTm,dogrm,i 
i m · m 

(3.13) 

where the distribution pis expressed in terms of the responsibilities rm,i· For notational simplicity we 

have left out the normalization factor from the Gaussian. For a model with fixed, equal, covariances 

this factor does not change and careful inspection reveals that it does not survive in any of our 

eventual results. 

The REM-1 iterations for such a model are easily seen to be given by 

Ti ,m ~ _L'Il'{j e- !f311x;-1-'mll2 

Zi m 

'll'm ~ :L.:i r;,m/IXI 

/1-m ~ l':i Ti ,mXi/ Li Ti ,m 

If we further constrain the mixing probabilities to remain equal, that is , 'll'm 

exactly the iterations of (3.4). 

(3.14) 

1/M, we obtain 

Note that in the case of the fixed mixing probabilities, the relaxation likelihoods correspond to 

true likelihoods for other models, in this case, a mixture of Gaussians with covariance {3- 1 I. This 
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allows us to interpret the relaxation procedure as the successive optimization of a sequence of models 

with shrinking covariances. This is actually a special case and for the majority of models no such 

equivalence holds. Given even the simple step of allowing unconstrained mixing probabilities, the 

iterations (3.14) do not correspond to EM for any model. 

It is instructive to note that the maximization of the free-energy with respect to p, which is 

motivated in REM entirely by the maximum likelihood considerations of chapter 1, may indeed be 

interpreted as a maximization of the entropy of p under a "constraint" set by the expected joint 

log-likelihood and enforced by a Lagrange multiplier. This is in accordance with the physical analogy 

of Rose et al. (1990), although it is obtained directly without resort to the physics. 

Yuille et al. (1994) remarked on a connection between the heuristic optimization steps usually 

employed within deterministic annealing solutions and the EM algorithm. However, they seem to 

regard EM simply as an optimization technique embedded within the physically motivated deter­

ministic annealing framework. Notably, they appear to have failed to observe the deep connection 

between the free-energy formulation of EM and the relaxation procedures of deterministic anneal­

ing; in particular, they make no mention of the availability of a simple generalization of any EM 

algorithm to yield a relaxation (or "annealing") procedure. 

3.4 Phase Transitions in REM 

An important feature of deterministic annealing and relaxation EM is best illustrated in a simple 

example. We will use the mixture of unit Gaussians described in the preceding section. We will 

write (r~,i• 1r~, p,~) for the optimum of the relaxation free-energy. Clearly, these values satisfy the 

recurrence relations 

r:n,i = 

L:i r:n,ixi 

Lir~,i 

(3.15) 

(3.16) 

(3.17) 

When {3 = 0 the relaxation E-step finds the maximum entropy distribution over the latent 

variables. For a mixture distribution, where the latent variables are discrete, this is the uniform 

distribution and 

r* · = P (zm i = 1 I Xi) = ~ m,t , M (3.18) 

In this limit the relaxation free-energy is independent of (} and so the M-step is unconstrained. 

However, we can choose it to maximize Q(B,p*) where p* is the maximum entropy distribution 

described above, thereby preserving consistency with the {3 > 0 case. As the responsibilities for each 
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Figure 3.1: Phase transitions in REM-1 for fixed-variance Gaussians 

data point are shared equally between all of the components, the maximizing f..Lm are all identical. 

The solution in the /3 = 0 case, then, has all the components located at the overall mean of the data. 

A remarkable fact is that even as the temperature decreases (that is, /3 increases) this solution 

remains the global maximum of the likelihood for some range of temperatures. Once the relaxation 

process reaches a critical temperature, the solution undergoes a phase transition and the former 

stationary point (where all the components are identical) ceases to be a maximum. A new maximum 

appears, usually dividing the components into two groups, so that all of the components assume 

one of only two distinct parameter values. As the system cools further, the optimal solution again 

continues with only two distinct component values, although the values of those components may 

change. Eventually, though, it undergoes another phase transition and more distinct components 

are observed. 

Figure 3.1 shows an example of the optimal mixtures at various stages of relaxation. We fit two 

dimensional data, shown by the scattered points, by a mixture of five unit Gaussians. Each panel 

of the figure shows the mixture at a different temperature. The inner, solid, circle shows the 1a 

boundary of the Gaussian; the outer, dashed, circle shows the effective variance (/3-1 I) boundary. 

In the first few diagrams, fewer than five components are visible due to the exact coincidence of the 

means. 
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3.4.1 Critical temperatures 

In the case of this simple model it is possible to calculate the critical temperatures at which the 

mixture will undergo a phase transition. 

Suppose we were to start the EM algorithm with parameters 8° in which two (or more) of 

the components were identical. Without loss of generality we shall take these two be the first 

two components, setting J.L~ = J.Lg and 1r? = 1rg. At each E-step the responsibilities of these two 

components for each of the data points will be the same. Thus, at the M-step they will both be 

updated in exactly the same way, and will remain identical. The EM algorithm will t hus preserve 

the duplication, and will converge to a stationary point with J.Li = J.L2 and 1ri = 1r:i. 

Is this stationary point a maximum, or merely a saddle point? The stability of the solution B* 

can be evaluated by examining the value of the Hessian of the free-energy at that point. In fact, 

we know that for any parameter value, Ff3 is maximized with respect to the rm,i by the relaxation 

E-step. Thus, we need only evaluate the Hessian within the surface of constraint set by the equation 

(3.11) . With the responsibilities chosen optimally, we can reduce the free-energy t hus , 

ff3 (B) 

= 

7r{3 e-!f311x;-JL~II2 

Ff3(" m7rf3e-!f311x, - JL,II2 ,B) 
L.,t l 

(J"'"'r · log (1r e-!llx;-JL~I12)-"'"'r · logr · L.....tL....J m,t m L.....t L.....t m,t m,1. 
. . 

m m 

= L L rm,i log L 7rfe-!f311x;-JLt ll2 
m l 

L log L 7rfe-!f311x;-JLtll2 
l 

(3.19) 

where, in the last step we have used the fact that Em rm,i = 1. This form is quite similar to the 

log-likelihood of the underlying model. We refer to it as the relaxation log-likelihood. Precisely 

the same relationship exists between the relaxation free-energy and the relaxation log-likelihood as 

does between the true free-energy and log-likelihood. 

Evaluation of the Hessian of £{3 (B) proves to be notationally challenging. Rose (1998) suggests 

an alternative which is more tractable and which we shall adopt. We consider a perturbation ~:<5m 

applied to each of the means J.L:r, respectively, with <5m = 0 for all but the identical components. We 

then evaluate the derivative £,.£{3 ( { 1r;,.}, {J.L:r, + E<5m}) at the point in question. This is equivalent 

to finding the projection of the Hessian on the direction defined by the perturbation <5m . 

We begin with the first derivative. 
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= L L .Brl,ioT{xi - 11-i - t:81) 
l 

(3.20) 

with the responsibilities evaluated at the perturbed 9. We note that when E = 0 we can write this 

derivative as .8 2:1 oT ( :Ei rj,ixi - p,j L:i ri,i) which is always zero by (3.17). This simply verifies 

that parameters which satisfy the recurrence relations (3.15)-(3.17) are indeed stationary points of 

the relaxation log-likelihood. 

The second derivative is 

:€ L L .Brt,iOT (xi - p,j - €0!) = L L (.8 d~~i oT{xi - p,j - €0!) - .Brt ,i ll8dl2
) 

i l i l 

with the derivative of the responsibility given by 

Combining these equations we arrive at 

P' 2( ~>•.d b{(x; - p; - ,6,))' - P' 2( ( 2( r;,;b{(x; - p; - ,6,))' 

- .B 'L:::'L:::rL ,dlolW 

(3.21) 

(3.22) 

and so, evaluating at E = 0 and exploiting the facts that 81 = 0 for l > 2 and that the means and 

responsibilities of components 1 and 2 are identical by construction. 

/3 2( oT (.8 ~ ri,i(xi- p,j)(xi- p,i)T-~ ri,i) 81 

-/32 ~ (r;)xi- p,~)T 2( 01 r (3.23) 

The second term in this expression, a sum of squares, is always non-negative. We can force it to 

0 by choosing the perturbations so that 2:1 81 = 0. The first part will be negative for all choices of 

8 as long as the matrix .8 L:i ri,i(xi- p,i)(xi - p,i)T- :Ei ri,i is negative definite. Let a1,s be the sth 
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eigenvalue of the matrix L:i rj,i(xi- J.l.i)(xi- J.l.i)T / L:i ri,i· The condition for negative definiteness 

is thus 
1 

(3 < ( );l = {1,2} 
max O"t,s 

(3.24) 

This condition is both necessary and sufficient for the solution(}* with components 1 and 2 identical 

to be a stable maximum. We have shown that if it holds then t he derivative of (3.23) is negative 

for any choice of 6m. If it fails we can choose 61 and 62 pointing in opposite directions along the 

eigenvector corresponding to the largest a 1,s so as to obtain a positive Hessian. 

Thus, a critical temperature is reached whenever the temperature (3-1 becomes smaller than the 

leading eigenvalue of the covariance of the data assigned to any of the mixture's components. If we 

interpret the parameter (3-1 as the effective scale of the covariance matrix of each Gaussian, this 

result is intuitively appealing. When the observed covariance of the data assigned to a component 

becomes larger than the component can "handle", a transition to more distinct component centers 

occurs. 

3.4.2 M ode l-s ize 

It is tempting to interpret the phase transition structure of relaxation models as indicating a pro­

gressive change in the underlying model-size (for example, the number of components in a mixture). 

Take the mixture model shown in figure 3.1, for example. Initially, only one distinct set of compo­

nent parameters exists, and we might think of the mixture as containing only that one component. 

As the relaxation progresses, each phase transition introduces more distinct component values. We 

would like to view these as new components being added to the mixture, thus growing the underlying 

model-size. 

Unfortunately, under the REM-1 algorithm (as well as the basic deterministic annealing algo­

rithm), such an interpretation does not hold up. In the ground-state ((3 = 1) mixture likelihood, if 

two components, say the first two, have identical parameters, so that P1 (xi) = P2 (xi), they may be 

replaced by a single component with the same parameters and mixing proportion 1r1 + 1r2 without 

any change in the likelihood. This is made clear by inspection of the likelihood 

(3.25) 
m 

In particular, if the larger model is at a maximum in the likelihood, then the smaller one will be 

too. 

This convenient behaviour does not carry through to higher temperatures. Recall the form of 

the relaxation log likelihood 

(3.26) 
m 
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B 

Figure 3.2: Inequivalence of different size models 

Clearly, with f3 < 1 we cannot replace the identical components as before, since 1rf +1r~ =/= (1r1 +1r2)13 . 

Nor can we simply set the mixing proportion of the new component to (1rf +7r~)l/13, since this violates 

the normalization of P 9 (yi). In general, then, the relaxation likelihood changes between the two 

models. Furthermore, a maximum in the more complex model may not correspond to a maximum 

in the simpler one, indeed the number of distinct component values in the two models may not be 

the same. 

Figure 3.2 illustrates the point. Panel A shows a maximum in the relaxation likelihood of a 

three-component mixture of unit Gaussians at the stage f3 = 0.3. Panel B shows the optimal 

configuration, at the same temperature, of a four-component mixture, which was constructed by 

replacing the rightmost component of the mixture of panel A with two identical Gaussians. Both 

visible contours in B represent two identical components (indicated by the dark lines - other than 

this the representation of the components is as in figure 3.1). Thus, the duplication of one component 

has, in effect, driven the relaxation of the mixture in reverse, to a smaller phase. 

Thus, the view of the model changing in size during the relaxation process cannot be maintained 

consistently under REM-1. 

A further issue emerges from this analysis. Consider the mixture of figure 3.28, where a four 

component mixture is being fit, but where only two distinct component values are visible. How do 

we know how to distribute these duplicated components? Clearly, each choice will yield a different 

intermediate solution; but the final result may also be affected since subsequent phase transitions will 

be constrained by the availability of components. We would like to be able to introduce the additional 

component wherever it is needed, but we cannot "move" the component around without changing 

the likelihood landscape. The result is that the choice of how to group the various components, a 

choice that must be made at each phase transition, will affect the outcome of the relaxation process. 

Both of these issues can be rectified by the introduction of a variant of the basic relaxation 
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algorithm, which we call REM-2. 

3.5 REM-2 

It is instructive to examine the structure of the relaxation free-energy of REM-1 for clues to the 

origin of the inequivalence of different model-sizes described above. Recall that the term Q(p, 8) 

is the expected value of the joint data log-likelihood under the d istribution p . Using the fact that 

P.x,y (8) =log (Po (X I Y) Pe (Y)) we can write the free-energy of (3.6) as 

F13(p, 8) = /3[p [log Pe (X I Y)] + /3[p [log Pe (Y)]- [P [logp] (3.27) 

If we introduce a new hidden state, we increase the entropy of the latent variables. However, provided 

the new state is identical to some old one, the cross-entropy -[P [log P9 (Y)] decreases by the same 

amount. When /3 = 1, then, such an addition has no net effect on the free-energy. However, at 

higher temperatures the free-energy increases with the introduction of the new state. The size of 

this increase depends on both p and (} and so the location of the maxima of the free-energy may also 

change, as we saw above. 

This formulation suggests a resolution of t he difficulty. We introduce a slightly different relaxation 

free-energy which will form the basis of our second Relaxation Expectation- Maximization algorithm 

(REM-2). 

{3£p [log Po (X I Y)] + [P [log Po (Y)]- [P [logp] 

/3Q'(p,B)- KL[p(Y)IJPe (Y)] (3.28) 

Here KL[JIIg] stands for the Kullback-Leibler divergence between the distributions f and g. This 

form no longer enjoys the analogy with the familiar free-energy of statistical physics. Nonetheless, 

from the point of view of optimization it provides just as valid a relaxation progression as does the 

more traditional form. 

Again, we optimize each free-energy in the relaxation sequence using the EM approach of al­

ternate optimizations with respect top and with respect to B. The E-step is derived in the same 

manner as before. We introduce a Lagrange multiplier >. enforcing the constraint J dY p(Y) = 1 to 

obtain 

0 :P ( F~(p, B) - >. j dY p(Y)) 

= :P (j dY p(Y)(/31og Po (X I Y) +log Po (Y)- logp(Y) - >.)) (3.29) 
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from which, by the calculus of variations, 

0 = 

and so 

a 
Bp (p(Y)(,BlogPo (X I Y) +log Po (Y) -logp(Y)- >..)) 

p*(Y) 
(,8 log Po (X I Y) +log Po (Y) - logp* (Y) - >..) - p• (Y) 

p*(Y) ex: Po (Y) (Po (X I Y)).B 

The multiplier >.. ensures that p is correctly normalized. 

(3.30) 

(3.31) 

At first glance it might seem that theM-step, involving the maximization of ,B£p (log Po (X I Y)] + 

£p (log Po (Y)] will be different from standard EM and REM-1. In most models, however, the param­

eters B can be partitioned into two disjoint and independent sets, one responsible for the distribution 

of the latent variables and the other for the conditional of the observables given the latent variables. 

If this is the case, Fb can be optimized with respect to each of these sets separately, and clearly the 

resulting update rules will be exactly as in standard EM. 

Now, when ,B = 0, this free-energy is optimized by any choice of p and B for which p(Y) = Po (Y). 

Although p need not be the maximum entropy distribution, the resulting parameter values are very 

similar to the initial conditions for REM-1. In particular, the distribution p must be independent 

of the observations X. For the mixture model, for example, we have rm,i = 7rm, which implies 

that each component is fit with equal weight given to all of the data (although that weight may 

be different for the different components) and so all the component parameters are identical. For 

consistency with REM-1, and in the spirit of maximum entropy statistical methods where unknown 

distributions are assumed to be maximally uncertain, we will adopt the convention that the initial 

choice of parameters governing P 0 (Y) does indeed maximize the entropy of the latent variables 

under the constraints of the model. This is merely a convention, though. Any initial choice of 

Po (Y), provided every possible outcome has non-zero probability, will produce the same results. 

In figure 3.3 the REM-2 algorithm is used to fit a 5-component mixture to the same data as 

was used in figure 3.1. This figure illustrates the fact that REM-2 exhibits the same type of phase 

transition structure as we saw previously in REM-1. Indeed, we can follow through the analysis 

of section 3.4.1 and find that exactly the same condition for stability holds, except that now the 

responsibilities that appear in (3.23) are those of the new algorithm 

(3.32) 

(note that the mixing probabilities 7rm are not raised to the power ,B). This results is a small change 

in the actual values of the critical temperatures between the two algorithms on the same data set; 
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Figure 3.3: Phase transitions in REM-2 for fixed-variance Gaussians 

an example of this is evident in a comparison of figures 3.3 and 3.1. 

We can verify that the issues raised in section 3.4.2 are resolved by REM-2 by consideration of 

the implied relaxation likelihood for a mixture model. 

l13 (B) Fb( h ,m}, B) 

= f3 L L rm,i log Pm (xi)+ L L rm,i log?rm- L L rm,i logrm,i 
m m m 

= "'"'"'"' l 7rmPm(Xi),6 
L-- L-- rm,i og r . 

i m m ,t 

= 
m 

(3.33) 

Clearly, the two identical components can be replaced by one (with mixing probability given by the 

sum of the weights of the duplicate components) without disturbing the likelihood. Thus, we can 

legitimately regard the model-size as increasing during the relaxation process. Furthermore, we need 

not make any choice about how to group components: any grouping will yield the same sequence of 

likelihoods and extra components can be assigned as needed when a critical temperature is reached. 
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3 .6 Cascading Model Selection 

In our development to this point, we have tacitly assumed that the size of the eventual model is 

known. If we use REM-1, the model size is set at the outset and maintained throughout. If we use 

REM-2, the model-size grows during the relaxation, but is capped at the correct value. In practice, 

however, this knowledge is often not available a priori. In using a mixture model for clustering, for 

example, we may not know in advance the appropriate number of clusters. Instead, the model-size 

needs to be learnt along with the parameters of the appropriate model. 

This is an example of the more general problem of model selection. We have already visited 

this problem twice in the course of this dissertation. Sect ion 1.3 discussed the general theory and 

described a number of likelihood-penalty techniques that are used in practice, as well as related 

approaches such as cross-validation. Section 2. 7.3 added a further technique, called the Cheeseman­

Stutz criterion, which is suitable for latent variable models such as mixtures. In this section we will 

investigate the relationship between these techniques and REM. 

3.6.1 A natural answer? 

It is tempting to think that in certain situations, the phase transition structure of REM provides 

a natural answer to such problems, and, indeed, a number of authors have assumed this (see, for 

example, Rose (1998) or Weiss (1998)). Take the mixture of unit Gaussians that has been our 

running example in this chapter. Suppose we were to fit by relaxation a mixture with a very large 

number of components. Once the relaxation had run its course, we would find that only a small 

number of distinct component values existed in the final mixture. Furthermore, whether we had used 

REM-1 or REM-2 to find that mixture, it would always be the case that at unit temperature the 

equivalence between a mixture with duplicate components and a smaller one with all duplications 

removed would hold. Thus, we can safely assert that the relaxation procedure has found a solution 

with limited model-size. Is this the correct model-size? 

Unfortunately, despite the suggestions to that effect that appear in the literature, it is not. This 

should be clear from the fact that ultimately, the technique by which the final mixture was found 

is not important. That mixture is simply a maximum- with luck, the global maximum- of the 

model likelihood. Choosing a number of components in the manner suggested is thus the same as 

choosing between different models solely on the basis of their unpenalized likelihoods. Such a choice 

is prone to over-fit for all of the reasons that were discussed in section 1.3. The estimate of the 

model-size will be biased upwards. 

We can drive the point home by means of a simple example. Suppose that t he data to be modeled 

have actually arisen from a single Gaussian distribution with zero mean and unit covariance matrix. 

We attempt to model this data with a mixture of Gaussians, each with unit covariance, fitting 
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the mixture by REM. As we have seen, at low values of the relaxation parameter, {3, all of the 

mixture components coincide. However, once {3 reaches the inverse of the leading eigenvalue of the 

observed covariance matrix, more than one distinct mean will be observed. The eigenvalues of the 

observed covariance are asymptotically symmetrically distributed about 1 (the exact density is given 

by Anderson 1963). Thus, with a probability of approximately 1-2-P, where pis the dimensionality 

of the Gaussian, the leading eigenvalue will be greater than 1. In this case, the phase transition 

will occur with {3 < 1. If relaxation were to proceed to completion at {3 = 1, we would arrive at a 

solution with more than one component. 

The situation is even more dire for other latent variable models. For example, if the covariances 

of the Gaussians are unknown (and perhaps unequal) the maximum likelihood solution given a 

sufficiently large number of components has each component concentrated around exactly one data 

point, giving rise to as many distinct components as data. Clearly, this is not a reasonable solution. 

Another suggestion is as follows. The relaxation procedure is carried out using a large number 

of components, just as before. Now, however, a section of the data- a validation set- is held out 

and the (relaxation) likelihood of the optimal model at each temperature is evaluated on these data. 

After relaxation is complete, we select the model at which the validation likelihood was greatest. 

This scheme is only meaningful in situations where the relaxation likelihood corresponds to an 

actual model. Even in such situations, though, it will tend to return the wrong answer; in this case 

the bias appears in the parameter estimates. Take the simple example of data from a single Gaussian. 

It is plausible that this scheme would correctly identify the optimal model-size as containing only 

one component. However, selecting this component will require choosing a solution at a non-unit 

temperature. Thus, the Gaussian will have a larger variance than appropriate. 

The resolution would appear to be to use a model selection scheme (validation in this example) 

to choose the model-size, but then continue to relax the model of this size to unit temperature. We 

shall discuss a local version of this scheme in the next section. 

3.6.2 Cascading model selection 

Careful consideration of the nature of the relaxation likelihood has indicated that, despite the ap­

pealing natural limits that appear in the fixed-variance models commonly used in conjunction with 

deterministic annealing, to avoid bias the model-size must be chosen by a more traditional model 

selection technique. Nonetheless, the hierarchical "division" due to the phase transition structure 

that we saw in the case of the mixture model does still form an attractive basis for model selection. 

We shall see that it is indeed possible to exploit this structure. Through a progressive develop­

ment we will arrive at an efficient method for choosing the correct model size, within the relaxation 

framework, that we call cascading model selection. 

In what follows we shall consider the mixture model, with the selection of model-size being 
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Figure 3.4: Schematic of model selection using REM 

equivalent to choosing the correct number of components. The method is, however, quite general 

and can be applied with ease to any latent variable model for which an EM algorithm can be written. 

The standard approach to model selection is as follows. Using some algorithm, which might just 

as well be REM, we obtain maximum likelihood fits for a variety of models with differing numbers 

of components. These models are then compared using one the methods discussed in sections 1.3 

or 2.7.3. Many of these methods involve a comparison of the maximal log-likelihood values of the 

different models, reduced by a term that reflects the number of free parameters in the model. It is 

such penalized-likelihood methods that we shall consider first. 

The various model selection schemes that we will discuss are shown schematically in figure 3.4. 

Panel A represents the basic procedure. The solid lines each represent the relaxation of a model, 

while the circles indicate the occurrence of phase transitions. The five models being fit are of 

different sizes, which is why they undergo different numbers of phase transitions. Roughly speaking, 

the total length of the lines in each panel represents the computational cost associated with each 

model selection strategy. The remaining panels will be described below. 

If the optimization is carried out using REM-2 then the process of fitting the different size models 

can be made considerably more efficient. The relaxation process for models with M and with M + 1 

components is identical until the final phase transition of the larger model. Thus, there is no need 

to repeat the fitting process up to that point. As a result, we fit all of the models in a linear 

tree structure, shown in figure 3.48, with a new branch emerging at each phase transition. (The 

schematic adopts the convention that the line emerging on the right of the circle has not undergone 

the phase transition, while the one that continues below has.) We note that this process is not 
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possible with either the conventional deterministic annealing algorithm or REM-1. 

We can improve further on this scheme by allowing early pruning of some branches. This is 

facilitated by the following important result, which holds for models being fit by REM-2. Suppose 

we have an M component model in which one component is unstable in the sense of section 3.4.1, 

that is, if additional components are available it would undergo a phase transition. We compare the 

likelihoods of two models: M 1 has only M components and therefore exhibits no phase transition, 

while M 2 has a model-size of M + 1 and thus has allowed the unstable component to "split". If the 

relaxation log-likelihood at some (3 < 1 of M 2 exceeds that of M 1 by b., then the final log-likelihood 

of M 2 will exceed that of the smaller model by an amount larger than b.. We offer an informal 

proof of this point. 

Recall first that M 1 is identical in likelihood to an (M + 1)-component model M1o in which 

the unstable component is duplicated, but both copies retain the same parameters. By assumption 

the relaxation log-likelihood of M 2 exceeds that of M1o. Recall that this log-likelihood is obtained 

from the free-energy 

Fb(p ,e) = f3Q'(p,e)- KL[p(Y)IIPo (Y)] (3.28) 

by setting p(Y) = Po (Y I X). Now it must be the case that the Kullback-Leibler term for M2 is 

greater than that for M h. If that were not true, the more complex model would be preferred even 

at (3 = 0, which we know not to be the case. Thus, it must also be true that the Q' term in the 

likelihood of M 2 exceeds that of M h (and thus of M 1 ). 

How will the log-likelihoods of the two models change as relaxation progresses? Let £13 (8*) be the 

optimal relaxation log-likelihood, that is, the value of Fb (p, 8) with () = ()*, the optimal parameters, 

and p(Y) = P0• (Y I X) . The maximizing value of the model parameter vector, e•, is, of course, a 

function of the relaxation parameter (3 . Thus, we may differentiate the maximal log-likelihood with 

respect to (3 using the chain rule 

(3.34) 

But, since 8* maximizes the log-likelihood, the gradient of £p (8) at 8* for fixed (3 is 0. The partial 

with respect to (3 is obtained trivially from (3.28), and thus we find that 

:(3£13 (()*) = Q'(Po· (Y I X) ,e•) (3 .35) 

We have argued that the Q' term for M 2 is greater than that for M 1· Thus, we find that 

the optimal log-likelihood of the larger model is growing more rapidly than that of the smaller one 

(if both gradients are negative, then it is shrinking less rapidly). As a result, any difference in 

likelihoods at (3 < 1 can only grow as (3 increases. 
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Thus, it is possible to further streamline the model selection process. If, at any stage in the 

relaxation, the penalized relaxation log-likelihood of some model is exceeded by that of a larger 

model (that is, the difference in log-likelihoods is greater than the difference in penalties) we can 

immediately neglect the smaller model, effectively pruning that branch of the tree. This is indicated 

in figure 3.4(, where the first two models are pruned. 

