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ABSTRACT 

The problem of the existence and stability of periodic solutions 

of infinite-lag integra-differential equations is considered. Specifi­

cally, the integrals involved are of the convolution type with the depen-

dent variable being integrated over the range (- co, 't J , as occur in 

models of population growth. It is shown that Hopf bifurcation of 

periodic solutions from a steady state can occur, when a pair of eigen­

values crosses the imaginary axis. Also considered is the existence of 

traveling wave solutions of a model population equation allowing spatial 

diffusion in addition to the usual temporal variation. Lastly, the 

stability of the periodic solutions resulting from Hopf bifurcation is 

determined with aid of a Floquet theory. 

The first chapter is devoted to linear integra-differential equa­

tions with constant coefficients utilizing the method of semi-groups of 

operators. The second chapter analyzes the Hopf bifurcation providing 

an existence theorem. Also, the two-timing perturbation procedure is 

applied to construct the periodic solutions. The third chapter uses 

two-timing to obtain traveling wave solutions of the diffusive model, as 

well as providing an existence theorem. The fourth chapter develops a 

Floquet theory for linear integra-differential equations with periodic 

coefficients again using the semi-group approach. The fifth chapter 

gives sufficient conditions for the stability or instability of a periodic 

solution in terms of the linearization of the equations. These results 

are then applied to the Hopf bifurcation problem and to a certain popula­

tion equation modeling periodically fluctuating environments to deduce 

the stability of the corresponding periodic solutions. 
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INTRODUCTION 

We study periodic solutions of nonlinear integra-differential 

equations which arise in population dynamics. More precisely, we 

examine the bifurcation of such solutions for equations of the form 

where 

dependent variables 

Cs) Js) 
) 

and the f. are arbitrary functions of the 
" 

and the convolution integrals. 

Equations of this type were first introduced by Volterra [1 "j as 

models of population growth and incorporate the essential feature of time 

delays or lags in the effects that the various controlling parameters 

have on the population. Examples of this are age variations within the 

population, self pollution, and in general any biological process whose 

influence may not be immediately felt. For example, if the young of a 

population do not receive proper nourishment the population growth is not 

affected until they mature when the birth rate of that species may decline. 

Usually f,·.: N\ '.: so that for one species N say, 

= i,N ( J- J 
c. 

where the integral takes into account the effects of a limited food supply 

causing the growth rate to decrease as the population increases, but with 

a time lag due perhaps to hoarding of the food ( b is the birth). It is 

in this context of biological population dynamics that the integra-differ-

ential equations we consider have received the most attention (see, for 
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example, Cushing [ 3] ) . 

It is known that the equations can have periodic solutions even in 

the case of one dependent variable. Suppose, for example, that the maxi-

mum influence on growth rate at time ~ is due to a population density 

at a previous time t-- T . If T increases past a critical value, 

To , a stable equilibrium state for the population can become unstable. 

Thus, the possibility of the bifurcation of a periodic solution from the 

steady state presents itself. We examine this question for the general 

case given above with £ depending on a single parameter. We obtain 

sufficient conditions for the bifurcation and construct the periodic solu-

tions. The method we use for the construction is a singular perturbation 

procedure. Even though many periodic solutions of infinite-lag integro-

differential equations have been found it has been impossible up to now 

to determine their stability (except in isolated special cases). We pro-

vide a method for deciding this. For the stability analysis we utilize 

the theory of semi-groups of operators. 

In Chapter I we study indetail linear integra-differential equations 

with constant coefficients. This is done by the method of semi-groups 

following the analysis of Hale [4] for the analogous case of delay-differ-

I 

ential equations with finite lags (as opposed to our case of infinite 

lags). We take this approach to introduce the essential ideas which are 

amenable to future generalization in Chapter IV to case of linear equations 

with periodic coefficients. In the present case we obtain a spectral 

analysis of the equations. We then introduce the adjoint equation and 

use this to study the forced linear equation obtaining a variation of 

constants formula in terms of the semi-group. 
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In Chapter II we extend the Hopf bifurcation of periodic solutions 

to nonlinear integra-differential equations and prove the correspondin~ 

existence theorem. We then construct the solutions by means of a two-

timing perturbation scheme obtaining behavior analogous to that of ordi-

nary differential equations. This then leads us to conjecture about the 

stability of the periodic solution, which we consider fully in Chapter V. 

In Chapter III we derive and examine a model population equation 

allowing spatial diffusion in addition to the usual temporal variation. 

This model is a generalization of constant time lags to explain traveling 

waves observed in certain predator-preysituations. By the use of the 

two-timing perturbation scheme we also obtain the bifurcation of traveling 

waves. The corresponding existence theorem is proved. 

In Chapter IV we begin to examine the question of stability of 

periodic solutions by studying linear integra-differential equations with 

periodic coefficients. Again, by following the methods of Hale [4], we 
I 

obtain a spectral analysis of these equations using the semi-group 

approach. The results are strikingly similar to the Floquet theory of 

ordinary differential equations. We prove a Fredholm Alternative 

theorem for the existence of periodic solutions of periodically forced 

linear systems, again using a variation of constants formula. 

In Chapter V we solve the problem of stability by giving sufficient 

conditions for the stability or instability of a periodic solution of a 

system of nonlinear integra-differential equations. In the case of 

autonomous equations, conditions for orbital stability are given general-

izing the classical Poincare theorem. The methods are completely analogous 

to those of ordinary differential equations, transforming the equation 
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into a nonlinear Volterra integral equation by use of the variation of 

constants formula. Then techniques such as those in Coddington and 

Levinson [1 J are applied to this form of the equations. It is here that 

we see the advantage of the semi-group approach. Finally we apply the 

results to deduce the stability of the periodic solutions constructed 

in Chapter II; and to a certain nonautonomous population equation. The 

method is general enough to apply to any case of bifurcating periodic 

solutions from a steady state. 
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CHAPTER I 
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CHAPTER I 

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS 

For later use it will be convenient to first establish certain 

results for the simplest class of integra-differential equations, namely 

linear equations with constant coefficients. For finite-lag integra­

differential equations a rather complete theory has been given by J. Hale 

[ 4]. For our case, namely infinite-lag equations, a direct extension of 

Hale's semi-group methods is possible, and we get a spectral characteri­

zation of the solutions, much as with ordinary differential equations. 

Thus, solutions are divided into various classes of exponential growth 

or decay and this is what we need to analyze the problems that confront 

us in later chapters. There is a more fundamental reason this semi-group 

approach is used, however, rather than a more direct Laplace transform 

approach, (cf. Miller [12] ). In Chapter IV we need results for linear 

equations with periodic coefficients, and there the methods used here are 

necessary. The point of view we adopt is a new and different way of 

looking at solutions of integra-differential equations and is credited by 

Hale to Krasovskii. Instead of considering the solution ~(~ as a col-

lection of points, one for each value of f we think of it as a collec-

tion of functions 'Xt 

all of the values ;j,(S) 

for each value of t , where each ?C+ contains 

for Thus, knowing just 7(~ for some 

t , one could find ~fV for a bit larger value of c directly from 

the equation since the integral that occurs could be evaluated. We shall 

see that this way of looking at the problem is very fruitful for yielding 

the spectral decomposition. 

We now consider 
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(X) 

A t,tt> +- L I< ls) ~ (t--.s) t:! s (1.1) 

where A is a constant n 1tn matrix, ]!.lt) a column vector in IR"' , 

and k. (s) the kernel, is any n;r n matrix function defined for S ~ o 

which satisfies certain conditions we specify. Throughout this and the 

following chapters we shall assume that Jt(~) is continuous and exponen-

tially decreasing as s--..""' I((~) =. 0 (e-Y~ for some Y > 0 • This is 

the case in the majority of applications. Since the kernel always occurs 

in convolution with the unknown, we adopt the following notation: 

Also for brevity define the linear operator l_ 

L :x K*'X. -
The inhomogeneous version of (1,1) is 

. 
X -:::. = + (1. 2) 

where Z:Cf) is a continuous column n-vector. Equation (1.1) in addition 

to the specification of arbitrary initial data for !l~ on 

constitutes a well-posed initial value problem. Thus, if ,l((t) = p!(t;) - -
then (1.1) has a unique solution for all Also, if 

(> generates xtt> - for t up to r ' then the solution that is in turn 
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generated by ~ for '(;~ 7 , say zlr) , coincides with the solution 

generated originally by p. Thus we may view the solution of (1.1) as a 

succession of functions from some space of initial values. We view 

~lt) as a family of functions !t each of which is an element of a space 

C of functions defined on ( -t», oJ such that 

BE(. -f?O~ o). 

The process of obtaining ~~ from ~ is that of a linear transformation 

Jon C into C . Thus, 

T (-~:, o) ~ , 

where X-=: rp for t ~ 0 If the initial data is meant for all t up to - -
5 instead of zero then 

T(t,s) ¢ t ~s. 

It is easy to see that for 76:. S ~ t , l~ == Tf~, s J !s -== T(t, s) T(r,r)!r• 

so that 

Also if ~ft) solves (1.1) then xU:+c) is also a solution. Thus 

1£-t,s):: T{t+C,ftc) and in particular Tff,s)r:: 1(-t-~ o). We adopt the 

notation Tft) : Tft,o) for t ~ 0 , so 
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Ttt7 I 
) 

with 

Tft:) T( s) ; Tlt:+s) 
J 

Tfo) =- 1. 

where I. is the identity on C . We shall take 

c ;; [t continuous on (-a~, OJ I SLt.J> je"""~¢f'J/ < 00 J 

··~ -
and ,,., eY~B tp(fJ) exists J 

8-+-• ) 

/I 'Ill ::. $U.f /e""*" fl(tJJj 
l!aO 

) 

where y+ is any number arbitrarily close to y but <Y the 

decay constant for the kernel. Then C forms a Banach space. Also we 

use the L
2
-norm on 

,., ~ 

fRwo.. C C": ftl= (f lf;f~) ~ and f· tf ~ 

The growth restrictions imposed on f ' C are those that guarantee the 

convergence of KIt~ Also the solution lft generated by ! is 

itself in C since X-t UJ) = ¢rt,.9J for sufficiently large /fJ/ This 

is why we are viewing the solution as a collection of functions ~~ , 

namely it enables us to introduce the linear operators f'(t) acting on 

a Banach space. We can then d educe their spectral properties which will 

characterize the solution of (1.1). We turn to this next. 

We see that Tit) is a bounded linear operator on C . This can 

be shown with the aid of the resolvent of (1.1). The resolvent is defined 

as an h x n matrix function R ( t:) solving the equation 
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ft Klt) == 
t" 

.RltJ A + i ~tt-tA.J k'tt.tJ dcA 
0 ~ 

f({O) ::; I . 

It is easily verified that this is equivalent to the Volterra integral 

equation 

t' r $ 

/( (t) :::: I +- fo Rlt- $) [A + JD Kill)/ .... } ds. 

Standard existence theorems (cf. Miller [11] ) assert that a continuously 

differentiable Rft) exists for t~ 0 , and also it is easily shown 

that if ')( solves 

t 
A~ + fo K(t-s) !.f>J Js + 9 (t) 

then 

X { t) ::: 
t 

/?.lt) ~Co) + l !CLt-sJ j(s) ds, 

In our case if solves (1.1) then by writing ~ ( r) .:: 
0 j K(f:-IA.) !lu.) du. 

-(2) 

we have 

~(t) :: R.t t) pr rJ) 
...... 

+ fot /({t-s) Jo K(r-u.) ¢( .... ) d"' ds 
...ClO 

where !#:::f. at t::. 0 • This gives an explicit formula for )({1:) 

in terms of the initial data ¢ and we have 
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[Tlt} ¢) t6J == 

¢(f+tf)) 

Thus, 

II T<t) ¢II = 

. 0 

f.t+i e 1'"fl~s>RCt+9-s){ J I k{r-"J e.-r•Cs·l4)/d~.~os]ll~~ 
0 -· 

e- r•t 11¢ l) 1 L. A, 11 ;II 

for some constant A
1 

so T7 t) is a bounded linear operator. Similar-

ly we can show that TCT) is strongly continuous, i.e. for each ¢ f C 

Jim //Itt) f - Tls)? I/ = D. 
t-+s 

Thus £ T(t):. t >,I> 1 forms a semi-group of linear operators on C . 

Following Hale [ 4J we now appeal to the large literature on semi-groups 

of operators to derive certain specific results. 

Let ~ denote the infinitesimal operator given by 

for each 1 l- D(,t) ) 
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~ is a closed linear operator and 

• 
fz$ { 8) J 

() = (), 

" 
It is easy to see that {.A: ~){PJ = ¢f6J for e< o and for fJ-= () 

(7\p)Co) = 
;K, to) - pro) 

t = /(~ ;t(t) - 1(/0) 

t 
r: xtfl) ::: (L 1r) ftJJ. 

Also ~ ~ (;G implies /t f is a continuous function so 

Appealing to Theorem 10.3.3. of Hille and Phillips [s]we have that[)(,{_) 

is dense in c and for rj f [)(,.), ra> ¢ f r:>(;A;J and 

(1. 3) 

for t ~o Thus, the semi-group operator satisfies a differential 

equation in C. , and we may analyze its spectrum by examining that of ?1:: . 

Letting pC.A:.), ~ (A) denote the resolvent set and spectrum, respectively, 

of A , we have that A ~ f{A) iff for every 'f in c there is 

tf -;o) ; E P(lr), such that (/t.-),I)? :f. Hence, 

• 
tj(8) A ¢C9J :: 

"' { ~) I e!:. o, 
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so that 

(1.4) 

with b •IR"" . Then ¢ t /)( tfJ iff 
• ¢ E C and i.e. 

Re A > - Y +- and 

i>to) :: ).1, +'flo)= Lpto) 

This implies that 

(1. 5) 

where we denote the Laplace transform 

Now, the right side of (1. 5) spans IT?.., as f spans C. If we 

assume that A I -A - kO.) is a nonsingular matrix then £> exists, and 

'f ~ J>{.lt) exists for all 'f6 C Thus the range cR (.A:-.\ 2) :::.. C. and 

the inverse (A-~ I.)-1 
exists and is bounded. Letting 

we have that 

¢> {9) = ~ ~· where A(),) k = 0 ~ E ~ 0 , satisfies (.A:.-~!) r; = 0 . Also 
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if we assume Re.) > - v+ then ~eC and so A~£(~). Now 

t; = (A:,->.1)-1 rf is given by (1.4) with 

b = dtf~{,\)[right side of (1.5)]. 

Since K OJ is an analytic function of A for ~e ,\ ~ -y then 

de+ A(A) is analytic for such ; and its zeros are isolated and of 

finite multiplicity and finite in number in any region ~c of the form 

Re.A ~ C.> -Y'~' . Thus (.A:-}41)-1 is an analytic function in If c. ex-

cept for isolated poles and by Theorem 5.8 - A of Taylor [16] • for a 

pole at )..) A: -'AI has finite ascent, i.e. for some integer ~ ~I 

n(A:->.JJ'1+J :::: 

( Y1 denotes null space) and 

< ~. 

For brevity we shall say that the generalized null space rl( A-~ r) v.. of 

A-)\ r is finite dimensional. Furthermore, the theorem states that 

C =- r7 (A:-). r J v; 
v 

R C .A:-A I) ~ • 

Let ~lA J ·~·1 f}u ( k. ::; d;711 1](_,l_·) I.)~: d; ) be a basis for the general­

ized null space }77~ of A -.\ r . Let 
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a row vector in Cit-= (.11 ••· 11 C. Then since s J>on f ¢~ ~ is invariant 

under A: we have for some constant kx k matrix B .A that 

By definition of ,t we have 

so that 

Also , by (1 . 3) , 

d 
d@ 

f~ (17) -

~..4 9 p>. ( o) e 

) 

d 
dt T(t) ~l .::: Ttt) A ~A ::; Ttt) ~). gA 

so that 

6" t e 

and f~ generates the solution of (1.1): 

/ 
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Clearly the matrix B~ has only the single eigenvalue ,;\ so that the 

~i{ft above are finite sums of the form tre~t . Now if the same 

process is applied to 1? ( .k -A I) v,- instead of c , and on which 7f: 

has spectrum L (*.) -fA 1 we arrive at a decomposition of C into a 

direct sum 

C::. m~., $ .... 

where Re ..\~ ~ c > - t' ..,. and R.. is a closed subspace. Those r) in 

m.A, generate solutions of the form t ... e>-tt: . Later we shall show that 

¢ E R. generates solutions of the form Any solution 

of (1.1) is a linear combination of those described above. This completes 

the spectral analysis. 

In summary we have 

Theorem 1. The space of initial data can be decomposed 

where the eigenvalues satisfy 

0 
/ 

i-=- I, ... , J 'f.. -' 
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-' m tt) t r .,.)I,. t". and 'P E- -'i generates a solution ! ~ finite sum of terms '-

Also 0 (e c.-tJ as generates a solution which is , / 

Next we turn to an examination of the inhomogene0us · equation (1.2). 

We shall find an explicit form for its solution in terms of the semi-group, 

namely a variation of constants formula. Then we find necessary and suf-

ficient conditions for the existence of a periodic solution of (1.2) when 

the forcing term f(t) - is periodic, and this is the Fredholm alternative. 

To carry this out we introduce the adjoint problem to (1.1). Along with 

this a bilinear form connecting the two problems is introduced and this 

will enable us to find an explicit form for the projection operators 

onto the eigenspace )'Y)..\ • 

The solution of (1. 2) for initial data f> specified up to time 

tr is 

Tlt-a') ¢ (1. 6) 
,..., 

where X., is an n)( n matrix whose columns T acts on, the result 

being dotted into f , and where 

I J { 0 (} < o. 

That this solves (1.2) can be verified by substitution into the equation 

and using the properties of T . 

To examine the question of existence of solutions of (1.2) under 

periodic boundary conditions we shall need to introduce the adjoint equa­

tion to (1.1). Following Hale [4], Chapter 21 we define the adjoint 
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integra-differential equation 

• 
- y(s) A (1.7) 

y Cs) = 

where 'j (S) is a row vector in 1R.."' • The initial value space is the 

Banach space 

-.J f f{f) continuous on [ 0 1 cc) l I eYt( rtf} 1 <co~ c :::. ~!A,. 
.I 

f~O 

II 'IU SIA ~ / e- W' 1' ( rtr) J -
f~O 

....,. 
5$ 't Let ls ~c for all where 

:::: 

If 1,- = f is specified initial data then a unique solution to (1. 7) is 

generated (backwards) for all !; ~ r ' and is given by the family of 

-, elements of Ys , as defined above. 

Next we define the (usually degenerate) bilinear form ( , ) on 

( ~) 7) (1. 8) 

for The importance of this bilinear form is that it 

provides the connection between (1.1) and its adjoint (1.7). In fact we 

prove that if ?!t solves ( 1. 2) and ]t solves (1. 7), for tT ~ t ~ 'r , 

then 
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(1. 9) 

In particular if xrt) satisfies (1.1) then C'jt- 1 ~~} is constant on 

(~.TJ. This will be useful later for finding the projection operators 

onto 'n?-' • To prove (1. 9) we have 

J;, tD J ( t 1- f) 
-f 

::: ytt) . X l 't) +- j K(-g) x (t:+f'f'IJ) dl d~ 
-CD 

tD J -r'.,. t 
':: y£t)•xtt) +- f y (f') Kf-91 X ( ~ 1+ (}j dB df: 

-t -oo 

Thus, on using (1.2), we have 

• + y ·.; - ytt) Jo trt-e> )((t-t eJ de 'j·X 

By (1.7) this equals 

yields (1.9). 

-o:> 

+ JC%1 ':Jlt'J Ktr'-t) xC-t) d'! 1
:::;. 

't 

J lf) · f(-t) • Integrating the resulting equation 

....... 
Returning to the solutions o f (1.7), let T be the semi-group of 

-operators corresponding to (1. 7) so Y.t = T(t) 'f, t~O Let A be 

the corresponding infinitesimal operator 
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Xr f,·W") -Trt-J t - 'f 
~ 

t .-, o- -t ) 

. ..... ..., 
I P( A) - > tf6 c y. e C ; 

[ 
. 
'f{~} J 

tfto) A t- ) 
f=-o. 

The analysis that was performed on the semi-group ~ can now be applied 

to T to deduce that the spectrum of X in ff'e. ~ ~ c .,. -r + consists 

of a finite number of point eigenvalues, zeros of 

cJ e r [ A I - A - k ( >-)) 

with a corresponding eigenfunction rftc): e-Af bT {(~o) J:,T 
~ - J "' 

a left 

null-vector of _.1 I- A- K(;~) . Note that !?~A> -r~ implies that 

Thus the spectra of and are identical in the half-plane 

~e.>. ,_ -Y' • Several facts will now be stated which show more clearly 

the relationships between (1.1) and (1.7). Their derivations are given 

afterwards. 

Lemma 1. For 

(0(, Jc;t) = ( .ko<, 1). 

Lemma 2. Given f f C .I k an integer ~ 1 , 

= 
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has a solution ¢ ~ C iff ( ()(1 rf} =- 0 for all 
-- J< 

II( € n r ~-A rJ . 

Lemma 3. n( * ->. r/( coincides with all ¢ E C where 

) 

where are column n-vectors and ! = co) ( Y.t; .... , ~'~rJ ~ IR"~satisfies 

/).(I) .! i1 Cz.) 

2! - ~ - _L. fj flr·l) 
( k·O! _ 

. ~ Cl) I Ll (k·.&) -, {Jc:-2), _ 

A~c:. ::; 

"" " 
' ' 

' ' 
0 

fj; 4 
Ct) 

.6 

J J .tJ()I) 

d.>.; ) 

.1 (,.\) - AI-A -K(.\) . 

Furthermore, 
k 

~ "r7(1f.-AI) generates the solution ( Xo ~ I) to (1.1): 

t-1 t.J eAt 
~(t) - r.. !'it I . I - ... <t<-. 

j-=-o J, 
( 1. 1 0) 

Lemma 4 
#OJ II: YJ {A:-~ I) coincides with <f'"c where 

" 
Jc . 

