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Abstract 

This thesis presents a technique for obtaining the stochastic response of 

a nonlinear continuous system. First, the general method of nonstationary con­

tinuous equivalent linearization is developed. This technique allows replacement 

of the original nonlinear system with a time-varying linear continuous system. 

Next, a numerical implementation is described which allows solution of complex 

problems on a digital computer. In this procedure, the linear replacement system 

is discretized by the finite element method. Application of this method to systems 

satisfying the one-dimensional wave equation with two different types of consti­

tutive nonlinearities is described. Results are discussed for nonlinear stress-strain 

laws of both hardening and softening types. 
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Chapter 1 

Introduction and Background 

1.1 Introduction 

Recent developments in computer technology have opened a whole new world 

to the engineering analyst. Today, problems are routinely solved which only a 

few years ago were considered prohibitively difficult. Great advances have been 

made in both the problem size and problem complexity that can be analyzed. 

These achievements have prompted a reexamination of the assumptions used in 

the basic formulation of many problems. Whereas previously limitations in the 

analysis capability were the governing factor, now the limitations rest primarily 

in the capability to construct accurate mathematical models for engineering sys­

tems. One consequence of this progress is a renewed interest in the treatment 

of uncertainty in problem specification. This thesis presents a technique for the 

direct incorporation of randomness in applied loads into the analysis of complex 

nonlinear engineering systems through the theory of random vibration. 

Most real engineering problems have uncertainty in their definition. One 

common source of this uncertainty is the structure geometry. For example, often 
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it is difficult to know whether to model an interface within a mechanical system 

as in full contact, partial contact, or no contact at all. Another frequent source 

of uncertainty is in the material properties. Such uncertainties can arise from 

environmental effects, production variations, or a lack of understanding of a ma­

terial's constitutive behavior. Perhaps the largest source of uncertainty in many 

analyses is in the specification of the external loads. This uncertainty often arises 

when the loads result from a physical mechanism so complex that it is best mod­

eled as a random process in time, or a stochastic process. Simplistic assumptions 

on the time variation of dynamic loads are frequently made to facilitate problem 

solution, and are often based on inadequate data. Clearly, there is much to be 

gained from a more realistic treatment of external excitations that are modeled 

as random processes. 

The classical deterministic approach to dealing with stochastic excitations 

is to assume some average or best estimate functions of time for use in the anal­

ysis. At best, a parameter study is conducted to examine the sensitivity of the 

analysis results to variations in the time history of the applied loading. In con­

trast, a random vibration analysis acknowledges and quantifies these uncertain­

ties, and thereby provides more useful information to the engineer. The analysis 

can provide not just one solution, but a spectrum of solutions and their relative 

likelihoods of occurrence. 

There are two classes of problems which benefit most from a random vi­

bration approach. The first class contains systems where reliability estimates are 

essential; where a failure would lead to great loss of life or property. Examples of 

such systems include nuclear power plants, offshore oil platforms, and aerospace 

structures. The second class contains problems where uncertainty is particularly 
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high, and thus it is especially difficult to construct a meaningful deterministic 

problem specification. Examples of problems in this category include wind and 

earthquake response of structures. For engineering analyses falling into one of 

these two categories, the extra effort required to perform a random vibration 

analysis is well justified. 

The remainder of this chapter begins with a brief definition of the prob­

lem to be considered in this thesis. Next comes a general discussion of stochastic 

analysis methods for nonlinear systems. This is followed by a review of previous 

developments in the field. Several popular techniques used in practice are dis­

cussed, each with its strengths and weaknesses. This chapter concludes with an 

overview of the current work and its relationship to existing techniques. 

Chapter 2 presents the concepts of the new method developed in this 

thesis. First, a precise specification of the problem to be solved is given. This 

is followed by the mathematical development of the nonstationary continuous 

equivalent linearization technique. A general discretization for the equivalent 

linear system is then introduced. Finally, incorporation of the nonlinear terms is 

discussed, and the range of nonlinearities amenable to solution· using the current 

technique is examined. 

In Chapter 3, the numerical implementation of the mathematical model 

developed in Chapter 2 is described. The finite element method is chosen for the 

discretization, and an algorithm for computation of the equivalent linear parame­

ters on an element-by-element basis is described. Next, the state-space Liapunov 

equation for the response covariance matrix is derived. Finally, a solution tech­

nique is presented for the nonstationary response statistics. Simplifications which 

arise in the stationary response case are also discussed. 
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Chapter 4 describes the application of this new procedure to a typical 

class of problems: systems satisfying the one-dimensional wave equation with 

a nonlinear constitutive law. Specific minimization equations for two example 

nonlinearities are derived, and their implementation discussed. Validation calcu­

lation results are presented and compared with others in the literature. Physical 

interpretations of additional results are discussed to highlight the influence of 

each type of nonlinearity. 

1.2 Problem Definition 

This section describes the general nonlinear continuous system to be examined. 

Consider the continuous nonlinear system in a domain D(x) described by the 

PDE 

\7 · TL(a(x), w) + \7 · ,.N(c(x), W, w) + QL(b(x), w)- m(x)w = p(x,t), (1.1) 

where 

w = w(x,t) is the dependent variable representing the "displacement" field, 

a(x), b(x), and c(x) are "stiffness", "damping", and "nonlinearity" parameter 

fields, respectively, 

m(x) is the "mass" distribution in the system, 

p ( x, t) is the externally applied load, 

TL is the linear "stress" operator on the displacements w and "stiffness" function 

a(x), 
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TN is the nonlinear "stress" operator on displacements w and/ or velocities w 
and "nonlinearity" function c (x), 

QL is a linear "damping" operator on the velocities w and "damping" function 

b(x), and 

xis a position vector in the domain D(x). 

The terms in quotes above have been given physical interpretations in 

the context of structural dynamics. However, the following analysis is in no 

way restricted to that interpretation. Indeed, many other problems in diverse 

fields of science and engineering give rise to equations of the form of (1.1) above, 

and these may benefit as well from the approach presented herein. However, 

to provide a concrete physical framework, discussion will center on the concepts 

from structural dynamics indicated in the definitions. 

Physically speaking, a(x), b(x), and c(x) represent the material proper­

ties of the system under consideration. These material properties are permitted 

to have spatial variations, so the stiffness, damping, and nonlinearity functions 

depend on x. It is assumed, however, that a, b, and c are known deterministic 

functions of x. 

On every point of the boundary oD(x), let the following sets of homoge­

neous boundary conditions hold: 

B(9l(w) - 0 

B("l(w) - 0, 

(1.2) 

(1.3) 

where B(g) and B(n) are sets of geometric and natural boundary conditions which 

are linear homogeneous operators containing derivatives along and normal to 
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&D(x). Let the initial conditions be given by 

w(x, 0) = wo(x) (1.4) 

w(x,O) = wo(x). (1.5) 

It is useful to digress here and introduce some notational conventions that 

will be used in the remainder of this thesis. 

• Boldface terms, such as TL, w, and x in equation (1.1), represent indexed 

sets. These may be scalars, vectors, or tensors, depending on the num-

her of indices required to describe the particular physical quantity under 

consideration. 

• Capital Latin letters, such as A and C, represent matrices on finite dimen-

sional spaces or linear operators on infinite dimensional function spaces. 

• Superimposed dots denote differentiation with respect to time, so w = ~~; 

Any deviation from these conventions will be clearly explained in the context in 

which it arises. 

Many systems of engineering interest can be modeled in the form of equa­

tion (1.1). For example, consider the axial vibration of a rod with a cubic-

hardening constitutive nonlinearity. The equation of motion of such a system 

is 

(1.6) 

This system is cast into the above form by letting the stiffness parameter a 

represent the elastic modulus E and the nonlinearity parameter c represent the 
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coefficient E', with the operators defined as 

(1.7) 

(1.8) 

Other examples could include torsional vibration of a nonlinear shaft or large 

amplitude motions of a cable structure. Different nonlinear stress operators could 

be used to model softening soil behavior or structural response characteristics. 

Thus, the general form of equation (1.1) allows treatment of a wide class of 

engineering problems in a unified approach. 

It is assumed that the nonlinearity is symmetric. This restriction is nee-

essary in order that zero mean solutions can be sought for zero mean inputs. 

Nonsymmetric nonlinearities often induce a constant offset, or drift, into the sys-

tem response. In order to avoid clouding the present discussion with needless 

technicalities, this work will treat only the case of symmetric nonlinearities. 

It is also assumed that the system is linearizable. For the present purposes, 

it is sufficient to require that the effect of TN becomes small compared to the effect 

of TL as the response becomes small. Many engineering systems can be formulated 

such that this is true, therefore this is not a severe restriction in practice. 

1.3 Background 

1.3.1 Introduction 

Analysis of linear engineering systems subjected to stochastic excitation has been 

a subject of interest and study for many years. As a result, this theory is well 

understood, and is in wide use in engineering practice today. In contrast, the 
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corresponding theory for nonlinear systems is not nearly as well developed. The 

classes of nonlinearities are diverse, and the behavior of nonlinear systems is much 

more complicated than that of their linear counterparts. Specific procedures for 

handling individual nonlinearities have been developed, but little progress has 

been made in developing widely applicable methods for implementation into gen­

eral purpose computer programs. As a result, analysis of nonlinear systems sub­

jected to stochastic excitation has been mostly confined to academic and research 

laboratory settings. It is hoped that the work described in this thesis will help 

make stochastic analysis of complex continuous nonlinear systems a viable option 

for the practicing engineer as well. 

It is useful to briefly consider the classifications of approaches to analysis 

of systems subjected to stochastic excitation. First, one could classify approaches 

based on the problem formulation as either linear or nonlinear. Similarly, the 

formulation could be classed as either spatially discrete or continuous, depending 

on whether ordinary or partial differential equations are involved. Alternatively, 

one could consider the solution technique as either exact or approximate. Finally, 

the desired solution itself could be divided into stationary and nonstationary 

categories. The technique developed herein is categorized as an approximate 

approach for the nonstationary solution of a continuous nonlinear system. 

1.3.2 Existing Analysis Approaches 

For each of the above types of problems, specific analysis methods have been 

developed. These are described in this section, first for discrete systems, then for 

continuous systems. 

Discrete system formulations are the most common for stochastic analysis. 
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Extensive results for single degree-of-freedom (SDOF) models are available in the 

literature. Small multi-degree-of-freedom (MDOF) models are often constructed 

in an attempt to extend the SDOF results to more complex problems, with varying 

degrees of success. These models serve well for problems where the lumping 

of parameters is straightforward, but for many analyses the construction of a 

meaningful MDOF nonlinear model is a prohibitively difficult task. 

Solution approaches for discrete systems can be divided into frequency 

domain solutions, time domain solutions, and Monte-Carlo simulation solutions. 

Each of these methods is described below. 

Frequency domain solutions are widely used in the analysis of linear prob­

lems. They easily handle complicated excitation spectra and stationary response. 

Extension to nonstationary response is possible but somewhat complex. Strictly 

speaking, nonlinear problems are not amenable to frequency domain solution 

because the technique relies on superposition. Extensions to the theory enable 

approximate solutions in cases where the nonlinearity is "small." 

Time domain solutions are used for most nonlinear problems, and for some 

linear problems with simple excitation spectra. Time domain methods are espe­

cially convenient when the nonstationary response is of interest, since ensemble 

averaging is typically used for the nonstationary statistics. Time domain solutions 

become quite involved for complicated excitation spectra, however. 

The most powerful technique available for solution of random vibration 

problems is direct Monte-Carlo simulation. In this procedure, the digital com­

puter is used to generate a particular realization of the stochastic input, and the 

deterministic solution is found to this single input using classical analysis tech­

niques. This process is repeated until the ensemble of realizations of the stochastic 
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input represent the statistical distribution to a desired degree of accuracy. Then, 

statistics are computed across the ensemble of responses obtained from these in­

puts. Although this method can, in theory, be used to solve almost any random 

vibration problem, it is very costly in terms of computational resources. In addi­

tion, it provides limited insight into the behavior of the system under a different 

stochastic input. 

Continuous system formulations have not enjoyed the popularity associ­

ated with discrete system formulations for stochastic analysis. This is largely 

because solutions for continuous systems are much more difficult than for dis­

crete systems. However, many engineering problems are of a continuous nature 

and do not physically suggest a discrete model. Examples of these problems 

include aircraft wings and fuselage structures subjected to strong acoustic exci­

tation. Techniques available for stochastic analysis of continuous systems include 

analytical continuous solution, discretization, and Monte-Carlo simulation. A 

summary of each of these methods is given below. 

Analytical continuous solutions are quite difficult to obtain, since partial 

differential equations replace the more tractable ordinary differential equations of 

discrete systems. Consequently, few exact solutions are available, and those which 

do exist are predominantly for linear systems, simple geometries, and white noise 

excitation. The available exact solutions, while restricted in their applicability, 

do serve a valuable role as benchmarks for the emerging array of approximate 

solution methods. 

An effective approximate approach to solution of the continuous problem 

is to convert it into a discrete problem. This conversion is classically based on 

modal decomposition for linear and mildly nonlinear problems. Recent studies 
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have also used finite difference and finite element techniques for the discretization. 

This approach works very well for linear problems, but the effective discretization 

of nonlinear continuous systems remains an area of active research. 

Monte-Carlo simulation can also be used in a varied form for continuous 

systems. If closed-form deterministic solutions are available, then they can be 

implemented for calculations on a digital computer. Alternatively, a continuous 

system model can be implemented on an analog computer and simulation per­

formed with no knowledge of the analytical form of the solution. Monte-Carlo 

simulations for continuous systems possess the same advantages and disadvan­

tages as described above for discrete systems. 

1.3.3 Brief Review of Research in Nonlinear Stochastic 

Analysis 

Most methods for the stochastic analysis of nonlinear systems, both discrete 

and continuous, can be divided into two broad classes: those· which derive a 

Fokker-Planck-Kolmogorov equation for the transition probability density of the 

response, and those which deal directly with the stochastic differential equation. 

The differential equation methods can be further divided into perturbation meth­

ods and equivalent linearization methods. In what follows, each of these topics 

will be examined in more detail. 

In many cases of practical interest where the excitation is limited to Gaus­

sian white noise, it can be shown that the response is a Markov process, and the 

related Fokker-Planck equation may be derived from the original stochastic differ­

ential equation [1,2,3]. As an example, consider the following nonlinear structural 
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response problem in terms of a second order equation of motion: 

(1.9) 

where x is a generalized displacement, f(·, ·) is the generalized restoring force 

which is a nonlinear function of x and/or ~~, and q(t) is stationary Gaussian 

white noise with constant power spectral density So. Then, assuming a stationary 

response, the associated Fokker-Planck equation takes the form 

. ap a . a2p 
X ax - ax [pf(x, x)]- So ax2 = 0, (1.10) 

where p(x, :i;) is the joint probability density function of the displacement and 

velocity response. Successful solution of this equation yields the transitional 

probability density function of the response process. Caughey [4] has obtained 

a solution to this equation for certain classes of nonlinearities. Yong and Lin 

[5] have recently obtained a more general solution applicable to a larger class of 

nonlinearities. In contrast, general solutions to the nonstationary version of this 

equation have been found only for linear systems. 

While many linearization techniques are in use in modern analysis, only 

two lend themselves well to stochastic analysis: perturbation and equivalent lin-

earization. Each of these approaches will be discussed in some detail in the 

following paragraphs. 

Perturbation techniques were applied to random vibration problems by 

Crandall in references [6,7]. These methods are useful when the nonlinearity 

in the governing equations is small. This scaling is frequently expressed in the 

form of a small parameter (the "perturbation parameter") multiplying a nonlin­

ear function. The basic idea in perturbation theory is to expand the solution 

about the linear solution in a power series in the small parameter. Analysis then 
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proceeds by matching powers of the small parameter, thus yielding a sequence of 

linear equations to be solved. For example, consider the following equation for a 

single degree-of-freedom oscillator: 

X+ 2~w .. x + w!x + E17(X, x) = F(t), (1.11) 

where 17 is a nonlinear function and Eisa small parameter. Assume a solution to 

this equation as a power series in e 

(1.12) 

Substituting this assumed form of solution into the governing equation and match-

ing powers in e yields a set of linear equations for x0 , Xi> ••• of the form 

(1.13) 

(1.14) 

The solutions to these equations may be combine<;! to compute various statistical 

properties of the original nonlinear equation. For example, the mean of x(t) is 

given by 

E [x(t)] = E [xa(t)J + eE [x1(t)] + · · · 

and the autocorrelation (to first order in e) is 

E [x(t + r)x(t)] = E [xa(t + r)x0 (t)] + eE [xa(t + r)x1(t)] 

+eE [xa(t)x1(t + r)]. 