Finally, we arrive at the approach that we call cascading model selection. We assume that t he 

penalized likelihood rises monotonically with model-size until the optimal value is reached. While 

this is not guaranteed to be the case, it is an intuitively appealing assumption and the experiments 

below suggest that, at least for simple mixture models, it is typically valid. Under these conditions, 

we need not even consider a model of size M + 2 until the model with M components has been 

rejected in favour of one with M + 1. 

In our implementation of cascading model selection we think of a particular model size as being 

"current" at all times. This is indicated by the solid line in figure 3.40. When a critical temperat ure 

is reached, the current model retains its size. However, we begin to track the optimum of a "shadow" 

model of larger size (and thus, which undergoes the phase transition). If the penalized likelihood 

of this shadow model exceeds that of the current one, we abandon the current model and make the 

shadow current. Sometimes, it will be the case that the shadow model reaches a critical temperature 

without having replaced the current model. If this happens, we simple maintain the shadow model's 

size and continue to relax; we do not introduce the larger model. 

It might also be the case that the current model will encounter another critical temperature, 

even though it remains more likely than the shadow. In this case we need to introduce another 

shadow model, usually of the same model-size as the previous one, but resulting from a different 

phase transition. In the case of the mixture model, it is useful to think of a different component 

having "split". If, as relaxation progresses, we reach a point where either of these shadow models 

becomes more likely than the current one, we make that model current and abandon all the others. 

The cascading model selection procedure is capable of find optima that the basic REM algorithm 

is not. To see why, consider the case described above where a second shadow model may be intro­

duced. This shadow model is different from any that might be obtained by REM; to achieve it we 

have "disallowed" one phase transition but allowed another. If this model proves to have greater 

likelihood than the first shadow, and also to be preferred to the current model according to the 

penalized likelihoods, then we will arrive at a model with greater likelihood than that obtained by 

REM with the same number of components. Intuitively, the cascading model selection prevented us 

from "wasting" a component due to the phase transition at the higher temperature, instead reserving 

it for the more advantageous split. This point will be illustrated below. 

Finally, we note that the core result of cascading model selection has been obtained only for 

a penalized likelihood style model selection procedure. However, to the extent that such methods 
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approximate techniques such as Bayesian model selection or cross-validation, we might believe that 

such techniques can be used in the same way. In particular, for mixture models the Cheeseman-Stutz 

criterion of section 2.7.3 often provides good results. 

3. 7 Experiments 

As we first encountered the REM algorithm in section 3.3, we noted that, because the maximum 

of the free-energy does not, in fact, vary continuously with the relaxation parameter, the algorithm 

process cannot be guaranteed to find the global optimum of the likelihood. Instead, we appealed to 

an intuitively founded expectation that it would tend to find a good optimum. In this section we 

examine the results of numerical experiments to see if this is actually the case. 

The experiments described here all involve the simple mixture of two-dimensional unit Gaussians 

model, which we have seen throughout this chapter. In all cases the relaxation is performed using the 

REM-2 algorithm. The basic outline of the experiments is as follows: we select a random mixture of 

unit Gaussians, generate data from it, and fit mixture models to these data using both the REM-2 

and standard EM algorithms. We then compare the performance of the algorithms by computing 

the likelihoods of the resultant models. Any solution in which the likelihood of the fit model is 

greater than the likelihood of the true (that is, data-generating) model will be called "good." 

The parameters of the generating mixture are all chosen randomly within pre-specified intervals. 

The number of components, M, is chosen from the discrete uniform distribution on the values 3, 4, 

5 and 6. The mixing proportions are chosen by randomly partitioning the interval (0, 1) as follows: 

M - 1 numbers in the interval (0, 1) are chosen from a uniform distribution on the interval and 

then ordered, thereby inducing a partition into M subintervals; the lengths of these subintervals are 

taken to be the mixing probabilities. The means are generated from the two-dimensional uniform 

distribution on the rectangular region bounded by ±5 in both dimensions. The covariances are all 

set to the identity matrix. 

500 data points are generated randomly from this mixture distribution. Mixtures of the cor­

rect number of Gaussians are then fit both by REM-2 and by standard EM. For each data set, 

the standard EM algorithm is started 10 times, from 10 randomly selected initial conditions (see 

section 2.7.2). Both algorithms are iterated to the same convergence criterion, which is that the 

relative change in likelihood after a complete EM step should fall below w-7 . The likelihoods of all 

of the models, including the generating one, are then evaluated. We call a fit model "poor" if its 

likelihood is less than that of the generating model on the given data. 

This entire procedure is repeated for 200 different generating mixtures. 

Figure 3.5 shows the number of "poor" optima achieved under the different algorithms. The 

10 bars on the left show how the rate of success of the standard EM algorithm increases as a 
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progressively larger number of restarts are used. The likelihood used in the calculation of the bar 

labeled n is the largest of the likelihoods obtained from the first n restarts. The single bar on the 

right indicates that, for REM-2, only a single run achieved a poor optimum. 

It is instructive to examine the single example in which REM-2 converged to a poor maximum. 

This is shown in figure 3.6. Panel A shows the model from which the data were generated. Panel 

B shows the optimum found by the REM-2 algorithm. Evidently, a phase transition that split the 

component in the middle-right was encountered before the phase transition that would correctly split 

the bottom-left component. In panel C we show the results of running REM-2 in conjunction with 

cascading model selection (using the BIC likelihood-penalty with no corrective constant). Whereas 

the standard REM-2 algorithm ran on a model with the correct number of components provided a 

priori, with cascading model selection this number could be determined from the data. Furthermore, 

it is evident that by incorporating on-line model selection, the early phase transition was rejected 

on the basis of the penalized likelihood , whereas the later , correct, one was subsequently accepted. 

It should be clear that without the cascading property this maximum could not have been found: 

had the different model sizes been compared after optimization (as is usual) t hen the model of size 5 

would have been that of panel B. Thus, we observe that - as was suggested at the end of section 3.6 

- besides the obvious benefits of automatic model size determination, the cascading model selection 

process can sometimes improve the optima found by REM. 
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A word of caution needs to appear here. The data shown in figure 3 .5 suggest that, at least 

in this simple case, REM - perhaps in combination with ·cascading model selection- might well 

converge reliably to the global maximum of the likelihood. This is not actually the case. Closer 

inspection reveals that for 11 of the random mixtures at least one of the standard EM runs found a 

model with a likelihood more than 10-4 log-units larger than that found by REM-2. FUrthermore, 

it is possible that even for the remaining mixtures the relaxation solution is not globally optimal, 

but that none of the standard EM iterations found the maximum either. Thus, REM does not 

always find the global optimum; indeed we cannot expect any algorithm of polynomial complexity 

to reliably do so. Nonetheless, figure 3.5 does suggest that it tends to find an optimum at least as 

good as the model that actually generated the given data with remarkable regularity. 



64 

Chapter 4 Sparse Hidden Markov Models 

The hidden Markov model (HMM) is one of the most successful and widely used generative 

models in the field of statistical modeling. The statistical theory of HMMs has been driven in large 

part by the field of speech processing and is extremely well worked-out. Indeed, the Baum-Welch 

algorithm of the sixties is one of the earlier examples of an implementation of an EM algorithm, 

and much of the theory of EM was well understood in this context well before the publication of the 

general formulation. Nevertheless, advances in the theory of HMMs are still made. Recent examples 

include the factorial hidden Markov model Ghahramani and Jordan (1997). 

In this chapter we review the generative model underlying the HMM, and discuss the applicable 

EM learning algorithm. We then examine a particular sub-class of the general model, the sparse 

HMM, in which the majority of outputs are zeros (or null). We then consider a "mixture" of these 

restricted models. This mixture-like compound model is a special case of the factorial HMM: we 

construct an EM algorithm with an imperfect E-step, of the form that was justified in section 1.8. 

This approach, though not exact, will come close to the true the maximum likelihood solution for 

certain classes of data. 

4 .1 T h e G enerative M odel 

4.1.1 T h e Markov ch a in 

The finite Markov chain (or Markov process) has been extensively studied in stochastic process 

theory. It consists of a series of N identically distributed discrete variables {yi}, with the property 

that each is dependent only on the value of the preceding one. More precisely, the joint distribution 

over the variables factors as follows. 

N 

p (yl, Y2 ... ) = p (yl) II p (Yi I Yi-1) (4.1) 
i=2 

As a result, Yi is conditionally independent of all of the variables y1 ... Yi-2 given Yi-1. 

The different values that the variables may take on are called the states of the process; in the 

models we discuss there is a finite number of such values and we take them to be the numbers 1 .. . P . 

The "state" terminology suggests a connection between a Markov process and a non-determinstic 

finite-state automaton. In fact, the sequence of states traversed by such an automaton in the absence 

of input (or given constant input) indeed forms a Markov sequence. We shall use the two sets of 
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terminology interchangeably, as is common in the field, referring, for instance, to the model as being 

in state p at step i when y; takes the value p. 

The joint distribution (4.1) is completely specified by the two discrete probability distributions, 

the initial state probabilities P (yl) and the state transition probabilities P (y; I Yi-d for 

i > 1. We can collect each of the transition probabilities into a P x P transition matrix T+, so 

that T+pq = P (y; =pI y;_1 = q). The init ial probabilities might be collected into a seperate vector 

T0 , however, in most cases it is more convenient to roll them into the transition matrix as follows. 

We introduce a new "random" variable y0 which precedes (in the sense of the Markov condit ioning 

criterion) the first actual random variable y 1 . This variable assumes the value 0, which is not a 

possible outcome for any other variable, with probability one. In this model, the transition matrix 

is augmented to a (P + 1) x (P + 1) matrix T, with the first column containing the initial state 

probabilities; the first row being entirely zero to indicate that the system never makes a transition 

back into the state 0; and the remaining elements being the transition probabilities. For obvious 

reasons it will be convenient to number the rows and columns of T from 0, rather than 1. Once 

normalization requirements are accounted for, the augmented transition matrix T contains P 2 -1 free 

parameters; P- 1 specify the initial probabilities and P (P- 1) specify the transition probabilities. 

Using this notation, manipulations of the probability functions becomes quite straightforward. 

For example, if the marginal distribution of the variable y;_ 1 is given by the vector 7r;_1 , then the 

marginal distribution of y; is given by P (y; = p) = Lq P (y; =pI Yi-l = q) P (Y;-1 = q), which can 

be written more succintly as 1r; = T7r;_1 . As a result , the marginal distribution of the ith variable 

is 

1 

0 

0 

0 

(4.2) 

Given some basic regularity conditions on the transition matrix T, there exists a unique proba­

bility distribution over the states, represented by the vector 1r, which satisfies the condition 

(4.3) 

For obvious reasons, this is called the stationary distribution of the Markov process. 

Clearly, 7r is a right eigenvector of the matrix T with eigenvalue 1. It can be shown, under 

some additional mild conditions on T (related to the ergodicity of the Markov process), that all 

other eigenvalues have absolute values strictly smaller than 1 (Seneta 1981; Karlin 1991) . As a 

result, given any initial distribution on the states, after a sufficient number of steps the marginal 
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Figure 4.1: The hidden Markov model 

distribution of the Yi will approach 1r. The stationary distribution is t hus an attractor in the space 

of marginal distributions on the Markov variables. The magnitude of the largest non-unit eigenvalue 

sets the rate of decay of the non-stationary components, and thus t he number of steps we need to 

wait in the typical case before the marginal state-distribution approaches the stationary one. This 

is called the mixing time of the (ergodic) chain. 

4.1.2 The hidden Markov model 

The hidden Markov model is a latent variable generative model derived from the basic Markov 

model described above. The structure of the model is drawn in graphical terms in figure 4.1. Panel A 

represents all of the variables of the model explicitly. The variables Yi form a Markov chain, but 

in this case they are not directly observed. Instead, we see output variables Xi which depend only 

on the corresponding state Yi; t hat is, each Xi is conditionally independent of all other variables, 

both observed and latent, given Yi· We adopt the convention of a deterministic init ial state y0 to 

compress all of the Markov parameters into a single matrix. There is no corresponding observable 

xo. 

The conditional distribution P (xi I Yi) is stationary with respect to the instance variable i. Thus, 

associated with each state p (except 0) is an unchanging output distribution which plays a similar 

role to the component distributions of the mixture model. We will write Bp for the parameters of this 

distribution and P P (x) for the distribution (or density) function, just as in the case of t he mixture 

model. Indeed, the connection between the two is quite deep. In figure 4.1B the same HMM, along 

with explicit parameter nodes, is shown in the more compact plate representation. It is clear that 

the structure is extremely similar to that of the mixture model; the only difference is the dependence 

of the latent variable between different instances. (As an aside, the plate notation is not well suited 
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for such models, since it does not make clear the essential Markov nature of the latent variable 

process, which is that the arrow linking the Yi nodes stretches only to the next plate.) 

The parameters of model are the Markov probabilities contained in t he matrix T along with all 

of the parameters Bp of the output distributions. The likelihood of the parameters, with observations 

X= {xi}, is found by summing over all possible strings of Markov states Yl .. . YN 

.Cx (T, {Bp}) = L II Ty,,y,_, Py, (xi) ( 4.4) 
Yi···YN i 

An alternative, recursive, form for the calculat ion of this likelihood will appear below. 

4.2 Learning: The Baum-Welch Algorithm 

The commonly used learning algorithm for HMMs was developed in the course of classified work by 

Eric Baum and Lawrence Welch in the sixties. This algorithm t urns out to be the standard EM 

algorithm applied to the generative model; however, its development pre-dated t he publication of 

the original EM paper (Dempster et al. 1977) by at least a decade. The application is considerably 

more involved than the examples we have handled thus far . In particular, the E-step, in which 

parts of the conditional P 0 (Y I X) are calculated, is sufficiently elaborate to have claimed a name 

of its own; it is called the forward-backward algorithm. Once this is completed, t he M-step is more 

straightforward. The complete approach is commonly known as the Baum-Welch algorithm. 

The joint data likelihood, based on observations, X = {xi} and latent variable values Y = {yi} 

is 
N 

.Cx,y (T, { Bp}) = II Ty,,y,_, P y; (xi) ( 4.5) 
i=l 

leading to the log-likelihood 

(4.6) 

As in the case of the mixture model, we introduce latent indicator variables in place of the 

discrete latent variables Yi· We define zp,i to take the value 1 if Yi = p and 0 otherwise. We can 

then rewrite t he log-likelihood as follows 

(4.7) 
i p,q p 

In the E-step for the nth iterarion, we take t he expected value of this likelihood with respect to 

the conditional distribution determined by the parameter values on the (n- 1)th step, Pon- 1 (Z I X). 
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This gives us 

Qn(T, {Bp}) £z1x,on-1 [ex ,z (T, {Bp} )] 

= 2:::.:: '2:.:: £z1x,on-1 [zp ,iZq,;- 1] logTpq + '2:.:: '2:.:: £z1x,on-1 [zp,i] log P p (x;) 
i p,q p 

= '2:.:: '2:.:: t;q ,i log Tpq + '2:.:: '2:.:: s;,i log P P ( x;) (4.8) 
i p,q p 

where we have written s~,i for £z1x,on-1 [zp,i] and t~q,i for £z1x,on-1 [zp,iZq,i-d· These quantities 

are analogous to the responsibilities of the mixture model, although that name is not used in this 

case. We shall call them the state estimates and transition estimates respectively. They are 

given by the probabilities 

s;,i = Pon-1(Zp,; =1lx1···XN) 

t;q,i = Pon-1 (zp,i = 1 & Zq,i-1 = 1 I X1 ... XN) 

(4.9) 

(4.10) 

Unlike in the case of the mixture model, the conditioning on the observations does not reduce to 

conditioning only on x;, due to the coupling of latent variables in this model. These probabilities 

need to be calculated by an iterative approach known as the forward-backward algorithm. 

4.2.1 E-step: The forward-backward algorithm 

The algorithm by which the state and transition estimates are found is a special case of a general 

inference algorithm on probabilistic graphical models (Jordan 1998). However, we have not developed 

the general theory of such models here. Therefore, we simply lay out the algorithm, and then show 

that it does indeed achieve the necessary estimates. 

We are given a hidden Markov model with known parameters, T and {Bp} , and a set of obser­

vations {xi}. We wish ·to calculate the marginal probabilities of (4.9) and (4.10). Introduce two 

quantities, each a joint probability distribution, whose values can be calculated recursively at each 

timestep. The first is the likelihood that the system emitted the observed values x 1 ... x; and was 

then in state p at the ith time-step. 

Fp,i = P (y; = p, X1 ... x;) 

= P P (x;) 2:::.:: TpqFq ,i-1 
q 

(4.11) 

(4.12) 

Note that the likelihood that the model generated the complete string of observations is then just 

.Cx (T, { Bp}) = 2:::.:: Fp,N (4.13) 
p 
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thus obtaining the promised recursive expression for this likelihood. We will need this value again 

below, and so reserve for it the symbol L. 

The second recursive quantity we need is the likelihood that, starting from state p on step i the 

system generated the observed string Xi+l ... x N. 

Bp,i P (x;+l ... XN I Yi = p) 

= 2:: TqvP q (xi+l) Bq,i+l 
q 

( 4.14) 

(4.15) 

Note that due to the Markov nature of the latent variable chain, observations Xi+l and further 

are independent of all previous observations given the value of Yi and so Bp,i is also equal to 

P (xi+l ... XN I Yi = p, x1 ... x;) 

Both recursions can be written more succinctly if we introduce a (P + 1) x (P + 1) diagonal 

matrix R; (indexed, like T, from 0) with Rpp,i = Pp (x;). We then obtain, with vector forms for 

both F and B 

and (4.16) 

Notice that one of these recursions runs forward over the observations, while the other runs back­

wards. Thus the name "forward- backward". 

The estimates Sp,i and tpq,i can be expressed in terms ofF and B: 

and 

= 

Sp,i 

= 

p (y; = p I Xl ... XN) 

P (xi+l ... XN I Yi = p) P (Yi = p, X1 ... Xi) 
p (xl ... XN) 

p (y; = P,Yi-1 = q I Xl· . . XN) 

(4.17) 

P (x;+l .. . XN I Yi = p) P (x; I Yi = p) P (yi =PI Yi-1 = q) P (Yi-1 = q, x1 · ·. X;-d 

P (xl ···xN) 
(4.18) 

where, in the second step of each of these results we have used the Markovian properties of the 

model to remove irrelevant conditioning variables. 

The E-step of the Baum-Welch algorithm, then, is achieved by substituting into ( 4.17) and (4.18) 

the (n- 1)th iteration parameter estimates, to obtain s;,i and t;q,q· 
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4.2.2 M-step: Parameter re-estimation 

The re-estimation of the Markov transition matrix is straightforward, and reminiscient of the re­

estimation of the mixing probabilities of a mixture model. We optimize the expected log-likelihood 

of (4.8) with respect to Tpq, enforcing the constraint l:PTpq = 1 with a Lagrange multiplier, to 

obtain 

8 I ( ) tn . BT L L t;q,i log Tpq - >. L Tpq = L f~' - >. = 0 
pq r;. i p,q P i pq 

(4.19) 

From which we find that Tpq ex l::i t;q,i· The normalization constraint then gives us 

( 4.20) 

where we use the fact that Lp t;q,i s;,i- l which follows from the marginalization of the joint 

distribution represented by tpq,i 

The remaining update rules, for the output distribution parameters {Bp}, depend on the form 

of the output distribution function. We can , however, make some headway. First, note that the 

Bp are independent of each other, and so can each be optimized separately. Furthermore, only the 

second term in the expected log-likelihood ( 4.8) has any dependence on Bp . As a result, we arrive 

at an update rule identical to that encountered in the case of the mixture model (2.15), with the 

responsibilities replaced by the state estimates s;,i. 

e; = argmax L s;,i log Pep (xi) 
Op i 

(4.21) 

As in the mixture case, we may interpret this as a weighted fit of the output distribution parameters 

to t he observations xi, with weights given by the estimates s;,i. 

4.3 Sparse HMMs 

In this section, we introduce a special case of the HMM. This restricted model, the sparse hid­

den Markov model or SHMM, is one that may be encountered with some frequency in practical 

modeling situations; indeed we develop it here because it will be of use to us in a neural data anal­

ysis problem tackled in the following chapters. The restricted model itself will only be of limited 

interest from an algorithmic point of view: all of the standard HMM learning algorithms may be 

used and, though we will describe an adaptation of the standard Baum-Welch algorithm, the advan­

tages thereby derived are merely in the realm of efficiency. However, the introduction of this model 

will allow us to speak meaningfully of a mixture of sparse HMMs, and derive an efficient learning 

algorithm for such a mixture. 
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The processes that we consider are sparse in the following sense. In each string of observations 

Xi, the majority yield a null value, which we represent by the symbol 0. This value tells us relatively 

little about the state of the underlying process; in effect, the process has no output at these obser­

vation times. Scattered within this string of 0s are occasional non-null output values, but these are 

distributed sparsely. Nevertheless, they provide our only information about the state of the process. 

We will examine hidden Markov models for such a process. Each model contains one or more 

states for which the output distribution produces the outcome 0 with probability 1. We will refer 

to these as the null states. We will assume for the purposes of this discussion that the output 

distributions in the remaining states assign probability 0 to this outcome, although most of the 

results of this and the following sections can be carried through even if this were not the case. The 

sparsity of the process requires that the transition matrix be set up so that on the majority of time­

steps the model is in a null state. On the whole, then, the transition probabilities from null states 

to states with full output distributions are relatively low, while transitions in the other direction are 

relatively likely. 

How sparse is sparse? There is no precise answer to this question. All of the algorithms that we 

discuss can be equally well applied to models which spend little or no time in null states. However, it 

will be apparent that under that condition they would produce poor results. The transition between 

sparse and full, then, is a matter for empirical discovery within the framework of the application. 

Learning in the SHMM may proceed by the standard Baum-Welch algorithm that was laid out 

in the case of the full HMM. However, it is possible to achieve some optimizations on the basis of 

the sparse output structure, which we will discuss here. Before we can do so, however, we need t o 

recast the forward-backward algorithm slightly. 

4.3.1 Another view of the forward-backward algorithm 

The presentation in section 4.2.1 described the forward-backward algorithm in a notationally com­

pact form ideal for exposition. In fact, as described, the algorithm is numerically unstable in 

implementations. This instability can be resolved by a small modification, which is the subject of 

this section. The same modification is important to adaptations of the algorithm to sparse HMMs. 

The difficulty with the currently described algorithm is this. At each instance i, the conjunction 

of observations that appear in the likelihoods described by Fi and Bi is of a different size. For 

instance, F1 describes the likelihood P (y1,xr), while FN describes P (yN,Xl ... xN)· If the typical 

density at the observation point x; is a, then while F1 is of order a, FN is of order aN. Similarly, 

B1 is of order aN-l, while B N is of order a0 . The product of the two terms is always of order aN, 

and it is divided by the likelihood (also order aN) to derive estimates sp,i and tpq,i of order 1. If 

the value a is considerably different from 1, the intermediate values in this calculation can become 

either very large or very small, and the computation may become numerically unstable. 
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We can resolve this problem by introducing an alternative group of recursive functions that 

remain of order 1 throughout. In fact, we need three functions 

p (yi = p I Xt ... Xi) 

P (xi+l ... XN I Yi = P) 
P (xi+l ... XN I Xt ... Xi) 

which are calculated recursively as follows. 

RiTFi-I/Ci 

TT ~+1Bi+l/Ci+1 

(4.22) 

( 4.23) 

(4.24) 

(4.25) 

( 4.26) 

(4.27) 

where 1 is a vector of P ones, and is introduced to indicate a sum of the elements of the following 

vector-valued product. 

Given these new functions, the state and transition estimates become 

and ( 4.28) 

The normalization of the recursive terms F and B defined here is crucial to the following ex­

position of the forward-backward algorithm for SHMMs. Thus, all subsequent references to the 

algorithm, and the symbols F, B and C will refer to this recast version. 

4.3.2 Forward- backward algorithm for sparse HMMs 

By definition, the output sequences recorded from a sparse HMM tend to contain long stretches of 

null outputs. These segments leave the model in an identifiable configuration; that is, the value of Fi 

at the end, and Bi at the beginning of such a sequence is relatively independent of the measurements 

before and after such a segment. 

Consider a long segment of null observations stretching from observation indices a to a + l. We 

assume that the values of the functions Fa- 1 and Ba+l are known, while we seek to calculate Fa+l 

and Ba-1· 

Consider, first, the forward term. Let the notation R,_, stand for the value of the likelihood matrix 

Ri in cases where Xi = 0. Recall that such matrices are diagonal, with Rpp,i = Pp (xi)· In this case, 

these elements are 1 for null states and 0 elsewhere. We then have 

(4.29) 
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with the vector then normalized so that the sum of its elements is 1. Whatever the value of Fa-1 , 

this expression will be dominated by the leading eigenvector of the matrix f4T. We will write F"' 

for the suitably normalized eigenvector - note that normalization here means that the sum of the 

elements, rather than the sum of the squares of the elements, is 1. In fact, F"' is the stationary 

distribution of the Markov chain that is obtained by restrict ing the current estimate of the Markov 

model to only the null states, the t ransition matrix of which is given by renormalizing the columns 

of the matrix f4T f4. Thus the forward step after a sequence of null outputs is achieved by simply 

setting the value of the forward term to F"'. 

Using a similar argument we can show that at the beginning of a long segment of nulls, the 

value of the backward term Ba-1 will approach the leading eigenvector of the matrix TT f4, suitably 

normalized. We write iJ"' for the unnormalized eigenvector. Unlike the forward terms, B; is not 

itself a probability distribution and t hus we have no immediate way to normalize. H owever the 

products F;B; = P (y; I x1 .. . XN) are probabilities. Thus, knowing the value of Fa- 1 we can find 

the appropriate normalization for Ba_1 (which is potentially different before each null segment). 

The forward- backward steps across a sequence of nulls from a to a + l is thus 

(4.30) 

(4.31) 

The use of these forms limits the application of the full forward- backward algorithm to only 

those regions in which some non-null outputs are observed, often at a considerable computational 

savings. 