'f( ~) ~ ~J· 
(-f) •J -Jr ::: c 

j ... , (1<-Jl! ..1 
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where {!_ .. row (/,, .. , ~I() satisfies ~e )?(.:f-), r/< generates 

the solution (yq~ ~) of (1. 7): 

y {<;) ~ 
( -S) k-i e -As 
(k -j)! J 

Thus the dimensions of the generalized null spaces (and the ascents) of 

A-~IJ ,r-AI are equal, being d /,., n (A"') k;:; d~ . 
J 

Lemma 5. Let 

i). -= row ( ¢1 .) . . . ~ 91,.) J 

.p). = ~o/ ( "'1 • • . .) f,)) p= d~: d,;, )7'7,. 
) 

: drm m). 

be bases for m~) iif;, respectively . Then the matrix ( rjA) ~A) is non-

singular and may be taken to be the identity matrix I . De-
' 

fine the projection operators P~, Q~ 

I- PA • 

Assume 
J> a /1 C::; n{-A->.L) e "-(A-~1) as in the theorem. Then P~ is 

the projection onto iYl.A along I?( .k. -~I)/> and 4'~ is the complemen-

tary projection. In fact 

R( rt).) [ ~ f c . ( P;. , ¢) =- o ~ 

R c PA) -
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Lemma 6. ?Z ( T( tJ) = point spectrum of T{f) in I 
c'f: 

"'' ~ e 
(c>- y"') 

= exp t- "i:(A:.) More specifically fl ~ fi. (TiiJ) implies there is 

). E ~ (.{,) such that f<-= exp>.'t and if r~~\ consists of all distinct 

points in ! (A) such that e~ .. t=JA- then n c i(t)- JAr>" equals the 

closed span of the subspaces nt A:-A r) 
4 

.. 
Lemma 7. Letting 

/\(c) =. f A f L {A) I Re. A ? c > - r+ ? 

and denoting 

) 

I- P"' 

so that projects on and onto the residual space R 

as occur in Theorem 1, then there are constants K, E >O such that for 

all p ~C. 

Cc-f-)t 
K e II Q" t:/J II , t-'/o. (1.11) 

Lemma 8. 

- if, e- s ... t .r., T (t) .z:;. ~ ... r,. 

'F>. ( 6) ::: e- SA 9 P,. (o) 

where BA has been defined before: A f >- :: tP,~. 8)1 (here we assume 
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The proofs of these statements are as follows. 

Proof of Lemma 1: For ¢ f J)(:A:) J Of ~ [)( ;t) 

0(/o). [A ?ro) + Jo k(-B) pf{~JdD j 
-t» 

f ojo . 
- «£f) Kt-BJ ~cr~ e; tlf cJB 

-co -s 

0 0 8 • I = ~(t>J· [ A¢roJ t- [t»k{-9J ¢teJ4P} -=~ fo IJ({f~9) !rr-eJ ~(r') Jfd9 

= «to)· [A¢{o) + L: J<{-8) ¢l9J4~) - j 0 
tt(f!...f7) k(-f!l) f>lr'Jfo

9
d9 

-o:> 

0 & 

t-J J o(c~'-e-)Jrt-BJ¢fr'Jd(JdB 
-co 0 

~ IX(O). [A p(O) + J 0 
/((-(}) ¢[~) dO I 

-Q:) 

- }
0 

[ ti{(O) K(- (JJ (J[O)- er(-9) Kt-9J ¢to>) d9 t Jo f 0 

,((f) Kl-9) t;(f+8)df d9 
-~ -a> -e 

- [o<to) A + J 0 

0((-9) /-<(-9) cl&] f(o) 
-co 

-r J0 Jo o((f) kC-9) ¢lr+e>~r~ef 
-to -9 

To prove Lemmas 2, 3, 4, (ft-,)f)~ ¢: f iff fl €- [)(A) and 

iff ~ f D(A) and 
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(e- r) k-1 
-. tf(fJ df, 
(k -d! 

where the ~·,_, are arbitrary column n-vectors to be determined so that 

rj> e 'D(A:) • It is easily shown that 

lc -I 

2_ Ytn+ji- 1 
j:. 0 

Now ¢ t 0( ;i--AJ) k iff .DC"')~ t {)( k) for 

:9 (V'.,..> '/>) lo) : L [ D("')p) , O~M~ le-I Now 

m=-0,1) ... J lr-1.. iff (since J [ [)r,.,,~)to):: 
Ci• 

Jc-,., -I 

+ Y,.,-+:z.. :::: A Y..,,.., + 2: 
j = D 

+-

iff 

.6 tj) 

· I yl'r\1-j+l 
J • 

iff 

1\ (I) J 
L.J, ,. .... +l.. +- • • • + 

k- ... -1 

{$ -E) f(f) d f . 
(k-wt-1)! 

""'::. o, I, -a, ••• k-1 

!:/"'? €- D( A:) 

), Y~o~t + Y,..~, 

olr-M-1 
(- lA-0 ---

(k-.,.,..-1)! 

(-~.o-r) 
lc-,... _, 

(k- ... ·•>! 

iff 

for 

) 



where we define 

Qj(s) -
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t--i 
(-5) 

(k -j) ! 

Similarly ",.,_() tl. E: D( I) 
v r ~ iff (since 

- f{o) 
00 -4,.. 

1- fo klt.c) lo ot~(c....t-:~) lfl!) ar ~""-

Thus ¢ e D(A) iff 

Ak. r =. -( 'foJ'f) 
I 

'fo - d, 'o..J L oc, "L .) • • • > crl\ I). 

This has a solution iff b r ( fo, jt) = 0 for all J, T left null vectors 

) 

of Ak . Calculations analogous to those above show that 
Jc «f 'h(X-li) 

iff ft:::. b 1 fo where Thus is necessary and 

sufficient. To show that the solution X'(t) generated by ~ { Xo= r/) 
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has the form indicated, note that >f(~) = Xt to) and ?(t to) is 

obtained from ~{9) by replacing ~· by t . The formula can also be 

verified to satisfy (1.1) by direct and tedious calculation. This proves 

Lemmas 2 and 3; Lemma 4 being proved similarly. 

To show Lemma 5, if ci'~,il)o.~o then (!f,.,P)IQ).::O so by 

Lemma 1 But cp~ ~ ~ nf-*.->.r)P and these spaces a r e 

complementary so i.e. a.::. 0 • Thus, by multiplying '1~. 1 ciA 

by nonsingular matrices, we may take ( t/). 1 Cf ;~~) = I d_. .t tJ... • Then 

~ rf = ciA ( ifA 
1 

¢) clearly satisfies PA-z.-:::. f') and /(( f',~.,) = { f~ bJ and 

PA f;. ~ if" . Also R. ( Q>,) = n 0),) -=- f; : ( !l;. ) Jl) =- 0 f by Lemma 1. 

To show Lemma 6 we refer to an easy extension of Theorem 16.7.2 o f 

Hille and Phillips [ 5] . To show Lemma 7 we let L :S R ( ~)t) = /?(A-..\ I)/' 

which is itself a Banach space. Then we show that /1 Tit) J1 1/ ~ 

K 
cc-~>t 

e If PI/ for f; e I . First note that Tit) maps r into itself 

since: 

(i) D(k) n.X: is dense in X since by Theorem 5.8-A 

of Taylor [16) there is a projection Q'; c onto 

X such that Q"D(.A::) C Df.\;) and D(.A) is dense in C. 

(ii) Tft) maps D(A:) n X into X since ¢ E- D( "-) ni =;> 

rj =- (.A,.\ t/ 'f so TCi) ~ = (}.._- >. 1) t Tt!-J cf 

by commutativity of Tlt) and A on Dl~ so 

Tlt) p ~ X by definition. 

(iii) Tff·) : A-; X by the continuity of Tit) . 

Let I, (t) be the restriction of TO·) to X Then the infinitesimal 

operator corresponding to T, is A:,= ).fx Then since f (.A:,) ::> 

iRe>. >c.,~ where c, is some t - r < c., <c.. we have by the 
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Hille-Yosida Theorem (cf. 

so Jl [ T, ) "' ;c- C:it 1 ] and 
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Martin [1o] , Chapter 7) 

/17; ft)/1 ~ ~c., r for all 

that 

t>.-o 

To prove Lennna 8 we have X !PA = 8;. t£,. for some 9;. 

~ c, 

and 

A ~" s f~ 8..1 • Then ( ~). A t~) "' ( fA ) cPA B~) ::. ( 1;. I F.) 8,., :::: B, :: 

and noting 

-X TfO '/ ) 

for we have This completes the proofs 

of Lemmas 1 through 8. 

Now we have a complete picture of what the solution set of (1.1) 

is like. Since the initial value space C can be decomposed into a 

certain finite number of subspaces that in turn generate solutions 5ft) 

t ,.. .,.Ai"t or 0( Y~tl ft) of the form '- e.- / then any solution ~ is a 

(finite) sum of such terms. This achieves the spectral decomposition. 

The exact form of the sums containing tr e...\,·t is given in (1.10) and 

note it depends only on .6 {),) . 

Finally we turn to the problem of determining periodic solutions of 

(1.2) when the forcing term ftt) is periodic. For this we shall need 

to examine the variation of constants formula (1.6) more closely. If 

/\(c) is as in Lemma 7, C is decomposed as in Theorem 1 and 

the corresponding projection. Let us denote 
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.T. -Bt ,r - Br .~ 
The solution of (1. 7) generated by r is Yt = e :t:) J (>}:: e r lo) 

so by (1. 9) 

( e-Bt- ,T.
1 

.,.L) _ J t _ Bs r .... T fr e [to) fl(f) ds 

Thus if X tr :;. ¢ we have 

+ 
~ 8(t-(T) .r. 
't: e ( r, ¢) 

t 
- Jo- [ Tlt-s) ~} '{!to) f.fs) ds ... TU:-o-) f'· {~1 ,). 

Thus 

(1.12) 

where we define x~p = if. if: to) ' an matrix of scalars ( f is 

V\xd~, f is J..\xn) and TCt-s) acts on its columns. Also we note 

that if we define <j. (t:) :: ( '.l, X+) then 

Similarly, 

'l. lt) =- f 
t: 8('t-s) ..... e .pr,> f(s> cls 

cr 1 

i (-t) ::: B t (+) + Pco) .f-tt:) . 

X~ 
t 

(1.13) 

(1.14) 

(1.15) 
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with x/~: xl)-x,t . (1.12) and (1.15) provide the variation of con-

stants formulas for the projections of the solution Xt . 

We are now in a position to prove the Fredholm alternative for 

periodic forcing. Let 

!\, = [A Re A >- o " 
-1 € l_(A:)] 

) 

1\o :::. f A Rt tl 0 .:\ ~ 1:(A-J i 

Then we have the decomposition 

+ 

with 
p. 

>'t ' ) X~ satisfying (1.12), (1.15) respectively. We may indeed 

write, by letting <r ... c:o or (T" _,. - Cll) 

Q ft: Q 
f(s) as xt -:. TCt:-~) Xo 

-(I:) 
) 

(1.16) 
P, ft; , 

f-(s) tis. x-t ;; Tl-t- r) A 0 
1 

Q:J 

That the integrals converge may be seen by use of (1.11). Notice that if 

f is periodic of period c.u then 
Q P, 

7(t and X~ are w-periodic 

~ Q 
( Xt•w = Xt by a simple change of variables in (1.16)). 

We have the Alternative Theorem: 

Theorem 2. If I (t+W) -= tit) then a necessary and sufficient condition - -
for the existence of an w-periodic solution for all f: of (1. 2) is that 
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iw ytt-> • ftt:) cit- - 0 
() - - (1.17) 

for all w- periodic solutions of the adjoint equation (1. 7). 

Proof: The necessity of (1.17) follows from (1. 9) since ( J~~w~ X'-t+w) ::: 

( 'J~) JC~) for w -periodic )t:, x., as follows from (1.8). 

To prove the converse it suffices by the note following (1.16) to 

find an w -periodic Putting 't tf) = ( '£,.. 1 Xt;) we have equation 

(1.14) (with \E-:a '1,.. ) . Also, the eigenvalues of B are all pure 

imaginary. Now a periodic solution of (1.14) exists if 

fo w u lt) rf(o) t ff) dt -=- 0 

for all w-periodic solutions of U.. = - u.B by the Fredholm Alternative 

for ordinary differential equations. This implies 

-Bt 
e.. <f: ( o) -f(f·) d t =- 0 

for all ~o such that 
-Bt 

~o e is w -periodic. But 

for such ~o form the set of all ~-periodic solutions of the adjoint 

(1.7). Thus by (1.17) an ~-periodic 

is W-periodic, and finally 'Xt is 

'l Cf) exists so 

w -periodic. I 
We note that all eN -periodic solutions of (1. 2) are obtained by 

collecting all ~" as in the proof. 

This completes the theory of linear integra-differential equations 

with constant coefficients that we willconsider. The results will be used 

in the next chapter. 



-28-

CHAPTER II 

HOPF BIFURCATION 

In this chapter we examine periodic solutions of nonlinear integro-

differential equations. More specifically, we look for periodic solutions 

bifurcating from a steady state solution of the equations. This is an 

extension to integra-differential equations of the Hopf bifurcation 

developed originally for ordinary differential equations. We shall 

examine the question by use of a singular perturbation method known as 

two-timing or the method of multiple scales. First, we give conditions 

under which bifurcation can occur and then apply the perturbation method 

to formally construct the periodic solution. The method yields not only 

the periodic solution -but a neighboring family of slowly-varying solutions 

which approach either the steady state or the periodic solution asympto-

tically. Thus, the stability of the periodic solution is also resolved. 

Finally, we give a rigorous proof that the periodic solution so con-

structed is indeed a solution of the equations. 

Hopf bifurcation for finite-delay differential equations has been 

extensively researched with approaches via the center manifold theorem, 

the metho:l of averaging, the implicit function theorem, and the method 

of Poincare-Linstedt, cf. Marsden and Me Cracken [9] and Kazarinoff, et 

al. [a]. We extend the latter two methods to our case of infinite-lag 

integra-differential equations. 

We now examine the method in detail for an equation general enough 

to bring out the main features. Consider 

(2.1) 
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where J( is the kernel depending on a parameter ~ and 

0 ( e- YS) as c- ...... - ~ ... / ~ , for some , ,. o We assume that there exists a 

constant solution (steady state) of (2 .1) and that, by shifting I:! if 

necessary, this steady state is ~(t)EO Further, assume that f--
is expanded near N:.O ,_. in a Taylor series with no quadratic terms. 

Thus 

(2.2) 

where ;(_ is linear in N and 

KO.J * N 

GO 

{ kO.,s) N(f-<;) dr, 

Thus, 

1 L N k (~ ) )i- C:! I ,\ I -
-} 

00 

Lf>.)t;f + fv kO,>)tyft-s)c:is 

( L is an matrix), is cubic in and :X l)) *-N - ' 
and 

Q~ is quartic and higher. 

We next examine the linearized problem about the steady state 

N:O: 

(2.3) 

From the theory of Chapter I we know that the eigenvalues cr of this 

equation are the zeros of the determinant of 



-30-

o- I - L (A) 
(2.4) 

f?e. q-

Assume that for some value of ~ say ~ 1 , there are eigenvalues with 

positive real part and that for some other value, say A~ , all the 

eigenvalues have negative real parts. For ). : ) 1 the steady state is 

unstable since thereare solutions 
trt" J;. .., f-" e. with f?e cr> o . For ...\ =- .-\, 

the steady state is stable (Theorem 1 of Chapter I) since all Re tr< 0 

Thus for some >. between A 1 and ). , there is a critical value A o 

where some eigenvalue ~o crosses the imaginary axis. Since the roots 

of (2.4) occur in complex conjugate pairs and since we assume only one 

pair crosses the axis, say at :t. ~·r 1 ltt'lo), then (2. 3) will have solutions 

:t t)A"t e , i.e. CO.t~"t and ~•nf4r . Thus, the linearized problem has 

periodic solutions for A~ ~ 0 We will show that for A near Ao 

and to one side of A, there is a periodic solution of (2.2) of ampli-

tude 
!i 

0(A-~o) when certain conditions are satisfied, namely that all 

R e (7'"< 0 except for the pair near ±. •'r'- and that if we parametrize 

this pair u- { ..\) then we require that 

Re. d rr(;\.,) ._n 

i.e. the pair crosses the imaginary axis not tangentially. 

Since the linearization (2.3) turns out to yield all the sufficient 

conditions for bifurcation, we examine it in more detail. At 

we want cr :: ± cj. so that 
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D. (2.5) 

Also, we want no other pair to cross the axis so assume that (2.5) has 

only the single pure imaginary solution· * 1ft . Also, we assume that 

the pair c:r{A) that crosses at -±t..~ is simple, i.e. the dimension of 

the generalized null space corresponding to t~ (or to -ti-c- ) is 

equal to one (cf. Chapter I). 

For later use we shall need an expression for CT ~'(~o) i.e. the 

speed with which the pair crosses the imaginary axis. Near .A-=- A o 

cro. > == t }A + 

Since (7"{),) is simple there is a single right null vector ~{A) and 

left null vector J_ TO) of 

£).(),
1 

trOJ) XC>.) J .- - 6-(A)S"} 
[ crrAJ r- LtJ.)- o kt)),<>J e d.r xOJ .:b. 

Differentiating with respect to ~ and denoting !O.o) = J!.o we 

obtain 

Multiply on the left by y.r to get 

cr'(>.,) == (2. 6) 
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where l1 (I): .) A ( T Ct) 
u 1 

• ) T.r h 1 t th t y. · A • >to ~ 0 • Also 'f"'i=- "''~ .,.. • we s ow a er a t..1 s.: r 

= 

(2. 7) 

(2.6) gives the desired formula; i.e., the speed at which the eigenvalue 

crosses the imaginary axis. 

Next we examine (2.3) for Put L : LO.,>,~ 

L p .,.. (2.8) 

Of course this has the eigenvalues ~c~ with corresponding eigenfunc-

tions 
± •'J..1: e . Since we assume that these are simple, then the matrix 

Ale in Lennna 3, Chapter I has null space of dimension 1 for each k :.{,l,lr· · 

(with ~..: d (A~) /p) ) . We show that this is equivalent to 

=f. D. (2. 9) 

Ll has the single null vectors ~o , l• r 1 I!J!!o"' lo.,. .4 "'- 0 . The corres-

ponding solutions of (2.8) are the real and imaginary parts of 

IWl ( Xo t 1~f-J. -
Now if [ ~) is a null vector for Al , then 

A Yt -t- 6 tn r ~ :: 0 . 

and 
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This has solution r~ ~ x, and r, ;. 0 It is easy to see that this 

is the only solution iff r "o; Yo ~ Xo ,;: 0 • Thus dt;.., YJ( A~)" 1 for 

k~ I iff as was to be proved. 

Next we consider the following inhomogeneous equations (for h 

integer) 

K>t~-f ::. D C-DS nj-t"*= -t- E ,..,;., np.t . (2.10) 

The right side can be written 

with !; = Q -~.·f. First consider the case n I-I . We try a particular 

solution 1=> = R~ (f e ,·,/"v with t undetermined. From (2.10) we get 

- -
( [ [. •. t?Ok(~ 1 e _,;..!A-Sd r] R t... ,;,?- I - L - v / .. (-

Re. 

So we choose L1 Ov~J .,,~)f., = !:". But A O., ~~~) is nonsingular by 

hypothesis so L = [l-1 {,J.,, htj.c) !:" The general solution is 

f> - 1( e, [ fo e 'i"'- t 

for an arbitrary complex constant to . Now consider the case n: I 

Try the particular solution p :. [f.' -te .;..t: + L&. e.;...~} 

member of (2.9) is 

The left 
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e .j.. t-
... 

e.·~f" f?e. [ -t JJ.t, + (I+ fo s K{~J e -<,.,.s d ~J !' 

+ .IJ c~ e';...t-J . 

(2. 7)' {2 .10) imply 

Thus L' :. C.~o 

a solution iff 

0 
-: ('- T C: I -!o 
-

with c = 

multiple of ~o 

LJ c• - 0 
) 

1J t'3. -T- Ll co(' : ..... -

for some c. E ([.. and 
(/) 

tlf: ... = !'- c. tl 5• . This has 

!.•T { [ - C . Ll ({) )io) 
1 

SO that Y T / T (I) 
c : • 0 c ~· ll ~· . Then 

The general solution of (2.10) in this case is 

f?e. [ C !o t t,_ -
and determined up to an arbitrary complex 

This has an unbounded term 
• t-

t e '1-4 and a necessary 

and sufficient condition for the suppression of this term is that c= 0, 

i.e. JoTr=- o i.e. 

D- E ........ (2 .11) 

This condition also follows from the Fredholm alternative (Theorem 2) of 

Chapter I where it is required that 
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~ 

fo,.. ( e-cj..t !oT) Rt (!::: e t~f) dt ~ 0 

since the periodic solutions of the adjoint to (2.8) 

are the real and imaginary parts of; e-,·~,,t Yo r where 

i.e. y/ ~ fcjtt) =- b . The condition reduces to 

Fredholm alternative condition (2.11) will be used repeatedly in what 

follows. 

We are now in a position to introduce the perturbation scheme. 

A two-time scale solution will be constructed that tends asymptotically 

to the required periodic solution. We introduce a small parameter G in 

terms of which all quantities will be expressed. The two time scales 

are denoted t 11
1 T the fast and slow time respectively. Expanding in 

powers of ~ 

N = -
t~::::. f(€.Jt, 

Tz t2 t ) 

f ((;} - (+ ff, + fl.-f.._ + .. . ) 

A c~> ::::. Ao + E A, + E-l...-\ 2.. + ... . 



-36-

Before preceeding it will be convenient to first calculate ~•AI. 

Writing til- and r as functions of r we have 

ty' It) -

-h kf$ J f:/ It -rJ d.r -z:. fo k{s) ;Vt+.,._fr, 'T- e•:r)Jf 

-f 0 ( t-' I K/) J d.r-, 

Notice that all the convolution integrals ignore the slow time i' so 

that any functions of 7' may be treated as constants. We adopt the 

notation for any function (Y of t :,- and T 

fo,.kld Nli:~-~ r) ds; 

sK-1-JV J . ..o s k(.s) ;v rt~-.r~ r) d.s,~ 

etc. Now expanding N we have 

Kff-N - = € [K.,.N1J +-
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+- 0 ( e 't). 

Now substitute all expansions into (2.2) and equate the coefficients of 

powers of e . There will arise a hierarchy of problems to be solved 

where the functions AI,· will be successively found. We constrain the 

f\1,; to be bounded in t as t: ~ oo (there are no secular terms) and 

to be asymptotically periodic or zero. This is sufficient to determine 

the various parameters ~ , · J f~.· as well as the ~· . We expect that as 

t ~ CD (or possibly - oo ) !::f becomes a 

~ t only. This means t;:fl~) has period 

portional to the frequency. 

The coefficient of E yields 

which has solution 

1?C r) 

~ - periodic function of 

zn./_pf>(E-J so ('(f-) is pro-

where we shall always ignore the solutions of (2.8) that decay 
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exponentially. R, €7 are to be found later. We denote 

¢ - )At: * + f9( T) . 