(1.15) 

(1.16) 

Typically, only the zeroth and first order solutions are calculated. While con-

ceptually simple, this approach can be algebraically cumbersome for continuous 

systems, and does not easily lend itself to numerical implementation. 
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Equivalent linearization for stationary random vibration was first investi-

gated by Booton [8] and Caughey [9]. !wan and Mason [10] extended the technique 

to the nonstationary response of discrete systems. Krousgrill and !wan [11] fur­

ther extended the ideas to the steady state response of continuous systems. The 

basic idea in equivalent linearization is to replace the given nonlinear system with 

an "equivalent" linear system. The parameters of the equivalent linear system are 

chosen to minimize some difference between the original nonlinear system and the 

equivalent linear system. This procedure leads to expressions for the equivalent 

linear parameters in terms of the system response statistics. 

To illustrate the application of discrete equivalent linearization, consider 

the nonlinear single degree-of-freedom described by the equation 

x + f(x, :i:) = F(t). (1.17) 

Assume that an approximate solution can be obtained from the linearized equa­

tion 

x + b.:i: + k.x = F(t). (1.18) 

The error of linearization is a random process described by 

e: = f(x, :i:) - b.:i:- k.x, (1.19) 

which is the difference between equations (1.17) and (1.18). Some measure of 

this error is then minimized to generate equations for b. and k. in terms of the 

response statistics. A frequent choice is to minimize the mean square error, thus 

requiring 

(1.20) 

(1.21) 
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Manipulating these equations and assuming that the response process is sta-

tionary leads to the following expressions for the equivalent linear damping and 

stiffness: 

b _ E[:i;f(x,:i:)] 
• - E [:i;2] {1.22) 

k _ E [xf(x, :i:)] 
•- E [x2] • 

(1.23) 

Stationary solutions usually require iterative determination of the equivalent lin-

ear parameters, while nonstationary solutions avoid iteration if an explicit time 

integration procedure is used. 

Equivalent linearization holds two main advantages over perturbation meth-

ods. First, equivalent linearization is applicable to more general classes of nonlin-

earities than are perturbation methods. In particular, hysteretic systems are very 

difficult to analyze using perturbation techniques. In contrast, many investigators 

[12,13,14] have successfully applied equivalent linearization techniques to a wide 

variety of hysteretic systems. Second, the equivalent linearization procedure is 

better suited to numerical implementation. These observations motivate the use 

of equivalent linearization in the present effort. 

1.4 Overview of Current Work 

In view of the extreme difficulties in obtaining general solutions to the govern-

ing nonlinear equations, a linearization approach is adopted in this work. The 

original continuous nonlinear system is approximated by a continuous linear sys-

tern with time varying coefficients. This replacement is accomplished using a 

nonstationary equivalent linearization technique developed in this thesis. The 

equivalent linear partial differential equations are then discretized using the finite 
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element method, and the resulting equations are cast into a first-order Liapunov 

covariance equation. Finally, a time integration procedure is presented to solve 

for the evolution of the system covariance response. 
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Chapter 2 

Formulation 

2.1 Introduction 

As is evident from the discussion in the previous chapter, there is considerable 

room for improvement in general methods for obtaining the nonstationary re­

sponse of nonlinear continuous systems. Exact solutions are rare, particularly for 

nonlinear problems. Also, analytical closed-form solutions are almost always re­

stricted to simple geometries, making them of limited value for direct application 

to engineering problems. Monte-Carlo simulation escapes these limitations, but 

at the expense of considerable computational effort. Thus, an improved approach 

for obtaining the random response of nonlinear continuous systems is desired. 

In view of the difficulties in obtaining general solutions for the stochastic 

response of nonlinear continuous systems, a linearization approach is adopted 

in this thesis. The original continuous nonlinear system is approximated by a 

continuous linear time-varying system. This replacement is accomplished using 

a nonstationary continuous equivalent linearization technique developed in the 

following sections. 
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2.2 Nonstationary Continuous Equivalent Lin­

earization 

In this section, the general nonlinear continuous system to be solved is restated. 

Then, an equivalent linearization procedure applicable to a nonlinear, continuous 

stochastic system under nonstationary response conditions is derived. 

Equivalent linearization of a continuous system was first studied by Krous­

grill and Iwan [11,15] in the context of steady-state deterministic analysis and 

stationary random response. In what follows, the technique will be extended to 

include cases where the excitation and response are assumed to be nonstationary 

random processes. 

Consider the continuous nonlinear system in a domain D(x) described by 

the PDE 

V · TL(a(x), w) + V · rN(c(x), w;w) + QL(b(x), w)- m(x)w = p(x, t), (2.1) 

where all terms are as defined in section 1.2. 

On every point of the boundary oD(x), let the following sets of homoge­

neous boundary conditions hold: 

B(9l(w) - 0 

B("l(w) - 0, 

(2.2) 

(2.3) 

where B(g) and B(n) are sets of geometric and natural boundary conditions which 

are linear homogeneous operators containing derivatives along and normal to 

oD(x). Let the initial conditions be given by 

w(x,O) = wo(x) (2.4) 
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w(x,O) = wa(x). (2.5) 

The objective of continuous equivalent linearization is to replace the non­

linear PDE, equation(2.1), by some member of a class of linear PDE's for which 

solutions are easily obtained. The linear replacement equation is chosen such 

that some difference minimization criteria is satisfied. Since the nonstationary 

response is of interest, the class of continuous linear systems considered must 

contain time-varying coefficients. Thus, the equivalent linear system is taken to 

be of the form 

'\7 · TL(a, w) + '\7 • TL( a(x, t), w) + '\7 • TL(f3(x, t), w) + QL(b, w) 

- m(x)w = p(x, t), (2.6) 

where a(x, t) and f3(x, t) are sets of (unknown) equivalent linear parameter fields, 

and all other terms are as previously defined. 

Equation (2.6) is obtained from (2.1) by replacing the nonlinear stress op­

erator rN(c, w, w) with the sum of an equivalent linear stiffness operator rL( a, w) 

and an equivalent linear damping operator rL(,B,w). All other terms in equation 

(2.1) are already linear, and therefore are retained in their original form. It is ap­

parent from the form of the equivalent linear equation (2.6) that a characterizes 

distributed stiffness properties, while f3 represents distributed damping properties 

of the nonlinear system. 

Note that the equivalent linear damping is limited to strain-rate related 

damping. Note also that, even though the equivalent linear parameters are treated 

as functions of time, their explicit dependence is on the nonstationary response 

statistics rather than on time. That is, the expressions for the equivalent linear 

parameters involve the current response statistics (of the linear system), and since 

the response is considered nonstationary, these response statistics vary with time. 
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It frequently happens in engineering that the region over which loads act is 

known or easily determined from geometric considerations, while the time history 

of the applied loading is much more uncertain. Therefore we will herein restrict 

attention to problems of this class by assuming the applied forcing function p(x, t) 

to be deterministic in its spatial variation but random, Gaussian, zero mean, and 

nonstationary in time. 

Many real excitations result from the combination of a number of different 

physical processes. According to the central limit theorem of probability theory, 

under suitable conditions, the sum of a large number of different statistical distri­

butions tends toward a Gaussian distribution. Hence, assuming a Gaussian time 

dependence for the loading seems like a good first approximation. In addition, 

many processes of engineering relevance are of sufficiently short duration that 

they must be considered transient, or nonstationary .. In order to acco=odate 

these phenomena the statistical parameters of the"Gaussian process are allowed 

to vary with time. 

2.3 Minimization Equations 

With the form of the equivalent linear system now specified, all that remains 

is to specify a procedure for determining the equivalent linear parameter fields 

a(x, t) and ,B(x, t). Since the excitation and response are nonstationary random 

processes, derivations are cast in terms of a typical sample function, or particular 

realization, of each random process. Nonstationary statistics are then computed 

by taking ensemble averages across a collection of sample functions. Let kp(x, t) 

represent a sample function of the nonstationary stochastic process p(x, t). The 
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sample functions of the response •w and •w then obey 

V. rL(a, •w) + V. rN(c, •w, •w) + QL(b, •w)- m(x)•w = "p(x,t) (2.7) 

on 1/(x), and 

B(g)(kw) - 0 

B(n)(kw) - 0 

on Bll(x), with deterministic initial conditions 

•w(x,O) - wo(x) 

"w(x, 0) - wo(x). 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

The approximations to the sample functions obey the equivalent linear 

equation 

V. rL(a,"w) + V. rL(a(x, t),"w) + V · rL(,B(x, t), •w) + QL(b,"w) 

- m(x)•w = •p(x,t) (2.12) 

on 11 (x), with the same boundary and initial conditions. Strictly speaking, one 

should use a different notation for the approximate solution obtained from the 

linearized system and the exact solution to the original nonlinear system. To 

avoid clouding the discussion to follow with additional notation, this distinction 

is not made in the notation used in this work. The reader should keep in mind, 

however, that this distinction does exist. Situations where confusion arises as to 

which interpretation is intended are clarified in the surrounding text. 

In order to choose the equivalent linear parameter fields a(x, t) and ,B(x, t), 

some measure of the error in replacing the original nonlinear system by an equiv­

alent linear system must be developed. Define the "stress difference" function 
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~(x,t) for the kth sample function as 

(2.13) 

This choice of difference definition is motivated by its consistently superior per-

formance for steady-state deterministic problems (Krousgrill [15]) and its reduced 

continuity requirements when compared to equation differences or strain energy 

differences. 

Clearly, the optimum linear replacement system is the one which generates 

the minimum error. Thus, determination of the equivalent linear parameter fields 

requires minimization of the difference k ~ (x, t) between the nonlinear system and 

the equivalent linear system. In general, exact spatial minimization on a point-by-

point basis will not lead to a solution, so an approximate approach is developed 

below which minimizes an average measure of the difference. 

Define a spatial averaging operator G.(u) on a continuous field u by 

G.(u) = { u(x, ·) dD(x). 
J O(x) 

(2.14) 

With this definition, it is easily shown that: 

• G.(u + v) = G.(u) + G.(v) (Linearity) 

• G.(u2
) > 0 'Vu # 0 and G.(o) = 0 (Positive Definiteness). 

Using this operator, define a spatially-averaged measure of the stress difference 

as a function of time by 

k17(t) = G.(k ~. k ~). (2.15) 

Then, k17 ( t) is the spatially averaged value of the norm of the instantaneous stress 

difference corresponding to the sample function kp(x, t) of p(x, t). Finally, taking 
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the ensemble average of equation (2.15) yields 

(2.16) 

It is clear that E (17(t)j provides a measure of the total "stress difference" 

at any timet resulting from replacing the original nonlinear system (2.1) by the 

equivalent linear system (2.6). The equivalent linear system will now formally be 

defined at any time t as that system which causes E [17] to attain its minimum 

value on the class of solutions to the equivalent linear system. That is, the stress 

difference ~ is evaluated for solutions of the linear system. Thus, it remains only 

to find the time and space varying functions a(x, t) and .B(x, t) such that 

E[17]= minimum Va,j3. (2.17) 

Using equation (2.16) along with the properties of the expectation opera­

tor, ( 2.17) can be written 

E [Gz(~ · ~)] =minimum. 

Necessary conditions for the extremization of E[Gz(4 · 4)] are 

aE [Gz(~ · ~)] 
a a 

aE [Gz(~ · ~)] 
a .a 

- o, 

- 0. 

(2.18) 

(2.19) 

(2.20) 

Note that these equations are highly symbolic, since a and f3 are really functions, 

and a complete rigorous argument requires a calculus of variations treatment. 

The above equations are sufficient for the present purposes, however. 

Sufficiency of these conditions is established by showing that equations 

(2.19) and (2.20) yield a minimum, and not a maximum, forE [Gz(~ · ~)]. This 

result will be established in the next section. 
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Invoking the linearity of the expectation operator and inverting the order 

of differentiation and expectation, (2.19) and (2.20) become 

E [:a G.(~.~)] _ 0, 

E[:,BG.(~·~)] - 0. 

2.4 Solution of the Minimization Equations 

(2.21) 

(2.22) 

In view of the fact that a and ,8 are functions of both space and time, general 

analytical solutions to these minimization equations are not available. As an 

alternative, a computationally efficient approximate approach for solution of the 

minimization equations (2.21) and (2.22) is developed below. 

Approximate the equivalent linear parameter fields a(x, t) and .B(x, t) by 

the following expansions: 

M 

a(x, t) ~ I: 1/>;(x)&;(t) (2.23) 
i=l 
M 

,B(x, t) ~ 2: 1/>;(x),B;(t) , (2.24) 
i=l 

where &;(t) and ,B,(t) are unknown functions of time, and 1/>;(x),i = 1, ... ,M, are 

linearly independent known functions of x. 

Using these expansions (2.23) and (2.24), it follows that 

M 

TL(a(x,t),w) - TL(:l: 1/>;(x) &;(t), w) (2.25) 
i=l 

M 

- 2: TL(t/>;(x), w)&;(t) (2.26) 
i=l 
M 

- I: T,L(w)a;(t), (2.27) 
i=l 



25 

and 

M 

TL(p(x,t),w) - TL(I>Mx)fW),w) (2.28) 
i=l 

M 

- .L:>L(cf>;(x),w)P;(t) (2.29) 
i=l 
M 
"' L A _ L..J T; (w)P;(t). (2.30) 
1=1 

The stress difference A. can now be written in terms of the time-varying 

coefficients &; and '/:J, as 

where 

A. = A. ( &, ,8, t) (2.31) 

(2.32) 

(2.33) 

Using the expansions for a and j3 yields the revised form of the Euler 

equations for the minimization as 

aE[G.{A.·A.(&,,B,x,t)}) _ 
0 a&, 

aE [a. {A.. A.(&,_B,x,t) }] 

a{:J, 
= O,i=1, ... ,M. 

(2.34) 

(2.35) 

As discussed in the previous section, the above equations are necessary, but 

not sufficient, for minimization of E [G. (A.· A.)]. Following the line of argument 

of Spanos in [16] and Krousgrill in [15], it is demonstrated below that equations 

(2.34) and (2.35) do actually produce a minimization of E [G. (A.· A.)]. 

Let &k and '/:Jk, fork = 1, ... , M, satisfy the minimization relations above. 

Define another set of parameters ak and Pk by 

(2.36) 

(2.37) 
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..i - .A(a,,B) 

..o. - .A( a, ,8). 

(2.38) 

(2.39) 

Now expand E [G:(..i · ..i)] in a Taylor series about a and ,8: 

E(G.(..i·..i)j = E[G.(.A·.A)J 
M a 

+~a&; E [G,(.A ·.A)] Sa; 

M a • 
+ L -. E [G.(.A . .A)] 8(3, 

i=l a(3, 
l M M a2 

+-I: I: a· -a&E[G.(..o. . ..o.)J sa,s&j 
2 i=l i=l a, ' 
1 M M a2 • • 

+-L L A A E [G.( .A . .A)] 8(3, 8(3i 
2 i=lj=l a[3,af3i 

. MM a2 . • 
+ L: I: . . E [G.(..o. . .A)J s&,of31• (2.40) 

i=li=l aa,a{3i 
But, since E [G.(.A ·.A)] satisfies equations (2.34) and (2.35), equation (2.40) can 

be simplified to 

E(G.(~·~)j - E[G.(.A·.A)J 

1 M M a2 
+ 2 ~[; a&,aai E [G.( .A . ..o.)J s&,s&1 

1 M M a2 
+-I: I: . . E [G.( .A· ..o.)J s,B, s,81 

2 i=li=l a{3,af3i 
M M a2 • 

+I: I: . . E [G,(..o. · ..o.)J s&,of31. (2.41) 
i=l i=l aa,a{3i 

Now, recalling that .A is linear in ak and {3k, the higher order derivatives in 

equation (2.41) can be expressed as 

a2 [ (a..o. a..o.)] a&,aai E [G,(..o. . .A)J = 2E G, a&, . a&i (2.42) 
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.a2. E [G.(..o. . ..o.)J = 2E [a. (aa~. a~)] . aa;af3; a; a(3; 
Using equations (2.42) through (2.44) in (2.41) gives 

Next, let two functions be defined as follows: 

M a..o. 
- I: a· oa, 

i=l a; 

M a..o. • - I:-. .5(3,, 
•=1 a(3, 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

then equation (2.45) can be written (using the linearity of E [ ·] and G.(·)) 

E [G.(A · A)j = E [G.(..O. · ..0.)] 

+ E[a. ((ht(oa) + h2(o,8)) 

· (ht(oa) + h2(o,8))) ]. (2.48) 

The positive definiteness property of G.(·) requires that 

(2.49) 

and therefore the desired result 

(2.50) 
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follows. This relation assures that the extremum produced by equations (2.34) 

and (2.35) is indeed a minimum. 

Up to this point a and {3 have been considered to be sets of unknown 

parameters. To expedite development of specific minimization equations and 

simplify notation, assume that a and {3 are sets of one parameter each, i.e., 

scalars a and /3. The methodology is in no way restricted to this case. 