4.4 Mixtures of Sparse HMMs 

We consider the following model. We have M independent sparse hidden Markov models. Call the 

output of the mth model at time-step i, xm/. We do not observe these variables directly, instead 

we make a single observation at each time-step, derived from these values according to the following 

if all Xm,i = ~ 

if only Xm• , i :j::. ~ ( 4.32) 

if multiple Xm,i :j::. ~ 

1 Variables in the ensuing development will often need to be identified by state, component model and observation 
number. We shall adopt two conventions to assist in correctly parsing all of these subscripts. 1. The order will always 
be (state, model, instance), but some indices might be omitted if unnecessary. 2. t he letters p and q will be used 
to index state, m and l for model, and i for instance; n will be used in the superscript for EM iteration number as 
before. 
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Figure 4.2: A mixture of sparse hidden Markov models 

If more than one HMM has non-null output, we see only the fact that a collision occured, noted 

by the special output value q. We obtain no information about which, nor even how many, of the 

HMMs had non-null outputs. 

The model is illustrated in figure 4.2. The random variables in the model are the state variables 

Ym,i and the corresponding outputs Xm,i· The observed value Xi is actually a deterministic function 

of the outputs, Xm,i, of each component sparse HMM. 

4.4.1 Learning 

Since the component SHMMs are presumed to be independent, the joint data likelihood, given 

observations X = {xi}, HMM outputs Xm = {xm,i} and indicator variables Z = {zm,i} is simply 

the product of the joint data likelihoods ( 4.5) for each of the component HMMs given observations 

{ Xm,i} and indicators { Zm,i}. In the log domain, this is 

fx,x~,z ( {Tm}, {Bp,m}) = L L (:L Zp,m,iZq,m,i logTpq,m + L Zp,i log Pp,m (xm,i)) 
m t p,q P 

(4.33) 
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The E-step involves calculation of the expected value of this expression with resJ>ect to the 

distribution P (zp,m,i, Xm,i I xi) · Note that the expectation is taken not only wit h respect to the 

Zm,i (as usual), but also with respect to the Xm,i, which are not directly observed in this case. The 

expected value is 

L L L Cz,X= IX,on-1 [zp,m,iZq,m,i-l]logTpq,m 

m i p,q 

+ L L L Cz,X~ IX,on-1 [zp,m,i log Pp,m (xm,i)] 
m i p 

L L L t;q,m,i log Tpq ,m 
m i p,q 

+ L L L s;,m,i[x=.<izp,=,i=l,X,On-1 [log Pp,m (xm,i)] (4.34) 
m P 

Note t he change in distribution that appears in the expectation of the final expression; we have used 

the fact that Zp,m,i is an indicator variable as follows 

Cz,X=IX,on-1 [zp,m,i log Pp,m (xm,i)) 

= L I dxm,i Pon-1 (zp,m,i, Xm,i I X) Zp,m,i log Pp,m (xm,i) 
Zp,rn,i 

= Pon-1 (zp,m,i = l l X) I dxm,i Pon-1 (xm,i I Zp,m ,i = 1, X) log Pp,m (xm,i) 

+ Pon-1 (zp,m,i = 0 I X) 0 

s!; m Jx ·lz ·=1 X on-1 [log Pn m (xm i)] 
l"l I"' n'l,l p,m,, I I Yl I 

( 4.35) 

What is this expected value? If no collision was observed then Xm,i is completely determined by 

zp,m,i and Xi. If stat e p of model m is a null state, Xm ,i = 0; oth erwise Xm,i = Xi · On the other 

hand, if a collision was observed t hen Xi tells us nothing about the value of Xm,i· It is still true 

that if the state (p, m) has no output, Xm,i = 0; but now, if t he state is non-null, Xi,m is distributed 

according to Pp,m (x). Thus, for non-null states, we have 

fx ·iz ·=1 X on-1 [log Pn m (xm i)) = { m,• p,rn,t ' 1 ,.., 1 

where H[·] indicates the entropy of t he distribution. 

log Pp,m (xi) 

-H[Pp,m] 

4.4.2 Coupled forward- backward algorithm 

if Xi =/= (/ 

if Xi = (/ 
(4.36) 

We need to calculate the state and transition estimates that appear in ( 4.34). We do so by running 

the forward- backward algorithm separately on each component SHMM. Since direct observation of 
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the outputs of the component models is not possible, however, we must estimate those outputs using 

the observed output of the entire mixture, as well as the recursive terms, Fm,i-1 and B-m,i-1, from 

all of the components. This use of the values of the recursive terms from other component SHMMs 

leads to a coupling of the different instances of the forward-backward algorithm. 

Despite this coupling, however, the separation of the estimation process into multiple component 

recursions constrains the E-step optimization to only those distributions which satisfy a factorization 

constraint of the form (for the F recursion) 

.P ({ym,i} I X1 ... x;) = II P (Ym,i I X1 . . . x;) (4.37) 
m 

as well as a second, similar, constraint due to the B recursion. Such imperfect E-steps were discussed 

briefly in section 1.8. At each time-step we calculate the full joint distribution of the Ym,i (which 

contains pM terms) but then store only the marginals (needing only P x M terms). Clearly, to 

calculate the state and transtion estimates we only need the marginals, and so from that point of 

view the restriction is reasonable. However, the Fm,i are also used to estimate the distribution at 

the (i + l)th step. Use of the factorized distribution for the ith step, rather than the full joint 

distribution, leads to a mis-estimation of the joint distribution at the (i + l)th step. It is thus, that 

the constraint of (4.37) appears. 

We will discuss the impact of this constraint on the EM process below. First, let us proceed with 

the exposition of the algorithm. The recursive terms are defined much as before. 

C; P (x; I x1 ... X;-1) ( 4.38) 

F . p,m,t P (Ym,i = P I X1 ... x;) (4.39) 

B . P (xi+l · · · XN I Ym ,i = P) ( 4.40) p,m,t 
P (x;+l . . . XN I X1 .. . x;) 

However , in this case the x; are not the direct outputs of the HMM, but are rather the overall 

observations from the mixture. Thus, the calculations become slightly more elaborate. We will 

obtain here expressions for only the forward terms C; and Fp,m,i· The calculation of Bp,m,i proceeds 

similarly. 

We write Fp,m,i for P (Ym,i =pI x 1 . . . x;_I), the probability of finding the mth model in state 

p on step i given the previous observations, but not the current one. This is, of course, based 

recursively on our estimate of the distribution of states Ym,i- l given observations up to Xi-1· With 

our factorial assumption on the distribution of Ym,i-I this is given by 

( 4.41) 
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Also of interest will be the probability that model m is in a null state. We will write 0p,m = 1 if 

Pp,m (0) = 1 and 0p,m = 0 otherwise. Using this indicator, we obtain P(!j ,m,i = l:v 0p,mFp,m,i· 

It will be useful to treat separately the three cases where x; is 1. null, 2. non-null and non-collision, 

and 3. a collision. 

In this case C; is the probability that every component is in a null state, 

C; = II P(!j ,Tn,i ( 4.42) 
m 

To calculate Fp,m,i we need to find the distribution P (x; = 0, Ym,i = p I x1 ... Xi-1) = 
P (x; = 0 I Ym ,i = p, X1 ... X;-d Fp,m,i· This is clearly 0 if 0p,m = 0. If 0p,m = 1, then 

P (x; = 0 I Ym ,i = p, x1 ... X;- 1) is just the probability that all other components are in null 

states. Thus 

Fp ,m,i = 1 
C; P (x; = 0, Ym,i =PI X1 ... Xi-1) 

= 1 - II --0 F · F. t · C · p,m p,m,t 0, ,t 

• l#m 

F. . 
0 p,m,t 

p,m F. . 
0,m,t 

( 4.43) = 

2. X; =/= 0, ¢ 

Here, C; is the probability that one component outputs the observed value x;, while all the 

other components are in null states. 

(4.44) 
m P l#m 

P (x; I Ym,i = p, x1 ... X;-d is straightforward if (p, m) is not null; being Pp,m (x;) times the 

the probability that all other components are in null states . If, on the other hand, 0p,m = 1, 

then the conditional probability is given by the probability that exactly one of the remaining 

components outputs the value x; . 

Fp,m,i = ~- Fp,m,i ((1- 0p,m)Pp,m (x;) II F(!i ,l,i + 0p,m 2: 2: Pp,l (x;) Fp,l,i II F(!i,k,i ) 
• l l#m p k#l,m 

( 4.45) 

3. X; = ¢ 
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In this case, Ci is the probability that at least two components are in a non-null state 

ci = 1 - (II F0,m,i) - (L)1 - F0 ,m,i) II F0,m,i) 
m m l/;m 

( 4.46) 

The expression for Fp,m,i is notationally cumbersome, so we will not write it explicitly. Instead, 

we note that P (xi I Ym,i = p, x 1 •. . Xi-d is the probability that at least one other component 

is non-null if 0p,m = 0 and that at least two other components are non-null if 0p,m = 1. Both 

of these probabilities are found in a form similar to that of ci, above. 

Once the terms Fi,m and Bi,m have been calculated, the state and transition estimates are derived 

using (4.28) applied to each component in turn. 

Consequences of t h e factorial approximation 

To what extent does the factorial constraint of the coupled forward-backward algorithm affect the 

eventual parameter estimates? We may can make two separate arguments for robustness of the 

estimates to error. 

First, it might be feared that, since the terms F and B are calculated recursively and since there 

is an error in each calculation, the estimated value and the true value would progressively diverge 

over time. This is not the case. Boyen and Koller (1999) have examined factorial approximations 

such as the present one in the context of general dynamic probabilistic networks. They argue that 

the approximation error does not grow over time because two forces oppose the growth. First, the 

incorporation of observed data tends to drive the approximated distribution towards the correct one. 

Second, the randomization due to the stochastic transition from the (i -1)th step to the ith tends to 

broaden both the correct distribution and the approximate one, which also has the effect of bringing 

them closer together. In other words, TmFm,i-l may be closer to the true P (Ym,i I Xi ... Xi-1) than 

Fm,i- 1 is toP (Ym,i-1 I Xi . . . Xi-1). Intuitively, we may think of each random transition contributing 

to a "forgetting" of the old, incorrect, distribution. 

To these arguments we can add a third , peculiar to the current model. When the observation 

Xi = 0, our forward and backward steps are correct. Recall from the discussion of the forward­

backward algorithm for sparse HMMs that after a substantial stetch of null observations, Fi (Bi) 

is relatively independent of its value at the beginning (end) of the segment. Thus, in the mixture, 

whenever we enounter a stretch of null observations we tend to reset the forward- backward estimates 

to their correct values. 

Second, even if the errors in the state and transition estimates are typically large, it is possible 

that their effect on parameter estimates derived through EM may be small. Constrained E-steps 

of the sort we perform here were discussed briefly in section 1.8. There it was pointed out that 
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generalized EM using a constrained optimization of the latent variable distribution will eventually 

yield the correct maximum-likelihood parameter estimates if and only if the conditional distribution 

at the optimum Po· (Y I X) satisfies the constraint. In the present case, this will be true if, at the 

optimal parameter values, only one component is likely to be in a non-null state at each time-step 

where Xi -=/= 0, q. In other words, all observed data can be assigned with high likelihood to only 

one component. If, on the other hand, two different components claim equal responsibility for the 

point, then the factored distribution will assign a probability close to 0.25 that they were both 

in non-null states, whereas the correct joint probability would be 0 (if they were both in non-null 

states a collision would have been observed). FUthermore, provided that most data are well assigned 

in this way, the above arguments suggest that a small number of ambiguous points will not have 

a profound effect on the estimates associated with the others. Thus, in well clustered data, the 

approximation h·as little effect on the eventual estimates, even if, in intermediate steps of EM, it is 

inaccurate. Note that "well-clustered" here does not necessarily mean that the output distributions 

are well separated. Each data point must be assigned to a single component, either because only 

that component has an output distribution which assigns it high likelihood or because its temporal 

relationship to nearby points marks it as arising from a particular model. 

4.4.3 Parameter re-estimation 

TheM-step requires optimization of the expected log-likelihood (4.34) with respect to the parame­

ters, with the estimates s~,m,i and t~q,m,i fixed at the values derived from the E-step. The expression 

of ( 4.34) contains separate additive terms for each component model; as a result, it can be ompti­

mized with respect to the parameters of each SHMM independently. The part that involves the mth 

model is 

Q~(Tm, {Bp,m}) = L L t;q,m,i logTpq,m + L L s;,rn,i[xm ,;lzp,m,i=l,X,On-1 [log Pp,rn (xm,i)] 
i p,q i p 

( 4.47) 

Optimization with respect to Tpq,m can clearly proceed exactly as in the standard case, and so we 

obtain 
"'N tn . 

Tn = L.... t=l pq,m,t 
pq,m ..... N-1 n 

Li=O Sq ,m,i 

( 4.48) 

Re-estimation of the output distribution parameters Bp,m is almost the same as in the standard 

Baum- Welch algorithm. It is still the case that the different output distributions can be optimized 

independently. For states with null output distributions, of course, there are no parameters to fit . 
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For non-null distributions, we recall the result of ( 4.36) and find that 

( 4.49) 

(Note that if Xi = 0 and (p, m) is not a null state, s;,m,i must be 0, and so we can ignore the 

corresponding terms). Thus, the parameters are fit to the observed non-null and non-collision data, 

weighted by the state estimates as usual, but with an additional entropy p enalty on the likelihood 

which weighted by the sum of the state estimates for collision time-steps. In practice, if the number 

of collisions is small relative to the total number of non-null observations, we can often neglect this 

term. 
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Part II 

Applications 
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Chapter 5 Spike Sorting 

5.1 Introduction 

In this chapter we take up the first and most extensive of our neural data-analytic applications of 

latent variable methods. Spike sorting allows scientists and technologists to efficiently and reliably 

monitor the signals emitted simultaneously by many different nerve cells within intact brains. To 

neuroscientists, interested in how the brain carries out it complex functions, such multi-neuron data 

is essential input to improved understanding. In addition, the ability to collect signals from large 

numbers of specific neurons brings biomedical engineers closer to the dream of prosthetic devices 

driven directly by neural output. 

5.1.1 Extracellular recording: the source and nature of the signal 

The action potential 

Most neurons communicate with each other by means of short, local perturbations in the electrical 

potential across the cell membrane, called action potentials. The discovery of the mechanism that 

gives rise to the action potential was one of the seminal breakthroughs of early neurophysiology 

(Hodgkin and Huxley 1952), and the account made at that time of action potentials in the squid 

giant axon has proven to apply quite broadly. For the purposes of this discussion, we will not need 

a detailed account of the action potential. However, a qualitative understanding of some points will 

be important. 

Protein complexes embedded in the membranes of neurons pump specific ions into or out of the 

cytoplasm so as to establish strong concentration gradients across the membrane. The membrane 

possesses a baseline permeability to some of these ions, and so the system equilibrates with an 

electrical potential opposing the chemical potential established by the ion pumps. This electrical 

potential, around -70 m V for most cells (the convention is that membrane potentials are measured 

inside the cell, with reference to the extracellular medium), is known as the restin g potential. 

Cells at rest are said to be polarized. Two ions are important to the action potential. Sodium ions 

(Na+) are concentrated outside the cell at rest, while potassium ions (K+) are concentrated inside. 

Besides the ion pumps, the membrane contains other proteins that serve as temporary channels 

to specific ions. These channel proteins have two or more metastable conformations. In one of these, 

the open conformation, the channel allows specific ions to pass through it. Thus, as the number of 

channels in the open state varies, the permeability of the membrane to specific ions changes. Two 
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types of channel, one permeable to Na+ and the other to K+, form the basic machinery of the action 

potential. Both channels are voltage-sensitive, that is, the probability of finding them in the open 

state depends on the electrical potential across the membrane. In particular, they are both more 

likely to open as the potential inside the cell increases. 

The action potential is initiated when a patch of membrane becomes slightly depolarized. As 

the interior voltage increases, the voltage-sensitive sodium channels are faster to open that the 

potassium ones. Na+ ions are driven into the cell through these open channels, further raising the 

interior potential and establishing a rapid positive-feedback loop. This feedback loop is terminated 

in two ways. First, once in the open state, the sodium channels begin to transition to a third, 

inactivated conformation. Here again the channel is impermeable to ions, but this configuration 

is different from the original, closed, one. In particular, the probability of transition back into the 

open state, while the membrane potential remains high, is now extremely low. The return transition, 

called de-inactivation, happens only at potentials near or below rest, when the protein switches 

directly to the closed state. Second, the potassium channels also open in response to the increased 

cellular potential. The diffusion gradient for K+ is opposite to that for Na+, and so K+ ions leave 

the cell, restoring its polarization. In fact, the membrane potential falls below the resting level. 

As it falls, the potassium channels close (they have no inactivated state). Eventually, all of the 

voltage-sensitive channels are either inactivated or closed, returning the membrane to its baseline 

permeability and the resting potential. 

The voltage-sensitive sodium channels are most highly concentrated on the cell body at the point 

where the axon emerges (the axon hillock). This is the first piece of cell membrane to undergo an 

action potential, usually initiated by the passive propagation of depolarizations caused by membrane 

channels in the dendrite that open due to synaptic input. This action potential depolarizes a nearby 

piece of membrane on the axon, thus launching it into an action potential too, which, in turn, 

depolarizes a further piece and so on. Thus, once initiated at the hillock, the action potential travels 

down the axon, eventually triggering the release of a neurotransmitter onto another cell. 

As the membrane comes out of the action potential, a number of potassium channels are still 

open and many sodium channels remain inactivated. Thus, for a short period of time called the 

absolute refractory period it is impossible to induce a second action potential in the cell. Even 

after the potassium channels have all closed and enough sodium channels have de-inactivated to allow 

another action potential to begin, the threshold perturbation needed to seed the action potential 

will be higher than normal. This period is called the relative refractory period. Eventually the 

inactivation of the sodium channels drops to an equilibrium level and the cell returns to the rest 

state. 

In many cases a cell will fire a group of action potentials spaced by little more than the absolute 

refractory period. Such a group is called a burst or, sometimes, a complex spike. In general, 
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such bursts are not driven entirely by synaptic input, but rather by the biophysics of the neuronal 

membrane. For example, extremely long time-constant voltage-sensitive calcium channels are found 

in some neurons. The first action potential in a burst causes some number of these to open, but 

they neither close nor inactivate rapidly. Ca++, which is concentrated outside the cell by the ion 

pumps, flows in through these open channels. As a result, as soon as the first action potential is 

over and the potassium channels closed, the depolarizing calcium current can launch the next action 

potential. The cell is still in its relative refractory period, however, so many sodium channels are 

still inactivated. As a result, the currents that flow in this and subsequent action potentials may 

not be quite as strong as in the initial one. 

In many, if not most, neurons, voltage-sensitive channels are to be found all over the cell body and 

dendritic surface. Recent work in pyramidal neurons has shown that the action potential propagates 

not only down the axon, but also from the axon hillock back into the dendrite (Stuart and Sakmann 

1994; Stuart et al. 1997; Buzsaki and Kandel 1998) . Further, the degree of penetration varies with 

the recent activity of the cell (Spruston et al. 1995; Svoboda et al. 1997). The later action potentials 

in a burst penetrate the dendrite to a much lesser degree than the first. 

Extracellular recording 

The mechanism of the action potential, as well as many other important neuronal phenomena, have 

been understood through measurements taken using an intracellular electrode, that is, one which 

penetrates the cell. Unfortunately it is difficult to record with such an electrode in an intact animal 

and all but impossible in many awake ones. Fortunately, if all that is needed is the timing of action 

potentials in the cells, it is possible to acquire this information with an extracellular electrode. The 

most common such electrode is a fine metal wire, insulated everywhere but at the tip, which is 

tapered to an extremely fine point of only a few microns diameter. The uninsulated tip acquires a 

layer of ions at its surface which form the second plate of an extremely thin capacitor. The resistive 

coupling of the electrode to the surrounding medium is generally weak; resistances in the hundreds of 

MO are not uncommon. However, the capacitive coupling is much stronger, with 1kHz impedances 

in the hundreds or thousands of kO. 

The electrical currents associated with the flow of ions through the membrane are transient . If 

the electrode tip is near the membrane surface during an action potential, these currents couple to 

the electrode, resulting in a transient change in the potential of the electrode measured relat ive to 

any stable external point. Thus, if we were to make a trace of the electrode potential over time, we 

would see spikes1 in the trace corresponding to the action potentials in the cell near the tip. The 

1 In this chapter, "spikes" occur in the electrode voltage trace, while "action potentials" occur on the cell membrane. 
This sharp distinction is not entirely conventional , but it is useful, allowing us to speak, for example, of the "changing 
amplitude of a spike" without any implications about the maximal currents that flow across the cell membrane. The 
time of occurrence of the spike and action potential will be taken to be the same. 



85 

relationship between the intracellular trace of the action potential and the extracellularly recorded 

spike is complex. First, the extracellular probe records a integral current from many patches of 

membrane that may be in many different stages of the propagating action potential. Second, the tip 

geometry filters the measured spike; for an electrode with a smooth surface this filter is dominated 

by a single-pole high-pass component, but for porous electrode tips (plated with platinum black, for 

example) it is more complicated (Robinson 1968). 

Many cells' membranes might lie close to the electrode tip so that spikes from many cells are 

recorded. Historically, the experimenter has manoeuvered the electrode so that the tip lies very 

close to one cell, and thus the spikes from this cell are far larger in amplitude than the spikes from 

other cells. A simple hardware device can then be used to record the times of these large spikes, 

and thus of the action potentials in a single cell. Even if the spike shape associated with the neuron 

varies, its amplitude remains greater than that of any other cell's spikes. This process is referred to 

as single-cell isolation. It is time-consuming and, in an awake animal, temporary. Movement of the 

tissue relative to the electrode eventually causes the experimenter to "lose" the cell. 

Multineuron recording 

One can only learn so much about the brain by monitoring one neuron at a time. As a result, there 

has been a great deal of recent interest in multineuron recording2 • 

There is some reason to believe, based on the biophysics of neurons (the literature is extremely 

large, but see, for example, Softky and Koch 1993) as well as some direct experimental evidence 

(again a list of citations could be very long, so we choose a recent example: Usrey et al. 1998), 

that action potentials that occur simultaneously in a pair of neurons with a shared synaptic target 

are far more effective at causing the target to fire than are two non-coincident action potentials. 

It is possible, then, that coincident firing plays a significant role in the transmission of information 

within the nervous system. A number of experimenters have argued that indeed more, or different, 

information is available if the precise timing of action potentials across multiple cells is taken into 

account (e.g., Gray and Singer 1989). Furthermore, even if the exact relationship of firing times 

between cells is not functionally significant , this relationship can provide valuable (though indirect) 

clues to the micro-circuitry of the system (e.g., Alonso and Martinez 1998; Abeles et al. 1993). 

It is possible to collect multineuron data by introducing many separate electrodes into the brain 

and isolating a single neuron with each one. Indeed many of the studies cited above were carried 

out in this way. This approach is , however, difficult to execute and difficult to scale. There are two 

approaches possible to obtaining many isolations. One can insert many individually positionable 
2 We shall take "multineuron recording" to mean that separate (or separated) spike trains from multiple cells are 

available. This situation is sometimes called "multiple simultaneous single-neuron recording" to distinguish it from 
the earlier use of the term "multineuron recording" which was applied to a single spike train representing all the action 
potentials in an unknown number of cells near the electrode tip. This earlier usage seems to be fading as technology 
advances, and the term "multi neuron" is less cumbersome than "multiple simultaneous single-neuron". 
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electrodes and manoeuver each to isolate a cell, or one can insert a larger number of fixed electrodes 

and simply record from those that happen to provide a decent isolation. The former approach 

requires considerable time from the experimenter. Furthermore, since, at least in awake animals, 

isolations generally last for only a short time, as t he experimenter isolates cells on more and more 

electrodes he risks losing the cells isolated at the outset. The latter of the two approaches will 

often lead to a more stable recording than can be obtained with manoeuverable electrodes, in part 

because the probes can be allowed to settle within the tissue over a long time. However, the yield 

of electrodes with single-cell spike trains can be extremely low. 

5.1.2 Spike sorting 

Spike sorting provides an alternative to physical isolation for multineuron recording. In this ap­

proach, the electrode is placed in the neuropil, with no effort being made to isolate a single cell. 

Instead, the spikes due to many cells are recorded and a data-analytic effort is made to sort them 

into groups according to their waveforms. Each such group is presumed to represent a single cell. 

The attractions to this approach are clear. If repositionable electrodes are used, far less manoeu­

vering is needed in order to obtain clear spike information. If fixed electrodes are used, the yield of 

recordable cells from a given array is much increased. Beyond such issues of experimental efficiency, 

spike sorting approaches can provide data that is extremely difficult to obtain using one-cell-one­

electrode approaches. All the cells detected on a single electrode lie within some few tens of microns 

of the t ip , and thus of each other. Such cells are more likely to be functionally and anatomically 

related than well-separated neurons chosen at random. 

Multiple-tip electrodes 

Spike sorting can be made easier by use of a multi-tip electrode such as a stereotrode3 (McNaughton 

et al. 1983) or tetrode (Reece and O'Keefe 1989) . This is really a group of electrodes whose tips 

lie sufficiently close together that an action potential in a single cell generates a spike on more than 

one of the electrodes. Each electrode will have a different spatial relationship to the source cell, and 

so experience a slightly different spike waveform. Put together, these "multiple views" of the same 

action potential provide more information on which to base the sorting of the spikes. 

An analogy may be drawn to stereophonic sound recording. Two instruments with similar timbre 

cannot be distinguished in a monophonic recording. With two microphones, the added spatial 

information allows us to hear the two different sources. This analogy can only be taken so far, 

however. In the stereophonic recording the scale of the separation between sources and microphones 

is very much greater than the scale of the sources and microphones themselves. This is not the 

3 Unfortunately, the term "stereotrode" has come to mean a two-wire electrode. We shall continue in this usage, 
even though a tetrode, with its four wires, is as much a stereotrode as its two-wire predecessor . 
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case in the neurophysiological recording. The tip size, the distance from the membrane and the 

segment of membrane that contributes to each recorded spike are all on the order of 10 microns. 

As a result, some of the simple sorting strategies suggested by the recorded music analogy are not 

actually workable. 

