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Abstract

This thesis presents a technique for obtaining the stochastic response of
a nonlinear continuous system.‘ First, the general method of nonstationary con-
tinuous equivalent linearization is developed. This technique allows replacement
of the original nonlinear system with a time-varying linear continuous system:.
Next, a numerical implementation is described which allows solution of complex
problems on a digital computer. In this procedure, the linear replacement system
is discretized by the finite element method. Application of this method to systems
satisfying the one-dimensional wave equation with two different types of consti-
tutive nonlinearities is described. Results are discussed for nonlinear stress-strain

laws of both hardening and softening types.
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Chapter 1

Introduction and Background

1.1 Introduction

Recent developments in computer technology have opened a whole new world
to the engineering analyst. Today, problems are routinely solved which only a
few years ago were considered prohibitively difficult. Great advances have been
made in both the problem size and problem complexity that can be analyzed.
These achievements have prompted a reexamination of the assumptions used in
the basic' formulation of many problems. Whereas previously limitations in the
analysis capability were the governing factor, now the limitations rest primarily
in the capability to construct accurate mathematical models for engineering sys-
tems. One consequence of this progress is a renewed interest in the treatment
of uncertainty in problem specification. This thesis presents a technique for the
direct incorporation of randomness in applied loads into the analysis of complex
nonlinear engineering systems through the theory of random vibration.

Most real engineering problems have uncertainty in their definition. One

common source of this uncertainty is the structure geometry. For example, often



it is difficult to know whether to model an interface within a mechanical system
as in full contact, partial contact, or no contact at all. Another frequent source
of uncertainty is in the material properties. Such uncertainties can arise from
environmental effects, production variations, or a lack of understanding of a ma-
terial’s constitutive behavior. Perhaps the largest source of uncertainty in many
analyses is in the specification of the external loads. This uncertainty often arises
when the loads result from a physical mechanism so complex that it is best mod-
eled as a random process in time, or a stochastic process. Simplistic assumptions
on the time variation of dynamic loads are frequently made to facilitate problem
solution, and are often based on inadequate data. Clearly, there is much to be
gained from a more realistic treatment of external excitations that are modeled
as random processes.

The classical deterministic approach to dealing with stochastic excitations
is to assume some average or best estimate functions of time for ﬁse in the anal-
ysis. At best, a parameter study is conducted to examine the sensitivity of the
analysis results to variations in the time history of the applied loading. In con-
trast, a random vibration analysis acknowledges and quantifies these uncertain-
ties, and thereby provides more useful information to the engineer. The analysis
can provide not just one solution, but a spectrum of solutions and their relative
likelihoods of occurrence.

There are two classes of problems which benefit most from a random vi-
bratiocn approach. The first class contains systems where reliability estimates are
essential; where a failure would lead to great loss of life or property. Examples of
such systems include nuclear power plants, offshore oil platforms, and aerospace

structures. The second class contains problems where uncertainty is particularly



high, and thus it is especially difficult to construct a meaningful deterministic
problem specification. Examples of problems in this category include wind and
earthquake response of structures. For engineering analyses falling into one of
these two categories, the extra effort required to perform a random vibration
analysis is well justified.

The remainder of this chapter begins with a brief definition of the prob-
lem to be considered in this thesis. Next comes a general discussion of stochastic
analysis methods for nonlinear systems. This is followed by a review of previous
developments in the field. Several popular techniques used in practice are dis-
cussed, each with its strengths and weaknesses, This chapter concludes with an
ovefview of the current work and its. relationship to existing techniques.

Chapter 2 presents the concepts of the new method developed in this
thesis. First, a precise specification of the problem to be solved is given. This
is followed by the mathematical development of the nonstationary continuous
equivalent linearization technique. A general discretization for the equivalent
linear system is then introduced. Finally, incorporation of the nonlinear terms is
discussed, and the range of nonlinearities amenable to solution using the current
technique is examined.

In Chapter 3, the numerical implementation of the mathematical model
developed in Chapter 2 is described. The finite element method is chosen for the
discretization, and an algorithm for computation of the equivalent linear parame-
ters on an element-by-element basis is described. Next, the state-space Liapunov
equation for the response covariance matrix is derived. Finally, a sclution tech-
nique is presented for the nonstationary response statistics. Simplifications which

arise in the stationary response case are also discussed.



Chapter 4 describes the application of this new procedure to a typical
class of problems: systems satisfying the one-dimensional wave equation with
a nonlinear constitutive law. Specific minimization equations for two example
nonlinearities are derived, and their implementation discussed. Validation calcu-
lation results are presented and compared with others in the literature. Physical
interpretations of additional results are discussed to highlight the influence of

each type of nonlinearity.

1.2 Problem Definition

This section describes the general nonlinear continuous system to be examined.
Consider the continuous nonlinear system in a domain D(x) described by the

PDE

Vi (a(x),w) + V- ¥ (c(x),w, W) + Q%(b(x},W) — m(x)W = p(x,t), (1.1)
where

w = w(x,t) is the dependent variable representing the “&ispla.cement” field,

a(x),b(x), and c(x) are “stifiness”, “damping”, and “nonlinearity” parameter

fields, respectively,
m(x) is the “mass” distribution in the system,
p(x,t) is the externally applied load,

¥ is the linear “stress” operator on the displacements w and “stiffness” function

a(x),



7V is the nonlinear “stress” operator on displacements w and/or velocities w

and “honlinea.rity” function c(x),

QL is a linear “damping” operator on the velocities w and “damping” function

b(x), and
x is a position vector in the domain D(x).

The terms in quotes above have been given physical interpretations in
the context of structural dynamics. However, the following analysis is in no
way restricted to that interpretation. Indeed, many other problems in diverse
fields of science and engineering give rise to equations of the form of (1.1) above,
and these may benefit as well from the approach presented herein. However,
to provide a concrete physical framework, discussion will center on the concepts
from structural dynamics indicated- in the definitions.

Physically speaking, a(x), b(x), and ¢(x) represent the material proper-
ties of the system under consideration. These material properties are permitted
to have spatial variations, so the stiffness, damping, and nonlinearity functions
depend on x. It is assumed, however, that a, b, and ¢ are known deterministic
functions of x.

On every point of the boundary 30(x), let the following sets of homoge-

neous boundary conditions hold:

BO(w) = 0 (1.2)

B (w) = o, (1.3)

where B{) and B{™ are sets of geometric and natural boundary conditions which

are linear homogeneous operators containing derivatives along and normal to



dD(x). Let the initial conditions be given by
w(x,0) = wo(x) - (1.4)

W(x,0) = Wo(x). (1.5)

It is useful to digress here and introduce some notational conventions that

will be used in the remainder of this thesis.

L w, and x in equation (1.1), represent indexed

¢ Boldface terms, such as 7
sets. These may be scalars, vectors, or tensors, depending on the num-
ber of indices required to describe the particular physical quantity under

consideration.

o Capital Latin letters, such as A and C, represent matrices on finite dimen-

sional spaces or linear operators on infinite dimensional function spaces.

¢ Superimposed dots denote differentiation with respect to time, so w = ‘?3—':’;
- 3
W=

Any deviation from these conventions will be clearly explained in the context in
which it arises.

Many systems of engineering interest can be modeled in the form of equa-
tion (1.1). For example, consider the axial vibration of a rod with a cubic-

hardening constitutive nonlinearity. The equation of motion of such a system

a (_8u\ 8| ,[ou\ 8%u
9z (E$)+5; B (5;) } =5 (16)

This system is cast into the above form by letting the stiffness parameter a

is

represent the elastic modulus E and the nonlinearity parameter ¢ represent the



coefficient E', with the operators defined as

' rE(Bu) = Boe (1.7)
(B ) = E du)” (1.8)
T oz} -’ '

Other examples could include torsiona,llvibra.tion of a nonlinear shaft or large
amplitude motions of a cable structure. Different nonlinear stress operators could
be used to model softening soil behavior or structural response characteristics.
Thus, the general form of equation (1.1) allows treatment of a wide class of
engineering problems in a unified approach.

It is assumed that the nonlinearity is symmetric. This restriction is nec-
essary in order that zero mean solutions can be sought for zero mean inputs.
Nonsymmetric nonlinearities often induce a constant offset, or drift, into the sys-
tem response. In order to avoid clouding the present discussion with needless
technicalities, this work will treat only the case of symmetric nonlinearities.

It is also assumed that the system is linearizable. For the present purposes,
it is sufficient to require that the effect of 7%V becomes small compared to the effect
of 7L as the response.becomes small. Many engineering systems can be formulated

such that this is true, therefore this is not a severe restriction in practice.

1.3 Background

1.3.1 Imntroduction

Analysis of linear engineering systems subjected to stochastic excitation has been
a subject of interest and study for many years. As a result, this theory is well

understood, and is in wide use in engineering practice today. In contrast, the



corresponding theory for nonlinear systems is not nearly as well developed. The
classes of nonlinearities are diverse, and the behavior of nonlinear systems is much
more complicated than that of their linear counterparts. Specific procedures for
handling individual nonlinearities have been developed, but little progress has
been made in developing widely applicable methods for implementation into gen-
eral purpose computer programs. As a result, analysis of nonlinear systems sub-
jected to stochastic excitation has been mostly confined to academic and research
laboratory settings. It is hoped that the work described in this thesis will help
make stochastic analysis of complex continuous nonlinear systems a viable option
for the practicing engineer as well.

It is useful to briefly consider the classifications of approaches to analysis
of systems subjected to stochastic excitation. First, one could classify approaches
based on the problem formulation as either linear or nonlinear. Similarly, the
formulation could be classed as either spatially discrete or continuous, depending
on whether ordinary or partial differential equations are involved. Alternatively,
one could consider the solution technique as either exact or approximate. Finally,
the desired solution itself could be divided into stationary and nonstationary
categories. The technique developed herein is categorized as an approximate

approach for the nonstationary solution of a continuous nonlinear system.

1.3.2 Existing Analysis Approaches

For each of the above types of problems, specific analysis methods have been
developed. These are described in this section, first for discrete systems, then for
continuous systems.

Discrete system formulations are the most common for stochastic analysis.



Extensive results for single degree-of-freedom (SDOF) models are available in the
literature. Small multi-degree-of-freedom (MDOF) models are often constructed
in an attempt to extend the SDOF results to more complex problems, with varying
degrees of success. These models serve well for problems where the lumping
of parameters is straightforward, but for many analyses the construction of a
meaningful MDOF nonlinear model is a prohibitively difficult task.

Solution approaches for discrete systems can be divided into frequency
domain solutions, time domain solutions, and Monte-Carlo simulation solutions.
Each of these methods is described below.

Frequency domain solutions are widely used in the analysis of linear prob-
lems. They easily handle complicated excitation spectra and stationary response.
Extension to nonstationary response is possible but somewhat complex. Strictly
speaking, nonlinear problems are not amenable to frequency domain solution
because the technique relies on superposition. Extensions to the theory enable
approximate solutions in cases where the nonlinearity is “small.”

Time domain solutions are used for most nonlinear problems, and for some
linear problems with simple excitation spectra. Time domain methods are espe-
cially convenient when the nonstationary response is of interest, since ensemble
averaging is typically used for the nonstationary statistics. Time domain solutions
become quite involved for complicated excitation spectra, however.

The most powerful technique available for solution of random vibration
problems is direct Monte-Carlo simulation. In this procedure, the digital com-
puter is used to generate a particular realization of the stochastic input, and the
deterministic solution is found to this single input using classical analysis tech-

niques. This process is repeated until the ensemble of realizations of the stochastic
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input represent the statistical distribution to a desired degree of accuracy. Then,
statistics are computed across the ensemble of responses obtained from these in-
puts. Although this method can, in theory, be used to solve almost any random
vibration problem, it is very costly in terms of computational resources. In addi-
tion, it provides limited insight iﬁto the behavior of the system under a different
stochastic input.

Continuous system formulations have not enjoyed the popularity associ-
ated with discrete system formulations for stochastic analysis. This is largely
because solutions for continuous systems are much more difficult than for dis-
crete systems. However, many engineering problems are of a continuous nature
and do not physically suggest a discrete model. Examples of these problems
include aircraft wings and fuselage structures subjected to strong acoustic exci-
tation. Techniques available for stochastic analysis of continuous systems include
analytical continuous solution, discretization, and Monte-Carlo simulation. A
summary of each of these methods is given below.

Analytical continuous solutions are quite difficult to obtain, since partial
differential equations replace the more tractable ordinary differential equations of
discrete systems. Consequently, few exact solutions are available, and those which
do exist are predominantly for linear systems, simple geometries, and white noise
excitation. The available exact solutions, while restricted in their applicability,
do serve a valuable role as benchmarks for the emerging array of approximate
solution methods.