The coefficient of E't. yields 

-f, 
')N, 

+ .\, L'' {), D ) (:!f + ~I fA- (,.\o)*0) ft" 

-r, ( s k~ ~N,) )p 

) 
iJ M 

(I -r sk if" )t:* 

::. 
• < '(; 

' e. 

by use of (2.7). Since ~ is bounded there are no secular terms so 

(2 .11) implies 

YO
T [ , /t. Cl1 

- l ft l' L..J f. 0 

By (2.6) we have -tjA.f1 + ..\ 1 tr"(.>.,) = 0 Thus 

and so 

A, 
>., 

R.e. cr 1 (Ao) :::.o 
1 

cr'O.,.)=O · 
J 

- o. 
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since Re.. o-"O..)-=f-0 by hypothesis. Then 
;,tv .. 

- :!Nz~() so we take }P 

t;i'l.~(). 

The coefficient of ~:3 yields, 

)N, 
- Jf\/3 '"'· ~ )i,. = - fz. Jt.,. + .AJ. L''f),o) N1 ;T 

+ A:z.. 
Jt< 

II N 1 
(t X*" ~,.J,) -( S"-t''* ~~~~~) dJ:(>..o) - fl. J~" ;.r 

Since Q3 is cubic it yields only the first and third harmonics. Let 

us suppose 

Q 03. 
3 :: ,..... ( ~ sif'l ~ + {!. c.os ~) + third harmonics 

The right member above is 

( ) 
(}!'I, 

- fz. r + s t:: *" w 

- ( I + :s t 11-) ~~' 

Denoting etc., we obtain, using (2.7) that this right hand sid e 

is 
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- .\2. R ({#)q z_ .. } 

plu~ third harmonics. The condition that the secular terms be absent 

=- 0 . 

Using (2.6) 

- if!- f:~. f( + A, (T / (). ,) R. c R. + ,· ~< e J 

R.3 
~o T ( {i. - c:"! ) 

+ 1.,o-r .dU) !,o D. 

Equating the real and imaginary parts to zero gives the modulation equa-

tions 

• 
(l?e. E) 

. 
e - [ -r-P~ + AL Im (T''O .• J) ~ (I..-nf) R.4 

) 

(2.12) 

where (I - V T (A . •\ / T f•) h 6 .: 1,0 • r..·tf!'l ~.·il·lo . T ese have the solution 
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R (r) 

Depending on the sign of >-z. f(e. cr'O.J as 7' .... 00 or -co 
' R tends 

to a nonzero constant f(., . Since ~ can be scaled arbitrarily and 

multiplies R we may assume #Co= 1 This implies 

Al.. -= 
p2. 

) 

z Re q--'(),11) 

2.. Re. ,J. 

Hence, 

R <'I) (-'-)~2. + e ~. r 

Also, as T _, -±a. we expect the phase 9 to become constant (the 

asymptotic phase), so 

+ Im J ::. 0 

determines f"- . !::/3 can now be found and the procedure repeated. 

Thus we have the solution 
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which represents oscillations of period Z"lfA-flE) with slowly varying 

amplitude and phase. We have I'(~)= I + ~ ~l. + O( ~~ and J;f solves 

(2.2) for }.:. ). 0 + ~:aAa. -r0(f~. Also 8CrJ- constant, R<-r)- 1 

for either 'T~ (I) or -CP depending on sgr~ P:z.. . The periodic solu-

tion corresponds to R ~) and e !! constant. Also if flz. < 0 then 

R-.1 as t-.oo • and if ~a.> 0 then R-.o or 00 as t~Oo so one 

could conjecture that the periodic solution is stable if P~ < o and un-

stable if !a. > o This question of stability will be resolved in a 

later chapter. Finally we note that >.l. R e. (T"(A.) and fJL are of 

opposite signs. Since Re o-0.) = ~.z. ~z ~e cr'r-4.J + O(Ei) the steady 

state is stable iff Re.. -':z. o-"(A.)< 0 iff the periodic solution is 

unstable. Thus we always have an exchange of stability between the 

periodic solution and the steady state. 

The form of the modulation equations given in (2.12) is completely 

general and in the Appendix we treat the general case. We summarize the 

results. 

Consider the system 

d~ -dt 
(2 .13) 

where /;:! is an n-vector, ~0. 1 S) is an n• n matrix kernel which is 

and ~ a real parameter. Assume that the steady 

state t} a 0 is a solution and the linearization of (2 .13) about 

is given by 

Q) 

L().)p --1- h KO.,s) prt-.r) d~. (2.14) 
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Assume further that at A0 a pair of eigenvalues o--(>.) of (2 .14) 

crosses the imaginary axis at .:t lj-'-~ JA-"#:-0 ; that no other pair does so 

at A ::r ). 0 ; that cr()..) is a simple pair (the generalized null spaces 

are each of dimension one), and that the real parts of all the eigenvalues 

of (2.14) 1 except the pair that crosses1 are negative. Suppose the secular 

matrix 

YO
T 

has right null vector ~0 , left null vector 

Then assuming the t~ansversality condition 

(2 .13) has a formal solution for all e near zero 

N :: € fC(rJ 

where 

T -

for 

+ 0(€') 
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with 

( 
I 

P.r) i. 

} ± e 

P~ 
f(e r'(.\.) 

J 
2 

f:z.. = I Al. r "" d" "O.o) -+ ..L p: J - 2.JA-JA-

for some constants ~:&.~ /;t." . The periodic solution is given by /(:I , 

9 : constant. 

Now that we have a formal periodic solution in the form of a per-

turbation expansion we examine the question of its validity as an actual 

solution of the equations. To this end we state and prove the following 

theorem. Assume f is twice continuously differentiable. 

Theorem Consider the equation (2 .13) with steady state !1 ~ 0 and 

the linearization (2.14). Assume the hypotheses stated after (2.13) up 

to and including the transversality condition Re cr'()..) -=J:o. Then (2.13) 

has a nontrivial periodic solution tytt, E) for all E near zero of 
• t:"" 

the form N(t, E) -: €- Re( ~0 e'fl ) + W{t~i-) corresponding to ). (~) ' 

where t._::. f(f} t and )..(o) =- Ao) pte)~ J. . Furthermore, w~ 0(E .. ) 

and satisfies 

e tf'ttr Jt.,. 
w(t'", .e) =-0.~ 

i.e. is orthogonal to the periodic solutions of the adjoint of (2.8). 

Proof: Let us assume without loss of generality that )\0 ~ D· so A 
is near zero. Write (2.13) as 
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with ' consisting of only nonlinear terms in !Y, .:t'r .l.) * tf . Put 

L = LO. .. o) 
.J 

where 
a, 

LLA) r;! r J kO.,s)N(t-s)ds· We shall use the notation 
0 -

concerning the linearization as adopted following (2.14). Put 

!5• ttl : f? e {_ ~.P 

( 8) v,.-r The Xi are the periodic solutions of 2. and the ~. are the 

periodic solutions of its adjoint. We rescale d f t ·= by e ining 
I+ T( f) 

so 
I 

I)(~) = -- and 
r 1 +- r(FJ 

'T(~) = 0(f}. Define 

= 

We seek a ~ - periodic solution N which will be the fixed point 

of an operator equation in the Banach space 
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13 = {~ttJ 1 u is continuously differentiable and 

21r • d. } f'- - per1o 1c 

Also define the closed subspace 

~0 = {~t~/ 

We have 

"" 

+ Su..p I ~(t) I 
o~t~ ~ ,.. 

I t' ~ I, 2.. J . 

::: ]
0 

k(s) p[(l .. rJt,. -s-j ds 
...., 

= 

where 

CliO 

J ( F, T, K) = /, k(5){ ~(t*- ,!r)- ptttt-rJ) cis 

d-and is of order 7(€) ~"" • This is a bounded linear transformation on 
~ 

13. Put L<~l : L + ~ L, (A) J KO•JS); kL<>l + ..l k 1 (.A.J s) Then N 

satisfies 
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(I~ T) [ L:J + t::•!J + 

Put where 

(with 1:: Y,- t-' Ya. -:;: 0 ) which is some periodic solution of (2. 8). We 

wish r :::: 0Cf) and ~ e ~ . Then we wish to solve the following for 2-

- :!-t: = Jrp.7jK) + .A L, CAJ ~ 

(2.15) 

where 

-t A L, p + ,\ K, .., p + L :r + k *" i!; ) 

where we have dropped the star on t *' and have put 
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( 6 has been scaled out of ~ which is nonlinear). The right member 

of (2.15) is of the form F(~.>.,r,f} and for (2.15) to have a periodic 

solution it is necessary and sufficient that 

'J,· . F -

for ,· ~ I 2. 
I These two conditions will determine A and T as func-

tions of ~ and ~ both sufficiently small with ~.: T,. 0 when l = 

~ = D Put 

To solve h,· = D for ..\, 7' it is sufficient that the Jacobian 

not have vanishing 

determinant. This follows from the implicit function theorem for Banach 

spaces. We evaluate this Jacobian. The terms in ~ all involve either 

~ or products of the four variablesJso gives zero contribution to the 

Jacobian. In fact, Jacobian = 

Y, • [ L, ( 0) p + K', ( 0) "' p J 

YJ. (. :fp +- ..J;) [ Jro) '},_· ,t/1 .. (2.16) 
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where 

~..,.0 d 
J /0 - ~ - fo $ K<sJ - :. ct-s) ds. 

d'T dt 

Also 

J() . • e;JAt\ 
.tf> p + sk'-w-p & Re. [ L.ft y 6 (I) 

+ -:: · ~o 
T 

by ( 2 . 7) , and 

L I ( "), + #(, { ()] .,. p = I?. e. { re •pf ( ~ L(>.) + fo ~~ KO.,s) e-·~ds )J !,o 1 
.( ... o 

by (2.7). Thus 

2~ 

'1 ( :t h + "o) = J.. . e. J ('fA--re-l·,.t: ( . (I) .. ,. ~ ) 
c • r '<t:;§li 't :ut O to • c.c . ) ~f''t' 6 ·!• e +C . C. dt 

Similarly, 

'j
2

• r tp + J;) - ~ IW\ [ 1'Y { ~,1' A'') ~o)] 2 I 

'i 1 • ( L, f + K, -t t) 
{ 

!? e. [ - y ( l/ (* ). !• ) J J 
;:. 

2. 

'1 z. • ( L. ~ -t K,..,. P ) = 1 l- [ - y ( ~.r (#-). ~-J]. 2.. 
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P tt . 2J -- t'v (voT A ti)Xo) u 1ng 6 ~ ~ and noting (2.6) we have - -

de. t ( :r o.c. ) = 

This is nonzero by the hypotheses and Y t 0 Thus, by the implicit 

function theorem there are unique functions All;.1 €:) , -r( -l-1 E) defined for 

A::: T=-0 

when 

First note that 'I(~ 1 o) : o _, .>t ( ~~ o) a D since "'' = 0 is 

satisfied for T =A = ~ .:: 0 Thus by uniqueness of 

.A, r we must have rl:&,o) = ~lr,o)::: o 

Consider now the equation 

• 

for any 1 €- Bo Appealing to the Fredholm alternative theorem of 

Chapter I,a periodic solution V can be found and made unique by re-

qui ring Thus v::- A 'J. for some linear operator A on 7311 

"' That A is continuous can be seen as follows. In the proof of Theorem 

2 of Chapter I V P, 
f' and vt Q and their derivatives depend continuously 

on ~ ltJ as in (1.16). Next, ~ P. is defined in terms of a function 
~ 

ytt:) satisfying (1.14). There we have 
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YttJ = 
t: 

( fU~-s) 
+ ./o e . t£ ( 0) <J ( s) 4 s ~ 

and 'j (o) satisfies 

(e fiw- T) yto) 

and is determined continuously in terms of <j. up to a null vector of 

J(,J I e - (corresponding to y(o) unique up to a multiple of ~0 ) 

which is made unique by requiring Vf- 8, 
P, 

tinuously on <j. J so Vf does likewise. 

~ 

A o F( 'i.J A(i:,~), T(1:1 ~Lt:} is defined on 

• Thus Y 1 Y depend con-

Thus the map 7r ~, 6) ; 

s*" If {-~ 101 ~1'1 and is 

continuous. Now as €: --?> t> _, ~- T ~ o so != _,. D and ~ ~ o . Thus 

and 

for some ~0 > 0 we have 

i; ~ 5E. SO 'J= maps 

implying 

into itself. Also 

II "}" ( 'i'1 E) II S €,.. for all 

~~ -0 since )l- fat>-

H 1E•o = ~ /,J<O ;: 0 Then by choosing ~0 smaller we have 

and 0 < k, c:..J Thus, for each ~ r is a contraction map on s€* 

. , 

and has a unique fixed point 'l: (~) where ~ ::. 7 ( 1!1 ~) • Also i!' E- 13. . 

Then 

Put 

fore 

Note 

i-- J't.:: F( :t,~, 7, 6) so ~ solves (2.15) for I~/~ e. 

Thus 7; A1 ~ and there-

~ \ ~ 1 are determined with the properties stated in the theorem. I I <'\,I f"\1 

N ~ 0 since otherwise but p f 8 0 • IJ 
As a final point we consider the case that F in (2.13) depends 

analytically on all its arguments and ~(s) is analytic. We briefly 

show that the periodic solution tf(t-,~ t) given in the theorem is analytic 

in t and f . Furthermore ). (f) and f(~) are analytic in £ 
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Since L and k are analytic then the resolvent Rti:) is 

analytic in t~o 
~w 

Denote by "' the set of v.tt) E-8 analytic in 

t, with 13 as in the proof of the theorem. Also ,- and ,.\ are 

determined as functions of 1::1 e- If "t. ( t, "'J) ~ 8 w depends analyti-

cally on 7 (as well as t ) then F ( l(t, 7J, A, 7~ €-) is analytic in 

so the t 
are analytic in ~~~ by the implicit function theorem. We deduce 

.... 
;F ( ~, t=) = A o F ( ~~ H ~,f), 'T'( ~,t-J~ to) depends analytically on -,1 t£-

,.. 
The image of 7 is in B~ since 8 is invariant under A (use 

the formula for the solution of (1. 2) in terms of the resolvent 'R , 

which is analytic.) Thus the various iterations used in the contraction 

mapping principle yield an analytic :z. ( t-, ~) 6 13 w if we put 7 ::::: E 

Then A, T are likewise analytic. 
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CHAPTER III 

A TIME-LAG DIFFUSIONAL MODEL 

In the previous chapter we examined some integro-differential 

equations describing, for example, the time variation of a biological 

population. These equations involved one independent variable, t In 

this chapter we examine the effects of an added space variable, X on 

such equations, these involving derivatives with respect to ~ and r 

and convolution integrals with respect to r only. 

We shall study an equation modeling a predator-prey relationship. 

An example of such a situation is that of herbivorous copepods living off 

of phytoplankton in the sea. It has been observed by Steele [14] that 

traveling waves can occur in these populations. It is suggested by 

Murray [13] that this is due to the combined effects of diffusion in 

space of the population with the inherent time delay of the life pro­

cesses involved. An example of the latter is provided by noting that in 

any population there is a variation in individual maturity. This has an 

important effect since the amount of food available to the young directly 

affects the number of individuals reaching maturity (and this in turn 

controls the birth rate.) Diffusion arises from the tendency of a species 

to migrate toward regions of lower population density. This will be true 

if food is continuously and homogeneously supplied in time and space. 

Then in regions of high density population the food will become scarce 

and individuals will tend to migrate to (or will have a higher expectation 

of surviving in) the regions of lower population density. Thus one may 

conclude that the flux of individuals across any surface is proportional 

to the population gradient at any position and time. With these 



-54-

assumptions in mind we shall construct a model of the predator-prey 

situation, describing, for example, the copepod-plankton relationship. 

The governing equation is derived in a manner similar to that of 

the heat equation. Given a fixed volume "Y 

of change of the population size within 

in space, the time rate 

is equal to the flux 

across the boundary of r plus the change in population size due to 

the birth and death of individuals within the population. In the absence 

of predators the prey population obeys such a rule. Denote the prey 

population density by a function ! being position in space. 

In this model we shall assume that the growth and decay processes are 

described by some function of v not only at the present instant but 

in the past also. This is represented by the lags or delays described 

above and are due to age variations within the population, seasonal 

changes, and so on. We denote this function by 

h ( fo -!{ts) V( ~~ t-s) ds J . 

Notice that the delay is independent of ~ This follows from the 

assumption that the migration is on a much longer time scale than the lag. 

The kernel Kls) a weighting function for past effects, is arbitrary 

except that we assume it decays at least exponentially as s~ co We 

have also assumed that the flux (migration velocity) is proportional to 

the gradient (choose the constant of proportionality equal 

to unity.) Then we have 
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:t-Jv(~,t-Jd*- = jvv 
'V ~"'I 

By the divergence theorem we obtain 

... 
h ( J;, k(<;) Vf!, f-.r)ds) + '\72. v. (3.1) 

As noted above, incorporates the birth and death processes of the 

population and depends on the situation being modeled. 

Now if we assume that the predator consumption depends only on 

their capacity for preyJthe full predator-prey relationship is 

given by 

(3. 2) 

where W ( ~ , t-) is the density of predators. Clearly, since the pre-

dators depend exclusively on the prey for food, ~ depends on \1 

Furthermore, if there is not enough food for the predator at some timeJ 

then in the future that population will decline (the usual delays are at 

work.) Thus depends on v at an earlier time and we assume 

... 
m ( fo kt ( s) V( ~, t- r) d s) . 

For simplicity we take the two kernels equal 

kld: (1(s). 

-~- ------------------------------------------------------
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We consider only the one-space-dimensional problem 

~v -- '; 'dt (3. 3) 

where we define 

(I(*V)C~,i) 

Since h takes into account overcrowding, in which case the 

population tends to decline due to self-poisoning and depletion of food, 

h must decrease with v for \1 large enough. Thus there is a 

Y=V0 where h(I(•V.)- rnCk'"•V.). We assume to be a constant. 

From (3.3) we see that is an equilibrium point of the population. 

We wish to examine the solutions near this steady state. Assuming with 

Stirzaker [1s] that 

have, putting 

h 

for constants 0( and 

the nonlinear effects are 

In the case that 

and m are odd functions about 

V- Vo 
J 

+ 

E We examine (3.4) for small 

small (but crucial). 

kC ') :::.. [(s-T), the Dirac delta 

(3.4) becomes a delay-~ifferential equation. Murray [13J has 

we 

(3.4) 

E so that 

function, 

produced 

traveling wave solutions of this equation thus lending weight to the hypo-

thesis that diffusion and time lags are at work. We shall perform a 
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similar analysis of (3.4) for a general kernel (with the weak conditions 

on K mentioned above), showing that traveling wave solutions of 

the equation exist. This will confirm Murray's hypothesis in the case 

of continuously distributed time delays. 

where 

We look for traveling waves of the form 

c 

U-= u..(-1:.- ~) 

is the (constant) phase speed of the wave. Putting 

t- X 
c. 

we get an ordinary integro-differential equation in ~ 

3 
+ E- (K.Jf.'-'.) = 0 

where eo 

j
0 

k C s) u. C l - S) d S . 

(3. 5) 

We examine (3.5) for the bifurcation of a periodic solution from the 

steady state for near zero. Since we wish to keep ~ 

and K fixed this will force us to consider c as a function of 

~ . This, as well as the oscillation frequency, will be determined in 

the course of the calculations. 

Now that we have an equation in one independent variable the 

technique of the previous chapter can be employed. We begin by examining 

the linearization of (3. 5) about U..!! 0 for periodic solutions, i.e. 

for eigenvalues which are pure imaginary (and nonzero). The linearization 
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II 
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+ (3. 6) 

and has eigenvalues :t: ,·14 , f' j o, when the secular equation is satisfied 

'JA + 
(3. 7) 

i.e. 

= 0 

(3.8) 

« 8 ( ~) + f1 ::. 0 .I 

where 

Equations (3.8) give two conditions on the wave speed and fre-

quency for the periodic solution of (3.6). Assume that some such 

pair exists. We now look for a periodic solution of (3.5) with C(G) 

near c, and near for near 0 

Using (3.8)
1

note that (3.6) can be written 

I ;!I.A.. 0 c: = 

where :tv.. u." r=B u.' ~1.. (K .t~- '-') • ::. .... + 
A A 

(3. 9) 

Thus (3.5) can be put in the form 
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V(~J 
1/ 

~ -
(3. 1 0) 

where 
))(e) I - (Co ) Z - m; 

:: 2 c, 
E ·+ 0 (~ ') . 

C'o 

Before applying the perturbation procedure of Chapter II to (3.10) we 

examine the linearized equation 

,, 
u. +-

with 

I 
u. + 

y :. ~ v, + 0 ( f-a..; . 

vu'' 

This has eigenvalue u- :: fT' (~) = t.jA-+ 0{F) with eigenfunction ,. 
U= e . From (3.11) we obtain the secular equation 

j-'_§ l. cb 

!::. ( v, o-) = a-2. .,. q- +- ~ ~ kts) e.- crs ds ~ 

-J,I q2. = 0, 

Thus 

~4:1 

-). {~}v:o 
~v ft.,_ 

.:: fl (I) JtJ 
()~ 

where 

(3.11) 

(3.12) 

(3.13) 

(3 .14) 
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This expression will be needed later. The inhomogeneous problem 

t u..-

is solved as follows. The right side is 

Y~ tt-t"b. A particular solution is 

Re [ lHny., O) 

u = Re [ 

For (3.16), (3.17) to be valid we require 

A ( ) 1\ (I) -J- 0 
.L.J r'l}J-, 0 ) .u T 

(3.15) 

Re [ ~ exp ir.JA t} with 

e tn~ ... ] 

h *' J 
(3.16) 

) n =- 1. (3.17) 

Equivalently, for given C0 and fA- satisfying (3. 8) there is no solu-

tion Co, 'nJ"- of (3.8) for n:j :t:1, and the eigenvalues :l: cj... are 

each simple. Furthermore, we assume the secular equation (3.12) has all 

its other roots with negative real parts. Finally we note that (3.15) 

for n =I has a bounded solution iff l"=O , i.e. 0..-= h= 0 . This 

is the Fredholm alternative revisited. 

We can now proceed to the perturbation analysis of (3.10). We 

shall seek a periodic solution of (3.10) for all E- near 0 which 

reduces to R C.o$ fA~ for (this is a periodic solution of (3.1 1) 

at V = 0) . Since it is expected that the nonlinearity will change the 

frequency and wave speeds slightly and modulate the wavetrain R 'or fA 1:-



-61-

on a time-scale which is longer than that of the oscillations, we write 

the solution as a function of two time scales. Thus, much the same 

scheme of Chapter II applies. We note briefly that the Hopf bifurcation 

of Chapter II applied to this problem yields the one-parameter family 

U = R. c.o~ f l: for all R and solving (3. 5) for E • 0 This is a 

degenerate case for the Hopf bifurcation and does not yield solutions of 

the perturbed equation. Instead we construct a different one-parameter 

family of solutions. 