5.2 Data Collection 

The algorithms that appear in this chapter are expected to be of general applicability. They 

have been developed, however, with reference to data taken in two preparations: parietal cortex 

of macaque monkey4 and locust lobula5
• The methods of data collection are described here. 

5.2.1 Monkey 

Data have been collected from two adult rhesus monkeys (Macaca mulatta). A stainless steel head 

post, dental acrylic head cap, scleral search coil, and stainless steel recording chamber were surgically 

implanted in each monkey using standard techniques (Mountcastle et al. 1975; Judge et al. 1980). 

During recording, the monkeys sat in a primate chair (custom); the implanted head posts were 

secured to arms attached to the chairs, thereby immobilizing the animals ' heads. Eye-positions were 

monitored in two dimensions by recording the level of emf induced in the scleral coil by two external 

magnetic fields that oscillated at non-reducible frequencies (Fuchs and Robinson 1966). 

The recording chambers in each monkey were set over a craniotomy opened over the posterior 

parietal cortex. All electrodes were inserted in this area; in most cases they penetrated to the lateral 

intra-parietal area (LIP). During recording, the animals were awake and performing a "memory­

saccade" task in which they remembered the location of a flash of light and then looked towards it 

on a cue. The details of the task will not be relevant to the present discussion. 

In all cases a single tetrode was used for recording (Pezaris et al. 1997). The tetrodes were 

prepared from l3J.Lm-diameter tungsten wire (California Fine Wire), insulated along its entire length. 

Four strands of wire were twisted together at approximately 1 turn/mm and heated so that the 

insulation fused over a length of some lOcm. One end of the fused region was cut with sharp scissors 

so that the tungsten conductor was exposed in all four strands. The impedance of the each conductor 

interface to physiological saline was measured to be between 0.4 and 0.7 MOat 1kHz. At the other 

end the four strands remained separated and were individually stripped of their insulation with a 

chemical stripper and bonded with conductive paint to electrical connectors. 

The tetrode was inserted into a construction of nested metal cannulae which provided mechanical 

support. The tip of the narrowest, innermost, cannula was sharpened and inserted through the dura 
4 Data collected in collaboration with J. S. Pezaris in Dr. R. A. Andersen's laboratory. 
5 Data collected in collaboration with M. Wehr and J. S. Pezaris in Dr G. Laurent's laboratory. 
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mater , with minimal penetration of the underlying neural tissue. The tetrode could then be advanced 

from within this cannula into the brain by a hydraulic microdrive (Frederick Haer Company). A 

series of tests in another animal revealed that the tetrodes tend to travel straight once inserted into 

the brain. 

The electrical connector at the end of the tetrode was inserted into an amplifier head-stage 

(custom) with lOOx gain. The animal, electrode and head-stage amplifier were all placed within 

an electromagnetically shielded room. Amplification was in differential mode, with the cannula 

assembly serving as the reference electrode. Four coaxial cables fed the signals from the head-stage 

amplifier to the main amplifier (custom) with adjustable gain. Besides enhancing it, the amplifiers 

also reversed the polarity of the signal. This resulted in the peak amplitude of each spike appearing 

positive, rather than negative as is the case at the electrode tip. We will maintain this convention 

throughout the chapter. 

The amplified signals were filtered to prevent aliasing and digitized. The digitization rate at 

the A/D converters (Tucker Davis Technologies AD-2) varied between 12.8 and 20 kHz. The 9-

pole Bessel low-pass anti-aliasing filters (Tucker Davis Technologies FT5-4) had corner frequencies 

of either 6.4 or 10kHz. The data were recorded to digital media and all subsequent operations 

performed off-line, although sometimes under simulated on-line conditions. 

5.2.2 Locust 

A difficulty common to almost all data sets used for the development of spike sorting techniques is 

ignorance of the ground truth. There is no independent way in which to establish the number of 

distinct cells whose spikes are present in the recording, nor to know which cell fired when. These 

data, collected from the lobula of the locust , were collected in an attempt to remedy at least one 

of these concerns. Recordings were carried out with a single tetrode as well as two sharp pipette, 

intracellular, electrodes. The intracellular electrodes provided incontrovertible information about 

the firing of up to two cells in the region. Often, one or both of these cells would invoke sizable 

spikes on the tetrode. 

Experiments were carried out in vivo on adult female locusts (Schistocerca americana). Animals 

were restrained dorsal side up , the head was immobilized with beeswax, and a watertight beeswax 

cup was built around the head for saline superfusion. A window was opened in the cuticle of the 

head capsule between the eyes, and air sacs on the anterior surface of the brain carefully removed. 

For stability, the oesophagus was sectioned anterior to the brain, and the gut removed through 

a subsequently ligatured distal abdominal section. The brain was treated with protease (Sigma 

type, XN), gently desheathed, and supported with a small metal platform. The head capsule was 

continuously superfused with oxygenated room-temperature physiological saline (in mM: 140 NaCl, 

5 KCl, 5 CaCh, 4 NaHC03 , 1 MgCh, 6.3 HEPES, pH 7.0). 
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Intracellular recordings were made using conventional sharp glass microelectrodes pulled with a 

horizontal puller (Sutter P-87), filled with 0.5 M KAc, for resistances of 100- 300 MO. Intracellular 

recordings were done in bridge mode using an Axoclamp 2A amplifier (Axon Instruments) from 

the third optic lobe (lobula). Data were collected from 28 single neuron and 6 paired intracellular 

recordings, all with simultaneous tetrode recordings, from 7 animals. The tetrode was prepared as 

described above. 

All signals were amplified, low-pass filtered at 10kHz (8-pole analogue Bessel with gain, Brown­

Lee Precision), digitized at 50 kHz with 16-bit resolution (Tucker Davis Technologies), and written 

to compact disc. 

5.3 A Generative Model Schema for Extracellular Recording 

The cornerstone of our approach to spike sorting will be the identification of an adequate generative 

model for the observed extracellular recording data. The model has to be powerful enough to account 

for most of the variability observed in the data, while being simple enough to allow tractable and 

robust inference. In fact , we will identify not one model, but a model schema, that is, a group of 

models of similar structure. The choice of a particular model from within this schema will be made 

on a case-by-case basis, using data-driven model selection procedures. 

The recorded signal is dominated by the firing of nearby cells; in general the thermal noise in 

the electrode and noise in the amplification system can be neglected relative to the neural signal. 

For a 0.5 MOelectrode at 300K (treated as a purely capacitive impedance) the root-mean-square 

amplitude of the thermal noise integrated over a 10kHz bandwidth is on the order of Sf.LV. As we 

will see (for example, see figure 5.2), this is generally smaller than the recorded amplitudes of neural 

signals. 

We divide the cells into two groups- foreground and background - of which the second is 

much the larger. The division is somewhat arbitrary. Roughly, the foreground cells are those whose 

influence on the recorded signal is large enough that we expect to be able to recognize and sort 

spikes that arise from them, while the background cells are so distant that their spikes merge into 

an indistinguishable baseline. In practice, there will be cells whose spikes are occasionally, but not 

always, distinguishable. We treat these as foreground cells in the model, detecting those spikes that 

rise out of the background, but neglect the data thus obtained as unreliable. 

Thus, we think of the recorded signal as the superposition of spikes from the foreground cells and 

a single, continuous background noise process, which is itself the superposition of all the spikes 

from the background cells, and other noise sources. Provided that the currents do not total to a sum 

that is beyond the ohmic limit of the intracellular medium, we expect each of these superpositions 

to be linear. Measurements made in the locust lobula show that at least in that preparation they 
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Figure 5.1: Spike sorting model schema 

are indeed linear (Wehr et al. 1999), however we will take this fact on trust in other preparations. 

The model is sketched in figure 5.1. We write V(t) for the recorded potential, the only observed 

variable in the model. If a multichannel electrode, with tips whose listening spheres overlap (for 

instance, a tetrode) is used, this is a vector-valued function of time. If the multiple electrode tips are 

far enough apart that they cannot collect signals from the same cells (more than about 100 microns) 

we treat each as an independent process and model the recorded voltage traces one at a time. Our 

model can be written as 

(5.1) 
T 

Here, cm,r is an indicator variable that takes the value 1 if the mth foreground cell fires at time -r 

and 0 otherwise. If cell m fires at -r it adds a deflection of shape Sm,r (t--r) to the recorded potential. 

The functions Sm,r have limited support, all of which is around 0. The effect of all the background 
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neural sources, along with any electrical noise which might be present, is gathered into a single term 

ry(t). For the multichannel electrode, both ry(·) and Sm,r(·) are vector valued functions. 

Note the subscript T applied to the spike shape Sm . This allows for variability in the shape of the 

recorded action potential from a single foreground cell, over and above that due to the addition of 

the background noise. Such variability may arise due to changes in available membrane channels, or 

due to changes in the membrane surface that participates in each spike. The nature of this intrinsic 

variability will be discussed at greater length below. In any case, it is of a quite different character 

to that due to the background: it is potentially different for each cell, it need not be stationary 

over the course of the spike, and while we will argue below in favour of a Gaussian distribution for 

the background, this foreground variability is unlikely to be Gaussian in nature. The separation of 

the distribution of spike shapes from a single cell into these two parts is a critical feature of our 

approach, and one that was lacking in previous algorithms. 

The random variables in our schema, as we have written it, are the background ry(t), the firing 

indicators Cm,r and the spike shapes Sm,r· None of these are directly observed; however, we think of 

the foreground variables, Cm,r and Sm,r as the only latent variables in our model. We can treat V(t) 

as a random variable, whose distribution conditioned on the latent variables subsumes the noise ry(t). 

The parameters of the model can be separated into two groups 811 which governs the conditional 

p (V(t) I {cm,r, Sm,r}) and, simply, e governing the distribution of Sm,T and Cm,r· Thus, we have 

factored the underlying distribution so: 

(5.2) 

We have said nothing yet about the nature of the distributions in this factorization. This is why it 

is a schema and not a full blown model. We will argue that the background process is approximately 

zero-mean Gaussian, and the distribution of V(t) conditioned on the latent variables will be normal 

in all of our instances of the schema. The distributions of the cm,r and Sm,r will vary, and indeed, 

in applications will not always be the same for all foreground cells. Figure 5.1 is drawn as though all 

of the Cm,r and Sm,r were independent. This is merely for clarity in the diagram, we will consider 

below models for which this is not true. 

Our eventual goal within each model is to infer the posterior distribution P (cm,r I V(t)). In 

practice we will not carry out the marginalization over the parameters implied in that posterior; 

instead, we will approximate the marginal posterior by the posterior conditioned on estimated values 

of the parameters P ( Cm,r I V(t), B, 011 ) . The rationale behind this approximation is explained in 

section section 1.2. In the next few sections we will address the problem of finding these estimates 

(that is , learning) within the various models that appear in our schema, as well as that of selecting 

an appropriate model from the schema. After this, we will turn to the question of efficient inference 
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of the foreground spike occurrence times. 

5.4 Learning within the Schema 

Separating foreground and background 

The foreground and background cells in our model are distinguished entirely on the basis of the 

amplitudes of their spikes on the recording electrodes. It is therefore reasonable to identify the 

times of firing of the foreground cells using a simple amplitude threshold. We take the times at 

which the signal crosses the threshold (the details of which are discussed below) and extract a short 

segment of the signal, corresponding to the typical length of a spike waveform, around each one. 

These segments, which we shall refer to on occasion as events, contain the foreground spikes. The 

remaining stretches of signal are presumed to be generated by the background noise process. 

This separation of foreground and background allows us to divide our learning procedure into 

two stages. We examine the stretches of background activity directly to estimate the parameters 

of the noise. Armed with this estimate, we learn the remaining parameters from the foreground 

events. This second stage is considerably more straightforward given an independent estimate of the 

background distribution. Earlier approaches, which did not differentiate between background noise 

and spike shape variability, did not enjoy this advantage. The choice of distribution and resulting 

parameter estimation for the noise will be explored in detail below. 

Independent components analysis 

We consider the problem of estimating the parameters B which govern the distributions of the latent 

variables Cm,r and Sm,r. On the surface, the model (5.2) is quite similar to the generative model 

which underlies statistical signal separation algorithms such as independent components analysis 

(ICA) (Jutten and Herault 1991; Coman 1994; Bell and Sejnowski 1995; MacKay 1999) or indepen­

dent factor analysis (IFA) (Attias 1999). In these algorithms, signals from a group of independent 

non-Gaussian sources (in the spike sorting case these would be the different cells) are mixed linearly 

onto multiple channels of output. The output channels may then have noise, usually Gaussian, 

added. Learning algorithms in such models have been well studied. 

Unfortunately, there are significant differences between our model and these ones. We shall note 

three here: two of these might be surmountable, but the third makes it very difficult to envisage 

such a solution in the current context. 

1. ICA models generally involve exactly as many sources as output channels. If the number of 

cells is smaller than the number of channels this poses no problem; the algorithm would simply 

resolve some part of the noise as another "source", which could subsequently be discounted 
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using some heuristic. However, the number of cells may well be greater than the number of 

electrode tips that can be practically introduced. In hippocampal recordings, for example, 

more than 10 cells are often recorded on a single tetrode. 

2. Most ICA models imply that the sources are mixed in an instantaneous manner (that is, the 

output at a point in time depends only on the source signals at that time). In the case of 

extracellular electrophysiological data, where the electrode tip properties result in filtering of 

the recorded signal , the mixing cannot be instantaneous. Recently, Attias and Schreiner (1998) 

have proposed a signal separation algorithm that resolves this difficulty. 

3. The most severe difficulty is posed by the extended nature of the sources and recording surfaces. 

While it would seem sensible to regard each cell as a single source, the different electrode 

tips will, in fact, lie closest to different parts of the cell membrane, and thus record slightly 

different spike waveforms. As a result, one cannot treat an isolated foreground spike as a single 

waveform scaled linearly (or even filtered linearly) onto the multiple recorded channels. The 

spike waveform must itself be regarded as a fundamentally multichannel entity. This prevents 

the application of blind source separation techniques to spike sorting in many preparations, 

notably in neocortical recordings. 

If we cannot use these well-established signal processing techniques, can we hope to solve the 

problem? In fact, ICA-like techniques fail to exploit the significant amount of prior knowledge 

available about the neural signal. Nowhere in the generative model for ICA, for example, is it 

acknowledged that a single source signal will always be a chain of approximately stereotypical pulses. 

It is this repetitive nature of the signal that we will exploit to solve the problem. 

Before leaving this point, we make two additional observations. First, consider the following 

scheme for application of ICA. We regard each source as producing a train of delta-functions, with 

the spike waveform on each channel, however it is produced, appearing as the impulse response of 

a fictitious linear filter. The delta-function trains are convolved with their corresponding filters and 

summed (along with noise) to produce the recorded signal. The filtering and summing represent the 

mixing stage of a dynamic components analysis (DCA) model (Attias and Schreiner 1998). This 

treatment would seem to restore our faith in the applicability of an ICA-like algorithm. Even better, 

it would indeed incorporate our prior belief in the pulsatile nature of each source. The difficulty with 

this approach lies in the presence of spike waveform variability in the data. Since, in this scheme, 

the waveform information is treated as part of the mixing process rather than as a source signal, 

we would require a variable mixing process. Such variability cannot be handled within the DCA 

framework. 

Second, it should be borne in mind that there may well be preparations in which ICA-like 

algorithms are applicable to spike sorting. For example, the form of ICA suggested in the preceding 
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paragraph might be successful in cases where there is little or no spike shape variability. Another 

example is provided by Brown et al . (1998) who have reported success in optical recordings of 

voltage-sensitive-die-treated Tritonia tissue. In this example, the recordings are sufficiently slowly 

sampled that the spread of signal across the membrane is effectively instantaneous (Brown, personal 

communication). As a result, the spike waveforms recorded on different photodetectors may indeed 

be linearly scaled versions of a single waveform. Furthermore, the optical nature of the recording 

ensures that the signal mixing at the detector is linear and instantaneous. 

Clustering algorith ms 

Our approach to learning the waveform parameters is based on two observations. First, all the spikes 

recorded from a single cell are expected to be roughly similar. Indeed, we will specify the exact nature 

of the variability that we expect, by specifying the distribution of Sm,r within the generative model 

schema. Second, the probability that two foreground cells will fire so close together in time that their 

spike waveforms overlap in the recorded signal is relatively low. As a result, most of the foreground 

events gathered by the application of our threshold represent only a single spike waveform. Thus we 

might expect to learn the shapes of the underlying waveforms (and the distributions of such shapes) 

by clustering these foreground events. 

Consistent with our probabilistic viewpoint, we shall adopt a generative-model-based approach 

to clustering, as was outlined in chapter 2. To do this we need to transform the model of (5.2) into 

a suitable form. 

Whereas (5.2) provides a model of the continuous waveform V(t), we now desire a model that 

describes the set of extracted events, {~}. Each ~ is a vector of samples drawn from all of the 

channels of V(t) around the time Ti at which the ith event occurs. At all times T other than the Ti 

we assume that no foreground cell fired and so Cm ,r = 0 for all m. We will employ the labels Cm,i 

and Sm,i for the latent variables at the times Ti, in place of the more cumbersome forms such as 

Cm ,Ti' 

The vectors~ are taken to be conditionally independent , given the values of the latent variables 

Cm,i and Sm,i· In other words, we assume that the separation between events is always greater than 

the correlation-time of the background noise process. The distribution of the ith vector is described 

by a mixture density, with one component for each possible value of the indicators Cm,i, m = 1 ... M. 

Let us consider these components one by one. 

1. All Cm,i = 0. This implies that the threshold was reached by the background process alone 

without a foreground spike. In this case the density of the vector ~ is exactly that of the 

background noise, expressed as a vector density, rather than as a continuous process density. 
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We will introduce a new indicator variable z 11,; to indicate this condition, and write 

P (Vi I zl!l,i = 1) = Pe~ (Vi)= P" (Vi) (5.3) 

2. Only one of the Cm,i = 1. Such events will make up the majority of those detected. We use 

indicators zm,i, m = 1 ... M to represent each of these states (the Zm,i are exactly the same as 

the corresponding Cm,i, though only in this condition). The density of the event vector is then 

P (Vi I Zm,i = 1) = J dSm,i Pe~ (V;- Sm,i) Po (Sm,i I {Sn,j 1 Cn,j : j < i}, Cm,i = 1) (5.4) 

Notice the conditioning of Sm,i which depends only on the preceding latent variables to enforce 

causality. We will abbreviate this set of latent variables at all times earlier than T; by >.<i and 

write this density as Pm (Vi I >.<;). 

3. More than one Cm,i = 1. In this case two foreground cells fired at close enough times that the 

threshold was only crossed once by the compound waveform. We expect such events to occur 

rarely and will not explicitly model them as overlapped events at this stage. Instead, we treat all 

such waveforms as "outliers" , and model them by a single, uniform density (see section 2. 7.1). 

We introduce a latent variable z 11 ,; to indicate this condition. The corresponding density is 

simply 

if ViE A 

if Vi rf. A 
(5.5) 

with A some region of the vector space of Vi and IIAII its volume. We will write this density 

as P 11 (Vi). 

The complete model for the ith vector is thus 

P (Vi) Po (z11 ,; = 1 I >.<;) P0 (Vi) 

+ Pe (z11 ,; = 1 I>.<;) P 11 (Vi) 
M 

+ L Po (zm ,i = 1 I A<i) Pm (Vi I A<i) 
m=l 

(5.6) 

Once again, the distribution of the indicator variables is conditioned only on earlier latent variables 

so as to preserve causality in the model. 

The latent indicator variables Zm,i, m = 0, q. , 1 ... M are mutually exclusive: exactly one of them 

takes the value 1 for any i, while all of the rest are 0. As such, they closely resemble the mixture 

latent variables of chapter 2. In many of the models we will discuss, the indicators for each event 

will be drawn independently from a fixed distribution. In this case, the model is exactly a mixture 
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model. Even where this is not exactly true, however, we shall call this the mixture form of the 

generative model. Fitting such a model is what we will mean when we claim to be performing a 

parametric clustering of the spike events. 

It is worthwhile to consider the impact of our choice not to model the overlapped spike events 

explicitly, but rather to sweep them into a single outlier distribution. Is it likely that this inaccuracy 

in the event model (5.6) will lead to estimates of the parameters that do not carry over to the 

true continuous signal model (5.2)? The mistreatment of overlaps poses two distinct dangers to 

accurate parameter estimation. The first is that some overlaps will be incorrectly interpreted as 

single spikes, and thus bias the estimate of the spike shape distribution of the misidentified cell. 

This possibility is slim. Overlaps need to be fortuitously exact to look anything like single spike 

waveforms. Most likely, they will fall quite far from any single cell cluster and be easily recognized 

as outliers. Furthermore, the use of a uniform outlier distribution minimizes the expected bias in 

estimates of the mean spike shapes of each cell (robustness to outliers in the fitting of mixture 

models is discussed in section 2.7.1). The second danger arises from the fact that the occurrence of 

an overlap "removes" an event which would otherwise contribute to the parameter estimation. For 

models in which the latent variables associated with each event are independent of all others (these 

are the true mixture models) this effect will be negligible, provided that the probability of overlap is 

small and independent of the latent variable values. However , for models in which the spike shape 

and probability of firing for each cell depend on its history, this can pose a real problem. We shall 

address it when we discuss such models. 

For the sake of the reader familiar with previous spike sorting techniques it is worth emphasizing 

here a point that has appeared before, and will be addressed again in section 5.14. In the present 

approach to the problem, unlike in many (though not all) others, the clustering stage is a preliminary 

to the inference of spike arrival times. We use it as a device to learn the parameters B that govern 

the distributions of Cm,r and Sm,r· The actual inference of the variables ·cm,r is done within the 

more accurate superposition model (5.2), without the imposition of an artificial threshold, nor the 

rejection of overlapped spikes. 

5. 5 Event Detection 

Our first step in the process of learning the model parameters is to identify the times at which 

foreground cells fired by comparing the recorded signal to a threshold amplitude. 

A short segment of data recorded from the neocortex of a macaque monkey using a tetrode is 

shown in figure 5.2A (the four traces show the simultaneously recorded signals on the four wires). 

Large amplitude spikes are clearly superimposed on a lower amplitude background process. However , 

it is clear that the comparison of this raw signal to a fixed threshold will not achieve the separation 
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Figure 5.2: A sample extracellular recording. 

we desire; the signal exhibits a low frequency baseline modulation with an amplitude comparable to 

that of the largest foreground spikes. This low-frequency field potential signal may be of considerable 

interest in itself, however the frequencies involved are too low to have an influence on the shapes of 

the relatively short spike waveforms and so it can safely be removed for the purposes of spike sorting. 

Figure 5.28 shows the same segment of data after it has been digitally high-pass filtered. The filter 

cutoff is chosen at the lowest frequency that can contribute to the foreground spike shapes, based 

on the length of those spikes. For neocortical recordings of the type shown in figure 5.2 the spike 

length is not longer than 2 milliseconds, implying a filter cutoff of at least 500Hz. 

We wish to choose a threshold which allows us to identify the spikes that rise above the back­

ground process. To do this we need to know the statistics of the background, but, of course, we 

cannot measure these until we have separated background from foreground . We shall set the thresh­

old in terms of the variance of the entire signal, foreground and background. In doing so, we assume 

that foreground spikes are rare enough that this measurement is dominated by the background. This 

may not always be true: if we record 4 foreground cells, all firing at about 50Hz, there would be a 

total of 200 spikes in one second of recording. As the large amplitude peak of each foreground spike 

can last up to half a millisecond, this would mean that one-tenth of the recording has large amplitude 

foreground contributions - enough to affect the background variance estimate. As a result, a certain 

degree of user intervention is useful in setting the threshold level. A typical choice of threshold is 

3- 5 times the root-mean-square value of the high-pass filtered signal. 

Spike waveforms are generally biphasic pulses. The strongest currents during an action potential 

are associated with the influx of sodium that initiates the firing; as a result, the first phase is almost 

always the larger. The sodium current flows into the cell, away from the electrode tip. Thus, 

this first phase is negative on the electrode. Under the polarity convention adopted in this chapter 

(introduced in section 5.2) it will appear positive in our recordings. In order to reduce the probability 
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of false triggers, and also to ensure that each spike causes only one threshold crossing, we apply the 

threshold in a one-sided manner, accepting only crossings where the recorded potential rises above 

the positive threshold value. 

It is not obvious how to apply the threshold to multichannel data. We shall consider three 

schemes here, and it will be useful to compare them graphically. This is done for a hypothetical 

two-channel signal in figure 5.3. The axes in panel A represent the amplitude of the signal on the 

two channels: each sample of the signal is represented by a point in this plane. The thresholding 

schemes will be described by boundaries in the plane which separate regions where the signal is 

below the threshold from regions where it is above. The various lines in this panel, and the nature 

of panel B, will be described below. 

The most commonly employed approach to multichannel data is to accept an event whenever 

any one channel rises above a scalar threshold. The acceptance boundary of such a threshold for the 

two-channel example is represented by the dash-dotted line in figure 5.3A. The signal has crossed this 

simple threshold if the point falls to the right of or above the line. We shall call this a rectangular 

threshold. 

An alternative approach would be to threshold the total instantaneous power of the signal , that 

is, the sum of squares of the amplitudes on the various channels. Given the unidirectional nat ure of 

the spike peaks, we choose to half-wave rectify the signal before squaring. The resultant threshold, 

which we call circular, is shown by the dashed line. 

The dotted ellipse in figure 5.3A shows a covariance contour for the background distribution, that 

is, a line drawn at a constant distance from 0 in the Mahanalobis metric defined by the distribution's 

covariance. The ellipse is drawn as though the background on the two channels is positively corre­

lated. In fact, this is the overwhelmingly dominant case in experimental data. It is reasonable that 

electrode tips close enough to share spikes from the same foreground cells will also share background 

spikes. 

A comparison between this elliptical noise contour and both of the threshold boundaries described 
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so far reveals the weakness in these approaches. Many points above and to the right of the ellipse 

are unlikely to arise purely from the background process, and yet are not detected as foreground 

events. A more sensible approach would seem to be to shape the boundary to match the contour of 

the second moment of the noise distribution. This is conceptually easiest in the noise-sphered space, 

which is obtained by an instantaneous linear transformation on the signal (if the noise covariance 

is I: the sphering matrix is r;- 112 ) . This space is represented in figure 5.3B. The noise covariance 

matrix is now, by construction, spherical. The rectangular and circular thresholds are shown in the 

dot-dashed and dashed lines, as before. The solid line represents a threshold boundary constructed 

in the same way as the circular threshold, but now in the sphered space; the solid line in panel A 

shows the shape of this boundary in the original space. We refer to this as the elliptical threshold. 

