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ABSTRACT

The problem of the existence and stability of periodic solutions
of infinite-lag integro-differential equations is considered. Specifi-
cally, the integrals involved are of the convolution type with the depen-
dent variable being integrated over the range (—e,t] , as occur in
models of population growth. It is shown that Hopf bifurcation of
periodic solutions from a steady state can occur, when a pair of eigen-
values crosses the imaginary axis. Also considered is the existence of
traveling wave solutions of a model population equation allowing spatial
diffusion in addition to the usual temporal variation. Lastly, the
stability of the periodic solutions resulting from Hopf bifurcation is
determined with aid of a Floquet theory.

The first chapter is devoted to linear integro-differential equa-
tions with constant coefficients utilizing the method of semi-groups of
operators. The second chapter analyzes the Hopf bifurcation providing
an existence theorem. Also, the two-timing perturbation procedure is
applied to construct the periodic solutions. The third chapter uses
two-timing to obtain traveling wave solutions of the diffusive model, as
well as providing an existence theorem. The fourth chapter develops a
Floquet theory for linear integro-differential equations with periodic
coefficients again using the semi-group approach. The fifth chapter
gives sufficient conditions for the stability or instability of a periodic
solution in terms of the linearization of the equations. These results
are then applied to the Hopf bifurcation problem and to a certain popula-
tion equation modeling periodically fluctuating enviromments to deduce

the stability of the corresponding periodic solutions.
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INTRODUCTION
We study periodic solutions of nonlinear integro-differential
equations which arise in population dynamics. More precisely, we

examine the bifurcation of such solutions for equations of the form

dNe

t
it ’Cz(/“:"“,éé, Ko SET Ol )

where ¢, ), wm = L, .., n

, .«, n, and the -F; are arbitrary functions of the

dependent variables AN and the convolution integrals.

Equations of this type were first introduced by Volterra [1{] as
models of population growth and incorporate the essential feature of time
delays or lags in the effects that the various controlling parameters
have on the population. Examples of this are age variations within the
population, self pollution, and in general any biological process whose
influence may not be immediately felt. For example, if the young of a
population do not receive proper nourishment the population growth is not
affected until they mature when the birth rate of that species may decline.

Usually F; = N¢ 9. so that for one species N  say,

dN

L= LN(I- 2 Ktt-s)N(s) ds )

>
~
where the integral takes into account the effects of a limited food supply
causing the growth rate to decrease as the population increases, but with
a time lag due perhaps to hoarding of the food ( b is the birth). It is
in this context of biological population dynamics that the integro-differ-

ential equations we consider have received the most attention (see, for



=
example, Cushing [ é] s

It is known that the equations can have periodic solutions even in
the case of one dependent variable. Suppose, for example, that the maxi-
mum influence on growth rate at time ¢ is due to a population density
at a previous time +-T . If T 1increases past a critical value,

To » a stable equilibrium state for the population can become unstable.
Thus, the possibility of the bifurcation of a periodic solution from the
steady state presents itself. We examine this question for the general
case given above with f depending on a single parameter. We obtain
sufficient conditions for the bifurcation and construct the periodic solu-
tions. The method we use for the construction is a singular perturbation
procedure. Even though many periodic solutions of infinite-lag integro-
differential equations have been found it has been impossible up to now
to determine their stability (except in isolated special cases). We pro-
vide a method for deciding this. For the stability analysis we utilize
the theory of semi-groups of operators.

In Chapter I we study indetail linear integro-differential equations
with constant coefficients. This is done by the method of semi-groups
following the analysis of Hale [4] for the analogous case of delay-differ-
ential equations with finite lags (as opposed to our case of infinite
lags). We take this approach to introduce the essential ideas which are
amenable to future generalization in Chapter IV to case of linear equations
with periodic coefficients. In the present case we obtain a spectral
analysis of the equations. We then introduce the adjoint equation and
use this to study the forced linear equation obtaining a variation of

constants formula in terms of the semi-group.
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In Chapter II we extend the Hopf bifurcation of periodic solutions
to nonlinear integro-differential equations and prove the corresponding
existence theorem. We then construct the solutions by means of a two-
timing perturbation scheme obtaining behavior analogous to that of ordi-
nary differential equations. This then leads us to conjecture about the
stability of the periodic solution, which we consider fully in Chapter V.

In Chapter III we derive and examine a model population equation
allowing spatial diffusion in addition to the usual temporal variation.
This model is a generalization of constant time lags to explain traveling
waves observed in certain predator-prey situations. By the use of the
two-timing perturbation scheme we also obtain the bifurcation of traveling
waves. The corresponding existence theorem is proved.

In Chapter IV we begin to examine the question of stability of
periodic solutions by studying linear integro-differential equations with
periodic coefficients. Again, by following the methods of Hale [4] , we

|
obtain a spectral analysis of these equations using the semi-group
approach. The results are strikingly similar to the Floquet theory of
ordinary differential equations. We prove a Fredholm Alternative
theorem for the existence of periodic solutions of periodically forced
linear systems, again using a variation of constants formula.

In Chapter V we solve the problem of stability by giving sufficient
conditions for the stability or instability of a periodic solution of a
system of nonlinear integro-differential equations. In the case of
autonomous equations, conditions for orbital stability are given general-
izing the classical Poincaré theorem. The methods are completely analogous

to those of ordinary differential equations, transforming the equation
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into a nonlinear Volterra integral equation by use of the variation of
constants formula. Then techniques such as those in Coddington and
Levinson [1] are applied to this form of the equations. It is here that
we see the advantage of the semi-group approach. Finally we apply the
results to deduce the stability of the periodic solutions constructed
in Chapter II; and to a certain nonautonomous population equation. The
method is general enough to apply to any case of bifurcating periodic

solutions from a steady state.



CHAPTER I



.
CHAPTER 1

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

For later use it will be convenient to first establish certain
results for the simplest class of integro-differential equations, namely
linear equations with constant coefficients. For finite-lag integro-
differential equations a rather complete theory has been given by J. Hale
[4]. For our case, namely infinite-lag equations, a direct extension of
Hale's semi-group methods is possible, and we get a spectral characteri-
zation of the solutions, much as with ordinary differential equations.
Thus, solutions are divided into various classes of exponential growth
or decay and this is what we need to analyze the problems that confront
us in later chapters. There is a more fundamental reason this semi-group
approach is used, however, rather than a more direct Laplace transform
approach, (cf. Miller [}é] ). In Chapter IV we need results for linear
equations with periodic coefficients, and there the methods used here are
necessary. The point of view we adopt is a new and different way of
looking at solutions of integro-differential equations and is credited by
Hale to Krasovskii. Instead of considering the solution X(¢ as a col-
lection of points, one for each value of ¢ , we think of it as a collec-
tion of functions x, , for each value of t , where each x4 contains
all of the values X(s) for s2¢ . Thus, knowing just <«, for some

€t , one could find %(#) for a bit larger value of ¢ directly from
the equation since the integral that occurs could be evaluated. We shall
see that this way of looking at the problem is very fruitful for yielding
the spectral decomposition.

We now consider
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[~ =]
‘.‘}é— = Axw) + foKlS)gg(t-—:) ds (1.1)
d ~

where A is a constant nxn  matrix, x%(¢ a column vector in ’Rh .
and K(s) , the kernel, is any n¥mn matrix function defined for s=2>o0
which satisfies certain conditions we specify. Throughout this and the
following chapters we shall assume that K(s) is continuous and exponen-
tially decreasing as S-»= : K(s)= O(C'”) for some Y > © ., This is
the case in the majority of applications. Since the kernel always occurs

in convolution with the unknown, we adopt the following notation:

(K -J(—X)IH = /; kls) xte=-s)ds,

Also for brevity define the linear operator L :

Ly =2 Ag+ K¥L-

The inhomogeneous version of (1.1) is

a.
¢

= Lx + f® (1.2)

13X
(l
|

a
d.

where f('é) is a continuous column n-vector. Equation (l.1) in addition
to the specification of arbitrary initial data for X(f) on (~oo, t°]
constitutes a well-posed initial value problem. Thus, if :_'S(t) = g(ﬂ
for tst, then (1.1) has a unique solution for all €>%, . Also, if

¢ generates 516) for ¢ up to 7 , then the solution that is in turn

-



b
generated by X for t27 , say _Zlf) » coincides with the solution
generated originally by é . Thus we may view the solution of (1.1) as a
succession of functions from some space of initial values. We view
Xlt) as a family of functions X3 each of which is an element of a space

C of functions defined on (-®, °J such that

X8 = X (t+8), Oe(-2,0].

The process of obtaining X, from f is that of a linear transformation

-

Ton C into C. Thus,
.’S* = T (¢, 0) 2_5 5, tzo0,

where X'=¢ for t<€0 . If the initial data is meant for all * up to

§ instead of zero then

Zt = T({'lS) ¢ t

2

WV
(7

-~

It is easy to see that for 7Fes<t, X, = Tt s)¥s = T(t,s)T(flT)]r,

so that

T(t,m) = Tlts)Ts, 7)), Téset,

Also if g(f) solves (1.1) then X(t+c) is also a solution. Thus
T (t,5)= Tlt+c,s¢¢) and in particular 7T(¢s)= 7 (¢-50). We adopt the

notation T (#) = T{t0) for ¥¢tp0 , so



with

T(t) Tls)= Tlt+s), t, sz o0,
T{O) = I

where L is the identity on C . We shall take

*
C = {¢ continuous on (-, °]I i':: /CY 0?/’)/ < oo,
and lim €7 BB exists }
8+ -» )

el = sup | e geo/
020 #

where ¥t is any number arbitrarily close to ¥ but <¥ , the

decay constant for the kernel. Then ( forms a Banach space. Also we

use the L,-norm on R"c C": IfI= ('i ,'a':[.,)'fz and p- ¥ = li/’: 512 .

The growth restrictions imposed on ¢ ¢ L are those that guarantee the
convergence of K#®* Y . Also the solution X, generated by ?f is
itself in ( since X (08) = Pt+6) for sufficiently large /@) . This

is why we are viewing the solution as a collection of functions X, ,
namely it enables us to introduce the linear operators T (¢) acting on
a Banach space. We can then deduce their spectral properties which will
characterize the solution of (1.1). We turn to this next.

We see that T (¢) 1is a bounded linear operator on { . This can
be shown with the aid of the resolvent of (1.1). The resolvent is defined

as an hxnN matrix function R(t} solving the equation
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d t
@ RO = ROA + [ pre—w kiuw) du,

g(o) = I .

It is easily verified that this is equivalent to the Volterra integral

equation

s
Rit) = I + f: pRle-s) [A+ [, Kt du ] ds.

Standard existence theorems (cf. Miller [11] ) assert that a continuously
differentiable f0(t) exists for +2 0 , and also it is easily shown

that if X solves

dx t
— K(t-s) x(s)ds + g(¥?
at Ax + /o )X J
then
¢
X = R xto) + [, Rit-s) 9 ds.
0
In our case if X solves (1.1) then by writing s(f) = j K(t-u) X(w) du
~ -y
we have
t )
x(® = R(&) g+ [ Rit-s) [ Kts-u) g du ds
o P & o
where l(l_zf at f=0 . This gives an explicit formula for _)_’(i’)

in terms of the initial data ¢ and we have

~
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t+8
R(t+8) ¢g(o) + fo *K(e+o~s) /oKlr-u) glw) du ds,
-0

[T(t) pJo = -t<Bs0,
gt+6), 6<-t,
Thus,
7)) g lf = B | €7 x.0)
¢ max 4 sup “R(trO) CV'O/ *
-ts850

o e
f:"ol ev'ra-s)R“*e_s){ j | k(s-u) e % I"/d«ds_]l/d//,
-0

et { < A, el

for some constant AI so J{t) 1is a bounded linear operator. Similar-

ly we can show that T7T°(t) 1is strongly continuous, i.e. for each ¢e&C

lim 7)) ¢ — Tis)gi = O.
TS

Thus { T(®) s teOl forms a semi-group of linear operators on C .
Following Hale [4] we now appeal to the large literature on semi-groups

of operators to derive certain specific results.

Let /A denote the infinitesimal operator given by

_7% ¢ = Iy Tt = ¢

ts>o? t

for each # e D(HA) :
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° . o
g eC , glo)=Agr)+ /o kta) Fl-u) du }

o

D(A) = § geC

* is a closed linear operator and

¢'( 6) , é<o,

(Aol =

@
Aglo + /o Kluw F(-u) du 5 8=o.

It is easy to see that (A p)E) = $(0) sy ©G<O0 and for € =0

Xy (o) = g0 _
AL lim X X0 ()00,

(Aglty = lim - = <

+>0?

Also *#EC implies )éﬂ is a continuous function so ¢(0)=’[L f)(a)
Appealing to Theorem 10.3.3. of Hille and Phillips [5]we have that D(#%)
is dense in C and for ¢ € D./’{), T)¥ € D(A) and

2 T g = Ti)Ag= AT (1.3)

at
for ¢t 20 . Thus, the semi-group operator satisfies a differential
equation in C, and we may analyze its spectrum by examining that of p
Letting p()‘:), Z(*) denote the resolvent set and spectrum, respectively,
of A , we have that A € p(A) iff for every ¥ in C there is

¢;@DJ $eD(A), such that (A"%I)¢ = )L Hence,

$(& ~ \go) = V(o 6<0,



so that

6 &~
g % + J 77 tr5ya, (1.4)

with b €R". Then @ged(# iff FeC and Fro)= PO , i.e.

~

Re 2> -y* and

¢‘(o) 2 /\_]3 + ¥lo) = Lglo) = A}e + /ol K(s){e-)“é +/:g'“‘“-”¢'(0dfjdu.

This implies that

5 - TR _auek)
[)‘I-A—-K(:\)]}a e o PIG & fo i) foc Wi ek, (1.5)

where we denote the Laplace transform

K{x) = fo e~ k(s ds.

Now, the right side of (1.5) spans R” as SL spans C . If we
A
assume that AL —A-K() isa nonsingular matrix then b exists, and
¢ ¢ D(A) exists for all ¢6C . Thus the range RIAXD =C and

the inverse ()t "AI-)ﬂ exists and is bounded. Letting

AN = XI-A= k()

we have that det A(N)#0 implies /\é/’("f.) . If det AB) =0 then
@8)= be*® yhere AM)g =0 , b#0 , satisfies A-2I) ¢ =0 . Also
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if we assume KeA > -¥* then $eC and so e &(A). Now

¢ = (;f,-)I)-' ¢ is given by (1.4) with

|}
b - det AW

right side of (1.5)] .

Since K(A) is an analytic function of A for Red >-r then
det A(A) is analytic for such A and its zeros are isolated and of
finite multiplicity and finite in number in any region #&c¢ of the form
Rer> ¢>-v* . Thus (A-2 I)”  is an analytic function in ¢Cc ex-
cept for isolated poles and by Theorem 5.8 - A of Taylor [lq , for a

pole at /\, A -AT has finite ascent, i.e. for some integer ¥ 2/

N(A-DI)* L yia-a1)™
( 7N denotes null space) and

dive N(A=AT)? < oo,

¥
For brevity we shall say that the generalized null space nA-VD™?* of

A-)I 1is finite dimensional. Furthermore, the theorem states that

C= NAAD™ @& R(A-ID™.

V)
Let ¢u, ey fg) ( k= dimnit->1) * d) ) be a basis for the general-

ized null space M, of A -AL . Let



a row vector in

=1 1=

é) = (¢Ia\ g £Ev g ¢K¢\)

C*= Cx--xC. Then since spanf #al is invariant

under *& , we have for some constant kxk matrix B/\ that

Aé) = @) B,\.

By definition of A we have

so that

Also, by (1.3),

so that

d g0 = &(0) B, )
de

,(0) = P(oe .

ft T & = TAG = Tw$ 8,

Bat
T8 §, = @AC"/

t B
(Tw 810 = &,(0) Pt = G B0

and Q& generates the solution of (1.1):
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Byt
(X8, ..., %) = D e™ —oe<tcon,
- it )
Clearly the matrix B/.\ has only the single eigenvalue /\ so that the
x:(f) above are finite sums of the form £7e?® . Now if the same
(%)
process is applied to R(A-ATD) . instead of ( , and on which b

has spectrum Z(!E) -—f'\} we arrive at a decomposition of C into a

direct sum
c: m’\, @ Z S & m/‘$ @ R

where Rel; 2¢ >-r" and R 1is a closed subspace. Those $ in
MA; generate solutions of the form frekt . Later we shall show that
¢ € K generates solutions of the form O(e®t) a5 tre Any solution
of (1.1) is a linear combination of those described above. This completes
the spectral analysis.

In summary we have

Theorem 1. The space of initial data can be decomposed
C = ‘n’),\' @ - @mag ® K

where the eigenvalues 4,

¢ satisfy

det [A;I-A—K(xn)] =0,

RCAL’? C>-Y*I (=4-,9,



.

Vg At

and &€ M, generates a solution X(#)= finite sum of terms e

Also ¢@¢e¢R generates a solution which is O(e*) as t»eo,

Next we turn to an examination of the inhomogeneous equation (12 s
We shall find an explicit form for its solution in terms of the semi-group,
namely a variation of constants formula. Then we find necessary and suf-
ficient conditions for the existence of a periodic solution of (1.2) when
the forcing term jF(f) is periodic, and this is the Fredholm alternative.
To carry this out we introduce the adjoint problem to (1.1). Along with
this a bilinear form connecting the two problems is introduced and this
will enable us to find an explicit form for the projection operators
onto the eigenspace M, .

The solution of (1.2) for initial data 55 specified up to time

t
X = Tl(t-a)@ + L[T(f-S)KDJ-f(r)ds (1.6)

where 2(, is an nxN matrix whose columns T acts on, the result

being dotted into f , and where

“ 6=0,

Le = :
'2c° 0O g <0.

?

That this solves (1.2) can be verified by substitution into the equation
and using the properties of T .

To examine the question of existence of solutions of (1.2) under
periodic boundary conditions we shall need to introduce the adjoint equa-

tion to (l.1). Following Hale [4] , Chapter 21 we define the adjoint
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integro-differential equation

Y.(s) = -y(s)A - fo y(s-%) K(-§)d% , 1.7)
A PA s &

where Y({s) 1is a row vector in R" . The initial value space is the

Banach space

5 = 5\0(5) continuous on [0, o) ' sup [e"v'i }4‘/5)/ < wz/
¥z o0

Ny = sup | e-"'E vee |

X

Let Y; € € for all S§t where

v
G
»

YelE) = y(s+E> ¥

If Y, = }b is specified initial data then a unique solution to (1.7) is
generated (backwards) for all §<7 , and is given by the family of

—
elements of C , Yo , as defined above.

Next we define the (usually degenerate) bilinear form ( , ) on

E"C :

LY, <f) = Vo) glo) - Im [[: Yig) k(-8) g5+ 8) dfjdé (1.8)

for Yel , $6C. The importance of this bilinear form is that it
provides the connection between (1.1) and its adjoint (1.7). 1In fact we
prove that if X4 solves (1.2) and Ve solves (1.7), for @ < s T,

then
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t
(Jer %e) = (Yo, X&) + S yes)- £(s) ds, (1.9)

v

In particular if Xx(¢) satisfies (1.1) then (]t,!?J is constant on
[’.TJ. This will be useful later for finding the projection operators

onto M, . To prove (1.9) we have

o e
(Yo, Xe) = Y (0 X100 + [ [/o y(++E) K(-8) x(t+E+8) dE) dp
- 0o

o = §
= yit). x(¢) + _f; yitrs) f k(-8) x (t+E+0) db d§
-

(] ~Flrt 7
=yl e xlE) o+ jf yts')f K(-6) x(¥+6) de ds-.
- 00

Thus, on using (1.2), we have

[ . o
d%(»,,xf) = yX + )X - yid) _fwk(—e)x(ua)de

v [Ty ke-e) x(o dE’
ty(E} E-t) e

. o
= (y +yA) xtt) + yB- £ + /fa yUeeE) K(5)dE) ket)

By (1.7) this equals y(f)-foﬁ . Integrating the resulting equation
yields (1.9).
Returning to the solutions of (1.7), let ?’ be the semi-group of

operators corresponding to (1.7) so Yo = ‘f(t)‘/’l 20 . Let ‘& be

the corresponding infinitesimal operator



o
o DY a2 D ol o
A ’é = l{m ,t. J

0"

( ¢e C | Yel, $loy= -¥w)A —_j:;b/-;) Hf)df?,

5 — 8 . §<o,
) =
(AH(E o) A + j: Y(-0) K(6)de , f=0.

The analysis that was performed on the semi-group 7 can now be applied
to T to deduce that the spectrum of £ in Fedz ¢ 2-r? consists

of a finite number of point eigenvalues, zeros of
detF [AI —A- K(N]

with a corresponding eigenfunction ¥(¥) = C-Ag‘éj;("°h ér a left
null-vector of A I-A- /3(/\) . Note that Red> -r* implies that
%6 C. Thus the spectra of Jt and /€‘ are identical in the half-plane
ReA » -¥ | Several facts will now be stated which show more clearly
the relationships between (1.1) and (1.7). Their derivations are given

afterwards.

Lemma 1. For pe DA, o €D(A)

(x, £F) = (K, £).

Lemma 2. Given Yeé C, kK an integer 2/ ,

(A-21)"¢ = ¢
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156 (&, ¥=0 for all

coincides with all

has a solution @ eC

Lemma 3. N(A-> 3 @ e C where

-y ol 4
]
#(p) = Z Jje =5 € gso
j=° : g
where <9 are column n-vectors and Y = co) (¥, X )€ R™satisfies
Ak Y =0 vhere

X w ¢
A A: EA_!A 2) L
¢
A S
AK = % N
N N
% N
O
A.
¢) d’am) ,
A =2 d/\j 5 J"D:(lz;-"t
AW = AL-A —KO).
ke
Furthermore, ¢ € n(?(—AI) generates the solution
-1 J
LY LAt
Z(‘t) = Z. Jfl Iy ¢ ) —wctce ,
j=o Ji
Lemma 4

)7(,?-,\ I)k coincides with ¢e C where

k k=)
bp < 3 pr CF

-~
j=r - (k=~j)!

A lken
(ken! A

(k-2

= #)

a p n{f—AI)k

(k-2)

)'A

to (l.L):

(1.10)



ol e
¢E n(A-)1)X generates

where é = row (B, .., (gn) satisfies E Ak‘-o.
the solution (y,= ¥) of (1.7):
k -
{=5)""7 =As
gk e sl B S e

Thus the dimensions of the generalized null spaces (and the ascents) of

are equal, being d/m »72(A«) ; ,(’z d,\ .

A-NI, A-)T
Let Jde J(A) , Rer > -r?

Lemma 5.

é‘/\ = r—"w(¢1)"'1 ¢')J
p: d,: dmm,

= dlm ‘y‘ﬁ’\

g}x = CDI (wj) > o 9 , }L}.))

(%, &) is non-

Then the matrix

be bases for m,\) 'r?):\ respectively.
singular and may be taken to be the d, « d, identity matrix I . De-
PA, Q,\ H

fine the projection operators

P,\?Sa @,\(QA,¢),

@, = - Py,

b
N(A-21)" @ R(A-3D’ as in the theorem. Then P, is
and @, 1is the complemen-

-
=

Assume C
the projection onto ™, along ﬁ(/t-al')'

In fact

R(@) = [peC: (%, %) =0¥)
ib, bR

2

tary projection.