Interchanging the order of expectation, differentiation, and spatial averag-

ing in (2.34) and (2.35) and invoking the linearity of Gz gives 

E[az(~·::)] - 0 (2.51) 

E[az(~·!A)] = 0. (2.52) 

Using the definitions (2.27) and (2.30) in (2.51) above gives 

E [az { (ETf(w)&k(t) + ETf(w)Pk(t)- TN(c,w,w)) 

· (T,L(w)) }] = 0 (2.53) 

or rearranging, 

E [az {ET1L(w) · Tf(w)&k(t)}] + E [az {ET,L(w) · Tf(w)Pk(t)}] = 

E[az{TN(c,w,w)·T,L(w)}]. (2.54) 

Equation (2.54) can be written in matrix form as 

Ail+ c,B = G, (2.55) 

where 

A;i - E [az hL(w) · Tl(w) }] (2.56) 

C;i - E [az { T1L(w) · Tl(w) }] (2.57) 

G; - E [az {TN(c,w,w) · T,L{wJ}] (2.58) 
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Using definitions (2.27) and (2.30) in (2.52) gives 

E [a. { (E_rf(w)&k(t) + E_rf(w)tJk(t)- rN(c,w,w)) 

. (r,L(w))}] =o (2.59) 

E [a. {~r/(w) · rf(w)&k(t)}] + E [a. {~r/(w) · rf(w)~k(t) }] = 

E[a.{rN(c,w,w)·r;L(w)}] (2.60) 

In matrix form, (2.60) becomes 

D&+B~=H 

where 

D;,- - E [a. { rl(w) · r/(w) }] 

B;t - E [a. { T;L(w) · T;L(w) }] 

H; - E [a. { rN(c, w,w). r;L(w) }]. 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

Note that C = DT. If all stochastic processes are assumed to be stationary, 

then the displacement-velocity covariances vanish and it is can be shown that 

C = D == 0, and thus the two minimization equations uncouple. This result does 

not carry through for the nonstationary case, however. 

2.5 General Discretization 

In order to develop the minimization equations in a form suitable for numeri-

cal implementation, the solution is spatially discretized in terms of deterministic 

spatial basis functions and stochastic time coefficients. In addition to allowing 
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digital computer implementation, spatial discretization allows solution of prob-

!ems involving complex geometries which are intractable by other methods. 

To simplify the notation, assume that the dependent variable, w(x, t), is 

just a scalar, w(x,t). Equations similar to those which follow are easily developed 

for cases where w is a vector. 

Let w(x, t) be approximated using known deterministic spatial basis func­

tions ,Pk(x) and unknown stochastic time coefficients uk(t), k = 1, ... , N. Repre­

sent this discretization by 

N 

w(x, t) = L ..Pk(x)uk(t). (2.65) 
k=l 

This general form accommodates both global discretizations, such as used in 

modal analysis, and local discretizations, such as used in finite element analysis. 

Each of these techniques will be discussed further in a subsequent section. 

Before casting the minimization equations in terms of the discretized so-

lution, it is helpful to note some applicable results. 

Claim 1 If R and S are linear spatial operators on w, then equation {2.65} 

implies 

N 

E [R(w)] - L R(,Pk)E [uk(t)] (2.66) 
k=l 
N N 

E[R(w) · S(w)] = L:L:R(,Pk) · S(..Pz)E[uk(t)u1(t)]. (2.67) 
k=ll=l 

In addition, since w has zero mean in time, 

N 

E[w] = L ..Pk(x)E [uk(t)] = 0. (2.68) 
k=l 

Furthermore, since the basis functions ..Pk are linearly independent, 

E[uk(t)] = 0, k = l, ... ,N. (2.69) 
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The following theorem was first stated by the Russian mathematician 

Kazakov in reference [17], and was popularized in structural dynamics by Atalik 

and Utku in reference [18). 

Claim 2 Consider a single-valued function of n variables 

(2. 70) 

where 

• y is a jointly Gaussian random vector process with zero mean, 

• q(y) is sufficiently smooth so that first partial derivatives with respect to 

y;, i = 1, ... , n, exist, and 

" • Jq(y)J < Aexp 'I:,yj, a< 2, for some arbitrary A and any y. 
;:1 

Then, 

E [yq(y)] = E [YYT] E [Vq(y)], (2.71) 

where 

T [a a a] v = ayl ' avz ' ... ' ay,. . (2.72) 

It is noted that the third requirement in the above claim simply limits how fast 

q can grow as y grows. As will become clear in the next section, y plays the role 

of the response state vector, and q plays the role of the nonlinear stress operator. 

Thus, roughly speaking, the third condition above says that the dependence of the 

stress on a norm of the state vector should be weaker than exponential growth. 

This restriction is satisfied by the example nonlinearities discussed in chapter 4, 

and by many other nonlinearities of engineering interest. 
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Finally, recall that for Gaussian random variables, higher order moments 

can be expressed in terms of the 2nd order moments [3]; for example: 

With these results, discrete minimization equations can now be developed 

by combining the approximation (2.65) with the general minimization equations 

(2.55) through (2.64). Since it was established that D = CT in the previous 

section, no explicit expressions for D are given. It is understood that D is easily 

constructed when needed. Using (2.65) in the definition of T,L(w) yields 

N 

T;L(w) = T;L(~= 1/J•u•) 
k=l 

N 

- L Tp('if;.)u.(t). (2.74) 
k=l 

Using (2. 74) above in the definition (2.56) gives 

A;; = E [a. { (E Tl(.P.)u.(t)) · (~ T,L(.Pl)ul(t))}] 

- E [ r (t I>l(.P.). T;L(.Pl)) dl'(x) uk(t)ul(t)] 
J D(x) k=ll=l 

N N 
- L L:E [u.(t)ul(t)] r T;L(.p.). T/(.Pl) dl'(x). (2.75) 

k=ll=l } D(x) 

Define 

(2.76) 

then equation (2.75) becomes 

(2. 77) 
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Similarly, using (2.74) in (2.57) gives 

(2.78) 

Following the same procedure, using (2.74) in (2.63) gives 

(2.79) 

Using the discretization in the expressions for the right-hand-side vectors 

(2.58) and (2.64) yields 

G; = E[a.{rN(c,w,ui)·(Erl(tfJk)uk(t))}] 

N 

- L { E [rN(c,w,ui) · r/(tflk)uk(t)] dD(x) 
k=l lo(x) 

H; - E [a. { rN(c,w,ui) · (E r/(tflk)uk(t))}] 

N 

- L r E[rN(c,w,ui)·r/(tfJk)uk(t)]dD(x). 
k=)D(x) 

(2.80) 

(2.81) 

The above two expressions containing the nonlinear stress operator must 

now be written in terms of the response covariance matrices. This will be de-

scribed in the next section. 

2.6 Nonlinear Terms 

In order to calculate the equivalent linear parameters & and ~. it is necessary to 

express the minimization equations in terms of the response covariance matrix 

and known quantities. The equations for the A, B, C, and D matrices are already 

in that form, and need no further manipulation. However, the right-hand-side 

vectors, given by equations (2.80) and (2.81), contain the nonlinear stress operator 
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TN acting on w and w directly. Following is a procedure to express these vectors 

in terms of the desired response statistics. 

First, write equation (2.71) in components as 

N [ aq] E[y;q(y)) = .L;E[y;y;)E 7}: . 
i=l y, 

(2.82) 

Recalling the discretization for w and w, it is clear that the dependence of TN 

on w and w is through the nodal response vectors u and u. This dependence is 

shown explicitly in the notation 

(2.83) 

Now, applying the component form of the Atalik and Utku result (2.82) 

to equation ( 2.80) yields 

G; =f. { f.E [ukuz) E [aa (TN(.,P, u, u) · T,L(~j~k))] 
k=l j O(x) l=l U! 

+f:E[ukul)E[a~ (TN(.,P,u,u)·T/('if!k))] dZJ(x) (2.84) 
l=l U! 

and similarly equation (2.81) becomes 

H; = f. { f. E [ukul) E [aa (TN ('if!, u, u) · T;L('if!k) )] 
k=l j O(x) l=l U! 

+ f.E [ukud E [a~ (TN(.,p, u, u). T/('if!k))] dZJ(x). (2.85) 
l=l U! 

Performing the indicated differentiations and noting that T;L ( Tjik) is not a 

function of u or u yields the simplified forms 
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and 

(2.87) 

The nonlinear stress operator can frequently be expanded as a power series 

of u and u, and thus the derivatives of TN can be expressed in terms of higher 

order moments of u and u. Then, using the property of Gaussian random variables 

given in (2.73), these higher order moments can be expressed in terms of the 2"d 

order moments of u and u. Thus, the G and H vectors are expressed in terms of 

the desired response covariance matrices. 
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Chapter 3 

Numerical Implementation 

3.1 Introduction 

In the previous chapter, an algorithm was developed to replace the original nonlin­

ear partial differential equation with an equivalent linear time-varying equation. 

Thus, solution of the original nonlinear system has now been reduced to the so­

lution of an equivalent linear system at each time step. In this chapter, specific 

procedures are developed for obtaining that solution. 

3.2 Finite Element Discretization 

Thus far, minimization equations have been derived using a general discretization. 

These equations will now be specialized using the finite element method. 

The finite element method is widely used to solve solid and structural 

mechanics problems. The popularity of this technique is due to its ability to 

handle complicated geometries and inhomogeneous material properties, and its 

ease of implementation in a general purpose computer program. The ability 
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to solve problems with complicated boundaries stems naturally from the local 

nature of the interpolations within each element. Also, these local interpolations 

make it easy to have different material properties in different elements, thus 

permitting great flexibility in modeling material inhomogeneity. Finally, since 

complicated problems are treated as an assemblage of simple "elements," the 

finite element method naturally lends itself to solution by digital computer. These 

characteristics of the finite element method make it an effective choice for solution 

of the equivalent linear system, as is described below. 

Let the domain D(x) be subdivided into N elements J)(•l(x) such that 

N 
D(x) = L D(kl(x), (3.1) 

k=l 

where 

J)(kl(x) is the domain of the kth element, and 

N is the number of finite elements in the domain. 

Further, let w<kl(x,t), x E J)(kl(x), denote the restriction of w(x,t) to 

J)(kJ(x), so 

w<•J (x, t) - w(x, t) Vx E J)(k) (x) 
(3.2) 

- 0 Vx rt J)(kl(x). 

Then, from equation (3.1), the solution field is represented as the summation of 

all of these restrictions, 
N 

w(x, t) = L w<kl(x, t). (3.3) 
k=l 

Within an element J)(kl(x), let the dependent variable w<•l(x,t) be ex-

pressed as the product of spatial basis or shape functions N?l(x) and nodal 

values u}k)(t) as 
NEN 

w<kl(x,t) = L Nj"l(x) u;"l(t), (3.4) 
i=l 
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where NEN is the number of nodes per element, N?) denotes the finite element 

shape function for node j of element k, and u)k) refers to the value of wk at the 

j'" node of the k'" element; this node number is therefore a local one for element 

k. Thus, the discretization of w(x, t) can be expressed as 

N N NEN 

w(x,t) = l::w(kl(x,t) = L L N?)(x) u)kl(t). (3.5) 
k=l k=l i=l 

Note that the shape functions N?)(x) are deterministic functions of space and 

that the nodal values u)k) (t) are nonstationary stochastic processes. 

The spatial basis functions NY) (x) should satisfy the convergence criteria 

for finite element shape functions. The sufficient conditions for convergence of 

the finite element method are described in the book by Hughes [19] and are not 

repeated here. Special elements have been derived for the solution of 4'" order 

equations which do not satisfy the convergence criteria but do perform well in 

practice. Although these criteria are sufficient but not necessary conditions for 

convergence, special care should be taken when using elements not satisfying the 

convergence requirements. 

The finite element methodology described above may now be incorporated 

into the minimization equations developed in the previous chapter to cast those 

equations in a more specific form. 

Using the finite element approximation (3.5) in equation (2.77) and rear-

ranging gives 

N N NENNEN 

A;i = L L L L E [ulk)(t)u~"'l(t)] 
k=l m=l l=l p=l 

{ TL(N/k)) · Tf--(N("')) dD(x). 
jf)(x) 3 • P 

(3.6) 

The above equation can be simplified considerably through use of two 



39 

observations. First, recall that by definition 

(3.7) 

that is, the shape functions for element k vanish everywhere in the domain outside 

of element k. Second, assume that the chosen reference configuration is stress-free, 

so 

{3.8) 

With these two points in mind, it is now clear that the kernel of the integral in 

equation {3.6) is nonzero only when N/k) and NJ"'l belong to the same element, 

i.e., when k = m. Thus, the integral in { 3.6) can be replaced by its restriction to 

element k and the summation over m dropped to get 

N NENNEN 
A-. = "' "' "' E(k)(t) r rL(.M(k)). r.L(N(k))d[)(k)(x) (3.9) 

•1 L..J L..J L..J lp lo<•>( l 1 1 , P • 
k=l 1=1 p=l X 

where Ezp is defined as in equation (2.76). Thus, the calculation of the matrices 

in the minimization equations has been significantly simplified. 

Applying a similar argument to equation {2.78) and (2.79) and using (3.5) 

gives 

{3.10) 

and 

N NENNEN 
B;i = L L L E~k)(t) r r!-(N/k)). TL(N(k))dD(k)(x). 

k=l 1=1 p=l lp J D<•>(x) 1 ' P 
{3.11) 

Incorporating the finite element approximation {3.5) and the observations 

(3. 7) and {3.8) into the equations for the right-hand-side vectors G and H gives 

N NEN NEN l [ arN ] 
G; = L L L E~;l(t) <•l rhN~k)) · E ---"W dlJ(kl(x) 

k=l r=l p=l D (x) au, 
N NENNEN l [JTN] + L L L E;~l(t) <•> rl(N~kl) · E ---:(k) dD{kl(x) 

k=l r=l p=l D (x) au, 
{3.12) 
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and 

(3.13) 

Comments made in the final section of the previous chapter regarding the 

nonlinear stress operator apply here also. 

3.3 Equivalent Linear Parameter Basis Functions 

With the minimization equations now specialized using the finite element method, 

it remains only to make a specific choice for the basis functions used in the 

approximation of the equivalent linear parameters. Recall the expansions for the 

equivalent linear parameters: 

M 

a(x,t) - I:;</>;(x)&;(t) 
i=l 
M 

,B(x, t) = I:; </>;(x)_B;(t). 
i=l 

Since the replacement linear system is discretized using the finite element 

method, choose the equivalent linear parameters to be constant within an element. 

This choice allows the approximation of the equivalent linear parameters to be 

changed in the same way as the approximation of the equivalent linear solution 

through refinement of the finite element mesh. Thus, using more elements in a 

given area increases the accuracy of both the solution and the equivalent linear 

parameters. This approach is consistent, since sharp gradients in the equivalent 

linear parameters would be expected to produce sharp gradients in the solution, 

thus requiring a finer mesh. 
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With this choice, the basis functions ,P;(x) take the form 

1
1.0 \/x E p(il(x) 

,P;(x) = 
0.0 Vx (/_ p{il(x), 

(3.14) 

and M = N = number of elements. The parameters &; and fj, now represent the 

equivalent linear stiffness and damping coefficients for element i. Note that for 

this choice of basis function it is easily shown that ,P;(x) and ,P;(x) are linearly 

independent. 

It turns out that this choice of basis function leads to a considerable sim-

plification of the minimization equations. To see this, recall that, by definition, 

TL(N(k)) - TL("'· N(k)) i l - '+',, l • (3.15) 

If the dependence of the operator TL on its parameter is restricted to be such that 

TL(o, w) = o, (3.16) 

then since the previous assumption of a stress-free reference configuration gave 

(from equation 3.8) 

it follows that equation (3.14) implies 

T/(N?l) - 0 Vi I k 

_ TL( ,p,, N/')) for i = k. 

(3.17) 

(3.18) 

(3.19) 

Thus, T/(Nik)) can be replaced by .,,L(Ni'l) in equations (3.9) through (3.11) and 

the sum over k dropped without loss of generality. Noting that this argument 

applies to both stress operators in the integrands, it follows that 

A,; = B;; = C,; = o for i I i- (3.20) 



42 

Thus, the particular choice of basis function given above greatly improves the 

computational efficiency of the minimization procedure. 