An effective approximate approach to solution of the continuous problem
is to convert it into a discrete problem. This conversion is classically based on

modal decomposition for linear and mildly nonlinear problems. Recent studies
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have also used finite difference and finite element techniques for the discretization.
This approach works very well for linear problems, but the effective discretization
of nonlinear continuous systems remains an area of active research.

Monte-Carlo simulation can also be used in a varied form for continuous
systems. If closed-form deterministic solutions are available, then they can be
implemented for calculations on a digital computer. Alternatively, a continuous
system model can be implemented on an analog computer and simulation per-
formed with no knowledge of the analytical form of the solution. Monte-Carlo
simulations for continuous systems possess the same advantages and disadvan-

tages as described above for discrete systems.

1.3.3 Brief Review of Research in Nonlinear Stochastic
Analysis

Most methods for the stochastic analysis of nonlinear systems, both discrete
and continuous, can be divided into two broad classes: those which derive a
Fokker-Planck-Kolmogorov equation for the transition probability density of the
response, and those which deal directly with the stochastic differential equation.
The differential equation methods can be further divided into perturbation meth-
ods and equivalent linearization methods. In what follows, each of these topics
will be exaniined in more detail.

In many cases of practical interest where the excitation is limited to Gaus-
sian white noise, it can be shown that the response is a Markov process, and the
related Fokker-Planck equation may be derived from the original stochastic differ-

ential equation [1,2,3]. As an example, consider the following nonlinear structural
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response problem in terms of a second order equation of motion:

d? d
=+ f(z,2) = at), (1.9)

where z is a generalized displacement, f(-,-) is the generalized restoring force
which is a nonlinear function of z and/or £, and q(t) is stationary Gaussian
white noise with constant power spectral density Sp. Then, assuming a stationary

response, the associated Fokker-Planck equation takes the form

.8p & . d*p
:B-a—; - % [Pf(.’B, 2:)] - Soazz =0, (1.10)

where p(z,z) is the joint probability density function of the displacement and
velocity response. Successful solution of this equation yields the transitional
probability density function of the response process. Caughey [4] has obtained
a solution to this equation for certain classes of nonlinearities. Yong and Lin
[5] have recelntly obtained a more general solution applicable -to a larger class of
nonlinearities. In contrast, general soluf;ions to the nonstationary version of this
equation have been found only for linear systems.

While many linearization techniques are in use in modern analysis, only
two lend themselves well to stochastic analysis: perturbation and equivalent lin-
earization. FEach of these approaches will be discussed in some detail in the
following paragraphs.

Perturbation techniques were applied to random vibration problems by
Crandall in references [6,7]. These methods are useful when the nonlinearity
in the governing equations is small. This scaling is frequently expressed in the
form of a small parameter (the “perturbation parameter”) multiplying a nonlin-
ear function. The basic idea in perturbation theory is to expand the solution

about the linear solution in a power series in the small parameter. Analysis then
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proceeds by matching powers of the small parameter, thus yielding a sequence of
linear equations to be solved. For example, consider the following equation for a

single degree-of-freedom oscillator:
£ + 2w, + wiz + en{z, ) = F(t), (1.11)

where % is a nonlinear function and ¢ is a small parameter. Assume a solution to

this equation as a power series in €
2(t) = zo(t) + ez1(t) + eza(t) + - (1.12)

Substituting this assumed form of solution into the governing equation and match-

ing powers in ¢ yields a set of linear equations for zg,z;,... of the form
Ty + 26wnTo + wizy = F(t) (1.13)

Ty + 2¢wez) + wf,:cl = —n (.’Eo, .’J':o)- (1.14)

The solutions to these equations may be combined to compute various statistical
properties of the original nonlinear equation. For example, the mean of z(t) is
given by

Ela(t)] = B [zo(t)] + B [z (t)] + - (1.15)

and the autocorrelation (to first order in ¢€) is
E[z(t + r)z(t)] = Ezo(t + r)zo(t)] + €E [:c.;.(t.+ )z (t)]
+eE [zo(t)zi(t + 7)]. (1.16)
Typically, only the zeroth and first order solutions are calculated. While con-

ceptually simple, this approach can be algebraically cumbersome for continuous

systems, and does not easily lend itself to numerical implementation.
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Equivalent linearization for stationary random vibration was first investi-
gated by Booton {8] and Caughey [9]. Iwan and Mason [10] extended the technique
to the nonstationary response of discrete systems. Krousgrill and Iwan [11] fur-
ther extended the ideas to the steady state response of continuous systems. The
. basic idea in equivalent linearization is to replace the given nonlinear system with
an “equivalent” linear system. The parameters of the equivalent linear system are
chosen to minimize some difference between the original nonlinear system and the
equivalent linear system. This procedure leads to expressions for the equivalent
linear parameters in terms of the system response statistics.

To illustrate the application of discrete equivalent linearization, consider

the nonlinear single degree-of-freedom described by the equation
£+ f(z,2) = F(t). (1.17)

Assume that an approximate solution can be obtained from the linearized equa-~
tion

% + bt + k.z = F(t). (1.18)
The error of lin_eariza.tion is a random process described by
e= f(z, %) — b,z ~ k.x, (1.19)

which is the difference between equations (1.17) and (1.18). Some measure of
this error is then minimized to generate equations for b, and k, in terms of the

response statistics. A frequent choice is to minimize the mean square error, thus

requiring
aicE =0 (1.20)
ai,E €] =o. (1.21)
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Manipulating these equations and assuming that the response process is sta-

tionary leads to the following expressions for the equivalent linear damping and

stiffness:
_ E[zf(=,z)]
be w— —":E_{iq—— (1-22)
_ Elzf(z, )]
k, = ~ (1.23)

Stationary solutions usually require iterative determination of the equivalent lin-
ear parameters, while nonstationary solutions avoid iteration if an explicit time
integration procedure is used.

Equivalent linearization holds two main advantages over perturbation meth-
ods. First, equivalent linearization is applicable to more general classes of nonlin-
earities than are perturbation methods. In particular, hysteretic systems are very
difficult to analyze using perturbation techniques. In contrast, many investigators
[12,13,14] have successfully applied equivalent linearization techniques to a wide
variety of hysteretic systems. Second, the equivalent linearization procedure is
better suited to numerical implementation. These observations motivate the use

of equivalent linearization in the present effort.

1.4 Overview of Current Work

In view of the extreme difficulties in obtaining general solutions to the govern-
ing nonlinear equations, a linearization approach is adopted in this work. The
original continuous nonlinear system is approximated by a continuous linear sys-
tem with time varying coeflicients. This replacement is accomplished using a
nonstationary equivalent linearization technique developed in this thesis. The

equivalent linear partial differential equations are then discretized using the finite
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element method, and the resulting equations are cast into a first-order Liapunov
covariance equation. Finally, a time integration procedure is presented to solve

for the evolution of the system covariance response.
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Chapter 2

Formulation

2.1 Introduction

As is evident from the discussion in the previous chapter, there is considerable
room for improvement in. general methods for obtaining the nonstationary re-
sponse of nonlinear continuous systems. Exact solutions are rare, particularly for
nonlinear problems. Also, analytical closed-form solutions are almost always re-
stricted to simple geometries, making them of limited value for direct application
to engineering problems. Monte-Carlo simulation escapes these limitations, but
at the expense of considerable computational effort. Thus, an improved approach
for obtaining the random response of nonlinear continuous systems is desired.
In view of the difficulties in obtaining general solutions for the stochastic
response of nonlinear continuous systems, a linea.rization- approach is adopted
in this thesis. The original continuous nonlinear system is approximated by a
continuéus linear time-varying system. This replacement is accomplished using
a nonstationary continuous equivalent linearization technique developed in the

following sections.
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2.2 Nonstationary Continuous Equivalent Lin-

earization

In this section, the general nonlinear continuous system to be solved is restated.
Then, an equivalent linearization procedure applicable to a nonlinear, continuous
stochastic system under nonstationary response conditions is derived.

Equivalent linearization of a continuous system was first studied by Krous-
grill and Iwan [11,15] in the context of steady-state deterministic analysis and
stationary random response. In what follows, the technique will be extended to
include cases where the excitation and response are assumed to be nonstationary
random processes.

Consider the continuous nonlinear system in a domain D(x) described by

the PDE
V-rl(a(x),w) + V- ¥ (c(x), w,W) + Q" (b(x), W) — m(x)W = p{x,t), (2.1)

where all terms are as defined in section 1.2.
On every point of the boundary 3D(x)}, let the following sets of homoge-

neous boundary conditions hold:

B¥W(w) = 0 (2.2)

BOw) = 0, (2.3)

where B(#) and B(") are sets of geometric and natural boundary conditions which
are linear homogeneous operators containing derivatives along and normal to

dD(x). Let the initial conditions be given by

w(x,0) = wo(x) (2.4)
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w{x,0) = Wo(x). (2.5)

The objective of continuous equivalent linearization is to replace the non-

linear PDE, equation(2.1), by some member of a class of linear PDE’s for which
solutions are easily obtained. The linear replacement equation is chosen such
that some difference minimization criteria is satisfied. Since the nonstationary
response is of interest, the class of continuous linear systems considered must

contain time-varying coefficients. Thus, the equivalent linear system is taken to

be of the form
V.- rL(a,w) + V-1l (a(x,t),w) + V - 7E(B(x,1), W) + Q¥ (b, W)
— m(x)W = p(x,1}, (2.6)

where a(x,¢) and B(x,t) are sets of {unknown) equivalent linear parameter fields,
and all other terms are as previously defined.

Equation (2.6) is obtained from (2.1} by replacing the nonlinear stress op-
erator 7V (¢, w, W) with the sum of an equivalent linear stiffness operator 7 (a, w)
and an equivalent linear damping operator 7%(3,W). All other terms in equation
(2.1) are already linear, and therefore are retained in their original form. It is ap-
parent from the form of the equivalent linear equation {2.6) that « characterizes
distributed stiffness properties, while 8 represents distributed damping properties
of the nonlinear system.

Note that the equivalent linear damping is limited to strain-rate related
damping. Note also that, even though the equivalent linear parameters are treated
as functions of time, their explicit dependence is on the nonstationary response
statistics rather than on time. That is, the expressions for the equivalent linear
parameters involve the current response statistics (of the linear system), and since

the response is considered nonstationary, these response statistics vary with time.
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It frequently happens in engineering that the region over which loads act is
known or easily determined from geometric considerations, while the time history
of the applied loading is much more uncertain. Therefore we will herein restrict
attention to problems of this class by assuming the applied forcing function p(x,t)
to be deterministic in its spatial variation but random, Gaussian, zero mean, and
nonstationary in time.

Many real excitations result from the combination of a number of different
physical processes. According to the central limit theorem of probability theory,
under suitable conditions, the sum of a large number of different statistical distri-
butions tends toward a Gaussian distribution. Hence, assuming a Gé.ussia.n time
dependence for the loading seems like a good first approximation. In addition,
many processes of engineering relevance are of sufficiently short duration that
they must be considered transient, or nonstationary. In order to accommodate
these phenomena the statistical parameters of the Gaussian process are allowed

to vary with time.

2.3 Minimization Equations

With the form of the equivalent linear system now specified, ail that remains
is to specify a procedure for determining the equivalent linear parameter fields
a(x,t) and B(x,t). Since the excitation and response are nonstationary random
processes, derivations are cast in terms of a typical sample function, or particular
realization, of each random process. Nonstationary statistics are then computed
by taking ensemble averages across a collection of sample functions. Let *p (x,1)

represent a sample function of the nonstationary stochastic process p(x,t). The
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sample functions of the response *w and *w then obey
V-ri(a,*w) + V- ¥ (c, w, " W) + QT (b, *Ww) — m(x)¥W = *p(x,t)  (2.7)
on P(x), and

BY(w) = 0 (2.8)

B™(*w) = 0 (2.9)
on 8D(x), with deterministic initial conditions

kw(x,0) = wo(x) (2.10)

bW(x,0) = Wolx). (2.11)

The approximations to the sample functions obey the equivalent linear

equation

V. ri{a,bw) + V - 5 (afx,t), *w) + V - tL{B(x, t), *W) + QF (b, W)

— m(x)*W = *p(x,t) (2.12)

on D(x), with the same boundary and initial conditions. Strictly speaking, one
should use a different notation for the approximate solution obtained from the
linearized system and the exact solution to the original nonlinear system. To
avoid clouding the discussion to follow with additional notation, this distinction
is not made in the notation used in this work. The reader should keep in mind,
however, that this distinction does exist. Situations where confusion arises as to
which interpretation is intended are clarified in the surrounding text.