R(P,\)"‘- {¢6C.‘ ¢ -
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Lemma 6. PJ (7(#¢) = point spectrum of 7¢#) in [ul > et (c>-rv
= exp ¢ S(A) . More specifically pm € PZ (7¢®) implies there is
A € &(4) such that m= exp'\t and if iA.,i consists of all distinct
points in 2(A) such that CA.t=,J. then n(T(f)-,uI)k equals the
closed span of the subspaces W(*"A.I)k

Lemma 7. Letting

Ao« {AeBR] Red > o ort]

and denoting

p, = 2 Hh
AéAl)
Qa = A P'\ P

so that ?A projects on AZ ™M, and @,\ onto the residual space R
€A

as occur in Theorem 1, then there are constants k, € >0 such that for

all ¢ec

(c-ert
[Tt Qo 0l < K e % I qugl , tso, (1.11)
Lemma 8. ;{ ‘P-,\ - B,\ ?,) ,

i ~B
Ty g, = e g,

—-Bxb
‘P,\(G) = € * ?3(0)

where 8,\ has been defined before: A §A = é\ 8). (here we assume
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(g;.,fg):I ).

The proofs of these statements are as follows.

Proof of Lemma 1l: For ¢6 D(’t), o e D(A)

(0, Ag) = aid. [A g + [ k(-6) #(0rds]

o .
~f" [ ack) Kki-6) glsre) dEde

-8

= &(D). [,4 gro) + /°k(.g) ¢(o)40] -fojooa(fiw k-0) P& dE Q0
~o -

= a0y [Ag+ [;KH’) 96240] ~ [° a(gLp) k-0 ¢tr')/oodo

- o
(] 0
*f | &we'-e) Kt-6) #1¢7 a£'d8
- 00 o
[}
s wio)-[ApBy + [ K(-6) ¢e8) de]
-

0 o r0,
= 7 [ato) k(-8 $(8) - at-0) k1-0) $19)] do + [ [ 4w k-0 ps0rdfde
-®

- -8
= (D((O)A & J o(-86) /{(-g)ng #(o)
<o
(o} o
t |7 [ e k-0 pere ) dEdB
_m -e

= (’TC’“I ¢).

To prove Lemmas 2, 3, 4, (A~A1’)k¢ = }& 1ff ge DI#A) and
d-2)" ey = $eo 6 <0
' = ’ ;

iff peD(A) and



]

Yi+

Y e ace-v) @-p*’
5 eiF g /° e T Y dE,

k-1

$6) = &
jve

where the fJf-. are arbitrary column n-vectors to be determined so that

;55 D(A) . It is easily shown that

D™gre) = [éiew)) g4(6) =
k-l eJ ) /9 ACE-§) (e'f)k-:"-, #(f)d{
'Zo Fensin J/i € T /o # (k-m-1) ! ’
J=.
Now ¢60(zt—)1)k iff  D™g eDA) for wm=0, Ly k- 1Ff
L (D)@ = L[0™6] oeme k-l . Now DTF eD(A) for
m=0,1, , k-2 iff (since g—, (D™@)0)e A Vemer * Ypuyy )
k-m-~| i - .
AVgy + Yomia = Av,,, + 2 1 (j: Ktw) (-u)’ e”"‘du) o
j=o0 Jo ¢+l
L - “) (WHE) _ )k-m-l
+ 4 "‘“)fo e Co®) . dy) At de
(k=m =131
15F
k-wm-) A(J’)
A YM'N i : j’! Ym+J+; =
Jj=
fmklw.) j““’e—h(ud) (.u-f)k-h-' ¢(e) d% d
. ° (k ~wm-=1)! : “
o i i

() (kem~1)
O Y + O /m-n, S L L & 2‘ o % =
1)




-

oo - k-m—/
= fo Klwd [o [c'“ (=s) / ¥IE) dF du
(/(‘M-J),’ STu+g

1l

e -w
.[o Kilw) fo q/m_”(uw*i) Yle) d& da

i

- (ymftj %Q

where we define

(C )k—S
: H - e Falk s
%(5) (k‘j)! J \, ) k-

similarly D g € D(A) iff (since L ID® )= Ar, 4 ¥lo)
o -w
Dre = =¥ + [, v [ ohlurg) $18) AF duw
=  —(ax, ¥).

Thus & D(A) iff

Ak! e "(Lgo,’é)’

gf—, = C)I‘Aj ("‘-1;---,“& ).

This has a solution iff br(-po,¢9¢=0 for all L7 1left null vectors
of Ay . Calculations analogous to those above show that & € 2(A-AI)
1EF A= bT E, where b'Ac =0 . Thus (aj ¢)=0 is necessary and

sufficient. To show that the solution x(t) generated by § (xo= #)

)

k



.
has the form indicated, note that X{(%) = Xs¢0) and Xg¢ (0) is
obtained from ¢(8) by replacing 6 by ¢ . The formula can also be
verified to satisfy (l1.1) by direct and tedious calculation. This proves
Lemmas 2 and 3; Lemma 4 being proved similarly.
To show Lemma 5, if (i&,\,i\)o\:l’ then (1’:\,§,\a)=0 so by
Lemma 1 é;\ a €eR(A-2D? . But P, ae NA-A D’ and these spaces are
complementary so Q,\ a=0 , i.e. a=0 ., Thus, by multiplying ?a 7 @A
by nonsingular matrices, we may take ( fp,\ / ‘f;.) = IdAaJ‘ . Then
R#= éA (TA, #) clearly satisfies P,\1= F,\ and R(f) ={§,\ L] and
Pog,= &, - Also R(G):=n(R)={p:(&,4)=0{ by Lemna 1.
To show Lemma 6 we refer to an easy extension of Theorem 16.7.2 of
Hille and Phillips [5] . To show Lemma 7 we let X = R(§i)= /?/’("\I)’
which is itself a Banach space. Then we show that / 7(t) ¢ Y/
KC“-‘H}IW/ for peX . First note that 7¢t) maps X  into itself
since:
(i) D(A)NX. is dense in X since by Theorem 5.8-A
of Taylor [16] there is a projection Qli C onto
X such that ®’D(A) < D(A and D(A) is dense in C.
(ii) T@) maps DAY X into X since $e D(A)NX =
g=A-AD"Y 0 Ttrg = A-AD'T ¥
by commutativity of T(¢) and A on D(#) so
T(t)g € X by definition.
(iii) T): XX by the continuity of 7/¢) .
Let 'r,(f) be the restriction of T(¢) to X . Then the infinitesimal
operator corresponding to I,  is )t, - ){/x: . Then since /’()t,) o

{ Re M >C,§ where ¢, is some - p*c ¢ ¢ we have by the
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Hille-Yosida Theorem (cf. Martin [10] , Chapter 7) that /u[;(',] £ (¢,
&
so V[T:)‘/LM,] and Z7,(t)) €e€°° for all 20

To prove Lemma 8 we have 4 #i = B € for some é: and

AS=88. Ten (& ,AS)= (%, &8)=(%, $,)6, =8,-

(If,\/ ff‘)= fg:)(f[;\’ fAJZ‘— é:‘ ; and noting

.‘ie_ Fo) Y= —TA ¢ = - A Tew) ¥ ;

for 5‘5 p(£) we have 7?/1") ':5 = 9—3’\t !6 . This completes the proofs
of Lemmas 1 through 8.

Now we have a complete picture of what the solution set of (1.1)
is like. Since the initial value space C can be decomposed into a
certain finite number of subspaces that in turn generate solutions X(¢)
of the form ¢ et or O(C'Y’t) then any solution X (t) ig a
(finite) sum of such terms. This achieves the spectral decomposition.
The exact form of the sums containing et ig given in (1.10) and
note it depends only on A ().

Finally we turn to the problem of determining periodic solutions of
(1.2) when the forcing term f(f‘) is periodic. For this we shall need
to examine the variation of constants formula (1.6) more closely. If
NMc) is as in Lemma 7, € 1is decomposed as in Theorem 1 and PA is

the corresponding projection. Let us denote

Xfr = FA X{_ = §( ‘P/ Kf-) 3

Q
5 R & X, .
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The solution of (1.7) generated by ¥ is Y = e ® f} yG) = tS“-s‘r £lo)

so by (1.9)

= t .
(e x) = [ e pmamas + (7Y &)

Thus if X, =@ we have

- B(t-o)
xf = frt— $ e 8¢5 Do)y ts)ds + G e (¢, 8
t
= [ [ T-5) &) B Ms)ds + Titwo) §-(F 6).
Thus
q P v Pl .f()d (1.12)
Xge = Tlt-0) " + fo— [T(*l:-s) X, ] S d .

P
where we define X, = @‘Sr.’/o) , an n¥n matrix of scalars ( é is
n x d, 5 5? is AA xn ) and T(t-s) acts on its columns. Also we note

that if we define ?(t) = (-‘l;, X+) then
B(t~o) € (t-
c[(t) = @€ q(r) +fc_ 68 s)f(a) i) ds’ (1.13)

'i('l:) = B’H-) + Py £ot) . (1.14)

Similarly,

3 e
xtq = Trt-o p¢ +fr[T{f-s)Xf] Fls) ds (1.15)
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with X,qf_- X:,-X.P . (1.12) and (1.15) provide the variation of con-
stants formulas for the projections of the solution X, .

We are now in a position to prove the Fredholm alternative for

periodic forcing. Let

A= {): ReA>o , ae SCA

Y]

Ao = §A4: FRed=o , de W}

Then we have the decomposition

with xf") Xf satisfying (1.12), (1.15) respectively. We may indeed

write, by letting & - o or T > — o

t
x,2 = [ Tl XD feoras

J

(1.16)
X = ft T(".‘-S') X-,,P' £(s) ds,

)
That the integrals converge may be seen by use of (1.11). Notice that if
f is periodic of period <« then 7(: and x:' are w-periodic
( X:,., = X: by a simple change of variables in (1.16)).
We have the Alternative Theorem:
Theorem 2. If £ (t+w) = ft) then a necessary and sufficient condition

for the existence of an w-periodic solution for all t of (1.2) is that



DT

w
L z(f) 'f(t) dt =0 (1.17)

for all w - periodic solutions of the adjoint equation (1.7).
Proof: The necessity of (1.17) follows from (1.9) since £ Yiswss Xenia) &
(yh x¢) for « —periodic y¢, xg as follows from (1.8).

To prove the converse it suffices by the note following (1.16) to
find an @ -periodic X¢?° « Putting 1(1’) = ( Pr, , Xt) we have equation
(1.14) (with ¥= ‘Pr, ). Also, the eigenvalues of B are all pure

imaginary. Now a periodic solution of (l.14) exists if
w
fo utt) Ploy fi1) dt =0

for all w -periodic solutions of w=-uB by the Fredholm Alternative

for ordinary differential equations, This implies

W, -
fo uo e €(o) £(H dt = O
- B¢ - Bt
for all U, such that Uo € 2 is w-periodic. But Wo€ ¢ to)
for such Wo form the set of all w-periodic solutions of the adjoint
Pa

(1.7). Thus by (1.17) an w -periodic q(t) exists so X¢ = {p., 9 (t)
is @ -periodic, and finally X, 1is w -periodic.

We note that all & -periodic solutions of (1.2) are obtained by
collecting all Uo as in the proof.

This completes the theory of linear integro-differential equations
with constant coefficients that we will consider. The results will be used

in the next chapter.
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CHAPTER II

HOPF BIFURCATION

In this chapter we examine periodic solutions of nonlinear integro-
differential equations. More specifically, we look for periodic solutions
bifurcating from a steady state solution of the equations. This is an
extension to integro-differential equations of the Hopf bifurcation
developed originally for ordinary differential equations. We shall
examine the question by use of a singular perturbation method known as
two-timing or the method of multiple scales. First, we give conditions
under which bifurcation can occur and then apply the perturbation method
to formally construct the periodic solution. The method yields not only
the periodic solution.but a neighboring family of slowly-varying solutions
which approach either the steady state or the periodic solution asympto-
tically. Thus, the stability of the periodic solution is also resolved.
Finally, we give a rigorous proof that the periodic solution so con-
structed is indeed a solution of the equations.

Hopf bifurcation for finite-delay differential equations has been
extensively researched with approaches via the center manifold theorem,
the method of averaging, the implicit function theorem, and the method
of Poincaré-Linstedt, cf. Marsden and Mc Cracken [9] and Kazarinoff, et
al. [8] . We extend the latter two methods to our case of infinite-lag
integro-differential equations.

We now examine the method in detail for an equation general enough

to bring out the main features. Consider

o
>

< Fuw, [Txes) vie-6)ds, D)

\

fu B
¢-r

(2.1)

’
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where J&: is the kernel depending on a parameter A and (A, 5) =
O(C—”) as S % for some Y29 . We assume that there exists a
constant solution (steady state) of (2.1) and that, by shifting /4 if
necessary, this steady state is MN(¢)=0O ., Further, assume that 1?
is expanded near NN = 0O in a Taylor series with no quadratic terms.

Thus

,d_’__f - -Z(/.\./; K *N, ,\)+ QS(/_V)J((/\)*Q/,,\) fO.., (2.2)

where Z is linear in A~ , and
[~
K(i) » N = f KA, s) N (t~-s) dr,
- o]

Thus,

TN, k) Y, A) = LN+ ks yot-s)ds

( ‘ is an hxn matrix) Q is cubic in ‘._J and X ()) * N N and
s 3 ~
G;', is quartic and higher.

We next examine the linearized problem about the steady state

NSO:

d oo
~E__ = et fo K(ds) plt-s)ds. (2.3)

From the theory of Chapter I we know that the eigenvalues o of this

equation are the zeros of the determinant of



Assume that for some value of )\ , say A, , there are eigenvalues with
positive real part and that for some other value, say /\l , all the
eigenvalues have negative real parts. For A=), the steady state is
ot
unstable since thereare solutions k = E,C with Ke >0, For /\‘-“/\3_
the steady state is stable (Theorem 1 of Chapter I) since all Ke <0,
Thus for some A between z\, and /\2_ there is a critical value /\o
where some eigenvalue 9, crosses the imaginary axis. Since the roots
of (2.4) occur in complex conjugate pairs and since we assume only one
pair crosses the axis, say at =% t'f* ,{;#9), then (2.3) will have solutions
Ut i .
€ s Tae. co.r/u't‘ and im/uf' . Thus, the linearized problem has
periodic solutions for A=A, . We will show that for A near Ao
and to one side of A, there is a periodic solution of (2.2) of ampli-
%
tude O (A=3s)" yhen certain conditions are satisfied, namely that all

Re o <0 except for the pair near * g and that if we parametrize

this pair @ (A) then we require that

Re ,_EJF,\ T =+ 0,

i.e. the pair crosses the imaginary axis not tangentially.
Since the linearization (2.3) turns out to yield all the sufficient
conditions for bifurcation, we examine it in more detail. At A= Ao

we want g = i‘;“ so that
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det Aldo, i) =0. (2.5)

Also, we want no other pair to cross the axis so assume that (2.5) has
only the single pure imaginary solution * 4, Also, we assume that
the pair o (A) that crosses at Z¢m is simple, i.e. the dimension of
the generalized null space corresponding to ¢ (or to -ty ) is
equal to one (cf. Chapter I).

For later use we shall need an expression for @ ‘() , i.e. the

speed with which the pair crosses the imaginary axis. Near A=A,

oiX) = ‘o F a’(le) (A—2A5) +0(A-—)o)z.

Since @ (1) is simple there is a single right null vector X(4) and

left null vector YTA) of A(A, o), Thus

~

4 -l s
A, W) xia) = [ o) I =LA - Jo kx5 e ds [ x(4) = 0.

Differentiating with respect to A and denoting :\_’(a\o)'; Xo , we

obtain

Bodo,gu) Xo + L Oo g0 ge TG+ Ble, ) x700) =0,

Multiply on the left by y.r to get

T/()e) = - = (2.6)



where

-
A= 379: (Ao, (). We show later that Y, - A xa#0 . Also
- A
(), = -voa - Jo 55 (e em*ds
°
Au) —

T + fo"s k(Ae,s) &M do

€2.7)
(2.6) gives the desired formulay; i.e., the speed at which the eigenvalue
crosses the imaginary axis.

Next we examine (2.3) for

A=A, . Put L = L), Kis)= K(A,s)
d
' < Lp + K*»p = ZLp
dt ~ Ga ~
Of course this has the eigenvalues
tions et"‘t

(2.:.8)
(with

:tt'/u with corresponding eigenfunc-
Since we assume that these are simple, then the matrix
d" A (As, l'[A) Yo

Ak in Lemma 3, Chapter I has null space of dimension 1 for each k=423,

We show that this is equivalent to
<)
YT A" xo # O.

4 has the single null vectors

Xo

s

(2.9)

Yol , Axo= Yo A= 0 . The corres-
cut
ponding solutions of (2.8) are the real and imaginary parts of Xo e M
‘mt
Re (xo ™)

Im (X0 ¢™f),

Now if [j) is a null vector for A
2

BYy+ 4, =0

2 then

Av,

and
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This has solution ¥y =Xo and ¥r; =0 . It is easy to see that this
is the only solution iff ¥ Ax, #0 . Thus dim M(Ax)= 1 for
kz) iff YT A xs #0  as was to be proved.

Next we consider the following inhomogeneous equations (for h =

integer)
%% _ Lz._ /(y-f = 2 cos n,u‘f * § sth nut, (2.10)

The right side can be written

R;c (r cl'n,ut)

with © =

~

L.E“. First consider the case Nn#/ . We try a particular

P s
‘npct .
solution }> = e (ID € )with /° undetermined. From (2.10) we get

Re (Lo I —L — [, ki) ™™g, ) 2. e P

Re (r e Cpetd,

So we choose A (Ao, m;u)/_g = r. But A (de, nip)  is nonsingular by

hypothesis so £ = A~ (e, niu) r . The general solution is

-~

(at = . thput
P:?t’"c[n,d’“ + A (nip) 8 /
for an arbitrary complex constant P, . Now consider the case Nn=|
et 2
Try the particular solution P = [fc te """y Pe e"‘*j . The left

member of (2.9) is
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Re [ : Afn e“"‘t ¥ (I"f'/; sk(sle")”dr),a, R akd
+ A/D:- C’l,‘t] B
(2.7), (2.10) imply

Ap = 0,

—

A,oz + A‘n/o' & L L

2
Thus f, = CXo for some ¢ €€ and A/’a. = r—-c a Xe . This has

a« T, )
a solution iff )’.T (E -c A "!’)/ so that c=Jo f/g.rdngo .  Then

o
p- = A C, Xo , ¢ ¢«€. The general solution of (2.10) in this case is

et ‘ut
F;RC[CﬁotCF +—/o>e’/‘_]
.Y¢r”‘ g
with & = JTaTy, and /0, determined up to an arbitrary complex
o L ~

mt
multiple of X0 . This has an unbounded term te'™ and a necessary
and sufficient condition for the suppression of this term is that <¢= O

i.e. ~)I,,T_zo s lees

b= E =0 (2.11)

This condition also follows from the Fredholm alternative (Theorem 2) of

Chapter I where it is required that

>
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3

('e-gbt B%T} Re (’C # qbf) dt = 0

),

since the periodic solutions of the adjoint to (2.8)

Q.
4

I

. ylb =+ fo J+E) k(g1 dE

Q.
o

are the real and imaginary parts of c"”t Yo" where

)_’or [_,-,,.I + L+ L~e°'>‘€/(({)¢/z]:ol

i.e. y,TA(:,'u)= 0 . The condition reduces to _y.*_r: 0 . The
Fredholm alternative condition (2.11) will be used repeatedly in what
follows.

We are now in a position to introduce the perturbation scheme.
A two-time scale solution will be constructed that tends asymptotically
to the required periodic solution. We introduce a small parameter €& in
terms of which all quantities will be expressed. The two time scales

are denoted tt 7 the fast and slow time respectively. Expanding in

powers of € :

N = NIL+*, 7]

~

1l

EN, + €Ny + €Nz +
¥ f(e)t,
T= e* t,
‘o(G)
Ay = A+ €l + €N, +.u

S
[+ €p + €pu + o,
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Before preceeding it will be convenient to first calculate k*MN.

Writing t* and 7 as functions of ¢ we have
NMIit) = N (t%t), T78)),

Then Nt -x) s N0, T1t-0)) = N (t"p5, T-€¥) so
kx N = [, kis) Mt-s)ds = [, kts) p/et™ps, T-€¥5)ds

Iwk(’) g rltP=5, T) — (&p:v 6‘;0,,1--);%» (")
o

1\

2, 5
_ets M (¢t r) 4k Cepr0T ST )37“ g

+ O (EX7m) } ds.

Notice that all the convolution integrals ignore the slow time 7 so
that any functions of 7 may be treated as constants. We adopt the

notation for any function /N of t”* and T

K¥N = j;uklr) Nt s 1) d_;)

sK*»N = f,”s/rls) N (t*-5, T) d=,

etc. Now expanding LV we have

KN = €e[K*N] +
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+ e* [ ket —p ("k* }a—tAiL)J

*M,
+ 53 [K*Mg =P (sk * )-f*) P (Sk* )ﬁ"

T p (57K H“—) (‘r*w')]

+ 0Ce").

Now substitute all expansions into (2.2) and equate the coefficients of
powers of € . There will arise a hierarchy of problems to be solved
where the functions A, will be successively found. We constrain the
Aé to be bounded in T as t = o (there are no secular terms) and
to be asymptotically periodic or zero. This is sufficient to determine
the various parameters A¢)(°g as well as the A . We expect that as
t > @ (or possibly -~c ) /Y becomes a L—-/E - periodic function of
¢” only. This means /(%) has period 2R /puple) so /"/F) is pro-
portional to the frequency.

The coefficient of € yields

which has solution

N, = FRI(7T) ﬁc{ Xo eXp c(put* + 911-))}

~

where we shall always ignore the solutions of (2.8) that decay
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exponentially. R, €© are to be found later. We denote

¢ = /u't*+ e0T) .

The coefficient of €* yields
oWV K
oM _ X = - P )_ti" + A, LG NV o+ A,/‘;—A—/Ao);_/_v,)

M,
——f, (sK¥+ ;?%)

2k
_/0’ (I+ 5k * ) g'_'.:./l; + AI CL/(Jo)f aT(A.)*){yI

"

= R-Ref ~ppr [0k ] e
[, 5] o]

by use of (2.7). Since 0&, is bounded there are no secular terms so

(2.11) dimplies

i
o

3 1 2
Yo' L-xp 2% =, néo xo ]

By (2.6) we have -l}A.f, + A, @A) =0 . Thus

A, Ec_ G’"(Ao) =0 J

—HPA + A Im o) =0

and so
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since Re o “As)# 0 by hypothesis. Then aY‘E'; - XINy20 so we take

“Nz:o.
The coefficient of e? yields,
e* —dN; = M 2N

"[Dz. a_&T} = > T + AZ L_/(Ao) /\/,

K
/\,_ 597\*(«\0) * N — IO,_ (;k#-g-;’éﬁ, —(r.{’*g-;—’i

+ Q@ (N= RRe(xee® |, )=2,),

Since Q3 is cubic it yields only the first and third harmonics. Let

us suppose

Q3=

3
R - (xsing +fcosgd) 4+ third harmonics

n

R> Rc[(p—c'«) e“”] + third harmonics .