By construction, the elliptical threshold matches the covariance contour of the noise. If that 

noise is Gaussian distributed, this curve is also an iso-probability contour, so that the probability of 

the noise alone exceeding the threshold is independent of the direction (in the space of figure 5.3A) 

of the signal. 

5.6 The B ackground Process 

Once the times of the foreground events have been identified, we explore t he statistics of the signal 

during the periods between these events, with the goal of characterizing the background process. In 

the first instance, we are interested in the distribution Pe~ (V;) which expresses the background as 

a vector-output process. This distribution will be of critical importance in what follows: not only 

is it the distribution of the noise (5.3), it also makes a significant and common contribution to the 

distribution of spike waveforms recorded from each cell (5.4). 

We estimate the distribution of the V; directly, by sampling the background process at times 

when no foreground spike is present. The spikes extend for some time before and after the times of 

the threshold crossings; thus, we need to extract vectors away from these points so as not to overlap 

the foreground waveforms. For the data shown here, no samples were taken within 1.6ms of each 

crossing. The remaining signal is then broken up into segments whose length matches the duration of 

a foreground spike. Each such segment represents a single vector sample of the background process. 

We study the distribution of the ensemble of these vectors along the principal components. 

Each of the columns of panels in figure 5.4 shows the density of the loadings of the noise vectors 

on a selection of the ensemble principal components, for an example macaque tetrode recording. In 

each column the upper and lower panels show the same data; the upper panel shows the density 

directly, while the lower panel shows the log density, thereby revealing the details of the tails of 

the distributions. The rank of the component on which the loadings are taken is indicated below 

the column. The dots represent the density histogram of the observed vectors. The continuous line 
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Figure 5.4: The distribution of background noise 

represents a Gaussian density with the same variance as that of the observed loadings. It is clear 

that a Gaussian model for the background process is reasonable, although a slight excess in kurtosis 

is evident in the first components. 

In the rest of this chapter we shall take the background to be Gaussian distributed. While 

figure 5.4 suggests that this is reasonably well supported by the data, it is not exactly true in all cases 

(Fee et al. 1996b). Our choice is driven by two observations. First, the Gaussian model considerably 

reduces the computational demands of the various approaches that we will discuss, and is quite 

important for efficient separation of overlapped spike waveforms. Second, we will introduce separate 

models for intrinsic spike variability that will be non-Gaussian. Thus, it is possible for some non­

Gaussian background noise to be subsumed by these models. In situations where computational cost 

is no object, or where the data exhibit extreme departures from normality, an alternative distribution 

may be used for the background. Most of the generative models to be discussed will carry through 

with little modification. The largest cost will come in the final stages of spike-time inference, where 

the filtering scheme we adopt is critically dependent on Gaussian noise. 

A zero-mean Gaussian density is entirely specified by its covariance matrix. Since the background 

process is stationary with respect to the duration of the spike waveform - that is, the statistics 

of the background are the same at each point along the spike - this covariance matrix may be 

constrained to have Toplitz (diagonally striped) structure. Thus, the only parameters of the noise 

distribution are given by the autocorrelation function of the background. 

While the noise is almost certain be stationary on the time-scale of a single spike waveform, 
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it may well be appreciably non-stationary on time-scales of hundreds of milliseconds or more. In 

particular, as stimulus conditions change, the rate of firing of both foreground and background cells 

will change, quite probably in a correlated fashion. Thus, by sampling the background far from the 

locations of the foreground spikes we run the risk of measuring a background quite different from 

that which actually affects the distribution of event waveforms. 

We can avoid this pitfall by biasing the sample of background vectors so that most are drawn 

close to, though not overlapping with, the foreground spikes. One simple procedure to ensure this 

it to sample a fixed offset from each foreground spike (after making sure that this would not result 

in an overlap with a different event). Another is to sample exactly in-between each pair of adjacent 

events (again making sure that the pair is far enough apart that this will not cause an overlap). 

Furthermore, in extended recording we can re-estimate the noise continuously, leading to an adaptive 

estimate that can track non-stationarities on the time-scale of seconds. 

5. 7 Foreground Events 

Models within the mixture schema (5.6) describe a multivariate density for foreground events. In 

this section we shall examine the procedure by which a vector representation in constructed for each 

foreground spike. We proceed in two steps: in the first the vector elements are sampled directly 

from the voltage trace yielding relatively high-dimensional vectors; in the second we use a low-rank 

linear transform to reduce this dimensionality through a technique similar to principal components 

analysis. 

5.7.1 Extraction and alignment 

In the first stage, each element of the event vector will be a sample drawn from the recorded voltage 

trace near the time of the corresponding threshold crossing. The extracted samples will be separated 

by the Nyquist sampling period derived from the frequency content of the signal, which in turn is 

controlled by an analogue anti-aliasing filter. We order the samples forward in time, with all of the 

samples from the first channel appearing together, followed by the samples from the second channel 

if there is one, and so forth. In multichannel recordings, the corresponding samples on each channel 

will always be simultaneous. 

A common approach to selecting the vector coordinates is to copy a fixed number of values 

from the digitized recording before and after the sample at which the threshold was crossed. This, 

however, does not ensure that the samples are taken at the same time relative to the underlying spike 

waveform. This jitter in sampling introduces artificial variability in the extracted set of vectors as 

illustrated in figure 5.5. Panel A shows one channel of a small number of recorded spike waveforms, 

all originating from a single cell. The samples extracted from the waveforms are shown by the dots; 
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Figure 5.5: Alignment of spike waveforms. 

the solid lines beneath show the Fourier reconstruction of the underlying signal, assuming the there 

was no power above half the sampling frequency. The variation in alignment of the underlying 

waveform is evident, and results in "noise" in the samples that can reach up to half of the spike 

amplitude. Furthermore, if the temporal jitter of the alignment is uniformly distributed within one 

sample interval, this apparent "noise" will also be almost uniform (its exact shape is set by the 

derivative of the underlying spike shape), making it difficult to model. Fortunately it can be mostly 

eliminated. 

There are two sources of jitter. For the sake of argument, let us assume that the underlying 

spike waveform being measured has no intrinsic variability. In that case, there is a well defined time 

at which the waveform crosses the threshold, and we would like to align the samples in the event 

vector with this time. The first source of jitter is the background noise, the addition of which to the 

recorded spike waveform will result in that waveform crossing the threshold at a slightly different 

point from our reference time. The second source comes from the sampling of the waveform, which 

is unlikely to be aligned with the spike and thus the crossing-time will probably fall between two 

samples, rather than on one. 

The jitter and its associated artifact can be reduced considerably by some amount of signal 

processing. The effect of the background on alignment can be reduced by choosing to align to a 

composite landmark, rather than a single sample level. We will use the "centre of mass" of the 

peak of the waveform, that is, the quantity Tc = J dt tS(t)j J dt S(t) with the integrals limited to 
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the peak region of the spike waveform S(t). This is estimated from sampled data Sn by a form 

similar to fc = 2:::: tnSn/ 2:::: Sn, with the range of the sum limited to samples near the peak of 

the waveform. The sum over samples reduces the effect of the background on the alignment time. 

Temporal correlations in the background will interfere with this reduction, and so it is preferable to 

use the background-whitened signal (see section 5.6). 

We can eliminate the sample-alignment jitter by resampling the waveform to align with the esti­

mated centre of mass exactly, even if that estimate falls off the original sample grid. This resampling 

is achieved by interpolation, either with cubic splines, or "exactly" using Fourier techniques. The 

cubic spline interpolation is straightforward and will not be described here. The Fourier technique 

proceeds as follows. Conceptually, we find the discrete Fourier transform of the sampled waveform 

and treat the coefficients thus obtained as the coefficients of a finite Fourier series. Provided that the 

original signal was sampled at or above the Nyquist sampling frequency for its bandwidth, this series 

sums to the original, continuous signal (barring boundary effects). We draw new samples from this 

exact interpolant. The Fourier process described is equivalent to a kernel smoothing of the discrete 

sequence treated as a sum of delta-functions, where a sine-function is used for the kernel. As might 

be expected from a sine-function kernel, the interpolant will tend to ring near the boundaries of the 

interpolated segment; it is important, therefore, to use a segment sufficiently long that the region of 

interest does not fall critically close to a boundary. 

The selection procedure for the samples to be used in calculation of the centre of mass has not 

yet been discussed. It proceeds as follows. First, the maximum sample within a short time after the 

detected threshold crossing is identified. In the region of this sample the waveform is "upsampled" 

by resampling from the interpolant at a higher rate. The region used extends sufficiently far on each 

side of the maximum to encompass the entire first peak of the spike waveform. Next the contiguous 

region of samples that encompassed the maximum and lies above a threshold value is identified. 

This threshold is chosen lower than the trigger threshold, so as to ensure that a large number of 

samples will fall above it. The threshold-based centre of mass calculation is preferred to use of 

a fixed number of samples around the maximum because it avoids the bias towards the centre of 

selected interval that is inherent in the latter approach. 

The centre of mass is calculated by, 

2:::: tn(Sn -a) 
2:(Sn -a) 

(5.7) 

where the sums range over the contiguous samples Sn of the upsampled waveform that lie above 

the threshold a. The subtraction of the threshold from the sample values ensures that samples near 

the boundary of the selected region have little effect on the estimate, thereby protecting it from 

noise-driven variations in that boundary. A fixed number of samples, sufficient to encompass the 
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extent of the spike waveform, spaced by the Nyquist period and aligned with fc, are extracted from 

each channel of the recording and arranged into the event vector. 

The results of this alignment procedure are shown in figure 5.58. Clearly, the apparent noise bas 

been reduced considerably. Given a group of waveforms known to originate from the same cell, we 

can measure the effect of the alignment procedure by calculating the trace of the covariance matrix 

of the spike waveforms after alignment. These values of are shown in figure 5.5( for a number of 

different algorithms. The dashed line represents alignment to the threshold crossing, while the solid 

line represents alignment to centre of mass. Furthermore, each reference point was extracted using 

varying degrees of upsampling (that is, interpolation). Two observations are clear: both techniques 

improve at about the same rate as finer upsampling is employed; and furthermore, the centre of mass 

reference point provides a constant benefit over the threshold crossing at all upsampling factors. The 

two different sources of jitter, along with the effectiveness of the proposed techniques in overcoming 

them, are evident. 

5 . 7.2 Dimensionality reduction 

The number of samples that goes into each vector might be quite large. For tetrode recordings in 

monkey neocortex, for example, a 10kHz signal bandwidth is suitable, spikes last over a millisecond 

in time, and so the vectors will contain more than 80 elements. Such large vectors lead to two 

difficulties. One is purely computational: calculations on lower-dimensional objects would be much 

faster. This is a particularly relevant concern for the case of on-line spike sorting. The second is 

perhaps more serious. As the dimensionality of the modeled space grows so does the number of 

parameters, and so the quantity of data needed to obtain good estimates can become very large. 

With insufficient data, the danger of over-fitting is considerable. 

Fortunately, it is possible to reduce the dimensionality of the space efficiently and without any 

loss of useful information. In this discussion we will only consider linear dimensionality-reducing 

transforms. That is, we will seek a rectangular matrix, R, by which we can multiply the data vectors, 

Vi so as to obtain the lower-dimensional products Xi = RVi. The Xi must retain as far as possible 

those features of the data set Vi which are essential to clustering. 

Hand-picked features 

Perhaps the most commonly adopted approach is to derive from each waveform a small group of 

features which might a priori be expected to carry much of the relevant information. For a multi­

channel electrode, the most natural such features are the peak potentials attained on each recording 

surface. For tetrodes, then, each Xi becomes a point in R4
. Figure 5.6 shows the events extracted 

from one tetrode recording, projected into this basis. The 4-dimensional space is represented by the 

6 possible 2-dimensional axial projections. Thus, in the topmost panel the peak value on channel 2 
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Figure 5.6: Events represented by peak voltage on four channels. 

is plotted against the peak value on channel I; in the panel immediately below, the peak on channel 

3 is plotted against the peak on channel I; to the right of this panel, the peak on channel 3 is plotted 

against that on channel 2 and so forth. A similar representation will be used many times in the 

following pages. While in figure 5.6 the numbers that appear below and to the left of the panels 

represent channels numbers, in many of the later diagrams they will indicate arbitrary basis vectors 

in the space of the events Vi . 

Six distinct clusters are visible to the observed in the data of figure 5.6. However, the three 

closest to the origin, containing relatively low-amplitude spikes, are somewhat difficult to distinguish. 

Nevertheless, in this case, fitting a mixture model in this restricted subspace is likely to be quite 

effective. 

In many cases we can reasonably define the "peak" on a given channel to be the value of a 

particular sample in the suitably aligned event waveform. In this case, the feature subspace can 

be obtained by a linear projection with a matrix R that contains mostly Os, with a single 1 per 

row selecting the appropriate sample. This was the definition used to generate figure 5.6. Some 

other features in general use (such as the peak-to-trough amplitude) may also be extracted by linear 

projections. However, others, such as t he width of the waveform peak, can not. 
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Figure 5. 7: Events represented in the principal component subspace. 

The attraction of linear dimensionality reduction is not simply a matter of algorithmic simplicity. 

A key feature of the model schema of section 5.3 is the single, consistent model for the contribution 

of the background process to the variability in the recorded waveforms. This simple fact remains 

true under any linear transformation of the space, indeed, the background model remains Gaussian 

to the extent described in section 5.6. Under a non-linear transformation such as spike-width, not 

only do we lose the Gaussian representation for the background contribution, but the contribution 

to the variability of t his feature will be different for different underlying waveforms. This would 

violate the mixture schema of (5.6), making the task of statistical modeling far more difficult. 

Principal components analysis 

A linear approach, commonly used in situations such as this, is known as p rincipal components 

analysis (PCA) . PCA selects a subspace spanned by a small number of eigenvectors of the observed 

(total) covariance matrix 
1""' - -r I;T = N ~(11;- V)(Vi- V) (5.8) 

The eigenvectors chosen are those with the largest associated eigenvalues. The resultant projection 

has the property that, among all the linear projections of the same rank, it retains the greatest 
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amount of the original data variance. We expect the PCA projection to be useful because clustering 

is likely to be easiest in those directions in which the data are well spread out. However, it may not 

be the optimal projection. 

Figure 5. 7 shows the projection into the first four principal components (in order) of the same 

data set as was shown in figure 5.6. In this case, our expectation that PCA will improve the 

separation of the clusters is belied. Where six different groups could be made out in figure 5.6, 

only four can be clearly resolved here. Furthermore, the clusters are separated in only the first two 

dimensions. This experience is not uncommon when handling tetrode data. 

The optimal linear projection 

It is well known that we can obtain the optimal linear projection a posteriori, that is, given knowledge 

about which cell each spike originated from. The procedure, known as linear discriminant analysis 

(LDA), selects the linear projection in which the separability of the clusters is maximized, that is, 

the ratio of the average distance between the clusters to the average spread of the data within each 

cluster is greatest. 

We introduce two new covariance or scatter matrices, the between-class scatter EB and the 

within-class scatter :Ew. Let us identify the vectors that fall in the mth class by Vm,i, and write the 

mean of all such vectors as Vm, with V being the overall mean as before. The number of vectors 

in the mth class will be written Nm, and the fraction of the total that this number represents, 7rm 

(these fractions being equivalent to the mixing probabilities of a mixture model). The two new 

scatter matrices are defined thus 

:EB (5.9) 
m 

(5.10) 

The symmetrized ratio we wish to see maximized in the projected space is :E~12 :EB:E~12 . Just 

as in PCA, we find the eigendecomposition of the corresponding matrix in the higher dimensional 

space and then project onto the space formed by the leading few eigenvectors. 

It would appear that we can obtain little advantage from the discriminant approach, as the scat­

ter matrices given by (5.9) and (5.10) cannot be calculated without access to the very information 

that we seek. However, it is possible to view the LDA procedure in a different light. Consider a 

transformation of the vectors Vi ,m by the matrix :E~/2 to obtain new vectors 1/i,m· Direct substitu­

tion into (5.10) reveals that in this transformed space, the within-class scatter, "Ew, is the identity 

matrix. We shall refer to this as the class-whitened space. To now perform LDA, we need only 

maximize the between-class scatter "E8 . It is straightforward to see that the subspace thus identified 
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is exactly the same as would be obtained by discriminant analysis in the original space. Indeed, this 

whiten-and-diagonalize algorithm is a common implementation for LDA (see, for example, Ripley 

(1996)). We can go one step further if we note that the total covariance in the class-whitened space 

is simply 'tr = f:B + f:w = f: 8 +I. Thus the overall scatter matrix is diagonalized in the same 

basis as the between-class scatter matrix. LDA is equivalent to PCA in the class-whitened space. 

The key point of this analysis is the simple relationship Er = E8 + Ew. This implies that we need 

only one of the classification-dependent scatter matrices in order to find the optimal discriminant 

subspace, the other can be derived from the overall variance of the data. We do not know either of 

these matrices, but we do have an (under )estimate of the average within-class scatter Ew, provided 

by the direct measurement of the background. Thus, we can find a basis quite similar to the optimal 

LDA basis by taking the principal components in the noise-whitened vector space. An example 

of this procedure will appear in figure 5.8. 

Robust principal component analysis 

Inevitably, some events within the ensemble will fall far from any clusters. These are mostly the 

events that contain overlapped spikes as described in section 5.4. Since the data covariance matrix 

weights points by the square of their distance from the mean, principal components calculated from 

the entire data set are particularly sensitive to the number and location of these outliers. It is 

important, therefore, to obtain the components in a manner that is robust to outliers. 

We will adopt an approach to robustness similar to that discussed in the context of the clustering 

algorithms in section 5.4. We can view the PCA procedure as fitting a multivariate Gaussian 

distribution to the data and then selecting a projection on the basis of the fit distribution. This 

relationship between PCA and Gaussian modeling has been explored quite extensively in the recent 

past (Tipping and Bishop 1997; Roweis 1998). Following the argument made during the discussion 

of the impact of outliers on clustering, we replace the single Gaussian by a mixture of a Gaussian 

and a uniform density (the limits of the uniform density being set by the maximum extent of the 

data). Recall from the discussion of section 5.4, that the introduction of the uniform component will 

not, on average, bias the estimates of the eigenvectors of the covariance of the Gaussian component. 

It is these eigenvectors which represent the principal component basis. 

Figure 5.8 shows the subspace obtained when this robust PCA is applied in the noise-whitened 

space. The six clusters are now very much in evidence, and comparison with figure 5.6 suggests that 

they are better separated. Figure 5.9 shows the data set projected into t he first four dimensions of the 

optimal linear discriminant space, calculated a posteriori from a mixture fit to these data. Clearly, 

for this recording, the noise-whitened robust PCA technique has identified a subspace remarkably 

close to the optimal one. 
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Figure 5.8: Events represented in the noise-whitened robust PCA subspace. 
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Outlier rejection 

Dimensionality reduction carries with it the danger of reintroducing outliers into the main body of 

the ensemble. The danger arises in the case of outliers which fall outside the principal distribution 

along the directions which are to be suppressed, but whose projections onto the preserved space 

are not easily distinguished from those of normal spikes. Such outliers may bias the estimation of 

waveform parameters. Fortunately, they can be eliminated by removing from the ensemble spikes 

which exceed a data-set threshold in the suppressed directions. If the robust principal components 

analysis is used, they may be identified as points for which the uniform outlier component takes 

significant responsibility. 

5.8 The Simple Mixture Model 

5.8.1 The model 

Once the ensemble of vectors has been extracted, we proceed to fit a model drawn from the schema 

(5.6), with the observations v; replaced by the processed, lower dimensionality vectors, Xi· Initially, 

we shall examine the simplest possible such model. 

We begin with two assumptions. First, each measured event vector is taken to be independent 

of all the others. This implies both that the set of indicators {zl'l,i,zq,i,Zm,i} are independent for 

different i (clearly, for any given i, they cannot be independent as only one can take the value 

1) and also that the spike shape measured depends only on which cell fired , not on the previous 

waveforms emitted by that, or any other, cell. This assumption, allows us to drop the conditioning 

on the past latent variables (which was written "I >..<i" in (5 .6)). We write 7rr for Pe (zr,i = 1) for 

r=0, ¢,1 . .. M. 

Second, the intrinsic variability in the spike shape is taken to be negligible, so that all of the 

observed variation is due to the addition of random background noise. In this case, each of the spike 

waveform densities P m (xi ) is a Gaussian, whose mean is the spike shape associated with the mth 

cell and whose covariance is that of the background process. For noise-whitened data, this is the 

identity matrix. 

Combining these assumptions with the mixture model schema (5.6), and restricting to the 

reduced-dimensionality space of the X i , we obtain the basic model 

M 

p (xi)= 7r0127l1rl/ 2 e-!llxdl2 + L 7rm l27rll-l / 2 e-!llx•-~-£~ 112 + 7rqPq (xi) (5.11) 
m= l 

where Pq (xi) is the uniform density given in (5.5). 
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5.8.2 Parameter estimation 

Such a model is easy to fit. We employ the well-known Expectation- Maximization (EM) algorithm 

(Dempster et al. 1977; see chapters 1 and 2 of this dissertation) to find the maximum-likelihood 

parameter values. Other techniques, such as gradient-ascent or Fisher scoring may also be used for 

optimization. EM, however, offers some advantages. 

1. EM is , perhaps, the most flexible of the various hill-climbing techniques , being easily extended 

to the more complex models to be discussed below. As a result, it provides a uniform approach 

to the fitting of the various models within the schema. Further, it is easily adapted to the 

situation in which different generative distributions are used for different cells, which will be 

discussed in section 5 .11. 

2. Incremental variants of EM are provably correct (Neal and Hinton 1998). While such proofs 

are derived in the case of static parameter values, they can give us confidence that similar 

variants will be well-behaved in the case of slowly drifting parameters, allowing us to track 

such drift. 

3. The EM algorithm is very closely linked to the maximum-entropy deterministic annealing 

clustering technique (Rose et al. 1990). Indeed, the deterministic annealing approach can 

be extended to any latent variable model where EM is used by the Relaxation EM (REM) 

algorithm of chapter 3 (see also Ueda and Nakano (1998)). This technique provides a initial­

condition-independent optimum, relatively immune to local maxima. 

The EM iterations for simple mixture models such as this were derived in section 2.4. The current 

model has some additional constraints which further simplify the fitting procedure. 

The background component distribution in (5 .11) is fixed; only the mixing parameter 1r0 needs 

to be learnt. The uniform outlier distribution has parameters that describe the region of support, 

A, in (5.5). We take this region to be rectangular in the transformed space of x; (in fact, the shape 

is unimportant) and so it is specified by two opposite vertices. Provided the component is initialized 

with at least some responsibility for each of the data points , it is straightforward to see that the 

maximum likelihood solution will be such that A is the minimal region that contains all of the points. 

Furthermore, this value will ensure that in subsequent EM steps the component continues to have 

non-zero responsibility for each point and therefore maintains this parameter value. In practice, 

then, we can set the parameter directly from the data and update only the mixing component 1r". 

The remaining components form a mixture of Gaussians. EM update rules for this model are 

given in section 2.6. We omit, of course, the update of the covariances as they are known in advance. 
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The update rules for parameter estimates at the nth step are thus 

r~,i = m=!il, (,t,l. .. M 

m = !il,(,t,1 ... M (5.12) 

m= l. .. M 

They are iterated until convergence. 

It is guaranteed that this procedure will converge to a local maximum of the model likelihood. 

However, the identity of that maximum is crucially dependent on the initial parameter values used 

to seed the optimization. EM shares this dependence with other hill-climbing approaches, whether 

first or second order. We can avoid it by using a Relaxation Expectation- Maximization (REM) 

technique as described in chapter 3. In this simple case REM yields an algorithm very similar to the 

simple deterministic annealing example treated by Rose et al. (1990). The differences are primarily 

in the presence of the mixing probabilities and the single non-Gaussian component. 

The REM update rules differ only in the update of the responsibilities, which become, for a 

relaxation parameter (3, 

r~,i = (5.13) 

(we have given the E-step according to the REM-2 algorithm; see section 3.5). The parameter /3 is 

increased gradually from near 0 to 1, with the EM iterations being run to convergence at each value 

of (3. An extensive discussion of the properties of this algorithm is given in chapter 3 

The number of cells 

In the absence of simultaneous high-power microscopy, we generally do not know how many fore­

ground cells are to be expected in an extracellular recording. As a result, this quantity must be 

estimated from the data along with the parameters of the spike waveform distributions. In the 

mixture model framework this is equivalent to determining the correct number of components. 

As was pointed out in section 2. 7.3, this is essentially a model selection problem. We have 

already examined at some length in sections 1.3 and 2.7.3 techniques appropriate to carrying out 

this selection. The use of the REM algorithm for learning makes available a particularly efficient and 

effective framework within which to apply these techniques, which we have called cascading model 

selection. This was discussed in section 3.6. 

For the most part these techniques, described in part I of this dissertation, can be applied without 

modification. Two components of the mixture, the noise model P 0 (-) and the overlap model P 11 ( ·) 

are always assumed to be present; thus, the model selection chooses between models with three or 
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more components. 

5.9 Spike Shape Variability 

The simple mixture model assumes that the action potential currents in each foreground cell are the 

same each time the cell fires, so that the only variability in the foreground spike waveform is due to 

the superposition of background spikes. In fact , t his is rarely true. 

Biophysically, one can imagine many reasons why the currents flowing across the somatic mem­

brane might be variable. The concentrations of ions inside or outside the cell may vary. Ligand 

gated channels (for example, calcium-dependent potassium channels) may open on the membrane. 

A varying fraction, not large enough to prevent an action potential, of the sodium channels may 

be inactivated. Many of these conditions well depend on the recent activity of the cell, and this 

dependence will be examined more closely later. For the present, we will simply treat it as random 

variation. 