In order to choose the equivalent linear parameter fields a(x,t} and 8(x, t),
some measure of the error in replacing the original nonlinear system by an equiv-

alent linear system must be developed. Define the “stress difference” function
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A(x,t) for the k** sample function as
kA (x,t) = rE{a(x,t), *w) + 72(B(x, 1), *W) — ™V (c, Fw, *W) . (2.13)

This choice of difference definition is motivated by its consistently superior per-
formance for steady-state deterministic problems (Krousgrill {15]) and its reduced
continuity requirements when compared to equation differences or strain energy
differences.

Clearly, the optimum linear repla.cément system is the one which generates
the minimum error. Thus, determination of the equivalent linear parameter fields
requires minimization of the difference * A (x, t) between the nonlinear system and
the equivalent linear system. In general, exact spatial minimization on a point-by-
point basis will not lead to a solution, so an approximate approach is developed
below which minimizes an average measure of the difference.

Define a spatial averaging operator G;(u) on a continuous field u by

G.(u) = f,, o 0 400 (2.14)
With this definition, it is easily shown that:
o G.(u+v) =G,(u) + Go{v) (Linearity)
e G.(u?) >0Vus0and G,(0) =0 (Positive Definiteness).

Using this operator, define a spatially-averaged measure of the stress difference

as a function of time by

kn(t) = G.(*A -*A). (2.15)

Then, *(t) is the spatially averaged value of the norm of the instantaneous stress

difference corresponding to the sample function *p(x,t) of p(x,t). Finally, taking
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the ensemble average of equation (2.15) yields
n(t} = G:(A - A). (2.16)

It is clear that £ [n(t}] provides a measure of the total “stress difference”
at any time t resulting from replacing the original nonlinear system (2.1) by the
equivalent linear system (2.6). The equivalent linear system will now formally be
defined at any time t as that system which causes E (5] to attain its minimum
value on the class of solutions to the equivalent linear system. That is, the stress
difference A is evaluated for solutions of the linear system. Thus, it remains only

to find the time and space va.fying functions e(x,t) and B(x,t} such that
E[p] = minimum Ve,B. (2.17)

Using equation (2.16) along with the properties of the expectation opera-

tor, (2.17) can be written
E[G,(A - A)] = minimum. (2.18)

Necessary conditions for the extremization of £ [G.(A - A}] are

0E(G.(A-A)] _ | (219)
caay
oF |G, :
e . (2.20)

Note that these equations are highly symbolic, since @ and 8 are really functions,
and a complete rigorous argument requires a calculus of variations treatment.
The above equations are sufficient for the present purposes, however.

Sufficiency of these conditions is established by showing that equations
(2.19) and (2.20) yield a minimum, and not a maximum, for E [G.(A - A)]. This

result will be established in the next section.
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Invoking the linearity of the expectation operator and inverting the order

of differentiation and expectation, (2.19) and {2.20) become

Ellea-a) = o, 2.21
|Z6ua-a) (221
E[%G,(A-A)] - o. (2.22)

2.4 Solution of the Minimization Equations

In view of the fact that « and 8 are functions of both space and time, general
analytical solutions to these minimization equations are not available. As an
alternative, a computationally efficient approximate approach for solution of the
minimization equations (2.21) and (2.22) is developed below.

Approximate the equivalent linear parameter fields a(x,t) and 8(x,t) by

the following expansions:

a(x,t) = iq&;(x)&;(t) (2.23)
Blet) = S abIB(), (224

where &;(t) and ;(t) are unknown functions of time, and ¢;(x),i = 1,..., M, are
linearly independent &nown functions of x.

Using these expansions (2.23) and {2.24), it follows that

M
th{a(x,t),w) = TL(§¢,.(x)&,-(t),w) (2.25)
M
= ;rL(¢i(X),W)&,-(t) (2.26)
Y
= X rH(w)a(t), (2.27)

i=1
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and

M
5(B(x,1), W) = “’L(§¢’i(x)3¢(t),w) (2.28)

M

= Y rE(gi(x), W)Bi(t) (2.29)

=1
M

= 3 rEWBL). (2.30)

i=1

The stress difference A can now be written in terms of the time-varying

coefficients &; and 3; as

A = A&, B,t) (2.31)

where
& = [&1,...,6u] (2.32)
B o= [BuiBu] (2.33)

Using the expansions for @ and 8 yields the revised form of the Euler

equations for the minimization as

AE [G’,, {a- A(&,fs,x,t)}]

5 = 0 (2.34)
BE[Gz {A-?(&,,Z‘i,x,t)}] = 0.i1=1.....M (235)
aﬁi ’ ’ ) .

As discussed in the previous section, the a.bove equations are necessary, but
not sufficient, for minimization of E [G, (A - A)]. Following the line of argument
of Spanos in [16] and Krousgrill in {15], it is demonstrated below that equations
(2.34) and (2.35) do actually produce a minimization of E [G, (A + A}].

Let &; and 3,,, fork=1,...,M, satisfy the minimization relations above.

Define another set of parameters &, and 8, by
&, = @+ 08 (2.36)

B, = ﬁk+’5l§ka (2.37)



26

and let

A = A@D) (2.38)

A = A(a,B). (2.39)
Now expand E [G,,(E . 5)] in a Taylor series about & and J:

elc.(A-4)] = E[G’ (A-A)]

+Z E[G (A - A)] b4

1—1

+Z Gz(A - A)] 8B;

a-—l

1 M M 2 .
"ZZB SaE(G(A - A)] st

1—1_1 1

~§§%MEM( a)) 5B, 5B,

M M 32 N
—E[G.(A - A)] 68:68;.  (2.40)

+2 2

=] j= Ia i

But, since E[G,(A - A)| satisfies equations (2.34) and (2.35), equation (2.40) can

be simplified to

ElG.(A-A)] = E[G.(a- A)]
%f {‘ 5 B1GH(A - A)] 6asd,
;ii S ElG.(a-A) 6B, 6B,

+.§§a 2,. E[G.(A - A)] §&;68;. (2.41)

Now, recalling that A is linear in &, and 3,” the higher order derivatives in

equation (2.41) can be expressed as

32

b0 (242)

dA aA)]

E[G.(A-A)] = 2E [Gz(ga—‘_-%:
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o9? A oA

3ﬁ aﬂ ——FE[G,(A - A)]=2F |G, (EE: . -ﬁ)jl (2.43)
o* dA SA

BagaﬁjE [Ga(A - A)|=2E [G, (55- . -az-)} . (2.44)

Using equations (2.4 ) through (2.44) in (2.41) gives
E[G.(A-A)] = E[G,,(A - A)]

+Z):E [G ( -22)]6&;5&,-

1-13 1
+EZE (aﬁ -3;)}63,-63,-

i=1j=1
M M
+2>3 S E\G

i=1 j=1

Next, let two functions be defined as follows:

M AA
— b&; 2.4

=1

Il

by (5)
u M oA .

h(68) = 3 2263, 2.47

(6D) = Lo oh (2.47)

then equation (2.45) can be written (using the linearity of E|-] and G(+))

E[G.(A-A)] = E[G:(a-4)]
+ E[G, ((h1(6&) + hy(5B))

(hy(68&) + hz(5ﬁ))) ] (2.48)
The positive definiteness property of G.( ) requires that
E (G, ((h1 + hy) - (h; + hy})] >0, (2.49)

and therefore the desired result

E[G.(A-3)] > E[G.(Aa-A)] (2.50)
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follows. This relation assures that the extremum produced by equations (2.34)
and (2.35) is indeed a minimum.

Up to this point « and B have been considered to be sets of unknown
parameters. To expediie development of specific minimization equations and
simplify notation, assume that « and B are sets of one parameter each, i.e.,
scalars o and . The methodology is in no way restricted to this case.

Interchanging the order of expectation, differentiation, and spatial averag-

ing in {2.34) and (2.35) and invoking the linearity of G, gives

E[G,, (A-g-%)] =0 (2.51)
E[G, (A-%—%)] - (2.52)

Using the definitions (2.27) and (2.30) in (2.51) above gives
5o {(z  (w) +>;f ORI
: (T‘_L(w)) }] =0 (2.53)
or rearranging,
oottt o [ S o]
E[G.{tV(e,w,W)-F(w)}] . (2.54)

Equation (2.54) can be written in matrix form as

Aad+CB=G, (2.55)
where
4y = E|[G,{rF(w) rFw)}] (2.56)
Cy = E[G:{rF(w)-rt(w)}] (2.57)
G = E[G.{rV(c,w, W) 7F(w)}] (2.58)
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Using definitions (2.27) and (2.30) in (2.52) gives

M M N
E [Ga { (;Tf(w)&k(t) + kz_:lr,f'(ﬁr)ﬁk(t) - rN(c,w,v'v))
- (sE(w))}] =0 {2.59)

or
Blo.{ St e || + o {Sre - wwso)] -
E[G.{m¥(e,w, %) -tE(w)}] . (2.60)
In matrix form, (2.60) becomes
Da+ BR=H (2.61)
where

Dy = E[G.{(w) -E(w)}] (2.62)
By = E[G.{sE(w) rEw)}] (2.63)
H, = E|[G.{r¥(c,w,w) - rF(w)}]. (2.64)

Note that C = D7. If all stochastic processes are assumed to be stationary,
then the displacement-velocity covariances vanish and it is can be shown that
C = D = 0, and thus the two minimization equations uncouple. This result does

not carry through for the nonstationary case, however.

2.5 General Discretization

In order to develop the minimization equations in a form suitable for numeri-
cal implementation, the solution is spatially discretized in terms of deterministic

spatial basis functions and stochastic time coefficients. In addition to allowing
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digital computer implementation, spatial discretization allows solution of prob-
lems involving complex geometries which are intractable by other methods.

To simplify the notation, assume that the dependent variable, w(x,t), is
just a scalar, w(x,t). Equations similar to those which follow are easily developed
for cases where w is a vector.

Let w(x,t) be approximated using known deterministic spatial basis func-
tions ¥, (x) and unknown stochastic time coefficients u;(t), ¥ = 1,...,N. Repre-

sent this discretization by
N
w(x,t) = Z“l Y (x)u (2). (2.65)
This general form accommodates both global discretizations, such as used in
modal analysis, and local discretizations, such as used in finite element analysis.
Each of these techniques will be discussed further in a subsequent section.

Before casting the minimization equations in terms of the discretized so-

lution, it is helpful to note some applicable results.

Claim 1 If R and S are linear spatial operators on w, then equation (2.65)

tmplies

RWOE[u()] (2.66)

M=

E[R(w)] =

S
I

1

M=
M=

E[R(w)- S(w)] = R(x) - S(G)E [ur(t)ui(2)].- (2.67)

=
Il

1

-
il

1

In addition, since w has zero mean in time,
Elw] = Z e (X)E [ue(t)] = 0. (2.68)
Furthermore, since the basis functions ¥, are linearly independent,

Elus(t)] =0, k=1,...,N. (2.69)
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The following theorem was first stated by the Russian mathematician
Kazakov in reference {17}, and was popularized in structural dynamicsk by Atalik

and Utku in reference [18).
Claim 2 Consider a single-valued function of n variables

a(y) = aly1,y2,+ -+, Yn) (2.70)
where

e y is a jointly Gaussian random vector process with zero mean,

e g{y) is sufficiently smooth so that first partial derivatives with respect to

vi, t =1,...,n, exist, and

n
e |g(y)| < Aexp Zy;?, a < 2, for some arbitrary A and any y.

j=1
Then,
Elyq(y)| = E [yy"| E[Va(y)], (2.71)
where
g 9 o
Vil — e | 2.72
[am s Byn] (2.72)

It is noted that the third requirement in the above claim simply limits how fast
g can grow as y grows. As will become clear in the next section, y plays the role
of the response state vector, and ¢ plays the role of the nonlinear stress operator.
Thus, roughly speaking, the third condition above says that the dependence of the
stress on a norm of the state vector should be weaker than exponential growth.
This restriction is satisfied by the example nonlinearities discussed in chapter 4,

and by many other nonlinearities of engineering interest.
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Finally, recall that for Gaussian random variables, higher order moments

can be expressed in terms of the 2"¢ order moments [3]; for example:

E [y1v2ysya] = E [11%:] E [ysya] + B [y1s] E [v2y4] + B [v1v4] E [y2y3] . (2-73)

With these results, discrete minimization equations can now be developed
by combining the approximation (2.65) with the general minimization equations
(2.55) through (2.64). Since it was established that D = C7 in the previous
section, no explicit expressions for D are given. It is understood that D is easily

constructed when needed. Using {2.65) in the definition of 7*(w) yields
N
CTHw) = g dew)
k=1
N
= 20 (dn)ut). (2.74)
k=1

Using (2.74) above in the definition (2.56)} gives

Ay = [ {(Zf-" i) ue(t ) (z,,.r.w‘ u,(t))}]
- [./;( }(kZ“Z; E () rL(zbz)) dp(x)u,,(t)u,(t)]
N ﬁzE[" Du)] [, ) o) D). (2.75)
Define

Ea(t) = Elug(t)u(t)]

Ey(t) = Elux()u(t)], (2.76)

then equation (2.75) becomes

N N
Ay =33 Eut) [  tF(s)-rF()dD(x). (2.77)

k=1i=1 pex) 7
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Similarly, using (2.74) in (2.57) gives

N N
= 23 Bule) [, F ) ). (218)

Following the same procedure, using (2.74) in (2.63) gives
N N
S Eule) [ eE ) - i )dD(x). (2.79)
k=11=1 D{x)
Using the discretization in the expressions for the right-hand-side vectors
(2.58) and (2.64) yields
N
G,' = E [Gz {TN(c,w,TiJ) . (Z f'-L(T,bk)uk(t)) }}
k=1

Z f i) ™ (e, w, ) - 7 (i) ua(t) ] 4D (x) (2.80)

H = E [G,,{r”(c,wﬂf’)' (i ’f(“”‘)ﬁ"m) H

k=1

= Z f D) (csw, ) - 2 (i) (t) | dD(x) . (2.81)

The above two expressions containing the nonlinear stress operator must
now be written in terms of the response covariance matrices. This will be de-

scribed in the next section.