The right member above is

N,

~Pa <I+$K*))~+—; + X (LO,)+ 37'((,\,)*)/\/‘

—(I+sk*) & + @

n

Denoting R 3 d

|

etc., we obtain, using (2.7) that this right hand side

o.
.-‘

is
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Re S e‘.’sf—,uf,_z'ﬂ [A"’g.) ——)«,_R[(,;a‘,\é}aﬁ.j

(R RE)(A%0e] + R (-]}

plus third harmonics.

The condition that the secular terms be absent
implies

Yo o[ —pp R 0%  — (R+REI 8% —,R (30 x

+ R (p-x)] = o,

Using (2.6)

—ippr R + A, o’le) R

Equating the real and imaginary parts to zero gives the modulation equa-
tions

R = A, Recdae) R + (Re$§) R3,

(2:12)
B = [~pr +A, Im c’0ra)) + (Im§) R*,

where

f = Z‘T' (g ".Swotdh',!c :

These have the solution
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1

il Az thfq“o)
Re &

R(T) =
| 4= exp (=21, Re o) T)

Depending on the sign of A; Reo’(A) , as T-» @ or -co , R tends

K, . Since € can be scaled arbitrarily and

to a nonzero constant

multiplies R we may assume Eo= 1l . This implies

A

A, - -
+ 2 Re o70)
B, = 2 Re J.
Hence,
[ G
R(m) =
|+ e47T
Also, as T % + o we expect the phase © to become constant (the

asymptotic phase), so

—Mp2 + Ay Im o)  + Imd =0

determines Pe I~V3 can now be found and the procedure repeated.

Thus we have the solution

N = ¢R(r) - Re § Xo €xp é(,ut"f—elr))z + 0(e?)
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which represents oscillations of period 2774pcf£é) with slowly varying
amplitude and phase. We have p (€)= [/ *6‘,‘._ » 0C€Y  and Q/ solves
(2.2) for A= Ao+ e‘)‘ + 0(e®) . Also O(r) — constant, R(T) — 1
for either T#% ® or -—oo depending on S$gn Fz . The periodic solu-
tion corresponds to RZ) and @ = constant. Also if /4, <o then
R+l as t»co , and if B, >0 then R+ 0 or ee as t-+»oce so one
could conjecture that the periodic solution is stable if £, <¢ and un-
stable if g, >0 . This question of stability will be resolved in a
later chapter. Finally we note that ’\z Re 0“(A) and B, are of
opposite signs. Since Re o) = €% ), Reo’(de) + 0Ce?) the steady
state is stable iff Re A, “Ad<0 iff the periodic solution is

unstable. Thus we always have an exchange of stability between the

periodic solution and the steady state.

The form of the modulation equations given in (2.12) is completely
general and in the Appendix we treat the general case. We summarize the
results.

Consider the system

Q
2

\

= f(N, XN*N, )) (2.13)

fo W
ot

where &N 1is an n-vector, +X°(d,5) is an hxn  matrix kernel which is
( -s

O € )as 5> 00 and A a real parameter. Assume that the steady

state f_‘! 3 0 is a solution and the linearization of (2.13) about

is given by

a
v

Q.

@
A «IZ = L(/\)t + ‘/; KA s) f(t-:)ds, (2.14)
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Assume further that at Aa a pair of eigenvalues o (A) of (2.14)
crosses the imaginary axis at &% t',u, M#0 ; that no other pair does so
at A=)\, ; that o(A) is a simple pair (the generalized null spaces
are each of dimension one), and that the real parts of all the eigenvalues
of (2.14),except the pair that crosses,are negative. Suppose the secular

matrix

A= I = L0 — [ &the,5) 7™ ds

T
has right null vector X, , left null vector Zo .

Then assuming the transversality condition

Rc 0"/(/\’) # O
(2.13) has a formal solution for all €& near zero
utt s 060
N = e R(7) Ee.{ e x’i + 0(€*)

where

" pre t = ((+ &*p + Oce® ) t,

for



4G~

with

v-

R (1)
l + epar )

A, Ps

2 RE d”(z\o)

I

Po = LAy Im sitta) + d b,

for some constants /4,,) /: . The periodic solution is given by K=! ,
@ = constant.

Now that we have a formal periodic solution in the form of a per-
turbation expansion we examine the question of its validity as an actual
solution of the equations. To this end we state and prove the following
theorem. Assume f is twice continuously differentiéble.

Theorem Consider the equation (2.13) with steady state A = 0 and

the linearization (2.14). Assume the hypotheses stated after (2.13) up

to and including the transversality condition Re @’(A.) #0. Then (2.13)
has a nontrivial periodic solution NV(¢, €) for all € near zero of

the form N(tne) = & RC( Xo C‘.At’) + w(¢*¢ corresponding to Ace)
vhere %= ,0(6) t and A0 = Ao, p(@ =1 . Furthermore, w= O(€")
and satisfies

L/
~* ut?
fo yor . wi(th e) e i dtr = o,

i.e. is orthogonal to the periodic solutions of the adjoint of (2.8).
Proof: Let us assume without loss of generality that /\o = Ds 80O P

is near zero. Write (2.13) as



5

Q.
v

(N, k) *N, )) + g, Pxcy*N ,})

with g  consisting of only nonlinear terms in A, A7A)*AN .| Pyt

-~

L = L.(f\o) ,

Kis)= KCho,s),

[--]
where .ZP/_Y = LWN +—fo K(),;s)N(¢-s)ds- We shall use the notation

concerning the linearization as adopted following (2.14). Put

b = Relx e™*) X, (¢)

Im (,Ko C—"At))
Y6 = Re (37 €™ | gee) = T (y7 €75,

The X; are the periodic solutions of (2.8) and the x-T are the

periodic solutions of its adjoint. We rescale ¢ by defining t': ng;;3
so /0(61 = /f-/T(F/ and 7(e)=0D(¢). Define
N(t*) = N(t) = N[Gnt*],

We seek a g{;‘ - periodic solution A which will be the fixed point

of an operator equation in the Banach space
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B = {ﬁlt} l u is continuously differentiable and
2T
— - periodi
m ) o 1c‘}

Nufl = sup [weed] +  sup | @t |

ostsg osts!;_}'
Also define the closed subspace

2,

2, = {Eég/ ‘/; X8 cuep) dt =0 [:l,zi_

We have

oo oo
fo k(s) pt-s) ds = fo K(s) t[(l*r)f’ -5 ) ds

= [° & e - S
IREONYE: ) ds |

I+T
i -~ e
Kwp = fb K(s) b (£%-s5)ds + Lp, 7, K)
where
J(p 7, K) = fo Hs)[ p(t*--5 5 b (t*-5)] ds
and is of order 7T(¢ %E; . This is a bounded linear transformation on
B. Put L= L +Xx (), kK(hs)= kis)+ A k(r,s) - Then N

satisfies



Ty

~

dN

de* = (HTJ[L,ZT + K«N + I(N, T, k) +
ALWN + X K *N  + S (N, = AkW) »
3(/\7J K N + J(AZ v, X)), A) J .
Put N= ¢ pit¥) + ez(t*,€)  here

Pt = % X, (£%) + 5 Xit*)
R
= F?c_ ( )’lo C‘”Mt }

(with Y= f,-o‘rz_ # O ) which is some periodic solution of (2.8). We

wish #Z = 0C¢) and iea . Then we wish to solve the following for #& :

— - Zz2 = J(p.v; K) +ALAQA)P

(2.15)
+FAKMN»p +TIp + Gl=,A,7,¢€)

where

G= Gr7)[ Sz, 7, K) + dl,2 + A K*z +

Sipr, k) v Jle, 1Ak 1ebh] + 7[Sipnk)r
tALP + AKkxp + Lz + K*—z]

where we have dropped the star on 1‘.* and have put
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€h = él 9(ept+r ez, € A*rprechxzy

ed 7, %)+ ediz T2 ;))

( € has been scaled out of 9 which is nonlinear). The right member
of (2.15) is of the form F (=2, A, 7,€) and for (2.15) to have a periodic

solution it is necessary and sufficient that

I W
T 217»[ Yot - F(2), A, 7,€) dt = 0

for t':[lz . These two conditions will determine A and T as func-
tions of 2 and € both sufficiently small with JA=720 when €=

2=0 . Put

))"(&,/\,7}'6)5 ]¢'.F.

To solve h[ =0 for M 7T it is sufficient that the Jacobian
a(k-,f.,_)/ a(A,TS evaluated at A= T= €=2=0 not have vanishing
determinant. This follows from the implicit function theorem for Banach
spaces. We evaluate this Jacobian. The terms in G- all involve either
€ or products of the four variables,so gives zero contribution to the

Jacobian. In fact, Jacobian =
y, - [Lto)p K0 wp] [ Lilodp + k(0)wp]

o Lap v odr] o [2p + o] Ao,
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where

)\

17 oo
JT d J/o - ]; sk(s) %f(t-s)ds.

Also

jP-f- JTO-.- P+ SK*P. = fe { ‘py Amxo EEF{E

by (2.7), and

L(ap+ktarp = Refre*( dun+ [ 3o e “s)| x]

= Re§ ve®t (-%}o.é%

by (2.7). Thus

T f (YT ai s+ cc.) lgur A‘f’!'.c""bﬂ-r.) dt

y, - (Zp + J7)

]

L. ;
3 [ Ly (}__’o A% ) 4 c.c.}
= £ Re [ cr (o™ A4 x0)] .

Similarly,

W@y v 97) = & Tm [or (Favg)]
/?e.['*“Y (gﬁr(%gjo fb)],
jm( Y (Y¢ / J X’J-

N~

y'.(L|’+K'4’) =

[l

y, * (Lp+ k*p) =



=50
Putting » = (¥ ()QTAM!,) and noting (2.6) we have

/,

ZAo)v/ /?euf

det ( Jac.) = % { Re( r'(;\.)VJ Imy — TIwm ( e

_ ‘o) Vul*
A"i Iw: [d‘ - v }

L

i\

/ﬁ IvI* Re o)

£ Uyl 1y 4% Re %00 |

\

This is nonzero by the hypotheses and »#0 . Thus, by the implicit
function theorem there are unique functions )\(2:, €) , 7(% €) defined for
all lel<e€” and 2 ¢ S, =f2eB|nzll ce®] such that A= 7=0

when eE=Z =0

First note that T(z,0) =0, A(2,0) =D since h; =0 is
satisfied for T=A = € =0 and all # € J.» . Thus by uniqueness of
A, T we must have T(2,0) = A(2,0) = O

Consider now the equation

\;-—Iv = ?('l')

for any ¢l€ 80 . Appealing to the Fredholm alternative theorem of
Chapter I,a periodic solution V can be found and made unique by re-
quiring V€ Fo . Thus vE A‘g for some linear operator A‘ on B, .
That /{ is continuous can be seen as follows. In the proof of Theorem

P
2 of Chapter I Ve' and Vta and their derivatives depend continuously

on 2({’) as in (1.16). Next, \4"’ is defined in terms of a function

y(e) satisfying (1.14). There we have



Rlt-s)

) = € y( + ‘/o e " Pro) ?(S) ds,

and y (o) satisfies

w
-B
E©%-1) yer = -e8° [ ™77 P geas,

and is determined continuously in terms of g uptoa null vector of
Bu :
e¢" —I1 (corresponding to v(0) wunique up to a multiple of x, ) and
which is made unique by requiring veé&B, . Thus y; y' depend con-
P,
tinuously on q ,so Ve ° does likewise. Thus the map Fz,6) =

A
A o F(=, A(3,¢), (2,€),¢) is defined on g * L-€* ¢%] and 48

continuous. Now as €90, A, T>0 so F->0 and %55 . Thus

for some €, >0 we have [ef €€, implying Il F(#,¢) ll <e* for all
ZeSe¢r so F maps Se» into itself. Also %‘3 IE‘O-'- 0 since
g{ }6”: %L.o = O . Then by choosing €, smaller we have

| Fezg,ed- Flz,, @l ke 12, - 2, 1) for all z; € S+ and lel g€, 3
and O0< ko <| . Thus, for each € , JF 1is a contraction map on fé.n
and has a unique fixed point 2(€) where Z=zTF(2,¢) ., Also 2eD, .
Then 2-T2= F( 2,0, 7,6) so Z solves (2.15) for le| < €,
Put  T(€) = T(26),€), Ae): N\(x(0, ¢e) . Thus 7,3, 2 and there-
fore 7, A; N are determined with the properties stated in the theorem.
Note N §p since otherwise p=—2 but p¢8, .

As a final point we consider the case that f in (2.13) depends
analytically on all its arguments and A(s) s analytic. We briefly
show that the periodic solution LVH", €) given in the theorem is analytic

in t and € . Furthermore A (e) and f(E) are analytic in ¢
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Since L and K are analytic then the resolvent R(¢) is
analytic in 20 . Denote by 8% the set of wu(t)ef analytic in
t, with & as in the proof of the theorem. Also 7 and A are
determined as functions of 2, € . If 2lt,m) ¢ [ depends analyti-
cally on % (as well as t ) then F(2(4%),),7,€) is analytic in
e 5,7 so the )); do likewise. Thus 7= 7(Z(%), €) , A= ,l(zly),f)
are analytic in 9,¢ by the implicit function theorem. We deduce
F (2, €)= A o Flz, e, Ty 6),(-) depends analytically on 7, €& .
The image of F is in B%* since B is invariant under /f (use
the formula for the solution of (1.2) in terms of the resolvent R =
which is analytic.) Thus the various iterations used in the contraction
mapping principle yield an analytic 2(t, ¢)é B if we put =€

Then A, T are likewise analytic.



o
CHAPTER III

A TIME-LAG DIFFUSIONAL MODEL

In the previous chapter we examined some integro-differential
equations describing, for example, the time variation of a biological
population. These equations involved one independent variable, ¢ . 1In
this chapter we examine the effects of an added space variable, A 5 ‘on
such equations, these involving derivatives with respect to X and ¢
and convolution integrals with respect to t only.

We shall study an equation modeling a predator-prey relationship.
An example of such a situation is that of herbivorous copepods living off
of phytoplankton in the sea. It has been observed by Steele [}4] that
traveling waves can occur in these populations. It is suggested by
Murray [i;] that this is due to the combined effects of diffusion in
space of the population with the inherent time delay of the life pro-
cesses involved. An example of the latter is provided by noting that in
any population there is a variation in individual maturity. This has an
important effect since the amount of food available to the young directly
affects the number of individuals reaching maturity (and this in turn
controls the birth rate.) Diffusion arises from the tendency of a species
to migrate toward regions of lower population density. This will be true
if food is continuously and homogeneously supplied in time and space.
Then in regions of high density population the food will become scarce
and individuals will tend to migrate to (or will have a higher expectation
of surviving in) the regions of lower population density. Thus one may
conclude that the flux of individuals across any surface is proportional

to the population gradient at any position and time. With these
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assumptions in mind we shall construct a model of the predator-prey
situation, describing, for example, the copepod-plankton relationship.

The governing equation is derived in a manner similar to that of
the heat equation. Given a fixed volume "2~ in space, the time rate
of change of the population size within 2~ is equal to the flux
across the boundary of plus the change in population size due to
the birth and death of individuals within the population. In the absence
of predators the prey population obeys such a rule. Denote the prey
population density by a function V({,,t} , X being position in space.
In this model we shall assume that the growth and decay processes are
describea by some function of 4 not only at the present instant but
in the past also. This is represented by the lags or delays described
above and are due to age variations within the population, seasonal

changes, and so on. We denote this function by

- (_/;~/<($) V(x, ¢t-s) JS) )

Notice that the delay is independent of X . This follows from the
assumption that the migration is on a much longer time scale than the lag.
The kernel K(s) , a weighting function for past effects, is arbitrary
except that we assume it decays at least exponentially as S—»> @ . Ve
have also assumed that the flux (migration velocity) is proportional to
the gradient VV(ix, t) (choose the constant of proportionality equal

to unity.) Then we have




d
dt./vq"*)d?é = Vv.da + f’-dz.
w oV v

By the divergence theorem we obtain

ao
2
Vo = W ([, k) vix, t-ds) + V. (3.1)
As noted above, h incorporates the birth and death processes of the

population and depends on the situation being modeled.

Now if we assume that the predator consumption depends only on

their capacity L for prey,the full predator-prey relationship is
given by

Vo ([ k) Vige-9ds) - bW + VIV

Y g =k ol * (3.2)

where W(x,¢) is the density of predators. Clearly, since the pre-
dators depend exclusively on the prey for food, W depends on V

Furthermore, if there is not enough food for the predator at some time,
then in the future that population will decline (the usual delays are at

work.) Thus W depends on 4 at an earlier time and we assume
L
bWix,t) = m(jo ki (s) Vig, t-5) dg) .

For simplicity we take the two kernels equal

K(s) = ky(s).
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We consider only the one-space-dimensional problem

o ) 'V
il h (K» V) m( ksv) + oxt (3.3)

where we define

0o
(k*V)(x,8) = [ k) Vg, t-9) ds.

Since h takes into account overcrowding, in which case the
population tends to decline due to self-poisoning and depletion of food,
h must decrease with vV for 4 large enough. Thus there is a
V=V, where h(K#¢Ve)- m(K#»¥). We assume Vo to be a constant.
From (3.3) we see that v is an equilibrium point of the population.
We wish to examine the solutions near this steady state. Assuming with
Stirzaker [ié] that h and m are odd functions about VQ we

have, putting

U=z V- Va,

3 2
M ke + e (K*uw) + 2 % (3.4)
5 x?
for constants & and € . We examine (3.4) for small € so that

the nonlinear effects are small (but crucial).

In the case that k(s) = §(s-T), the Dirac delta function,
(3.4) becomes a delay-differential equation. Murray [l%] has produced
traveling wave solutions of this equation thus lending weight to the hypo-

thesis that diffusion and time lags are at work. We shall perform a
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similar analysis of (3.4) for a general kernel (with the weak conditions
on K mentioned above), showing that traveling wave solutions of
the equation exist. This will confirm Murray's hypothesis in the case
of continuously distributed time delays.
We look for traveling waves of the form

e wl(dt-— L)

<

where ( is the (constant) phase speed of the wave. Putting

nx

z= t-

we get an ordinary integro-differential equation in 2

2 |
é& %41 e ‘.iﬁ- +x Kruw + ¢ (K*xu) =p
(3.5)
where oo

K*w = j; kK(s) w(z-s)ds.

We examine (3.5) for the bifurcation of a periodic solution from the
steady state w = O for € near zero. Since we wish to keep o
and K fixed this will force us to consider [ as a function of
€ . This, as well as the oscillation frequency, will be determined in

the course of the calculations.

Now that we have an equation in one independent variable the
technique of the previous chapter can be employed. We begin by examining
the linearization of (3.5) about wu= O for periodic solutions, i.e.

for eigenvalues which are pure imaginary (and nonzero). The linearization
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is

and has eigenvalues = ¢am , m#0, when the secular equation is satisfied

M* - (s (3.7)
- C" — ¢,& -+ o '/O /((f) e ds :0/ .
i.e.
2
(- ¢ A()A-) o %,_ = QO
° ’
(3.8)
[ ¢ E(}A) + M= o/
oo o
where AGQ) + ¢ Bl = fo K(s) e~'™ ds,
Equations (3.8) give two conditions on the wave speed Co and fre-
quency M for the periodic solution of (3.6). Assume that some such

pair exists. We now look for a periodic solution of (3.5) with ¢(€)
near C» and u(z,¢€) near COsSM 2 for € near O .

Using (3.8),note that (3.6) can be written
1L 2
2 w =0
2
where z“ & n f“B il /:% k*u) . (3.9)

u * z’

Thus (3.5) can be put in the form
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ju:

3
ve) w" o € c;‘ (?(a-og)

(3.10)
where | — (f&. 2
Cee)

s 25 € -+ OCe?,
Co

V(E)

n

Before applying the perturbation procedure of Chapter II to (3.10) we

examine the linearized equation

k 3
w' o+ ’:ng w o+ },?:' (K*uw) = vu" (3.11)
with
Y= éul + O(G.-)v

This has eigenvalue

Thus

where

o= 0(€)= (u+0(e) yith eigenfunction
us= e". From (3.11) we obtain the secular equation
8 o 2
Av, ) = o + /‘—‘4— T o+ /';—“- [ kis)e= Ty (3.12)
o
-vaol: o,
24
v 2
(‘LT = - = ,i() (3.13)
= sl 1 .
dv v=o0 QA A
07 /y=0
24 B
(1) == e
A = (3 o‘)u
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This expression will be needed later. The inhomogeneous problem
Ju = a Cos nuz + b sin npuz (3.15)

is solved as follows. The right side is Re [ ¥ exp cnuz] gith

Y= a-ib. a particular solution is

Y Cnpy

w= Re [A(nF,O) = ] ; h#l, (3.16)
kN ‘n

u= Re [ Am T C J P n=1 (3.17)

For (3.16), (3.17) to be valid we require

Alnu, 0) A" %0 Vhs# =l

Equivalently, for given <&, and ¢ satisfying (3.8) there is no solu-

tion Co, npa of (3.8) for n# %1, and the eigenvalues = ¢am are

)
each simple. Furthermore, we assume the secular equation (3.12) has all
its other roots with negative real parts. Finally we note that (3.15)
for ns=} has a bounded solution iff ¥=0 , i.e. @@= b=0 . This
is the Fredholm alternative revisited.

We can now proceed to the perturbation analysis of (3.10). We
shall seek a periodic solution of (3.10) for all €& near O which
reduces to K cos Mm% for €=0 (this is a periodic solution of (3.11)

at V=¢>> . Since it is expected that the nonlinearity will change the

frequency and wave speeds slightly and modulate the wavetrain Fi<°f}4ir
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on a time-scale which is longer than that of the oscillations, we write
the solution as a function of two time scales. Thus, much the same
scheme of Chapter II applies. We note briefly that the Hopf bifurcation
of Chapter II applied to this problem yields the one-parameter family

U= R cospz for all R and solving (3.5) for €20 . This is a
degenerate case for the Hopf bifurcation and does not yield solutions of
the perturbed equation. Instead we construct a different one-parameter
family of solutiomns.

Assume an expansion of the form

W= R(T) cos(puz™+ O(0) + €=z 1) +

vie) = vy € + 0C%,

where

2 ¥ = f(é)i-)

T=e2,

are the two time scales, and

(0(67 = |+ €4 * 6‘/’4 +Ote¥

is the adjusted frequency ratio. Put

Uy, = R(C) cos (2™ + 6¢T)) .