Assume an expansion of the form 

}I(~) = 

where 

~ ¥ :. f (E) i!- .J 

r = E t ~ 

are the two time scales, and 

is the adjusted frequency ratio. Put 

l.( 0 -

As before 
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+ 

where 

co J
0 

k(s) f( "1.*- s., ~) ds (3. 18) 

for any function /! of ~., and r; Also 

+ 

Substituting these into (3.10) and equating the coefficients of the 

powers of E , gives for 0 (Eo) : 

+ = 0 

with K• as in (3.17). Thus Uo ::. 1( Cos(f<~/'+ 8) :. Re [ R ed~o*•OJ) 

as we already knew. The 0(~') coefficient yields 

iu, - 2f, 
d'~-Uo 

"L 
~1- u., ~B q«o ::. 

J~if :z.. - f, ---J.z*Jr; 4 Ji.,.. 

a d lAo h.,_ 
( sk ..- ~7) .+ 

It_ "l. { ~CA•) -#-- -+ p, A- sk * J' A Jt:; A 

c ~ 
0 
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( A and B are defined after (3. 8)) 

--
. . . 

2. C> ,,...1; +t9( 
-~ f'- "'e ~ 

; c; Rs ( A 3 
cos(fll.*+ Q) +- Az.B s/nr,u~.~. 9J +-

.,. ABz cor(fi'i~~>t-e) -t- 8 3 Sl'rdp.~.,..+8)) +- 3r- 4 

:: 
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where the denotes third harmonics. Since we force " b 
""' to e 

bounded, noting (3.17) we require 

(
• .I\ (f) 
l!J-f, u 

Dividing by J\ (I} d 
~ an taking the real and imaginary parts yields the 

modulation equations 

• ~ 
( Re. A'~•>) R. 

3 z ( ot 6~ (~ A-,·8) R3 R. ::; - v, fA 't c. 4 + e Am 
.I 

(3.19) 
• - }' f• - v, JA'- (r .... }cn) 3 c: ( Aa-+5') (I.,.. A~~-~~J R ~. e = - ... 

These equations have already been analyzed in Chapter II with the results 

f?e. 
A·t· 8 

c .2. -3 A''l 
v, ::. -- (A'+B,_) Rz.. &f j-lL 

I () .J 

Re Am 
(3.20) 

' 3 , ... ~ f?l fl :: -II, ,..,. Im - (A"+8~ r ... A''J ... ~ .. A''l 0 ) 

where R~ Ro as r-+ oo or -oo the sign equalling f ~.,·B) 
S"!)r) Re. 4"' . 

In fact 

R 

with 



Since v,2 zc. c.· we have 

] c:-c, -:: 
B ~a. 
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(A a+ Blj 

A-(· e 
R c. ll (I) 

A-,· n 
Rt!.. A ttJ 

I 
Rc. A''' 

.fo ~ (3. 21) 

Note that C 1 and p . 1 Do1 
1 1 are proport1ona to "' Finally, note that 

(3.21) requires l 
A r,, '/: 0 i.e. 

I? e. ~(I) * 0. 

From (3.13) we get the equivalent transversality condition l?e ;: roJ :/:0 

In either case, from (3.14),this gives 

- lA J cos K{ s) c.os ft' d.S' 
0 

Summarizing, under the hypotheses 

(i) 6c ... ~, o) -=t:o , n =integer =#: :t I, 

(ii) A ftl ~ O 
.u T" ' 

(iii) ~e.. A (I) * 0 J 
dr ..L. 

T?e d" to> r C> ~ 

(iv) p 'f:. 0 

-/:- 0 . 

a periodic traveling wave solution of (3.4) bifurcates from the zero 

solution with period and wave speed c {f) where 
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C{€) =: Co + C, E + 0 (~I) 
J 

I 

f 1 , c, given in (3 · 20) and (3. 21). The i;orm of the solution is 

u = RC~) c.os (fAi:i# + ec~>) + 0 (E=) (3.22) 

where 

and 
z-= t- -

with 
f?{~) -

Ro 
) 

and 1.(. tends asymptotically to the periodic solution. 

Note that the leading term in (3.22) can be written 

f< c.os ( w-t - k X) 

with 

fA+ 

k ::. 0 ( ~ Ro'I.J. 

Thus we have a wave propagating with frequency ~ and wave number k 

that depend on the amplitude of the wave. This corresponds to the general 

result of nonlinear dispersive waves that the dispersion relation depends 

on the amplitude, cf. Whitham [1s] . 
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Assume C0 > o 
lA 

J 

ep > o 

Profile moves to right at speed "-It = C. 

Oscillations die to zero as t ~ QS for fixed X . 

lA. 

r 

Oscillations become periodic as t -,eo for fixed X • 

X 
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Now that we have a formal periodic solution of (3.5) in the form 

of a perturbation expansion we examine the question of its validity as 

an actual solution of the equation. Since (3.5) contains second order 

derivatives we reduce it to a system of two first-order equations by the 

usual device of defining Thus we have 

<~,, 
P7.. :; 

eli:-

d tz. 
€ (_~ (ktt- ,, ) 

3 
-= c.-z. Pl. o( (.'2. 1<* p, - . 

6~ 

Putting '7:: c 2
- c.z, we obtain 

: ~ [ ;~ ] = c [ ~~] 

+ € [f:] 

for some constant matrices C, C 1 ; 2 x 2. matrix kernels 'c-., 

and functions ;. 
( 

r; which con-

tain only quadratic and higher order terms in these variables. In general 

let ~ denote a column n-vector; C , I<, C1 , Kt n•h matrices; and f 
an n-vector function of ~I Kif e I '7 and € ; and I vanishes when 

f= 0 and contains only quadratic and higher order terms. Then we prove 

the following. 

Theorem. Consider the system 
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dt 
Cp + k•l' + I [ C1! kt•t] = .,. 

dt - (3.23) 

+ ~ f ( ,. 
"~ t 1 ") 1 ~) J 

with .P. - nonlinear and a real parameter. Assume that the eigen-

values of the linear equation 

for all sufficiently small are all in the left half-plane except for 

a pair that crosses the imaginary axis at :t: t"JA- 1 JA ~ 0 1 for '?: o 

Assume this pair is simple and that the transversality condition holds, 

i.e. 

Re 

for the eigenvalue pair 

d cr ( o) 
d"] =I= 0 

U(') described. 

Then (3.23) has a nontrivial one-parameter family ofT -periodic 

solutions for all € near 0 of the form 

= 

corresponding to the parameter value 

solution of 

w - ( 2.n:t 
ft7' I ~) 

"")(E), where y is a ~-periodic 
J4 
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= 
(3. 24) 

and 
T= T (f:J 

Here w, "'J, ( are 0 ( t:) as €-.. 0. Furthermore, W can be chosen 

orthogonal to the periodic solutions of the adjoint of (3.24). 

Proof: The proof is the same as that of the Hopf Bifurcation Theorem of 

Chapter II except for some initial differences. We note that the role 

played by E is quite different in the two cases. We use the same 

notation as regards the linear equation (3.24). First rescale t by 

defining 

where 

t 
and I +- T(fJ 

;;: :: 'J (t*) + 

Then putting 

. 'i ~) 
R e.. ( )" Jf_o e '/A J 

we obtain an equation for ~ analogous to (2.15) (drop the asterisk on 

t .) 

:t~ ~(':J,-r;l<) + "7 ' ( ( 1 'J of' /(, * 'j) - -
(3.25) 

+ ~(w, ")r T, E-) 

where 

G--:. (J-+ r) [ .J(w, ~ k) + '? C, 11\1 + i k, .,. IAI + 
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+- 7 [ .J ( :t, 7; k) + ( C 1 y + "7 K 1 ~ y 

+ Cw + 

and where 

J ( w, I, k) 
CXI h /({~] [ Y:! (t:-- ,;'7') - w li-s;] d.r 

' 
and 

;;[ w -

as in Chapter II. Now notice that the right member of (3.25) is exactly 

of the form of the right member in (2.15). ThusJsince we are trying to 

solve only (3.25) 1the rest of the proof is exactly the same as that fol­

lowing (2 .15). Putting the right side in (3. 25) equal to F (w, '7, T, E) J 

we try to solve the orthogonality conditions 

for 7'/, T in terms of ~ G . The relevant Jacobian is 

de.+ ~ ( 1,,' ~~ )l 
d {"'), -r) 

~= r ... ..., .. E" o 
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Jl . [ c, J + K, 71- y] y.,_. [ c, y + k', ilLy J 

Y, • [ :f. Y r .J ; ] 

which is exactly as in (2.16). Since { here plays the role of A ) the 

Jacobian equals 

b. /yj:J.. Yor Ll (f) 1'2.. (Rt. 9.E- (fJ)) 
'+ 

~0 diJ 

which is nonzero by hypothesis. The rest of the proof proceeds as fol-

lows (2.16). I 
We make some final remarks on stability. It is easy to deduce as 

in Chapter II the stability properties of (3.22) as a solution of (3.5). 

However this is stability with respect to perturbations which also solve 

(3.5). This class of perturbations is a very small subset of all possible 

perturbations which solve the full equation (3.4). Thus a valid stability 

analysis would require an examination of the linearization of (3.4) about 

(3.22) and this is not the corresponding linearization of (3.5). At the 

moment this is an open question. 
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CHAPTER IV 

LINEAR EQUATIONS WITH PERIODIC COEFFICIENTS 

1. Introduction 

The previous two chapters have been devoted to the problem of 

finding periodic solutions of nonlinear integra-differential equations. 

It would be desirable to determine the stability of these solutions. and 

this question will be considered in the next chapter. There it will be 

required to solve linear integra-differential equations with periodic 

coefficients. In this chapter we will analyze this class of equations. 

and to accomplish this the semi-group idea of Chapter I is applied. This 

will result in a spectral (Floquet) theory for the linear equations with 

periodic coefficients much like the one in Chapter I for constant coef-

ficients. However. here a completely different approach must be taken 

due to the inability to define an infinitesimal operator for the semi-

group. There is a striking analogy of the theory with the corresponding 

Floquet theory for ordinary differential equations. cf. Coddington and 

Levinson [1 ] • Chapter 3. The analysis we perform follows closely that 

of Hale [ 4] which is for finite-lag equations. The important results we 

are able to carry over to the infinite-lag case. We show that the general 

solution is a sum of eigenfunctions each of which correspond to a charac-

teristic (Floquet) multiplier the totality forming the spectrum of the 

equation under consideration. The method used by Hale to analyze this 

spectrum cannot be used in the infinite-lag case. and we take a different 

approach. We then deduce an explicit form for the eigenfunctions thus 

characterizing the behavior of the general solution. Finally we obtain a 

Fredholm Alternative theorem giving necessary and sufficient conditions 
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for the existence of a periodic solution of the equation with periodic 

forcing. 

We now develop the Floquet theory for linear equations with 

periodic coefficients. The methods we use are those of Chapter I with modi-

fications and generalizations to the present problem. Again we follow 

Hale [ 4] , Chapters 35-3 7. 

2. The Semi-group 

Consider 

Ql1 

:::. A(t) ~(t} -r ~ KCt, s) !(t -s) ds 

where X(t} I'D~ ' is a column vector in 1~ A lt) is an 

(4.1) 

matrix 

function, periodic of period W > 0 1 K Ct, s) is the kernel, an n~ n 

matrix function defined for s~ 0 ' periodic of period uJ in its 

first argument. Thus A ( t + w) ':' A ( tJ J l<(t-.w,s)-::: J((i,$) for all t . 

We shall always assume that k { t-, s) = 0 ( e-Yj as s "*' ~ uniformly in 

t for some 'f> 0 Let us denote 

= 

00 

A (t) ~ + Jo krt, s) ~ tt:- r-> o'". 

As in Chapter I we view the solution ~ tl:) of (4 .1) as a collec-

tion of functions ~ i: each of which is defined on the interval (-do) oJ. 

Specifically, we define 

- x(t+9) - , 
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A well-posed initial value problem results ~f ~ is given for all 

t! 0 . Then a solution of (4.1) exists for all t~o coinciding with 

the initial data for f~ 0 We view the situation as follows: the 

initial data are given by ~ where e(ll) = ~18) ,~ tJ t: (-o-, c) . This 

generates a solution ~(t) for t ~ D • This is equivalently written 

as X-t- and the initial conditions demand that x., = 91 for t ::: o . 

Thus, X~ is a curve with initial point ~ in some space C of func-

tions defined on (--, o] . The process of obtaining X~ from ? is 

viewed as a linear transformation ,- from C into itself. We write 

T l t, o) p ~ 

where X 0 = 1 . If we shift the initial data from (- Oo, o] to (- ~», s] 

then a solution )(t is generated for t ll; S , and we write 

T ( t:-, s) ¢ , 

where Xs :: , • Let us adopt the notation 

obvious properties of T are 

X-t (~,;) :: Tli:, ~) Jl . Some 

J ( t I s ) T ( s, 7") 

= I 
) 

where I is the identity transformation. Thus, 

semi-group of operators on C . 

We shall take C to be given as follows: 

./ 

lrlt, ~) forms a 
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continuous on (--oo,o] J 

I.-,..., er•s rp(s> 

·~--

sv.p. 
1 9SO 

y+<. Y and 1 + arbitrarily near y . 

That each rr t:, ~) is bounded can be shown with the aid of the 

resolvent of (4.1). The resolvent Rl1:Js) isan matrix func-

tion solving the equation 

aR 
~s (t,s) - R.Lt, s) A C~J 

t -j f(ft,u.) k"(u,u.-s)cl...._ 
s ~ 

s ~ t, 

= I . 

This equivalent to the Volterra integral equation 

Rlt, s) -=. (4. 2) 

-a. D t: < ~.1 

where L ( <t1 p) ~ 
:!. - fo k(o(1 Y) Jy , p~(),; Of~ll • Existence theorems such 

as in Miller [11] assert that a continuously differentiable R exists 

and that if y solves 

A lV y 
+- tr 

i- J, k(1:,r) yl'l-rJ ds + gli:) 

then 

~ (t) = 
t' 

R ( t, o-) y c tr) + jr T?a. s) ~(s") ds , t ... t1' • 



-77-

In our case if X solves (4.1), then by putting -J l((t, <.c) J(lt- ... ) d.,.. we obtain an explicit formula for 
t-r 

X ( t-J = R. ( t, tr) )( { fT") .... 

~ l t} :: 

If the initial data is ; , specified up to time cr (so 

e s 0 ) , then we can write this as 

(4.3) 

~ l-t) = Tlt, 0") ¢ : R l t, tT) 'fioJ ..,.jo { J 't'Rt't, r) kls, r- cr-\1) cls 1 ~.,)dY", 
-aa r ~ 

for t ~ cr • Thus, 

R < t + & , tT) (> toJ + 

J0 [Jt .. ~lt-•t),f) #({s,r-t:r-~) tis} ~MdvJ 
-oo r 

(Tct, crl¢](8).::: 

¢ ( 9 + cr- t) 1 

This is similar to the corresponding formula of Chapter I and a repetition 

of the arguments there proves that l Tl-t1 S) 1/ is finite for all t >., s, 

and that the semi-group is strongly continuous: 

/ITlt,s)¢ T( T, s) Jl> /J = 0 

for each 

In addition to the transitivity property 
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T{t-,s) TC~,u.) :: T(t,""'J, 

we have 

/{t,s) T(r1'w,s) (4 .4) 

where ~ is the period of the coefficients in (4.1). This proved by 

first showing that 

T(t, s-w) -= (4. 5) 

This is demonstrated by the following argument. Let x-t solve (4.1) 

where the initial point is S : Xs "'P· Define ~(t).,. xCt+w) for all 

t It is easy to show that y also solves (4.1) by the periodicity 

of the coefficients. Also Y,~.w = )( s ::: p so Yt .,., T(t, r-w) p . But 

clearly 'it-: X-e..,w =T(t'f'w,s) ~ and (4.5) follows. To show (4.4), 

TCt,s) T(uw,s) = TCt,s)T{s,r-w)• T(t,s-w)• Tl~•CJ,S) 

and transitivity. 

3. The Spectrum 

using (4.5) 

With these preliminaries we proceed to the analysis of the struc­

ture of the semi-group. This we do in a manner similar to that of the 

Floquet theory for ordinary differential equations, cf. Coddington and 

Levinson ~] , Chapter 3, Section 5. There the circulant matrix ~{~) 

(where ~(t) is the fundamental matrix solution) is spectrally decom-

posed into Jordan canonical form and itt) is subsequently determined. 

It is shown that all solutions are linear combinations of terms of the 
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where r is a nonnegative integer, e"".., is an 

eigenvalue of f< w) , and Plt) is some w -periodic function. In 

our case we examine 

U-

for its spectrum and then determine TC'f., o) for all t~ o Since 

Tlt1 s) is similarly found by considering ULd :: T(f.,.c..~, f') we limit 

ourselves to the case s:o 

The opera tor U is a bounded linear transformation on the space 

C. Thus its spectrum is confined to the disc £ t / ~~I!: J'2.0 l in the 

complex plane q; where ...12 0 is the spectral radius of V . We shall 

show that for all ~~ such that 0 < r-'< I'~ the spectrum of U in 

r'""' 1~1 ~ e- consists of finitely many point eigenvalues. This is done 

by showing that U is nearly equal to an operator of finite rank 

(whose spectrum is known to consist of finitely many point eigenvalues). 

Letting x_., = Tlt, o) p we have 

Let J (9) 

on [-a., o] 

arbitrarily 

t: 9 +w, 

[Uf>] C9J = 

be a continuous 

and f..,. 0 

[ 

X( fjJ + 9)" 

¢Cw+BJ 
I 

function such 

on (-co, -w] 

that 

where 

near w Define the operator tJ' 

(j: 0 ) : 

e f (- t:IO_, -w) . 

(>S t SJ with f~ I 

-ws-o.. and 0.. 

on C (cf. (4. 3)' with 
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(h.c.J CD 

t(9) R((A)-t-9.,0)fdtD) + ~ R(8+c.~. s){~ kls.u.J¢(s-w)J~~.j 4s. 

Be[-t.t>,o) 
I 

{) € l-(t)_. -w). 

Clearly U
1 
j6 is in C . Also U

1 
is a bounded linear transformation. 

In effect U1 
replaces the initial data part of X~ by zero allowing 

it to become a compact operator. Next, we have 

ll U ¢ - u' ¢ II ::: sup 1 e., .. , ( u; - L11 rJJ { 
• s 0 

MQ.X } Sv..J> I e 1 •g. s;scw+IJ J 
1 

(H-u . 

su.I> 1 e.,., [ f(IJ f(o>+l, o)- !(f.,+ 1,oJ) f>toi} 
... w~es-Cl 

mt.:tx f SU.J> I et .. (fJ+w);cs+wJ} e-Y~ J 

~~-w 
- ~+-A. I J "?. 'u. p I Rlw-t-B, o) I e fl to) r _..,,,.,_., 

mo..)( f II ;u e_,~,., e-.-·~ //pill sup /IUs: o>J} 
I 0' 91~ IAJ- q, 

[e- ~ .... ev + ?l I))] II ,6 II ) 

where 't]l 4) _,. () as "--. w independently of 1 . Then I( tJ- tJ/ II ~ 

-r•w u' e +1l4). Finally, we approximate arbitrarily closely by an 

·-' u~ operator vv having finite dimensional range. Note that y has 

the form 
•+tw CIO 

J1 {8) ¢fD) +;;, 9,_l91 s-)[~klS,t(.) ~(S-c.t.) diA.) ds_. 

[U 1 
¢ J ( 9) 

where 

o, 

' ' 

are continuous functions that vanish for 
I 1 L 

-w.i: I ~o., 

9 ~ -w. 

Choose any E ~(). Divide (-w, o] into a finite number of subintervals 
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[ e, = -w) 62. J I [9:a1B.I J I ••• J [ 811'1•1 J 9, ·~ 1 such that on each the varia­

tion of 9,z(8,s) in e is less than t:/(z. t?IQ.,I( fii((V,w.J]e"•u.J ... ) 
O~V$u» 0 

for all Sf lo,w) and the variation of 9
1 
is < &-/z • Let 1-.,- be 

defined on [-w,.,o] by ( i= 1, ·•· 1 m) 

I {) = ~-
t ) 

0 ) 

with linear interpolation between mesh points. Let 

k l,l. ( ~) h. {9) 
l 

These functions are approximations of 9, 1 9 :z. respectively, and 

clearly m ~x I k, C BJ 
e f(-w, oJ 

etc:.. Now define 

the linear operator vV , 
,.,., 

L 
i =I 

[w¢>Jc~J- (4.6) 

0 J e f (-oo, -"'}. 

First note that II v'- w II<~ since if 1/~R;. l ~ 

llu';-wt;ll ~ su. 1> [ I lr, ( sJ - 9, "J I +-
-w ~ 9'~ 
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+ I k ~ ( 9 ) - ~h l &) I 

<E. 

Secondly, note that ~ has finite dimensional range being a subspace of 

S' P"'"' ~ n, J .•• ) h ... }. Finally' we have 

II u- w II 

·Choose 
-.lf .. lo<l \' ~ 

E: so small and vosi ti ve, and Cl. so near w that e • 7 +- ~ < e-

with Y 1 a prespecified number in C 0, y+) and arbitrarily near ¥'.,. • 

We now show that the spectrum of U has the properties mentioned above . 

Put 
.. r'w 

..Q. ::. e and H = u-w . Then since II l'f 1/ <A. , for />.I>J2... 

is nonsingular, i.e. one-one, onto, and has 

bounded inverse. Thus -· H ~ is analytic in the region 1..\ I > ....12.. and 

\ -1 can in fact be expanded in a power series in A 

Also 

cf. Taylor (16] . 

V >. = U - ~ I = W + H l = -H ~ ( H >._, W + "I ) , 

By (4.6) W can be written 

.... 
w L. h. 0(. 

&. L 
jal 

where hi~ L and the ~, · are bounded linear functionals on <: 
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Thus 

H _, vJ 
~ = 

~ 

.2 h,· (~) 0(" , ... , 

where \-._~ ( .\ ) 

}. in a I,. .n. 

are elements of C depending analytically on 

We show that u~-· = CQ tAJ + rr' 1-l.a_, has at most 

finite-order poles in l.ll >..n.. These obviously can occur only at the 

poles of (QlA) + IJ _, 

IAI ~ .12 !#- where 

Also note that the spectrum of U is confined 

to 
.,... 

~ is larger than the spectral radius of u 
and such that ..n. < .n..*'. Thus we need only examine the spectrum of 

QOJ+ I in the annulus ..n_~ al sn..*. 