5.9.1 Ratio methods 

Some authors have argued (Rebrik et al. 1998; Zhang et al. 1997; Rinberg et al. 1999) that al­

though the underlying action potential shape changes under these conditions, the ratios of the spike 

waveforms on the different channels should remain almost constant (disturbed only by the additive 

background noise). These ratios may be between maximal spike amplitudes, or between the magni­

tudes of t he Fourier coefficients in various frequency bands . Such arguments are based on the same 

model as the ICA-based algorithms described earlier. The spikes recorded on the different channels 

are taken to be due to currents at a single point source which have been filtered differently by the 

extracellular medium through which they passed and by the electrode tip. If the source waveform 

(in the Fourier domain) is S(w) the recorded signal on the nth channel will be Rn(w) = Fn(w )S(w) 

where Fn is some linear filter. As the source changes, then, the spike shapes also change; but by 

taking the ratio of the recorded spike shapes Rn(w)/ Rm(w) = Fn(w)/ Fm(w) we divide out the source 

signal and obtain a stable measure. 

Once again, the arguments advanced against the applicability of ICA-models in, at least, neo­

cortical tissue, apply here. The most severe is the fact that the simple model of one-source-multiple­

detectors does not hold in preparations where the action potential travels over significant sections of 

cell membrane. In neocortical and hippocampal pyramidal cells, for example, action potentials are 

known to propagate over the dendrite (Stuart and Sakmann 1994; Stuart et al. 1997) and different 

electrode tips will record spikes due to different parts of the membrane (Buzsaki and Kandel 1998). 

In discussions of spike variability a further difficulty presents itself. The spread of the action poten­

t ial across the membrane is known to be variable, depending on the recent firing activity of the cell 
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(Spruston et al. 1995; Svoboda et al . 1997). Thus, not only are the sources recorded by the different 

electrode tips spatially distinct, but these sources can vary in a distinct manner. As a result, there 

is reason to expect ratio methods to be inadequate in such preparations. 

5 .9.2 M odels of t h e varia bility 

Unable to remove the intrinsic variability in the waveforms, we seek to model it. In this section will 

we discuss models in which the underlying spike shapes are independent and identically distributed. 

Following this treatment, in section 5.10, we will discuss models which capture the dependence of 

the spike shape on the recent firing history of the cell. 

Unconstrain ed Gau ssians 

One approach, attractive for its mathematical simplicity, is to model the underlying spike shape 

variability as Gaussian. If this model were correct, each observed spike waveform from a given cell 

would be the sum of two Gaussian random variates, and thus, would itself be Gaussian distributed. 

We have no independent data source from which to establish an appropriate covariance matrix for 

the intrinsic variability, and so the covariance must be learned along with the mean spike waveform. 

The measured background covariance can only provide a lower bound. 

The general EM iterations for the arbitrary Gaussian mixture are as in (5.12), with the addition 

of a re-estimation rule for the mth covariance matrix 

(5.14) 

If the background covariance has been whitened, we can enforce the lower bound set by the back­

ground by diagonalizing the ~~ obtained in this way, resetting any eigenvalues less than unity to 

1, and then rotating back into the original space. If V is the matrix of eigenvectors of E~, and the 

binary operator max(· , ·) is taken to act element by element 

(5.15) 

In the case of the background process, the superposed nature of the signal led us to expect it to 

be approximately Gaussian. In contrast, we have no reason to believe that the intrinsic variability 

should give rise to a Gaussian process, and so the validity of this model will rest entirely on the 

experimental evidence. In practice, cell waveform distributions in the macaque data set seemed to be 

well approximated in this fashion only if they did not fire bursts of closely spaced action potentials. 

The case of the bursting cells will be discussed more thoroughly below. 

One issue introduced by the use of unconstrained Gaussians is the multiplicity of parameters. In 
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aD dimensional space, each component of the simple Gaussian model contributes only D parameters 

to the model. In contrast, the unconstrained Gaussian contributes D(D + 1)/2 + D parameters. As 

the number of parameters increase the dangers of over-fitting and of being trapped in local maxima 

increase. The REM algorithm can alleviate the second of these to some extent, however strategies to 

reduce the complexity of the model are useful. On approach is to constrain the number of non-unit 

eigenvalues (in the background-whitened space) in each model. This leads (in the unwhitened space) 

to a mixture model, analogous to the mixture of factor analyzers model of Ghahramani and Hinton 

(1996). We will not explore this any further here, turning instead to a non-Gaussian generalization. 

Hierarchical Gaussian mixtures 

As was pointed out above, there is no a priori reason to expect the intrinsic variability to be Gaussian 

distributed. While such a model may provide a successful approximation in certain examples, it is 

insufficient to account for all of the observed data. Therefore, we will now investigate a non­

parametric alternative. 

The mixture model, which we have taken as the basic statistical model underlying probabilis­

tic cluster analysis, has another role in the statistical literature. A mixture of relatively simple 

components (such as Gaussians) is often used to approximate a more complicated density, about 

which little is known a priori. Such an approach is called "non-parametric" because there is no 

explicit generative model of the density. It is not suggested that the data are in fact generated by 

any sort of mixture process. Rather, the mixture model is being used as an extremely flexible sub­

strate for density approximation. (Compare the use of radial basis function networks in the function 

approximation literature). 

Our alternative, then, is to fit an hierarchical mixture model in which the generative dis­

tribution for each cell is itself a mixture. We shall employ a mixture of Gaussians, each with a 

covariance matrix equal to that of the measured background noise. In a sense, this approximation 

may be viewed as identifying a small handful of "canonical" spike shapes, which span the range of 

possibilities. The generative process selects one of these shapes and then adds background noise to 

produce the observed spike waveform. In fact, the intrinsic waveform of the spike (before addition 

of the background) is not discrete in this fashion. This problem is mitigated by the fact that the 

Gaussian density provides significant probability mass in the region in between the selected points. 

We may think of the model as "tiling" the true density with a small set of identically shaped ellipses, 

the shape being set by the background covariance. 

Let us write down the density that results from such a model. Suppose there are M clusters, 

with mixing proportions ?rm. Each cluster is modeled by a mixture of P Gaussians, with mixing pro­

portions Pm,p, means f..Lm ,p and unit covariances (we assume that we have whitened the background 
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process). The parameter set for the model is f)= {'ll'm} U {Pm,p} U {IJ-m,p}· We have, 

Po (X) = L L 'll'm L Pm,p(211')-d/2e-!llx;-J'.n,pll2 (5.16) 
m P 

If we distribute the factor 'll'm into the sum over p and write 'lj;m,p = 'll'mPm,p it becomes clear that 

this density is identical to that derived from a mixture of R = M x P Gaussians. Indeed, any 

hierarchical mixture in which the total number of Gaussians is R, even if there are unequal numbers 

of components used to describe each cell, will yield the same form of the density. 

This poses a serious problem from the point of view of model selection. Conventional model 

selection procedures may indicate the correct density from among a group of candidates. But, how 

are we to decide which components belong to which cell? Probabilistically, any such assignment 

would be equally valid, including the "flat" option in which every component represents a single 

cell. In short, from a probabilistic point of view, there is no such thing as a hierarchical mixture! 

We may choose to exploit additional information in order to group the Gaussians. 

One approach is as follows. Begin by fitting a mixture of a large number of Gaussians (all with 

unit variance) to the data. The actual number is not of great importance, provided it is significantly 

larger than the number of cells expected. It may be chosen arbitrarily, or by a model selection 

method. Then, form a graph, with one node for each Gaussian. An edge between two Gaussians is 

included if the densities exhibit a significant degree of overlap, that is, if the distance between their 

means is smaller than some chosen threshold. Each of the connected subgraphs that results is taken 

to represent a single cell. Such an approach would be similar in spirit, although different in detail, 

to that proposed by Fee et al. (1996a) (a detailed discussion of the relationship to their method is 

outlined in section section 5.14). 

Alternatively, the additional information might be encoded as a prior on the parameters within 

a group. For example, we might expect that the means of the components that describe a single cell 

will lie close together, and will themselves be drawn from a Gaussian density of small variance. 

In both these approaches, one or more control parameters must be chosen arbitrarily: either the 

overlap threshold for the graph formation, or the form and extent of t he prior. In many cases, these 

parameters may be chosen anywhere within a fairly broad range of values, with identical results. 

However, it is in the case when the waveforms from two or more cells are very similar, and where 

the model selection procedure is thus most important, that the results become most sensitive to the 

choice of parameters. 

In section 5.10.2 we will introduce a third approach to the resolution of the ambiguity in the 

hierarchical mixture likelihood, suitable for modeling variability intrinsic to bursts of action poten­

tials. There , a dynamic model is proposed, in which the components representing a single cell are 

tied together by a learnt Markov transition structure. In that view, components belong to the same 
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cell provided that the timing of spikes that fall within them is consistent with a simple burst model. 

5.10 Dynamic Models 

In the models discussed thus far each spike waveform is generated independently of all others. We 

turn now to models in which the latent variables are dependent on each other. 

5.10.1 Refractory period 

One simple feature of the firing process has not yet been accounted for in any of our models. This 

is the occurrence of the refractory period, a short period after each action potential during which 

the cell that fired will not fire again. As it stands, the mixture model has no representation of the 

time of any event. We will discuss shortly a model in which time is explicitly represented. For the 

moment, though, it is possible to account for the refractory period by a simple modification to the 

basic mixture model. The method presented in the following may be applied to any of the various 

mixture models we discussed above; for simplicity we shall develop it in the case of the simple 

Gaussian mixture of section 5.8. 

The joint data log-likelihood for such a model was given in section 2.6 

fx,z (6) = L "L:>m,i (log?Tm- ~log I27T:Eml- ~(Xi- P.m)TB;:;:,1(xi- P.m)) 
1 m 

(2.17) 

In the refractory case this expression remains valid for most data and parameter values; the exception 

is provided by sequences of zm,i that violate the refractory constraint by assigning to the same cell 

events that fall within a refractory period of each other, for which the log-likelihood diverges to 

-oo. In taking the expected value of the log-likelihood, however, the probability of such a sequence 

is 0, and so we can discount this possibility. The expected log-likelihood under the distribution 

Pon-t (Z I X) retains the general mixture form of (2 .8) 

m 

L L s~,i (log7Tm- ~log I27T:Eml - ~(xi- P.m)TB;:;:,
1 
(xi- P,m)) 

' m 

( 5.17) 

except that, as we will see below, the expected values of the Zm,i are different from before. To 

remind ourselves of this difference we use the notation s~,i for these new responsibilities, reserving 

the symbols r~,i for the responsibilities in the non-refractory case. 

To obtain the new responsibilities, consider first the simple case where only two spikes have been 

observed and the second appears within a refractory period of the first. We have a joint distribution 



119 

over Zm,l and Zm• ,2 with 

P(zm,l,Zm•,2)={ O 
r:;,,1 r:;,, ,2 / Z 

ifm=m' 
(5.18) 

otherwise 

where Z = l::m l::m'#m r:;,,1 r:;,, ,2 is an appropriate normalizing constant. The expected .values we 

seek are then just the marginals of this joint distribution, for example, 

s;:::.,1 = L r;:::.,1 r;:::..,2 /Z = r~. 1 (1- r~.2)/Z (5.19) 
m'#m 

where we have used the fact that '""rn, . = 1. L.J m ,1. 

This result easily generalizes to the case of many spikes 

s~,i 
rn . 
~:' IT (1- r;:::.,j) 

1 i,j refractory 

(5.20) 

where Zi is the appropriate normalizer and the product is taken over all spikes that are fall within 

one refractory period (before or after) the i spike. 

The M-step is still a weighted Gaussian estimation as before, the weights now being the new 

responsibilities s:;,,i. 

5.10.2 Sparse hidden Markov models 

Bursts 

The intrinsic variability of spike waveforms is not entirely random for all cells. Many pyramidal 

cells, both in neocortex and in the hippocampus, sometimes fire action potentials in bursts. Action 

potentials within a burst are closely spaced (as little as 1ms apart), and the cell does not have 

enough time to recover from one before the next begins. Thus, the membrane currents associated 

with later action potentials are likely to be smaller, and a smaller portion of the dendritic membrane 

will participate in such spikes. As a result, the spike waveforms recorded later in the burst may be 

quite different from those associated with isolated action potentials. 

In this section we will construct a statistical model to describe the change in action potential 

during a burst. At first glance, one might think that a sufficient model would have the expected 

spike waveform depend on the immediately preceding interval. In fact, the situation is considerably 

more complex than this. For example, the third spike in a regular burst will usually be smaller than 

the second, even though the preceding interval is the same. At the same time, it is true that after 

a longer interval the cell has had more time to recover and so the spike waveform is closer to the 

normal case. 
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Faced with the complexity of the mechanisms underlying the change in spike waveform during a 

burst, we will not attempt a biophysical model. Instead, we will use a simple statistical model that 

will capture the variation empirically. 

A statistical model 

The statistical model that we consider is a constrained version of the Hidden Markov Model (HMM). 

Each cell is modeled by a single HMM, which is independent of all of the others. In practice, it is 

often useful to use HMMs to model only a subset of the cells in a recording- those that exhibit 

bursts - and use Gaussians or other static distributions to describe the others. 

The output symbols of the underlying Markov model are either complete spike waveforms rep­

resented as vectors (the events of the previous discussion) or a zero vector. The vast majority of 

symbols in any string generated from the Markov model will, in fact, be zero and so these models are 

sparse in the sense of chapter 4. The observed vector is the sum of the Markov model output and a 

random vector drawn from the background process. Thus one may think of the output distributions 

of the states of the HMM as Gaussians, centred either on zero or on a mean waveform which is to 

be learned. The output density is thus identical to that of the hierarchical Gaussian mixture model 

discussed in section 5.9.2. The difference is that events are not chosen from this density indepen­

dently. This change in the model provides another approach to breaking the ambiguity inherent in 

the hierarchical model. 

A Markov model describes a discrete time process. We choose to discretize time in fairly large 

steps, usually 0.5ms. The measured output symbol for any given time-bin is a spike waveform if the 

identified time (that is , the peak or centre of mass) of some event falls within that bin. Otherwise, 

the output symbol is taken to be 0. 

The transition matrix of the Markov model is constrained so as to embody the structure expected 

from a bursting cell. This constrained structure is sketched in the left-hand part of figure 5.10. Each 

of the grey circles in this figure represents a state of the HMM. The left column of states all have zero 

output symbol and represent the cell in a non-firing state. States in the right column represent firing 

events in the cell and have non-zero output distributions. These distributions are indicated on the 

stylized event feature plot to the right . Each state is associated with a Gaussian output distribution 

indicated by an elliptical boundary. Together, these distributions "tile" one of the elongated clusters 

in the data set. 

Each heavy arrow in the HMM diagram represents an allowed transition: where there is no arrow 

the transition probability is set to 0 and remains at this value throughout the learning process. The 

states are arranged in a "ladder" with states lower down the ladder corresponding to greater recent 

firing (and therefore greater inactivation of channels). The upper left-hand state is the "ground" 

state, in which the cell will be found after a long period of inactivity. Only two transitions are 
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Figure 5.10: The HMM transition structure 

possible from this state: the cell either fires an action potential, making the transition to the state 

on the right, or else remains in the same state. Once in the firing state, the cell makes a transition 

to a non-firing state below the ground state, thus preserving the memory of the recent firing. From 

this state, t he cell can fire again, with a different output distribution, in which case it subsequently 

moves further down the ladder of states; it can remain in the same state; or it can make a transition 

up the ladder. This basic pattern is repeated for each of the rungs of the ladder. 

Some features of this structure are worth pointing out. The only way for the cell to transition 

down the ladder is to fire. Once it fires it must enter a non-firing state and so cannot spike in 

successive time-bins; for 0.5ms bins this effectively enforces a short refractory period. If the cell 

finds itself some distance down the ladder, but does not subsequently fire for a number of time­

steps, it will relax back to the ground state with an exponential decay profile. 

Learning with HMMs 

A learning algorithm for mixtures of sparse HMMs was discussed in section 4.4. Sparse HMMs were 

defined in that section to produce two types of output: either a null symbol, ~ . or a numerical value. 

When considering mixtures of sparse HMMs we introduced a third type of output, the symbol ¢, 

which was detected when two or more of the component HMMs emitted non-null outputs in the 

same time-step. 

In the current application an output is defined for each 0.5ms t ime-bin as follows. If no event 
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has its peak (or centre of mass) within the bin the observation is taken to be ¢. In most cases, 

if an event does peak within the bin, the observation is the reduced vector representation of that 

event. However, if the event has been classed as an outlier, then the symbol q is observed. Outlier 

events are identified in three ways during our procedure. First , the waveform may exhibit a double 

peak or other heuristically excluded property during event extraction. Second, the event may fall 

outside the principal subspace during dimensionality reduction. Finally, it may be assigned with 

high probability to the outlier mixture component. This last poses a problem, since we cannot know 

before fitting is complete which events are to be classified in this way; but we also cannot fit the 

mixture of HMMs accurately without knowing which observations are collisions. In practice, this 

circularity is resolved by dynamically marking as a collision any event that is assigned to the outlier 

cluster with a probability that exceeds some set threshold on a given iteration. 

Given these definitions, the learning algorithms of section 4.4 can be employed to optimize the 

mixture parameters. 

5 .11 M ixed Models 

There is no reason to expect that all of the foreground cells present in a particular recording will 

exhibit the same type or degree of variability. A single site may yield some cells that tend to fire in 

bursts of action potentials; some that fire isolated, but stochastically variable spikes; and some that 

exhibit no detectable intrinsic variability at all. Thus, it is often useful to be able to combine the 

three types of waveform model we have discussed in this chapter - the fixed covariance Gaussian 

of the simple mixture model; the mixture of Gaussians of the hierarchical mixture model; and the 

sparse hidden Markov model - in a single overall mixture. 

The framework in which to do so is provided by the mixture of sparse hidden Markov models 

discussed above, and at greater length in section 4.4. In particular, we observe that both the single, 

fixed covariance Gaussian and the mixture of fixed covariance Gaussians may both be expressed as 

special cases of the sparse HMM, with transition matrices constrained differently from the "ladder" 

of figure 5.10. 

The simple fixed-covariance Gaussian model is equivalent to a two-state HMM. One state (say, 

the first) has null output, the other has an output distribution given by the Gaussian model. To 

reproduce the basic model exactly, the columns of the transition matrix must be identical. The 

augmented transition matrix (including the initial state probabilities; see section 4.1.1) is of the 

form 

0 0 

1-

0

Pm ) 

Pm 

(5.21) 1- Pm 1-pm 

Pm Pm 
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Here Pm represents the firing probability per time-step associated with the mth model of the overall 

mixture. It is related to the mixing probability 7rm as follows . Suppose the total number of events 

in the training data (with collisions counted twice) is N and the total number of HMM time-steps 

is T. Given the stationarity assumption of the mixture, we expect there to be 7rmN spikes from the 

mth cell in this data, and so the probability of a spike per time-step is Pm = 7rm.N jT. 

The transition matrix given in (5 .21), allows for the cell to fire in adjacent time-bins with prob­

ability p2
. In fact, it is convenient to exploit the HMM transition structure to enforce a refractory 

period without requiring the scheme of section 5.10.1. In section 5.10.2 we achieved this by requiring 

that the model return to a null state after firing. For 0.5ms time-steps, this enforced a short, but 

reasonable refractory period. Thus, we alter the transition matrix to 

Tm = ( 1-

0

Pm 

Pm 

1- Pm 

Pm 

0 

(5.22) 

The value of the firing probability Pm must now be corrected. The new relationship is Pm 

7rmN/(T- 7rmN). 

The mixture of Gaussians model for a single cell is implemented similarly. For a P component 

mixture the HMM now contains P + 1 states, one with null output (again, we take this to be first) 

and the others with output distributions corresponding to the components of the mixture. If the 

mixing probabilities of the cell model are 1rp,m and the overall mixing probability of this cell model 

within the hierarchical mixture is 7rm we define densities by Pp,m = 1rp,m1rm.N/(T- 1rp,m1rmN). 

We write Pm = Lp pp,m · Then the augmented transition matrix, corrected to enforce a refractory 

period, is given by 

0 0 

1- Pm 1-pm 

Tm= Pl,m Pl ,m 

PP,m PP,m 

0 

1 

0 

0 

0 

1 

0 

0 

(5.23) 

Having converted each non-Markov model into a sparse hidden Markov model whose transition 

matrix embodies the appropriate structure, we can then proceed to learn the parameters using the 

algorithm described in section 4.4. In general, learning in such a model is more computationally 

expensive than in the basic mixture models. Thus, if no cells in a given data set appear to fire in 

bursts, so that the ladder-structure HMMs will not be needed, it is preferable to use the mixture 

model directly, possibly with the refractory modification of section 5.10.1. However, once the pa­

rameters are learned, the corresponding SHMMs can be constructed by the procedure given in this 
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section. These SHMMs can then be used for on-line spike recognition, as described in section 5.13. 

5.12 On-line Learning 

In many applications of spike sorting, recognition must be carried out in close to real time. In 

scientific experiments , for example, feedback in the form of sensory stimulus changes or even neural 

stimulation might need to be triggered within milliseconds of a particular pattern of action potentials 

being recorded. In neural prosthetic applications , neural activity needs to be transformed into a 

"motor" action on a similar time scale. 

For the most part, such demands constrain the inference, or spike recognition, stage of sorting 

(to be discussed below) rather than the learning. We may collect an initial segment of data without 

the real time demands, train on these data off-line and then perform on-line inference. 

However, it is useful to update the parameter estimates as more data are collected. For one 

thing, these updates will refine the estimates, yielding progressively more reliable data. As a result, 

it might be possible reduce the length of the initial training segment, leading to a smaller training 

down-time prior to on-line recognition. 

More important, though, is the fact that in almost all recording situations, the parameters are 

likely to drift over time. Such drift generally occurs due to minute changes in the relative positions 

of the cells and electrodes, thus changing the recorded spike waveforms. Even without such physical 

displacement, however, the statistics of spiking of the different cells, which enter into the models in 

the form of mixing parameters or transition probabilities in the HMM, may change. For example, 

cells may switch between more or less bursty modes of firing in association with varying levels of 

drowsiness (or anesthesia) in the subject. 

In this section we discuss techniques for on-line parameter adaptation. Similar techniques will 

allow both refinement of the estimates as new data come in, as well as tracking of slow drift in the 

parameters. We discuss these techniques as though the parameters are to be updated each time a 

new spike is observed. In practice this level of immediacy is unnecessary, and it is more efficient to 

collect spikes for a short period (say 1s) and apply the updates in a batch form. 

5.12.1 Incremental EM 

We showed in section 1.8 (following Neal and Hinton 1998) that the free energy interpretation of EM 

can be used to justify some variants on the basic algorithm. One of these is an incremental version 

in which the parameters are updated one data point at a time. This approach is valid in cases 

where both the observations Xi and the latent variables Yi are independent and drawn from fixed 

distributions, and so the conditional distribution Po (Y I X) factorizes over the Yi· Of the models 

we have discussed here, this is true only of the mixtures. 
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The iterations for the incremental EM algorithm, in the notation of section 1.8, are as follows. 

IE-step: Choose some i. Maximize Fi(pi,en- 1 ) and leave the remaining Pi , j =I i unchanged. 

Pi(Yi) = P n-1 (Yi I Xi) 

pj(Yi) = P'F1 (Yi) 

M-step: Maximize F with respect to B holding p constant. 

(5.24) 

For a mixture model, the probability distribution pf(Yi) is simply the set of responsibilities rf.m, 

m = 1 ... M and the M-step involves maximizing the weighted log-likelihood .Ei rf.mPe~ (xi) for 

each component. 

The on-line version of this algorithm is different only in that there is no choice of i. The data 

are simply handled, one by one, as they arrive from an unlimited stream. TheM-step update only 

involves, of course, the data collected to this point. We shall assume that the initial parameter values 

chosen are very close to the true values, being the result of training on a separate, off-line, data set. 

This assumption means that even though data are not revisited, the responsibilities assigned to them 

remain reasonably valid. An alternative approach is outlined in the next section. 

Fortunately, for Gaussian mixtures (and indeed many other mixture models) it is not necessary 

to store all of the past responsibilities and observations in order to update t he parameters in the 

M-step. We derive the M-step update rule for a general mixture of unconstrained Gaussians; the 

result for the various constrained Gaussian models used for spike sorting will follow immediately. 

The usual M-step updates for a Gaussian mixture, given N data points, are 

~n 
m 

.EN n . r . 
t=l m,t (5.25) 

(5.26) 

(5.27) 

The (N + 1)th data point, x. arrives, triggering the (n + 1)th update of the parameters. We 

calculate the responsibilities, Tm• of each of the components for this point in the usual fashion. 

According to the incremental EM algorithm, then, the new estimate for 'll'm is 

N + l ( N ) n+l _ 1 n + l _ 1 n _ N n 1 
'll'm - N+1 LTm,i- N+1 Lrm,i+rm• - N+171',.,.+ N+1Tm• 

•= 1 •= 1 

(5.28) 

where we have used the fact that r~,+l = r~ i for all i < N + 1. Similarly, we find that (writing 
' ' 



R~ = 2::~ 1 r~.i = N1r~) 

N+l 
n+l _ 1 ~ n+l _ 1 

1-Lm - Rn+l L....., r m,i Xi - Rn+l 
m i=l m 
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R~ n 1 
= ~+1 1-Lm + R~+l rm.X• 

Finally, the corresponding result for }:~+ 1 follows by rewriting (5.27) as 

from which we find that 

}:n+1 _ R~ (}:n n n T) 1 T n+l n+1T 
m - ~+1 m + 1-Lmi-Lm + R~+l rm• x. x. - 1-Lm 1-Lm 

5.12.2 P arameter adaptation 

( 5.29) 

(5.30) 

(5.31) 

When the update algorithms described above are used in an on-line fashion (without revisiting any 

data), the impact of each succeeding point on the parameter estimates grows progressively smaller. 

If the parameters are varying slowly, this is an unfortunate state of affairs, since information about 

the new values will be incorporated at an ever decreasing pace. Indeed, even if the parameters are 

stable, but the initial estimate of the model was far from the true value, this state of affairs is not 

too promising. The reason (stated here in terms of the incremental EM algorithm for mixtures, 

although it applies equally to the HMM) is that the responsibilities that were calculated for the first 

few data points become increasingly inaccurate as the model is optimized. While the effect of these 

early values on the estimate is diluted by ever more incoming data, leading to the correct result in 

the limit, convergence would be more rapid if we had a mechanism to "forget" them. (Note that the 

incremental EM algorithm as described by Neal and Hinton (1998) avoids this problem by revisiting 

all the data with some probability). 