As before
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K*LL = K#—uo +
- oU, dUo
€ [Krwy —p (skn ) - fhcw 2]
+ O0OCe*)
where
Krf =

w
fo k(s) F(2*-s, T) ds

(3.18)

for any function ¥ of 2% and 5 Also

d oy ¢ 2
ol — -+ —
Substituting these into (3.10) and equating the coefficients of the

powers of € , gives for OC(€% :

Y
<
o

(

U, r8B
juo ® T aaes YA

Q@
LY
*

-0—,%1 K»u =20

with K# as in (3.17). Thus

U = R cosuz*+8) =

= Re[R e*™®)
as we already knew. The O(¢) coefficient yields
D‘uo Bz'u., B Bu,
zu' = ~2f, a%‘ll —-Z )Z’ac . z_ Pl a?
_/-;‘;B 9 Us Mt ( k,p).i"!) & &I(Sk*?—g-'—
A ot Y F Pu\sk¥in) * 4 <
% p )luo

F
Ja*? o Coz (K*“")
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= Re {(-/"ai" a-(,)(zu, +;\_ u°~';-"-(rk#u,))
3w VS S
* v (t,u) K e }

3
- CoL RB [A Cos(,ui'-o-e) + B S‘I'n(,ui*v 9))

( Aand B are defined after (3.8))
= Re { a” (=pi 5+ ~ Z) (Re™"®)
-y pt R e
"‘.% & Rs(A:’COS(,ul'+ ©) + A8 sintui*e) +
+ AB® cos(pu2”¢6) + B> sin(ua*+6)) + 374
< Re § 89 [oiupy < (Rucrd)] en e

VIR ARV )
‘Vl,‘*‘R etﬂ ¢ }

-‘; & R (A% BY (A costui*ve) + g Sin (ua*+0)) +37

" - KQ { cipq""‘e ((‘-HP! Arn) + ¥, /4‘)’3

+ A“)(R.fc'R é) + Z:‘,‘ anks(Az+8.)(A—¢'3)]}

+ 3-6
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d
where the 3" denotes third harmonics. Since we force U, to be

bounded, noting (3.17) we require

a)

(pp, &7 + vpIR 4 AP (R+cRE)

+$C.;‘CA"+B’7(A—L'3) R =0.

Dividing by A and taking the real and imaginary parts yields the

modulation equations

é = - ¥ ,‘z (Re a%l)) E - 4% Coz (42‘*8‘) (kg /-q—a-:—"e Ri

(3.19)

[
n

- PP = ¥ I (Iw\ i’m) - % ce (A+BY ( e A-c‘B) R

—
Acl’

These equations have already been analyzed in Chapter II with the results

R A-(B
~3 c.:_ (A‘+ B: C A(l) i
Y = ¥ Tt ) = K, B
Re ao
(3.20)
e B B oo A-cB 2
r‘ = —U,Iu. i pe X2 “; ;,. (A*+8Y I F Ko )

A-cB

where R+ Ko as To» o or —o0 , the sign equalling ssn[Re 29 /-

In fact

Ko
(12 exp gg)™

with




: 2¢,
Since VY 2 o
c, =

Note that ¢,

(3.21) requires

From (3.13) we get the equivalent transversality condition

and £
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(A*+ BY

{
Re 27,, 0 , 1.e.

Ec A(l) #_ D-

are proportional to k: s

(3.21)

Finally, note that

do
Rh,az @ o0 ,

In either case, from (3.14),this gives

(-4 ey
/ K(s) stnpus ds — ,u.j; ski(s) cos us ds  + O.
o

Summarizing, under the hypotheses

(i) A(hp, o) 0

(ii) Am 0,
(iii) Re 2 %0, Ke ,f—: (o)
(iv) B *o0

n = integer

’

2 |

+o0,

a periodic traveling wave solution of (3.4) bifurcates from the zero

solution with period

}lr(é)

and wave speed

C(e¢) where




-66-

C(€) = Co + C, € *0(‘9,
PE€) = | + g€ +0leY;

P1 ¢ given in (3.20) and (3.21). The form of the solution is

U= R(B) cos(mz® + &(v)) + 0OCe)

where T = e , z":,:(s)z,
and
- X
z= ¢t cCe
with Ro
R(g) = )

Y
(1 + e8)™
and W tends asymptotically to the periodic solution.

Note that the leading term in (3.22) can be written

R cos ( wt — kx)

with
w= Wwle) = /‘Lf(G)= /A'f‘ O(GROL)

/

k = k(G) = P“C_L::f—; - /‘é'. -~ O(GR:).

Thus we have a wave propagating with frequency & and wave number

(3:22)

k

that depend on the amplitude of the wave. This corresponds to the general

result of nonlinear dispersive waves that the dispersion relation depends

on the amplitude, cf. Whitham [}é] .
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Assume
w

]

Co> O

Cc
« —
X
€EB >0
Profile moves to right at speed #/¢ = C.
Oscillations die to zero as ¢ -» @ for fixed x .
W
> C
< P x

Oscillations become periodic as

€< O

¢ ~» o0

for fixed X
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Now that we have a formal periodic solution of (3.5) in the form
of a perturbation expansion we examine the question of its validity as
an actual solution of the equation. Since (3.5) contains second order
derivativgs we reduce it to a system of two first-order equations by the
usual device of defining P, = «, Pa = é% . Thus we have

dp,
Z—i' - P?- )

d
___’_" = ¢t p, - « c* k»p, - €c? (K*h)s.

Putting 7= c*- ¢}, we obtain
d P P #
g&[h} = c [h) * 7(*[:“]

vy (elp] - xox[h])
+ e [7]

for some constant 2x2 matrices C, C; ; 2x2 matrix kernels %,

*1 ; and functions #. of }’,,P;. » K®p, o K#p, and Y] which con-

[4

tain only quadratic and higher order terms in these variables. 1In general

let P denote a column n-vector; C ,K 4y Cy 9 Ky nxp matrices; and f

an n-vector function of p, K=p, '7 and € ;and f vanishes when

P= 0 and contains only quadratic and higher order terms. Then we prove

-~

the following.

Theorem. Consider the system
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(a8
-

l

= Cp o+ kep o+ p[Cpa Ky up)

o
’?

(3.23)

+ € F(r, k*p v, &)

with # nonlinear and 7 a real parameter. Assume that the eigen-

values of the linear equation

~

dp
cﬁ = CP + k*p + 7 (Cp+ kyxp)

for all 7 sufficiently small are all in the left half-plane except for
a pair that crosses the imaginary axis at = (m, m#O, for n=0

Assume this pair is simple and that the transversality condition holds,

i.e.

Re j—;.(o) % 0

for the eigenvalue pair 017) described.
Then (3.23) has a nontrivial one-parameter family of T -periodic

solutions for all € near O of the form

zvrt)

P= (&) « w(i5 , ¢)

M

corresponding to the parameter value ™ (é), where Y is a %E ~-periodic

solution of
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Q.] Q.
e
]
&)
~
+
X
¥
«

o (3.24)

and

T= T (¢) = Z—,._:L (\+ TC8)) .

Here W, 7%, 7 are O0(e) as €-»0. Furthermore, W can be chosen
orthogonal to the periodic solutions of the adjoint of (3.24).

Proof: The proof is the same as that of the Hopf Bifurcation Theorem of
Chapter II except for some initial differences. We note that the role
played by € 1is quite different in the two cases. We use the same

notation as regards the linear equation (3.24). First rescale t by

o
|+ TC€)

defining %= and F(i’)a p¢t) . Then putting

= iy

P o= y(¢*) + withe)

where iat®
yir*) = Re ( ¥ xo c'“),

-~

we obtain an equation for w analogous to (2.15) (drop the asterisk on

N

Ly, 5K) + -7-([C,Z- ki *y)

- -

Fl
I
N
{
]|

(3.25)
+ 7Ly + Glw,9n, 7€)

~

where

G = (l-r-r)[cf(w,—r,k) + mGw o+ m kW s
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*+pdly, 7, k) + 9 Swz k) «ef]
+ T [ J(_y,-,;K) + Ciy + 7 Ky ¥y

+ Cw + K¥W],

and where
Jwr k)= [ ) [wit-i5) ~wit-5]ds

= octr ﬂﬁé) 3

and

i w = Cw + K * w
as in Chapter II. Now notice that the right member of (3.25) is exactly
of the form of the right member in (2.15). Thus,since we are trying to
solve only (3.25),the rest of the proof is exactly the same as that fol-
lowing (2.15). Putting the right side in (3.25) equal to F(w, 2 é)/

we try to solve the orthogonality conditions

iny,

nd
),,l: = j; Yo (B - Flwte), o P €) dt = 0, c‘:),z,
for %, 7T in terms of W, é€ . The relevant Jacobian is
oCh,, kK
de_+ L] l—) =
3(m, 7)

M:=T=w> €=0
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)','[C,y +/(,*y] Ju[C.y*k.*y]

det
Yoo Zy » L7] 3, - [Zy+ I]

& b
which is exactly as in (2.16). Since ~ here plays the role of ) , the

Jacobian equals

-’:74 [r]* lg,"d"’f‘./z (f?e_ %g/f’))
which is nonzero by hypothesis. The rest of the proof proceeds as fol-
lows (2.16). I

We make some fiﬁal remarks on stability. It is easy to deduce as
in Chapter II the stability properties of (3.22) as a solution of (3.5).
However this is stability with respect to perturbations which also solve
(3.5). This class of perturbations is a very small subset of all possible
perturbations which solve the full equation (3.4). Thus a valid stability
analysis would require an examination of the linearization of (3.4) about
(3.22) and this is not the corresponding linearization of (3.5). At the

moment this is an open question.
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CHAPTER IV

LINEAR EQUATIONS WITH PERIODIC COEFFICIENTS

1. Introduction

The previous two chapters have been devoted to the problem of
finding periodic solutions of nonlinear integro-differential equations.
It would be desirable to determine the stability of these solutions, and
this question will be considered in the next chapter. There it will be
required to solve linear integro-differential equations with periodic
coefficients. In this chapter we will analyze this class of equations,
and to accomplish this the semi-group idea of Chapter I is applied. This
will result in a spectral (Floquet) theory for the linear equations with
periodic coefficients much like the one in Chapter I for constant coef-
ficients. However, here a completely different approach must be taken
due to the inability to define an infinitesimal operator for the semi-
group. There is a striking analogy of the theory with the corresponding
Floquet theory for ordinary differential equations, cf. Coddington and
Levinson.[} ] , Chapter 3. The analysis we perform follows closely that
of Hale [4] which is for finite-lag equations. The important results we
are able to carry over to the infinite-lag case. We show that the general
solution is a sum of eigenfunctions each of which correspond to a charac-
teristic (Floquet) multiplier the totality forming the spectrum of the
equation under consideration. The method used by Hale to analyze this
spectrum cannot be used in the infinite-lag case, and we take a different
approach. We then deduce an explicit form for the eigenfunctions thus
characterizing the behavior of the general solution. Finally we obtain a

Fredholm Alternative theorem giving necessary and sufficient conditions
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for the existence of a periodic solution of the equation with periodic
forcing.
We now develop the Floquet theory for linear equations with
periodic coefficients. The methods we use are those of Chapter I with modi-
fications and generalizations to the present problem. Again we follow

Hale [4] , Chapters 35-37.

2. The Semi-group

Consider

0
2 L AW xee) v [KED xe-9ds w
where X(#) is a column vector in R" , A(t) is an nxn matrix
function, periodic of period W > 0 , K(#,s) is the kernel, an nxn
matrix function defined for s> @ , periodic of period e« in its
first argument. Thus A(t+w) = A(t), K(taw,s)= K(4s) for all ¢ .

We shall always assume that K(t,s) =0 (e.vs as S- e uniformly in

€ for some rY>0 . Let us denote

it x) = A®)g + fo K(t,s) 5 (¢-5) ds .

As in Chapter I we view the solution xtt) of (4.1) as a collec-

tion of functions X¢ each of which is defined on the interval (-do,o].

Specifically, we define

Xf(e) = .’S(t"9), 96(-»,0]‘{efk.
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A well-posed initial value problem results if X 1is given for all
t<$0 . Then a solution of (4.1) exists for all ¢ 20 coinciding with
the initial data for ¢<€ 0 . We view the situation as follows: the
initial data are given by ® where é(9)= Xt8), fe(-»,0] This
generates a solution X(t¢) for ¢20 . This is equivalently written
as Xg and the initial conditions demand that Xe = ¥ for ¢t=o0 .
Thus, Xy 1is a curve with initial point # 1in some space C of fune-
tions defined on (-%, 0] . The process of obtaining Xs from ¢ is

viewed as a linear transformation T from € into itself. We write
Xt = T‘tl 0) ﬁ 2 tao/

where Xo,= g . If we shift the initial data from (-ee,0] to (-oe, s]

then a solution )(f is generated for ¢ 2 S , and we write
Xt = T (¢, s) &, t?f‘,

where Xg= ¢ . Let us adopt the notation X (s, f) = T )4 . Some

obvious properties of T are

T(t, 7 = Tt s) T 7), Tasst,

T(s,s) = L[ |
where L is the identity transformation. Thus, T(¢t,s) forms a

semi-group of operators on C

We shall take C to be given as follows:
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C -
= { /d continuous on (~Q,O) ’ Sup | e ¢(0)l i
‘980

*
| Fm e' . ¢(a) exists} Ngl) = sup [e"' "“”/z
05 - ’ g<o

with r*<y and r* arbitrarily near ¥ .

That each Tt s) is bounded can be shown with the aid of the
resolvent of (4.1). The resolvent R(%,5) isan nxn matrix func-
tion solving the equation

5
R (6,5 = —RU )AL ~ [ RIG @ Klou-s) du,
5

sSst,

Rle, ¢) = T,

This equivalent to the Volterra integral equation

t
R+, s) = T -tjs th,u)[ Alw —~ L‘u,u—»:’)] d"'; 4.2)

set,

Rie,s) = O <

/

g >
where L(d,p) = "'L k(x, v) dr , ﬁ’ro, aelR . Existence theorems such
as in Miller [11] assert that a continuously differentiable K exists

and that if Yy solves

¢~ o

d_é.'-_- Ay + f K(t,s) ytt-slds + g(¥)
at . - -

-~

then

t
y(t) Rit, o) y(o) + ]’_ Rtt,s) ges)ds s .
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In our case if X solves (4.1), then by putting git] =

{_..

rK“‘,q) X(t-u)dw we obtain an explicit formula for X (#)

¢ ®
X(t) = R({-‘ a) Z.(la-) + fr th,f)[j k(r,u) E(!-“) du.]d!. (4.3)
S-r

-~

If the initial data is ¢ » specified up to time o (so x(e@+6)= ¢(l),

Bio) , then we can write this as

o
X(t) = TUt, o) ¢ = RIt, o) g + / [f R(t,5) K(s, s- o~v) ds/ gev)dv,
4 e k¥

for t2 ¢ . Thus,

Rit+6,0) (o) +
fo [Ihe p
I R(t+6,5) K(s,£-0-v) ds) gom dv,

T

[T(e, c18](0) = r-ts8so,

gloe+to-t), Q& ek,

This is similar to the corresponding formula of Chapter I and a repetition
of the arguments there proves that } T(#,s)f] is finite for all £t s,

and that the semi-group is strongly continuous:

lim I TCt, )8 — T(ms) gl =0
ts v

for each ¢6C, selR.

In addition to the transitivity property
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T(t,5) T(s,w) = T(t, W), wsset,

we have

T(t‘-o-w, s) = Tt s) Tis+rw,s) (4.4)

where w is the period of the coefficients in (4.1). This proved by

first showing that

Tt s-w) = Tltrw s), t35. (4.5)

This is demonstrated by the following argument. Let Xe solve (4.1)
where the initial point is s : X, =g. Define Yet) = Xx(trw for all
t . It is easy to show that Y also solves (4.1) by the periodicity
of the coefficients. Also Y, = X; =g so Yy, = T(tsw g . But
clearly ¥* Xeow = Tltrw,s) g and (4.5) follows. To show (4.4),
T(t,5s) T(s+w,5) = T(4,s) T(s,5-w)= T(%s~w)= Tltre,5) using (4.5)

and transitivity.

3. The Spectrum

With these preliminaries we proceed to the analysis of the struc-
ture of the semi-group. This we do in a manner similar to that of the
Floquet theory for ordinary differential equations, cf. Coddington and
Levinson [} ] , Chapter 3, Section 5. There the circulant matrix 450»)
(where (¢) is the fundamental matrix solution) is spectrally decom-
posed into Jordan canonical form and @(#) is subsequently determined.

It is shown that all solutions are linear combinations of terms of the
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Pre) t7 e*t Awd
form where r is a nonnegative integer, € is an
eigenvalue of §(u) , and P(t) is some w -periodic function. In

our case we examine

U= T(w,0)

for its spectrum and then determine T(¢t,0) for all ¢2 6 , Since
T(¢,5s) is similarly found by considering Uls) = T(s+*ew, 5) we limit
ourselves to the case $=0
The operator () 1is a bounded linear transformation on the space

C. Thus its spectrum is confined to the disc { 2| tels 17-,.‘ in the
complex plane & where 42, is the spectral radius of V . Ve shall
show that for all ¥’ such that O<¥'<¥* the spectrum of U 1in
z) > e""“‘ consists of finitely many point eigenvalues. This is done
by showing that U 1is nearly equal to an operator of finite rank
(whose spectrum is known to consist of finitely many point eigenvalues).

Letting X, = T(t0) g we have

x(u+9)/ O e [-w, 0],

[Ug] (o) =

¢(u+9)‘ O € (“'a""].

Let F(8) be a continuous function such that 0s ¥ %) |, with f=|
on [—Q‘ o] , and f= 0o on (-, ~w] where -ws - a and a

/
arbitrarily near w . Define the operator VYV on C (cf. (4.3), with

t=0+w, T=0 ):
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Or w -
f(8)R(w+8, 0) gto) +f R(6+w, S)[fk(s.u) P(s-w) duf ds
o 'S :
(V'd] (o) = Gaf=n. 2],
o , A € (-, -'wl.

/ T
Clearly U ﬁ is in C. Also U’ is a bounded linear transformation.
In effect U’ replaces the initial data part of Xes by zero allowing

it to become a compact operator. Next, we have
hUug-uvell = suple™(ug-um|
6<o

= Mmax 5 essup [e”"®gwer]
sup | e""[fw R(w+6,0) - Rlw+ o,o)],s,oj}
~ws0s—-q

~r'w

vr(9+w)¢(a+w)1 e .

£ max fesu.p le
s -w

sup | R(w+8,0)l e~ ¥'a [ po) }
~Ww$68 ~a

* rd
< max {lgl et & V% gy sup |RCOIOI}
- g Os0'cw-a

e [ + ] 1A,
where #%(4) >0 as a» w independently of } . Then |l u-u’ll £
-rtw

/
e +'7(a). Finally, we approximate u arbitrarily closely by an

Y
operator w having finite dimensional range. Note that Uﬂ has

the form P -
9,(8) gro) + '/o taéﬁf)[fskls,u.) Bls-u) du ds,
(V¢ = —ws 650,
0, g -,
where 9, , 9, are continuous functions that vanish for 6 <-w,

Choose any € >0 . Divide [-w,0] into a finite number of subintervals
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[6,=-w, 6,] , Cs,,e_,] , +++, [Ba, ®n=0] such that on each the varia-

(- -]
tion of 9,(6,s) in © is less than €&/(2 max f, | Ktv, W] e"“.‘.‘)
oSViw

for all Se¢ [o,w] and the variation of 9,is < €4 . Let h; be

defined on [-w,0] by ((=),.-, m)

h‘. (&) =
o

)

with linear interpolation between mesh points. Let

m
Z h‘- {8) 9[" (0") .

K,, (6)

(=)
These functions are approximations of 9.,9, respectively, and
clearly max | k,(9) - 9 c8)| < €4, ete. . Now define

© €[-w 0]
the linear operator W ,

Z h; (8) [uelie) , ee[w),o])
i=1\

[We]le) = (4.6)
) 0] ’ O ¢ {—-ao,—w).

First note that ] v~ W”(é since if s> 1 ,

[vg ~wWegl < sup [ |k (o3—g,0)] +

-w %050




"

- -] +
+ [ ky (81- g, (®)] w max /, Ik"’"”e’“du])

i

Secondly, note that W has finite dimensional range being a subspace of
Span {h' — h,,,} . Finally, we have

- Y
Nu-w ]l ¢ €77 + > + €

- ' -
‘Choose €& so small and positive, and @ so near w3 that € '“ﬁ- n+e <&

with ¥’ a prespecified number in [0, ¥*) and arbitrarily near »* .
We now show that the spectrum of U has the properties mentioned above.
Put - = C’Y'w and H=U-W . Then since ||Hll<a, for [Al>42

we have that H‘\E H=\I is nonsingular, i.e. one-one, onto, and has
bounded inverse. Thus H;' is analytic in the region IAl >2 and

can in fact be expanded in a power series in A~' , cf. Taylor [16] .

Also

Uy = U=AL = W+H, = Hy (H'w=+1I),

By (4.6) W can be written

where \"i e { and the ®.  are bounded linear functionals on C

4

Yw
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given by & (g) = [u’¢](q.) . Thus

RA) = HY'W = TR (A

(R

where . (a) = H;‘ h, are elements of C depending analytically on

Min A I>s2 . We show that U,\-' = (QA) +I)” H;' has at most
finite-order poles in 1Al >42. . These obviously can occur only at the
poles of (@@)+I)™" | Also note that the spectrum of U is confined
to M5 2% yhere ol is larger than the spectral radius of U

and such that -2 <42¥. Thus we need only examine the spectrum of
Q(A)+ I in the annulus J2 < 1Al 2407,

Putting T= QA)+I ; for any @eC

m
Y= Tg= 3 hWaip) + &.
L=
If T¢ =0 then
m
Z Cij(d) o (@) t Ai(g) =0 {nlw,mm, 4.7)
g

where

Cej(A) = o (h(A))

is analytic in theannulus. Equation (4.7) implies

det Ley) + &) =0 (4.8)



B
and the set 2 of A such that this occurs in the annulus is finite
(each point in I is isolated). Clearly 2 is the spectrum of
QW) + T ipn the annulus. For A g¢J we can invert T as follows.
Put Qg(A)= Cii(A) + & . Then a; (¥)= ,Z QjA) o; (p) , and since
the matrix [ @.;(A)) is invertible o (g) = ,,Z a?_,'- a(f) . Thus ¢=
b—- S heQa;tey= ¢ - 'JZ h; (A) 03 x () 5 T§ . By Cramer's
rule C!;'-} is analytic except at Ae & where (4.8) holds. Thus we
conclude that Q4+ I is nonsingular in the annulus except at A& 2
where its inverse has a pole. Thus, the spectrum of V=3I has exactly
the same properties in the annulus. We now appeal to Theorem 5.8-A of
Taylor [16] and summarize the results as follows:

Inside the annulus €~ ™ Al e % the spectrum
2 of U consists of finitely many point eigen-
values with finite dimensional generalized null space,
i.e. the ascent ¥, of U3 U-AL is finite:
n(u2) = nlu"),
dim N( U;“‘) < oo,
Furthermore, C can be decomposed into a direct sum

v
of the null and range spaces of U,\‘

C = nvy*) e R(U:‘)
The range R(Uf‘) is closed.
This characterizes the part of the spectrum of U we are concerned with.
These results are similar to those of Chapter I, Lemma 6. Next we turn
to an analysis of the operator T(t,5) using this information.
Let g be an eigenvalue of U , and we shall always assume

(gl > e"’:"’. We call pm a characteristic (Floquet) multiplier. Define
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the corresponding characteristic (Floquet) exgonent,‘A , by
Then Red >-¥’ . Denote
Eun = N ( (v-pxD™)
Ruo = R ( (v-uD™),
We have the following
(1) Eﬁ ig finite dimensional
(1) €= Epx O R,
(ii1) VUV (EpM) © Eu , U(RL) € Rp,
(iv) the spectrum of VUV restricted to Ea , > ( U',p)
equals {F} Also z( U’gﬁ) = 2 - {P}

h

Aw

Let { By 2 o ﬁ‘»} be a basis for Eu(du.= dim En) . By (iii) there is

a d,“wd,,_ matrix

Ue =

where

M = (M) of real numbers such that

M,

4

<§ = row(ﬂ, . #,‘_),' a row-vector of elements of C

(iv) above implies that M has the sole eigenvalue (#0),
M

exists a duxdy

vector P(¢)

P(e) =

Then by (4.4),

= TooUud e e ™

matrix B

Pltirw) =

= T, g e = Py).

such that B =L logM .