Putting T::: Qt>. I-t- L for any ¢~C. 

1¥\ 

L. J...l. t.\) O(l· t ¢; t- ¢ . 
i. ':J 

If T¢ :0 then 

"" 
[ C.;i(>.) otjl¢) 1" Of; lrp) = 0 ( &/1 .. 'J f\'\ ~ (4. 7) 

j ,., 

where 

is analytic in theannulus. Equation (4.7) implies 

de t [ c. ,·j (A ) :: D J 
(4. 8) 
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and the set ~ of A such that this occurs in the annulus is finite 

(each point in l: is isolated). Clearly ~ is the spectrum of 

QCl) + r in the annulus. For ,.\ ~I. we can invert T as follows. 

Put Then t a. C:j CAJ oti (~) ' 
J 

and since 

-I 
a 'i c:tj rp; • the matrix is invertible 0(,· (tl) : Thus P= _, 

~ ~,, (~J a,:,· C(.~·t ~) , 
iJ ., By Cramer's 

-I 
rule a .. 

IJ is analytic except at A~ £ where (4.8) holds. Thus we 

conclude that QOJ +I is nonsingular in the annulus except at A ~ l 

where its inverse has a pole. Thus, the spectrum of tJ- ..\I has exactly 

the same properties in the annulus. We now appeal to Theorem 5.8-A of 

Taylor [16] and summarize the results as follows: 

Inside the annulus the spectrum 

~ of U consists of finitely many point eigen-

values with finite dimensional generalized null space, 

i.e. the ascent v.A of u). ~ l) -l I. is finite: 

( ~1'1) 
n u" , 

Furthermore, C can be decomposed into a direct sum 

of the null and range spaces of 

The range R.l u:•) is closed. 

This characterizes the part of the spectrum of V we are concerned with. 

These results are similar to those of Chapter I, Lemma 6. Next we turn 

to an analysis of the operator lr(t,s> using this information. 

Let f" be an eigenvalue of \) , and we shall always assume 

a characteristic (Floquet) multiplier. Define 
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the corresponding characteristic (Floquet) exponent, A 
Denote 

}'\. ( 

We have the following 

(i) £,._ is finite dimensional 

(ii) c '::' ~,.... • R.,_,.. J 

(iii) V' ( r:,..) c EJ-4 I u (It,..) c R.,.. J 

by f' = e-4"". 

(iv) the spectrum of V restricted to E" ,.._ 
1 

.I: ( Ul£~"') 

equals { ,...J. Also r ( uJ K J -= r - f ~ 1 . ,. 
Let { P1 ~ · · · ' Pd,._ ~ be a basis for c,... { ci,..'E d.· .... E,..) . By (iii) there is 

a dl' 11 d,.. matrix M ,-,. (rn&j) of real numbers such that 

u p :: 

where <P -c. row ( '1s.l ... , rJ..,_J, ' a row-vector of elements of C Property 

(iv) above implies that Ml"'- has the sole eigenvalue ~ ('#D), so there 

exists a d,. 1e tl,.._ matrix B such that B • d; loJ ,Nl • Define the row 

vector f( t-) (elements in C ), 

Pl tJ 
-Bt e t;:. 0. 

Then by (4.4), p( t'+w) ::r T(tfoW~ 0) ~ e- 8 We-r-e = n~,O) /(IN,O) ~ t.-Bo.>e-8t 

-:: T (~. o> U ~ e-iw e-it = Tl !, ~>) ~ e-lt' .. Pet) . Extend the definition of 
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P in an obvious manner to all so p is w -periodic. Thus 

PC t:) e 8
t is defined for all -Q)C.t:<oo and lft,o) ~-= PC I:) e •'t'. 

Thus for some scalar column 

dl" -vector ~ • We seek the function X lt) represented by X't For 

v ( ) &> SCt-t-9) 
all e~ OJ )(t(B) :::r JC{t+~J"' "~•9 ° = I (t•B)(O)e ~. Define the 

row dp.-vector function Po(~) =- f(s)(o) (all S E f'R. ) • Note 

Then and we conclude 

E~ generates solutions of (4.1) of the form 

Po c t J e 8 
t- .2 

with an e..J -periodic row-vector function, B 

a matrix with sole eigenvalue ;!; l..' ,._ , and b a -
column scalar vector (all of dimension d~ ). 

This form of the solution x is in complete analogy with that of the 

Floquet theory for ordinary differential equations, cf. Coddington and 

Levinson [1 ] , Chapter 3, Section 5 (where B would be a Jordan block 

of the logarithm of the circulant ma trix.) 

We have deduced the set of characteristic multipliers correspond-

ing to solutions generated at starting time t = 0 . We need to show 

that the characteristic multipliers are independent of the starting time. 

For any such time S ( ~ o) let U(S) :: l(s• w; ~) . All the above 

deduced for u can be similarly deduced for Vls) thus obtaining 

generalized null space e,... {s) with corresponding basis 4 (t)' and 

range fi! 14 Lr) for any ,_.. • i (ul~J) . As with the case s= o we can 

define T C t, s) ~ Cs) for all t ~ IR • Then for any T 
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I.J{-r) T('l, S) ip(sJ 'C. T ( T~w, 1') T( r, s) ~(~) 

~ Tt r, r) U l ~} <I Cr) -= T( -r, s-) fls) ,..A,._IS'J. 

Thus 

and it is easy to show that 

k 
(U('t)-,...I) TCT,s) pls)- Tl-r·,s) ~{:s) (M.,...-rrJ". 

Letting k :::. ascent of ULs") , we have 

It 
(VlT)- fA I) T('T, s) rl ls) :: 0. 

If we could show that TlT,s) ~(s) ~ =- 0 implies ~ =0 , then we 

could deduce that ~ is also an eigenvalue of UlT) and that 

~.·.,., E,._l-r> ~ di""' E,...fs). Reversing the roles of s and 7 would prove 

that the dimensions are equal and that Th·, r) ~ { s) is a basis for 

E,..!~J which is the desired result. To prove the above fact, choose ~ 

an integer large enough so that S'-+ -w > r . Then 

i.e. b.:. o •A tw\ since the eigenvalue of ~~ 

Lastly we note an explicit expression for the basis of 

tl tl :t TC4-, o) ~to) :: T(-t.,. o) (f .,. flt) e ~. 

implies 
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Having achieved the decomposition of C into a direct sum of 

c14 and R.l" (which are closed and invariant under U ) we can similarly 

decompose R,... into the generalized null and range spaces of ()- fA' I. 

restricted to R,. for some other eigenvalue fA' of U Repeating 

this procedure for any finite subset [ u ~ 1of ,--t ) '' ' ' I ~ S L { u) we have 

where is R. some closed, invariant residual subspace. Any ¢ in 

" E,..,$ ... eE,..., generates a solution K-t of the form .'l.. . "" P~",.ttJ 

· e• ... ,-t b . . -· Note that X+ has exponential growth e~t as t-.m 

are the characterisitc multi-

pliers. Suppose that £ ,.,., , ... , f4 1111 consists of all eigenvalues in I_(u) 

such that l,ui I ~ e(;(""' where 

is in the residual space R 
Dt' > - Y"' • We wish to show that if ¢ 

then the solution it generates, Xt • TC~,o) fl1 

<Ct: 
has exponential growth at mast e as 1:~ co First define the pro-

jections Q.; onto E: ~ along R p.~ Each Q[ is bounded since 

c~l; R,... are closed. We later give an explicit form to these projec-

tions using an adjoint characterization of the problem. These projections 

are useful for separating out the various eigenfunctions that make up a 

solution Xt . Thus, given an arbitrary ¢#'C , the Q,:; generate 

these eigenfunctions, denoted We now prove 

Given 0( > - r-"' there are positive constants 

depending on 0( only such that 
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II X f ( s I 15) - L X-~; ( 5, o, ¢>) /J 
IIJ;Il; elf'.,.., 

In fact O<{J<«-e<' where e or..... equals the 

magnitude of the first excluded JA in the sum. 

We follow Hale [4], Theorem 35.1. Since 

'v't>,s. 

((/) f?(::s) , where lf",J ,. 1 JA.J../ >,. • • • lp., 1 ~ ex,"' w > ~~ .. .J the 

spectrum of Uls) restricted to 'R ls) is '1: l t}) - f /A-t ... ~ ... 7 If 
.. 

rr ¢ = cp - z If',·¢ then lTp E R<c) Let U, (s) • Uls) restricted to 
I 

Then the spectral radius of 

ceeding as in Lemma 22.2 of Hale, for any 

11 ...... e-tw'•rJ ... /IU,.,£,)1/y" Thus (,·,..,. 
rt-+ OD ...... .,. 

equals I I ... ~ 
}4 ..... .,. e. . Pro-

0<~"< Q:- -<" ) 

e -c•'•fJ''<J /1 u,"r,> II = { . e-"1'~ ""' ,.., : ...... .. 
By strong continuity of rct,s> there exists ~ such that II 10., rJ/tt. II~ 

N 

Define 

for 

l'nG\ I( 
n~o 

(by (4.5) we may assume 0~ S'~ c..lo) . 

e-C•'•~·J.,w //U,"'lsJ/f. For 

we have ll Ttt, s) TT¢ 1J ~ 

IITtt,,+nw) T(s... ... w,S')IT¢J/ ~ N nu,"CsJ(IIITTrJI/ '=(Ne1"''•1''/lt-rJiltl,"frJI/)· 

Now let Since Vl~J is periodic in s , so is Tf(S'J. 

Let ;J\: K W\"-JC HTr£sJ//. Since 
O.Sf<!W 

Xt l S, ~) - ~ Xt ( S, t;>.: rJ} = Tlf:, r) TT ~ 

' 
we have completed the proof. 

We summarize our results. 

Given any Y 1 in (. o,. y+J there are a finite number 

... ..., 
~ ,,.., of characteristic multipl.iers }A- such that e- . 

Corresponding to e a c h suc: h fA. and s E TR is a finite-

dimens i onal subspace E ,..._ls) of c such that ¢ 6 £,.(c) 
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generates a solution X~· Tlt:,s)tj> ot (4.1) of 

the form 

Here P,..l ~) is a row d,... -vector (elements in C.) 

and is W -periodic; 8,._ is a constant 

matrix with sole eigenvlaue and b - is 

an arbitrary column (constant) d~ -vector such that when 

it varies over IR 6"' ¢ "' t;._l,J!. varies over E",-ls) 

Furthermore, given ~ > -~~ , an arbitrary tf. • C 

then the solution X*(~,,) generated is decomposed 

= L X t; ( S 1 Qi ~) + 
.,.. I ~ CIC,fl(.., 

where E E' P.i (s} and 

for some (J,t'!>O. 

The above completes our characterization of the solution set of (4.1) and 

provides a classification which will be needed later when we consider the 

question of the stability of periodic solutions of nonlinear equations. 

Notice that the circle I .MI "'" I is included in the region of interest 

- ........ l~l ~ L . This circle is the dividing line between the stability and 

instability properties of the solutions of (4.1). If some Floquet multi-

plier ~ has magnitude greater than one, then the corresponding Floquet 

exponent A has real part greater than zero and there exists a solution 

of (4 .1) which is unbounded as t-+ a:> If all the multipliers are inside 

the circle then all solutions of (4.1) tend to zero as 

The problem of the calculation of the Floquet multipliers is in 

general quite difficult. However, in the case of bifurcation, the 
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multipliers vary continuously with some small parameter e such that 

when E=-0 all the multipliers are known. Thus, by the use of a per-

turbation expansion the multipliers can be calculated, and the stability 

of the bifurcated solution is established. We shall consider this in the 

next chapter. 

4. The Inhomogeneous Equation 

Our next objective is to solve the inhomogeneous problem corres-

ponding to (4.1). Consider the equation 

d!! 
dt 

Al-l> ~£tJ + j ~ft,s) xtt-~Jds + £t~) 
0 

(4. 9) 

where ~ is some continuous vector-function defined for t 1:- rr. If ~ 

is prespecified for -t. ~ ( -•, IT] then (4. 9) has a unique solution given by 

Rtt, c:r) ~(a-J + 

(4.10) 
t 

+ J f(tt:, sJ f-(s) ds 
IT - J 

where ~ is the resolvent. Now l e t 

I, 

() e<o 

where v- is an Ao 
h x n consta nt matrix defined on (- oo/ oJ • Then from 

(4.10) we see that 
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Rlt-+8, (1") ) 9 £ [ u- "f., oJ , 

[T(t:, tr) X~] f8) -::.. r. G ,. t:r- t:, 

0 B <. ~-t 

From this we can deduce the solution of (4.9) (letting the initial data 

be X,. ' tJ ) 

1: 

X't'"(. rr, ,P) :: T ( t, cr) ¢ + J,. [Tlt,-s) Xo) · ;£~) ds, (4.11) 

the variation of constants formula. 

Up to now we have been concerned with the properties of the ~ 

operator. We have cast the problem of the structure of the solution set 

of (4.1) into the language of semi-groups with the result that every 

solution is a linear combination of certain eigenfunctions. We shall need 

a convenient way of projecting out these various components of the solu-

tion and an adjoint characterization of the problem (4.1) will provide this. 

After obtaining an appropriate adjoint equation, we proceed as in the 

case of ordinary differential equations and introduce a bilinear form 

connecting the original and adjoint formulations. This is done with the 

object of providing explicit formulas for the projections. 

We turn to the adjoint problem. Letting ~ls) be a row n-vector, 

the adjoint equation is 

d~ 
ds 

(4 .12) 

-co 
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for all S ~ 'T" , with initial data Y-r = Jb given on (7', oo) Note 

J is generated backwards. The set of initial data forms a Banach space 

-c .:. [ t continuous on 
-Y"( I e. Y.t f) 1 <Q::)fJ 

II 'I' II : 

As usual l + f! C means 

Define a bilinear form on C x C into fR depending on t 

parametrically, such that for 

( '1', ¢)t- - '/'to) • cp(o)- Jo [J 0 
t.ft.f) /((t:+f,-9J~{F,.9Jdt]d9,(4.13) 

-«» -9 

This form is usually degenerate but it is useful for connecting problems 

(4.1) and (4.12). As a first result in this direction we show that if 

X~ solves the inhomogeneous problem (4.9) and Y~ solves (4.12) then 

(4.14) 

for all t ~ Cl' • This will be used many times. Thus, 

:: '} Lt). )( tt-) 

Then 
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J 
0 

(':J,.,x*)* ) Cf-J · Xlf) + '::1 ttJ ·xaJ - 'j l~) j Kfi,-9) X(tt-S)diJ ... 
d+ -CD 

co 

+ 1 'j(~) t< c r, 'f- -t:J X t-El d f 
t 

::. [ ~ ( +-) 't- 'j lt-J A ] X {-f-) 

co 

't J 
0 

ylFJ lar,f-tJ cif. xt+J 

+ 'j l+')· -FltJ ':J tt:-J · -?u; . 

Integrating yields (4.14). 

5. The Spectrum of the Adjoint 

We now proceed to the spectral properties of the adjoint. Since 

(4.12) is an integra-differential equation with periodic coefficients, we 

see that whatever qualitative results were deduced for (4.1) will be true 

of (4.12). Corresponding to (4.12) is a semi-group T { s, T) for r ~ ..,. 

and V : T ( o, w) (more generally -U (_o;J = T ( ~, S'1-~) ) • The spectrum 

2.. of V ( s) allows a decomposition 

-E~ (s) $ R. 

with ~ ._., ~ 
r;;~"-lsJ = h( u<~J- ,..r) having basis a column vector 

(elements in C . ) We shall prove that f: L , ~ t v,... (ascents are 

equal), ~ = d,...._ (dimensions of E,.... , E,._. are equal.) Thus the 

characteristic multipliers and the corresponding eigenspaces are in a 

one-one correspondence. 

As a preliminary to this proof we obtain an equivalent integral 

equation formulation of (4.12). Suppose t:r < t, ~t ~ 'f is given, 

c r ':; T(', t) ~of. Then integrating (4.12) from cr to r yields 
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xlt-)-~(r): 

+- + 00 

J,. ~(S) A (s) - Jtr J; 'I!(() /f(l, f·s) dl ti-s. 

Interchanging the order of integration in the double integral gives 

'f(V} ::: 
~ J,.. ~(s) [ L(s-,s--v) -A<sJ) d5 ..,. 'i;(#:) + 

eo 

~ r ( t) [ L ( f, f-+) - L ( f, f - rr)) d ( 

where 

r~o. (4 .15) 

Since e._-:. tf I this gives 

-t 
JG" "lls) [ L ( s-, r- q-) -ArsJ J ds 

+ t/.-to) 
00 

-t f. ¥- n- t) [ L ( r, f- t J - L { t, f" - u; J d r 
~ J 

i.e. 

t: 
f,. ~ c s > [ L L .,, s- ,. J - A ( S' J J d s 

1 
QO (4.16) 

+ ~to) + 
0 

I/J(9) [ L( &+t:, 9)- U&•t:~ 9-(v-tJ)} d9. 

Thus we have an equivalent Volterra integral equation to be satisfied for 

the solution ~(v) of (4.12). 

Next we show that the adjoint equation to (4.12) is just the 



-96-

original equation (4.1). Thus the adjoint of the adjoint is the original. 

Write (4.12) in a form similar to (4.1) by putting t. ~ - S and 

:J, (t;) 2 ~T(-t) :.. lT{s) (superscript T denotes transpose.) Then 

'f- J 0 

k T (t- f, -f) :f
1 
{hf) d.(, 

-Q:) 

Putting and A
1 

(t-):: Ar(-t) , we obtain 

• 
Y, l t-) .... A, ttl 'J, tf-J 

exactly the form in (4.1). The adjoint of this is 

. 
;<' l s) - >< 1 (sJ A,l-sJ - f O X 1 ( S" - l') If 1 ( S"- f, - r) d f 

= 

-~ 

1
0 

x,lr-'f) 
-CIJ 

Going back to the original variables t ::. - s and 

we get 

. 
X C-1;) =-

Jc:.,. (- r, - F) d ( . 

which is exactly the equation (4.1). This result shows the complete 

duality that exists between (4.1) and (4.12) and is again reminiscent of 

that for the case of ordinary differential equations. 

We know that if X4 ~ T(-t:-1 tl'-) ¢ and ':ft.= y(._, T) ~ solve (4.1) 

and (4.12) respectively, with ~~~ ~ T, then by (4.14) 
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constant. 

Thus ( r { f., T) 'I'. T ( t-, ,.., Jl) t = I T( T: ) lh T( ) AI} ( J. 
, \ 1 'T r 1 or, " "' ,. ::: r , Tt r, r) fj),. . 

Similarly this equals ( Tl r,rJ 'f, 9) r , so for 

( 'f, T l T, tr) ¢ ) r :::: ( T ( cPi -r) tf J p5) u (4.17) 

In particular, putting 7": w and fT = o we have 

= 

However 

by the periodicity of K Finally, we have 

(4 .18) 

At this point we can see that if the bilinear form were an inner product 

then by standard techniques of Hilbert spaces we could deduce the required 

properties of the spectrum of V Since this is in general not the case 

we must proceed differently. To do this we go to the functional analytic 

adjoint operator 
)}-

\) of V , -and connect it with U 

We introduce the func tiona1 analytic adjoint space C fl- to C 
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consisting of the bounded linear functionals acting on C . This is not 

to be confused with the formal adjoint given by (4.12) and denoted with 

a tilde. First we show that C is isometric to the space 

X .:: [ t continuous on [ o, ( J } .I 

II f II -= s "'"p l t t ... > I . 
6~ 14~1 

This is accomplished via the map Tr : C ~ I given by 

(1T ¢ J { lA.) w. ~ [o, 1]. 

In fact =-II p/1 

(putting 8.,. loj ~ ) 

let (Jt'J = e- r•o tCe 9J 

The map 1T is onto, since, given 1~..1:J 

Then clearly ¢ f C. 

The adjoint of Jr , namely the set of all bounded linear func­

tionals acting on I, is given by (cf. Taylor [16] ) 

X 'If" • f '7 row vector defined on [ 0 1 1] J '7 is 

A v-* 
where "t E A-

Thus i (f. J -: 
I 

of bounded variation on [ IJ1 I) r 

acts on )[ according to 

has norm 

f o l c!., I Let p be defined on L- Ct>, o) by 

so if 8: lo' ~..c..) drc &>: d'"l {"') I..(. a-• Also '7 ( ~J .. 

f l ( I .,_ f 0 r•~ 
, 1J'? I :: Jo t.t ... r [ c~1 u., .. J/ =- -c» e- lrLtt•J/ 

I 

J. tt..,c .... > tl .. J • 

lf"1JJ-:c. V~r"?-:: 

ru.,u.) = f,"'tJ,(y)vy• 

;o~r(9)(>t•J, and 
-c» 

We can now define 
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the set of bounded linear functionals acting on C to be (note f is 

a row vector) 

c if" :: [t a function defined on (-(E), o}} 

< CD 1 
which is a Banach space with norm 

II f II j' 
-cc 

This is valid because L II- is the isometric image of Z.tl- via the identi-

fication The linear functionals in c• act on c via 

< > C ,.rt c 
thus defining the bilinear form , on We note f is 

determined up to a constant and we identify in c* such f as differ 

by a constant. 

Now that we have found C~. standard results of functional 

analysis may be employed to deduce that the functional analytic adjoint 

U *"of u has the same spectrum as U for each ,...~z. the ascent 

ll,..._ of u~ -JA l equals that of U-f"I • and that d,'-' (U*-f4I)".-.:::: 

v,.. 
Q ,;.., ( u- fl. 1:) . Before relating v* and v we provide a connection 

between the bilinear forms ( • ) t- and <, > Define the map S ({::) 

for each t f fR., Sft): C ~ c_*" by 
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Cb J: '7 t s; [ L c 8 .. t, 9) - L (e ... t-, 8 -'f Jj d 8 

[ s ( t) 7] J ( l) ::: 
(4.19) 

By (4.15) Lt8+tJ 6-') = O(e~'') as 'f-.-«~» so SttJ7 is indeed 

1·n C *. L .... C et i E C and 7T": S(Oi . Then for f> Eo 

< rr, ¢ > ::: !
0 

drrCf) rp(f) 
-CD 

::: 
0 CD -! 00 L '?I~'J l((~~t, 8- f) pl((j d8 d( 

::: 

-';to) t;fo) _ f() r:c 7 r ~; J -f} "r 1 'f t,... - r 1 ¢ r , .,. ., / d r 'J ~ 
-oo 

:: 

Thus for each 

(4.20) 

By (4.17), for cr s.t) 

) 
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so 

Letting T* ( t, rr) denote the functional-analytic adjoint of T ( ~. cr) 

this equals Since this holds for all 

we have 

Putting tr::O, t~w and noting from (4.19) that Slw) = SlD), 

Slo) TlO, tN) a r•(w,O) Slo)' we have 

,.., 
5 ( 0) u = U* Sfo). (4.21) 

This provides the connection between U and U.., • Unfortunately, S(o) 

is not invertible but (4.21) is still useful. First we note that for any 

positive integer k 

k: <.u ,._,.. rJ -sro) = (4.22) 

..., u-,..r and Let 14 be in the spectrum of u I ~I"" the ascent of 

""· ~ ... 'P; Y1 ( iJ- ,u... I);;~ -, a basis for (dimension J~ ) . Proceeding as ,.. 
we did for equation (4.1), put !l' :: col { +, ... 1/-- ) 4,. • Then there are 

1,.. II 4,.. - ... 
u'l'·~.:P - J. - -matrices lVI. and B ' ) 

B ::-..., t.J ,.._ .B has the sole 

eigenvalue t; lo!) f-4 • Define the w -periodic column-vector function 
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- it - ,r; Plt) = e Tlt,o)r for t<o and extend it to -t-~ o . Then the 

solution of (4 .12) generated by rJI is 

Tft:,o) '/' = e.- Bt- Pl-t) 
) 

and in fact solves (4.12) for all - tD < "t~o& The function corres-

ponding to Y-t is Y(t-> defined for all -t and 

Ytt-) - 8t e pl#:Jto) . 