2.6 Nonlinear Terms

In order to calculate the equivalent linear parameters & and ﬁ, it is necessary to
express the minimization equations in terms of the response covariance matrix
and known quantities. The equations for the A, B, C, and D matrices are already
in that form, and need no further manipulation. However, the right-hand-side

vectors, given by equations (2.80) and (2.81), contain the nonlinear stress operator
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7V acting on w and & directly. Following is a procedure to express these vectors
in terms of the desired response statistics.

First, write equation (2.71) in components as

N 6 g
Elyiq(y)] =2 Elyw] E |5~ (2.82)
=1 Ui
Recalling the discretization for w and 1, it is clear that the dependence of V¥

on w and w is through the nodal response vectors u and 1. This dependence is

shown explicitly in the notation
™V (w,w) = V{4, u,10). (2.83)

Now, applying the component form of the Atalik and Utku result (2.82)
to equation (2.80} yields

G; = Z/ ZE[ukua]E[ 0 (r N(Tb,u,ﬁ)"}L(’/’k))]

2(x) 1=

+ZE[uku;]E[ e ( N, u,1) - TL(’lle))] D(x) (2.84)

and similarly equation (2.81) becomes

Ho= 3 [ 5 Bliul B [ (7Y (00,) o)

D(x ‘_

+ EE[uku;]E{ a; (™ (@, u,0) - 7, (gbk))] dD(x). (2.85)

l—.—
Performing the indicated differentiations and noting that rf‘ (¥r) is not a

function of u or u yields the Simpliﬁed forms

5|2 igu)ano

+3 ;Eki [ . E [ﬁ%ﬁ%-‘ﬂ] - 7L () dD(x). (2.86)
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and

. {éﬂm} - 1E(e)dD(x)

k=11=1 D{x) 31}4
ARELANN ar¥(y,u,w)]
+,,Z=:1§E"‘fp(x)E[ du, "]'f.-(?!)k) dp(x). (2.87)

The nonlinear stress operator can frequently be expanded as a power series
of u and 1, and thus the derivatives of 7V can be expressed in terms of higher
order moments of u and 1. Then, using the property of Gaussian random variables
given in (2.73), these higher order moments can be expressed in terms of the 2"¢
order moments of u and 1. Thus, the G and H vectors are expressed in terms of

the desired response covariance matrices.
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Chapter 3

Numerical Implementation

3.1 Introduction

In the previous chapter, an algorithm was developed to replace the original nonlin-
ear partial differential equation with an equivalent linear time-varying equatién.
Thus, solution of the original nonlinear system has now been reduced to the so-
lution of an equivalent linear system at each time step. In this chapter, specific

procedures are developed for obtaining that solution.

3.2 Finite Element Discretization

Thus far, minimization equations have been derived using a general discretization.
These equations will now be specialized using the finite element method.

The finite element method is widely used to solve solid and structural
mechanics problems. The popularity of this technique is due to its ability to
handle complicated geometries and inhomogeneous material properties, and its

ease of implementation in a general purpose computer program. The ability
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to solve problems with complicated boundaries stems naturally from the local
nature of the interpolations within each element. Also, these local interpolations
make it easy to have different material properties in different elements, thus
permitting great flexibility in modeling material inhomogeneity. Finally, since
complicated problems are treated as an assemblage of simple “elements,” the
finite element method naturally lends itself to solution by digital computer. These
characteristics of the finite element method make it an effective choice for solution

of the equivalent linear system, as is described below.

Let the domain D(x) be subdivided into N elements D(9)(x) such that
N
D(x) =3 D¥(x), (3.1)
=1
where

D{)(x) is the domain of the k** element, and

N is the number of finite elements in the domain,

Further, let w¥)(x,t), x € D¥(x), denote the restriction of w(x,t) to
D®(x), so

w¥(x,t) = w(x,t) vxe DW¥(x)

= 0 vx ¢ DR (x).

Then, from equation (3.1), the solution field is represented as the summation of

(3.2)

all of these restrictions,
wix,t) = i w® (x,1). (3.3)
k=
Within an element D(*)(x), let tllle dependent variable w{*)(x,t) be ex-
pressed as the product of spatial basis or shape functions N}k)(x) and nodal
values ug-k) (2) as
NEN

w¥(x,t) = 3 N (x) ul(t), (34)

=1
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where NEN is the number of nodes per element, N}k) denotes the finite element
shape function for node j of element &, and ugk) refers to the value of w* at the
7t* node of the k** element; this node number is therefore a local one for element

k. Thus, the discretization of w(x,t) can be expressed as

N N NEN )
w(x,t) = ;w(k)(x,t) = ’; 21 N®(x) u} ). (3.5)

Note that the shape functions N}k) (x) are deterministic functions of space and
that the nodal values ug.k)(t) are nonstationary stochastic processes.

The spatial basis functions N}k) (x) should satisfy the convergence criteria
for finite element shape functions. The sufficient conditions for convergence of
the finite element method are described in the book by Hughes [19] and are not
repeated here. Special elements have been derived for the solution of 4** order
equations which do not satisfy the convergence criteria but do perform well in
practice. Although these criteria are sufficient but not necessary conditions for
convergence, special care should be taken when using elements not satisfying the
convergence requirements.

The finite element methodology described above may now be incorporated
into the minimization equations developed in the previous chapter to cast those
equations iﬁ a more specific form.

Using the finite element approximation (3.5) in equation (2.77) and rear-

ranging gives

N N NENNEN
Ay ZZ A PRIGSIO]
k=1m=1 =1 p=1
]y THOVE) - (V) D (). (3.6)

The above equation can be simplified considerably through use of two
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observations. First, recall that by definition
k
N¥(x) =0 vx ¢ DM (x), (3.7)

that is, the shape functions for element & vanish everywhere in the domain outside
of element k. Second, assume that the chosen reference configuration is stress-free,
S0 ‘

rL{0) = 0. (3.8)
With these two points in mind, it is now clear that the kernel of the integral in
equation (3.6) is nonzero only when N,(k) and Ném) belong to the same element,
i.e., when k = m. Thus, the integral in (3.6) can be replaced by its restriction to

element k& and the summation over m dropped to get

N NENNEN

=X 3 Y B [, ) B E)aeRE),  (69)

k=l =1 p=1

where E;,,-is defined as in equation (2.76). Thus, the calculation of the matrices
in the minimization equations has been significantly simplified.
Applying a similar argument to equation (2.78) and (2.79) and using (3.5)

gives
Co=3 % X B [, ) @aPe o)

and

N
k
By=Y. 3. > BPW [, HFNP) - ad¥. ()
Incorporating the finite element approximation (3.5) and the observations

(3.7) and (3.8) into the equations for the right-hand-side vectors G and H gives

N NENNEN

G=> 3 X B fm,‘,m rH(N®) - E [:; } dDW)(x)

k=1 r=1 p=l

N NENNEN

e Y 2 B0 [, ) B[ Ilovw e

k=1 r=1 p=1
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and
ie i (2 7 : X
priiear i A ul®

N NENNEN

2 > B [,

k=1 r=1 p=1

orN
a,&’(k]

r

L (NW) - B [ ] dp®(x). (3.13)

*)(x)
Comments made in the final section of the previous chapter regarding the

nonlinear stress operator apply here also.

3.3 Equivalent Linear Parameter Basis Functions

With the minimization equations now specialized using the finite element method,
it remains only to make a specific choice for the basis functions used in the
approximation of the equivalent linear parameters. Recall the expansions for the

equiwfa.lent linear parameters:
a(x,t) = Z &; (X) &; (t)

B(x,t)

!

g
A
£
®
=

Since the replacement linear system is discretized using the finite element
method, choose the equivalent linear parameters to be constant within an element.
This choice allows the approximation of the equivalent linear parameters to be
changed in the same way as the approximation of the equivalent linear solution
through refinement of the finite element mesh. Thus, using more elements in a
given area increases the accuracy of both the solution and the equivalent linear
parameters. This approach is consistent, since sharp gradients in the equivalent
linear parameters would be expected to produce sharp gradients in the solution,

thus requiring a finer mesh.
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With this choice, the basis functions ¢;(x) take the form

1.0 vx € D (x)
bi(x) = _ (3.14)
0.0 vx ¢ Dl (x),

and M = N = number of elements. The parameters & and 3; now represent the
equivalent linear stiffness and damping coefficients for element :. Note that for
this choice of basis function it is easily shown that ¢;(x) and ¢;(x) are linearly
independent.

It turns out that this choice of basis function leads to a considerable sim-

plification of the minimization equations. To see this, recall that, by definition,
(V) = 758, M), (3.15)
If the dependence of the operator ¥ on its parameter is restricted to be such that
(0,w) =0, (3.16)

then since the previous assumption of a stress-free reference configuration gave
(from equation 3.8)

ri(¢:,0) =0, (3.17)

it follows that equation (3.14) implies
E(NF) = 0 Vitk ' (3.18)
= o2{¢, NP} for v =k (3.19)

Thus, QL(MU‘)) can be replaced by qL(Nlti)) in equations (3.9) through (3.11) and
the sum over k& dropped without loss of generality. Noting that this argument

applies to both stress operators in the integrands, it follows that

A,-J- = B,'j = C,'j =0 for ) -‘,é j. (3.20)
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Thus, the particular choice of basis function given above greatly improves the
computational efficiency of the minimization procedure.
Simplifying equations (3.9) through (3.11} using (3.20) above yields the

final form of the minimization equations:
NEN NEN

W= 3 > BR() fm( )r,.L(N,“")-qL(Ng‘))dD(")(x) (3.21)

=1 p=1

NEN NEN : . L

=3 3 B0 [, w00 #0000 (322)
=1 p=1 D(')(x)

NEN NEN

=L 2 F _[p(.-)(x) () P (N D) (x) (3.23)

=1 p=1
Similarly, the only nonzero contribution to the right-hand-side vectors

given by equations (3.12) and (3.13) occurs when 7 = k, so these equations become

G; = N IE {) L N(')) E{af ]dD( ( x)
— 1 1.‘ 13 %
,;1 ,,Z D) (N gul’)
NEN NEN a
(2 Ly . g | 28 @ . (324
£33 B /;(,.,{x)r, )£ |5l av0e) (a2e
and _
q NENNENE{,) L N() z 31. dD(
i = :. t / ; . :
> 3 0, ) 205 ] avo
TR o [, o) 2|2 a0
+ y f TF(NYY) - : 3.25
=1 =1 P x) (N aul) (5.25)

Thus, this choice of basis functions ¢;(x) uncouples the minimization equa-
tions, even in the case of nonstationary response. The matrix equations for the
equivalent linear parameters o and 8 become two scalar algebraic equations for
the equivalent linear parameters &; and fii within element 1. The terms in these
equations depend only on statistics of response quantities for nodes attached to
element ¢, so the equivalent linear parameters are easily computed during forma-
tion of the element stiffness and damping matrices. Thus, the calculation of the

equivalent linear parameters can be accomplished in a numerically efficient way.
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3.4 Development of the Covariance Equation

The preceding section concluded development of the linearization procedure.
Turn attention now toward the solution of the equivalent linear system. Applica-
tion of the finite element method, described in an earlier section, to the continuous
equivalent linear sys'tem {2.6) produces a set of discrete linear equations of the

form

Mii+ C{8)0 + K(tu = £(t) (3.26)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix,
and fis the total effective load vector. This discrete system has a dimension equal
to the number of degrees of freedom in the finite element mesh for the problem
under consideration. Since all external applied loads are assumed to be zero mean
Gaussian, the load vector f is also zero mean Gaussian.