Notice that each of the update rules derived in the previous section (5.28), (5.29), (5.31) has the 

form of a weighted sum of old information and new. The form of amnesia we seek can be achieved 

by the simple measure of adjusting the weights in this sum to favour the new data. 

One approach is suggested by Nowlan (1991) . In this view, the optimal parameter values are 

maintained by a group of sufficient statistics; for the mixture of Gaussians, these statistics are 

R~ = L:i r~.i, s;;, = L:i r~,iXi and s s;;, = L:i r~,ixixr. Knowing the values of these statistics 

at any iteration n we can calculate the parameter values 1r;;, = R~/ "L:m R~, p,~ = s;;,; R~ and 

}:~ = SS;;,jR~- 1-£~1-L~T. The update rules derived in the previous section can then be easily 

expressed in terms of these sufficient statistics 

(5.32) 
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The proposal made by Nowlan (1991) introduces a factor 'Y < 1 to regulate the decay of older 

information. The sufficient statistic update rules are replaced with these: 

Ssn+1 _ SSn + T 
m - 'Y m Tm• x. x. (5.33) 

We can thus derive the parameter update rules under this approach. If we write N;- for 'Y L::m R;;. 
we obtain, 

and 
N;-7rmJ.L;;. + Tmo Xo 

R;;+l 

(5.34) 

(5.35) 

with a similar result for the covariance update. Comparison with (5.28) and (5.29) suggests that 

the term N;- plays the role of an effective number of data. Note that N;-+1 = -yN;- + 1. Thus if 

N;- = (1- -y)-1 then N;-+1 = N;- and otherwise N;-+ 1 > N;- . The effective number of data climbs 

until it reaches the value (1- -y)-1 and then remains constant. Thus we may think of this approach 

as limiting the effective number of data used. 

Such an approach is seen to be reasonable in situations where the parameters change at a rate 

linked to the number of data measured (or in the case where such adaptation is needed to speed 

on-line convergence given poor initial parameter values). In the spike sorting example, however, we 

expect the parameter variation to occur at a rate constant in time, even if the overall spike rate 

varies. We would like the effective number N;- to be dependent on the recent firing rate of the cells 

being recorded. 

The formulation in terms of an effective number of data makes this easy. We replace the term 

N;- in the above by a firing-rate dependent term that varies in time Ne(t). The dependency on 

firing rate might set Ne (t) to the number of spikes recorded within a window. It should be borne in 

mind that this approach is different to simply using only the last Ne(t) data points to estimate the 

parameter values. The estimates are based on all previous data; however , the estimate derived from 

these data is weighted as though it was derived from only Ne(t) points. 

5.12.3 Limited look-ahead forward- backward 

The scheme described in the previous section is appropriate for on-line adaptation of the parameters 

of mixture models, whether of the simple Gaussian type, or more elaborate. What about the dynamic 

hidden Markov model, proposed in section 5.10.2? At first glance, the situation appears impossible. 

Recall that to perform even a single E-step of the learning algorithm requires a traversal through 

all of the data by the forward- backward algorithm. It would seem, then, that we cannot even begin 

to learn the parameters of the model until all of the data have been collected. 
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Of course, this is not exactly true. If the parameters were stationary we would expect that 

parameter estimates derived from a moderately long sequence of data would be reasonable, and 

affected only marginally by the incorporation of additional observations. The critical point is that 

the influence of later observations on earlier state and transition estimates is diminished by mixing 

in the Markov chain. Thus, although in principal the backward pass of the inference algorithm 

should begin at the very end of the data set, if it is instead begun earlier, only the immediately 

preceding state estimates (those within one mixing time) will be substantially incorrect. This feature 

is exploited by Boyen and Koller (1999) in the context of general dynamic probabilistic networks. 

For the sparse hidden Markov model the situation is further improved, because, as was argued in 

section 4.3.2, long stretches of null observations tend to "reset" the model. "Long," in this context, 

refers to the mixing time of the null-state restricted Markov chain; in the spike sorting context this 

is the time taken for a cell to reset after a burst and thus may well be on the order of 20ms. 

The incremental approach to learning the HMM thus involves re-running the backward pass of 

the forward- backward algorithm only as far back as the last segment of moderate silence. To be 

conservative, one might discount state estimates in the M-step until they become "protected" by a 

stretch of nulls, although in practice this rarely makes any difference. In any case, if one realigns the 

notion of the "current" time to the last estimate that can be trusted, we may think of this procedure 

as taking into account a short sequence of data in the future. Thus the name limited look-ahead 

forward-backward algorithm. 

As new state information becomes available it is combined with the earlier information by a 

procedure analogous to (5.29) and (5.31) , with the state estimates s;,m,i replacing the responsibilities. 

The update of the transition matrix is similar in spirit to (5.28) , but differs slightly. We write tpq ,m ,• 

for the new transition estimate and s;,m = 2:~~1 s~,m ,i to obtain 

"'N+l tn+l . "'N tn + t 5n 1 
yn+l = 6t=l pq ,m ,t _ 6i=l pq,m,i pq,m• _ q ,m yn 

pq,m "'N 8n+l. - sn+l - sn+l pq,m + s n+l tpq,m• · 
L..,;t=O q ,m ,t q,m q,m q,m 

(5.36) 

For non-stationary parameters we can implement adaptive rules by weighting the updates by an 

effective data size just as in (5.33) and following. In this case, since a new estimate is generated at 

every time-step whether a spike occurred or not, we do not need to worry about varying the effective 

number of data, and we simply choose a fixed value of the decay constant 1-

5.13 Spike Time Detection 

Given the model structure and parameters, the third and final stage of the spike sorting process is 

the inference of the firing times. To perform this inference accurately, and in particular to resolve 

overlapped spikes, we will return to the full superposition model (5.2), using the distributions for 
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the firing indicators Cm,r and waveforms Sm,r derived from the learnt mixture model. Many, if 

not most, previous spike sorting approaches have not made this distinction: inference is performed 

on extracted events using a cluster assignment model and is not actively distinguished from the 

learning of the model. Such an approach leaves three issues unresolved. First, the threshold-based 

event detection heuristic of section 5.5 can be improved upon once the true spike shapes have been 

determined. Second, if all events are to be clustered, the sorting process must occur off-line, ruling 

out experiments in which rapid feedback about the cells' responses is needed. Third, the clustering 

procedure has discarded the superposed events, or else collected them into an unresolved overlap 

cluster, rather than resolving them into their constituent spike forms. 

The correct solution to the inference problem involves a search through all possible combinations 

of spike arrival times, and is computationally prohibitive. Lewicki (1994) suggests that with opti­

mized programming techniques, and suitable, but severe approximations, it is possible to complete 

this search in close to real time on a computer workstation. Vve shall not review his implementation 

here; the interested reader is referred to the cited paper. Instead, we discuss an alternative set 

of approximations that lead to a straightforward , single-pass, greedy algorithm. This approach is 

particularly well-suited to parallel implementation on arrays of digital signal processors (DSPs) . 

We shall derive the procedure in the context of the sparse hidden Markov models of section 5.10.2, 

where the output distribution of each component is either null or a Gaussian of fixed covariance (set 

by the background). As was seen in section 5.11, other cell models that we have considered can 

also be expressed in this form, and so the detection method we discuss will apply equally well to 

the simple Gaussian model of section 5.8 or to the hierarchical Gaussian mixt ure of section 5.9.2. It 

will not, however, apply to the unconstrained Gaussian model of section 5.9.2 without considerable 

modification. 

The basic structure of the scheme is as follows. At each time-step we begin by estimating the 

prior probability distribution over the states of each SHMM, based on our estimates of the states 

at the preceding time-step. Using these probabilities, and the data recorded around the given point 

in time, we obtain the occupancy likelihoods for each of the firing states of each of the models, 

along with the likelihood that no spike was observed. We accept the event associated with the 

largest likelihood. If this optimal likelihood is for no spike, then we re-derive the posterior state 

distribution for each model as though a null symbol was observed. If, on the other hand, the optimal 

likelihood is due to one of the firing states, we assume that the appropriate model is, in fact, to 

be found in that state. The corresponding mean spike waveform is subtracted from the recorded 

data; and again the likelihoods of the remaining models having fired, or of there having been no 

second spike are calculated. This is repeated until no more spikes remain to be accounted for at t his 

t ime-step. The initial state probabilities for the next step are then inferred by transitions from the 

posterior estimates of the states at the current time. 
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This is a recursive procedure similar to the forward step of the coupled forward-backward al­

gorithm. We will examine in detail a single step of the procedure in analogy to the treatment of 

section 4.4.2. 

We assume that at the (i- l)th time-step, the current state probability estimates are given by 

Ep,m,i-1
6 . Since the Markov transitions are taken to be independent, these are propagated forward 

to provide initial estimates of the probabilities at the ith step by the relation 

(5.37) 

We need to assess the probability of a spike being present on this time-step. However, we are 

no longer dealing with pre-extracted and aligned spike waveforms and so the spike, if any, may have 

occurred at any point within the time interval under study. We can measure the probability by the 

maximal output of a simple matched filter. Suppose that the pth component of the mth model has a 

non-null output distribution, with mean waveform (transformed into the time domain from whatever 

subspace was used to fit) given by Sp,m(t). We assume that the background has been whitened, 

so that the covariance of this output distribution, and all the others, is J. The joint log-likelihood 

of a spike having been generated from this particular component (that is, that the state variable 

Ym ,i = p) at a particular t ime 7, under the observed trace V(t), is 

log P (V(t) I Ym,i = p, 7) 

ex -~ I dt (V(t)- Sp,m(t- 7))2 

I dt V(t)Sp,m(t- 7) - ~I dt V(t) 2 
- ~I dt Sp ,m(t- 7)2 (5.38) 

while the likelihood that there was no spike is simply 

logP (V(t) I 0) ex-~ I dt V(t) 2 (5.39) 

The spike time 7 will be assumed to lie within the short interval under consideration for this time­

step. The integrals overt extend through all t ime; although we will soon drop the integral of V(t)2 , 

and the others can be limited to the support of Sp,m(t- 7). Note that the final term in (5.38) is, 

in fact, independent of the spike time 7; we will therefore write o:p,m = J dt Sp,m(t) 2 for the total 

power in the waveform associated with the distribution (p, m). 

We can combine t hese expressions with our prior expectations of each state given by Ep,m,i, and 

drop the common term that depends only on V(t) to obtain the following weighted matched-filter 

6 We adopt the same conventions for subscripts as we did in section 4.4, so that p refers to the state, m to the 
model and i - 1 to the time-step. 
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J 1 -
dt V(t)Sp,m(t- T)- 2ap,m + logEp,m,;/6 

log L Ep,m,i/6 
0p.~=l 

(5.40) 

(5.41) 

where 6 is the length of the time-step. The first of these is calculated only for non-null states, while 

the sum in the second is over all null states. Up to a shared constant term, these two expressions 

indicate the posterior probabilities of a spike having occurred at timeT from component (p, m) (5.40) 

and of no spike having occurred (5.41) , respectively. The first of these may be seen to be result of 

a matched filter with impulse response Sp,m( -T) being applied to the data. 

It is here that we make our greedy step. We select the single largest probability from among the 

values (5.40) and (5.41), over all times T within the time-step window (in fact, if this maximum lies 

at the boundary of the interval we extend the search to the closest peak in the filter value). If this 

is :F0,i we assume no spike occurred in the interval. In this case the new state estimates are given 

by 
.E . E . -0 p,m,t 

p,m,t - p,m "\" 0 jj; . 
L.....tp p,m p,m,t. 

(5.42) 

in agreement with (4.43). 

If, however, the maximum is achieved by one of the filter outputs, say :Fp·,m·,i(T*), we assume 

that the corresponding spike really did occur. In this case we set Ep· ,m· ,i to 1 and all other 

state probabilities for the m•th model to 0. We then subtract from the data stream the waveform 

Sp,m(t - T*) and recalculate the filter outputs to see if perhaps another spike occurred as well. In 

practice, since the filters are linear, we can actually subtract the appropriate filtered version of the 

waveform directly from the filter output. The procedure is then repeated, with the m*th model 

discounted. We continue to subtract and repeat until no further spikes are detected. 

The procedure described here yields reasonable results in many cases. In the context of non­

trivial HMM transition matrices, however, it can be improved upon by the use of the standard Viterbi 

decoding algorithm of HMM theory, adapted in a manner similar to the coupled forward- backward 

algorithm discussed in section 4.4. In particular, we note that the forward pass of the decoding does 

not need to be run to completion before the backward pass (in which the most probable states are 

identified) can begin. Instead, the optimal sequence can be determined each time a block of nulls of 

sufficient length is encountered (see section 4.3.2). 
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Comparison with Previous Work 

Spike sorting is by no means a new problem. Extracellular recording has been a routine e lectrophys­

iological method for decades, and single units have been isolated from voltage traces for many years. 

Nonetheless, it is only quite recently, as multiple electrode recording has become more widespread 

and as fast computers have become easily available, that interest in fully automatic spike sorting 

has arisen, and a full statistical analysis of the problem has not, to date, been carried out. 

In this section, we review some previous approaches, both manual and automatic, used or pro­

posed for spike sorting. The discussion of prior art has been postponed to this late stage because 

it is now, armed with the full statistical analysis of the problem, that it will be possible to prop­

erly understand the techniques proposed and their shortcomings, if any. We shall find that most 

approaches to be discussed will address only a subset of the issues brought out in our treatment. 

This review of earlier work does not purport to be exhaustive. As might be expected of a subject 

so fundamental to experimental neuroscience, hundreds of papers have been published on spike 

sorting. The few that are mentioned below have been selected on two bases: first, they are the best 

examples of the different common classes of algorithm; and second, in many cases they have been 

quite influential in the creation of the current work. In some cases, mention of earlier work has 

already been made in the course of the development above, in which case only a note to that effect 

will appear here. 

5.14.1 Window discriminators 

The most basic tool for the detection of spikes in extra-cellular recording is a simple threshold device 

known as a Schmidt trigger. In the last few decades a slightly more sophisticated version of this 

venerable tool has come into use, known as the window discriminator, and it is this t hat we shall 

describe here . The discriminator is usually a hardware device - although the same functionality 

can easily be implemented on a computer - designed to identify spikes from a single cell. The 

amplified signal from the electrode is compared to a manually-fixed threshold applied to either the 

signal voltage or to its derivative. Each time the threshold is triggered, the subsequent waveform 

is displayed on an oscilloscope (or computer) screen. Observing these waveforms, the user sets a 

number of time-voltage windows that bracket the waveforms that he wishes to identify as foreground 

spikes. Any triggered waveform that passes through all of these windows is accepted as a spike, and 

the time of occurrence is logged. 

These devices have typically been used in conjunction with manual isolation of a single spike, 

so that all that needs to be done with the windows is to distinguish this single waveform from the 

background. However , software versions of the same device may allow multiple sets of windows to 

bracket spikes of different shapes (or more than one hardware discriminator may be used on the 
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same signal), and in some cases spikes from more than one cell can be reasonably detected in this 

manner. 

We can view this procedure as a special case of the manual clustering approach to be described 

below. The trigger simultaneously extracts and aligns the waveforms. As can be seen from fig­

ure 5.5(, as long as the threshold crossing is detected in the analogue signal (that is, there is no, 

or else only extremely fast, sampling involved) this procedure yields reasonably well-aligned spikes; 

alignment to a centre of mass is, however, very slight ly better. The time-positions of the windows 

relative to the threshold crossing select the dimensions of the waveform space used to cluster, and 

the voltage-extents of the windows set the cluster boundaries within this space. Thus, the clustering 

is constrained to occur within an axis-aligned subspace and the cluster boundaries are constrained 

to be rectangular. One advantage to this scheme over many standard clustering packages is that it 

allows the user to select the appropriate dimensions from among all of the axial directions. Another 

advantage (in terms of manual clustering) is that the high-dimensional space of waveforms is com­

pactly visualized on a two-dimensional screen. Nonetheless, the restrictions on subspace dimensions 

and on cluster shape can be quite restrictive. 

5.14.2 Manual clustering 

The advent of multi-wire electrodes, and the availability of commercial software, has popularized the 

use of clustering approaches to spike sorting. The basic framework of these approaches is as follows. 

Event waveforms are extracted using a fairly basic threshold trigger. In general, no attempt is made 

to resample or to realign the event. These waveforms are then grouped into clusters, sometimes by 

an ad hoc clustering algorithm, but often by having the operator draw out the cluster boundaries 

in various two-dimensional projections. There is no separate spike-detection phase; membership of 

the clusters, along with the recorded time of threshold crossing, fully specifies the estimated spike 

identity and time. Examples of procedures of this sort have been described by Abeles and Goldstein 

(1974), Gray et al. (1995) , Rebrik et al. (1998) and many others. 

In general, the clustering is carried out in a subspace of reduced dimension. Above, we pointed out 

that window discriminators can be viewed as selecting a subset of event coordinates for clustering. 

Other techniques that have been employed are those that were described in section 5.7.2; hand­

picked features, often derived from the spike waveform in a non-linear fashion, are common (see, 

for example, products from DataWave Technologies), while PCA has also been used (Abeles and 

Goldstein 1974; Gray et al. 1995). In section 5.9.1 we also discussed some proposals to reduce 

dimensionality in such a way as to suppress spike-shape variability. 

Frequently, the cluster shapes are constrained to be rectangular; we pointed out above that this 

is implicit in the window discrimination approach to clustering, while in many explicit clustering 

packages it appears to be imposed as a matter of programming convenience. Other computer pack-



134 

ages allow elliptical (for example, the latest product from DataWave Technologies) or more general 

polygonal (such as the program xclust, written by M. Wilson) boundaries. 

In detail, these techniques can certainly be improved in the light of the analysis that has appeared 

here. Event alignment, discussed in section 5.7.1, would reduce the apparent cluster noise; projection 

into the noise-whitened robust principal component space, discussed in section 5. 7.2, would improve 

separation. On the issue of the quality of the resultant clustering, however, we expect that the human 

eye is a sufficiently sophisticated pattern recognition engine to yield fairly accurate results , provided 

that it is assisted by a proper presentation of the data. One of the advantages to this approach is 

that it obviates the need to find explicit general models of the spike-shape variability. The operator 

can, instead, assess the pattern of variability on a cell-by-cell basis. (Of course, clustering packages 

which restrict the cluster boundaries to be rectangular can hamper this flexibility.) 

The difficulties in such methods fall into four groups. First, if the cluster assignments provide 

the final estimates of spike identity there is no way to resolve overlapped waveforms. Second, the 

lack of a probabilistic underpinning reduces the degree to which the quality of the solution can be 

assessed. With probabilistic methods the likelihood of the optimal fit can provide some indication 

of whether the data have been reasonably modeled or not. Furthermore, a probabilistic technique 

leads to "soft" or "fuzzy" clusters, which, in turn, lend themselves to the assessment of the degree 

of confidence with which any given assignment can be made. Both of these features are lacking 

the "hard" clustering schemes that are commonly used. The third set of issues arises from the fact 

of human intervention. Spike assignments generated in this fashion may be not be reproducible 

across different experimenters. Further, the need for considerable experimenter input limits the 

degree to which the method can be scaled. As we acquire the technology to record from hundreds 

of electrodes at once, the need for an operator to examine waveforms from each one becomes a 

prohibitive obstacle. Finally, clustering schemes such as these cannot operate on-line in real time. 

Thus, they are inappropriate for experiments in which immediate feedback is needed, nor can they 

be used in neural prosthetic applications. 

5.14.3 Automatic techniques 

Gaussian models 

Lewicki (1994) provides an analysis of the problem that is closest in spirit to that provided here. The 

model described is based on a single spike waveform per cell, with added spherical Gaussian noise. 

While the algorithms are derived from an explicitly Bayesian point of view, the resulting steps are 

similar to those that we describe in section 5.8. Many of the details, however, are different. Thus, 

Lewicki treats the alignment of the waveform within the sampled event as a latent variable and re­

estimates its value on each fitting iteration, while we attempt to eliminate the variation in alignment 
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by the technique described in section 5. 7.1. His model contains no explicit outlier component, and 

instead low occupancy models need to be inspected and possibly rejected by the operator. 

A significant difference lies in his approach to the model selection problem. Rather than the 

cascading model selection procedure that we have proposed, which might be viewed as a form of 

divisive clustering, he initially fits a mixture with more components than expected and then fuses 

adjacent clusters together based on the calculation of an approximate Bayes factor. 

The most significant shortcoming in Lewicki's proposal is the lack of more sophisticated models 

for the spike distribution from a single cell. We described in section 5.9 the reasons that we might 

expect a single Gaussian to be an inadequate model. Similar concerns led Fee et al. (1996a) (see 

below) to abandon the explicitly probabilistic approach. The methods described in this dissertation 

demonstrate that more powerful models capable of modeling the intrinsic variability in the spike 

waveforms, can, indeed, be implemented within the probabilistic point of view, thereby gaining all 

of the advantages implied by that approach. 

Agglomerative clu stering 

In response to Lewicki (1994), Fee et al. (1996a) argue, as we did in section 5.9, that in many cases 

the distribution of waveforms from a single cell does not appear to be Gaussian. They therefore 

propose an agglomerative clustering scheme which is ad hoc in the sense of not being probabilistically 

founded. The scheme is as follows. 

Events are extracted and aligned to a centre of mass calculated in a manner similar, though 

not identical, to (5.7). The resultant vectors are first partit ioned into small clusters by a "recursive 

bisection" algorithm somewhat similar to divisive k-means. These clusters are then agglomerated 

into larger groups. Two clusters are grouped together if they exhibit a large "boundary interaction"; 

that is , roughly, if the density of points in the region of the boundary between them exceeds some 

threshold. 

This may be viewed as an ad hoc version of the hierarchical mixture model described in sec­

tion 5.9.2. The hierarchical mixt ure provides all the advantages, described above, of the "soft" 

probabilistic approach. Furthermore, the agglomeration procedure proposed in section 5.9.2 is more 

satisfying in that it requires explicit overlap of the components. This is made possible by the use of a 

mixture model, in which the component densities are able to overlap, rather thank-means clustering 

in which the clusters are compelled to be disjoint. 

ART networks 

Another proposal that has appeared in the literature is t he use of a generic neural network classifier. 

Oghalai et al. (1994) suggest the application of an ART-2 network (the acronym ART comes from 

the adaptive resonance theory of Carpenter and Grossberg 1987a, 1987b, 1990). This is a neural 
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network architecture designed for unsupervised clustering problems, and as such appears to be a 

likely candidate. Closer inspection, however, reveals some weaknesses. In particular, ART implies 

an odd distance metric in which clusters whose centers have smaller £ 1 norms are favoured. FUr­

thermore, as each incoming vector is classified, the center is updated by taking the point-by-point 

minimum of the old center and the new point. Neither of these details seems to match the noise 

characteristics we have seen. ART is also a sequential clustering scheme, in which the order in which 

the data are presented is important. Moore (1989) has argued that it is particularly sensitive to 

noise in the data. Overall it cannot be thought of as any better than any of the ad hoc clustering 

schemes discussed in section 2.1. 

5.14.4 Spike time detection 

Some authors have made the same distinction between clustering and spike time detection that we 

have. In general, they have been motivated by a desire to correctly ident ify overlapped spikes within 

the recording, although these techniques may often bring with them the additional benefits that we 

described in section 5.13. 

Lewicki (1994) proposes that the space of all possible waveform overlaps can be searched by the 

introduction of some approximations and the use of efficient programming techniques. It should be 

noted that in making this claim, he is addressing detection in the context of a Gaussian clustering 

model that yields a single mean waveform for each cell. For the more complex distributions, involving 

multiple components for each cell, the computational difficulty is further increased. Nonetheless , in 

situations where adequate computational power is available, this is an attractive approach. However, 

the greedy approximation made in section 5.13 is expected to exhibit slightly improved scaling. 

Roberts and Hartline (1975) (see also Roberts 1979) propose an "optimal" linear filtering algo­

rithm, similar to the standard Wiener matched-filter. Expressed in the frequency domain, the filter 

used to detect the mth spike shape is given by the transform of the associated waveform divided by 

the sum of the power in the other waveforms and the noise. This filter has the property of responding 

minimally to the other waveforms (and to noise), while maintaining its output in response to the 

target waveform at a fixed level. In essence, the filters transform the data to a basis in which the 

different spike shapes are orthogonal; in this basis overlaps are easily identified. 

In the context of the tetrode recordings described here, this approach has not proven to be 

very successful. The problem seems to be that spike shapes from different cells are spectrally 

similar enough that the attempted orthogonalization is impossible. The matched filtering technique 

described in section 5.13 differs from this one in that no effort is made to orthogonalize the targets. 

Instead, the interaction between the filters is handled explicitly by subtracting the waveform with 

the largest response from the data and re-filtering. While slower , this approach yields more reliable 

results. 



137 

It should be noted that Gozani and Miller (1994) report success with this technique. Their 

recordings were made with multiple hook electrodes arranged along a nerve bundle. Spike waveforms 

might have differed in their propagation velocity a long this nerve , a feature which would have 

facilitated orthogonalization. For cortical tetrode data, or other data recorded within neuropil with 

a multi-tip electrode, differences in propagation velocity are quite unlikely to be detected. 



138 

Chapter 6 Doubly Stochastic Poisson Models 

6.1 Introduction 

In this chapter we turn from the study of models of spike waveforms, to models of the arrival times 

of the action potentials invoked in response to an experimental stimulus. The work described here 

was carried out jointly with J. Linden. The methods that will be discussed have been applied to 

data1 collected from t he lateral intraparietal area in two macaques during fixation and saccade tasks 

involving visual and auditory targets. A detailed discussion of this application is presented by Linden 

(1999). 

6.1.1 Point processes 

In chapter 5 we examined a variety of statistical models that described the spike waveforms recorded 

by extracellular electrodes. While t he shape of t he waveform provided us with information about 

the identity of the neuron in which the associated action potential occurred, it is not actually used 

by the nervous system to transmit information between neurons. Instead, from the point of view of 

the neuron, the action potential is an ali-or-nothing pulse: any information that needs to be relayed 

between cells is carried in the occurrence and timing of the pulses alone. 