Simplifying equations (3.9) through (3.11) using (3.20) above yields the 

final form of the minimization equations: 

NENNEN 
A··= ~ ~ E(i)(t) r TL(N(i)). rL(N(i)) df)(il(x) 

" ~ ~ lp 1 p(il( ) ' I ' P 
l=l p=l X 

(3.21) 

NENNEN 
B-· = ~ ~ E!il(t) r TL(N(i)). TL(N(i)) df)(il(x) 

11 ~ ~ lp 1 p(il( ) 1 I 1 P 
l=l p=l X 

(3.22) 

NENNEN 
C·· = ~ ~ E!il(t) r TL(N(i)). TL(N(i)) df)(il(x) 

" ~ ~ lp 1 o<•>( l • I • P 
l=l p=l X 

(3.23) 

Similarly, the only nonzero contribution to the right-hand-side vectors 

given by equations (3.12) and (3.13) occurs when i = k, so these equations become 

NENNEN [aN] G· = ~ ~ E(il(t) { rL(N(;)) · E _r__ df)(il(x) 
• ~ ~ pr 1o<•>( ) • p a (•) 

r=l p=l X Ur 

NENNEN [aN] + ~ ~ E(i) (t) { r.L(N(i)) · E ~ d!)(il(x) 
~ ~ pr 1 p(il(x) • p au· (•) 
r=l p=l r 

(3.24) 

and 

NENNEN [aN] H· = ~ ~ E(il(t) { r.L(N(i)) · E ~ df)(il(x) 
1 ~ ~ pr 1LD(1l(x) 1 p a (•) 

r=l p=l Ur 

NENNEN [aN] + ~ ~ E\9(t) { rL(N(i)) · E ~ df)(il(x). 
~ ~ pr 1o<•>(x) • p a ·(•) 
r=l p=l Ur 

(3.25) 

Thus, this choice of basis functions <;l>;(x) uncouples the minimization equa-

tions, even in the case of nonstationary response. The matrix equations for the 

equivalent linear parameters a and {3 become two scalar algebraic equations for 

the equivalent linear parameters a; and ~; within element i. The terms in these 

equations depend only on statistics of response quantities for nodes attached to 

element i, so the equivalent linear parameters are easily computed during forma-

tion of the element stiffness and damping matrices. Thus, the calculation of the 

equivalent linear parameters can be accomplished in a numerically efficient way. 
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3.4 Development of the Covariance Equation 

The preceding section concluded development of the linearization procedure. 

Turn attention now toward the solution of the equivalent linear system. Applica­

tion of the finite element method, described in an earlier section, to the continuous 

equivalent linear system (2.6) produces a set of discrete linear equations of the 

form 

Mii + C(t)u + K(t)u = f(t) (3.26) 

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, 

and f is the total effective load vector. This discrete system has a dimension equal 

to the number of degrees of freedom in the finite element mesh for the problem 

under consideration. Since all external applied loads are assumed to be zero mean 

Gaussian, the load vector f is also zero mean Gaussian. 

A result from classical probability theory states that the output of a linear 

system subjected to zero mean Gaussian input is also zero mean Gaussian. Thus, 

the displacement vector u and velocity vector u of the equivalent linear system 

are a zero mean jointly Gaussian process. A Gaussian process is completely 

described by its mean vector and covariance matrix, so since the mean is zero 

only the joint displacement-velocity covariance matrix remains to be determined. 

This covariance matrix contains the variance of the displacement and velocity for 

all degrees of freedom, plus all of the cross-covariances as well. A procedure to 

express equation (3.26) in terms of the response covariance matrix is described 

below. 

First, the discrete 2nd order structural dynamics differential equation. above 

is converted to a 1•t order state space equation of higher dimension. Recall the 
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definition of the system state vector s as 

. ~ (: l {3.27) 

Using this definition, the governing discrete equation (3.26) can be written 

s =As +F(t), (3.28) 

where 

A~ [ _:_,K _:_,C l (3.29) 

is the system matrix, and 

F ~ ( M-~r(t) l (3.30) 

is the state space load vector. In the above expressions, I is the identity matrix 

of appropriate dimension, and it is assumed that the global mass matrix M is 

nonsingular. 

Multiplying equation (3.28) by sT, adding the result to its transpose and 

taking expected values gives the Liapunov equation for the covariance response 

as 

e .. (t) = A(t)E>,,(t) + E>,,(t)AT(t) + E [s(t)FT] + E [F(t)sT(t)], (3.31) 

where 

(3.32) 

is the state space covariance matrix. This is a symmetric set of 2n x 2n first order 

ordinary differential equations for the evolution of the nonstationary 'covariance 

matrix with time. 
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Thus far, it has only been assumed that the input excitation is zero mean 

and follows a jointly Gaussian probability distribution. For many engineering 

problems, it is sufficient to consider the case of white noise excitation, where the 

power spectrum is uniform across the entire frequency band. Under this restric­

tion, the above equation reduces to a much simpler form. This simplification will 

be described in the next section. 

3.5 Simplifications for Uniform White Noise Ex­

citation 

Under uniform white noise excitation, the 3rd and 4th terms on the right-hand­

side of equation {3.31) may be replaced with more explicit expressions. First, 

note that the effective load vector f{t) can now be written 

f{t) = '"t(t)n(t)g, (3.33) 

where 

'"f(t) is a deterministic modulating time function, 

n(t) is stationary Gaussian white noise with zero mean and constant power 

spectral density 80 , and 

g is a time-invariant vector which depends on the spatial distribution of the 

loads. 

The modulating time function '"Y(t) has been introduced to allow the intensity of 

the excitation to be scaled as a function of time. 
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Next, use this expression for the load vector in the 3rd term on the right-

hand-side of the covariance equation to get 

E [s(t)FT(t)] = "'(t)E [s(t)n(t)J (0 M-1g), (3.34) 

where ( ·) denotes a row vector. Now consider the term E [s(t)n(t)], and recall 

that s(t) satisfies equation (3.28). Thus, using the principal matrix solution <I>(t), 

s(t) can be written as the solution to equation (3.28) as 

s(t) = <I>(t)s(O) + <I>(t) fo' q,-1 (e)F(e)de, 

where ci> ( t) satisfies 

ib(t) - A(t)<I>(t) 

ci>(O) - I. 

(3.35) 

(3.36) 

(3.37) 

Using the expressions for the load vector (3.33) and (3.30) in this equation yields 

•l•l ~ O(t)•(O) + • (t) J.' • -•wol <l•l <) 1 M~'il ) <e. 13·38) 

Multiplying by n(t) and taking expectations gives 

E [s(t)n(t)J = <I>(t) rt "t(e)<I>-1 (e) f 0 l E [n(e)n(t)] de. (3.39) 
lo l M-Ig 

Next define the autocorrelation function for the stationary Gaussian random proc-

ess n(t) by 

R,.,.(t- e) = E [n(e)n(t)], (3.40) 

so 
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For the case where n(t) is stationary random Gaussian white noise with zero 

mean, the autocorrelation function takes the form 

Rnn(t- e) = 21rSa8(t- e), (3.42) 

and thus equation (3.41) reduces to 

(3.43) 

Using this expression (3.43) in equation (3.34) gives the desired explicit 

form 

Now, note that the 4th term on the right-hand-side of the covariance equation is 

simply the transpose of the 3rd term: 

(3.45) 

Observing that the right-hand-side of equation (3.44) is symmetric, it follows 

immediately that 

Finally, using the simplified expressions (3.46) and (3.44) in the general 

covariance equation (3.31) gives the reduced form for white noise excitation as 
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3.6 Solution of the Covariance Equation for White 

Noise Excitation 

In the previous section, the Liapunov equation for the evolution of the system 

covariance matrix 0 under uniform white noise excitation was derived as 

(3.48) 

where 

0 is the state-space covariance matrix, 

A is a 2n X 2n nonsymmetric system matrix containing the n X n mass, damping, 

and stiffness matrices, 

So is the constant power spectral density of the input, 

"f(t) is a deterministic modulating time function, 

M is the global mass matrix, and 

g is a constant vector which depends on the spatial distribution of the loads. 

Note that A in equation (3.48) depends on time since the equivalent linear system 

contains time-varying coefficients. 

The covariance equation (3.48) can now be integrated in time to find the 

nonstationary covariance matrix 0(t). Algorithms for performing this integration 

numerically on a digital computer are discussed below. 

Most time integration algorithms fall into one of two classes: implicit or 

explicit. An implicit time integration scheme requires solution of a matrix equa­

tion at every time step. In contrast, explicit algorithms do not involve a matrix 
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decomposition or simultaneous equation solution, but do require smaller time 

steps to maintain stability and accuracy. Algorithms for the implicit solution of 

the time-dependent Liapunov equation are complicated and numerically inten-

sive, so to keep computational complexity to a minimum an explicit algorithm is 

selected here. Also, the size of the covariance matrix grows rapidly with prob-

!em size, so the time integration algorithm should be chosen such that computer 

high-speed memory requirements are minimized. Low order explicit algorithms 

are very memory efficient, thus allowing solution of much larger problems in a 

given memory size than higher order explicit schemes. 

The simple modified Euler algorithm is an explicit, second order accurate 

integration procedure which is well suited to solution of the Liapunov equation in 

a restricted memory space. Since it is a second order scheme, only a small number 

of large matrices must be stored in memory at any one time. In addition, since no 

matrix decompositions are involved, it is simply and efficiently implemented in a 

vector processing supercomputer environment. The modified Euler algorithm is 

conditionally stable, with stability assured for a sufficiently small time step D..t. 

The details of this procedure are described in reference [20]. 

The stationary response can also be obtained from equation (3.48). Under 

stationary conditions, the covariance matrix 0 is independent of time, therefore 

e = 0. The equation to be solved is now the time-independent Liapunov equation 

(3.49) 

Solution techniques for equations of this form are discussed in references [21,22]. 

The remainder of this discussion will focus on techniques for obtaining the non-

stationary solution to equation (3.48). 
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3. 7 Solution Algorithm for N onstationary Re-

sponse 

The complete procedure for obtaining the random response of a nonlinear con­

tinuous system may now be described. As a convenient notation for description 

of the algorithm, let ek denote 0(tk), i.e., the covariance matrix at the kth time 

step. Also, let an over bar denote "predicted" quantities in the predictor-corrector 

modified Euler integration scheme. It is assumed that the finite element method 

is used to discretize the equivalent linear system, and that the equivalent linear 

parameters are updated in every time step. 

The algorithm begins at step k, time tk, when ek is known, and computes 

the updated covariance ek+l as follows: 

1. For each element 

• compute the equivalent linear parameters for the next time step based 

on the current response ek 

• form and assemble the element mass, damping, and stiffness matrices 

and load vector at time tk 

2. Add additional physical damping contribution, if desired 

3. Compute predicted covariance 0k+1 from 

(3.50) 

4. Repeat steps 1 and 2 with ek and tk replaced with 0H1 and tk+1 
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5. Compute corrected new covariance 0k+1 from 

(3.51) 

Note that the above procedure can be rearranged slightly for computer imple-

mentation to produce a more memory efficient scheme. 

Often the physical mechanisms producing damping in a given system are 

not well understood, and the addition of damping into the mathematical model 

is based on experience or experimental data rather than rigorous derivation. One 

form of damping widely used in structural calculations is Rayleigh damping, where 

the damping matrix is constructed as a linear combination of the stiffness and 

mass matrices: 

(3.52) 

As was indicated in the algorithm, an arbitrary damping contribution is easily 

introduced into the model with this formulation. This allows greater flexibility 

in creating realistic models than a procedure which allows only mathematically 

based damping contributions. 

This completes the specification of the numerical implementation and so­

lution procedure. The next chapter describes the application of this technique to 

the solution of several problems of engineering interest. 
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Chapter 4 

Application 

4.1 Introduction 

This chapter describes the application of the newly developed solution method 

to two specific nonlinear problems. Before beginning discussion of the particular 

nonlinearities to be studied, it is appropriate to consider the objectives of such a 

numerical investigation. 

The numerical illustrations described in this chapter are chosen with three 

goals in mind. The first and obvious motive is to exercise the new technique and 

gain facility in its application. Second, it is important to validate the accuracy 

of the new method by comparing it against other available solution techniques. 

Finally, it is of engineering interest to assess the influence of typical nonlinearities 

on the nonstationary stochastic response of an example system. The above ob­

jectives all point toward selection of a simple nonlinear system for which at least 

some solutions exist, and for which the physical interpretation of results is clear. 

The nonlinear system chosen for study is a one-dimensional continuum 

described by the wave equation with a nonlinear constitutive law. The class of 
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systems modeled by the wave equation is one of significant engineering importance 

since it contains many common physical phenomena, such as axial vibration of a 

rod, propagation of plane waves in a continuum, and vibration of a shear beam. 

The one-dimensional wave equation has been widely studied, both as a continuous 

system and as a discretized system, using various techniques. This knowledge 

base provides benchmark solutions against which the current technique can be 

judged. In addition, the present understanding of phenomena which occur in 

this system under deterministic excitation permits insightful examination of the 

results obtained under random excitation. 

4.2 Description of the Physical System 

In order to allow a physical interpretation of the example, it is helpful to choose 

a particular conceptualization of the one-dimensional wave equation for study. 

The problem chosen for study is a nonlinear shear beam under random base ex-

citation. As shown in Figure 4.1, the beam lies along the x axis. The transverse 

displacement in an inertial coordinate frame is denoted by v(x, t), while the dis­

placement relative to the base of any point x at timet is denoted by w(x,t). The 

beam is assumed to have constant density p and constant cross sectional area Ac. 

The base acceleration ij(t) is taken to be a random process. For this example, 

tf(t) is assumed to be Gaussian white noise with zero mean and constant power 

spectral density S0 • The equation of motion for this system is easily shown to be 

or in terms of relative displacement 

ar -
ax= pv, 

ar .. ..() ax= pw + pq t' 

(4.1) 

(4.2) 
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where r is the shear stress, and all other terms are as defined above. Using the 

chain rule and assuming that r depends on x only through the shear strain e:, the 

governing equation of motion can be written as 

'()a
2
w _ .. () 

T c 8x2 = pw + pq t ' ( 4.3) 

where a prime denotes differentiation of a function with respect to its argument. 

The nonlinearity arises from the material constitutive relationship, in which 

the shear stress is assumed to be nonlinearly related to the shear strain through 

a constitutive law of the form 

r=r(e:), ( 4.4) 

where the shear strain e: is defined as 

aw 
e:=-. ax (4.5) 

Two different forms of the nonlinear constitutive law are investigated in 

this chapter. The first example is a hardening stress-strain law, where the rna-

terial tangent modulus increases with increasing strain. The second example is 

a softening stress-strain law, where the material tangent modulus decreases with 

increasing strain. Each of these cases is discussed in detail in the following sec-

tions. 

4.3 Cubic Hardening Constitutive Nonlinearity 

4.3.1 Introduction 

The first material nonlinearity considered is the cubic hardening constitutive law. 

In this material model, shear stress is related to shear strain by the equation 

(4.6) 
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where e represents shear strain as defined in equation (4.5), G is an elastic shear 

modulus, and o is a nonlinearity parameter. A plot of the stress-strain curve 

for this constitutive relation is given in Figure 4.2 for various values of o. This 

type of constitutive relation, with fi > 0, represents a so-called "hardening" or 

"stiffening" material because the incremental material tangent modulus increases 

with the level of strain. This type of material constitutive behavior can occur in 

porous media such as foams and in some rubbers. For small strain levels, this 

constitutive relation can be used with o < 0 to approximate the softening behavior 

found in many ductile metal systems during yielding. However, for larger strains, 

the material tangent modulus can become negative, thus leading to unstable 

behavior which may not accurately represent the physics of the problem being 

modeled. Therefore, except when otherwise explicitly stated, it is assumed that 

0 > 0. 

Substitution of the constitutive law ( 4.6) and the definition of shear strain 

(4.5) into equation (4.3} yields the equation of motion in terms of displacement 

relative to the base as 

(4.7) 

This equation will be solved using the newly developed nonstationary continuous 

equivalent linearization technique. 

4.3.2 Relationship to Discrete Systems 

As discussed in the opening paragraphs of this chapter, it is desirable to study 

a nonlinear system for which some benchmark solutions already exist. In this 

section, it is shown that the above cubic constitutive nonlinearity for a one di-
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mensional continuum is directly analogous to the much studied cubic force non-

linearity of discrete dynamical systems. 

Consider now a discrete analog to the continuous shear beam described in 

the preceding section. Let this model contain lumped masses m; and nonlinear 

restoring forces/;, with the displacement of mass i relative to the base denoted by 

w;, for i = 1, ... , N. This system is shown in Figure 4.3. The nonlinear restoring 

force is taken to be cubic, so 

(4.8) 

where k; is the spring constant and lJ is the discrete force nonlinearity parameter. 

The relation between this discrete nonlinear system and the previously 

defined continuous nonlinear system will now be derived. Let the masses be 

spaced a distance D.x apart, so the total length of the beam L is given by L = 

N D.x, where N is the number of discrete masses. Thus, taking the origin of the 

x-a.xis at the base of the beam, 

w; = w(iD.x). ( 4.9) 

Using this expression in equation (4.8) gives 

f .= k·D. [w(x) - w(x- D.x) liD. 2 (w(x) - w(x- D.x) )
3

] 
' ' x D.x + x D.x . ( 4.10) 

Now, assume that w varies linearly from x;_ 1 to x;. This is consistent with the 

use of finite elements with linear shape functions for solution of the equivalent 

linear continuous system. Under this assumption, 

aw w(x)- w(x- D.x) 
ax = D.x (4.11) 

and using the definition of shear strain ( 4.5), the restoring force f; can now be 

written 

(4.12) 
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In this one-dimensional case, the restoring shear force /; can be converted to 

the restoring shear stress r simply by dividing by the cross-sectional area A., so 

the effective stress-strain relation for the discrete system is obtained from the 

previous equation as 

Making the equivalences 

and 

k;t:.x [ - 2 3] 
1' = -- e: + ot:.x e: • 

Ac 

G = kt:.x, 
A, 

( 4.13) 

( 4.14) 

( 4.15) 

the effective constitutive law for the discrete system now agrees with that of the 

continuous system 

(4.16) 

Thus, many of the results in the literature for the discrete cubic nonlinear system 

may now be related to the finite element solutions of the continuous nonlinear 

system with cubic constitutive nonlinearity through use of relations (4.14) and 

(4.15). 