A result from classical probability theory states that the cutput of 2 linear
system subjected to zero mean Gaussian input is also zero mean Gaussian. Thus,
the displacement vector u and velocity vector 0 of the equivalent linear system
are a zero mean jointly Gaussian process. A Gaussian process is completely
described by its mean vector and covariance matrix, so since the mean is zero
only the joint displacement-velocity covariance matrix remains to be determined.
This covariance matrix contains the variance of the displacement and velocity for
all degrees of freedom, plus all of the cross-covariances as well. A procedure to
express equation (3.26) in terms of the response covariance matrix is described
below.

First, the discrete 2" order structural dynamics differential equation above

is converted to a 1* order state space equation of higher dimension. Recall the



44

definition of the system state vector s as
8§ = . (3.27)

Using this definition, the governing discrete equation (3.26) can be written
§ = As + F(t), (3.28)

where

A= (3.29)

is the system matrix, and

F= (3.30)
M~H(t)

is the state space load vector. In the above expressions, I is the identity matrix
of appropriate dimension, and it is assumed that the global mass matrix M is
nonsingular.

Multiplying equation (3.28) by s, adding the result to its transpose and
taking expected values gives the Liapunov equation for the covariance response

O.0(t) = A(1)0,,(t) + 0,,() AT () + E [s()FT| + E [F()s”(1)],  (3.31)
where
O, = E [ss”] (3.32)

is the state space covariance matrix. This is a symmetric set of 2n X 2n first order

ordinary differential equations for the evolution of the nonstationary covariance

matrix with time.
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Thus far, it has only been assumed that the input excitation is zero mean
and follows a jointly Gaussian probability distribution. For many engineering
problems, it is sufficient to consider the case of white notse excitation, where the
power spectrum is uniform across the entire frequency band. Under this restric-
tion, the above equation reduces to a much simpler form. This simplification will

be described in the next section.

3.5 Simplifications for Uniform White Noise Ex-
citation

Under uniform white noise excitation, the 3™ and 4** terms on the right-hand-
side of equation (3.31) may be replaced with more explicit expressions. First,

note that the effective load vector f(t) can now be written
£(t) = 1(t)n(t)8, (3.33)
where
~(t) is a deterministic modulating time function,

n(t) is stationary Gaussian white noise with zero mean and constant power

spectral density Sy, and

g is a time-invariant vector which depends on the spatial distribution of the

loads.

The modulating time function ~(t) has been introduced to allow the intensity of

the excitation to be scaled as a function of time.
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Next, use this expression for the load vector in the 3™ term on the right-

hand-side of the covariance equation to get
E [s(t)F7 ()] = v(t) E [s(t)n(t)] (0 M7g), (3.34)

where (-) denotes a row vector. Now consider the term E [s(t)n(t}], and recall
that s(t) satisfies equation (3.28). Thus, using the principal matrix solution &(¢),

8(t) can be written as the solution to equation (3.28) as

s(t) = ®(t)s(0) + (t [ B1(E)F()de, (3.35)

where (1) satisfies
&(t) = A()®(t) (3.36)
®(0) = I. (3.37)

Using the expressions for the load vector (3.33) and (3.30) in this equation yields

() = 2(0s(0) + 2() [ 0 (ene) | | rde  (339)
M-1g

Multiplying by n(t) and taking expectations gives

Bl =20 [1997@] " En@n0ie G
_1g

Next define the autocorrelation function for the stationary Gaussian random proc-
ess n(t) by
Bonlt - €) = E[n(€)n(t)], (3.40)

80

Els@nt)] = o0) [1©)97@) ]l Rmt-gd (4
M-1g
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For the case where n(t) is stationary random Gaussian white noise with zero

mean, the autocorrelation function takes the form
Ron(t — &) =27806(t — &), _ (3.42)

and thus equation (3.41) reduces to

Elst)n()] = 20509(8) | V. | (3.43)
Mg

Using this expression (3.43) in equation (3.34) gives the desired explicit

form

0
E [s)FT ()] = 2rSun?() (0 M), (3.44)
Mg

Now, note that the 4'* term on the right-hand-side of the covariance equation is

simply the transpose of the 3™ term:
E[F@0)s" ()] = (B [s@)F* 1)) (3.45)

Observing that the right-hand-side of equation (3.44) is symmetric, it follows

immediately that
" 0
E [F()s”(t)] = 2nSov*(2) (0 M~1g). (3.46)
Mg
Finally, using the simplified expressions (3.46) and (3.44) in the general

covariance equation (3.31) gives the reduced form for white noise excitation as

Oult) = A)Ou(E) + Ou(AT(H) +4xSor?(®) | (O M. (3.47)
, Mg
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3.6 Solution of the Covariance Equation for White

Noise Excitation

In the previous section, the Liapunov equation for the evolution of the system
covariance matrix ® under uniform white noise excitation was derived as
: 0 L
O = A(t)® + ©AT(t) + 47 Spy*(2t) (0 M—*g), (3.48)
Mg

where

© is the state-space covariance matrix,

A is a 2n X 2n nonsymmetric system matrix containing the n X n mass, damping,

and stiffness matrices,
Sp is the constant power spectral density of the input,
~(t) is a deterministic modulating time function,
M is the global mass matrix, and

£ is a constant vector which depends on the spatial distribution of the loads.

Note that A in equation (3.48) depends on time since the equivalent linear system
contains time-varying coefficients.

The covariance equation (3.48) can now be integrated in time to find the
nonstationary covariance matrix ©(¢). Algorithms for performing this integration
numerically on a digital computer are discussed below.

Most time integration algorithms fall into one of two classes: implicit or
explicit. An implicit time integration scheme requires solution of a matrix equa~

tion at every time step. In contrast, explicit algorithms do not involve a matrix
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decomposition or simultaneous equation solution, but do require smaller time
steps to maintain stability and accuracy. Algorithms for the implicit solution of
the time-dependent Liapunov equation are complicated and numerically inten-
sive, so to keep computational complexity to a minimurﬁ an explicit algorithm is
selected here. Also, the size of the covariance matrix grows rapidly with prob-
lem size, so the time integration algorithm should be chosen such that computer
high-speed memory requirements are minimized. Low order explicit algorithms
are very memory efficient, thus allowing solution of much larger problems in a
given memory size than higher order explicit schemes.

The simple modified Euler algorithm is an explicit, second order accurate
integration procedure which is well suited to solution of the Liapunov equation in
a restricted memory space. Since it is a second order scheme, only a small number
of large matrices must be stored in memory at any one time. In addition, since no
matrix decompositions are involved, it is simply and efficiently implemented in a
vector processing supercomputer environment. The modified Euler algorithm is
conditionally stable, with stability assured for a sufficiently small time step At.
The details of this procedure are described in reference [20].

The stationary response can also be obtained from equation (3.48). Under
stationary conditions, the covariance matrix © is independent of time, therefore

© = 0. The equation to be solved is now the time-independent Liapunov equation

0
AO + 0AT = —4n 5, (0 M™1g). (3.49)
Mg
Solution techniques for equations of this form are discussed in references {21,22].

The remainder of this discussion will focus on techniques for obtaining the non-

stationary solution to equation {3.48).
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3.7 Solution Algorithm for Nonstationary Re-

sponse

The complete procedure for obtaining the random response of a nonlinear con-
tinuous system may now be described. As a convenient notation for description
of the algorithm, let ©®; denote ©(t;), i.e., the covariance matrix at the k** time
step. Also, let an overbar denote “predicted” quantities in the predictor-corrector
modified Euler integration scheme. It is assumed that the finite element method
is used to discretize the equivalent linear system, and that the equivalent linear
parameters are updated in every time step.

The algorithm begins at step %k, time ¢;, when ©; is known, and computes

the updated covariance O, as follows:

1. For each element

e compute the equivalent linear parameters for the next time step based

on the current response O,

¢ form and assemble the element mass, damping, and stiffness matrices

and load vector at time t;
2. Add additional physical damping contribution, if desired

3. Compute predicted covariance €., from

Orr1 = O + ALO; (3.50)

4. Repeat steps 1 and 2 with ©; and ¢ replaced with @, and #44,
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5. Compute corrected new covariance ©;,; from

I 0
Orp = —2' [@k+1 + O, + At@k+1] . (3.51)

Note that the above procedure can be rearranged slightly for computer imple-
mentation to produce a more memory efficient scheme.

Often the physical mechanisms producing damping in a given system are
not well understood, and the addition of damping into the mathematical model
is based on experience or experimental data rather than rigorous derivation. One
form of damping widely used in structural calculations is Rayleigh damping, where
the damping matrix is constructed as a linear combination of the stiffness and
mass matrices:

Cgr= (.‘IK + 2 M. ' [3.52)

As was indicated in the algorithm, an arbitrary damping contribution is easily
introduced into the model with this formulation. This allows greater flexibility
in creating realistic models than a procedure which allows only mathematically
based damping contributions.

This completes the specification of the numerical implementation and so-
lution procedure. The next chapter describes the application of this technique to

the solution of several problems of engineering interest.
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Chapter 4

Application

4.1 Introduction

This chapter describes the application of the newly developed sélution method
to two specific nonlinear problems. Before beginning discussion of the particular
nonlinearities to be studied, it is appropriate to consider the objectives of such a
numerical investigation.

The numerical illustrations described in this chapter are chosen with three
goals in mind. The first and obvious motive is to exercise the new technique and
gain facility in its application. Second, it is important to validate the accuracy
of the new method by comparing it against other available solution techniques.
Finally, it is of engineering interest to assess the influence of typical nonlinearities
on the nonstationary stocha.sﬁic response of an example system. The above ob-
jectives all point toward selection of a simple nonlinear system for which at least
some solutions exist, and for which the physical interpretation of results is clear.

The nonlinear system chosen for study is a one-dimensional continuum

described by the wave equation with a nonlinear constitutive law. The class of
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systems modeled by the wave equation is one of significant engineering importance
since it contains many common physical phenomena, such as axial vibration of a
rod, propagation of plane waves in a continuum, and vibration of a shear beam.
The one-dimensional wave equation has been widely studied, both as a continuous
system and as a discretized system, using various techniques. This knowledge
base provides benchmark solutions against which the current technique can be
judged. In addition, the present understanding of phenomena which occur in
this system under deterministic excitation permits insightful examination of the

results obtained under random excitation.

4.2 Description of the Physical System

In order to allow a physical interpretation of the example, it is helpful to choose
a particular conceptualization of the one-dimensional wave equation for study.
The problem chosen for study is a nonlinear shear beam under random base ex-
citation. As shown in Figure 4.1, the beam lies along the z axis. The transverse
displacement in an inertial coordinate frame is denoted by v(z,t), while the dis-
placement relative to the base of any point z at time ¢ is denoted by w(z,t). The
beam is assumed to have constant density p and constant cross sectional area A..
The base acceleration §(t) is taken to be a random process. For this example,
g(t) is assumed to be Gaussian white noise with zero mean and constant power

spectral density So. The equation of motion for this system is easily shown to be

or - (4.1)
— v .
63 p H
or in terms of relative displacement
or - -
9T — pi + pi(t), (1.2)

dz
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where 7 is the shear stress, and all other terms are as defined above. Using the
chain rule and assuming that 7 depends on z only through the shear strain ¢, the

governing equation of motion can be written as

(&) gz = P +d(2), (4.3)

where a prime denotes differentiation of a function with respect to its argument.

The nonlinearity arises from the material constitutive relationship, in which
the shear stress is assumed to be nonlinearly related to the shear strain through
a constitutive law of the form

T =r71(e), (4.4)

where the shear strain € is defined as

_aw

=37 (4.5)

£

Two different forms of the nonlinear constitutive law are investigated in
this chapter. The first example is a hardening stress-strain law, where the ma-
terial tangent modulus tncreases with increasing strain. The second example is
a softening stress-strain law, where the material tangent modulus decreases with
increasing strain. Fach of these cases is discussed in detail in the following sec-

tions.

4.3 Cubic Hardening Constitutive Nonlinearity

4.3.1 Introduction

The first material nonlinearity considered is the cubic hardening constitutive law.

In this material model, shear stress is related to shear strain by the equation

T = G(e + 6%, | (4.8)
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where ¢ represents shear strain as defined in equation (4.5}, G is an elastic shear
modulus, and é is a nonlinearity parameter. A plot of the stress-strain curve
for this constitutive relation is given in Figure 4.2 for various values of 6. This
type of constitutive relation, with § > 0, represents a so-called “hardening” or
“stiffening” material because the incremental material tangent modulus increases
with the level of strain. This type of material constitutive behavior can occur in
porous media such as foams and in some rubbers. For small strain levels, this
constitutive relation can be used with § < 0 to approximate the softening behavior
found in many ductile metal systems during yielding. However, for larger strains,
the material tangent modulus can become negative, thus leading to unstable
behavior which may not accurately represent the physics of the problem being
- modeled. Therefore, except when otherwise explicitly stated, it is assumed that
6>0.