-We can show as before that if for some constant J~ -row vector 

and f ( OJ k Y-e-: ! T{t, o) 'I:. 0, then k =- t>. 

b -
We now prove that the set of Sto) ~ 1 1 ~ ,· s J;.. , is linearly 

independent, i.e. if for some constant row ~-vector b 
-7 

then ~ = 0 . Put r = $(t1) oj . We show that for 

y{tT) = (4. 23) 

where R is the resolvent matrix corresponding to (4.1). Infact if 

we let ~{#') = -J: drl6J f?{9,~r) for a"<O , then by (4.2), 

?;:(tr) :: 

since ~(&, u.) ~ 0 for l.( > S, 
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= Jo 
f(~r)- rto) + ,- 1!( .... ) [ At ... J- Ltc;.,I..(-">J du.. 

By definition of S to)> rto> "'0. So i!- satisfies the integral equa-

tion 

~ { IT) + j
0 

~tv.) [ At ... l- Llu..,\.(-tr)] d"'" 
(f" 

[S'Co)'P](r) :::: 

Thus r satisfies (4.16) with t =0 , and initial data equal to '1! 

on (0, 1:11>) • This is the integral form of the adjoint equation (4.12). 

We know one solution to be j((~J , so by the uniqueness of the solutions 

of (4.16), "l.(tr} = Yea-) for all (TSO This is what we wished to 

show. Now ~ r::. o so by (4. 23) o = ~ Yt~r)::: ~ rrr.oJ lf. i.e. 

b-,.o. Thus we have proved that the S{o) tfi are linearly independent. 

We are now in a position to connect the spectra of U and l/ 
-Let ~ be an eigenvalue of V k an integer and 

i', ... f.., 
...., k 

a basis for the null space n { u -,.. rJ . Then since can 

be chosen to include f, . . . f.,... we deduce that the set fi = S/4) ~· ,~ 

1 ~ i. '!.""' , is linearly independent. Also it is clear from (4. 22) that 

( * k l) -r-I) fi -=-0, 

Thus }A- is in the spectrum of U • and U , and 
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J .. ) k a,·....., ( U - 1"- I ~ 

Now cf,;.., ( U*-,.,. I)~= dt~ (t/-1-'-I.)tt. for the following reasons, · Since 

U,._ is of the form u-,.._1 ... B( Q+r) with 8 nonsingular, ~ of 

finite rank, then U~ has the same form and we may without loss of 

generality assume Jc • I Then the null space of u~ corresponds to 

the null space of some finite dimensional matrix D It is easy to see 

that the null space of 
II' 

U,.._ corresponds to that of the transposed matrix 

DT These have the same dimension and we are done. Thus 

'VIc (4. 24) 

-By duality we can reverse the roles of U and U in (4.24) to deduce 

the reverse inclusion and inequality. We summarize the results : 

The spectra of U and U for 1,....1 ~ e- ~'w 

coincide. U - ~ !. and U - /4 t have equal (finite) 

ascents v,..., and d,~ (u-,...r)~: 

i.e. the generalized null spaces of the two operators are 

in one-to-one correspondence. 

This completes our demonstration of the duality between equation (4.1) and 

its formal adjoint (4.12). 

We can now turn to the projection operators, but first we need some 

preliminaries. As above let ~~ ~ be bases for the generalized null 

spaces of V- ,.-.I and iJ- /'"I respectively. We may choose these such 
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that 

(4.25) 

(the <i ~ • d,.._ identity) since ( 'l, t) 0 is nonsingular. To show its 

nonsingularity, if ( 'F, f).1 = 0 then ( tP, f~) =0 , i.e. <.r. ~~>::.o 

with r defined above. Since r v. 
is a basis for nc:u*- }L !J ~ we 

have that tJ: annihilates this space so ~It f- R(U-ri)
11

,.,. (cf. 

Taylor [ 16] , Theorem 5. 8-A). But then since ~ ~ t: n ( u- ,....rJ "'~ 

have ci !_ '=' o , i.e. ~ =- 0 . 

we 

Now since t.J p: ~M U .P•;::. ~ , we have ( i', U ~)~ :: ( lp, ~M)0 ~ I 

By (4 .18) this equals ( a .P, f) Jo ': ~ ue, iJ ... A , so 

1\\~M, and ~,.. B Thus 

I ("t:, o) cp = 'Plt) eat, t > 0~ 

6.< o, 

are the eigenfunction solutions of (4.1) and (4.12) respectively corres-

ponding to !-'- Let us denote 

note T(~ 1 s) ~(s-):. ~(f). Also note that (4.25) implies 

I. (4.26) 

We can now specify the projection onto the generalized null space 

of U- ,.._I. . Let }-4- be a characteristic multiplier with \I!li-) 1 ~(+J 

as above. Define the projection ~,...l-t) onto along 
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(4.27) 

for each -f: That this is the desired projection is clear except that 

... 
we show ¢ ~ R ( U( f) - ~ r) ,... implies U?,.. if) ¢:. 0. In fact '/> = 

[Ut~J- ~ r) u,.... "'1 implies 
v. 

Q,..ti) rJ : l{>l"f-) ( '£t+-), [Ulfi-)A.l) ,. tl,)~r: 

6. Decomposition of the Solutions of the Inhomogeneous Equation 

Let us now return to the inhomogeneous equation (4.9): 

X ;[ ( t 1 }() : f tt) . (4.9') 

Let a solution of this be X t and let ""+.. be the projection of ~,. 

onto E,..t~) : 

~l+J ( ':Pt~l, Xe) e.- • (4. 28) 

An expression for Xt is provided by the variation of constants formula 

(4.11). The projection of r.o onto £"14 {t) is 

(4. 29) 

We show that wt satisfies 
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(4.30) 

and that, for erst-, 

t-

wi: ,. f<T rTct, s) Xulf(sJ) f{•> cis + Tft,t1')v.J,.. 

-t 
= ~li) J,. ~(s)(o) {Cs) d; + T{t:, a-Jw,. 

(4.31) 

It is easy to show that (4.30) follows from (4.31). To show the latter 

we use (4.14) to get 

t-
f(t.) J j(.,> {D) /(r) ds-

tr 

t 
= T(-f., fT} fer) (tj(r>.,XrJr + jr TU:,r) T0Q{~) 1-(r)ds-. 

which is (4.31). Also, since ci (tJ 

letting 

(4.32) 

where is a column d_,..-vector, we have that 'l. 

satisfies the ordinary differential equation 

(4.33) 

This follows by use of (4.14), ~(+)"" l?~:jl+) + ef"t Jk ( 'l!t+J, x-.,J'i :: 
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st d r-t 'Bt + e. dt J,. ifc"J /o) t{s) ds : fi'CJ_+ e. 1H '£tHloJil+), 

With this result on the projection of xt , QJ4 CtJ "-t , we can 

prove the Fredholm Alternative Theorem giving necessary and sufficient 

conditions for the existence of an ~-periodic solution of (4.9') in 

the case that f (t} is w-periodic. Now the homogeneous equation 

(4.1) has spectrum that can be separated into three parts: 

/to :: 

and all 11A-I < I . 

Denote by £ADltJ the span of the generalized null spaces corresponding 

d i · 1 1 f E A..,l~J • Let to ~ ~ 1\
0 

, an s m1 ar y or 

corresponding bases with projections QoCtl; ~+ltl. For the formal adjoint 

Letting ;(~ be any solu-

tion of (4.9') we have the projections 

0 xt; : 

+ 
x* = = 

Also 
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dt 

)(0 
t 

d + - Xt dt 

)(0 
+ 

-x: = 

where 

':. 
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;[ l t 1 l(:) 

- :f(t,x!) 

Tt'f:., cr) 
0 

Xr 

Tl 't, cr) x+ 
(/' 

/lo Xo (t) = 

as we know from (4.30) and (4.31) 

the Fredholm Alternative Theorem. 

A 
= x. 0 

ltl ; (t) .. 

J\ 
:: X. •ct) .(. HJ ' 

(4.34) 
'f-

fqo (Tit, f} X/'•csJ} +trJ Js, + 

! + " + ,. [rc~, s) X. •cs>] /-Cs) ds, 

) 

( Qo = etc,). We now prove 

Theorem: If f.lt+tAJ): fit) in (4.9') then a necessary and sufficient 

condition for the existence of an W-periodic solution for all t is 

that 

(4.35) 

for all w-periodic solutions l of the adjoint equation (4 .12). 

Proof. The necessity of (4.35) follows easily using (4.14). Suppose 

><t is an w -periodic solution of (4. 9'). Then for any ~ ct·) an 

c..>-periodic adjoint solution we have J;, w y tot-) f l'tl d"t = ( '1w 1 Kw )w 

( 'J 01 )(. ) 0 which is zero by the periodicity of y, )( and K . 

For the converse suppose (4. 35) holds for all w -periodic .} (f:) 
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solving (4 .12). Letting x.; ..,. ~ f-- x;- x: we have besides (4. 34) 

(4.36) 

where ...... ~~- ( .. J "l7- "'• ""-t -4 " :t 4•- ro (sJ -z.,,J. Since 

+ where If A+ is empty we put )(~ ~ 0 • 

Otherwise oc '> o Next we know that II Tl~, t) r :- { S) ll = 0 ( e I!Jc•-')) 

as t: - 5' --. a> where p is between 0 and ,., A.)( [ ftc ( ~ r.J JA.) 1 

x+ 
.... = 

Thus in (4.34) we may let c:r-.ao so 

the integral converging. Similarly we let (}" -.. -CD in (4. 36) 

(4. 37) 

(4.38) 

The functions x: as given in (4. 37) and (4. 38) are w -periodic since 

0 f [Tlt-, ~+ t) Ko"±(.r+t)J ftt~rJ dr 
:t., 

and T(tt-CJ, S•t•~):: T(t,~•t.) by (4.5), and .f. and Xo (t-ts) 

are w -periodic ( x:~- (t) ":::. <t>!t) ij!+{t)l o) -= 

is w -periodic, similarly for X 0
11

• < ~ 1 and X :-l~l = X.- :X .... rf.J- x:•ctl). 

E Ao 
Thus we are reduced to finding some )( r in (a-) such that 
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is w -periodic since then Kt = ... 
"'t 0 -

+ "+-+ x. would solve (4. 9) and be 

periodic. Defining ,. l ~) '1: e Itt; ( i£0£ ~)I f'-e)t as in ( 4. 33) where 

~olt-J:: f> 0 (t) e ~~, t£ 0
li:l ::. e.-8~ 'Jr0 £f) we have the ordinary differential 

' 
equation to be solved, 

. 
~ l~) = (4.39) 

Clearly if an~ -periodic solution ~l~) of (4.39) exists then 

rt- • Pftl \lt) would suffice. Now such a 't tf-) exists iff 

w 

Jo rrlt-J P0
lf)(O) /(f) dt ::. 0 (4.40) 

for all r T l-I:J w-periodic solutions of the adjoint of (4.39). This 

follows by the Fredholm Alternative for ordinary differential equations. 

The adjoint of (4. 39) is r T = - r T 8 and has solutions 

r-0 T ~-at so (4.40) becomes 

JC.-Ir:-re-Bt: 
0 • P0 f+J(o) f(t) d t :: 0 J 

i.e. 

where r 0 T is chosen such that 
r -Bt 

r 0 e is w -periodic. But this 

set of r;,T {1°lt·) is precisely the set of w-periodic solutions of (4.12). 

Thus (4.40) holds and tit) exists. I 
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7. A Structural Stability Theorem 

As an application of the Fredholm Alternative Theorem we prove a 

theorem about periodic solutions of nonlinear integra-differential equa-

tions. 

Consider 

?('( ~) tf' ! I € ) J (4.41) 

where .Jr(.t:) * ~ a k ~(l",s) !lt-sJ d.r J ~is some parameter, and I 

is a twice continuously differentiable function. 

Suppose that at E :: 0 this equation has an w. -periodic 

solution W(t). Then the linearization of (4.41) about ){::\111 and at 

f : 0 is of the form 

dt 
At~> ~lt) + fo#(("t,-&} 'tlf:+8Jd~ 

-oo 
(4.42) 

d)( -

where AltJ and Klt., -&J in its first argument are wo -periodic. 

As usual we assume ~(E:, S) ,. 0( e,-YS) as S'~ 00 for some ~>0 so 

likewise K l ~~ r) = 0( e- ..-s) Now we note that v, a ciw 
is a solution dt 

of (4.42) and is W0 -periodic. Thus is a characteristic 

multiplier for (4. 42). We shall say that }"- = J is simple if the ascent 

IJ,.._ of U- ,.. I is equal to one and d ,·,.., n l u- ,.._ r) : 1 , i.e. the 

generalized null space has dimension one. 

Theorem: Consider the equation (4.41) for ~ near zero. At E:O 

let (4.41) have an W0 -periodic solution ~(t) and suppose the lineari-

zation of (4.41) about X: W('t) at ~-= 0 has as a simple 
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characteristic multiplier. Then for all sufficiently near zero 

there exists an w(tr) -periodic solution wet, f!:) of (4.41) where 

Proof: The proof is similar to that of the Hopf bifurcation in Chapter 

II. We first scale 1: since the period w (e) is expected to vary : 

t 11- = -tjlt- rCEJ) where 

':Ht"') " !ctJ = ~ [(I • ..,., t] 

and 

We seek an 

W(E): c..l 0 (/ .. 7"(f)) 

~0 -periodic solution 

which is the fixed point of an operator equation in the Banach space 

c """II :: -.~,. ,...,, + ,. .... ,. 1U..1 ) 

8 = l "'<.t) ~ is continuously differentiable and 

W 0 -periodic } 

Define 

We are assuming that the linearization (4.42) has as simple. 

Then the adjoint of (4.42) will have only one W 0 -periodic solution 

since r- ::.) is likewise simple. Denote this adjoint solution by pl+). 

Define the closed subspace 

~ ( t:) d t ::. 0 1 . 

We have f ooo ~ ( ,., r) x[ (lt-T)t!' -S') ds :=. 

?f'(~) * X :: fo~ :>'((~,s) Y ('i•-r)dS' + 

..9 ( Y, T, ~CFJ J where 
n rfl<> [ * ~ 

'toll ( '1, ..,., ~c i-)) ;:;. ;
0 
~o. s;) 'Y U: - ;;-;.) 

y H."- s) cis) and is of order for small T This is clear-

ly a bounded linear transformation on B 

The linearization of t about w(!-) is 
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/10 
where t- 1 and 

r o 
T1 are the partial derivatives of .P with respect to 

the first and second arguments, the first evaluated at ~(f) , and the 

second at and £:. 0 . Denoting A (t) t 0 
I J 

(t) = f-2° we see that A, 8 are matrix functions of t 

that are w~ -periodic. Note that the kernel k (t, s) in (4.42) 

equals 

Put then r satisfies (dropping 

the star on -t ) 

d~ 
dt 

+ ...t ( c, r, "k ( ~ J) , ~ ) 

The right side is a function of and when we Taylor expand it 

in powers of these variables we get 

+ 

+-(?f) t 
0 

+ ~ ( ~I T, E; t) 

where involves only quadratic and higher powers in 

~ .. T"' ~ ,._ o ) . We rewrite this, using J (""', ~ "7rl•)) = 

J- . _ 'T" 
0 
~ t o

1 
s) S' w l -t:- r ~ d S" + 0 ( r L) 
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d.t 
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CD 

A(t) i!: + lr~ Klf:, 8) ~{t-- 9) d& 

e [ (r! ). 

+ 

is of the form of ~ Thus 
~ 

+ 

... --

I 
~ ( :;., /, ~ j t) 

(4.43) 

By the Fredholm Alternative Theorem (4.43) has a periodic solution iff 

c..>o 

JO ~(t) e f ( 'f:lt) I 'T, ~ ; t) dt ~ 0 
0 

This condition determines T as a function of -1:: and ~ (for these 

small) with ..,- = o when :C-= f ... 0 . To solve h :. o it is sufficient 

that l~ ~ 0 at fi ..,.. '1: i. ': E- :: 0 We have 

(~) ::. f
0

w
0 
blt) • [ ~l-t-)- J:Kct-, ~J S .; lt- r) cis) dt- • 'r 0 J~ r 

That this is nonzero is seen from the following argument. If it were zero 
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then the equation 

co 

V ;! (f:1 v) = ..;., ttl- fo Klt, s} S w tt-s) ds 

would have a periodic solution by the Fredholm Alternative again. 

But clearly t ~ttl is a particular solut i on so the homogeneous 

equation (4. 42) would have Jc <t) a - v. lt:) +- t ~ lt-) as a solution . 

Since • 
and w are periodic, k 'flo so is an eigenfunction 

corresponding to multiplier since 

St:- • ?{t) e._ Wlth Pl-e> = (~., 
1
-Vot.), B ~ [~~). This implies that the 

generalized null space of U- I has dimension greater than one, con-

tradicting the simplicity of }4~ 1 

Thus, by the implicit function theorem, we have T "" rca., EJ de-

fined for 

and such that Next we note that (UJ - o 
.} ... 1:" •• 0-

since 

(:;) 0 :: F contains no linear 

terms in t . Consider now the equation 

v m lt) 

for any ~ ~ 8 0 • The Fredholm Alternative allows us to conclude that a 

periodic solution v exists, and can be made unique by some arbitrary 
A ~ 

requirement. Thus v:: A ..... for some linear operator A: e. ~ e 
... 

That A is continuous can be seen by examining (4.37) and (4.38). 

Analogously we define and see that these and their derivatives 

depend continuously on the inhomogeneity M Also 
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where We can 

choose ..,to) ::. o say, for uniqueness. Clearly n and 
. 
n depend 

... 
continuously on ~ Thus Vt does likewise and A is bounded. 

"' Thus the map 7F ( '1: I E) ::0 A ° F (!:-I "TCZ., ~) I ~ ; t.) : (J --t 6 is defined 

on " [ -£ •, e•) and is continuous. Also I U) -:. o 
\..) \ i .. ' "-0 

since 

(ll) - o Thus by choosing 
~l:' 'l::. f •o- . 

E0 small enough 

~ k. Jl't,-~ll\\ for and I* I~ ~o and o<.lf•<i 

Thus for each fixed £J ~ is a contraction mapping on Ste-. and has a 
0 

unique fixed point ~ (~) where 

Fl~, .,-, r:- ~ -tJ so ~ is the required periodic solution of (4.43); 

Putting T( £) • TC 'ilf>, E) finishes the proof. I 
We note the close similarity of this and Theorem 2.1, Chapter 14 

of Coddington and Levinson [ 1 J . These assert that if a periodic solution 

of a system of nonlinear equations is nondegenerate in some sense then 

if the equations are perturbed slightly in any desired way they will still 

have a periodic solution lying in a neighborhood of the original one. 

This is a sort of structural stability theorem. 
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CHAPTER V 

STABILITY OF PERIODIC SOLUTIONS 

In Chapters II and III we constructed periodic solutions of non-

linear integra-differential equations. In this chapter we examine the 

stability of these solutions. We shall prove some theorems that will 

assert the stability or instability of the periodic solution given certain 

information concerning the linearization of the equations about the 

solution. This linear equation has periodic coefficients so we can 

utilize the results of Chapter IV. Next we apply the theorems to deduce 

the stability of the periodic solution which was constructed in Chapter 

II by perturbation methods (the Hopf bifurcation). We also analyze the 

stability of a bifurcating periodic solution of a certain nonautonomous 

equation arising from population dynamics. These examples should suffice 

to demonstrate the applicability of the method in the case of bifurcating 

solutions. 

Suppose we have a system of nonlinear equations 

d!' -dt-
;t ... ,!: It) I 

(5.1) 

where l: e (1\." /( = ::\'Cr) is an exponentially decaying matrix kernel, - , 
and F is twice continuously differentiable. As usual ,., 

dO h ?r'(s) ~tt-s) ds. 

Suppose further that equation (5.1) has a known w -periodic 

solution f> ( 't) so that F is w-periodic in its last argument. 
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We wish to examine the stability of f (~) . First we define this concept. 

Suppose ?c'Cs) :. O(e-Y") as S ~ 0' ~ Y> D . Then, as in Chapter IV we 

have such that .J' v+ . ~ < ~ < Y and arb1trarily near 

Definition: The solution flt) of (5.1) is stable at dr iff given 

~ > 0 there exists a I>~ such that if initial data ~ lt) is given 

for (-cO,(!"] satisfying S~.e.p }(J>Ct>- ~(t)) e- rr(t-"J/ <f then the 
-ttr -

solution it generates, ~(t) , is such that ( '!lt-J- [l~) l<e for 

all t- ~ tr . If in addition I ~IH- f:.l+;) f _,. t:> as f-+ cr:t then 

is asymptotically stable. p is unstable at cr if it is not stable at -
r:r. 