4.3.3 Minimization Equations 

In order to apply the nonstationary continuous equivalent linearization method to 

the example shear beam described earlier in this chapter, the general minimization 

equations developed in chapter 3 must be specialized for this system. First, the 

operators used in the development of the general theory are identified for the 

current problem. Next, derivatives of the nonlinear stress operator appearing in 

the minimization equations are evaluated using these specific definitions. Finally, 
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the remaining terms in the minimization equations are evaluated for the current 

system. 

Recall that the general equation of motion for the shear beam was given 

in equation ( 4.2) as 

ar - ""( ) ax= pw + pq t. ( 4.17) 

In this one-dimensional system, the general divergence operator "il· reduces to 

simply %z. Using the definition of shear strain ( 4.5) in the constitutive law ( 4.6) 

gives the stress in terms of the relative displacement as 

( )

3 aw aw 
r(w)=G-+8G-ax ax (4.18) 

The linear stress operator is now easily identified as 

( 4.19) 

and therefore the nonlinear stress operator is 

( 4.20) 

Thus, the linear and nonlinear stress operators are conveniently obtained from 

the constitutive law and kinematic equation. 

Next, derivatives of TN appearing in the minimization equations (3.24) and 

(3.25) must be evaluated using the above operator definitions. Since the finite 

element method will be used to solve the equivalent linear time-varying system, 

the operator definitions (4.19) and (4.20) above are first expanded using the finite 

element approximation. 

Recall that, in the finite element method, the dependent variable w is 

approximated within element i by 

NEN 
wUl(x,t) = ,L N?)(x) u;n(t), ( 4.21) 

j=l 
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where all terms are as defined in section 3.2. Substituting this discretization for 

w into the definition (4.20) gives the nonlinear stress operator within element i 

as 

(
NEN&N(i) )

3 

rN(w(i))=W ?; 
8

; ulil(t) (4.22) 

Differentiating this expression with respect to the nodal value u~i) gives 

8rN (NEN 8N(i) . )2 8N(i) -w = 38G L -
8

• ul'l(t) -
8

• . 
8Ur •=1 X X 

(4.23) 

Also, note that since the cubic hardening nonlinearity depends only on displace-

ments, 
8rN 

a. (i) = 0. 
Ur 

The squared term in equation (4.23) can be expanded to give 

8rN [NEN NEN 8N(i) 8N(i) . . ] 8N(i) 
-. = 38G L L ~-·-u<•l(t)u<•l(t) -•-
8u~•) q=1 •=1 8x ax q ' ax ' 

hence, taking expected values yields 

[
a N] &N(i) NEN NEN &N(i) BN(i) 

E r(i) = 38G-•- L L _q ___ ,_E [u~il(t)uiil(t)]. 
Bur 8x q=1 •=1 8x 8x 

(4.24) 

(4.25) 

(4.26) 

Thus, these derivatives of the nonlinear stress operator are now expressed in terms 

of the element response covariance matrices, as desired. 

The only remaining term to evaluate in the minimization equations is the 

linear stress operator acting on a finite element shape function, such as r/(NJil). 

Recall that, by definition, 

(4.27) 

Using the choice of functions ¢; discussed in chapter 3 and the definition of the 

linear stress operator (4.19), it follows that 

(i) 
rL(N(i)) = 8NP 

• p ax . ( 4.28) 
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The complete set of general minimization equations may now be evaluated 

for the one-dimensional shear beam with cubic constitutive nonlinearity. Recall 

that the minimization equations for element i are 

(4.29) 

and 

(4.30) 

Using the expressions for the linear stress operator ( 4.28) and the nonlinear stress 

operator (4.26) in the general minimization equation terms (3.21) through (3.25) 

yields 

NEN NEN . aN<•l aN<•l 
A(i) = L L E [u<•l(t)u<'l(t)] r . _l ___ P_ dD('l(x) 

l=l p=l I P j /)!•l(x) ax ax 
(4.31) 

NEN NEN . . 

1 
aN(i) aN(i) 

B<•l = I: I: E [uf'l(t)u<'l(t)] . - 1---p-dD(il(x) 
l=l p=l p f)(•l(x) ax ax 

(4.32) 

NEN NEN . { aN(i) aN(i) 
c<•l = L L E [uf'l(t)u~'l(t)] lr<l _l ___ P_dD(il(x) 

l=l p=l /) • (x) ax ax 
(4.33) 

NEN NEN NEN NEN 

Q(i) = 38G L L L L E [u~•lu~•l] E [u~•lu~•l] 
r=l p=l q=l s= 1 

1 aN(i) aN<'l aN<•l aN<'l (") X __ P ___ r ___ , ___ q_ dD ' (x) 
/)(il(x) ax ax ax ax 

(4.34) 

NEN NEN NEN NEN 

H(i) = 38G L L L L E [u~•lu~•l] E [u~•lu~•l] 
r=l p=l q=l s:;:::l 

1 aN<•l aN(i) aN<•l aN(') (") X __ P ___ r ___ , ___ q_ dD' (x). 
/)(i)(x) ax ax ax ax 

(4.35) 

This completes the specialization of the minimization equations for the shear 

beam with cubic constitutive nonlinearity. 
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4.3.4 Finite Element Matrices and Vectors 

Using the minimization equations derived in the previous section, the original 

nonlinear system is replaced by an equivalent linear continuous system. The 

replacement system is then solved using the finite element method. This section 

describes the specific form of the equivalent linear system and the derivation of 

the appropriate finite element matrices and vectors. 

The general form of the equivalent linear system is given in equation (2.6). 

Applying the operator definitions ( 4.19) and ( 4.20) from the previous section, this 

general form reduces to 

a ( aw) a ( aw) a ( aw) _ _ ax G ax +ax a ax +ax (3 ax = pw + pq(t). (4.36) 

The appropriate boundary conditions are 

w(x, t) = o on aD.,, (4.37) 

and 

( 4.38) 

where aD., denotes that portion of the boundary where w is specified, a[)T denotes 

portions of the boundary where r is specified, and TT is an applied shear stress. 

The finite element equations will be derived using Galer kin's method. Mul­

tiplying the partial differential equation ( 4.36) by a weighting function W and 

integrating over the domain gives 

fo(x) W [:x ( G~:) + :x (a~:)+ :X ((3~~) 
- pw - pq(t)] d[) (x) = o. (4.39) 

Similarly, the Neumann boundary condition (4.38) becomes 

fooT W [(a+ a)~:+ (3~~- rT] d(aDT) = o, ( 4.40) 
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where 

iJD = iJD., + iJDT· ( 4.41) 

Integrating equation (4.39) by parts gives the weak form of the governing equation 

as 

lr [aw aw aw aw aw aw _ _ ] 
-G-+-a,-+ -

0 
{3-

0 
+ W pw + W pq(t) dD(x) 

P(x) OX OX OX uX X X 

/, [ 
aw aw aw] - WG- + Wa-

0 
+ W/3-

0 
d(oD) = 0. 

oL' OX X X 
( 4.42) 

The domain of the second integral can be divided into oDT + oD.,. Using the 

boundary condition (4.40) then gives 

lr [aw aw aw aw aw aw _ _ ] 
-
8 

G-
8 

+ -
8 

a-
8 

+ -
8 

{3-
8 

+ w pw + w pq(t) dD(x) 
L'(x) X X X X X X 

- ( WrTd(oDT) 
lavr 

r [ aw aw] - lavw W (G +a) ax + f3 ox d(oD.,) = 0· 

Next, divide the domain D(x) into elements p(kl(x), so 

D(x) = I::D(kl(x). 
k 

Using this domain decomposition in equation (4.43) gives 

(4.43) 

( 4.44) 

(4.45) 

where it is noted that G, a, and f3 will in general vary from element to element, 

and either aD~kl or oD~kl or both could be zero for a particular element (such as 

an interior element). 
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Let N(k) represent a vector of finite element shape functions for the nodes 

of element k, and let u(k) be the vector of nodal values of w(k) (x, t) for nodes of 

element k. This gives the finite element approximation, in vector form, as 

( 4.46) 

To obtain an equation for a typical global node p not on aD,., take the weight 

function as 

w(•l = pw(•l = L NJ"l, (4.47) 
kp 

i.e., the weight function for node p is taken as the sum, over all elements connected 

to node p, of the shape function in each element corresponding to node p. This 

choice yields the Bubnov-Galerkin formulation, and leads to symmetric matrices. 

Now, using this choice of weighting function W in equation (4.45) gives 

the following equation for global node p: 

"'{!r [aN(k) (aN(k))T (k) aN(k) (aN(k))T . (k) ~ _P_(G +a) -- u + _P_f3 -- U 
.. o<•>(x) ax ax ax ax 

+ pNJ"l(N("))Tii(k) + pNJ"lq(t)] d[)("l(x) 

- f <•> NJ"lrTd(aoJ."l)} = o, (4.48) 
laoT 

where the summation is again over all elements k connected to global node p. 

Equations for all nodes not on a[),., i.e., not on the boundary where w is 

specified, can be assembled into 

Mii + Cli+ Ku = -fq +fr. (4.49) 

where the corresponding element quantities are given by 

( 4.50) 
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aN(k) ( aN(k)) T c(k) - h (3-- -- dD(k)(x) (4.51) 
o<•l(x) ax ax 

K(k) aN(k) ( aN(k)) T 
(4.52) - h (G+a)-- -- dD(k)(x) 

o<•l(x) ax ax 

f(k) - Ia N(k)rT d(aD(k)) ( 4.53) 
T ao<•l T 

T 

f(k) - h pq(t)N(k) dD(k) (x) ( 4.54) q 
Df'l(x) 

and homogeneous geometric boundary conditions have been assumed. 

Note that for the one-dimensional shear beam under consideration, there 

are no applied shear tractions, so 

f, = 0. (4.55) 

4.3.5 Performance Evaluation 

In order to evaluate the performance of the newly developed nonstationary equiv-

alent linearization technique on problems involving a hardening constitutive non-

linearity, a series of three examples are solved for which solutions are obtainable 

by other techniques. The results from the continuous equivalent linearization 

method are found to agree well with the benchmark solutions. Details of these 

validation calculations are presented in Appendix A. 

4.3.6 Description of the Example Problem 

With the performance of the new method now demonstrated, it is appropriate to 

turn attention to the solution of some additional problems. The efforts of this sec­

tion are directed toward gaining physical insight into the nonstationary response 

of a continuous shear beam with a cubic hardening constitutive nonlinearity. To 

this end, several sets of calculations are performed to illustrate the physics of the 
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system and the characteristics of the solution technique. First, since it is well 

known that an undamped linear second-order system subjected to white noise 

excitation exhibits unbounded response variance, it is of interest to examine the 

influence of the form of damping added on the system response. For concise­

ness, only two classes of Rayleigh damping are explored here: mass proportional 

damping and stiffness proportional damping. To isolate these effects, this set of 

calculations is performed on a linear shear beam. It is emphasized that the new 

method is not restricted to Rayleigh damping in any way, and that many other 

techniques could equally well be used to incorporate damping into the model. 

Next, in order to assess the effect of mesh refinement, a set of calculations is 

performed for the same problem with varying mesh sizes. Again, to prevent the 

introduction of spurious effects, this analysis is done for a linear system. Finally, 

a set of calculations is done to investigate the influence of the cubic constitu­

tive nonlinearity on the nonstationary stochastic response. The nonlinear results 

are compared with the corresponding linear results, and the observed effects are 

discussed. 

In order to facilitate comparison of results from the different sets of cal­

culations, the same basic problem is used throughout this section. The system 

is a continuous shear beam, with a cubic hardening constitutive nonlinearity, 

subjected to Gaussian white noise base excitation. A diagram of the continuous 

system is shown in Figure 4.1, and the corresponding finite element model is 

shown in Figure 4.10. The beam is taken to have uniform properties throughout 

its length, with GL~· = 3.0 and pA,L' = 1.0. The power spectral density of the 

Gaussian white noise base excitation is 80 = 2.0. The type and amount of damp­

ing added as well as the value of the nonlinearity parameter vary for each set of 
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calculations. 

4.3.7 Effect of Type of Rayleigh Damping 

It is a well-known result that an undamped linear system subjected to Gaussian 

white noise excitation exhibits an unbounded response variance. This is physically 

reasonable since the power spectral density of white noise is constant over the 

entire frequency range, thus yielding infinite energy content. In spite of this 

property, white noise remains an extremely useful analytical construct because 

most dynamic systems respond predominately to energy in narrow frequency 

bands, and the white noise model can often yield a good approximation to the 

energy input in those frequency regimes. To preclude problems with infinite 

response magnitudes, a small amount of damping is added to the mathematical 

system model for analysis under white noise excitation. All real engineering 

structures possess some amount of damping, so this addition is not artificial. The 

objective of this set of analyses is to explore the influence of the form of the 

damping added on the calculated responses. 

The mechanism of damping in real engineering structures is complex and 

not well understood. Therefore, often it is necessary to base the addition of 

damping on a limited amount of experimental data. This motivates the choice 

of a simple method for incorporating damping into the analytical model. One 

very popular procedure for the addition of damping to structural response calcu­

lations is Rayleigh damping, wherein the damping matrix C is taken as a linear 

combination of the stiffness and mass matrices: 

(4.56) 

The significance of choosing mass proportional or stiffness proportional damping 
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is best seen by examining the behavior of the modal damping ratios for each case. 

Consider the discrete equations resulting from application of the finite ele-

ment method to a linear continuous system and the addition of Rayleigh damping: 

(4.57) 

Transforming the above equation into modal coordinates yields a set of modal 

equations of the form 

00 ( 2) 0 2 ( ) Z; + Ct + CzW; Z; + W; Z; = g; t , ( 4.58) 

where 

z. is the ,~h modal coordinate, 

w; is the natural frequency of the i1h mode, and 

g; ( t) is the i 1h modal forcing function. 

Thus, the fraction of critical damping in mode i, for Rayleigh damping, is given 

as 

( 4.59) 

As is evident from the above equation, mass proportional damping leads to a 

fraction of critical damping i; which decreases with mode order ( w; increasing), 

while stiffness proportional damping yields a fraction of critical damping which 

increases with mode order. Therefore, mass proportional damping leaves the 

higher modes more lightly damped, while stiffness proportional damping more 

strongly damps the higher modes. Frequently, mass proportional damping is 

referred to as external or air damping, and stiffness proportional damping is also 

known as internal damping. 
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In the following calculations, two limiting cases of Rayleigh damping are 

examined. In the first case, the damping matrix is taken as proportional to the 

mass matrix, so c2 = 0.0. The constant of proportionality c1 is chosen such that 

the first mode fraction of critical damping .;-1 = 20%. This yields c1 = 0.0748. 

In the second case, the damping matrix is taken as proportional to the stiffness 

matrix, so c1 = 0.0. Again, it is desired to have the first mode fraction of critical 

damping as 20%, and this leads to c2 = 2.14. The resulting fractions of critical 

damping in other modes are shown in Table 4.1, where it is noted that the natural 

frequencies used are those of the discretized system produced by the finite element 

method. 

The results of the calculations are shown in the top, middle, and bottom 

plots of Figure 4.11 as comparisons of the normalized displacement variance profile 

at early time, mid-time, and late-time, respectively. For these calculations, early 

time corresponds to about one one-hundredth of a signal propagation time across 

the structure, while mid-time corresponds to one-half of a signal transit time. Late 

time corresponds to essentially stationary conditions for the two damped cases, 

at time equal to approximately six signal transit times. In each plot, the solid line 

shows the undamped results, while the dashed line shows the mass proportionally 

damped results, and the dot-dashed line gives the results for stiffness proportional 

damping. In order to allow comparison of the profile shapes of the damped and 

undamped responses, each curve has been normalized by its peak value. 

Examination of the figure clearly reveals the influence of the form of damp­

ing on the evolution of the response profiles. The response profiles of the un­

damped and mass proportional cases are very similar in shape, while the signal 

front spreads much more rapidly in the stiffness proportional case. As Table 4.1 
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mode mass prop . stif. prop. 

k . 0748 t(2.14)wk 
2wk 

1 20% 20% 

2 6.7% 59.7% 

5 2.3% 173% 

10 1.3% 317% 

Table 4.1: Modal Damping Ratios for Rayleigh Damping Study 

shows, modes higher than about 3 are heavily damped for the stiffness propor-

tiona! case, and therefore die out quickly. A superposition of the first two or 

three modes cannot describe the sharp break in the response profile, so the break 

appears to spread. In contrast, the higher modes remain lightly damped in the 

mass proportional case, so the signal profiles are very similar to the undamped 

case. 