Substitution of the constitutive law (4.6) and the definition of shear strain
(4.5) into equation (4.3} yields the equation of motion in terms of displacement

relative to the base as

o*w aw\’® o%w .
GE'; +3Gé (3;) Fr il pd(t). (4.7)

This equation will be solved using the newly developed nonstationary continuous

equivalent linearization technique.

4.3.2 Relationship to Discrete Systems

As discussed in the opening paragraphs of this chapter, it is desirable to study
a nonlinear system for which some benchmark solutions already exist. In this

section, it is shown that the above cubic constitutive nonlinearity for a one di-
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mensional continuum is directly analogous to the much studied cubic force non-
linearity of discrete dynamical systems.

Consider now a discrete analog to the continuous shear beam described in
the preceding section. Let this model contain lumped masses m; and nonlinear
restoring forces f;, with the displacement of mass ¢ relative to the base denoted by
w;, for ¢ =1,...,N. This system is shown in Figure 4.3. The nonlinear restoring

force is taken to be cubic, so

fi=k [(we — wi) + & (w; — wi—l)s] ) (4.8)

where k; is the spring constant and 8 is the discrete force nonlinearity parameter.
The relation between this discrete nonlinear system and the previously
defined continuous nonlinear system will now be derived. Let the masses be
spaced a distance Az é.part, so the total length of the beam L is given by L =
NAz, where N is the number of discrete masses. Thus, taking the origin of the

z-aXis at the base of the beam,
w; = w(iAz). (4.9)

Using this expression in equation (4.8) gives

o= s [l =0e =80 g (20— wle A0

o e (4.10)

Now, assume that w varies linearly from z;_, to z;. This is consistent with the
use of finite elements with linear shape functions for solution of the equivalent

linear continuous system. Under this assumption,

dw _ w(z) —w(z~ Az)
dz Az ’

(4.11)

and using the definition of shear strain (4.5), the restoring force f; can now be
written

fi = kiAzx [e + 5&.1:2:-:3] i (4.12)
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In this one-dimensional case, the restoring shear force f; can be converted to
the restoring shear stress 7 simply by dividing by the cross-sectional area A, so
the effective stress-strain relation for the discrete system is obtained from the

previous equation as

T = kiAz [E + g/.\zzes] . (4.13)
¢
Making the equivalences
§ =6AL {4.14)
and
kA
G = f, (4.15)

the effective constitutive law for the discrete system now agrees with that of the

continuous system

T = Gle + 6°). (4.16)

Thus, many of the results in the literature for the discrete cubic nonlinear system
may now be related to the finite element solutions of the continuous nonlinear
system with cubic constitutive nonlinearity through use of relations (4.14) and

(4.15).

4.3.3 Minimization Equations

In order to apply the nonstationary continuous equivalent linearization method to
the example shear beam described earlier in this chapter, the general minimization
equations developed in chapter 3 must be specialized for this system. First, the
operators used in the development of the general theory are identified for the
current problem. Next, derivatives of the nonlinear stress operator appearing in

the minimization equations are evaluated using these specific definitions. Finally,
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the remaining terms in the minimization equations are evaluated for the current
system.

Recall that the general equation of motion for the shear beam was given
in equation (4.2) as

ar
25 = pib + pi(t). 4.17
5o = P+ pi(t) (4.17)

In this one-dimensional system, the general divergence operator V- reduces to
simply ;—z. Using the definition of shear strain (4.5) in the constitutive law (4.6)

gives the stress in terms of the relative displacement as

r(w) = ‘;‘” ac(g‘;’). (4.18)

The linear stress operator is now easily identified as

L ow -
™ {w) = GE; (4.19)

and therefore the nonlinear stress operator is

dw
VM (w) = 6G (3:1:) - (4.20)
Thus, the linear and nonlinear stress operators are conveniently obtained from
the constitutive law and kinematic equation.
Next, derivatives of 7 appearing in the minimization equations (3.24) and
(3.25) must be evaluated using the above operator definitions. Since the finite
element method will be used to solve the equivalent linear time-varying system,
the operator definitions (4.19) and (4.20) above are first expanded using the finite
element approximation.
Recall that, in the finite element method, the dependent variable w is

approximated within element ¢ by

Z NP(z) wP (1), (4.21)
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where all terms are as defined in section 3.2. Substituting this discretization for

w into the definition (4.20) gives the nonlinear stress operator within element 4

as
. . NEN gN () 3
(w0 = 66 ( 5 oM (t)) . (4.22)
o 9z
Differentiating this expression with respect to the nodal value u,(f) gives
ar NEN gN() 2 oN )
= 356G —2—ul0(t L. 4.23
3u® (Z_:I oz u(t) dz (4.23)

Also, note that since the cubic hardening nonlinearity depends only on displace-

ments,

~=0. (4.24)

The squared term in equation (4.23) can be expanded to give

NEN NEN aN(z) AN _ ANE)
() (£, (D) r
Y e Wedn| B w

8=

B'r

A) = 346G

hence, taking expected values yields

a,‘.N aN[x) NEN NEN aNq(,g) 8N(') - -
— = r g b %) {9 ) -
v [ “)] 9z = E [ul(t)u (1) (4.26)

g=1 s=1

Thus, these derivatives of the nonlinear stress operator are now expressed in terms
of the element response covariance matrices, as desired.

The only remaining term to evaluate in the minimization equations is the
linear stress operator acting on a finite element shape function, such as 7; (N ('))

Recall that, by definition,
rE(N®) = rE(g:, N®). (4.27)

Using the choice of functions ¢; discussed in chapter 3 and the definition of the

linear stress operator (4.19), it follows that

_ BN;S")
T 8z

(4.28)
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The complete set of general minimization equations may now be evaluated
for the one-dimensional shear beam with cubic constitutive nonlinearity. Recall

that the minimization equations for element ¢ are
A+ CO8 = G, (4.29)

and

c¥a + BUg = H;. (4.30)

Using the expressions for the linear stress operator (4.28) and the nonlinear stress

operator (4.26) in the general minimization equation terms (3.21) through (3.25)

yields
A0 = ffN NZNE 0] [ af;f) aﬁ,‘:') aOx)  (431)
c® =T§NN§E 4 (8)ul)(2)] fp (‘_}(x)ég;-)ag ' dD®(x) (4.33)

NEN NEN NEN NEN

cO=36y. 3 > > E[ul) B[]

r=1 p=1 g¢g=1 s=1
/ N aNG® aN{) NP
pI(x)

{%)
8z 9z dz Oz 4D™(x) (4.34)

NENNEN NEN NEN

HY = 36G 3.3 Y E [(‘)u(‘] [ug")ug"}]

r=1 p=1 g=1 s=1

dp(x). (4.35)

y / AN oNE) NP ONJ)
pWy(x) 8z dx Iz Oz

This completes the specialization of the minimization equations for the shear

beam with cubic constitutive nonlinearity.
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4.3.4 Finite Element Matrices and Vectors

Using the minimization equations derived in the previous section, the original
nonlinear system is replaced by an equivalent linear continuous system. The
replacement system is then solved using the finite element method. This section
describes the specific form of the equivalent linear system and the derivation of
the appropriate finite element matrices a.hd vectors.

The general form of the equivalent linear system is given in equation (2.6).
Applying the operator definitions (4.19} and {4.20) from the previous section, this

general form reduces to

a Jw ad Jw d du - .
:9_.'17 (G'é;) + ;9; (05‘5';) 4 '('9’; (ﬂ-g;) = pw + PQ(t). (4.36)

The appropriate boundary conditions are

w(z,t) =0 on 8D, (4.37)
and
Jw a1
(G + @)5=+ 85— = on dDr, (4.38)

where 3D, denotes that portion of the boundary where w is specified, 8 Dr denotes

port;ions of the boundary where 7 is specified, and rr is an applied shear stress.
The finite element equations will be derived using Galerkin’s method. Mul-

tiplying the partial differential equation (4.36)} by a weighting function W and

integrating over the domain gives
3 Jw a Jw 0 ow
fp(x, W [5;; (G?E) "3 (aa) "% (f"a;)
— pth — pcj‘(t)] dD(x) = 0. (4.39)

Similarly, the Neumann boundary condition (4.38) becomes

) B
fa W [(G + a)a—: + ﬂa—‘;’ - TT] d(80r) = o, (4.40)
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where

3D = &D,, + dDr. (4.41)

Integrating equation (4.39) by parts gives the weak form of the governing equation

as

oW ow oW aw oW Jdw
- {E % T 5% +—ﬂ—+pr+qu(t)] D(x)

- [WGa—w + Waa—w + Wﬁ—— d(8D) =0. (4.42)
ap a oz

The domain of the second integral can be divided into 80r + 8D,. Using the

boundary condition (4.40) then gives

W dw oW dw BW iy
fp(x) [5 Bz + _a'}"a?;}f ﬁ'—‘" + W + Wpd(t )] dD{x)

- f Wrp d(BDT)

- G+ a) —(?—3”— + ﬂ d(8Dy) = 0. (4.43)
fo ¥ G+ 03

Next, divide the domain D(x) into elements D{¥)(x), so

x) =y D®(x). (4.44)
k
Using this domain decomposition in equation {4.43) gives
WE _guw® Wk gyl g k) gy k)
2 {[ (k) () [

. 9z "6z oz %8z Tar Paz

+ W g%} 4 wEpg(t )] dD® (x f " w8 rp (3D(k))
S (¥ AL )
= o w k) [(G + a)a—:- + ﬁ+w } d(aDw)} =0, (4.45)

where it is noted that G, e, and 8 will in general vary from element to element,
and either 8D or BDIQC) or both could be zero for a particular element (such as

an interior element).
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Let N represent a vector of finite element shape functions for the nodes
of element k, and let u®) be the vector of nodal values of w*)(z,t) for nodes of

element k. This gives the finite element approximation, in vector form, as
w® = (NEYTy®), (4.486)

To obtain an equation for a typical global node p not on 30, take the weight

function as

Wk = rpy(E) = 5™ NiB), (4.47)

ky

i.e., the weight function for node p is taken as the sum, over all elements connected
to node p, of the shape function in each element corresponding to node p. This
choice yields the Bubnov-Galerkin formulation, and leads to symmetric matrices.

Now, using this choice of weighting function W in equation {4.45) gives
the following equation for global node p:

aN®  (aNGNT AN [ aN®\T
P_((3 (k) p » (k)
Z{fvth}(x}[ oz ( +a)( oz ) e dz ﬁ( oz ) "

kp

+ pNI (NEHTE® pN;"’a(t)} DM (x)

- N{®7 d(aD“‘))} =0, (4.48)

apt®

where the summation is again over all elements k connected to global node p.
Equations for all nodes not on 80, i.e., not on the boundary where w is

specified, can be assembled into
Ma+Ca+ Ku= -, +1f, (4.49)
where the corresponding element quantities are given by

k) — (®) () {k)
M fp g PN 400 () (4.50)
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AN® faNNT
® = f dp® 4.51
¢ p(k)(x)ﬁ oz ( dz ) PHx) (4.51)
aN(*) [ aNE\T
k) = / (k) 4.52
K o (G 95 ( —— | W) (4.52)
_ (k) '

£ = " N®rp (o) (4.53)
®) — SN gp®)

9 = /; g PHEN® DB () (4.54)

and homogeneous geometric boundary conditions have been assumed.
Note that for the one-dimensional shear beam under consideration, there

are no applied shear tractions, so

f, =0. (4.55)

4.3.5 Performance Evaluation

In order to evaluate the performance of the newly developed nonstationary equiv-
alent linearization technique on problems involving a hardening constitutive non-
linearity, a series of three examples are solved for which solutions are obtainable
by other. téchniques. The results from the continuous equivalent linearization
method are found to agree well with the benchmark solutions. Details of these

validation calculations are presented in Appendix A.

4.3.6 Description of the Example Problem

With the performance of the new method now demonstrated, it is appropriate to
turn attention to the solution of some additional problems. The efforts of this sec-
tion are directed toward gaining physical insight into the nonstationary response
of a continuous shear beam with a cubic hardening constitutive nonlinearity. To

this end, several sets of calculations are performed to illustrate the physics of the
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system and the characteristics of the solution technique. First, since it is well
known that an undamped linear second-order system subjected to white noise
excitation exhibits unbounded response variance, it is of interest to examine the
influence of the form of damping added on the system response. For concise-
ness, only two classes of Rayleigh damping are explored here: mass proportional
damping and stiffness proportional damping. To isolate these effects, this set of
calculations is performed on a linear shear beam. It is emphasized that the new
method is not restricted to Rayleigh damping in any way, and that many other
techniques could equally well be used to incorporate damping into the model.
Next, in order to assess the effect of mesh refinement, a set of calculations is
performed for the same problem with varying mesh sizes. Again, to prevent the
introduction of spurious effects, this analysis is done for a linear system. Finally,
a set of calculations is done to investigate the influence of the cubic constitu-
tive nonlinearity on the nonstationary stochastic response. The nonlinear results
are compared with the corresponding linear results, and the observed effects are
discussed. |

In order to facilitate comparison of results from the different sets of cal-
culations, the same basic problem is used throughout this section. The system
is a continuous shear beam, with a cubic hardening constitutive nonlinearity,
subjected to Gaussian white noise base excitation. A diagram of the continuous
system is shown in Figure 4.1, and the corresponding finite element model is
shown in Figure 4.10. The beam is taken to have uniform properties throughout
its length, with €4 = 3.0 and pA.L® = 1.0. The power spectral density of the
Gaussian white noise base excitation is Sy = 2.0, The type and amount of damp-

ing added as well as the value of the nonlinearity parameter vary for each set of
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calculations.