(elements in C ),

[T(t,00 8] B¢

-B -
Tltsw,0) § e e "

a2 0.

Vg, = :Z { ™y,

Property
so there

Define the row

= TI(t,0) T(wo) @ c’g“e'"

Extend the definition of
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P in an obvious manner to all <t <o so P s w -periodic. Thus

Pte) e_” is defined for all =—-®@<tceo and T(t, o &= pe) et

Thus X, (0,@) = P(¢£) e’ b, where ®=%b , for some scalar column
d,.—vector l_g . We seek the function X (¢) represented by X4 . For

8(t+o)
b

all 6O=0, X,(8) = x(t+8) = X, ,(0) = P(t+o)0)e . Dafins the

row du-vector function Ful(s) = P(s)o) (all s€ /MR ). Note

’té

Fo(s+w) = Fls) . Then xtt)= Pole) e , and we conclude

Eﬁ generates solutions of (4.1) of the form
Pe) e®% 1

with B an w-periodic row-vector function, B

a matrix with sole eigenvalue £ bgpm , and b a

column scalar vector (all of dimension da ).

This form of the solution X 1is in complete analogy with that of the
Floquet theory for ordinary differential equations, cf. Coddington and
Levinson [1 ] , Chapter 3, Section 5 (where B would be a Jordan block
of the logarithm of the circulant matrix.)

We have deduced the set of characteristic multipliers correspond-
ing to solutions generated at starting time T =0 . We need to show
that the characteristic multipliers are independent of the starting time.
For any such time § (%20) let Uls) = Tis+w,s) . All the above
deduced for U can be similarly deduced for V(S) thus obtaining
generalized null space E,..,(S) with corresponding basis é(d , and
range Ruls) for any pme 2(Uls)) . As with the case S=0 we can

define T(¢,5) ¢(s) for all ¢ eéMR . Then for any T
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U(T) T(Ts) Ps) = T(Trw, v) T(Ts) Os)

T(Trw,s) $(s) = T(Ts) Tisvrw,s) S(s)

= TUms) ULs) @ts) = T+, 5) §ls) Muls),

Thus

(Utt) = nI) Ttms) §s)= Tims) 86) (Mt~ 0 T)

and it is easy to show that

k
(U= I) Tens) §s) = Tens) &s) (M- pwI)S,

Letting k = ascent of Uls), we have

k
(UT) = nI) T(ms) $(s) = 0.

If we could show that T(ns) ()b =0 implies b=0 , then we
could deduce that m. is also an eigenvalue of (U(rT) and that

dim Epnl?) 2 dim Eunls). Reversing the roles of § and T would prove
that the dimensions are equal and that T(v,s) §(s) is a basis for

E,‘,(r), which is the desired result. To prove the above fact, choose m

an integer large enough so that S+ww >7 . Then O= T(s+mw, T) -

TC(T, 5) §4_,)& 2z T(sewmw,s) 5("5 = [U(s)_]"' @(;)@_ - fff)M"’_l: implies

M b=0o, 1i.e. b=0 since the eigenvalue of m"m is ,L"#D
Lastly we note an explicit expression for the basis of Eﬁlt) )

$lt) = T(s,0) Plo) = T(+,0) & = Pre) e,
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Having achieved the decomposition of € into a direct sum of
En and Rp (which are closed and invariant under U ) we can similarly
decompose R, into the generalized null and range spaces of U- 'L
restricted to R for some other eigenvalue M of U . Repeating
this procedure for any finite subset {p. A ,/A.?of 2(v) we have

C = €,

". 9 E”‘g s . GE" @R

]

where is R some closed, invariant residual subspace. Any ¢ in
n
Ep ® - @ E,, generates a solution Xg of the form Z P,.‘.(e-) .
=

B
- e e b, . Note that x, has exponential growth e’ as tow

where A = mxn{ku\.;} 3 A L log p. are the characterisitc multi-

L} w

pliers. Suppose that {p. 3 -9 Mp] consists of all eigenvalues in 2()

X w

such that lu;l 2 e where o¢> ~r” . We wish to show that if
M

is in the residual space R then the solution it generates, Xg = T(t,0)#,
has exponential growth at mast e«c as t»eo ., First define the pro-
jections @ onto E ., along 9,4‘. . Each @ is bounded since

En,, Ru; are closed. We later give an explicit form to these projec-—
tions using an adjoint characterization of the problem. These projections
are useful for separating out the various eigenfunctions that make up a
solution X, . Thus, given an arbitrary @< , the @Q;g generate
these eigenfunctions, denoted X¢ (0, @ $) . We now prove

Given &> -¥’ there are positive constants [5 M

depending on & only such that
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” Xé (S, ﬂ) e Z X.é (f, @ 2) ”

1p:1% expaw
-pIl¢-
5Mec"p“”[[¢” . Vs,
In fact O<pB < «-«x"’ where €%“  equals the

magnitude of the first excluded p in the sum.
We follow Hale [4] , Theorem 35.1. Since C= Eps) & - © Epls)
@ R(s), where Ll » im0l % oo ) 2 €Xp aw >lpay,] , the
spectrum of Uls) restricted to R(s) is Z(U) ={ p - M} . 1If
Tg = ¢ - é@;¢ then T¢ € R(s) . Let U, (s) = Uls) restricted to

R(s) . Then the spectral radius of U, equals [pmn,,|[= e"® . Pro-

ceeding as in Lemma 22.2 of Hale, for any O<(’< -« e"’b =
) e“' Kl “ U;‘(SJ “ / . Thus | i'vn e_(. e // U'n(s) // = /lvq e "’:" =0,
n-p co L X ] »

By strong continuity of T (¢, %) there exists N such that |l Tlt.f)ln Il <
N for S<stss+w , SeR (by (4.5) we may assume O= 5SS w).

5 ' 2 rl - ’ ;)
Define K@/ = N & i ma x Tl aiskiis Nu't)]f . For nw L t-5¢

(n+dw , Wm=012, ..., se R , g €RLs) we have I Tit,s) gl <

«omf (¢~
NTlE, semw) Tsemw,s) T @G < N AUl lTrgll =(N C‘ '“"lw."mll)-

(s )t -5)

(«'s 89 (L) eNHNED oy ¢ KT ) e nell.

(e Nnwen) < K
Now let f = a-«'-pg’ . Since Uls) is periodic in s , so is TI(s).

Let M = K :;';:w“n'“)”. Since X, (s @)~ ? xe (s, Qc0) = Te,s)mg
we have completed the proof.

We summarize our results.

Given any sl in (o, Y"') , there are a finite number

of characteristic multipliers pm such that e < Il .

Corresponding to each such pM  and sel/R 1is a finite-

dimensional subspace E, ts) of C such that ® €Euls)
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generates a solution Xg= TUt, ) $  of (4.1) of

the form

But b Yitxs,

Xels,8) = Pot) e ;
Here FPu(t) is a row d. -vector (elements in C )

and is W -periodic; Bu is a duxd,. constant
matrix with sole eigenvlaue u"_ log ». ; and .lg is

an arbitrary column (constant) dau —-vector such that when
it varies over R9% , #= RS L varies over Enls)

Furthermore, given &> —»’ | an arbitrary ¢edl ,

then the solution X4 s, p) generated is decomposed

Nyr'e B 2. xe(s, Qg) + Y
Ipel 2 expatw

where Q¢ € EF:“) and
" Yo [l € M e(ﬁhﬁ»‘(t-s) gl

for some B, m>o0.
The above completes our characterization of the solution set of (4.1) and
provides a classification which will be needed later when we consider the
question of the stability of periodic solutions of nonlinear equations.
Notice that the circle }Jmf =] is included in the region of interest

Il 2 ¢7'1‘. This circle is the dividing line between the stability and

instability properties of the solutions of (4.1). If some Floquet multi-
plier p has magnitude greater than one, then the corresponding Floquet
exponent A has real part greater than zero and there exists a solution
of (4.1) which is unbounded as t-» @ . 1If all the multipliers are inside
the circle then all solutions of (4.1) tend to zero as ¢ -

The problem of the calculation of the Floquet multipliers is in

general quite difficult. However, in the case of bifurcation, the
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multipliers vary continuously with some small parameter € such that
when €=0 all the multipliers are known. Thus, by the use of a per-
turbation expansion the multipliers can be calculated, and the stability
of the bifurcated solution is established. We shall consider this in the

next chapter.

4. The Inhomogeneous Equation

Our next objective is to solve the inhomogeneous problem corres-

ponding to (4.1). Consider the equation

dx
at

x

@
= A(t) xt) + f K(t,s) x(t-s)ds + Fl(¢) (4.9)
R - -

where $ 1is some continuous vector-function defined for t20 . If X

is prespecified for ¢ € (-®, @] then (4.9) has a unique solution given by

+ ®
x(t) = Rlt,a) x(er) + f‘ R¢t,s) [! ks, w 5‘3-\«)de8$
- -

(4.10)
t
<+ fa_ Rie,s) £(s) ds,
where R is the resolvent. Now let
R 6=0,
X, (0) =
o, e<o
where X° is an hxmn constant matrix defined on (-ao, o) . Then from

(4.10) we see that
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R(t+6, o), e [oto0)
(T, X,]cor = L, O= o-t,
(0] & < o--t

From this we can deduce the solution of (4.9) (letting the initial data

be Xg = @)

5
Xelo, 8) = T(t, )¢ + f' [Tty X, ) - fls)ds (4.11)

the variation g£ constants formula.

Up to now we have been concerned with the properties of the 7T~
operator. We have cast the problem of the structure of the solution set
of (4.1) into the language of semi-groups with the result that every
solution is a linear combination of certain eigenfunctions. We shall need
a convenient way of projecting out these various components of the solu-
tion and an adjoint characterization of the problem (4.1) will provide this.
After obtaining an appropriate adjoint equation, we proceed as in the
case of ordinary differential equations and introduce a bilinear form
connecting the original and adjoint formulations. This is done with the
object of providing explicit formulas for the projections.

We turn to the adjoint problem. Letting .zls) be a row n-vector,

the adjoint equation is

dy
ds

o
= — Yis) Atls) —-_/ Yes—§€ Ki(s-%, ~%) dg (4.12)

- o




=93
for all S £ 7T , with initial data Y. = }é given on [T, ®@) . Note

Y 1is generated backwards. The set of initial data forms a Banach space
~ . PO
C = {¢’ continuous on (o, 0e) , Swp [ e s S"ff)} <cv§
7= ¥T2o0 4
- r?
No = swp e gy,
20
As usual :_y* e  means Ye (%) = !(t*t) for all f 20

Define a bilinear form on C xC into [R depending on t

parametrically, such that for #eC, Ve &
. )
(Y ¢)t =  Y(o) - Pplo) — j [f YLE) K(E+E ~6) B(§r6) dt]da. (4.13)
L a~r - —0 _a

This form is usually degenerate but it is useful for connecting problems
(4.1) and (4.12). As a first result in this direction we show that if

Xg solves the inhomogeneous problem (4.9) and Ye solves (4.12) then

»
(Yo, Xe)e = (Yo, xe) o + [, YOI FG)ds (4.14)
for all t2 o . This will be used many times. Thus,
o o
()’e, Xe) o = Yel0): Xg00) —f [f y(t+¥) K(E+E, -6) x(t.;.e)df] ae
- COo -e

U

© =¥
y) - x el .+ fo y(t+§) [ J K(t+§,-8) x(t+¥+06) d’]df
-

) -f-t
= YW xey) +[{ y(z)[ K(%,-8) xlr49)d0] d?.
-
Then
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o
&d—f (y" x¢)e = y.(H X)) + y(‘H‘X(’l‘J - )’U:)f/((i,*é} x(t+8)de
-
©
+ jt y(¥) K(3, ¥-t) xc€)d ¥

[--]
= (@ + vy Alxws + [ y& K6 E0dF ry

+ y i) £l =yt fey

Integrating yields (4.14).

5. The Spectrum of the Adjoint .

We now proceed to the spectral properties of the adjoint. Since
(4.12) is an integro-differential equation with periodic coefficients, we
see that whatever qualitative results were deduced for (4.1) will be true
of (4.12). Corresponding to (4.12) is a semi-group i:(s,Tv for s= 7
and U= T(0,w) (more generally O(s) = T (s, s+w) ). The spectrum

S of VU(S) allows a decomposition

Zf - :i éiu(s) ® R
’J‘E

~

with E,__(;) = T 0’(;)-,"[);'“ having basis g’(s} , a column vector
(elements in c .) We shall prove that ff= b3 7 2;' V. (ascents are
equal), 2; = du (dimensions of E’» , Epc are equal.) Thus the
characteristic multipliers and the corresponding eigenspaces are in a
one-one correspondence.

As a preliminary to this proof we obtain an equivalent integral

equation formulation of (4.12). Suppose 9 <t, Z,= ¥ is given,

Be = TS L) 2,. Then integrating (4.12) from o to t yields
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S : @
2(t) — 2le) = — fr 2¢s) Als) —f’ j 24 KL ¥-5) dfds.
5

Interchanging the order of integration in the double integral gives

+
2(o) = == fr Z(s) [ L(s,s-7) -A<s)] ds + 2(¢) +
ft 208) [ LUE §-4) -L(E §-0)] dE
where
jF ke, ¥) d
— Ly

L(a,B) = 4 , r, pzo. (4.15)

Since %, = ¢, this gives

;-
(o) = — fcr ‘!Cs)[ L(s s-¢c) "A(s)] ds

o
+ Yoy + [ fa-6) [ LR E-t)- L5 E = 0)]dE,

&
2l = e fa_ z(s) (LL:,S~r)—A(rJ_]d;

i (4.16)
+ o) + [ pie) [ Lot )= L(out, 0~ (o-1)] do,

Thus we have an equivalent Volterra integral equation to be satisfied for
the solution 2(<o) of (4.12),

Next we show that the adjoint equation to (4.12) is just the
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original equation (4.1). Thus the adjoint of the adjoint is the original.
Write (4.12) in a form similar to (4.1) by putting ¢=-s and

-

Yy, (&) = jr(~tl = Zr(’) (superscript denotes transpose.) Then

. (-]
y (81 = ATCt) y&) + [TKT(e-¥ -8) y, tep) de,
-

Putting ki¢t, €)= KT (-¢-¥, -F) , and A, ()= AT(-4 , we obtain

e o
Yyl = Ae) Y e) + Jo kK (&, E) y, (t-F) d&

exactly the form in (4.1). The adjoint of this is

‘ [~}
X'(s) = - X,(s) Alls) - f x,(‘-?) KI (5‘-}" ‘?)df

s - x,e3) AT(-5) ~ f; x (s~ F) KT(-5,~B)df,

Going back to the original variables ¢ = ~g and x (&)= x](~t) = xTs)

we get

& o
Xt) =  Alt) xtt) + fm K(tE,~F) X(t+¥) d¥ |

which is exactly the equation (4.1). This result shows the complete
duality that exists between (4.1) and (4.12) and is again reminiscent of
that for the case of ordinary differential equations.

We know that if X, = 7(¢,00) ¢ and Yy = T(&, T) ¢ solve (4.1)

and (4.12) respectively, with g <+ « 7+ , then by (4.14)
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(ye,x,), =  constant.

Thus ( Fean¥, Tiwarg) = (Fimm ¢, Tineds), = (¢, Trerg)
’ oy

Similarly this equals ( F(eo7) ¢, d),. , so for e s 7
(¢ Tirne)g)r = ( Team ¥, 8), . (4.17)

In particular, putting =« and o =0 we have

(Y, Uglw = (0¥, s),

However
° ]
(b ugl, = ¥l [Ug]to) — f f Y(5) K(w+¥,-6) [Up)(Fre) dEdo
- -
— ( ‘k L)¢)°
by the periodicity of K . Finally, we have

($ Ug), = (0¥ 4, . (4.18)

At this point we can see that if the bilinear form were an inner product

then by standard techniques of Hilbert spaces we could deduce the required

—

properties of the spectrum of U . Since this is in general not the case
we must proceed differently. To do this we go to the functional analytic

adjoint operator v¥ of U, and connect it with U

We introduce the functional analytic adjoint space C* to €
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consisting of the bounded linear functionals acting on € . This is not
to be confused with the formal adjoint given by (4.12) and denoted with

a tilde. First we show that C 1is isometric to the space

X = {—F continuous on [0, 1] })

HEN = sup | Flw] .

0s wel

This is accomplished via the map T[: C-» X given by

(Mo Jew W’ B lgu), welo, 1],

]

vt - e”’? gres| =
In fact Wwgll = Swp lu’ Fllgw]| = g:t ’ ¢ / el
Otusl
(putting 6= log w ) . The map T1I' is onto, since, given {4_‘[‘)
let  ¢c8) = e "'? £(e® . Then clearly Fel.
The adjoint of X , mnamely the set of all bounded linear func-

tionals acting on X, is given by (cf. Taylor [16] )

X'* x 2(’7 row vector defined on [, /]/ ‘? is

of bounded variation on [0, /] z
(
where ';‘l eX” actson X according to A;(F) = f, dytu) flu) .
'
Thus %(FJ . J. dviw l&’.a(t"u) . X* has norm =il = Var v =
“w *
L,' ldm | . Let p be defined on (-®@,0) by p((o_,u.) = j: dv (v v’

o
so if Oz legu df(b): dm () ' . Also ”?(F)' jmdf("‘ ¢$ce) , and

We can now define

A Y [ 6 _,t
“7,: _f‘ IJ,' = fo u"'[d,((.’u)l = !”e ro/df(’)l
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the set of bounded linear functionals acting on € to be (note P is

a row vector)

f

C - {Ib a function defined on (—o, o]}

f: e 7" ldptel] < @ -i

which is a Banach space with norm

—_—

~>

i

==
i

® _r*e
f € ,&r(a)l.

-~

*
This is valid because C* is the isometric image of X wvia the identi-

fication ‘74(-’/; The linear functionals in C¥ act on C via

/5‘(55} <p B> = :f: JID“) pre)
thus defining the bilinear form <,> on cfrc . We note P is
determined up to a constant and we identify in C”* such P as differ
by a constant.
Now that we have found C_*, standard results of functional

analysis may be employed to deduce that the functional analytic adjoint
U*of U has the same spectrum as U , for each ,u.eZ the ascent
Y, of U¥-u L equals that of O-pI , and that dim (U~ pu ) R
d.‘m(U-—/u'I)v“. Before relating U* and J we provide a connection
between the bilinear forms ¢, )t- and <, > . Define the map S(e)

for each te¢R, S(+¢): 5'—’c*by
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-]
S, 10 Lot o)-Lioet, 6-3)] a5

St - e RR
[Sw=]w) (4.19)

() F=o.

By (4.15) L(o+t, 6-F) =0(e"™ as 74 -w so St¢)%  is indeed

* ~
in C€° . Let 7 €< and Tr:.SYH'?. Then for geC

<mpg> = [; dmig) k)

lo) (-]
~ (o) g(o) -fw fo (8l K(é+t, b-F)px)dedg

i

1]

o
—meey g — [Tmee) [ kcoet, 0-F) $5) dEIE
‘e

{]

-6
=%co) ¢lo) — fowry(&)f Ktort, —F) #(8+F) d¥'de
- 00

u

0 -§’
oy #eor = [ [ ey Kset, ~F) geoer) dsar’
@ o

[J]

(7, ¢,

Thus for each ¢ £C, e ¢

(7’ ,;)é 2 - St @ > (4.20)

By (4.17), for T &%,

(Flat)y, ) = (=, T(e,00p), y
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SO

(o) Tlotim, 8> = sy, 76,008 >

; *
Letting T (t,o) denote the functional-analytic adjoint of T¢ ¢, o)

this equals < T"'(tlf) su.)-»,’ p} . Since this holds for all ged v € é"

we have

Ste) Tla t) = T¥¢, a0 Ste).

Putting ocz0, t=w and noting from (4.19) that S(w) = S(o),

S(0) T(o,w) a T%w,0)Ste) , we have
S(o)y U = UY 5oy, | (4.21)

This provides the connection between U and u”. Unfortunately, Sre)
is not invertible but (4.21) is still useful. First we note that for any

positive integer [ S

K g K
W*p,I) sto) = sro (T=pI)” (4.22)
Let pm be in the spectrum of U, ;;. the ascent of U—/xr , and
o 7, ~
‘}', 5 o5 % ‘P;P a basis for N(U-wI) ™ (dimension du ). Proceeding as
we did for equation (4.1), put P =col(¥ ... 4’{#) . Then there are

dp xd).  matrices M and §, D‘I"/\T'l’ . g:ﬁlcd;(; B has the sole

eigenvalue '_-5; 1,3 pe - Define the w -periodic column-vector function
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Ao - Et -~
P(t) = e T(t,0 ¢ for t<o0o , and extend it to +20 . Then the

solution of (4.12) generated by ¥ s
_ =~ _ -8t 5
y{ = T (¢, 0) ? = e P(‘f:)J

and in fact solves (4.12) for all — o< tceo , The function corres-
ponding to Yy, is Y(¢t) defined for all 4+ and
Yiv) = e~ Pe)o) .

We can show as before that if for some constant J: -row vector é
and ¢ <0, by.= é‘F(t,o)f=-0, then kb = O.

We now prove that the set of S¢o) #: ) 1 (s J:‘ , 1s linearly
independent, i.e. if for some constant row J:.,-vector !37 é sto)¥=o0

then b=0 . Put ["= §(0 ¥ . We show that for & $©
o
Yie) = —[ arce) Res, @ (4.23)
o

where R 1is the resolvent matrix corresponding to (4.1). Infact if

o
we let Z(0) = -f‘_ dree) R(6,e) for o<o , then by (4.2),

e
_.f: drie) [ L+ fo f°es, u.)[Alu)°Llu,u-r)] du]

n

z2(0)

-}
= (o) = [(8) — f‘.o dr(9)f R(G,Q)[A(u)- L{u'u—d‘)] du,
a

since R(&,«) =0 for u>6,
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= (o)~ (o) — f:(f:dl‘(a) R(a,u.)) [Aty- L(u,uw))d“_

0
[fte) = Flo) + f'_ Zlw)d [A(u)- Llu,u-¢)J du..