Thus small initial perturbations on the interval (-•., tr] generate 

small perturbations to the solution, where "small" is in the sense of 

some norm given above. The definition can be restated as follows. Recall 

from Chapter IV that 

f '/>(tJ) defined on 

at (j iff given 

f C t) is represented by 

a {a o 1 S14p let•• ;ce>}<ao}. 
"'0 

and 

Then 

€>o there exists $ > 0 such that if 

c = 
is stable 

¢~c 

and II tj> - Pr ll < f then the solution r t that ;, generates at tT 

for all t ~ (I". The solution 

p is asymptotically stable if I ~ c t > - t> c ~> l -. a Next let 

us change the dependent variable from ~ to ;< , putting 

)({t) ... 

so ~ satisfies the equation 
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where ~(f:,~):: Bltl ?((c-) and A,B are w-periodic. Also • f 
is nonlinear in X and W-periodic in its last argument: 

We shall in fact suppose, given Go> o, 

there exists "7 > o such that .f. ( X1 1 'Xitr1 J f)- .f<x£
1 
~•Xc, t) J < 6llf1 -if'~l/ 

and all -t: ~ fR. . for 1/ '){ i 1/ s ?') , t.' -:a I, 2,) 

The linearization of (5.1) about ~ = ttt) is given by the first 

two terms of the right side of (5.2); and has periodic coefficients: 

d~ 
dt. 

ACt:> y + 
Q) 

f " ( +, s ) v ( t- s) d s . 
0 

(5.3) 

Suppose (5.3) has some characteristic exponent with positive real part. 

Then we show that for all or the solution ! :iil tJ of (5. 2) is unstable 

at ~ . Equivalently, is unstable as a solution of (5.1). 

Theorem 1. Suppose equation (5.1) has an w -periodic solution pC-t) 

and that its linearization about p is given by (5.3). Suppose that 

(5.3) has a characteristic exponent with positive real part. Then for 

every ~ ' the periodic solution r<t) is unstable at cr 

Proof: To prove this we proceed as follows. Fix t:r throughout and for 

brevity denote f.(t, xt} ::- -F-CI(, ~ .. x,t). We divide the characteristic 

multipliers of (5.3) into two parts 

/\- -::: 

Denote 

f }J- { }f'/ > I f j 

). s min Re ).,. . Let 
• 

~i (t)) fi (t) be bases for the generalized null spaces 
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of u- J4i I I u - /"i r respectively; and ~ ,· ttJ ... P.· c tJ e s,t , 'f,. ttJ = 
e- B;t fc (t) where Be' has the only eigenvalue A, . Combine the 

bases into f> lt> = ( f, , ... , f ... ) :: PCt.> eat P(tJ ::. 

8 = fl,·., ( fl, I ... > B,..,) I p(i:) = row ( P, ... P ... ) I p {t):: co/ cf.- P,.l. These form 

-bases for the span of the ~"'' l-f:) 1 E,., itJ respectively. 

Let xi: be an arbitrary solution of (5.2) and define its pro-

j ections 

--

:: )(+ 
t-

) 

cf. (4.28)-(4.31). We assume B is in Jordan canonical form with 

superdiagonal 1/ and 'JI > o 

ll < ~ 

can be chosen arbitrarily small, say 

10 

To prove the theorem we assume on the contrary that ~: 0 is 

stable and derive a contradiction. For each € > 0 (to be fixed later) 

there is 1 > o 

t and II tJ,·II ~ "7 . Then by the assumption of stability there is f,. o 

such that /1 K,. JJ ~ [ implies II~* II~ '7 for all t ~ (/" With this 

hypothesis we choose 
~ -X ~ :. X,. ... X tr with + K, :.;o so that K 

has initial value in the space of eigenvalues with positive real part. 

We are assuming the ensuing solution X'* is bounded in norm by "'/ 

As in Chapter IV let 
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X" o - X/ t-t> 
~ 

so x: satisfy the integral equations 

(5.4) 

and x;:::. 0. By a result of Chapter IV 

with V defined as above and k 1 depending on Y only. Thus from 

(5.4) 

( 
vH-rJ ) 

E '7 K, e -1 

as t -fo CD • Also if we write x,.• -= f (r) f for some constant f then 

X + 
+ ::: ~ ( t-) [ 

Since 'PCs)(o) :: 0( e-es) as s + ~ , then the integral 

J40
'i'(s)f&) .J!Cs, x,> ds converges and 

+ 

t10 

x./ = 4>(t) [ c. +- J, i[!(r)(o) f.{~,x,Jds J 

- ~(tl /
40 

l}icslCb) fCr, Xs) d~. 
t: 
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Under the assumption II X 7 II !. ~ the last term in 
.,. 

X4: is bounded since 

.r. J Q) lA-pJ(t-s) 
e '? M -t e d.s 

= 

where 0 < >. -JI :: ..\ 1 ~ IIBI and M= tY)CI)C ( nPwll, IIPttJ/1). The first 
t. nr. 

term in is with L. = c. .,. fooftsJfl) -/(t,r.r)Js and this 
r 

has growth at least as t-+ 00 Thus, since XI: is assumed 

bounded, we must have h: 0 Then Xt solves the integral equation 

t-
r T(t,s) .:rD-(t) fc~,Xs) d$" JtT 

_ ~(t) Jco~(~){o) f(~_,Xs) d.s. 
-t-

Then 

f -t e JJ{t:-s) 
ll X'*' II ~ k • E .. II Xs II d s 

Choose f' > 0 such that put 

Oa. = A,- f' Also put 

Then R = St..<J:> rtt:) exists. Furthermore, from (5.5), 
t•, 

a.,:: ,-.v 

(5.5) 
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rc t> 

\ 
z:. R. 

if we choose f< z ( ~ + ~) ., ..• This holds for all so 

R ::. '51Af' r 
\ r R. 

This implies R :s o so Xt :. o for all t~ a- . This is impossible 

since x,:jo 

theorem. I 
This gives the desired contradiction and proves the 

We now turn to the question of finding sufficient conditions for 

the stability of the periodic solution. It seems reasonable that if 

(5.3) has all characteristic exponents with real part negative then fctJ 

is stable. In fact we prove asymptotic stability. First we note 

Gronwall's inequality (cf. Problem 1, Chapter 1, Coddington and Levinson 

[1 J ) : let 'X {t) > 0 on Ccr, co) and 

~ 

¢tt) -s. t/--( t) + jtr XC sJ pJu J d 5 . 

Then for rp {I;) ~ 'fJl tJ 
't 

+ J,. X{s) !f(r) 

t 4 7(( .. 1d ... 

e ds. 

Theorem 2: Suppose the linearization (5.3) of (5.1) about pCt) has all 

its characteristic exponents with negative real parts. Then the periodic 

solution ~(t:) is asymptotically stable. 

Proof: Suppose the characteristic exponent~ A satisfy 
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Re-X ~ -0( < 0, 

Then for some constant N\ 

for all r) f C . The solution Xt: of (5. 2) satisfies 

-I-
X i: = T ( t 1 CT) X cr -t- Jrr T (. 't: 1 S ) .X:o .f ( ~ X s ) d S' • 

Choose 0 < E < < and i ,.. o such that II ¢II~ J' implies II I(~ fl) II S 

~ IIP'H, Vs . Then, so long as II Xs II ~I, 

e •#: II x~ lJ ~ M e -< r II X,. II 

Using Gronwall's inequality we find 

t-
ee. (I' j 4ct-s) 

e "'t It ><'t: 11 s 1'1\ e "" ~~' II x tr II .,.. 6ft\ e II x,. II ,.. e t1 s 

... t:r 
llxrll e 

so 

II X~ II 
-l oc- ~) (t ~ cr) 

~ M e II x II' II. 

Thus, choosing /J Xr Q ( A implies II xt: I/ ~ f for all t ~ t1' • 
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Furthermore II x-t- II -+ o as t -+ ~ , so Xlt) ~ 0. I 
For many cases these two theorems suffice to determine the stabil-

ity or instability of a given periodic solution. However, in the case 

of autonomous equations, the hypotheses of Theorem 2 are never satisfied, 

and we must examine the situation more closely. 

Consider the autonomous system of equations 

dr­
dt 

;::: (5.6) 

with il(_.F
1

'!: as in equation (5.1). Note F is independent oft: 

If ~(t) is an tV-periodic solution of (5.6) then the linearization 

of (5.6) about P is still given by (5. 3) with A., K w -periodic. 

Now notice that 
• c:l,. 
~ : dt solves (5.3). Since f:' is w -periodic 

we conclude that (5. 3) has fA-= I as a characteristic multiplier. Thus 

we see that Theorem 2 cannot apply. In many cases fl =/ is simple, 

i.e. the generalized null space of u- ~ has dimension one (being 

spanned by Pt- ) . If also all other If" I<.. I then we can prove that a 

different type of stability holds. If r t starts close to Pot- at 

some t then :r becomes asymptotically periodic as t _.. co and even 

though I I"Ct) - ~Ct-) J may not tend to zero, the orbits described by 

Z: and p tend to coincide as t -+ oo . More precisely, 

Definition. The periodic solution pet) is asymptotically orbitally 

stable iff there exists €->0 such that if II rt• - l>e II<~ for some 
0 

to, t 1 ' 
then the solution rt of (5.6) for t~ t •. t. satisfies 

J i I'Yl io c t) - )>Ct-~c>J ~ 0 
t ..... co 
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for some constant C 1 called the asymptotic phase. 

Theorem 3: Suppose the linearization (5.3) of (5.6) about p has all 

characteristic multipliers 1~/ < J 

simple (equivalently, all R e ~ < 0 

except JA- a ' , which is assumed 

except for a simple A =. o , ).. 

being a characteristic exponent). Then p is asymptotically orbitally 

stable. 

Proof: We shall prove this by showing that there is a manifold orthogonal 

to the orbit pt~) at one of its points such that if a trajectory 

passes through this manifold then it develops the asymptotic properties 

of orbital stability. We note that this is exactly the method of proof 

of the corresponding classical orbital stability theorem given in Theorem 

2.2, Chapter 14, Coddington and Levinson [1]. 

Note the translation invariance of solutions of (5.6), namely that 

if ~(i:) solves (5.6) then 

stant k 

~{ t- +k) also solves (5.6) for any con-

Consider the equation (5.2) obtained from (6.6), by putting 

We have the Lipschitz condition for -? : for all G> 0 

there exists 1'> o such that if llxl/, li"/1 s I' then I ll t, k ) - /(t, >tJ} 

< E llx-x 1/ for all (Put f-Ct,N.,) • (Cic,'J('•K,t) ). The 

linearization (5.3) has multiplier ~~1 

~lt}: r<t): ~t spans E,(o). Put 

and null space F, (O) : nc U- :X.). 

C :: E, to) e R.1 . The adjoint has 

corresponding 'PIt) , E, to) with IJ't~J CA> -periodic. 

We now find the manifold mentioned above. Consider the integral 

equation 
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e-t {o.) ::. r<t,o) Q,. +foe T(t,s) X'',(s) /.(-;, 9s>d.s 

(5. 7) 

with ~ ~ R 1 • 

for some K~ > 0 

II T ( t 
1 

S") X Cr) ( S J J{ 

1\ f<-t) \££r)(O) 1/ t~s 
J 

where cr = m ;Fl f lA/ /). is a characteristic exponent such that Re l <o J . 

Also 

II T(t, 0) a. II k e
_tr't: 

I II t:d/ 

Now choose .!!:.. z K~~. and let I be the corresponding quantity in the 

Lipschitz condition for f . We show that if Uo..ll ~ ~'K, and 

then (5. 7) has a solution 9~ C 4) for t: .,_ o satisfying 

o. e R, 

II e-t:. (qJ ll ~ 2. K, II a. U 

It is easy to show that 9-r satisfies (5.2) (cf. proof of Theorem 1). 

We construct &t by successive iterations 
& C'-) 

t ' 
k=O,I,4, ... 

Let et•> --e - D and 
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.n '"'*') 
t:7 t (II.) ::r 

1: 

Tlt,o) Cl. +It> Tl'f:,s) X(I)Cs> ?(s, e./,..'Jcis 

t co ,r, c lc) 
- Jt fctJ r(s){o) ~<s. ~s ) ds. 

Then it is easy to show by induction that for all f:. ~ o 

Thus 
"(kJ 

li..., 1:7~ = B-t: exists for each t :~;. o and 9-t • C • Clearly 8~ 
k ~CliO 

satisfies (5.7) and 

CD 

2_ U 9:"~,,- e~") II ' 
If 'l e - i:' t7 t: 

~ 2. k, " 
k::::D 

so et-+ o as -t-+cc • Now at 

a.-
co 

~lo> j f!_(sJ(D) +csJ 8sf•>) ds 
0 

and Q. E R1 , f(o) E E 1 lo) so 6o(Q) has been decomposed according to 

C.,. E,to) $ R1 • Let IT be the projection operator onto E, foJ along 

R, ' 
I Tr : I-11" projecting onto along E, lo) • Note rr, 7r" are 

bounded since E; to) ) R1 are closed. On a neighborhood of zero in R 1 

define the real-valued function ~ 

N( ~) 

It can be shown that ~t ( o...> is continuous in Q. so N is a nonlinear 
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continuous function and is o(G\) as Q.~O Also 

fV(tA.) qi(o) 
I 

- Cl. 

If we can find tJ ~ C such that ¢ = o.. e Nltt> ftOJ, and 

Ufl/ small, then the corresponding 9* (o.) satisfies ¢ = Bo (~) and 

9t--+ o as t +"' . The set of such t} defines a manifold J\1\ given by 

the relation 

N( v' ¢) ~coJ . 

Thus if p is on M it generates a solution &-~; ( Tr'lfl) that tends to 

zero as t"*oo . 

Having defined the desired orthogonal manifold we show that, given 

a solution i: ( t) of (5.6), if II rt,- ~-t .. JJ is small for some 

then the trajectory r-io passes through the manifold Po-+ M . Let ~t 

satisfy (5.6) and 

with ~ to be defined later. Put 

'P ( i) rlt+t,-to) 

Clearly j' solves (5. 6) so 
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solves (5. 2) for t ~ t"o • Note II Yt. 11 <E • Later we shall choose E-

so small that II Y-t Jl remains small for I t- to} < 2w , no matter what 

'i we have. Then it is clear that by shifting t: if; necessary we may 

assume that t 0 is a multiple of w . Also put 

J 

we show that for some t , U~ is on the mani:f;old 1'1\ • 

The fact that tJ is nonlinear of higher order implies that for 

E
1
>o there is '1*' >o such that Ita. II,. 1/ l. II :S. ?~· implies N(•), 

N(b) are defined and I N(tAJ- NC/.J / < 6' II •-l/1 . Choose 

II TT II 

JilT" 1J II f(o) /1 

Put 't~ ~ p~+t.. - P.~. for lfl ~.l.w Choose 'r>O so small that 

T< 2.w and llttll ~ ~f 2 n rr'l/ or 1 rt~ ...,- For such t we have that 

N(lf'1 r) is defined. Put 7T'l, f .: k ( ~) ~(D) and .; (f) :::: Kl ~ - N c rr''l rJ . 
,.J • 

Then since t t " t Pt ..... 0( PJ = t i<o) +0~~ we have r£ f) -::. 

f + OtP·) , " and we suppose this last term in ~ M .z.a. is less than -.;; 

in absolute value (for I 'fi ~ T) Now there exists f > 0 and 

0 < T' < T such that 
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...... -z. 
t--Ml: -p>oJ 

(5.8) -t: f [-r, -r']. 

Since II 'i-t. II < e , choose ' > o so small that 

II 'it. ll s w-tn f L II f{D) II 

"' } 2/lrrll 2. H rr'll 

for lt-tol ~2w 

-With these preliminaries we find i: such that uz- tt;N\. Since 

u-~ = Yr + t:-. + 1-t: we have 

.::J_ lf'l<-rj 
II rr'll 

-We seek t such that pttJ ::. D (since fJ and "' y are close, 

A 
y(t) : 0 

... 
and y is linear near zero, we expect to be able to do this). 

Now 

!: 11 1T 'J t ~ t:. I) J/i ~(6) II +- €' II 71"" JJ II 'If 't t. J) 

2 ll TT Jl 
Jl ~~~II < f. 

Thus by (5. 8) (Sl ~) changes 

sign as t crosses zero. It has a zero at f Thus 
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is defined for t ~ o t ~ t>. 

Since tt.., c-.. t, = 'fi: •t + t. and as i: ...,. GIO then II rt +t+ ~ -

Pt ... t. II ~o j i.e. as -t -9t:D , II i:t- - f-f:+c_ II -o for 

as we wished to prove. I 

I 

C• "t 0 -f+t1 

We now apply the results of these three theorems to someproblems . 

First we consider a problem from Cushing [3 ] . He considers a certain 

nonautonomous generalization of the delay-logistic equation for one-

species population growth. Specifically, a periodically fluctuating 

environment is assumed: 

dN ~ N. ( ..\ + ~ l-tJ -a lt:> N 
dt 

(5. 9) 

- J eok(t, 9) N(t-9)cl9 • r{t, N, K•N))~ 
0 

where are real numbers, ~ representing the population 

size as a function of time t . We assume Q,.j b are w -periodic as 

well as K, r in their first arguments ( k is exponentially decaying 

as 9 ... D~:J) . Also r is assumed to be at least quadratic in N,~ lc .. N. 

Thus the birth rate .\ + b {~) , capacity coefficient Q.(t) , delay ~ 

and higher order corrections r are periodically fluctuating with the 

same period. This could be due, for example, to seasonal changes, har-

vesting, biological rhythms, etc. It is assumed that the average value 

of b is zero: 

(5. 1 0) 
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so A represents the average birth rate. Cushing then shows that a posi-

tive periodic solution of (5.9) bifurcates from the trivial solution 

N: 0 at .\ "0 , assuming o., K > 0 . Then he shows that if k', r- are 

sufficiently small, the periodic solution rJ is stable. We shall 

-analyze the stability of ~ for any ~' r , showing that if these are 

large enough rJ can become unstable. This demonstrates the general 

rule that sufficiently strong delays can have a destabilizing effect. 

A regular perturbation procedure can be used to obtain N as 

follows. Put 

with the tJ ~ w-periodic. Substituting into (5.9) and equating like 

powers of ~ yields for 

b ( tl AI, 
) 

i.e. 

This is W -periodic by (5.10). The € .z. terms yield: 
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i.e. 
t- 't d/'J1. 

6 t - btt) Nl.. 1. bds 
o< e fo l:>Js 

[ .\, - 0( a.ct-> e -

We require Nz.. to be ~-periodic so an application of the Fredholm 

Alternative is needed. The adjoint w -periodic null solution is 
t 

- fo lo(~) ds e , so we have 

0 

- ~ /,.(~)Js J e. -~> dtJ dt -:. o. 

This gives 

Then 

Clearly this can be continued .to find w -periodic N(t:) We stop here 

and turn to stability considerations. 

The linearization of (5.9) about ~ is 
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~~ -= v ( >. + bltJ - t:tltJ N- kt+.> ,.jJ + r(t:,ii, K•iiJ) 

(5.11) 

+ N [ - G\lt) v - kl~J ~ v + rN' ctJ [ v] J , 

where r;; -= linearization of r about N • At E- = o this is 

b l-b) v. (5 .12) 

It is easy to see from the proof given by Cushing that if r is 

analytic in N, K~N then N, ~ are analytic functions of 6 Then 

the semi-group Ttt-, s i E-) associated with (5.11) is analytic in ~ 

so Ulf) ::.. Tlt-~1 o; f:) is analytic. We appeal to Theorems 1. 7, 1. 8, 

U(t:) varies Chapter VII of Kato [7] to deduce that the spectrum of 

analytically with E, reducing to that of ulo) as E--tJ • The latter 

ef.~i.cb 
consists of p.::.J with corresponding (periodic) eigenfunction 

solving (5.12). Since the characterisitc multipliers }l<~J for (5.11) 

vary near those of (5.12), we have one branch ?sCE) perturbed off the 

value j-t:J and all others are IJ-4\ <I Note that fls is simple. If 

I J.As ( f'l I > then by Theorem 1, ~ is unstable. If IJ-ls I < l then 

by Theorem 2 , N is stable. We thus need only calculate f!s l~J • Put 

thecharacteristic exponent. The corresponding eigenfunction has the form 

V(f:, 6) -= 'Pl-t,e) 
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with P w -periodic, cf. Chapter IV. Let 

p = 

(each Pi is w -periodic). Then 

where 

v, : 

Substituting these expansions and N -=- e !V1 + ·· · ~ ~, • ..1, + . . . 

(5.11) yields a hierarchy to be solved. 

The ~ 1 terms yield 

i.e. 

df'o 
di 

The E.z.. terms give: 

dv, 
dt 

- b(f-) v, 

bIt) Po , 

~ 

J. I. (r) <A..­e. 

l dP1 
d~ - b{t-J r,) 

t 
~ J} fo t..ts t .\1 + 0( [ -z a.lt>l!. -2. k* F'0 e 

into 
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We require t 1 to be w-periodic, so the Fredholm Alternative implies 

0 J 

i.e. 

P - ~e·L 
I - W -.A, . 

Then periodic P, exists, etc. We stop here since, for e,« >o, 

~jh f{€1: s ~,... fl 1 ( E small). Applying Theorems 1 and 2: 

N is stable if fJ, < 0 , unstable if f, > 0 . 

Note, if K is small then since Gt > 0 we have {S, < o 

is stable, in agreement with Cushing [3 J . However, since 

N is stable regardless of the size of ~ 

so N 

I< > 0 also, 

We next turn to the Hopf bifurcation of Chapter II. There exists 

a one-parameter family of periodic solutions 

dr 
dt' = (5.13) 

of period w(E) for A :a .\ {t:) , cf. Theorem of Chapter II. We shall 

assume F is analytic in all its arguments. Then, as the note follow-

ing the theorem of Chatper II shows, plt,E) is analytic in r and 

€ , and .>., (A) are analytic in € Assume .Ato) ::. t:> and that we 

have the nontrivial case ~(fl 1 0 Suppose the linearization of (5.13) 
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about is 

CD 

Alt;€)V + fo l<lt,r;~) vtt-f)d~, (5.14) 

where A.... k (in its first argument) are wl~) -periodic, and are analy-

tic in S 
1 

t:, ~ At E:-=-D this becomes the linearization of (5.13) 

about 

A v + 
Cll) 

J }<:; l ~) v l t- .r J d ~ 
0 ) 

(5.15) 

so 

A-= A l !; o) ) 
,.U.s J : K(i:,fjO). 

We shall deduce the stability of each of the periodic solutions 

rc~,~) by calculating the characteristic exponents associated with the 

periodic- coefficients equation (5.14). This will then be related back 

to the two time-scale perturbation scheme we used in Chatper II to con-

struct There we also found a neighboring family of non-

periodic solutions that enabled us to state a conjecture about the sta-

bility of p . This depended on a certain coefficient in the modulation 

equations for the amplitude and phase of p What we shall show is 

that this reasoning based on the perturbation scheme is completely valid, 

namely that whatever stability is predicted by the modulation equations 

is in agreement with that deduced by finding the characteristic expo-

nents of (5.14) and applying Theorems 1-3. 