4.3.7 Effect of Type of Rayleigh Damping

It is a well-known result that an undamped linear system subjected to Gaussian
white noise excitation exhibits an unbounded response variance. This is physically
reasonable since the power spectral density of white noise is constant over the
en'tire frequency range, thus yielding infinite energy content. In spite of this
property, white noise remains an extremely useful analytical construct because
most dynamic systems respond predominately to energy in narrow frequency
bands, and the white noise model can often yield a good approximation to the
energy input in those frequency regimes. To preclude problems with infinite
response magnitudes, a small amount of damping is added to the mathematical
system model for analysis under white noise excitation. All real engineering
structures possess some amount of damping, so this addition is not artificial. The
objective of this set of analyses is to explore the influence of the form of the
damping added on the calculated responses.

The mechanism of damping in real engineering structures is complex and
not well understood. Therefore, often it is necessary to base the addition of
damping on a limited amount of experimental data. This motivates the choice
of a simple method for incorporating damping into the analytical model. One
very popular procedure for the addition of damping to structural response calcu-
lations is Rayleigh damping, wherein the damping matrix C is taken as a linear

combination of the stiffness and mass matrices:
C =M+ ¢, K. (4.56)

The significance of choosing mass proportional or stiffness proportional damping
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is best seen by examining the behavior of the modal damping ratios for each case.
Consider the discrete equations resulting from application of the finite ele-

ment method to a linear continuous system and the addition of Rayleigh damping:
MW + (e;M + e, K) W + Kw = £(t). (4.57)

Transforming the above equation into modal coordinates yields a set of modal

equations of the form
B+ (e + cow?)z + wlz = gi(t), (4.58)
where
2z; is the :** modal coordinate,
w; is the natural frequency of the #** mode, and
g:(t) is the 1** modal forcing function.

Thus, the fraction of critical damping in mode 7, for Rayleigh damping, is given
as

§i = — + =cawy. (459)

As is evident from the above equation, mass proportional damping leads to a
fraction of critical damping ¢; which decreases with mode order (w; increasing),
while stiffness proportional damping yields a fraction of critical damping which
increases with mode order. Therefore, mass proportional damping leaves the
higher modes more lightly damped, while stiffness proportional damping more
strongly damps the higher modes. Frequently, mass proportional damping is
referred to as external or air damping, and stiffness proportional damping is also

known as internal damping.
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In the following calculations, two limiting cases of Rayleigh damping are
examined. In the first case, the damping matrix is taken as proportional to the
mass matrix, so ¢; = 0.0. The constant of proportionality ¢; is chosen such that
the first mode fraction of critical damping ¢; = 20%. This yields ¢; = 0.0748.
In the second case, the damping matrix is taken as proportional to the stiffness
matrix, so ¢; = 0.0. Again, it is desired to have the first mode fraction of critical
damping as 20%,. and this leads to ¢; = 2.14. The resulting fractions of critical
damping in other modes are shown in Table 4.1, where it is noted that the natural
frequencies used are those of the discretized system produced by the finite element
method.

The results of the calculations are shown in the top, middle, and bottom
plots of Figure 4.11 as comparisons of the normalized displacement variance profile
at early time, mid-time, and late-time, respectively. Fo_r these calculations, early
time corresponds to about one one-hundredth of a signal propagation time across
the structure, while mid-time corresponds to one-half of a signal transit time. Late
time corresponds to essentially stationary conditions for the two damped cases,
at time equal to approximately six signal transit times. In each plot, the solid line
shows the undamped results, while the dashed line shows the mass proportionally
damped results, and the dot-dashed line gives the results for stiffness proportional
damping. In order to allow comparison of the profile shapes of the damped and

undamped responses, each curve has been normalized by its peak value.

Examination of the figure clearly reveals the influence of the form of damp-
ing on the evolution of the response profiles. The response profiles of the un-
damped and mass proportional cases are very similar in shape, while the signal

front spreads much more rapidly in the stiffness proportional case. As Table 4.1
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mode | mass prop. | stif. prop.
k e $(2.14)w;
1 20% 20%
2 6.7% 59.7%
5 2.3% 173%
10 1.3% 317%

Table 4.1: Modal Damping Ratios for Rayleigh Damping Study

shows, modes higher than about 3 are heavily damped for the stiffness propor-
tional case, and therefore die out quickly. A superposition of the first two or
three modes cannot describe the sharp break in the response profile, so the break
appears to spread. In contrast, the higher modes remain lightlir damped in the
mass proportional case, so the signal profiles are very similar to the undamped

case.

4.3.8 Effect of Discretization

Whenever a continuous problem is discretized using the finite element method,
the question of mesh refinement arises. In order to assure that the mesh used
for these example problems adequately represents the physical behavior of the
system, a parametric study of mesh size is conducted. The base excited shear
beam problem shown in Figure 4.1 is analyzed using uniform meshes of 7,14,
and 28 elements. To allow isolation of the effect of mesh size upon the results,
the problem is taken as linear and no damping is added. Since this problem

is undamped, linear growth in the response variance is expected, but the spatial
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response profiles and variance growth rates can still be directly compared between
the three mesh sizes.

The results of these calculations are presented in Figure 4.12. To aid
comparison of the response profiles, all responses at a given time are normalized
by the peak value of the large mesh result. The large mesh value was chosen
since it is considered the most accurate. In each plot, the solid line represents
the large mesh (28 elements) result, the dashed line represents the medium-sized
mesh (14 elements) result, and the dot-dashed line represents the small mesh (7
elements) result. The early time response profiles at the top of the figure show
some influence of the varying mesh size. The signal has crossed one element, and
the variation of element size is thus reflected in the shape of the response profile.
This effect is much more pronounced between the coarse aﬁd moderate meshes
than between the moderate and fine meshes. The fine mesh plot shows that the
signal is beginning to reach the second element, and thus both the moderate and
fine meshes have captured this portion of the profile. The mid-time results shown
in the middle graph of Figure 4.12 also illustrate close agreement between the
moderate and fine mesh results. Both of these meshes have successfully captured
the shape of the profile near z = 0, while the coarse mesh does not have sufficient
resolution to approximate the nearly zero tangent at £ = 0. The lower graph
in Figure 4.12 shows that the late-time response profiles agree quite well among
all of the meshes. By this time, the sharp gradients in the profile have become
smooth, and all three meshes yield satisfactory results. Based on these results,

the 14 element mesh is judged adequate for the current problem.
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4.3.9 Effect of the Cubic Hardening Nonlinearity

The above results serve to give confidence to the modeling and analysis proce-
dures to be used in the next set of calculations. In this study, the spatial response
profiles and variance time histories of the cubic hardening nonlinear shear beam
are directly compared against the corresponding linear results. These analyses
clearly illustrate the physical influence of the nonlinearity on the response char-
acteristics.

The results of these calculations are shown in Figures 4.13 and 4.14. In
order to retain bounded solutions without distorting the response profile, mass
proportional damping has been added such that the ﬁr.st mode of the linear part
of the system contains 20% critical damping. To clearly illustrate the effect of
the nonlinearity, the response profiles in Figure 4.13 have been normalized by the
peak value of the linear profile. In these plots, the solid line shows the linear
profile, while the dashed line, the dot-dashed line, and the dot;dot-dashed line
represent nonlinear results with nonlinearity parameter values of § = 0.25, 0.50,
and 1.00, respectively.

The early time results of the top graph of Figure 4.13 show very little
difference between the linear and nonlinear systems. This is reasonable, since the
responses are still small, and for very small strains the contribution of the cubic
term in the nonlinear constitutive equatioh is negligible. It should be recognized
that the constant value of the response profile in the unaffected portions of the
beam just reflects the variance of the base motion, since the upper sections are
still at rest in absolute coordinates.

The middle graph of Figure 4.13 shows that a marked difference in the

response profiles has developed by mid-time (recall that this corresponds to about
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one-half of the signal propagation time through the linear beam). The linear result
(solid line) shows that the profile of mean squared relative displacement gradually
bends over to the constant value in the unaffected section of the beam, while the
nenlinear results (broken lines) show the development of a sharp “corner” or
break at that location. This effect arises from the cubic hardening nonlinearity
in that the incremental stiffness, and therefore the wavespeed, increases with
strain level. Thus, strain increments at larger strains propagate faster than strain
increments at lower strains, creating a sharp front in the response profile during
the nonstationary portion of the response. It is also evident from the figure that
this sharp front propagates faster than does the corresponding linear signal.

As the bottom graph in Figure 4.13 shows, this effect largely disappears by
late time. After the signal has crossed the structure several times, the response
profile settles down a smooth shape very similar to that of the linear system. A
marked difference in the variance growth rates is seen, however. The nonlinear
system has scarcely reached a displacement variance 10-20% as large as that of
the linear system. This is to be expected, however, since the nonlinear system
becomes stiffer as the response level increases, thus attenuating the rate of growth
of the variance. Thus, even with damping present, it is clear that the stationary
mean squared displacement of the nonlinear system is substantially less than that
of the linear system.

For comparison, the time history of the variance at the free end of the
beam is plotted in Figure 4.'14 for the linear case and three differing degrees of
nonlinearity. The peak ratio of nonlinear “restoring stress” to linear “restoring
stress” under stationary conditions is .45, .65, and .92 for the § = 0.25, § = 0.50,

and & = 1.0 cases, respectively. This figure graphically illustrates the attenuation
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of displacement variance with increasing nonlinearity. Thus, the effect of even
these moderate nonlinearities is clearly evident in the results. In summary, this
set of analyses has shown that the nonlinearity has a strong effect on the shape of
the response profile during the nonstationary portion of the response, and on the
magnitude of the displacement variance during all portions of the response. Some

engineering interpretations of these results are discussed in the next section.

4.3.10 Engineering Implications

It is interesting to briefly consider some implications of the above results for
engineering practice. First, the faster propagation of the signal in a hardening
nonlinear medium implies that a given point on the structure would experience
motion earlier for a nonlinear medium than for a corresponding linear medium.
This earlier arrival could then result in an increased duration of shaking at that
location in ‘the structure. Next, the development of the sharp break in the non-
linear response profile implies a concentration of deformation and locally larger
strains in the nonlinear structure than in a similar linear structure. Thus, a
structure made of a hardening material would have to withstand more severe lo-
cal deformation without failure than would a structure made of a material that
is linear up to failure. Finally, the hardening nonlinearity served to strongly at-
tenuate the magnitude of the displacement variance under stationary conditions.
Thus, such a material would bé a good choice for a shear member with maximum
displacement design constraints, if sufficient deformation tolerance is included.
As the above discussion illustrates, the hardening constitutive nonlinearity leads
to both good and bad characteristics in the structural response, and these must

be carefully assessed in the design process.
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4.4 Arctangent Softening Constitutive Nonlin-

earity

4.4.1 Introduction

This section investigates a nonlinearity that is, in some sense, opposite to the
one previously studied. The arctangent nonlinear constitutive law represents
materials which soften, rather than harden, with increasing levels of strain. Many
real materials fall into this category, such as most metals, composites, and many
soils. Thus, the study of a softening nonlinearity has direct application to many
areas of engineering practice.

The nonlinear softening constitutive law is defined by the equation

2 {7 Goe
r(e) = —Ty tan™ (2 - ) : (4.60)
with
Jw
& = —é-x—, ) (4.61)
where

e ¢ is the shear strain,
o 7, is the “yield stress” of the material, and
e Gy is the initial elastic shear modulus.

Recall that tan™!(d) ~ 6 for small 9, so for small strains the above stress-strain

relation reduces to the linear elastic relation

7(&) = Gpe. (4.62)
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Plots showing the stress-strain behavior produced by equation (4.60) for various
values of %“ are given in Figure 4.15.
Using the constitutive law {4.60) in the general equation of motion (4.3)

yields the governing PDE for this nonlinear shear beam as

Go Bzw - -
- 7oy = PU + pd(t). (4.63)
1+ (592) 97

The solution to this equation will be obtained using the nonstationary continuous

equivalent linearization method developed in the previous chapters.