Statistically, we may view a train of action potentials or spikes2 from a single neuron as the 

outcome of a stochastic point process. The theory of such processes has been studied extensively 

in t he statistics literature (Cox and Lewis 1966; Cox and Isham 1980; Snyder and Miller 1991). The 

outcome of a point process may be represented in one of two ways: either as a sequence of N event 

times { Ti : i = 1 . . . N} or as a sequence of T counts { Xt : t = 1 ... T}. The count Xt indicates the 

number of events that fall within the small interval [t8, (t + 1)8); thus Lt Xt = N and 0 $ ti < T8. 

We will always take the intervals to be of the same length, given by the bin width, 8. In this 

chapter we will be concerned solely with the counting representation. It will frequently be useful to 

collect the counts Xt into the vector, x. 

A prominent distribution, that plays a role in point-process theory quite similar to that of the 

Gaussian in continuous random variable theory, is the Poisson process. In particular, this is the 

maximum entropy distribution for a given density of events. Under the Poisson distribution for a 

counting process each of the counting random variables is independent. A single parameter , Pt, the 
1 The data were collected by J. Linden and Dr. A. Grunewald, in Dr. R. A. Andersen's laboratory. 
2 For the purposes of this chapter we need not distinguish between the two. 
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mean or rate of the process, characterizes the distribution of the variable Xt 

(6.1) 

Thus the probability of the count vector x, given a rate vector p is 

T -p, x, 
p (x) =IT e Pt 

P x' t=l t · 

(6.2) 

If Pt is the same for each interval the Poisson process is called homogeneous. In this chapter we 

will be primarily concerned with inhomogeneous processes. 

6.1.2 Spike response variability 

Many neurophysiological experiments are conducted as follows. A stimulus is presented to an an­

imal subject and the times of action potentials in one or more neurons in the subject's brain are 

recorded. The stimulus may well elicit some trained behaviour from the animal: action potent ials 

are recorded for the entire duration of experimental interest around both the stimulus presentation 

and behavioural event, if any. The same stimulus (and, presumably, behaviour) is then repeated 

over many different experimental trials, often randomly interleaved with other, similar, stimuli. On 

each repetition, the times of the action potentials that arise in the same neurons are noted. The 

result is a database of stimulus-response pairs for each cell. 

The neurons of interest in a given experiment usually alter their patterns of firing during the 

trial, in a manner linked to the presentation of the stimulus or to the execution of the behaviour (or 

both). Such neurons appear to be related to t he processing of either the stimulus or the behavioural 

response. However, very rarely does a neuron respond to multiple trials in an exactly repeatable 

manner; this is particularly true of cells in the cerebral cortex of mammals, such as those to be 

modeled here. This variability in the response of a neuron is what leads us to treat the pattern of 

spikes as the output of a stochastic process. 

Spike trains observed in response to the same stimulus have often been modeled as independently 

drawn from a single inhomogeneous Poisson process (Perkel et al . 1967). In detail such a model 

must be wrong. Both the refractory period and the presence of bursts violate the independence 

assumption of the Poisson counting process. However, in situations where the counting intervals are 

sufficiently large, it has been thought to be a reasonable approximation. 

Poisson processes, including those with inhomogeneous rate, have the property that the distribu­

tion of counts retains the form (6.1) whatever the choice of the counting interval. In particular, we 

might select the interval [0, T) , to obtain the total spike count during a trial. Provided the original 

process is Poisson, this count will still be distributed according to (6.1). That distribution has the 
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property that its variance is equal to its mean. 

In practice, the variance in spike count from across repeated, experimentally identical, trials is 

often larger than can be accounted for by the simple Poisson model (Tolhurst et al. 1981; Dean 1981; 

Tolhurst et al. 1983; Vogels et al. 1989; Softky and Koch 1993; Gershon et al. 1998; Shadlen and 

Newsome 1998). This same result is apparent in the data to be modeled here (Linden 1999), where 

the ratio between variance and mean (known as the Fano factor) appears to be closer to 1.5 than to 

1. One possible source of this additional variance across trials might be slow changes in the overall 

excitability of neurons or of the cortical area. A number of recent reports have provided direct or 

indirect evidence for this idea (Brody 1998; Oram et al. 1998; also see Tomko and Crapper 1974; 

Rose et al . 1990; Tolhurst et al. 1981; Arieli et al. 1996). Such slow variation in neuronal excitability 

might result in an apparently stochastic scaling of the underlying inhomogeneous Poisson rate. This 

hypothesis will form the basis of the model to be discussed here. 

6.2 The Generative Model 

The generative model for a spike train x, output by a given cell in response to given experimental 

conditions, is as follows. The cell-stimulus pair is taken to specify a non-negative intensity profile, 

A, that describes t he time-course of the cell's response to the stimulus. This profile is scaled by a 

latent variable, s , which is drawn from a gamma distribution with unit mean, and which is meant 

to represent the excitability of the neuron on a given trial. The action potential times are then 

generated by an inhomogeneous Poisson process with rate vector p =sA. 

This model is known in the point process literature as an inhomogeneous Polya process (see 

Snyder and Miller 1991). It is a special case of the doubly stochastic Poisson process: "doubly 

stochastic" because the Poisson rate is itself a random variable (Cox 1955; Snyder and Miller 1991). 

Clearly, any such process is a latent variable model. Other examples of doubly stochastic Poisson 

processes have also been used to model neural spike data by other investigators; for example, some 

authors have taken the rate to be a piecewise constant function generated from a Markov chain 

(Radons et al. 1994; Abeles et al . 1993; Seidemann et al . 1996; Gat et al. 1997). The present choice 

is , in part, appealing for its simplicity and relative tractability. As can be seen from the applications 

discussed by Linden (1999), it can produce useful results. 

The standard form of the gamma density (for the scales) depends on two parameters a and (J. 

It is given by 

(6.3) 

It may be easily verified that the mean of this distribution is a(J. Thus, our requirement that the 

distribution have unit mean constrains the parameters such that (3 = 1/a, and we obtain instead 
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the single parameter density 

(6.4) 

We will refer to the parameter a as the stability, since as it grows the variability in spike count 

drops. 

Combining this with the expression for the inhomogeneous Poisson process probability (6.2), we 

obtain the joint density of a spike train x being observed along with a scale factor s. 

P ( ) = (rrT e-s>., (SAt)"'') (~ a-1 -sa) 
>.,a x, S I f( ) S e 

t=l Xt· Q 

(6.5) 

The scale, s, is not directly observable, making this a latent variable model. While we may 

approach learning in this model by the EM algorithm that we have used before, in this case it proves 

to be useful to obtain a closed form for the marginal distribution function of x, by integrating the 

joint density of (6.5) with respect to s. The resultant marginal is 

Here, A and X are the sums of the elements in the corresponding vectors: A = 2:,{=1 At and 

X= L,{=l Xt· 

We assume that a set of spike trains, X = { x1 . . . XN}, collected from the same cell under identical 

trial conditions, is obtained by drawing each one independently from this distribution. We use the 

subscript n to identify the spike train and write Xn for the corresponding total spike count. Thus, 

we obtain the log-likelihood of the parameters >. and a under the set of observations X, 

where the normalizing constant Z absorbs terms independent of the parameters. 

As it stands, this model has a large number of independent degrees of freedom in its parameters. 

In particular, for small counting intervals and reasonable experimental durations, the vector >. may 

have hundreds of elements. It is impractical to expect reasonable parameter estimates from the 

small amounts of data that can usually be collected. Therefore, we impose a prior density on 

the parameters. The prior introduces inter-dependencies between the elements of >., reducing the 

effective number of degrees of freedom. 

The stability parameter, a is taken to be independent of the intensity function and is distributed 

according to the density e-l/a . As a result, small values of a are subject to a slight penalty. In 

practice, this prior is vague enough to have little effect on the parameter estimates and is included 
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only for completeness. 

The prior distribution of the intensity function is a stationary Gaussian process with zero mean 

and covariance matrix C. The stationarity indicates that we have no prior belief about the course 

of the intensity function during the experiment. In mathematical terms, it requires that the matrix 

C be Toplitz (that is, diagonally striped). 

The resultant log posterior can be written: 

1 T -1 1 
logP(>..,n! xt, ··· , xN) =logZ-->.. C >..--

2 Q 

N ( (r(Xn + n))) + ~ x~log>..- (Xn+n) log(A+n)+nlogn+log r(n) (6.8) 

where Z has now absorbed, in addition, the normalization term of the Gaussian. 

The reduction in degrees of freedom is achieved by choice of a suitable prior. We select a matrix 

which is based on an auto-covariance function that is Gaussian3 in shape: that is, the covariance 

between two elements of the intensity vector As and At under the prior is of the form 

( 
(s-t)2

) 
Cst = exp - 26.2 

(6.9) 

The quantity 6. , which is chosen a priori, reflects the expected time-scale of changes in the intensity 

function, expressed in terms of the counting interval length 8. Thus, this choice of prior covariance 

expresses a belief in the smoothness of the underlying intensity function. 

If 6. is fairly large, the matrix C will be ill-conditioned. As such , the inverse that appears in (6.8) 

creates a numerical instability. This can be resolved by diagonalizing the covariance matrix. Recall 

that the eigenvectors of any Toplitz matrix are the basis vectors of the discrete Fourier transform 

(DFT), and soC is diagonalized by the DFT matrix F;t = -j; exp( -27Ti(s-1)(t-1)/T). Rather than 

use this complex form, it will be convenient to introduce a real transform matrix which separates 

the real and imaginary parts. Such a matrix is given by 

if s = 1 

if s > 1 and is even (6.10) 

if s > 1 and is odd 

We have assumed that T, the total number of counting intervals, is even. 

Thus, the matrix FCFT is diagonal, representing the independence of the Fourier components of 

a stationary process. The ill-conditioning now reveals itself in the presence of one or more diagonal 

elements that are very close to zero. Thus, in the frequency domain, the ill-conditioning of C is 

3It is important to distinguish between the Gaussian distribution of the prior and the Gaussian shape of the 
auto-covariance. One does not imply the other. 
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easy to interpret; it reflects the fact that in certain frequencies very little power is expected under 

the prior. In effect, the prior imposes a band-limitation on the intensity funct ion. The particular 

choice of Gaussian auto-covariance function, for example, leads to a half-Gaussian shaped fall-off in 

expected power as frequency increases from 0, with the highest frequencies effectively excluded. It is 

important to realize, however, that the imposition of this prior is not equivalent to simply filtering 

the intensity function by the expected frequency profile. 

We now restrict the transform matrix to a rectangular form F in which rows corresponding to the 

eigenvalues· of C that fall below some low threshold have been eliminated. Thus the matrix FCFT is 

also diagonal, but is of order less than T and is well-conditioned. We will also apply this restricted 

transform to the intensity function. In doing so, we force the power of the intensity function to zero 

at those frequencies at which the expected power is vanishingly small. 

We proceed to rewrite the posterior (6.8) in terms of this transformed intensity function. In 

practice, it proves to be useful to represent the intensity function by the transformed logarithm 

cp = Flog>. (where the logarithm is taken to apply element by element) . The introduction of the 

logarithm enforces the requirement that the intensity be positive; this would otherwise be difficult 

to ensure when working in the frequency domain. The log-posterior now becomes 

(6.11) 

where (x) represents the sum of the different observations, 1 is a vector of T ones introduced to 

indicate summation of elements, and R = FT (FCFT) - 1 F. Exponentiation of a vector term is taken 

to apply element by element. 

6.3 Optimization 

We have presented a latent variable model for spike generation. In principle, we might employ 

the EM algorithm to find the maximum-likelihood - or, given the prior, maximum a posteriori 

- parameter estimates, as we have done with the other latent variable models discussed in this 

dissertation. Inspection of the joint probability (6.5), however, suggests that this may not be as 

easy as in our earlier examples. The latent variable, s, will enter into the joint log-likelihood in the 

logarithm. Thus, calculation of the expected value of this likelihood requires not only the first one or 

two moments of the latent variable posterior, as in our previous examples, but also the expectation 

of logs. 

To avoid this, we optimize the marginalized posterior (6.11) directly by numerical gradient-based 

methods. Conceptually, this may be thought of as a simple gradient ascent algorithm, although, in 
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practice, better results are obtained by use of a quasi-second order method (see, for example, Press 

et al. 1993). Such optimizations can be efficiently executed using numerical methods software such 

as the MATLAB package. 

6.4 Goodness of Fit 

While the basic structure of the statistical model described in this chapter has been chosen to 

embody our beliefs about the origin of neuronal variability, the exact densities used (that is, the 

gamma and Poisson) have by and large been selected arbitrarily. Both are high entropy distributions, 

which is appropriate in situations where little constraining knowledge is available, but it must be 

admitted that, to a significant extent, the choice has been driven by mathematical expediency. In 

some details , we must expect the model to be incorrect. As was already pointed out, both the 

refractory period and the tendency of some cells to fire in bursts, violate the independence of counts 

assumption inherent in the Poisson process. Similarly, we have no guarantee that the scaling will 

be gamma distributed, nor even that the variability due to excitability can be expressed entirely as 

multiplicative scaling (on this last point see Linden 1999). 

In this section we will investigate through Monte-Carlo means the degree to which the model is 

appropriate to describe a given set of spike trains recorded in mammalian cortex. These data were 

collected by J . Linden and A. Grunewald from area LIP of 2 macaque monkeys. For data collection 

procedures and further information t he reader is referred to Linden (1999). 

In general, such goodness of fit testing is a difficult problem. We have encountered the issue 

of model selection repeatedly in this dissertation, where the best of a group of competing models 

needs to be selected. In this case, though, there is no clear alternative. Based solely on the single 

model and the available data, we would like to decide whether or not the model is acceptable; 

that is, whether it is plausible that the data are indeed distributed in the manner specified. The 

general framework for making such decisions falls within the Neyman-Pearson significance testing 

literature that is fundamental to traditional developments of statistical theory (see, for example, 

Hoe! et al. 1971). Many specific tests have been developed for particular simple distributions (some 

examples may be found in Zar 1998). For one dimensional data a general technique, known as the 

Kolmogorov-Smirnov test, is available to assess the validity of an arbitrary distribution (see, for 

example, Press et al. 1993). This can be extended into a small number of dimensions (Fasano and 

Franceschini 1987) , but for more complicated models, describing higher dimensional data, as in the 

current instance, such straightforward techniques are not available. 

Instead, we approach the problem by a novel Monte-Carlo technique, asking whether the obtained 

likelihood of the best fit model for the observed data matches corresponding values obtained for 

simulated data known to be generated from the distribution. The steps of the procedure are as 
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follows. 

• Given a set of observed spike trains X 0 = { x~ ... x'N} , find the MAP parameter estimates .A o 

and a 0
• 

• Calculate the likelihood on the observed data 

• Repeat for s = 1 .. . S: 

- Generate a set of simulated spike trains from the optimized model 

X"= {xf ... xj.,} ~ iid P.x" ,a" (x) 

Re-fit the model to the simulated data x• to obtain new MAP estimates .A", a•. 

Obtain the optimal likelihood on the simulated data 

• Find the rank of the observed likelihood within the set of simulated likelihoods 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

If this procedure is repeated a number of times - each time starting with a different set of 

observed spike trains, perhaps derived from a different cell - and if the model represents the correct 

family of distributions, we would expect the resultant ranks to be uniformly distributed between 0 

and S. 

Two points about the process might require elucidation. First, the simulated data are generated 

using the MAP parameter values so that the likelihoods measured in the simulations are drawn from 

the same region of the parameter space as the true likelihoods. Likelihoods under simulated data 

taken in an an entirely different parameter regime might be quite different. Second, the likelihoods 

under the simulated data need to be evaluated at the re-fit parameter values so as to avoid a bias 

due to over-fitting. If this were not done, we would expect the observed likelihoods £0 to be larger 

than the simulated values, as the parameters would be perfectly tailored to the observed data alone. 

In principle, we may now test for uniformity of the ranks by a Kolmogorov-Smirnov or other, 

more specialized, hypothesis test. In practice it is obvious from inspection that, in this case, the 

ranks are not uniformly distributed. Figure 6.1 shows the ranks obtained using different groups of 
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Figure 6.1: Distributions of likelihood ranks 

cells under different stimulus conditions. Each panel represents a set of spike trains collected under 

identical experimental conditions. Only spike trains from cells that appeared to be responsive under 

the specific conditions were used (the number of these is given by the quoted value of N in each 

panel), and a single set was taken from each such cell. In each case, the number of simulations, S, 

was 100. 

It is clear from the distributions in figure 6.1 that the ranks are far from uniformly distributed. 

This suggests that the model we have developed in this chapter is not, in fact, an accurate description 

of the recorded data. However, had the model been entirely off base, we might have expected the 

simulated data to almost always have yielded higher best-fit likelihoods than the real observations. 

For example, if the smoothing invoked by the prior were too severe then the derived intensity function 

would be greatly inaccurate for the real data, leading to much lower probabilities. Clearly, this is not 

the case either; almost half the time es is smaller than /!.0 . Thus, we conclude that while the model 
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is not correct, it is reasonably capable of describing the data. In particular, it would be difficult to 

tell, simply by looking at the optimal likelihood, whether a given set of spike trains were genuine 

neural data or simply simulations. 

A further point of interest in figure 6.1 is that the distributions of ranks obtained for the four 

different experimental conditions - and frequently, from different cells - are extremely similar. 

We might take this as evidence that the statistics of the spike trains from these different cells and 

under these different experimental conditions are actually the same. Thus, while our current model 

is inadequate, we might hope that by some refinement we can , in fact , find an appropriate model. 

6.5 Clustering Spike Trains 

It is often a matter of scientific interest to ask whether the cells within a given area of the brain fall 

into clusters based on the time-courses of their responses to a given stimulus. If such clusters are 

apparent, they may indicate the presence of distinct sub-populations of neurons that play different 

roles in the neural computation. 

A common difficulty encountered when attempting to apply traditional clustering techniques 

such as the k-means algorithm or its variants, to spike trains, is the problem of finding a suitable 

metric. Such algorithms require a notion of distance between two spike trains, but how is such 

a distance to be defined? One approach has been to smooth the spike trains, by binning or by 

convolving with a Gaussian kernel, and then to sample each such smoothed spike t rain to obtain 

a vector representation (see, for example, Richmond and Optican 1987; Optican and Richmond 

1987; McClurkin et al. 1991). These vectors are then treated as though they were embedded in 

the standard Euclidean inner-product space. There is, however, no a priori reason to expect such 

a distance to be an appropriate metric for spike train clustering. This point is discussed at some 

length by Victor and Purpura (1997), who propose an alternative metric, though also on an ad hoc 

basis. 

Fortunately, we can avoid this problem. In chapter 2 we saw that, in many cases, the generative 

modeling approach to clustering is to be preferred. In particular, this is true if we are interested in 

identifying the process from which the observed data arose, rather than simply grouping the data 

themselves. The appropriate generative model in such situations is the mixture model given by the 

weighted sum of M component distributions: 

M 

Pe (x) = L 1l"mP9m (x) (6 .16) 
m=1 

The parameters of the mixture decompose into independent and disjoint sets () = ( ()1 ... () M, 1r1 ... 1r M), 

where the parameters ()m describe the mth component or cluster. Learning algorithms for such mix-
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tures were discussed at length in chapters 2 and 3. 

Such an approach effectively sidesteps the issue of identifying a suitable metric within the space 

of spike trains. The clusters are no longer described within the observation space; instead, they 

are described by the parameters 8m which live in a different space altogether. We no longer need 

to compute the separation between two spike trains: we need only find the "distance" between a 

spike train and the cluster parameters. A natural candidate for such a distance is obvious: the 

probability of the spike train under the cluster model. Thus, the probabilistic treatment espoused 

throughout this dissertation allows us to rigourously arrive at a unique clustering solution from only 

a few explicitly stated assumptions about the distributions of spike trains. 

To this point, we have regarded each spike train Xn as a separate observation; now, we will instead 

treat all of the spike trains collected from the same cell under the same experimental conditions as 

a single outcome of the generative model. For the ith cell-experiment pair we can collect the Ni 

individual count vectors into a matrix Xi, in which each count vector appears as a column. Careful 

inspection of the probability (6.7) reveals that, in fact, we are only interested in the marginal sums 

of this matrix. Thus, we compute and store the following sufficient statistics: the sum of the count 

vectors Xi 1 , the vector of total spike counts XJ 1, and the total of all the elements 1 TXi 1. In these 

expressions the vector 1 should be taken to contain either T or N; ones as appropriate. 

We can then write the form of the mth component probability distribution, written in terms of 

the Fourier domain intensity ¢m and the stability am, 

(6.17) 

In the final factor , the gamma function and the logarithm should be taken to apply element by 

element. We have left out a factor given by the product of the factorials of each of the elements in 

Xi. This factor is identical across all of the component distributions and thus has no impact on any 

of the optimization algorithms and need never be computed. 

We then fit a mixture model for the entire ensemble of recordings taken across multiple cells 

X = {Xi} , given by Po (X) = rri Lm Pm (X;). In doing so, we assume that a "cluster" of spike 

trains are such that they may have arisen from exactly the same intensity function, although with 

possibly different seatings. The "extent" of the cluster is defined by the model, as well as by the 

learned value of the stability parameter. 

For the single component model, the introduction of the prior was important to achieve regular­

ized estimation. In the mixture, this regularization is, if anything, more important as the complexity 

of the model has increased. We choose the prior on the parameter set { ¢m} U {am} to factor over 

the different components; that is, the intensity function and stability for one component are a priori 

independent of those of any other component distribution. For any one component we choose the 
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priors on c/Jm and am to be exactly as before. The covariance matrix C is taken to be common to 

all of the clusters. The mixing parameters 7rm are subject to a uniform prior: this does not affect 

the results of the estimation and will be not be written explicitly. 

The basic EM algorithm suitable for learning in such models was described in section 2.4. We 

recall that the E-step involves computation of responsibilities according to (2.9) 

rm,i = 
7rmPm (xi) 
'L1 1r!P! (xi) 

(6.18) 

where, the component distributions are given by (6.17). The M-step update of the mixing probabil­

ities is common to all mixture models (2.12) 

(6.19) 

The update of the component parameters in the maximum likelihood context of chapter 2 was given 

by (2.15) 

(6.20) 

where Bm stands for the parameters of the mth component. In the present example, however, we 

have a non-trivial prior distribution on the component parameters. Given our assumption that the 

prior factorizes over the different models, we can correct (6.20) by the addition of the log-prior for 

the mth model to the right hand side. The updated parameters of the mth component are thus 

obtained by optimizing the expression 

Q(c/Jm, am)= log Z- -
2
1 

e<P;,F ReFT<Pm - -
1
-

am 

+ L rm,i [cfJ;;,FXi l - (l TXil + Nam) log(eq,;, Fl +am) 

(6.21) 

As before, this optimization must be performed numerically, and thus, the computational cost of 

the M-step is considerably greater than that of the E-step. It is useful to recall the Generalized EM 

(GEM) algorithm, mentioned briefly in section 1.8, in which theM-step is only partially completed; 

that is , the free energy is increased by the update of the parameters, but not necessarily maximized. 

This generalization shares the guaranteed convergence with the standard EM algorithm, but is more 

efficient . In the present case, this partial completion is equivalent to executing only a limited number 

of steps of the numerical optimization at each M,step. 

The GEM algorithm described above was run on a subset of the data described previously, that 

was collected from different cells under the same experimental conditions. The results are shown 
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Figure 6.3: Responsibilities of the different models. 

in figure 6.2. The size of the model was determined by the BIC penalized likelihood procedure 

(see section 1.3), which yielded a mixture of five components. The intensity function learned for 

each of these components is shown by the heavy black line in each panel of the figure. The mixing 

probabilities are indicated by the percentage figures above each panel. Cells have been assigned to 

the most likely cluster (that is, the one with the largest responsibility for the data from the cell), 

and the corresponding spike trains then shown in the background of the appropriate panel. The 

representation is similar to the conventional spike raster diagram: each row of dots represents a 

single trial; the presence of a dot time indicates that at least one spike was counted in a 5ms window 

around that time; the size of the dot indicates the number of spikes. The horizontal black lines 

separate spike trains from different cells. 

Do the spike trains classified in figure 6.2 really fall into five distinct clusters? The fact that 

BIC model selection rejected the option of more components in the mixture suggests that this may 

well be the case. As a further reassurance we can examine the posterior assignment probabilities, 

or responsibilities (6.18), under the maximum likelihood solution. These values indicate the surety 

with which each data point is assigned to each cluster. If the components tended to share the 

responsibility for each spike train it would suggest that the clusters were not well separated. The 

responsibilities of each of the five component models are shown in figure 6.3. Each line shows the 

assignment probabilities of one model, indicated by the number above the line, for all of data; the 

data have been reordered to group spike trains assigned to the same cluster together. In all cases, 

only one model has high responsibility, very close to 1. This suggests that the clusters shown in 

figure 6.2 really are well separated. 

6.6 Summary 

In this chapter we have introduced a latent variable model to describe spike trains generated by a 

neuron under constant experimental conditions. The model is designed to capture certain recent 

observations about the statistics of neural responses: in particular, the fact that the variability in 
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cortical spike trains is often greater than that predicted by the Poisson process assumption, and 

'that in many cases this greater variability might result from changes in the overall excitability of 

the neuron or cortical area. Although the EM algorithm involves a difficult E-step, it proves to be 

possible to fit the model by direct numerical optimization. 

Using a Monte-Carlo goodness of fit procedure, we saw that the model does not describe t he 

statistics of spiking exactly. However, the maximal likelihood values for the best-fit model under 

real neural data are quite similar to the values under simulated data generated from the model itself. 

Thus, we conclude that model is a reasonable, but not exact description. 

The statistical model provides a rigorous foundation on which to base two analyses of neural 

data. First, maximum a posteriori optimization of the model with a suitable prior imposed on the 

parameters, leads to a smoothed estimate of the underlying spike-rate intensity. This technique 

provides a solid statistical basis for the smoothing, as well as correctly accounting for biases that 

might be introduced by any variable excitability. Second, by use of a mixture of such models , we are 

able to identify clusters of cells whose spike trains in response to the same stimuli are similar. Ad 

hoc methods for clustering spike trains suffer from the serious difficulty of the absence of a natural 

metric. In contrast, the probabilistic procedure avoids the issue of a distance measure entirely, and 

leads to a natural clustering algorithm. 
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