By definition of Slo), [(0)=0. So =& satisfies the integral equa-

tion

]
z(o + fr 2lw) [Alu)-—Llu,u-a-)Jd* e (o) =

[str®)(ey = Yoy + [, Beo) [ Lo, 6)~ Lo, 6-7)) do.

Thus 2 satisfies (4.16) with t =0 , and initial data equal to 4

on [0, ™) . This is the integral form of the adjoint equation (4.12).

We know one solution to be Y (&), so by the uniqueness of the solutions

of (4.16), =2(¢)= Y(e) for all <o <0 . This is what we wished to

show. Now b =0 so by (4.23) 0= bY(r) =k Tzo) & s daiee

b=0. Thus we have proved that the Slo) 5"4‘ are linearly independent.
We are now in a position to connect the spectra of U and (7

Let M be an eigenvalue of U, k an integer Isks V. ; and

{’, ¢M a basis for the null space Y)(U'/AI)“ . Then since g can

be chosen to include ‘L, 81'.., we deduce that the set f‘ = SY0) ‘;L,_ 3

14l «wm , is linearly independent. Also it is clear from (4.22) that

(U*",LI)RFL‘ =0 , C=), ey ™M,

Thus p is in the spectrum of u* and v , and
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k
dim (VY- pI)" 2 dim (O-pnr)",

Now dim (U"_.,‘.I)k = dim (u.,,,[)k for the following reasons. Since

Un 1is of the form V-nL=* B(Q+I) with B nonsingular, Q of

3 k
finite rank, then U has the same form and we may without loss of

generality assume k=) Then the null space of U, corresponds to

the null space of some finite dimensional matrix D . It is easy to see

,-
that the null space of Un corresponds to that of the transposed matrix

T
D These have the same dimension and we are done. Thus

5 > 3

k R
dim (U-pD" 2 dim(T-pD) vk, (4.24)

By duality we can reverse the roles of U and I:" in (4.24) to deduce
the reverse inclusion and inequality. We summarize the results :
The spectra of U and U for lpl 2 peFuw
coincide. U-pmT and U-mnL have equal (finite)
ascents Vi, and dim (u-,\r)* = J,‘...(O'-,J)y“ z=du
i.e. the generalized null spaces of the two operators are
in one-to-one correspondence.
This completes our demonstration of the duality between equation (4.1) and
its formal adjoint (4.12).

We can now turn to the projection operators, but first we need some

preliminaries. As above let §, 'P be bases for the generalized null

spaces of U- M1 and O‘—PI respectively. We may choose these such
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that

(¢, ), = I

(4.25)

(the duvdu identity) since (¢, ), is nonsingular. To show its
nonsingularity, if ( P, §), b =0 then (¥ €L)=0, i.e. A fL>=0
with [ defined above. Since I~ 1is a basis for n(u“-—;LI)“'“ we
have that §£ annihilates this space so §La, e R(U-p I)‘,M (cf.
Taylor [16] » Theorem 5.8-A). But then since &b ¢ n(u-pl’)u" we
have &ébL=0, i.e. & =0.

Now since U =M : UPs ¥ , we have ( 1’, Ué), = (P, §M),,=
(E,E),M=M . By (4.18) this equals (T Y, 9), = A(BF)e= A& , so

MzM, and B8=8R . Thus

Tt 00 & pue) e®F, t>o,

Tlt o) P g B {3'(1-)/ ¢<o,

[}

are the eigenfunction solutions of (4.1) and (4.12) respectively corres-
ponding to g . Let us denote Fre) = Tt 0) 8 Ple) = Tte,0) P and

note T(t,s) () = $+) . Also note that (4.25) implies
(P, @), = I. (4.26)

We can now specify the projection onto the generalized null space
of U-mT . Let p be a characteristic multiplier with ‘P“'), br+)

v,
as above. Define the projection Q,.,lt) onto nLu,,m)" along
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Y,
RV ~pmI) " via

Quitr ¢ = S (%o, #), (4.27)

for each T . That this is the desired projection is clear except that
Vv,
we show e ROUVEH-pmI)* implies ®ut¥) $=0. 1In fact @ =

[Ult-) - r]u“ ¢, implies Qut&)¢ = &) (P, [vid-pnI] a ¢’)¢°

&) ([Tw-pI)™ P, $1), =0

6. Decomposition of the Solutions of the Inhomogeneous Equation

Let us now return to the inhomogeneous equation (4.9):
x = Lilt,x) = Ft8), (4.9")

Let a solution of this be x, and let w, be the projection of x,

onto Eutt)
w, = ®w) (P1e), x. ) . (4,28)

An expression for X, is provided by the variation of constants formula

(4.11). The projection of Xo_, onto £n (¥ is

Xht)= $w (B, X,), = @v Fwio, (4.29)

We show that th satisfies
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w = Z(t,w = X2 fie) (4.30)

and that, for o g¢,

: o
W, = [0 (T(‘t‘, s) XOQ(S)J f(s) ds + T(t,0) W,

+ (4.31)
= ) f' P(s)(o) F(s)ds + T(t, o)uw,

It is easy to show that (4.30) follows from (4.31). To show the latter

we use (4.14) to get

g
wy = B ($, x) . + & [ Boy(or #0)ds

¢
T, o) §¢o) (Feo), x)e *+ [, Tles) X, %0 £6)ds,

- B

which is (4.31). Also, since flﬂ = Ple) ett) Ple) = e Fu.)

letting
w, = Plt) q_('f) (4.32)

where qlt) = e't( $®, x, )¢ 1is a column dﬁ-vector, we have that 9

satisfies the ordinary differential equation

qw) = Bqut) + Plerco) Fie). (4.33)

Pt

This follows by use of (4.14), :1(#) = BPqu) + e dé!_: (Pes, Xele =
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B‘L v C f Psito) £ls)ds = Fgq + 8%t Piyta L),

With this result on the projection of Xy s Qu(t/)x, , we can
prove the Fredholm Alternative Theorem giving necessary and sufficient
conditions for the existence of an v -periodic solution of (4.9') in
the case that f(f) is w -periodic. Now the homogeneous equation

(4.1) has spectrum that can be separated into three parts:

{ M l fpl =1 } '
[~ 'F”’},

A

n

°

As

and all [l <|.

Denote by EfA’tt) the span of the generalized null spaces corresponding
to meA, » and similarly for EM) . Let ®°®, 3(t) pe the
corresponding bases with projections Qo(¢), @ (t). TFor the formal adjoint
let these be ‘E-A"(ﬂ} EA"U:), ‘P’(t)‘ f*+) . Letting %, be any solu-
tion of (4.9') we have the projections

xZ = @ wx, = & (¥4, xg),

J

1]

X, Qo1 x, = Gtw ( BTo, xi)y

Also
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dox0 = Zee, k@) = Xlw ot
o X+ + As
Je * = ALile,xy) = X, 00 400,

(4.34)

«
o
Xe = TUt, 0) Xe + fo, [ Tie,s) .X'DA'(n]-P(r) ds,
+ + = A
%y € T(t, o) x; + /;_ [Tets) X, *(n) #(s) ds,

where

°
-~
"
S
"

Qo) X, ,

XM'(H & QR+ () X, )

as we know from (4.30) and (4.31) ( Qe = quq'k etc,). We now prove

the Fredholm Alternative Theorem.

Theorem: If f(t+w) = fit) in (4.9') then a necessary and sufficient

condition for the existence of an w -periodic solution for all ¢ is

that

w
f yt) - fle) dt =0
o = ~ (4.35)

for all w-periodic solutions Yy of the adjoint equation (4.12).

Proof. The necessity of (4.35) follows easily using (4.14). Suppose
X, is an w-periodic solution of (4.9'). Then for any ytt) an
w
w-periodic adjoint solution we have j; y(t)f(t)dt = (Yo, e ™
(Yo, Xe) o which is zero by the periodicity of y, x and K .

For the converse suppose (4.35) holds for all e -periodic yl&)
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solving (4.12). Letting XS = ’!‘.-x:-x: we have besides (4.34)

¢ .
X{ = Tit, o) xp + [ [Tes) Xt ] $6) s (4.36)

where I:'(ﬂ = X, - X)) -X:tt). Since TU(¢,s) .X',A*(r) -
Q'('t) $*(s)(0) we have [T (g, 5) X ¢l =0 ™" as |t-s] > e

where o = max f Re (& Ic.n-.)} . If A, 1is empty we put x"",.o

Otherwise & »o0 . Next we know that I Tet,s) Xt I} = O(e"“‘")
as t-s-» o where B is between O and max { Re (% (‘JF-)’
n ¢ A+U/\.}; so f<O . Thus in (4.34) we may let & —>e so
+ & A (4.37)
Xe = f [ T 5) Ko (n) Fis)ds | ’
©

the integral converging. Similarly we let o > —o in (4.36)

¢
Xe = f [Tit,s) Xresy] £ ds. (4.38)

- 0D

The functions Xf as given in (4.37) and (4.38) are w -periodic since

o
A
x:’ f [T'(f:, s+ ¢) X, t(,s-»t)J fltes) dg

1 e
and T (tew, Setsw)=T(e s+t) by (4.5), and £ and X, (t+s)
are > -periodic ( X:* (t) = @Ye) PHe)to) = PHt) Prierco)
is w -periodic, similarly for XDM(t) and X':'lt-) = X.'-X.A.H-)-_X:'(ﬂ).

A
Thus we are reduced to finding some Xg in (- % &) such that
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t
2, 2 T, o)xe + S [T@ X 0] f15) 4

is w -periodic since then Xy = x: +x:+x" would solve (4.9) and be
periodic. Defining gq(¢) = CBC(Q"(H, 2¢), as in (4.33) where

P = P°e) e'*, Pole) = D P°t), we have the ordinary differential

equation to be solved,

g = Bgw) + Pot1(0) £ (¥ (4.39)

Clearly if an w -periodic solution 9 (¢ of (4.39) exists then

2, = P qe) would suffice. Now such a ?_u.) exists 1ff

w

jo rree) POl fede = o (4.40)

for all v '(H w -periodic solutions of the adjoint of (4.39). This
follows by the Fredholm Alternative for ordinary differential equations.
The adjoint of (4.39) is 7= —r”B and has solutions rvit) =

r‘,f c"t so (4.40) becomes

[
Bt ~
./., rT e Po¢)lo) Fldt = o0

s

fo ro‘r 9.“’)(0) 'F(H dt =o

-8t
where 1o 1is chosen such that r_of e is w -periodic. But this

set of r,7 P°lt) 1is precisely the set of w-periodic solutions of (4.12),

Thus (4.40) holds and 1(t) exists. I
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7. A Structural Stability Theorem

As an application of the Fredholm Alternative Theorem we prove a

theorem about periodic solutions of nonlinear integro-differential equa-

tions.

Consider

Q.

Z . fx, Xaoryx, )

¢ E (4.41)

where Ke) » X 2 j: a;«c(f,s) Xit=-s) d;) € is some parameter, and f
is a twice continuously differentiable function.

Suppose that at € =0 this equation has an W, -periodic
solution w(¢). Then the linearization of (4.41) about X=w and at

€=0 1is of the form

o
‘l,% = AlE) vit) + f K(t,-8) vit+6)ds (4.42)
~ 00
2 I(t,y),

where A(t) and K(t, -8) in its first argument are @), -periodic.
As usual we assume K (¢5)=0(e"™} a5 g5  for some ¥>0 so
likewise K(¢,5) = 0(e"") . Now we note that Vp 2 Af‘: is a solution
of (4.42) and is Ww,-periodic. Thus p=l is a characteristic
multiplier for (4.42). We shall say that Q=] is simple if the ascent
Vo of U-puI is equal to one and dim NIU-uT)= 1, i.e. the
generalized null space has dimension one.
Theorem: Consider the equation (4.41) for € near zero. At €= 0
let (4.41) have an Wg,-periodic solution W (+) and suppose the lineari-

zation of (4.41) about X=wi((t) at ¢€é=0 has pr= as a simple
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characteristic multiplier. Then for all = sufficiently near zero
there exists an w(€) -periodic solution wi(t, &) of (4.41) where
Wie) P wo , Wlt,6) -» wi¢) as € >0

Proof: The proof is similar to that of the Hopf bifurcation in Chapter
II. We first scale € since the period w(€&) 1is expected to vary :

+? = t/{l'r T¢e)) where T(e)= 0(€) and w(€) = o (lr7(e)) | Define

y(t') = xtt) = x[C+7T)t] | We seek an «w,-periodic solution Yy

—~

which is the fixed point of an operator equation in the Banach space

( lall = swpiul+ saplal )

]

B = gu(t) l-‘f is continuously differentiable and

w, —periodic }

We are assuming that the linearization (4.42) has ®w=1 as simple.
Then the adjoint of (4.42) will have only one W, -periodic solution
since pm=) is likewise simple. Denote this adjoint solution by P(¢).

Define the closed subspace
We
B, = {u.eB [ fo pet) - wit)dt =o}

We have f:k(e,s) X(t-5)ds = f:° e sy x[ Gemit? ~s] ds =
j:’,((,,,) th’- ,fr)d, . So Ke) » X = f,” X(es) Y (+*-s)ds +
J(y, T, Xte)) where V(y 7, %e) = L“?(e,s)[ yee* - 7:_7) o
yte*—s) ds) and is of order Tce :l—%, for small T . This is clear-

ly a bounded linear transformation on 8 .

The linearization of § about wit) 1is
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-F‘o [viw] + &o [ f:’?(u), 5) vit-5) ds]

(-]
where ﬁ, and ﬂo are the partial derivatives of f with respect to
the first and second arguments, the first evaluated at w¢(t) , and the
(-]
second at fo Xto,s) wit-g)ds s and € =0 ., Denoting A(t) = ﬁ,°J
[-]
(t) = f-z we see that A, B are nxn matrix functions of ¢
that are w, -periodic. Note that the kermel K(t;s) in (4.42)
equals B(t) %(o,s) .
Put yit* €)= wit® + 2(t"€); then 3z satisfies (dropping

the star on t )

‘_‘3 = (teT) flw+2, FCE)ww + RACe)*z + J(w T %)

t

+dl2, 7, %te)) ¢) — flw, Zrxw,0).

The right side is a function of %, T, € and when we Taylor expand it

in powers of these variables we get

_c_l_?_t = T f(w, %k()*w, 0) + 'p,o-?_- +

2
#1" [ d(w, T, Ko)) + Xto) %2 + € a‘?“’) *WJ

+—()2—6.£),G »” SC*:’Y‘.ea‘t)

where 9 involves only quadratic and higher powers in %, T, €

( >r:= ;i . :__% =0 at 2=T=€=0 ). We rewrite this, using J(V.‘T, X)) =
—

(- -] . -
- 'r_/; %(0,s) s wit-s)ds + Olr*)
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dz Ll
il A(t) =2 + j;ku:,O) 2(¢-6) de
. ” -
+ T [ wi(t) — ?(t)fo X cto,s) s wit-5) ds]
F oo
+ € [(?‘é‘). + B(e&) fo f—‘;—*(o,s) w(e-:)d;]
+ 3’61, T €35 €)
where 3' is of the form of 9 . Thus,
da

® -
a—*’ - Z(¢t, 2) = T [wHI— _/; k(t,s) § w(t-s) A;]

26y X ’
+ € <>‘£)¢ 8 f: :‘f (0)5) wit-rldg
(4.43)

+ 92,16 ¢)
2 Flz, 7,¢;¢)

By the Fredholm Alternative Theorem (4.43) has a periodic solution iff

Woe

hewrer = J) - Faw, me e dt =o.

This condition determines T as a function of 3 and € (for these

small) with T=0 when 2= €320 . To solve W= p it is sufficient

?
that 5‘?. #0 at Tz 3=e¢=p - We have

w o -
(é-;_) = f °,>u:) [ Wiy — fo Kit,s)s wit-0ds ] d¢
o o

That this is nonzero is seen from the following argument. If it were zero
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then the equation

V o= Lt v) = vettl— [ kee,s) sui-5) ds

would have a periodic solution V,(¢) by the Fredholm Alternative again.
But clearly t w(t) is a particular solution so the homogeneous
equation (4.42) would have k(t) & =Volt) + twit) a5 a solution.
Since Vo and v:z are periodic, k #’D 5 so k is an eigenfunction
corresponding to multiplier pm=] , since (‘:'t , k‘.) = Py =
P)e®" with P(&) = (W, ,-vee) , B=[06]. This implies that the
generalized null space of U- T has dimension greater than one, con-
tradicting the simplicity of jp=1

Thus, by the implicit function theorem, we have T = T(¥,€) de-

fined for |€]| < €*, z € -S;- = ;iel? J neans E“ffor some ¢g">o0 ,
and such that 7(9e) = 0o . Next we note that (}E g o since
T
@—{ c = - (H;/L\’)“n“o and (h;),:0 since F contains no linear

terms in % . Consider now the equation

v - Z(tv) = mit)

for any ™ € B, . The Fredholm Alternative allows us to conclude that a

periodic solution V exists, and can be made unique by some arbitrary
I A
requirement. Thus V= A m for some linear operator A: 8, - @

A
That A is continuous can be seen by examining (4.37) and (4.38).
+
Analogously we define V‘_ and see that these and their derivatives

+ -
depend continuously on the inhomogeneity ™M . Also Ve ~ Ve = Vg =
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= Po(f) nit) where P le) - Bnt) = ﬁ"(u to) wmi¢) - We can
choose n(e) =0 , say, for uniqueness. Clearly hn and A depend
continuously on ™ . Thus V, does likewise and R is bounded.

Thus the map Flz,e) = Ao F (2, 7(2,6),6,¢) : 858 is defined

on Sew [-€*,¢*) and is continuous. Also (3—;’){ . =0 since
2 =0
@-E_)i-‘ = o . Thus by choosing €, small enough | F(a,, 6~ Fleg,0)
= ‘°
& ke Nz, -2 for 2z, ¢S5, and lelse, and O0<ks<;

Thus for each fixed &, F is a contraction mapping on ‘S‘fo and has a
unique fixed point 2(¢e) where == F(2,€) . Then 2 - Tit,z)=

Fta, 7, &, %) so # 1is the required periodic solution of (4.43).
Putting T(€) = TC26),¢) finishes the proof.

We note the close similarity of this and Theorem 2.1, Chapter 14
of Coddington and Levinson [l] . These assert that if a periodic solution
of a system of nonlinear equations is nondegenerate in some sense then
if the equations are perturbed slightly in any desired way they will still
have a periodic solution lying in a neighborhood of the original one.

This is a sort of structural stability theorem.
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CHAPTER V

STABILITY OF PERIODIC SOLUTIONS

In Chapters II and III we constructed periodic solutions of non-
linear integro-differential equations. In this chapter we examine the
stability of these solutions. We shall prove some theorems that will
assert the stability or instability of the periodic solution given certain
information concerning the linearization of the equations about the
solution. This linear equation has periodic coefficients so we can
utilize the results of Chapter IV, Next we apply the theorems to deduce
the stability of the periodic solution which was constructed in Chapter
II by perturbation methods (the Hopf bifurcation). We also analyze the
stability of a bifurcating periodic solution of a certain nonautonomous
equation arising from population dynamics. These examples should suffice
to demonstrate the applicability of the method in the case of bifurcating
solutions.

Suppose we have a system of nonlinear equations

= = F(z, A=z, t), (5.1)
dt Fia £, t)

where 2 € ﬂ\" 2 = A(s) is an exponentially decaying matrix kernel,

and ff is twice continuously differentiable. As usual
oo
(xr2)) a [ ats) zee-s)ds.

Suppose further that equation (5.1) has a known w -periodic

solution Ppl(t) , so that E is w -periodic in its last argument.
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We wish to examine the stability of p(® . First we define this concept.
Suppose A(s) = O(c'") as §s-sp o, ¥20. Then, as in Chapter IV we

have 1', r? such that r'<vrt<y and arbitrarily near ¥ .

Definition: The solution pee) of (5.1) is stable at @ iff given

€ >0 there exists a J>0O such that if initial data u(¢) is given

- Tt~

)
for (-eo, o] satisfying  Sup Ipeer — uees) e “l<f then the
' e

solution it generates, (&) , 1is such that [ Z¢&)— pv l<e for

all 2@ . If in addition I 2¢¢) - FH:-)[ > ¢ as <+-» e then P

is asymptotically stable. §p is unstable at < if it is not stable at

~

o

Thus small initial perturbations on the interval (-®, ] generate
small perturbations to the solution, where "small' is in the sense of
some norm given above. The definition can be restated as follows. Recall
from Chapter IV that f(t) is represented by ft ¢ C and C =
5#(0) defined on 6%o / i:o” ICY" ¢(9)1<a:}, Then p 1is stable
at @ iff given €>o0 there exists 4>0 such that if #geC
and || ¢ — pPe lI<§ then the solution %, that ¢ generates at &

(Ze = $) satisfies |2 (0 — Pp®[/< € for all ¢ 2. The solution

P is asymptotically stable if | 2(¢)- Plt)l >0 as t-»00 ., Next let

us change the dependent variable from 2 to X , putting

Z) = pi¥) +  X(t)

~

so X satisfies the equation

(- -]
= A(t) xtt) +f°f<(t,s)_{(lt-s')ds +f(,x,7<*5,£-) (5.2)

ooy
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where Klt,s)= B(¢t) X(r) and A,B are w-periodic. Also, £

is nonlinear in X and w -periodic in its last argument: £(0,0,¢)=

f to,0¢) = F

X »

'(o,o,-t) =0 . We shall in fact suppose, given €>0,
there exists = 3> 0 such that | #Cx , Znx, ) )- §(x, Zex,, Hl(g I1x%-x0
for JIx;|| = , 31,2, and all teR .
The linearization of (5.1) about g = p(¢) 1is given by the first

two terms of the right side of (5.2); and has periodic coefficients:

dy .

—i = A®YY  + ]; Kit,s) vit-s)ds. (5.3)
Suppose (5.3) has some characteristic exponent with positive real part.
Then we show that for all O , the solution X 20 of (5.2) is unstable
at o . Equivalently, tlf) is unstable as a solution of (5.1).
Theorem 1. Suppose equation (5.1) has an w -periodic solution f(t)
and that its linearization about E is given by (5.3). Suppose that
(5.3) has a characteristic exponent with positive real part. Then for
every ¢ , the periodic solution f(f) is unstable at o .
Proof: To prove this we proceed as follows. Fix o throughout and for
brevity denote £ (¢, x,) = F(x, X« x,¢). We divide the characteristic

multipliers of (5.3) into two parts
+
A s Ll ol
AT = i}*ll}llél}_

Denote A' = {}h ,l,.,}‘ Ai=w loy ppand A3 min Red; . Let

—

éi(t)) P.(¢) be bases for the generalized null spaces Ep; (), Eu (t)




-121-

o 8
of U"”l; I, U< pmI respectively; and §,-lt) = P:(¢) e € . *P‘.(u =
e-—ﬂ;t ﬁ(t) where 9,; has the only eigenvalue /\; . Combine the
Bt - et
bases into Pl#) = ( ¢ ,.,%.) = Pitye ", Pi)y= e i P(t),

B = diag (B ,..;,B, ), Ptt)= row (P-- f,) , Plt)= c0l(f’:~f:’:l. These form
bases for the span of the Eu, l¥), E, (¢) respectively.
Let Xg be an arbitrary solution of (5.2) and define its pro-

jections

x5 o= dw (Bw, x), |

X
P
11
- 4
*
|
x
Q

cf. (4.28)-(4.31). We assume B is in Jordan canonical form with
superdiagonal 2/ and ¥ >o0© can be chosen arbitrarily small, say
ve< A

To prove the theorem we assume on the contrary that X 2 0 is
stable and derive a contradiction. For each € >0 (to be fixed later)
there is %> o0 such that [ f(¢, @)~ ,C(t,f‘)[ S e lg-4,ll for all
t and N &l €7 . Then by the assumption of stability there is §>o
such that | Xe )l € § implies X, ll$% for all ¢2¢ . With this
hypothesis we choose Xo = X; * Xs with Xg =0, xe #o0 so that X
has initial value in the space of eigenvalues with positive real part.