4.3.8 Effect of Discretization 

Whenever a continuous problem is discretized using the finite element method, 

the question of mesh refinement arises. In order to assure that the mesh used 

for these example problems adequately represents the physical behavior of the 

system, a parametric study of mesh size is conducted. The base excited shear 

beam problem shown in Figure 4.1 is analyzed using uniform meshes of 7, 14, 

and 28 elements. To allow isolation of the effect of mesh size upon the results, 

the problem is taken as linear and no damping is added. Since this problem 

is undamped, linear growth in the response variance is expected, but the spatial 
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response profiles and variance growth rates can still be directly compared between 

the three mesh sizes. 

The results of these calculations are presented in Figure 4.12. To aid 

comparison of the response profiles, all responses at a given time are normalized 

by the peak value of the large mesh result. The large mesh value was chosen 

since it is considered the most accurate. In each plot, the solid line represents 

the large mesh (28 elements) result, the dashed line represents the medium-sized 

mesh (14 elements) result, and the dot-dashed line represents the small mesh (7 

elements) result. The early time response profiles at the top of the figure show 

some influence of the varying mesh size. The signal has crossed one element, and 

the variation of element size is thus reflected in the shape of the response profile. 

This effect is much more pronounced between the coarse and moderate meshes 

than between the moderate and fine meshes. The fine mesh plot shows that the 

signal is beginning to reach the second element, and thus both the moderate and 

fine meshes have captured this portion of the profile. The mid-time results shown 

in the middle graph of Figure 4.12 also illustrate close agreement between the 

moderate and fine mesh results. Both of these meshes have successfully captured 

the shape of the profile near x = 0, while the coarse mesh does not have sufficient 

resolution to approximate the nearly zero tangent at x = 0. The lower graph 

in Figure 4.12 shows that the late-time response profiles agree quite well among 

all of the meshes. By this time, the sharp gradients in the profile have become 

smooth, and all three meshes yield satisfactory results. Based on these results, 

the 14 element mesh is judged adequate for the current problem. 
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4.3.9 Effect of the Cubic Hardening Nonlinearity 

The above results serve to give confidence to the modeling and analysis proce­

dures to be used in the next set of calculations. In this study, the spatial response 

profiles and variance time histories of the cu hie hardening nonlinear shear beam 

are directly compared against the corresponding linear results. These analyses 

clearly illustrate the physical influence of the nonlinearity on the response char­

acteristics. 

The results of these calculations are shown in Figures 4.13 and 4.14. In 

order to retain bounded solutions without distorting the response profile, mass 

proportional damping has been added such that the first mode of the linear part 

of the system contains 20% critical damping. To clearly illustrate the effect of 

the nonlinearity, the response profiles in Figure 4.13 have been normalized by the 

peak value of the linear profile. In these plots, the solid line shows the linear 

profile, while the dashed line, the dot-dashed line, and the dot-dot-dashed line 

represent nonlinear results with nonlinearity parameter values of 6 = 0.25, 0.50, 

and 1.00, respectively. 

The early time results of the top graph of Figure 4.13 show very little 

difference between the linear and nonlinear systems. This is reasonable, since the 

responses are still small, and for very small strains the contribution of the cubic 

term in the nonlinear constitutive equation is negligible. It should be recognized 

that the constant value of the response profile in the unaffected portions of the 

beam just reflects the variance of the base motion, since the upper sections are 

still at rest in absolute coordinates. 

The middle graph of Figure 4.13 shows that a marked difference in the 

response profiles has developed by mid-time (recall that this corresponds to about 
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one-half of the signal propagation time through the linear beam). The linear result 

(solid line) shows that the profile of mean squared relative displacement gradually 

bends over to the constant value in the unaffected section of the beam, while the 

nonlinear results (broken lines) show the development of a sharp "corner" or 

break at that location. This effect arises from the cubic hardening nonlinearity 

in that the incremental stiffness, and therefore the wavespeed, increases with 

strain level. Thus, strain increments at larger strains propagate faster than strain 

increments at lower strains, creating a sharp front in the response profile during 

the nonstationary portion of the response. It is also evident from the figure that 

this sharp front propagates faster than does the corresponding linear signal. 

As the bottom graph in Figure 4.13 shows, this effect largely disappears by 

late time. After the signal has crossed the structure several times, the response 

profile settles down a smooth shape very similar to that of the linear system. A 

marked difference in the variance growth rates is seen, however. The nonlinear 

system has scarcely reached a displacement variance 10-20% as large as that of 

the linear system. This is to be expected, however, since the nonlinear system 

becomes stiffer as the response level increases, thus attenuating the rate of growth 

of the variance. Thus, even with damping present, it is clear that the stationary 

mean squared displacement of the nonlinear system is substantially less than that 

of the linear system. 

For comparison, the time history of the variance at the free end of the 

beam is plotted in Figure 4.14 for the linear case and three differing degrees of 

nonlinearity. The peak ratio of nonlinear "restoring stress" to linear "restoring 

stress" under stationary conditions is .45, .65, and .92 for the 6 = 0.25, 6 = 0.50, 

and 6 = 1.0 cases, respectively. This figure graphically illustrates the attenuation 
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of displacement variance with increasing nonlinearity. Thus, the effect of even 

these moderate nonlinearities is clearly evident in the results. In summary, this 

set of analyses has shown that the nonlinearity has a strong effect on the shape of 

the response profile during the nonstationary portion of the response, and on the 

magnitude of the displacement variance during all portions of the response. Some 

engineering interpretations of these results are discussed in the next section. 

4.3.10 Engineering Implications 

It is interesting to briefly consider some implications of the above results for 

engineering practice. First, the faster propagation of the signal in a hardening 

nonlinear medium implies that a given point on the structure would experience 

motion earlier for a nonlinear medium than for a corresponding linear medium. 

This earlier arrival could then result in an increased duration of shaking at that 

location in the structure. Next, the development of the sharp break in the non­

linear response profile implies a concentration of deformation and locally larger 

strains in the nonlinear structure than in a similar linear structure. Thus, a 

structure made of a hardening material would have to withstand more severe lo­

cal deformation without failure than would a structure made of a material that 

is linear up to failure. Finally, the hardening nonlinearity served to strongly at­

tenuate the magnitude of the displacement variance under stationary conditions. 

Thus, such a material would be a good choice for a shear member with maximum 

displacement design constraints, if sufficient deformation tolerance is included. 

As the above discussion illustrates, the hardening constitutive nonlinearity leads 

to both good and bad characteristics in the structural response, and these must 

be carefully assessed in the design process. 
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4.4 Arctangent Softening Constitutive Nonlin-

earity 

4.4.1 Introduction 

This section investigates a nonlinearity that is, in some sense, opposite to the 

one previously studied. The arctangent nonlinear constitutive law represents 

materials which soften, rather than harden, with increasing levels of strain. Many 

real materials fall into this category, such as most metals, composites, and many 

soils. Thus, the study of a softening nonlinearity has direct application to many 

areas of engineering practice. 

The nonlinear softening constitutive law is defined by the equation 

2 (?r Goc) r(c) = --r tan~ 1 
--

?rY 2-r y 
(4.60) 

with 

ow 
c=-, ax (4.61) 

where 

• c is the shear strain, 

• ru is the "yield stress" of the material, and 

• G0 is the initial elastic shear modulus. 

Recall that tan -I ( 0) ""' 0 for small 0, so for small strains the above stress-strain 

relation reduces to the linear elastic relation 

r(c) = G0c. (4.62) 
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Plots showing the stress-strain behavior produced by equation (4.60) for various 

values of 01 are given in Figure 4.15. 
'• 

Using the constitutive law ( 4.60) in the general equation of motion ( 4.3) 

yields the governing PDE for this nonlinear shear beam as 

Go 8
2
w .. "( ) 

( 
G 

) 

2 a 2 = pw + pq t . 
1 + 2!: "-ll.!. X 

2 ., 

(4.63) 

The solution to this equation will be obtained using the nonstationary continuous 

equivalent linearization method developed in the previous chapters. 

4.4.2 Relationship to Discrete Systems 

The continuous nonlinear shear beam with an arctangent softening nonlinear-

ity has an analogous discrete representation. In order to allow results from the 

nonstationary continuous equivalent linearization procedure to be compared with 

existing results for discrete spring-mass-damper systems, this analogy is devel-

oped below. 

Consider once again the discrete analog to the one-dimensional shear beam. 

Recall that this model contains lumped masses m; and nonlinear restoring forces 

/;, and the displacement of mass i relative to the base is denoted by w;, for 

i = 1, ... , N. This system is shown in Figure 4.3. For convenience, define the 

relative displacement y; as the displacement of mass i relative to mass (i- 1), so 

( 4.64) 

With the discrete system now defined, the form of the nonlinear restoring 

force is derived from the stress-strain relation given in equation (4.60). First, 

replace the derivative in the strain-displacement relation ( 4.61) by its backward 
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difference approximation 

w(i~x)- w((i- l)~x) 
e~ . 

~X 

Let w; = w(i~x), so 

or in terms of the relative displacement y;, 

Yi 
E:~-0 

~X 

(4o65) 

(4o66) 

( 4o67) 

Next, substitute this approximation for the strain c: into the constitutive 

law (4o60) to get 

r(c:) = ~r tan-1 (~Go .2_Y•) 0 

7r y 2 Ty ~X 
(4o68) 

Consider now that the spacing between two lumped masses in the discrete model 

is ~x, and therefore the restoring force is constant over that interval. For the 

spring between masses i and ( i -1), this restoring force is obtained by multiplying 

equation ( 4o68) by the cross-sectional area over which the shear stress acts, A. : 

2 _1 (11" Go ) J; = -A.ry tan -~y; o 

7r 2 Ty'-l.X 
( 4o69) 

Define now a "yield force" as the product of the yield stress and cross-

sectional area 

(4o70) 

then equation (4o69) becomes 

( 4o71) 

Defining the initial stiffness k0 by 

k G0 A. 
o=~, (4o72) 
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the discrete restoring force expression takes its final form 

/; = ;fytan- 1 (~~>•). (4.73) 

Thus, equation (4.73) represents a discrete nonlinear restoring force analogous 

to the nonlinear continuum constitutive law (4.60). The only approximation 

made in this derivation was in the replacement of the derivative in the strain-

displacement relation with its first-order backward difference approximation. If 

finite elements with linear displacement interpolation functions are used in the 

continuous equivalent linearization solution, then strain is constant over an ele-

ment and this relation becomes exact. 

4.4.3 Minimization Equations 

In order to apply the nonstationary continuous equivalent linearization method 

to this problem, it is first necessary to evaluate the terms in the minimization 

equations for the particular constitutive law under consideration. To this end, 

first the operators TN and TL are defined for the arctangent softening nonlinearity. 

Next, expressions for the minimization equation right-hand-side terms G; and H; 

are developed. Finally, the remaining terms in the minimization equations are 

evaluated. 

From the preceding comments on the small-strain behavior of this consti­

tutive law, it is clear that the linear stress operator TL is given by 

(4.74) 

Now, recall that one of the initial assumptions in the formulation of the continu-

ous equivalent linearization technique was that the system was linearizable, and 

this was operationally defined as requiring the effect of TN to become negligible 
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compared to rL as the response became small. Since the arctangent nonlinearity 

reduces to Gas for small responses, it is necessary to subtract this component out 

in defining TN; thus 

N 2 1 (7r Gas) r = -r tan- --- -Gas, 7r y 2 T 

" 
(4.75) 

and the total constitutive law is the sum of the linear and nonlinear components: 

( 4. 76) 

For the nonlinearity under consideration, it is more convenient to evaluate 

the nonlinear terms in the minimization equations directly from their definitions 

in section 2.5 than to use the technique developed in section 2.6. Using equations 

(2.58) and (2.64), along with the equivalent linear parameter basis functions given 

by equation (3.14), the right-hand-side terms of the minimization equations for 

finite element i can be written as 

( 4. 77) 

and 

H; = { . E [rN(c,w,w) · r/(w)] dl)(il(x). J v<•J (x) 
(4.78) 

Substituting in the above definition of the linear stress operator (4.74), these 

equations can be written 

(4.79) 

and 

H; = { . E [rN (s) t] dl)(il(x). J l)(•l(x) 
(4.80) 

As before, it is now necessary to express G; and H; in terms of the element 

response statistics. This manipulation is described in the following paragraphs. 
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Temporarily consider only the integrands of equations (4.79) and (4.80). 

If these integrands can be written in terms of the element response covariance 

matrix, then G, and H; can be easily computed using numerical integration. 

Substitute the definition of the nonlinear stress operator ( 4. 75) into the integrand 

of each of these equations (4.79) and (4.80) and rearrange to get 

E[rN(e)e] =E[;ryetan-1 (~~:e)] -GoE[e2
] ( 4.81) 

and 

( 4.82) 

Clearly, the second term in each of (4.81) and ( 4.82) is easily written in terms 

of the element response covariance matrix, so concentrate attention on the first 

term in each of these equations. 

Recall that e and e are spatial derivatives of the displacement and velocity 

response processes, and since the replacement system is linear and subjected to 

Gaussian input, then these approximate response quantities are jointly Gaussian 

distributed also. Using this fact that e and e are jointly Gaussian distributed, 

the first term in equation (4.81) can be written as 

2 [ (7r G0e)] Joo 2 ('lr G0e) -r.E etan-1 
-
2
-- = -r.etan-1 

--- p(e)de, 7r Ty -oo 7r 2 Ty 
(4.83} 

where p( e) represents the Gaussian probability density function of e, 

1 ,o ( -= p e:) = e 2al!' vz:;ra, (4.84) 

and a. is the standard deviation of e:, 

(4.85) 

As discussed in reference [24], integrating by parts and using the result 

100 e-a2z2 ~ 
" 2 

---:-
2 

dx = -ea erfc(a), 
0 1 +X 2 

(4.86) 
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equation {4.83) becomes 

{4.87) 

where 

{4.88) 

and erfc{a) denotes the complementary error function of a. 

Note that the right-hand-side of equation ( 4.87) contains only deterministic 

functions and u •. It will now be shown that Ue is easily expressed in terms of finite 

element shape functions and the element response covariance matrix. 

Recall the definition of shear strain c: as 

and the finite element approximation for w within element i, 

NEN 
w(il(x,t)., L N~i)(x)u~l(t), 

k=l 

{4.89) 

(4.90) 

where NEN denotes the number of nodes per element. Substituting equation 

{4.90) into (4.89), squaring the result, and taking expected values gives 

( 4.91) 

A similar argument shows 

{4.92) 

and 
NEN NEN aN(i) aN(i) 

E[c:i] = L L _k -
1-E [u1;l(t)ul;'(t)]. 

k=l 1=1 ax ax ( 4.93) 
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The correlation coefficient p between the strain c and the strain rate f: can now 

be defined as 

E [cf:] 
p=--. 

a$ai 
( 4.94) 

Thus, the statistics of the of the strain and strain rate are now expressed in terms 

of the required element response covariance matrix. 

The final step is to express the integrand of the H; expression in terms of 

the response statistics of c and f:. Then, equations (4.91) through (4.93) above 

can be used to get H; in terms of the desired element response covariance matrix. 

Proceeding as for G;, the first term in equation (4.82) is written in terms 

of the joint probability density function p(c:, f:) as 

(4.95) 

where 

( 4.96) 

It is shown in Appendix B that pursuing this approach leads to the result 

( 4.97) 

where a is as defined in equation (4.88). Thus, the integrands for both G; and 

H; are now expressed in terms of the element response covariance matrix, as 

required. 

The final minimization equations for the softening nonlinearity can now 

be summarized. Note that the left-hand-side terms of the minimization equations 
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depend only on the form of the linear stress operator, and that the form of the 

linear stress operator .,-L is the same for the arctangent softening nonlinearity as it 

was for the cubic hardening nonlinearity. Recall that the minimization equations 

for element i are given by 

and 

and the left-hand-side terms are given by 

NEN NEN . fz BN(i) aN(i) 
B(i) = L L E [u(•l(t)u(il(t)] . _l ___ P_ dD(il(x) 

l;l p;l l p l)(oi(x) ax ax 
NEN NEN . fz aN(i) aN(i) 

C(i) = L L E [ul'l(t)u(il(t)] . - 1---P-dD(il(x). 
l;l p;l p v<•l(x) ax ax 

Using equations (4.81) and (4.87) in (4.79) yields 

G; = { . [ f'ia.e" 2 
erfc(a)- G0a~] dD(il(x), 

lv<•l(x) Y; 
and similarly, using equations (4.82) and (4.97) in (4.80) gives 

H; = { [ f'i.,..pa,e•' erfc(a)- G0 pa,a,] dD(il(x). 
lv<•l(x) y; 

(4.98) 

( 4.99) 

(4.100) 

(4.101) 

(4.102) 

(4.103) 

(4.104) 

Equations (4.98) through (4.104), along with equations (4.91) through (4.94) for 

the statistics a., a,, and p in element i, form the complete set of element level 

minimization equations for the arctangent softening constitutive nonlinearity. 
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4.4.4 Finite Element Matrices and Vectors 

The problem under consideration is still a one dimensional system satisfying the 

wave equation, so the form of the equivalent linear replacement system is un­

changed from that described in section 4.3.4. As a result, the finite element ma­

trices and vectors are identical to those described in that section, except that the 

equivalent linear parameters a and f3 are evaluated using the new minimization 

equations derived in the previous section. 