The characteristic multipliers of (5.14) are the point eigenvalues 

of the operators Ul•> = T(c..oCE) 1 O;~) where TI-t:, s; f) is the semi-

group associated with (5. 14). Since the resolvent R ( i-1 5 j ~) for (5.14) 
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is analytic in all arguments then lr is likewise. Thus U is analytic 

in €: Also, Vlo) =- T{wo,o; o) = To(Wo) where Wo ... C;..)(O) and 

T0 is the semi-group for (5.15). Now the infinitesimal operator )t 

for T 0 has eigenvalues A = :t: C.: v ( 1-Jo a z.:) and all others 

Since we can view (5.15) as a periodic-coefficients equation 

(period W 0 ) then U(.o) "l T;,(~o) has only point eigenvalues ~ for 

l J-A-1 > e- ..-'""• But then these are of the form eAwo for each eigen-

value A of -"' cf. Lemma 6, Chapter I. Now by Theorems 1.7, 1.8, 

Chapter VII of Kato [1], the point spectrum of U(E) varies analyti-

cally near that of Ulo) for E near zero. Each eigenvalue p..lf:) 

of Ulf) is the branch of an analytic function in a neighborhood of 
I 

~so . Thus we may expand fAl'J in a power series in € Ji for some 

integer p ').O If ~(EJ is the only branch then r= The set of 

eigenvalues of V!o) form two sets: I 1-'• I <.I and 

(double multiplicity). For E sufficiently small the set of eigenvalues 

fHEJ of U(tJ that perturb off the set lj-lo/ <I will continue to 

have modulus less than unity (cf. the theorems cited in Kato [ 7 J ) . These 

areirrelevant for stability purposes. What does determine stability are 

the eigenvalues fA- C~) that branch off J-4o -=-I which has multiplicity 

two (equal to the dimension of the generalized null space of UlfJJ- I). 

As f varies fto will split into two branches 

each simple. Since (5.13) is autonomous, (5.14) will always have a 

characteristic multiplier ~ = 1 thus }"(I) ( €) =..I for all E 

The other eigenvalue J-ln.)(() will vary near 1, and is in fact an 

analytic function of E (not a branch of one) since ft " 1
(EJ is not the 

branch of a double-valued analytic function. Thus we may expand 
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, .. ) 
fA (E) '= ( -+ 0 (E) in a power series in E near 0 . The eigenfunction 

corresponding to f'AI-.)(E) is r ( t1 t) e (iM ~ where 

/;; ("' ~t'"'uJ is the characteristic exponent associated with ~ l&J and 

f' is wltl -periodic in t . Clearly {3 CtO .,_ (i', ~ + fa. E='&.-+ • •• 

and we expand Also we can 

expand A, J< in (5.14) irt powers of € These perturbation series 

allow us to find P,,P,, ... ~ p., P'-a., .. ~ successively by putting 

in (5.14) and solving a perturbation hierarchy. 

The details are carried out in the Appendix (after obtaining a canonical 

form for (5.13) to simplify the calculations). We state the results: 

(3 (E) is real , 

B ::: 0 
I I I 

~ .1. = 2 Re.. J 

where j is as in the modulation equations (1..12). 

then the characteristic exponent ~{i-) is positive. 

Applying Theorem 1 we deduce that !=>' !, ~) is unstable. If f3:~. < 0 

Theorem 3 implies orbital stability. But in Chapter II we conjectured 

stability if Recf<o and instability if R e i > o Thus we have 

complete agreement and the modulation equations are completely accurate 

in predicting the stability of the periodic solution. We thus have a 

convenient method for finding the stability of the bifurcated periodic 

solution as opposed to the usually tedious procedure of calculating the 

characteristic exponents directly. 
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APPENDIX 

Here we give a demonstration of two-timing as it applies to a 

general system of integra-differential equations in the case of Hopf 

bifurcation (cf. Chapter II). In order to motivate the methods we first 

consider the corresponding problem for ordinary differential equations. 

We have the equation 

A o.) t:J + (Al) 

where A (,.\) is an "1< n matrix, and contains only quadratic 

and higher order terms in ~ . Assuming the same hypotheses as those we 

presented for Hopf bifurcation in Chapter II, A (A.) has eigenvalues 

±t~ with all other eigenvalues having negative real parts. See also 

Hopf [6]. We may assume (cf. Problem 40, Chapter 3, Coddington and 

Levinson [ 1 J ) 
«n) (I(~) 

0 
-If).) crt>.} 

A L~) = ---·'---· 
) 

0 80,) 

Otto) =- 0 .J 

where the eigenvalues of ES have negative real parts. We see that 

N
3 

(f) 
1 

N 't (t') J •• • • 
1 

N"lt)_,.O as i ~co , for small initial values, so 
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t;:! tends asymptotically to a function c.of ( N, (+), Nz. lf) ~ o, ... , b) where 

dN. 
Of0lN1 + fJ().) N :~... + 91 ( "''J 1'-1-a., X) - :::. 

de J 

~N:~.. 
-f{AJN, .,. q;-(~) N2... + 5 ~ ( N,, N1., ). ) . 

c:H 
:. 

The <3 ~ are obtained from the ~. by putting N3 = · ·· =- N..,:::: 0. 
' 

We now seek a periodic solution of this system, which would then produce 

a periodic solution of (Al) (with N 3 ::z • • • :: N,. ::: 0 ) , This problem is 

conveniently analyzed by using a complex form of the equations. Put 

~{t)== N,(H+i/'1-h.ff), Then 'i!- satisfies 

dt \ -= <rO.\-r +<j(~,i,""')~ 
d-f: 

(A2) 

where ( i' denotes the complex 

conjugate of ~ ). The linearization has eigenvalues trO.J, 0:0) 

crossing the imaginary axis at >.-=- )1. where <r = t.'tt- Equation (A2) 

can now be put into a very nice form known as Poincar~ normal form. By 

a nonlinear transformation of variables ~ ... ~ < i!, ~) with ~ • % + 

0 ( I ~l.z) , we can write (A2) in the form (for any m 1- I ) 

(A3) 

) t:- I rJ .z..., ..... "'( tzl~ ..... ~) . + ... + c .... (), .. .,. ' l..J .,. 

The details can be found in Marsden and McCracken [9 J, Section 6A. Now 

we apply two-timing to this form of the equations. Thus we have 
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I 

Substituting into (A3), the 0 {f) terms give 

d .f, ... ,·fA- ~I .3t ... ) 

i.e. ~. -:. R L -r) e. X f> ,· ( fA t .-; + &(-r)] - /C e /¢ 

with cp ~ 
~ /-'- t + e. 

The 0(f:,_) terms yield 

= 'R. e ,· fJ [ - l. fA- f I + 0'" ( ,l •) ,.\ I J . 

To suppress secular terms we require 

c( '(~.) AI ::: ()) 

-+- ~ 1 C\e) ~~:::: 0. 
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By the transversality condition so A I ::. ft ::. 0. 

Then we may take ~z... = 0 since by the Hopf bifurcation theorem proved 

in Chapter II we take the <:H € '":) part of ~It) to be orthogonal to 

the two periodic solutions of the linearized problem at Ao , which here 

are 
. t.* 

e'P. and . ,·,...t* 
t. e 

The 0 ( E 1) terms yield 

Suppressing secular terms requires that the brackets vanish. Equating 

real and imaginary parts to zero gives the modulation equations 

(A4) 

These equations have been analyzed in Chapter II where it is shown that 

are determined provided o< ~ 0..) =F 0 ( transversality 

condition) and 

Before proceeding to integra-differential equations we indicate 

what procedure may be used in the exceptional case that 

Here R does not tend to a nonzero constant as 'f-+ a> or - t» . How-

ever, we know that it must since a periodic solution exists by the Hopf 

bifurcation theorem. What happens is that does not 
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depend on the time scale 1! Thus we introduce a third time scale 

( T, = E a t) . Then R. depends on ?".a. only, while e 

depends on both 7j and 'i . In fact (A4) gives 

p() (r,, 1i) = - }-J-{'L + (r ...... c., cJ.>] [fu .,.:1..) J z.. 
') T, .) 

oR 
.}TI 

= 0. 

so 
d.l 

+ B CTa.) • Also ~ - 'A J, = 0 and 

we may take f, :. 0 . We assume that the normal form in (A3) has been 

accomplished for ,.,.,~, so that 0 ( E't) terms in the equation yield 

of, 
-~.·,.._'f.,. - f3 

)f, 
t- <1'{;.) ).3 f, )t"' """ ~-t~ 

Suppressing secular terms as before yields (1 -= )3 =- 0 . Also we may 

take f.,. :: 0 . The 0(~5) terms yield 

+ 

Suppression of secular terms gives the modulation equations 

+ 

If 1?~ ( 1. L~ .. ) f 0 , then these and (A4) determine >. 'f I f4) r~ since 
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Also, R ~ nonzero constant as 

~-. c:D or -a:> depending on the sign of; f?e C.z.(.\.) . In case 

J?~ c 1 C,>..) =o we may repeat the procedure. Thus in the case of Hopf 

bifurcation for ordinary differential e.quations the solution near the 

steady state is of the form 

e R 

where ~ depends on '7j ,fa., ... ,T,c and R depends on 'TK only. 

( ~ = EU t ) . The equation governing R. is 

Y, R 

for some nonzero constants ~i . 

What happens in case all o,. c.J· (~.> ::.. 0 . J. -I ., 1 ,,,_ , - I .. , ,I ? This 

is the degenerate case where all >.J· -: 0 Thus >.t~J :! Ao for all 

near zero. This means that the family of periodic solutions occurs only 

for )...,~ 0 , sothat(Al)for Ao 

has a one-parameter family of periodic solutions near !::f ~ D analogous 

to a center in the phase plane. This is the family that bifurcates 

according to the Hopf theorem. There are no periodic solutions of small 

amplitude and period near 2." for 
1-' 

We now return to the integra-differential equations. We wish to 
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perform an analysis of the general case analogous to the one done above 

for ordinary differential equations. Due to the added complexity of 

integrals a normal form such as that in (A3) cannot be obtained. Instead 

we introduce a form for the equations that incorporates the features of 

(A3) that allow for a simple application of two-timing. The main aspect 

is that in (A3) the quadratic terms have been eliminated thus allowing 

(l. to be taken to be zero. Thus the 0 ( f 1
) terms are uncomplicated 

by ~'Z. We do the next best thing by modifying the quadratic terms so 

that substitution of the 0(6) part of the solution into the quadratic 

terms produces zero. Then the 0( E ~ term of the solution may be taken 

to be zero, so the equations corresponding to are relatively 

simple and the modulation equations can be found explicitly. The form 

we choose for the equations will be used later when the question of 

stability of the periodic solution is considered. We shall use the nota-

tion of Chapter II throughout- see the analysis following (2.3). 

Consider 

= --~'(,., \) + "' ( b \) 
..t. r "' ~2. r ' " (AS) 

where ;t ( " I ) ) -- Ll~) E + and the 

homogeneous in I" and ""U) ~I' of degree l. Put 

The linearized problem at 

= 

has solutions 
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X, ( P- t::J 

and R, e are arbitrary constants. 

It is convenient to introduce an equation auxiliary to (AS) 

(AS') 

being a copy of (AS) with ~ replacing p . The solution of (AS), 

(AS') is 

r = 

Define the function 

Note that for 'J> = RI1 J 1-.:. g_Xz. we have 

choosing as we shall always suppose and for convenience 

¢ =- !-" t + e. 
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1: is a linear combination of components of p and t 

duce a nonlinear transformation of variables from ( ,., CJ.) 

to modify Q as we desire. 
l. 

X :: .., 

y -::. Cj. -t- L. ~r-:. [ ~ ( ,. , ~ ) ] ,.. c i ( ,., 1- ) J s. 
r+s =z. I 

r,s ~ o 

and to make X,Y real we require brs = b s.-
-, 

J,:.. b,.r :. . - - .I 

are to be determined. The inverse transformation is 

f = X 

y -

Now we intro-

(A6) 

The b 
1

s 

.. 

where the dots denote cubic and higher terms in ~ and y 

Now X and ':J satisfy the coupled equations 

• - -X -= ~(!,).) + Q'2- (x,y,.X) + Q1 (!,J,). J +.-·.I - . 
(A7) 

• -" 
..._, 

y = ,;t (_}, A) -t- Ql... (X.'J, A) .,.. G.J (~, 'f,)J + ... .1 - . -
with the 

-.... 
homogeneous of degree and Q.; (. 
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-L. 

.--1 -s rr z. 

+ 

where and for We want 

to vanish whenever R f"1 ( ¢) 
1 

1( !~ IJ!) are substituted for x,:y - - res-

pectively. Evaluating the terms in (A8) for ). =-~ 0 and these values 

of gives 

( L 0 ,.) + K lAo) " ) i."' ~ s -= 

R. .z. (L -t K-.) e rr-s>t·; 

R 2jJ c ... -sJt'tj [ ) . 1:. 
~ ( ,._ s: 'f' -

:::. 

;: 

) 

) 

gives 
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~\. ::. R'3. L f [ D.Oo, Cr-S')c~) - (r-s)t~ I) krs e'~-sJ··~ 
~..-s •2 

-t L•l" .,. ~ .. , e!r-~>.:.; . 
-LJA-S ~ .. s 

cr- sJr•,t J e ~ '?.z.. 

'Ra. L. 
, .. _,, ,·; 

[ l:l ( >. ·~ ( ,._ rJ,;..J] j, .. ..r ~ e 
-t- <9.z. . r..-rs2. 

Since Qa.. is quadratic it involves only second and zeroth harmonics so 

can be written R~ 2:. E .. s 
,..,·._ - s,·, 

e e Thus (A8) set to zero gives 
.... , .. 1 

=-0 
"'+s•.z 

i. e. 

where L\- 1 exists since (r- s) tj... = ±2tf...- or 0 Similarly ~:.s 

can be found. This completes the transformation. 

Thus we have the equations 

• 

(A9) 
• y 

I 
where the Qi, Q~ are homogeneous of degree L , and 

zero when 
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X :: R _;-, (ft-t-+ B) l 

(AlO) 

for any constants R, 9 This form of the equations is suitable for the 

application of two-timing. 

Put 

)( :. e 3, t- t~ X 
-~ 

+ €7X _1 + ... ) 

y :; ~ J, ;- € L. Ya. + ~1 yl + ... ) - .. 

where the X,· ) 'J,: are functions of t~ T with 

A (f) Ao + E-2-~l- +• .. · 

Assume Q3 1
evaluated at 

'R3 
[ 0( s ,'r,; + ~ <: os ¢>] - - + third harmonics. 

We use the notation As shown in 

Chapter II, we have 
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I<(>.) ... )( 
) 

"'U.) ,. y 

where 

!:I = Jc(..\) t1- ~/ 

~J. =-- ) 

!, :: K lJ) ~ !1 

and etc., so the convolution 

ignores the T variables. Substituting into (A9) and equating like 

powers of e gives the following. 

The coefficient of <!'- gives 

;[ (:JIJ <.A,, ,.\o), 

which has the solution 

X I = R l't) .x:-, t,.,.t~ ;- 6CT)) ::. R I, ( ¢J I 

'j, ::. R ~l. ( ¢) . 

We always ignore the other solutions which decay exponentially. 
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The coefficient of 6 z. yields 

Now since convolution ignores the ~ variables all the operations in-

volved in evaluating the right-hand member are formally identical to those 

involved in evaluating C\>1 in (A9), (A10) since J?, 9 are treated 

essentially as constants. Thus the right side above is zero. We may 

then take Xz.::.. D since the Hopf bifurcation theorem in Chapter II 

allows this. Similarly y
1 

= 0 

The coefficient of e 3 gives 

- (s k ~ ~~) rd'-c·) at{')* l cu "O x, + d,\ 1\0 

where the dots denote third harmonics. Notice that no terms from Q;_ 

arise X1 .,. Yl ::. 0 . This equation has been solved in Chapter II and 

thus we get exactly the same modulation equations (2.12). Thus we have 

proved the conclusions we asserted for (2.13). 

Next we calculate the Floquet exponents associated with the periodic 

solution. As noted in Chapter V the only important exponents are those 

which vary near zero. One such is pet>(E) : 0 for all e with cor-

responding eigenfunction where ~ is the periodic solution. 

The other is p l2) where 
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R. Ll.) -- R r r• E-

with corresponding eigenfunction 

v = (AU) 

where P is ~ -periodic (and real). Also, since Floquet exponents 

occur in conjugate pairs it must be that 

Consider equations (A9) and put 

X tt) =: !"lt")) 

y { f: I ; u. ( t *"J 
" 

ifll '::. l(E) f.. 

Since 

co 
k• )( =- Jo K(s) ~{1;"-s) ds 

the equations satisfied by ~,~ are 

di­
ll~) dt• = 

R Cal r is real. 

CIO 

E- )..(z.. fo s /<l(s) i l 4:*-s)dS' + . .. 

(Al2) 
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and the same for ~ except that " Q,_ ~ Q~ , etc. These equations have 

the periodic solution 

u. : 

Put 

and linearize (Al2) about these solutions: 

t-:: -e+V 

with v, "" small perturbations. The linearizations of the Q,_· are 

Q~-c (i,tZ._,).) [v) + 

where Q~·~, Q~·.... are Frech~t derivatives-linear transformations acting 

on ""j w respectively. Thus the linearization of (Al2) is 

0 

r(_~) v 
(Al3) 

+ Q;~ ( vJ + Ql.:.. ( w) 1- Q1oa [v] ... Q'1o"" ( "'J + O(t If) 
} 
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Ll~) w ..,. j;;{).) "*-W 

We know one solution of these equations to be 

i.e. 

v:: 

w= 

V= 

• 

\ 
"E 

f4 I, ( f(J) 

• 
,'"";' (t•,G) 
......... J 

+ 0 (.~3). 

This corresponds to the Floquet exponent 
(I) 

fJ a; o . We now consider the 

other exponent po .. ) . Let V be as in (All) and 

p I 
with 1 

and 

~ -periodic. Expanding P and P' ,.._ 
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v = Vo .... € v, + 

w-= + ~'2.."":2. + . .. ~ 

gives 

Yo .... oo { . ) 

v l.. ::. 

Similarly for ~ . Now substitute (Al4) and 

(Al3). The coefficient of t 0 
is 

:: 

• 

Thus 

'io = 

Wo = -

with q'1 J c(l. ~ fE to be found later. 

We digress to evaluate 

) 

(Al4) 

into 
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0 

Q 1 !- ( Vo '+ E V1 ) + 
0 

Q lu.. [ '¥o '*" E:W,J . (AlS) 

Let us assume for the moment that Vo) V1 , W'o, w1 are linear combina-

tions of c.or Itt .. I s '" r t'*" For certain of these linear combinations 

we show that (AlS) vanishes. Put 

f, -::. f((h, ~) .?, ( ¢ T- BO, f-)) 
.J 

-F).. = R_(h,E:) _,;,.. ( ¥ + t9o .. ,eJ), 

where 

Rth, ~) ::;. /+ )., f(~) :: J.,.j.,(Fo+~F,) 
} 

e ( h, ~) ::. h G-(~) =- h ( 6-. + E r;..,) 

are real constants and h, ~ are small. We know 

for all h, E by construction of QJ.. • Also 

!~ (¢) + 

Putting 
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. 
F ~' + 6- !", ) 

we have the linearizations 

lt'M 
I f Q2 (X, 1- hV: .x-l.-rhW:Ao)- Q~rr,,r~,,\o)~ ::: h 

h-+0 

(. ·-
I 

Q2. (X:,+ l.,V+ Ot~'J) :::: ~ X:;&.+ J, W+ OtL,") 
1 

,\ 0 ) 

.::: 

Thus we choose 

Vo 

Wo 

v, 

w, 

~ ... D 

I,· ...... 
h-.o 

I 
1; 

\/0 -t6V
1 = v, 

:: Fo Kt + 

~ Fo .K;. 1-

: F, Y, ...,. 

= F, .x'l.. + 

It is clear that in addition to 

~ 0 

Ql.IA. Cw.:1 -=- D for 

D. 

w.-.~w,,. W • i.e. 

• 
G-., .X, 

• 
G-o r.l.. J 

• 
c;..( r( 

J 

• 
G-t .r.l.. 

Returning to the perturbation scheme the €
1 term yields. 
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• 
V, = ::t ( v, ' A o ) 

: ;:[ l v, J Ao) 
) 

also 

• 
;;t ( w, ' ~ 0) . 

Choosing v, , t.V
1 

as above we see from (Al4) that 

($, ::. D . 

The € z.. term yields 

. 
.:! ( V 21 ) 0 ) - {'2. {-> k "* V 0 ) 

since in the expansion 

and by our choice of V1 J w 1 Thus 

-r~ ( I+ s K-. J vo 

. 
Now Vo :: F"o .r, + (,.. 0 r 1 -:: 

so 
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0 

Qi.,._[wo). 

Now we have assumed that when X = r, ( ~J, y :: X:& ( ~) that Q J equals 

0 0 

Q:s~ (voJ + Q3.,.. ( w0 ] ::. 

liM ~ { £(~1 0) 3 ('!f Sl"(¢+t;)£1..,o)) + f!. LO$(f/>+f!HI,,o)) 
~ ... o 

- 0( ~ 1'n ¢ - ~ c. or ¢ J - -
'3 RlO> {)) ~R (~si'n~ +- ($ c 0/¢) : d h ( o, o) -

+ (~cos~ - t! s 1'n ¢) st (0,0) + 3 rd 

cos r) [ 3 Fo {S_ 1- c.. ~] 

= R e. [ (3 F, f_ + c... ~ - L · 3 Fo ~ + t.. 6-o (!. ) e; fJ) "* 3,. 41 

1? e. [ ( s Fo +L' G-b) ( ~ - (~) e / p) 

We get 

vl. - ::t ( vl., Ao) =- r?e. [ eLf; { (Fo +t' 6-o) ( -l~f:& L1 '!' !• 

-t- >.:~. (~f )o· !•] + (3Fo +,·6-.. ) C/!~t~) ]) -t3"J. 



Then 

where 

so 

v:l. -::: periodic terms 

c. = 

':JoT'·(fJ'let) 

YoT · tJ.''~Io 

Thus C simplifies to 

c. 

Now from (A14) we want 
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.. . t• 

..- Re. ( c:t e'fA- ~o) where (c:t;. (2.10)) 

By Hopf bifurcation 

2. F 0 [. (A16) 

= ($:a. t .,. v 0 l t: "") 
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so 

Thus (Al6) implies 

Taking real and imaginary parts yields 

[: :: R~ f = 

T,., J = 

One solution is This corresponds to 

. 
and v 0 ~ X 1 C fl) as noted previously. The other solution is Fo -:/= D J 

(Al7) 

and represents the desired exponent. This completes the calculations and 

we have the second Floquet exponent 

(3 (1) = 2€z. Re.J + 
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