We are assuming the ensuing solution X, is bounded in norm by 7

As in Chapter IV let
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X,7tt) = $re) ( Pew, X,).= Bw) Peco,
X, (t) = X, - X:'H_)J

so X:' satisfy the integral equations

t-
t
x:’ = T(¢, o) x,'t + fa_ Tit,s) X, (s) s, xs)ds (5.4)

and Xg =0. By a result of Chapter IV

. -
| T(¢, ) X, (s) ” < K, EV = tzs,

with % defined as above and K, depending on » only. Thus from

(5.4)

-e) -
W xo~ I & ek, (e7772) = 00e”*7)

+
as taw . Also if we write Xs = $(# ¢ for some constant C then

 y
xS = & [ ¢ + [, B0 £is x0) d’]'

Since P(s)e) = O(e""} as S+ , then the integral

a0
j;_ P(s)ce) FUs, %) ds converges and

+

@
xd = dw [ ¢+ [ ¥sico Fs, xe) ds |

- -]
- $w _/; Y1) (s, Xs) ds .
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Under the assumption /I x5 (I £7 the last term in x: is bounded since

P @
(A~w)(t~
| ) j‘_ Pis) (o) Fs,x)ds || < €% m* .4 @’ ')d,

vhere 0 < A-¥ =), <8l and M= max (UPwll, nFtwl). The first
L

term in x{ is §(~u_l: with b = ¢ */:ws)m s, %)ds , and this

e),t

has growth at least as t-ew . Thus, since X, 1is assumed

bounded, we must have b: O . Then Xy solves the integral equation
i.
Xe = [, Tt X, 00 £05,x) ds

@®»
- ¢ ft Ers)to) £(s,x5) ds.

Then
t V(it-s)
hxe l € ke [ € Hxsll ds
® A, (t-s)
+mre L e™ las Il ds. (3.5)
Choose p >0 such that 0<V< p< i, ; put a,=p-v ,
Q, = ).~P . Also put

_pt
ree) = e P lx .

Then R = sup r(t) exists. Furthermore, from (5.5),
tae
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*

- (t-s) -
rit) < K, e e % 2 a; (€~5)
! ~/;- ris) ds + M E‘/;e‘ oy

kLo m*

<
—3 € a, at ) R

1

< 7 R

if we choose € < _T.‘—;T . This holds for all t2 e so

2% * %)

Rz supr = %_' R,

This implies R=o0 so Xy =0 for all +¢» o0 . This is impossible

since Xg # 0 . This gives the desired contradiction and proves the
theorem. l

We now turn to the question of finding sufficient conditions for
the stability of the periodic solution. It seems reasonable that if
(5.3) has all characteristic exponents with real part negative then f‘*’
is stable. 1In fact we prove asymptotic stability. First we note

Gronwall's inequality (cf. Problem 1, Chapter 1, Coddington and Levinson

[1]): let X(t) >0 on [o, ) and

bie) < Yy + j::t’ch #is)ds
o f;.ea’(uldn
Then for €2 &, Blt) « Yie) + f’ X(s) ¥(s) € ds .
Theorem 2: Suppose the linearization (5.3) of (5.1) about f‘ﬁ has all
its characteristic exponents with negative real parts. Then the periodic
solution f(t) is asymptotically stable.

Proof: Suppose the characteristic exponents A satisfy
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ReA < - < O,

Then for some constant M\

-x(t—5)

N\
1%

NTi(t,s) gl < M e neu ¢

for all @$eC . The solution X, of (5.2) satisfies

¢
X, = Tt a)xy + f‘r T, ) X, (s xg)ds,

Choose 0< €<« and §>0 such that Nl g/led implies [l f(s8))/S
%\ lgf, ¥s . Then, so long as MHWXs )l 7,

t
S
e“Fhx, il £ M e Ixell + e‘/; e™ Nxecy ds.

Using Gronwall's inequality we find

o xa t-cé(t-IJ
et lixel < M e T Nxall + em e T xell [, .

ot €t~
= M e” lixell & it

SO

Ixell ¢ m e %7 ..

Thus, choosing || Xe{ < £ implies Uxel] ¢ & for all t 2o,
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Furthermore |[x.)l >0 as t->e& , so x(t)—>o0.

For many cases these two theorems suffice to determine the stabil-
ity or instability of a given periodic solution. However, in the case
of autonomous equations, the hypotheses of Theorem 2 are never satisfied,
and we must examine the situation more closely.

Consider the autonomous system of equations

=5 - F(;J?{*i) (5.6)
dt
with X%, F,% as in equation (5.1). Note F s independent of t .
If p(t) is an w -periodic solution of (5.6) then the linearization
of (5.6) about P is still given by (5.3) with A, K w -periodic.

Now notice that |; = ‘:-’—2 solves (5.3). Since P is w -periodic
we conclude that (5.3) has pm=| as a characteristic multiplier. Thus
we see that Theorem 2 cannot apply. In many cases = =/ is simple,
i.e. the generalized null space of U-TI thas dimension one (being
spanned by [;{. ). If also all other Ipl<| then we can prove that a
different type of stability holds. If Z, starts close to P, at
some t then 2 becomes asymptotically periodic as & -» e and even
though | pt) - 2(&) may not tend to zero, the orbits described by

% and p tend to coincide as + +»oo . More precisely,

Definition. The periodic solution p(t) 1is asymptotically orbitally

stable iff there exists €>0 such that if |l e, — Pe || <€ for some
S L]

o, by » then the solution # of (5.6) for t > t.,t, satisfies

t

limm 1 2¢¢) — r(t-\-c)] = O
t->co
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for some constant € , called the asymptotic phase.

Theorem 3: Suppose the linearization (5.3) of (5.6) about p has all
characteristic multipliers Ipl < | except K =) , which is assumed
simple (equivalently, all Re X <0 except for a simple A=o0 , A
being a characteristic exponent). Then P is asymptotically orbitally
stable.
Proof: We shall prove this by showing that there is a manifold orthogonal
to the orbit pP(¢#) at one of its points such that if a trajectory
passes through this manifold then it develops the asymptotic properties
of orbital stability. We note that this is exactly the method of proof
of the corresponding classical orbital stability theorem given in Theorem
2.2, Chapter 14, Coddington and Levinson [1] .

Note the translation invariance of solutions of (5.6), namely that
if 2(+) solves (5.6) then 2(t+k) also solves (5.6) for any con-

stant k .
Consider the equation (5.2) obtained from (6.6), by putting

Xe = Zg- Py . We have the Lipschitz condition for £: for all €&>o0
there exists J>o0  such that if lix¥, ¥l €S then | F#ct,x )~ £t %)
< elx-%1 for all . (Put F(t,xe) = F(x,X+x,t) ). The
linearization (5.3) has multiplier m=| and null space E,¢0) = Nn(U-x).
$it) = P(b) = l." spans E,(0) . Put C= E(0) ® R' . The adjoint has
corresponding Plt) " E, (o) with P(t) w -periodic.

We now find the manifold mentioned above. Consider the integral

equation
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t )
B, la) = T(to) o + [, Tee,s) X%y £0s, 8,)ds

s (5.7)
‘f; Pre) Pesico) £(s, 6)ds

with a € Rl

()
Here X's) = X, -8(s) (¥s),X,); = X, - 8ts) Pl , c£. Also
for some K, >0

~a(t-s)
2

| Te,s) X%y ][ = K, €

N € Bsxo || <= Kk, tzs,

]

W
w

where T = min {I.\I IA is a characteristic exponent such that Ked <o} .

Also

| T¢e,00 all < K, nal e~ 77, t3o

~— (- ool
Now choose € < ,x and let J be the corresponding quantity in the

11

Lipschitz condition for f. We show that if Uall S zé, and aé€R,

then (5.7) has a solution ©¢(a) for t=20 satisfying

-
| 6cCar I < 2k, Htay €5°7F, tzo.

It is easy to show that 6, satisfies (5.2) (cf. proof of Theorem 1).

(k)
We construct O, by successive iterations &, s BMEFOML, ws
to)
Let 6 =0 , and
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(k+1) ~ . " -
Oy o = Tit,e)a + [, Ttes) X%y £(s, 6,°) a4

@
e ft Pe) Pisito) f(s, 6,“") d.

Then it is easy to show by induction that for all ¢ zo

(k+1) Ck) kK, llal) _
I &, - 6 I = '2" e~r 7t

(k)

Thus lim ©O¢ = 6, exists for each ¢ 206 and 6¢ ¢C . Clearly 8,
k- oo

satisfies (5.7) and

PMl=-

(. -]
Nogcar I s 2 I ol -0l ¢ 2k, Ulall e~
k=o .

so 8 0 as t3e . Nowat t¢=o0

a
eo (a) = a — §(0) ./; Q(;)(O) -ﬁ(s_, &5 (a)) ds

and qe€ R‘ " $co) € £E,t0) so ©ola) has been decomposed according to
C=E(®R, . Let TU be the projection operator onto E,(0) along
R, , mi= I-T projecting onto K; along E,ls) . Note T, T’ are
bounded since £, ) , R, are closed. On a neighborhood of zero in R,

define the real-valued function N

@
Nla)y = — [ ®0 £(s 8,(a) ds.

It can be shown that B¢(e) is continuous in a  so N is a nonlinear
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continuous function and is o(a) as a->0 . Also

TT Beta) = N ‘§(°),

T’ 8,ta) =a.

If we can find ¢ ¢ C such that @=a @& Na) g, aek, , and
Ilgll small, then the corresponding O¢ (a) satisfies @ = Oola) and
;>0 as ts>o. The set of such $ defines a manifold M given by

the relation

Te¢ = N(w'g) &,

Thus if $ 1s on M it generates a solution O, (W'®¥) that tends to
zero as toowm -

Having defined the desired orthogonal manifold we show that, given
a solution  %(&) of (5.6), if [l Z¢,- P¢, /] is small for some to, £,
then the trajectory 2-_‘_ passes through the manifold pPo+M . Let 2,

satisfy (5.6) and

" it, e Ptg “ < €

with € to be defined later. Put

A\
o+
c

Y(t) = Zlt+t, —-tos) t

Clearly ¥ solves (5.6) so




-131-

Je = ‘l't"' P+

solves (5.2) for t=2t%, . Note /ly, Jj<e . Later we shall choose &
so small that WY¢ll remains small for |t=-¢to]l <2w , no matter what
Y we have. Then it is clear that by shifting <+ if necessary we may
assume that T, 1is a multiple of w . Also put

up s ¥

) t+t, Pt. >

we show that for some + » Uz is on the manifold M,

The fact that N is nonlinear of higher order implies that for
€’>0 there is e’ 20 such that llal, |[L] Ve implies  ANla),
N(b) are defined and |N(al- NC) | < €’)la-L)l . Choose

i

/ = j
o W4 It $ol) S

Put q-*- ] Ptu.. -pe for l€l €2w . Choose 7 >0 so small that

~

T<2w and Nqzll £ 2—}';—,," for |EI€ 4 . For such ¢ we have that

-~ A ~ ’
N(T'9z) is defined. Put MWqp = x(E) $0) and V(&) = x(E)-N(Tq;).
~ . . -~ -
Then since ‘1; s & P‘.. + O(E*) = ¢ B0) +0O(®Y we have ?(é) =
£ + O(E*) , and we suppose this last term in ¥ is less than M &*

in absolute value (for |l < T) . Now there exists p>0 and

0<T’< T such that
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e ~g fe
t-mE-p >0, £ecelvd,

(5.8)

™+

o~ ~
€ +ME +p <0, e [-7 -77)

Since My*. Il <e , choose ¢ >0 so small that

By, Il 5 wia § £2EON 21—}

2 nril g 2 N7

for lt-tol s2w

With these preliminaries we find £  such that UreM . Since

Ug = _Yg_”__. +9g we have

7 ]F’/ < 7T .
~ < B J
N (Wlul:)is defined. Put Tu; = «(¥) ¢, and B(E) = «(E) = NlTug).
We seek + such that ﬂ(f?) =0 (since g and ¥y are close,

(=0 , and ; is linear near zero, we expect to be able to do this).

Note T"),;..t = T(ug -1;) :[0((5) - r(é‘)]ih)- Now

[p(&) - $(0] < \atB)=k(&] 4| Marug) = NI,

< N ygoe, ll / v €N N Ygsell

K70))
. 2wy
= ]
Nemy o Eell <P
Thus P(G)* t+¥  where [V) <ME"*+f . Thus by (5.8) R(¥) changes

sign as ¢ crosses zero. It has a zero at ¢ . Thus
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MTug = N('n"ui) $ro) s0 u; emM . By construction of M , & (”’U;)
is defined for t 20 and clearly B8 = \Pt*;é"-t,- Piee, -for ETao.
Since %, Tet,™ ')bt.g +toand ©Oy»0 as to then NZE, 5, ¢~
Peats | 20, i.e. as t»o , 2 -~ Pesc ll 0 for c = t,-E+¢,
as we wished to prove. l
We now apply the results of these three theorems to some problems.

First we consider a problem from Cushing [3] . He considers a certain
nonautonomous generalization of the delay-logistic equation for one-
species population growth. Specifically, a periodically fluctuating

environment is assumed:

‘i’_\’ = N-(A+LH-) —at)N

dt
(5.9)
(- -]
— ] ket ey vit-81d6 4 (e, K-N))‘
o
where N,Q, l.J are real numbers, /N representing the population
size as a function of time t . We assume a, b are w -periodic as

well as K, v in their first arguments ( K is exponentially decaying
as 8+ ) . Also r 1is assumed to be at least quadratic in N, K* AL
Thus the birth rate X+ blt) , capacity coefficient ailt) , delay K ,
and higher order corrections r  are periodically fluctuating with the
same period. This could be due, for example, to seasonal changes, har-
vesting, biological rhythms, etc. It is assumed that the average value

of b 1is zero:

w
jo blx) gt =0, (5.10)
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so A represents the average birth rate. Cushing then shows that a posi-
tive periodic solution of (5.9) bifurcates from the trivial solution
N=20 at A=0 , assuming o,K >0 . Then he shows that if K, r are
sufficiently small, the periodic solution F] is stable. We shall
analyze the stability of N for any K,r , showing that if these are
large enough ;3 can become unstable. This demonstrates the general
rule that sufficiently strong delays can have a destabilizing effect.

A regular perturbation procedure can be used to obtain N as

follows. Put

N = GN, i o GZNZ_““"‘ »

with the N/ w-periodic. Substituting into (5.9) and equating like

powers of €& yields for e :

aN L Lu A

2

rr

€
N, (t) = o exp J, bts)ads, €,X>0.

This is W -periodic by (5.10). The €%* terms yield:

dN @
a_t_’: = AN, + b&)N, —alt) N,"—- N,(t)fo K(¢,8) N, (t-6)ds
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N . iy
S LN, = ol b [ bbde

e & A, — xa(t) €

t-0
© fo bes)ds
~f Kteo) € d,]

We require N, to be w -periodic so an application of the Fredholm

Alternative is needed. The adjoint w3 -periodic null solution is

t
) b(s)ds
= lo , so we have

o
o t © .-f bis)ds
A A Ty FTEES

This gives
w 3 o
_ 1 Sobds | @ o - bes/d
Then
f.kbdx s (Lae - -'I.:, bds
No(t) = « e f[),wamc _.(!ok(u,e) € dOJ du .
°

Clearly this can be continued to find w -periodic fv(t) . We stop here
and turn to stability considerations.

The linearization of (5.9) about N is
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%Lt,: = Vv [A +blt) —at&) N = k) »N +v(&,N, ’C"W]
(5:11)
+ N [—athv —Kte)xv + r;;u-)[vJ) ,
where rg = linearization of I  about N . At € =0 this is
dv o L) v, (5.12)

f*

It is easy to see from the proof given by Cushing that if r is
analytic in N, K»N then N, are analytic functions of & . Then
the semi-group T (¥¢,s;¢) associated with (5.11) is analytic in €
so Ule)= T(w,0;e€) is analytic. We appeal to Theorems 1.7, 1.8,
Chapter VII of Kato [7] to deduce that the spectrum of U(€) varies
analytically with €, reducing to that of WUl6) as e€-0. The latter

f;*b ds
consists of pMz/ with corresponding (periodic) eigenfunction €

solving (5.12). Since the characterisitc multipliers pmc¢e) for (5.11)

vary near those of (5.12), we have one branch M5 (e) perturbed off the

value A= and all others are Ipl<]l . Note that gy is simple. If
\ps (& ] > | then by Theorem 1, N is unstable. If lps | <) then

by Theorem 2 , N is stable. We thus need only calculate Ms(€) . Put

gle) = = log pste) = Bie + o €* + oo,

thecharacteristic exponent. The corresponding eigenfunction has the form

¢
V(t, &) = Plt,€) a PO
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with P w-periodic, cf. Chapter IV. Let

P = Polt) + € P(t) + €* Poté) +..

(each PF; is w-periodic). Then

V= Vo + €V, + €*V, +.

where
Vo = Po
V' = P\ + PO F' t_l
Substituting these expansions and N =¢ Nl +0, A= e J, + e into

(5.11) yields a hierarchy to be solved.

I

The €& terms yield
d Po
e = bt Pe,
i.e t
Jo b) as
'Po [f') = e !

The €* terms give:

df

dV| Lt) =5 rt‘dj’
gt VT (J-bwR) o+ e”

P

= { >\‘ + 0(["2 alt)R -2 k* Pp]} efobds‘
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We require P, to be w-periodic, so the Fredholm Alternative implies

fd { ..Pl + ’\‘ e “[‘ZQlf)Po—Zki‘ Po]‘} dt - o)

+ ¢
w Jo b d d
B 2“'2{3 .(. [ -aw) e T K » ef.‘ "l dt = =2

Then periodic F exists, etc. We stop here since, for €,a>0,

X F(d: sgn P (€ small). Applying Theorems 1 and 2:
N is stable if g <o , unstable if g >0.

Note, if K 1is small then since a>0 we have g, <o so N
is stable, in agreement with Cushing [3] . However, since K > O also,

N is stable regardless of the size of K

We next turn to the Hopf bifurcation of Chapter II. There exists

a one-parameter family of periodic solutions 2= p(t,€) of
dz
- = Fl=, Z*z, ) (5.13)

of period wle) for A= A(e) , cf. Theorem of Chapter II. We shall
assume F is analytic in all its arguments. Then, as the note follow-
ing the theorem of Chatper II shows, p(t.€) is analytic in t and

€ , and J),w are analytic in € . Assume A(0) =0 and that we

have the nontrivial case \(e) # 0 . Suppose the linearization of (5.13)
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about P(t,GJ is

[

v @
- Alt;e)v + f, K(t,s;e) vit-s)ds, (5.14)

|

o

where A, K (in its first argument) are co(€)-periodic, and are analy-
tic in' g ¢, & - At @ =0 this becomes the linearization of (5.13)

?

about =0 ¢

o
i—i = Av + jo Kk (s) v(t-r}ds,

(5.15)

so
A= Alt;0) , Kisl= k(¢,5;0),
We shall deduce the stability of each of the periodic solutions
P(&,67 by calculating the characteristic exponents associated with the

periodic - coefficients equation (5.14). This will then be related back
to the two time-scale perturbation scheme we used in Chatper II to con-
struct p(t,e) . There we also found a neighboring family of non-
periodic solutions that enabled us to state a conjecture about the sta-
bility of P . This depended on a certain coefficient in the modulation
equations for the amplitude and phase of p . What we shall show is
that this reasoning based on the perturbation scheme is completely valid,
namely that whatever stability is predicted by the modulation equations
is in agreement with that deduced by finding the characteristic expo-
nents of (5.14) and applying Theorems 1-3.

The characteristic multipliers of (5.14) are the point eigenvalues
of the operators U(€) = T(w(e), 0;¢) where TI(t,5;¢) 1is the semi-

group associated with (5.14). Since the resolvent R(i,s; €) for (5.14)
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is analytic in all arguments then T  is likewise. Thus U 1is analytic
in ¢ . Also, Ulo) = T(wo,O,‘o) = Tol(w,) where w,= w(lo) and
To 1is the semi-group for (5.15). Now the infinitesimal operator A
for T, has eigenvalues A= (v ( o= :,.%_r) and all others
Rel <o . Since we can view (5.15) as a periodic-coefficients equation

(period w, ) then Ule) = Tol(we) has only point eigenvalues M for

- Y'(J. wWe

A
But then these are of the form € for each eigen-

il > e
value A of 4 , cf. Lemma 6, Chapter I. Now by Theorems 1.7, 1.8,
Chapter VII of Kato [7] , the point spectrum of Ule) wvaries analyti-

cally near that of U(0) for € near zero. Each eigenvalue MmLCe)

of Ul¢) is the branch of an analytic function in a neighborhood of

1
€=0 . Thus we may expand M(é) 1in a power series in €¥ for some
integer p >0 . If M(€) is the only branch then P:l . The set of
ey
eigenvalues of U(0) form two sets: Mol <] and Mo = ¢ e = |

(double multiplicity). For € sufficiently small the set of eigenvalues
M€ of Ule€) that perturb off the set lpmol <] will continue to
have modulus less than unity (cf. the theorems cited in Kato [7] ). These
areirrelevant for stability purposes. What does determine stability are
the eigenvalues M) that branch off Me=] , which has multiplicity
two (equal to the dimension of the generalized null space of Ule)~— - 3

As € varies pMe will split into two branches ,um((-) S /u’“(e)
each simple. Since (5.13) is autonomous, (5.14) will always have a
characteristic multiplier =) ; thus /«lm(e) =) for all e
The other eigenvalue }&m(‘) will vary near 1, and is in fact an

analytic function of ¢ (not a branch of one) since ,u“)(e) is not the

branch of a double-valued analytic function. Thus we may expand



A

rf‘ye) = | +0(€) in a power series in € mnear O . The eigenfunction
corresponding to Iu'”“) is Pit,e) ™% where ple) =
‘l; log /.c""te/ is the characteristic exponent associated with ,u(‘) , and
P is  wl® -periodic in t . Clearly pB(€> = [F €+ fa ™+ =
and we expand Plt,€) = folt) + €R () +€* F(t) + - . Also we can
expand A,k in (5.14) in powers of € . These perturbation series
allow us to find PR, P, ,... 5 B, fu,... successively by putting
pler ¢

Vit e) = f?t,e) : o] in (5.14) and solving a perturbation hierarchy.