To assure that the newly developed minimization equations do yield an 

accurate solution for problems involving an arctangent softening nonlinearity, a 

simple test problem is solved for which a solution already exists. Agreement 

between solutions obtained using two different methods is quite good. Details of 

this problem are presented in Appendix A. 

4.4.5 Description of the Example Problem 

This section investigates the effect of the arctangent softening constitutive nonlin­

earity on the stochastic response of a system satisfying the one-dimensional wave 

equation. Several calculations are conducted with varying degrees of material 

nonlinearity. The observed response characteristics are discussed, and compar­

isons are made with the response characteristics of the cubic hardening system 

discussed earlier in this chapter. Finally, some engineering implications of these 

results are discussed. 

As in previous sections, the example system will be physically conceptual­

ized as a nonlinear shear beam subjected to Gaussian white noise base excitation. 

This structure is shown in Figure 4.1. The beam is taken to have uniform prop­

erties throughout its length, with G1~·· = 3.0 and pA,L' = 0.1, where L' denotes 
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the length of a finite element. 

The finite element model used in these example calculations is shown in 

Figure 4.10. It contains 14 elements with linear displacement interpolation func­

tions. Mass proportional damping is added to the assembled discrete equations 

to yield a finite stationary displacement variance without excessively distorting 

the response profile. The applied base acceleration is given unit power spectral 

density, and is suddenly applied to an initially quiescent beam at t = 0. 

The degree of nonlinearity, as measured by the ratio of the initial shear 

modulus to the yield stress Qo., is varied for each analysis. The way in which the 
'• 

solution becomes established is then studied for each case. In addition, the effect 

of the nonlinearity on the magnitude and shape of the response profile is also 

examined. The results of these calculations are discussed in the following section. 

4.4.6 Results for the Arctangent Softening Material Non-

linearity 

To study the effect of the nonlinearity on the response, three calculations with 

varying degrees of nonlinearity are examined. In the first problem, denoted 

"NL 1," the parameter value Qo. = 1.0, while in the second problem, denoted 
'• 

"NL 2," ~ = 2.0, and in the third problem, denoted "NL 3," a value of Qo. = 3.0 
'Y 'fy 

is used. For comparison purposes, a fourth problem with a linear stress-strain 

law is also analyzed. Clearly, as the ratio Qo. increases, the yield level decreases ,, 
(since Go is constant) and the problem becomes more nonlinear. 

The results of the four calculations are presented in Figures 4.16 through 

4.18. To graphically illustrate the effect of the nonlinearity, all profiles are nor­

malized by the peak value of the corresponding linear profile. In each figure, 
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the solid line represents the linear result, while the dashed line, the dot-dashed 

line, and the dot-dot-dashed line represent the NL 1, NL 2, and NL 3 results, 

respectively. The graphs in Figures 4.16 and 4.17 show the mean squared relative 

displacement response profiles for the four analysis cases at four fixed values of 

time. On these graphs, time is measured in multiples of the signal propagation 

time across a linear beam with the same properties. This transit time is given by 

k. where c is the shear wave propagation speed in the linear material, given by •• 
,...,-

c __ ./Gpo' v (4.105) 

and L is the length of the beam. 

The top graph in Figure 4.16 shows the response profiles at a time corre­

sponding to one-half of the signal transit time across a linear beam,i.e., t = 0.5~. 

One effect of the nonlinearity is already clear: the signals are propagating more 

slowly for the more nonlinear cases. This effect is easily explained, however, since 

the material tangent modulus decreases with increasing response levels, thus de-

creasing the effective wavespeed as the response builds up. At this early time, 

there is no significant difference in the magnitude of the response between the 

linear and nonlinear cases. 

The bottom graph in Figure 4.16 shows the response profiles at a time 

equal to six linear signal transit times across the structure. The propagating 

front has smoothed out, and the response profiles are nearing their stationary 

shapes. The nonlinear profiles show a much sharper gradient near the base of 

the beam than does the linear profile, and this effect increases with increasing 

degree of nonlinearity. Thus, most of the deformation is concentrated near the 

base, with the remainder of the beam participating little in the response. 

At time equal to 12 linear signal transit times across the structure, the 
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top graph in Figure 4.17 shows that the concentration of the deformation at the 

base of the structure has become even more pronounced. This effect is slightly 

visible in the NL 1 case, becomes prominent in the NL 2 case, and is extreme in 

the NL 3 case. For the two most nonlinear cases, only the first 3 or 4 elements 

participate significantly in the response. 

At time equal to 40 linear signal transit times across the structure, the 

bottom graph in Figure 4.17 shows that the profile shapes are very similar to 

those in the previous graph. The response magnitudes for the two most nonlinear 

cases have increased slightly, but the shapes remain largely unchanged. 

Figure 4.18 shows the time history of the free end variance for each of 

the four analysis cases. As expected, the most nonlinear case attains the highest 

response level, with the other cases correspondingly lower. The linear case leads to 

a lower response level than does any of the nonlinear cases. This is expected, since 

the softening behavior of the constitutive nonlinearity tends to increase response 

levels over those of the linear system, which has a constant stiffness. This graph 

also shows that attainment of stationarity is delayed due to the nonlinearity. 

Again, this is a result of the softening behavior of the system, which slows down 

the propagation of signals at higher response levels, thus requiring more time 

for a fixed number of traversals of the beam. For the parameter values used in 

this set of analyses, ~ "" 2.5, so t = 0.5~, 6.0~, 12.0~, and 40.0~ approximately 

correspond to actual problem times of t = 1.25, 15, 30, and 100, respectively. As 

seen in Figure 4.18, the linear response becomes stationary near t = 10, while the 

mildest nonlinear case NL 1 becomes stationary near t = 35, and the remaining 

two nonlinear cases NL 2 and NL 3 reach stationarity at t = 60 and t = 80, 

respectively. Based on these observations, it appears that the concentration of 
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deformation near the base of the beam, as observed in Figure 4.18, continues as 

stationarity is reached. 

4.4.7 Engineering Implications 

The above results suggest several important observations for engineering applica­

tions involving a softening material. First, in contrast to the hardening material, 

the softening material attenuates the propagation speed of the signal, and thus 

a given location in the structure will experience motion later than it would in a 

corresponding linear structure. Also, this slower propagation speed lengthens the 

time required for the system to reach stationarity, thus underscoring the impor­

tance of treating the response of a softening system as a nonstationary random 

process. 

Perhaps the most important characteristic observed in the response of a 

shear beam composed of a softening material is the concentration of the defor­

mation near the base. As previously pointed out, this effect begins early in the 

nonstationary response, and persists as the response becomes stationary. From a 

structural engineering point of view, a uniform structure composed of this type 

of material requires substantially more ductility near the base than in the middle 

and upper sections if failure is to be prevented. This result has implications for 

structural design in a seismically active area. For example, if a large shear struc­

ture (such as a tall building) is to be located in an earthquake-prone area, it is 

important to design sufficient deformation tolerance into the lower floors to en­

sure that the building would safely survive an earthquake event. Since this study 

considered uniform stiffness and strength throughout the structure, the results 

for an actual building may vary if these conditions are not satisfied. 
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Alternatively, in a geophysical or earthquake engineering context, one 

might conceptualize the shear beam as a column of soil excited by stochastic 

motions of underlying bedrock during an earthquake. Often, the objective of 

such an analysis is to develop a "transfer function" relating bedrock motions to 

surface motions (represented by the free end of the shear beam). In this interpre­

tation, the above results suggest that the "effective mass" for a softening material 

is much greater than for a linear material, since after only about 6 transit times 

the majority of the column is deforming very little and is simply acting like a large 

mass supported on a small spring. In this context, "effective mass" is taken as 

the mass of a single degree-of-freedom oscillator which represents the frequency 

transfer characteristics of the soil column. This increased effective mass would 

tend to shift the spectrum of the surface motions lower in frequency than the 

bedrock motions, and attenuate higher frequency inputs. For earthquake resis­

tant design of large buildings, it is important to know the frequency range of 

possible inputs. Since tall buildings tend to have lower natural frequencies than 

short buildings, this shift of the ground motion frequency content toward lower 

frequencies leads to a more severe design environment than would be generated 

by a linear ground motion analysis. Allowance for this effect in the structural 

design therefore results in a more seismically safe structure. Again, it is empha­

sized that the current example assumes uniform stiffness and strength throughout 

the column. If actual conditions are substantially different from those considered 

here, then the magnitude of this frequency shifting effect may be altered. 

In summary, the presence of a softening material nonlinearity can markedly 

alter the system response characteristics, and in many cases these nonlinear effects 

render a linear analysis unconservative for design. Thus, a nonlinear analysis of 
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such systems is well justified. 
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Chapter 5 

Concluding Remarks 

5.1 Summary and Conclusions 

In chapter 1, the problem is specified and a general form of the governing nonlinear 

partial differential equation is given. This is followed by some general background 

on stochastic analysis, and a brief discussion of existing analysis approaches. 

The development of the general nonstationary continuous equivalent lin­

earization procedure is presented in chapter 2. The nonlinearity is restricted to 

be symmetric and linearizable, and this leads to the general form of the equivalent 

linear continuous system. Although the equivalent linear parameters are functions 

of space and time, their explicit dependence is on the response statistics, and since 

these statistics depend on time in nonstationary problems the equivalent linear 

system is given time-varying coefficients. A system difference minimization crite­

ria is defined as the difference in stress between the nonlinear and the equivalent 

linear systems. Minimization equations are then derived which give the equivalent 

linear parameters in terms of the current response statistics. Finally, an efficient 

numerical solution procedure is developed for the minimization equations. 
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Chapter 3 introduces a numerical implementation of the method derived 

in chapter 2. First, the finite element method is applied to the equivalent linear 

system to derive a set of discrete linear ordinary differential equations. Next, basis 

functions are specified for the equivalent linear parameters which alleviate the 

need to solve a large coupled system of linear equations, and allow determination 

of the equivalent linear parameters on an efficient element-by-element basis. The 

discrete equations are then transformed into a Liapunov equation for the response 

covariance matrix. Simplifications to this equation are shown to arise under 

conditions of white noise excitation. Chapter 3 concludes with a summary of 

the complete solution algorithm for the nonstationary response of a nonlinear 

continuous system. 

In chapter 4, the new method is applied to the solution of the one-dimensional 

wave equation with two types of constitutive nonlinearities: a hardening stress­

strain law and a softening stress-strain law. As a physical conceptualization of 

this equation, the base-excited shear beam is chosen for study. It is demonstrated 

that results from the nonstationary continuous equivalent linearization method 

agree well with those of other methods on benchmark problems for which other 

solutions were available. The concept of the response profile is introduced for 

studying the way in which the stationary random response becomes established. 

This profile is shown as a plot of mean-squared relative displacement vs. x at a 

fixed time. The influence of the type of damping and mesh size are discussed in 

terms of this response profile. 

Later in chapter 4, a parameter study is described which considers systems 

with varying degrees of hardening constitutive nonlinearity. It is found that sharp 

gradients develop in the response profiles during the nonstationary phase of the 
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solution, and that this becomes more severe with increasing degree of nonlinearity. 

Engineering implications of these results are discussed. It is noted that this sharp 

response gradient implies a local concentration of deformation, and thus requires 

more ductility in the system to preclude failure than would a corresponding linear 

system. In this context, ductility is used in the sense of ability to withstand de­

formation without failure. Therefore, a linear analysis for design purposes would 

be unconservative for systems with this type of nonlinearity. Also, these sharp 

gradients are seen to disappear as the solution became stationary, thus highlight­

ing the importance of considering the nonstationary portion of the response in 

an analysis. 

In the last part of chapter 4, a parameter study is described which considers 

systems with varying degrees of softening constitutive nonlinearity. It is observed 

that, as the response progresses, deformation becomes more concentrated near 

the base of the beam, and the remainder of the structure deforms very little. 

Engineering interpretations of these results are discussed in both a structural 

and an earthquake ground motion context. The most important conclusion for 

a structural system is that this concentration of deformation would require more 

ductility near the base of a softening nonlinear structure than in a corresponding 

linear structure, thus again making a linear analysis unconservative for design 

purposes. In an earthquake ground motion context, one might think of the shear 

beam as a column of softening soil excited by bedrock motions. Often, the objec­

tive of such an analysis is the definition of the frequency transfer characteristics 

of this soil column. The resulting "transfer function" can then be used to re­

late bedrock motions from a geological analysis to surface ground motions for an 

earthquake response calculation. In this application, the present results indicate 
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that the effective mass in these frequency transfer function calculations should 

be substantially larger than would be indicated by a linear analysis. Thus, in 

areas where the soil shear response is of a softening character, the surface ground 

motions will have more low frequency content than did the bedrock motions. 

In conclusion, the newly developed nonstationary continuous equivalent 

linearization procedure is seen to be a powerful tool for obtaining the random 

response of a nonlinear continuous system. It has been shown to perform well on 

two widely different types of nonlinearities. It is expected that the new method 

will produce useful engineering results for many nonlinear systems where the 

actual response process is nearly Gaussian. Although the numerical solution of 

random vibration problems is quite computationally intensive when compared 

with deterministic analyses, this method could handle meshes involving several 

thousand degrees of freedom using present supercomputers. This capability is 

expected to grow rapidly in the coming years given the current rate of progress in 

supercomputering power. The numerical implementation described herein couples 

the new method with the power of finite element analysis to allow nonstationary 

response solutions for a broad range of complex engineering problems. 

5.2 Recommendations for Further Work 

In the course of an investigation such as this, it is inevitable that many more 

interesting topics are uncovered than can be explored by the investigator in the 

time available. The following paragraphs suggest some possible applications and 

extensions to the present work arising from these observations. 

One interesting application of the method developed in this thesis would 

be systems exhibiting hysteretic behavior. In one dimension, a hidden variable 
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model, such as that proposed by Iwan and Asano in reference [12], could be 

adapted for use with the present technique. In higher dimensions, hysteretic 

models for stochastic analysis are not well developed, and much remains to be 

done in this area. 

Another interesting application is the area of structural finite elements, 

i.e., elements with rotational degrees of freedom. This class of elements includes 

beams, plates, and shells, and allows the modeling of many structures of interest 

to mechanical and civil engineers. When combined with realistic nonlinear mate­

rial models, these elements could allow construction of a very general analysis tool 

for the nonstationary stochastic response analysis of a wide variety of systems. 

A third area for further work involves coupling the techniques developed 

herein with a damage model. The objective here would be a unified structural 

analysis for both the stochastic response and the resulting damage level. Clearly, 

much work remains to be done before a thorough understanding of the response 

of nonlinear systems to stochastic excitation is achieved. 
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STRESS-STRAIN CURVE FOR CUBIC HARDENING NONLINEARITY 
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Figure 4.4: Nonlinear Single Degree-of-Freedom Oscillator 
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Appendix A 

Validation Calculations 

A.l Test Problem One: Stationary Response of 

a One Element System 

As a first check on the accuracy of the nonstationary continuous equivalent lin­

earization method, a problem with only one degree-of-freedom is solved for the 

stationary mean-squared displacement. The stationary value is calculated as the 

long-time asymptotic value of the nonstationary displacement variance time his­

tory. Obviously, carrying out the nonstationary solution for a long time is a 

very inefficient way to calculate the stationary solution, but it serves as a good 

check on both the solution algorithm and the program coding. This test problem 

represents the simplest of the nonlinear problems considered. 

A schematic diagram of the discrete system is shown in Figure 4.4. The 

equation of motion for this nonlinear oscillator is 

mw + cw + f(w) = -mij(t), (A.l) 
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where 

(A.2) 

and 

• w is the displacement of the mass relative to the base, 

• m is the mass, 

• c is the viscous damping, 

• k is the linear spring stiffness, 

• 8 is the nonlinearity parameter, and 

• ij(t) is the applied base acceleration. 

For this example, ij is taken as Gaussian white noise with zero mean and constant 

power spectral density 80 • Dividing through the above equation by m yields the 

standard form 

with the linear natural frequency Wn given as 

k 
w2 =­n-

m 

and the fraction of critical damping 1 given as 

c 
I= , 

2vkm 

(A.3) 

(A.4) 

(A.5) 

The solution used for comparison is an approximate closed-form analyt-

ical result developed by Iwan and Yang for the SDOF Duffing oscillator under 

stationary random Gaussian white noise excitation. In reference [23], they have 
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given an approximate solution for the mean-squared relative displacement under 

stationary conditions as 

(A.6) 

Yang [24] has shown that the above estimate is within 7.5% of the true RMS 

stationary solution for arbitrarily large nonlincarities, so this formula provides a 

good benchmark for evaluation of the new solution method. 