The details are carried out in the Appendix (after obtaining a canonical

form for (5.13) to simplify the calculations). We state the results:

p(‘) is real ,

Plzo)

1]

Ba 2 Re &
where J 1is as in the modulation equations (2.12).

If B.>0 then the characteristic exponent 13[‘) is positive.
Applying Theorem 1 we deduce that ptt.€) is unstable. If @g,<0

Theorem 3 implies orbital stability. But in Chapter II we conjectured

stability if Ref <o , and instability if Re §>0 . Thus we have

complete agreement and the modulation equations are completely accurate

in predicting the stability of the periodic solution. We thus have a

convenient method for finding the stability of the bifurcated periodic
solution as opposed to the usually tedious procedure of calculating the

characteristic exponents directly.
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APPENDIX

Here we give a demonstration of two-timing as it applies to a
general system of integro-differential equations in the case of Hopf
bifurcation (cf. Chapter IT). 1In order to motivate the methods we first

consider the corresponding problem for ordinary differential equations.

We have the equation

dN

~

e =~ AN + f(v 2D (A1)
where A (A) is an wxn  matrix, and (W, 4) contains only quadratic
and higher order terms in & . Assuming the same hypotheses as those we
presented for Hopf bifurcation in Chapter II, Ae.) has eigenvalues
=ti# with all other eigenvalues having negative real parts. See also

Hopf [6] . We may assume (cf. Problem 40, Chapter 3, Coddington and

Levinson [1] B

®(x) @ay |
¢ O
—BCA) ald) '
Aipk = | feomms etk
[}
o) B(4)

&to) = O 3
Fro) = M,

where the eigenvalues of B have negative real parts. We see that

Nz (), Ny (¥ , Nalp—>o as t—>e , for small initial values, so
) g o



=143

Q/ tends asymptotically to a function cel (N, (¢, Nyt#) 0 ..., 0) where

N
AE?. = W N, BWNL g, (M, e, N
an, i N, Ny ))
&T - —*f )N, + aly) NQ_ “+ 32, <_ ') 2, .
The g; are obtained from the ﬁt. by putting N3z = --- = Nn =0,

We now seek a periodic solution of this system, which would then produce
a periodic solution of (Al) (with N3 = ... =N, =0 ), This problem is
conveniently analyzed by using a complex form of the equations. Put

Z2(t) = N (D +({ Naft). Then = satisfies

‘-:]d—i’ = oA = + 9(1'2.) /\), (a2)

where g (A) = ald) +[I£(,\) , and 9= 9+9, ( # denotes the complex
conjugate of 2 ). The linearization has eigenvalues o (1), & (3)
crossing the imaginary axis at A= As whered = ¢po . Equation (A2)
can now be put into a very nice form known as Poincaré normal form. By
a nonlinear transformation of variables E = (2,2) with & = z+

O(12)?) , we can write (A2) in the form (for any mz /| )

o
o

\

= cME + c(NEIF*+ ) EI1El?

[ od

d
(A3)
Foe + Cm()) EIE)™™ +0CIEIT™2)

The details can be found in Marsden and McCracken [9J , Section 6A. Now

we apply two-timing to this form of the equations. Thus we have
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E = e E, 4 € - Fz + r3 3 ;3 e s 2
EI' = z" ( t’l 7’) f

*
¢ = f(G)f‘)

T = e" 5
ple = 1+ €p + &' Py s
A = Aot €X,+ &My +.-

Substituting into (A3), the Ol(€¢) terms give

23 .
;E‘i = 3 ¥
i.e. E, = RlT) exp ¢ [ ¥+ B(m] = R e’®
with qf = ,ut*"l- o .

The OC(eé*) terms yield

2> ’
_10,5%_ + oA\ §,

]

3 .
e T r

Re'® [ -imp + 070G, ).

"

To suppress secular terms we require "‘./4 f' % 0-/0.),\,:0 g L@y

x'G) ) = O,

~HPe T {Q’Q.) )‘, = O
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By the transversality condition Re o'Qe)=a’l),) #0 so ), =p =0,
Then we may take ¥, =0 since by the Hopf bifurcation theorem proved
in Chapter II we take the O0(e€® part of ¥(¢) to be orthogonal to

the two periodic solutions of the linearized problem at A, , which here

‘at?” L. *
are €*% and Je‘Mt .
The O(€?) terms yield
0%, : 2% >f,
Jir TR E = cpaSEs T 43 cODE U EIR
‘y 5 & R . 2
= e [—c,,../n}?-—)?—cke +’\l F(AO)R
+ ¢ 0p) RS )
Suppressing secular terms requires that the brackets vanish, Equating

real and imaginary parts to zero gives the modulation equations

R = ), «’00)R + [Re ¢, )] Rg,

(A4)

& = [~pf+ MEOO] +[Im aOJ]R?

These equations have been analyzed in Chapter II where it is shown that
X; and fr are determined provided x“(A) # 0 (transversality
condition) and Re <, (3,) 0
Before proceeding to integro-differential equations we indicate
what procedure may be used in the exceptional case that Re c, G =0,
Here R does not tend to a nonzero constant as 7 -—+» 0 or —-o . How-
ever, we know that it must since a periodic solution exists by the Hopf

bifurcation theorem. What happens is that /\2. =0 and KR does not
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depend on the time scale T . Thus we introduce a third time scale
T,=€*t (T =€%€¢). Then R depends on 7, only, while &

depends on both <, and 7, . 1In fact (A4) gives

—3—7? (7.%) = —pfo*t [Tmc,d)] [RemN]2 i
oR  _
>T - B

¢2)
so O = (Lm e, aa) R"—-,a(o,_) 7 +6 gy - Also ;{% . S and
we may take ¥ = o© . We assume that the normal form in (A3) has been

accomplished for m3z 2 so that O(€"Y) terms in the equation yield

Q@

1 : OF,
_%_‘/“‘?* = —P3 d

4
T+ + o'Ged A; F, .

L ¥

Suppressing secular terms as before yields 3™ )3 =0 . Also we may

take ¥4 =0 . The O(€®) terms yield

235 - . =p 2E ‘
_ g_*’, + c300) § IF 1Y

2

Suppression of secular terms gives the modulation equations

2R , &
T ° «’Ooy Ny R + [Rec,0a0] RY

- “+
i% = (—ppy + pO2A] + [TmcaGa)) RY

If e ¢y(Ae) 0 , then these and (A4) determine Ay, Py, Pz since



=147~
e, 6“)-)0 as T,»>w, T,»0 . Also, R-—> nonzero constant as
T, -»>® or - depending on the sign of Ke ¢€3(As) . 1In case
e ca(he) =0 we may repeatl the procedure, Thus in the case of Hopf
bifurcation for ordinary differential equations the solution near the

steady state is of the form

€ R cos(ut™+8) + O (e,

where © depends on TsTasrr 3T » and R depends on T, only.

( 7'4 = ezlt ). The equation governing R is

dR R 2k+l
—_ = - R
d Ty 3 e
for some nonzero constants ¥
What happens in case all Re ¢j(de) =0, =il awss ? This
is the degenerate case where all A;=0 . Thus )¢é) = A, for all

near zero. This means that the family of periodic solutions occurs only

for A=), , sothat (Al) for A,

anN
e = AUIN + £(N)
has a one-parameter family of periodic solutions near N =0 analogous

to a center in the phase plane. This is the family that bifurcates
according to the Hopf theorem. There are no periodic solutions of small
amplitude and period near %f for X #4A,

We now return to the integro-differential equations. We wish to
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perform an analysis of the general case analogous to the one done above
for ordinary differential equations. Due to the added complexity of
integrals a normal form such as that in (A3) cannot be obtained. Instead
we introduce a form for the equations that incorporates the features of
(A3) that allow for a simple application of two-timing. The main aspect
is that in (A3) the quadratic terms have been eliminated thus allowing

Z; to be taken to be zero. Thus the O(€?) terms are uncomplicated
by ;L . We do the next best thing by modifying the quadratic terms so
that substitution of the OCe) part of the solution into the quadratic
terms produces zero. Then the O(e* term of the solution may be taken
to be zero, so the equations corresponding to O(e?) are relatively
simple ana the modulation equations can be found explibitly. The form
we choose for the equations will be used later when the question of
stability of the periodic solution is considered. We shall use the nota-
tion of Chapter II throughout - see the analysis following (2.3).

Consider

dp
s = Lp,A) + By (pyd) + QyCp,A) +- (A5)

o
where ZCp,» = LW)p + J;, k(Xs) p(t-s)ds  and the Q; are
homogeneous in t and kW) #p of degree ¢ . Put Kl(Xo,s) = k(s).

The linearized problem at A= Ae

d

-

.

T Ly An)

-~

o

has solutions RX (ut+d), RX, (ut+6), where
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X, (pt)

RC,(:_YD C"“t))

.X-,_ (‘u,t') =

Tm (%o e*?),

and R, ® are arbitrary constants.

It is convenient to introduce an equation auxiliary to (A5)

dq‘ v

g = ZLlg,)) + @ulg,)) +@lg M) (a5")
being a copy of (A5) with g9 replacing p . The solution of (AS)
(A5') is

ER X, (ut+6)

-+ O(é’))
43 = €R X, (ut+0) + Oty |
Define the function
Z(f'? - on-(~P+t'1).
Note that for ¢ = RX, , 3=RX, we have
7 - Re M7V o gecs
choosing yo"’. Xo=/

~

as we shall always suppose and for convenience

¢=/u_f‘+9.
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Z is a linear combination of components of p and 9 . Now we intro-
duce a nonlinear transformation of variables from (r,t) to (x,¥)

to modify Q, as we desire.

x =P + 2 ke [2G0]" [26.0)°

reS=2
r.5s20
(A6)
Yy 9 + 2 [2(}.1)]F[—'Z(p,7_)]‘;
= res=z,
rste

’

and to make ¥,y real we require b,g = L,,J bae b4 + The by

-

are to be determined. The inverse transformation is

Sl Z L"S )_ 2(&7)] " [ 2(*,))_] € S 5

1%

P -

2 bl [2(y)]" F 0] #wve,

(35
I

Z =

where the dots denote cubic and higher terms in ¥ and y .

Now X and ¥ satisfy the coupled equations

)2 a JZLIx A * CS;_ (x,y,2) + (3?(!,!,,\).,..-.)
(A7)

_ _ _,
2 LUy N) o+ @y Q3 (KLY +e,

Lo

with the 5} homogeneous of degree { and



-151-

@ = — 2 [Ln«kmw] 27z ..

resz2

L w27 RS T [e s ke ] el by
e k4 (A8)

y L s 27T B OLRT [wexwn)x-inl o,

reSz2

+ Qz ()S,, ' A) 3
where % 2 Z(xy) and for 6; , L:‘ o L, 0‘_’(40‘ . We want Ez , QY
to vanish whenever RX, (g), RX,!g) are substituted for X,Y res-

pectively. Evaluating the terms in (A8) for A=), and these values

of X,y gives

(LU + KD # ] 2"F5 = R (L+kx) e "

i

R (L+Kk*) e =

- Rze’(r-t)l¢ [(r—:) t‘/.(_ I- A (4\.’ r-s) L}q)Jj

r=l 3 T+ " 2 s )¢.d B
r2T 2 T Leks]ixey) = R e AN L*f.“k’“’f‘w'd.‘]!,

2 (r-f)('f
R & r Yo [ I~ A, ‘W] xo

1)

(r=-s)i'#

L1

i R® e

s 27 ' T [Leks)ixcy) =

. 3 ~- .
- R e} sep #

gives
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O?_ = R" Z { [ A(t\o, (r—g)g',‘) _— (.F'S)l‘,.‘ I] érs C(r-:),-‘

v¥fa2

"".:‘"s ér: e"—””f +Q).

(r-5)C@
= Rz Z (e [ A(Aa, ("")‘}*JJ __L.-_g i @2. .

ress2

Since @, is quadratic it involves only second and zeroth harmonics so
: ‘v -/
can be written QZ'ZE Crs e"Te o . Thus (A8) set to zero gives
res=2

Rz Z ECP-‘)"S( A Chs, lr=s)p) ‘L_r; '('Swf} =0

resm2
i.e
-1 .
f"S = - A [C"‘"‘/"] Crs )
where A~! exists since (r-s)u= 22¢um or O . Similarly b,.':

can be found. This completes the transformation.
Thus we have the equations

X J(XJ K(l)'xlA) 7 0& (XIY/"J + Q} e ok p

I

‘ (A9)
ZCy, kry,d) + @ (XA + @+,

=
1

/ :
where the Q:, Q@ are homogeneous of degree ¢ , and @, 0,_/ equal

zero when
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X = RX, (pt+6),

(A10)
Z : R _;Yl (/“t + 9)‘
for any constants K, ©® . This form of the equations is suitable for the

application of two-timing.

Put

X
\

ex, + €Xx, + €7X +oy
Y = ey + €y ¢ e’~y,+---,

where the x,/,6 y, are functions of t',' T with

f(f) = 1+élpz_+...)

ALEY B Lot € Ay #us

Assume Q_; ,evaluated at x= R X.(J),_y =RX, 5 yields
rR? Lsing + Bcosp] 4+ third harmonics.

We use the notation # = /‘t*+9’ R= R(T), &= B&(r) . As shown in

Chapter II, we have



KM *»x = €2 + €%z, + y
K(A) ny = €eu, + €Uy +--
where
?1 = K (A) * Xy )
2, = KW)* X3 — (sK(A)*’-ﬁ) ~ (sk)* 25
= 2 = ~ fz Jt’ (s (A 37
and KQ) » x, = f:’x(,\‘s) x,(t'—s, 7T)ds , etc., so the convolution

ignores the 7T variables. Substituting into (A9) and equating like
powers of € gives the following.

The coefficient of & gives

X
?__"t"= z(xlizg)Ao),
2y
5—_‘:—": = .Z().,u., /\e),

which has the solution
X, = Rir) X, (ut¥+6(7)) = RX, (&),

Yy, = R X, ().

We always ignore the other solutions which decay exponentially.
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The coefficient of &% yields

2 Xa

ﬁ’; — j( x}_, %2_, /\o) = Qa_
X,=RZX,
y:’RI,_

Now since convolution ignores the 7 variables all the operations in-
volved in evaluating the right-hand member are formally identical to those
involved in evaluating @, in (A9), (Al0) since R, ® are treated
essentially as constants. Thus the right side above is zero. We may

then take X, =0 since the Hopf bifurcation theorem in Chapter IT
allows this. Similarly Yy, =p

The coefficient of g3 gives

0Xs _ X ax 2,
5——“' J(xz' K’x‘l)o) = e rz t* >—‘1_‘_ —fz (s k* )"‘

2 X
‘(5’(*3"7': + A)_ {%(Ag} x' L o ‘a“k:(I\b)* XI?

o R3 [zr”" +F cofﬁ] S (o siae

where the dots denote third harmonics. Notice that no terms from @,
arise X, = ¥, = . This equation has been solved in Chapter II and
thus we get exactly the same modulation equations (2.12). Thus we have
proved the conclusions we asserted for (2.13).

Next we calculate the Floquéet exponents associated with the periodic
solution. As noted in Chapter V the only important exponents are those
which vary near zero. One such is F(n(e) =20 for all € with cor-
responding eigenfunction %% (t,€) where X is the periodic solution.

The other is ﬁ"’ where
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)

B = pe 4 faer + Ole?,

with corresponding eigenfunction

€2 »
g Ce)t
v = Pttt e) € (A11)
where P is 2E _periodic (and real). Also, since Floquet exponents
=
occur in conjugate pairs it must be that th) is real,
Consider equations (A9) and put
X(e) = zlt",
ydpy, = | WEET,
f‘:f(é)'é'.
Since
(- o =
K»x = jo Kls) 2(¢"-5) 4s — elf:. fo SKk(s) =(t"5)ds ¢ ...

1]

Ke2 =~ e*f, GKk*2) +0Ce?),

the equations satisfied by 2,w are

dz
T

Lz + k) *2 - e2p, sKk» &)
(A12)

+ @ (2,u,)) + @3 (2,u,)) + Oley
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and the same for W except that Qze»Q;, etc.

the periodic solution

Z(t", €) = e X, (pt) + 0¢e?),

Y
1

é X.a. (,l.t') + Ole*) .

-

L (t*, e) =

Put

¢: /ut*

and linearize (Al2) about these solutions:

The linearizations of the &,

with v, W small perturbations.

G)Ci (il IZ, '\) EV] +* QL‘U. (;: ;“1’\) [WJ/

where
Thus the linearization of (Al2) is

on V, w respectively.

L)V + KW xv — e2p (5K* V)

fca J =

These equations have

are

in. @.. are Frechét derivatives-linear transformations acting

(A13)

<+ Q;t CVJ * Qz‘; (w) + Q;; (vl + Q‘;u.wa +O(e")’
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PEOW = LWw + KM ew — €24 Bkxw)

+ @iz vl + Qe [W) +0ce).

We know one solution of these equations to be

v= = Z(t'e),

m|~

& (t* e,

i.e
v wX (#) +0€) = uRe (ce?x) +ocel,
w= M .X.;_C¢) +~ O(e) = pm Im([c(ﬁ_{,) + OC(E€),
This corresponds to the Floquet exponent ﬁﬁ"i O . We now consider the

other exponent F‘” . Let V be as in (All) and
) -
C€) ¢
ar

w = P'(\‘:‘, €)

4

]
with P ﬁf -periodic. Expanding FP and P

Pp=F + €P, + €¥F +.v,

and



gives

<
el

F‘ + P, (0, '('_-r-)

(Al4)
Vo = P+ PR + Rp th s il - halh el
Similarly for w . Now substitute (Al4) and A\ = A, +e€*d, +.-. into
(A13). The coefficient of c® is
VL < ;f(\%) Ao))
wO = z (wbj A D) .
Thus
Yo = EC(oﬂ e‘¢£°)
Wo = Im (a, e'? Xo)
with

% ,o, ¢ € to be found later.

We digress to evaluate
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Q:E [v°+eVJJ : 2 Q:u. Ew'* &W,] 3

(Al15)

Let us assume for the moment that

Vp, VI ? W.‘V\/l

are linear combina-
tions of

cosut¥, sm ,4t’ For certain of these linear combinations

we show that (Al15) vanishes. Put

£o=

. R(h €& X, ( g+ Q(h,é))/
£, = Rhe X, (¢‘+ &, €)),
where
Rih, ) = |+ hFte) = | +K (Fo+eF,),
©(h,e) = h GCe) =

L (6, te&)

are real constants and h, €

for all h, & by

are small.

We know Qy_(fl y £z, /\o)=0

construction of @, Also

fi = (I+WF) X, (¢ +he)

X ) « LLF X ® +6 X,0)] +002,

X,(8) + WLFX. (0 + 6 X, (0] + oY,

Putting



we have the linearizations

Qie [V] + @au [W] =

"

lim 30§ Qa (X +hV, Bir bW o)~ G (K, T, 00}

h>0

|
= fiwn " Qz (X, +hV+ oYy, x,+ AWeo(hY), ), )

h->o
= Jivn ‘lE @, Cfc,fa, ’\O) = 0
h-»o
Thus we choose Vot€V, = V. w.tew =W » 1.e.

<
)

] = F‘ I’ & G.( X.-{ J

F.l IL b G-l ‘il .

R3

) . ’
It is clear that in addition to Qyp [vi)l+ Qu [wel=0 we have Q;: [ve) +
] .
Q;“ E“"\i] =0 for (e 9,]

Returning to the perturbation scheme the €' term yields.
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VI = j(\/' P} A,) + Ql; [Vq) + on‘* Cwo]

= ZTAv,; As)

J

also

W' = :f(‘l\h)t\,)_

Choosing Vs W, as above we see from (Al4) that

B =d.

The €%* term yields

fa Vo * v, = Z (v, Xo) -{02{9/(*\;0)

+
>

N

~—
lﬂ—

. 'i (2e) Vo t alxk’ (Ao) *V.] + 03}_ [Vo} * Q!u E""’J

o

~ ~ bt el z ve e o
since Z,= U, =0 in the expansion Z = €2, * € ¥, +., ©

e al NPAh SRR and by our choice of V,,w, . Thus
V, ~ I(Vz,Ao) = —-f,_(I"'SK*) Vo

2

ra, & (LW + kWe) Ve v R Iwl QRsulwa]

Now Vo = F°Il * G"ax.-l e RC{(FO*L.G'O) €".’5°Z \;o-; :‘*&{

’
L (Fy+6y) C“f_, z , SO
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\;L —— z(VZ, Ao) = RKRe { e(.'#[ "':/"'f:. (P,-r[G-,) fA(:)E’)

+ A;_ (Fo"[“o)'( gjé'('\o,t}o.) 50)];

. Q:i Lve]l + Q:w [we),

Now we have assumed that when X = X,(#), y= X, (#) that Q3 equals

R¥( ‘LSlhj + B cos®) + third harmonics. Thus

Qsz [Ve) + Qo [wo) =

I

|

L
lim h { R(h,0)3 (& sin(g+0n0) + B cos(@+&thiol)
h->0

—gs:'n¢*ﬁ¢°‘¢} "'3"'

3 R(6,0) %—ff(o,o) (%SI‘n}‘* ,9(0;;3_)

+ (acosg —Bsing) &2 (0,00 4374

cosg [ 3R L + G0 x]

4 sing [3Foax — G p ] ¢ 3°d
R&[(3Fg£_ +G‘,£ —‘_'-3’:021 + ¢ &oﬁ)eip] .,3(‘

Re [ (3F +(6.) (B~-ix) e"”] +379

Vs = i(Vz, do) = Re [ e""{ (Fo +¢ 6s) [-l)uf,_ A'-"{,

F o (B x] + BR ety B }] 437
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Then V, = periodic terms + Re (Ct»e‘.'“t _5,) where (cf. (2.10))
|
C = g Y[ (Feri&) (cup &% ¢ ), (8%)
+(3Fs +6,)(B-re) ]
(For ¢ Go) (-Vrpy v Xy @700)) + S (3F+( 6y) 2
T, e
where § = Z&ifli:l . By Hopf bifurcation
jT‘A“"lg
(-]
Az Re v’G) + Red =0,
—mPy + Ay T o7036) Imd =0 ;
so
- ‘upy + A, ¢ o) + Jd =0,
Thus C

simplifies to

(A16) ‘

Now from (Al4) we want

t* Re ( <Xo e®) = Rat" vott?

B2 t” Ref (Rribe) xo e8]
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so

c= fa(Fo +( 6o) .

Thus (Al6) implies

ZFOJ = Fz(Fo +l.6‘°).

Taking real and imaginary parts yields

2 Fo RCS‘ = P;FO J

2 Fo Imd = pato.

¢
One solutionis p,_ =0 , Fo-.-o) 6,=1 - This corresponds to R "(s)g o

and v, = X.,(’) as noted previously. The other solution is Fp #0,

“/F, = I=~{/Red§ and
B2 = 2 Re d (A17)

and represents the desired exponent. This completes the calculations and

we have the second Floquet exponent

B™ = o2et Red + OCed),
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