The finite element model corresponding to this simple system is shown in 

Figure 4.5. For a one element model of unit length (L' = 1), a unit stiffness 

k = GL~· and a unit mass m = tpA,L' were used. Damping corresponding to 

10% of critical was added to yield a finite stationary displacement variance. A 

unit power spectral density of base acceleration S0 was used as input, and the 

nonlinearity parameter was chosen as 8 = 1.0. The influence of this nonlinearity 

is discussed below. 

The degree of nonlinearity present in this model can be assessed by ex-

amining the ratio of the restoring force provided by the nonlinear term to that 

provided by the linear term at the rms displacement response level Uw, where 

(A.7) 

A simple calculation shows that this ratio of the nonlinear restoring force to the 

linear restoring force at the rms displacement response level is given by 8u~. 

Substitution of the above model parameters into the analytical approxi-

mation (A.6) yields an approximate displacement variance E [w2] of 2.127. The 

nonstationary equivalent linearization calculation yields a stationary variance of 

2.128. At this response level, the nonlinear restoring force is 2.1 times as large as 

the linear restoring force, therefore this system is severely nonlinear. The differ-
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ence in variance of relative displacement between the two stationary solutions is 

less than 1.0%, well within the accuracy requirements for almost any engineering 

analysis. 

A.2 Test Problem Two: Stationary Response of 

a Four Element System 

The second validation problem presented also addresses only the stationary so­

lution, but for a mesh with multiple elements. Thus, this problem represents 

the next logical step in increasing complexity. The mesh used here consists of 

4 elements with linear shape functions. A diagram of the finite element mesh is 

shown in Figure 4.6. 

It is important to note a modeling detail at this point. The 4th element 

in the finite element mesh of Figure 4.6 is used only to contribute mass to node 

4. A simple element mass lumping scheme is used which apportions one-half of 

the mass of an element to each of the 2 nodes of that element. Thus, if a node 

borders on two elements each having a total mass of m, then that node receives 

!m from each element for a total nodal mass of m. On the other hand, if a node 

borders only one element, then it only receives half as much mass, so its total 

nodal mass is !m. If it is desired that each active node receive equal mass, then an 

additional element with no stiffness can be added beyond the last active node, and 

the new end node made inactive. The presence of element 4, therefore, leads to 

equal amounts of mass being lumped at nodes 2, 3, and 4, allowing the analogous 

discrete model to also have equal masses. The degree of freedom associated with 

node 5 is deleted, and since G4 = 0.0, element 4 contributes no stiffness to the 
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problem. This modeling technique allows the total mass lumped at any node of 

the finite element model to be easily adjusted. 

The corresponding discrete model for this test problem is shown in Fig-

ure 4.7. It consists of three equal masses interconnected by three nonlinear springs 

and three linear viscous dampers. The configuration of the dampers in this dis-

crete model is not exactly analogous to the mass proportional damping used in 

the finite element model. The proper configuration is shown in Figure 4.8. The 

error incurred in using the discrete model of Figure 4. 7 is that a small contri-

bution to the right-hand-side load term from the damping coefficients times the 

input base velocity is neglected, i.e., is not present in the finite element calcula-

tions. However, an analytical estimate of the stationary variance of the system 

of Figure 4. 7 is available, so it is interesting to compare these results with those 

of the numerical procedure. 

The restoring force for the i1h nonlinear spring is computed from 

J;(y;) = k;(y; + 8y[), (A.8) 

where k; is the stiffness coefficient of the i1h spring, 8 is the nonlinearity parameter 

(assumed constant for all springs), and y; is the relative displacement between 

the i1h mass and the (i- 1)'1 mass. Once again, this system will be subjected to 

zero mean Gaussian white noise base excitation. 

The benchmark solution for this problem is an approximate analytical 

result also developed by Iwan and Yang in reference [23]. They gave the following 

expression for the variance in the relative displacement between mass i and mass 

(i- 1) : 

2 1 [ I tri5So ] a . = ---= 1- \! 1 + 12-- . 
y, 615 1 0.1k; 

(A.9) 
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Once again, it has been shown by Yang in reference [24] that this approximate 

analytical solution remains within 7.5% of the true RMS displacement response 

solution for arbitrarily large nonlinearities. 

In the finite element model, the parameter values were chosen to vary 

between elements to verify that capability. The parameters used were Gl~' = 3.0, 

Gl~" = 2.0, and Gl~' = 1.0. Rayleigh damping is added to the model, with the 

damping matrix taken as proportional to the mass matrix, so 

C = 0.10M, (A.lO) 

where C denotes the global damping matrix and M denotes the global mass 

matrix. From these parameter values for the finite element model, the discrete 

model parameters are obtained. The spring stiffness values are unequal, with 

k1 = 3.0, k2 = 2.0, and k3 = 1.0. The three masses m; are all taken as unity, and 

the damping coefficients c; are chosen as 0.1 for all three dampers. The power 

spectral density of the input noise process is S0 = 2.23. 

The performance of the new solution method on this benchmark problem 

is examined for both a mild nonlinearity (5 = 0.1) and a more severe nonlin­

earity (b = 1.0). The calculated stationary values of the mean-squared relative 

displacements E [yfl are compared against the approximate analytical results in 

Table A.l. For comparison, the ±7 .5% values for the analytical solution are also 

shown, since the true solution lies within these bounds. 

To gain some insight into the size of the nonlinearity, it is helpful to ex­

amine the restoring force/; evaluated at the RMS relative displacement ay,· As a 

measure of the nonlinearity, consider once again the ratio of the nonlinear restor­

ing force to the linear restoring force at the rms displacement response level. It is 

easily shown that this ratio is given by bay, 2 • Values of this ratio for each nonlin-
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Mass Anal. Mild Nonlinearity Severe Nonlinearity 

No. Est. Anal. Camp. Anal. Camp. 

Low (-7.5%) 2.92 - 1.75 -

1 2.72 2.83 1.63 1.69 

High ( +7.5%) 2.52 - 1.51 -

Low (-7.5%) 3.29 - 1.85 -

2 3.06 3.05 1.81 1.82 

High (+7.5%) 2.83 - 1.67 -

Low (-7.5%) 4.00 - 2.33 -

3 3.72 3.52 2.17 2.02 

High ( +7.5%) 3.44 - 2.01 -

Table A.1: Summary of Results: RMS Relative Displacements y; 

ear spring are shown in Table A.2 for both the mildly nonlinear and the severely 

nonlinear cases. 

Comparison of the computational and analytical results shows that the 

nonstationary equivalent linearization technique performs quite well, yielding re­

sults that are well within the accuracy requirements for engineering analyses even 

for a severely nonlinear system. 
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Ratio of Non linear Spring Force 

Spring to Linear Spring Force 

Number Mild Nonlinearity Severe Non linearity 

1 0.74 2.7 

2 0.94 3.3 

3 lA 4.7 

Table A.2: Ratio of Nonlinear to Linear Restoring Forces 

Test Problem Three: N onstationary Response 

of a Four Element System 

The final validation calculation presented in this section considers the nonsta­

tionary response of a multiple element shear beam subjected to suddenly applied 

base excitation. The response is calculated from zero initial conditions out to 

its stationary value. This problem tests all features of the new algorithm and 

program, including the solution accuracy during the nonstationary portion of the 

response. The finite element mesh used for this problem is identical to that shown 

in Figure 4.6 for the second test problem. 

The analogous discrete model for this system is shown in Figure 4.8. It is 

similar to the model used in the previous test problem, except that the dampers 

are now connected between each mass and the base, rather than between each 

mass and ground. This modification allows the discrete system to exactly repre­

sent the mass-proportional Rayleigh damping used in the continuous system so­

lution. The nonlinear spring restoring forces are calculated from equation (A.8), 
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and the input base acceleration is taken as zero mean Gaussian white noise, sud­

denly applied at t = 0. 

The reference benchmark for this test is a discrete nonstationary equivalent 

linearization solution using the method developed by I wan and Mason in reference 

[10]. Their technique gives an expression for each element of the equivalent linear 

stiffness matrix in terms of the current response covariance matrix. The resulting 

set of discrete equivalent linear equations are next transformed to first order 

state space equations, and finally to a Liapunov equation for the state space 

covariance matrix. The application of their technique to the above system of 

nonlinear ordinary differential equations is briefly outlined below. 

The equations of motion for this discrete system are 

m1tii1 + c1w1 + k1 [w1 + Swi]- kz [(wz- w1) + S(wz- w1) 3] 

= -m1q(t) 

mzWz + CzWz + kz [(w2 - w1) + 8(w2 - w!) 3] 

- k3 [(w3- wz) + S(ws- wz) 3] = -mzq(t) 

m3tii3 + c3w3 + k3 [(w3- Wz) + 8(w3- wz) 3] = -m3q(t), 

(A.ll) 

(A.12) 

(A.13) 

where w; denotes the displacement of the i'h mass relative to the base. This set 

of equations can be combined into a matrix equation of the form 

Mw + h(w, •v) = -q(t)Mf:, (A.14) 

where f: is defined by 

(A.15) 

1 
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Now, define the state vector s as 

(A.16) 

Using this notation, the second order differential equation (A.14) can be written 

as a first order state space equation of higher dimension as 

s = h(s) + ij(t)r, (A.17) 

where r is defined as 

r=(o)· 
i· 

(A.18) 

Following the procedure described in section 3.4, equation (A.17) above 

can be written as a first order matrix Liapunov equation of the form 

(A.19) 

where Q is the state space covariance matrix given by 

(A.20) 

80 is the power spectral density of the white noise process q(t), and A is the 

equivalent linear system matrix given, in components, by 

ah 
A;=~· 

uy; 
(A.21) 

This equation is integrated numerically using a 4th order Runge-Kutta method 

to find the time history of the covariance matrix Q. 

For this analysis, the same stiffness, mass, and damping values were used 

as for the previous test case. The power spectral density of the input base ac-

celeration for this test was So = 6.8. In order to test the method on a severely 
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nonlinear problem, the nonlinearity parameter 1! was chosen as 1.4. Calculations 

analogous to those described for the previous test problem show that the non­

linear term provides from 1.5 to 2.2 times as much restoring force as does the 

linear term at the stationary response level. Thus, the nonlinearity in this model 

is quite severe. 

The results of the calculations are presented in Figure 4.9 as plots of the 

time history of the normalized relative displacement variance at locations cor­

responding to the three masses of the discrete model. For each of these plots, 

the actual displacement variance was normalized by the peak value of the dis­

crete variance. In these graphs, the solid line shows results calculated using the 

new nonstationary continuous equivalent linearization method, while the dashed 

line represents results calculated using the discrete equivalent linearization the­

ory. The top graph corresponds to mass .l, the middle graph to mass 2, and 

the bottom graph to mass 3. In the plots, the two lines are coincident in most 

places. Thus, these graphs illustrate very good agreement between the discrete 

and continuous linearization methods. 

Based on the results of the above three validation calculations, the new 

nonstationary continuous equivalent linearization method is judged to produce 

reasonably accurate response statistics for nonlinear hardening systems. The 

long-time asymptotic stationary results calculated with the new method agree 

well with stationary statistics calculated from an approximate analytical solution 

to an analogous discrete system. The nonstationary results agree well with those 

calculated using a discrete equivalent linearization method. 
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A.4 Test Problem Four: Stationary Response 

of a One Element System with Softening 

Constitutive Law 

In view of the fact that most of the solution procedure for the arctangent softening 

nonlinearity is identical to that used for the cubic hardening nonlinearity, many of 

the test problems used for the cubic hardening system apply here also. Therefore, 

only the changes required for the arctangent softening nonlinearity are subjected 

to validation calculations in this section. 

In order to verify the formulation of the arctangent softening nonlinearity 

and the resulting minimization equations described above, a one-element (single-

degree-of-freedom) test problem is solved for its stationary solution. This solution 

obtained using the nonstationary continuous equivalent linearization method is 

compared against an approximate analytical result derived for a stationary dis-

crete SDOF system. The results of this comparison are discussed below. 

The equation of motion for the base excited nonlinear SDOF oscillator is 

mw + cw + f(w) = -mxo(t), (A.22) 

where m is the mass, cis a damping coefficient, f(w) is the nonlinear restoring 

force, and x0 (t) is the specified base acceleration. The nonlinear restoring force 

f ( w) is defined by 

!( ) 2 f _1 (7rkow) w =- ytan -- , 
7r 2/y 

(A.23) 

where /y is the yield force, and k0 is the initial stiffness. 

The benchmark solution used for comparison is an approximate result 

developed by Yang and Iwan in reference [23]. They derived the following expres-
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sion for the mean squared displacement of an arctangent softening SDOF system 

under Gaussian white noise base excitation: 

E [ 2] = 2(7rSom)
2 

w (cfvF ' 
(A.24) 

where S0 is the power spectral density of the input white noise process. In ref­

erence [24], Yang shows that the RMS displacement calculated from equation 

(A.24) is always within 11.4% of the exact solution, so this expression offers a 

' useful benchmark for verification of the solution procedure for the softening non-

linearity. 

For this comparison, a one element model was constructed for solution by 

the nonstationary continuous equivalent linearization method. The parameters 

used in this one element model of unit length are a£~' = 4.0, pA.L• = 2.0, 

and !2o. = 2.0. The stationary solution is obtained as the large time value of the •• • 

nonstationary solution. While not efficient, this method serves as a useful check 

on the late-time accuracy of the procedure. 

Using relations derived in a previous section, the analogous SDOF discrete 

system parameters are found to be k0 = 4.0, m = 1.0, and ~ = 2.0. Damping 

corresponding to 5% critical (based on the initial stiffness) was added to both 

systems. 

Each model was subjected to zero mean Gaussian white noise base excita-

tion with unit power spectral density. The calculated variance in relative displace-

ment using the numerical procedure is 101.9, while the analytical approximation 

(A.24) yields a displacement variance of 123.2. This represents a discrepancy of 

9% in RMS relative displacement, which is within the accuracy band of the ap-

proximate solution. Therefore, the continuous equivalent linearization procedure 

agrees quite well with this analytical solution. This small problem exercises all 
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of the new minimization equations derived for the arctangent softening system, 

so this good agreement between the analytical and numerical solutions indicates 

that the theory and numerical implementation are performing as expected. 

From the above results for two types of constitutive nonlinearities, it is 

believed that the new continuous linearization technique produces solutions of 

sufficient accuracy to be useful in practical engineering analysis. 
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Appendix B 

Evaluation of the Integral for the 

Arctangent Softening 

Nonlinearity 

In the course of deriving the minimization equations for the arctangent softening 

nonlinearity, it is necessary to evaluate the integral 

I= -r.itan- 1 
-- p(c:, i)didc:, ! oo !"' 2 (11" G0c:) 

-oo -oo 7C 2 ry 
(B.l) 

where 

P(e:,i) = 
2 

~l 2 exp [ 
7rU~Ui - p 

(B.2) 

and 
E [c:i] 

p=--. 
Oe(Ji 

(B.3) 

Define some constants: 

(B.4) 
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O'e(Je 
C"' = --

'"' 2(J 

2Ty 
C4 =-

7rC1 

1rGo 
cs = --. 

2ry 

Using these constants, the problem can now be written 

Define the i: integral as 11 by 

oo -..L(''-L<) 
I - J . "' ·J "> d. 1- e:e s. 

-co 

Using reference [25], entry 3.462.6, it follows that 

Define two additional constants 

so equation (B.12) becomes 

(B.5) 

(B.6) 

(B.7) 

(B.S) 

(B.9) 

(B.lO) 

(B.ll) 

(B.12) 

(B.13) 

(B.l4) 

(B.15) 

Next, substitute this equation (B.l5) back into the original double integral 

equation (B.lO) to get the remaining integral (after some manipulation) as 

(B.l6) 
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1 
Cg = --

2
- CG, 

c2oe 

so equation (B.16) becomes 

From reference [24], it is known that 

Letting 

defining 

! 00 0 0 11' 
xtan-1 (x) e-a"x" dx = -

2
erfc(a). 

-oo 2a 

x = cse, 

2- Cg 
a = """"":)'", 

C" 5 

and using the above result (B.19) yields 

I c, C7 1l' a' f' ( ) = ----e er c a . 
2 ? 2 c5 .... a 

(B.17) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

Simplifying out the intermediate constants c1 through c8 , it is easily shown 

that equation (B.22) becomes 

I= /f;rypa,e"'erfc(a), (B.23) 

where 

VZrv 
a= . 

1CG0a, 
(B.24) 

Finally, from the definitions in chapter 4, 

I=E -ryitan- 1 
--- , [2 (1l' Got:)] 

1C \2 Ty 
(B.25) 

so the desired result is 

E [
2 . _1 (1l'Goc:)] -r c:tan --
11'" 27 y 

(2 2 

= y -:;/vpa,e" erfc(a). (B.26) 

This equation appears as equation ( 4.97) in chapter 4. 