4.4.2 Relationship to Discrete Systems

The continuous nonlinear shear beam with an arctangent softening nonlinear-
ity has an analogous discrete representation. In order to allow results from the
nonstationary continuous equivalent linearization procedure to be compared with
existing results for discrete spring-mass-damper systems, this ana;logy is devel-
oped below.

Consider once again the discrete analog to the one-dimensional shear beam.
Recall that this model contains lumped masses m; and nonlinear restoring forces
fi» and the displacement of rnass i relative to the base is denoted by w;, for
t = 1,...,N. This system is shown in Figure 4.3. For convenience, define the

relative displacement y; as the displacement of mass 1 relative to mass (¢ — 1), so
Yi = wi — Wi-g. (4.64)

With the discrete system now defined, the form of the nonlinear restoring
force is derived from the stress-strain relation given in equation (4.60). First,

replace the derivative in the strain-displacement relation (4.61) by its backward
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difference approximation

] . 4.65
€ N (4.65)
Let w; = w(tAz), so
Wy — Wi
R e 4.66
£ o (4.66)

e i (4.67)

Next, substitute this approximation for the strain € into the constitutive
law (4.60) to get

2 - 7TGO 1 |
T(E) = ;Ty tan 1 (E?g'—zzy‘) . (4.68)

Consider now that the spacing between two lumped masses in the discrete model
is Az, and therefore the restoring force is constant over that interval. For the
spring between masses 1 and (-1}, this restoring force is obtained by multiplying

equation (4.68) by the cross-sectional area over which the shear stress acts, A, :

2 L fr G
f,- = ;Acry tan 1 ("2-1_ Aozy,;) . (4.69)
¥

Define now a “yield force” as the product of the yield stress and cross-

sectional area

fo = 1A, (4.70)

then equation (4.69) becomes

. 2 -1 (ﬂ' GgAc )
fs—wfyta'n 2 Az il (4'71)
Defining the initial stiffness ko by
GoA.
ko = 2 (4.72)

Az’
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the discrete restoring force expression takes its final form

fi= %fu tan™? (.g.%o-y,) . (4.73)

Thus, equation (4.73) represents a discrete nonlinear restoring force analogous
to the nonlinear continuum constitutive law (4.60). The only approximation
made in this derivation was in the replacement of the derivative in the strain-
displacement relation with its first-order backward difference approximation. If
finite elements with linear displacement interpolation functions are used in the
continuous equivalent linearization solution, then strain is constant over an ele-

ment and this relation becomes exact.

4.4.3 Minimization Equations

In order to apply the nonstationary continuous equivalent linearization method
to this problem, it is first necessary to evaluate the terms in the minimization
equations for the particular constitutive law under consideration. To this end,
first the operators 7% and 7% are defined for the arctangent softening nonlinearity.
Next, expressions for the minimization equation right-hand-side terms G; and H;
are developed. Finally, the remaining terms in the minimization equations are
evaluated.

From the preceding comments on the small-strain behavior of this consti-

tutive law, it is clear that the linear stress operator r¥ is given by
TL - GOE. (4.74)

Now, recall that one of the initial assumptions in the formulation of the continu-
ous equivalent linearization technique was that the system was linearizable, and

this was operationally defined as requiring the effect of 7 to become negligible
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compared to 77 as the response became small. Since the arctangent nonlinearity
reduces to Goe for small responses, it is necessary to subtract this component out

in defining r%; thus

N = i—ry tan™! (%%) — Gqe, (4'75)

Ty

and the total constitutive law is the sum of the linear and nonlinear components:
=7l 4V (4.76)

For the nonlinearity under consideration, it is more convenient to evaluate
the nonlinear terms in the minimization equations directly from their definitions
in section 2.5 than to use the technique developed in section 2.6. Using equations
(2.58) and (2.64), along with the equivalent linear parameter basis functions given
by equation (3.14), the right-hand-side terms of the minimization equations for

finite element ¢ can be written as

Gi= ) B e, ) ()] dDO), g

and

= N ARE L] )
H; D(‘l(x)E[f {(c,w,w) - 7; (w)] dD¥(x). (4.78)

Substituting in the above definition of the linear stress operator (4.74), these

equations can be written

G, = [D ooy E 7€) €] 409), (4.79)

and

= Ny gz #®
H; Dm(x)E[T (e) €] dD(x). (4.80)

As before, it is now necessary to express G; and H; in terms of the element

response statistics. This manipulation is described in the following paragraphs.
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Temporarily consider only the integrands of equations (4.79) and (4.80).
If these integrands can be written in terms of the element response covariance
matrix, then G; and H; can be easily computed using numerical integration.
Substitute the definition of the nonlinear stress operator (4.75) into the integrand

of each of these equations {4.79) and (4.80) and rearrange to get

2 T Goe\
N —glz - 2207 2
E[(e)e] = E Frveten (2 - ) GoE [¢?] (4.81)
and
N .1 [2 . -1 7 Goe ] .
E ['r (€) s] =FE -;fys tan (—2——7_—!;—— | — GoE [£€]. (4.82)

Clearly, the second term in each of (4.81) and (4.82) is easily written in terms
of the element response covariance matrix, so concentrate attention on the first
term in each of these equations.

Recall that € and € are spatial derivatives of the displacement and velocity
response processes, and since the replacement system is linear and subjected to
Gaussian input, then these approximate response quantities are jointly Gaussian
distributed also. Using this fact that € and ¢ are jointly Gaussian distributed,

the first term in equation (4.81) can be written as

2 —1{ ™ Goe _/‘00 2 17T Goe
ﬂ_'r,E {eta.n (2 . )} =/ _ ~7ye tan 5, p(e)de, (4.83)

where p(e) represents the Gaussian probability density function of ¢,

1 e
e 29, (4.84)

p(e) = J2ro,

and o, is the standard deviation of ¢,

o =/ E [e2]. (4.85)

As discussed in reference [24], integrating by parts and using the result

0 e_azzz T .
. 1o a2 dz = —é-e“ erfc(a), (4.86)
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equation (4.83) becomes
2 _1[ ™ GoE 2 2
2 LRSI Y , 4.87
ﬂ_*ryE [stan (2 y )] 7r0 e* erfc{a) ( )

V2, (4.88)

TG0,

where

a=

and erfc(a) denotes the complementary error function of a.

Note that the right-hand-side of equation (4.87) contains only deterministic
functions and o,. It will now be shown that o, is easily expressed in terms of finite
element shape funcfions and the element response covariance matrix.

Recall the definition of shear strain ¢ as

ow

= — 4.89
€= 5 (4.89)
and the finite element approximation for w within element ¢,

wi (z,¢) Z N)(z) (4.90)

where NEN denotes the number of nodes per element. Substituting equation

(4.90) into (4.89), squaring the result, and taking expected values gives

o} = E[ez]
NENNENaN')aN' : ;
= :; ; S E [ud 0)u{ ()] . (4.91)
=1 i=1

A similar argument shows

ag = F [éz]

NEN NEN aN{f} ANt i ”
= X Y e ilwdde)], (4.92)

k=1 I=1
and
NENNEN aNk i) aNl( i)

Ele€] = Z Z E[u,&"(t)a‘(‘)(t)]. (4.93)
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The correlation coefficient p between the strain € and the strain rate € can now

be defined as

p= 1:77[25] (4.94)

Thus, the statistics of the of the strain and strain rate are now expressed' in terms
of the required element response covariance matrix.

The final step is to express the integrand of the H; expression in terms of
the response statistics of € and €. Then, equations (4.91) through (4.93) above
can be used to get H; in terms of the desired element response covariance matrix.

Proceeding as for G;, the first term in equation (4.82) is written in terms

of the joint probability density function p(e,€) as

2 . -1 WGQE _
E [ﬂ_'rystan (2 Y )] =

@ e . 1 mGoe Ry :
f_m . —1y€ tan 1(5_;,,_) ple, &) déde, (4.95)
where
: 1
Ple. &) =
(=:€) 270, 0:/1 — pt
1 et & 2peé\]
X ———— e — . 4.96
exp[ 2 -7 (03+03 a,a,-)] (4.96)

It is shown in Appendix B that pursuing this approach leads to the result

E [;Tyé ta,n_l (E%)} = \/g'rypo'é 80261{(3((1) ’ (4'97)
m

2 7,
where a is as defined in equation {4.88). Thus, the integrands for both G; and
H; are now expressed in terms of the element response covariance matrix, as
required.
The final minimization equations for the softening nonlinearity can now

be summarized. Note that the left-hand-side terms of the minimization equations
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depend only on the form of the linear stress operator, and that the form of the
linear stress operator 7¥ is the same for the arctangent softening nonlinearity as it
was for the cubic hardening nonlinearity. Recall that the minimization equations

for element ¢ are given by

Allg + clg = G, (4.98)

c%a + BYg = H,, (4.99)

and the left-hand-side terms are given by

_ NENNEN ; . an® aN G |
A(') =] E (‘) (1) i P (’) ‘
g pX=:1 [wl? ()uf ()] fD ooy Bz e 4D (x) (4.100)
NEN NEN anrli) BN('
6) — o] .(;) 3Nl .
7 z g [u “p } j‘;“’(x) dz 3:1; 5o db" )(x) (4.101)
=1 p=1
NEN NEN ) BN(‘)
() = i) ON )
¢ lz-; pz—: o [ ] /;;m(x} 9z Oz ——dD¥(x). {4.102)

Using equations (4.81) and (4.87) in (4.79) yields

2 2
G; = P {\/:aee erfe(a) — Goo?,

and similarly, using equations (4.82) and (4.97) in (4.80} gives

d0¥(x), (4.103)

2 :
H; = P [\/:Typaee erfc(a) — GopO',._-Ug} dDW(x). (4.104)

Equations (4.98) through (4.104), along with equations (4.91) through (4.94) for
the statistics 0., 0, and p in element ¢, form the complete set of element level

minimization equations for the arctangent softening constitutive nonlinearity.
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4.4.4 TFinite Element Matrices and Vectors

The problem under consideration is still a one dimensional system satisfying the
wave equation, so the form of the equivalent linear replacement system is un-
changed from that described in section 4.3.4. As a result, the finite element ﬁxa—
trices and vectors are identical to those described in that section, except that the
equivalent linear parameters o and § are evaluated using the new minimization
equations derived in the previous section.

To assure that the newly developed minimization equations do yield an
accurate solution for problems involving an arctangent softening nonlinearity, a
simple test problem is solved for which a solution already exists. Agreement
between solutions obtained using two different methods is quite good. Details of

this problem are presented in Appendix A.

4.4.5 Description of the Example Problem

This section investigates the effeét of the arctangent softening constitutive nonlin-
earity on the stochastic response of a system satisfying the one-dimensional wave
equation. Several calculations are conducted with varying degrees of material
nonlinearity. The observed response characteristics are discussed, and compar-
isons are made with the response characteristics of the cubic hardening system
discussed earlier in this chapter. Finally, some engineering implications of these
results are discussed.

As in previous sections, the example system will be physically conceptual-
ized as a nonlinear shear beam subjected to Gaussian white noise base excitation.
This structure is shown in Figure 4.1, The beam is taken to have uniform prop-

erties throughout its length, with Qﬁ‘. = 3.0 and pA.L¢ = 0.1, where L*® denotes
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the length of a finite element.

The finite element model used in these example calculations is shown in
Figure 4.10. It contains 14 elements with linear displacement interpolation func-
tions. Mass proportional damping is added to rthe assembled discrete equations
to yield a finite stationary displacement variance without excessively distorting
the response profile. The applied base acceleration is given unit power spectral
density, and is suddenly applied to an initially quiescent beam at ¢ = 0,

The degree of nonlinearity, as measured by the ratio of the initial shear
modulus to the yield stress %‘1, is varied for each 'r-malysis. The way in which the
solution becomes established is then studied for each case, In addition, the effect
of the nonlinearity on the magnitude and shape of the response profile is also

examined. The results of these calculations are discussed in the following section.

4.4.6 Results for the Arctangent Softening Material Non-
linearity

To study the effect of the nonlinearity on the response, three calculations with
varying degrees of nonlinearity are examined. In the first pfoblem, denoted
“NL 1,” the parameter value %ﬂ = 1.0, while in the second problem, denoted
“NL 2, %‘1 = 2.0, and in the third problem, denoted “NL 3,” a value of %‘1 = 3.0
is used. For comparison purposes, a fourth problem with a linear stress-strain
law is also analyzed. Clearly, as the ratio %ﬂ increases, the yield level decreases
(since Gy is constant) and the problem becomes more nonlinear.

The results of the four calculations are presented in Figures 4.16 through
4.18. To graphically illustrate the effect of the nonlinearity, all profiles are nor-

malized by the peak value of the corresponding linear profile. In each figure,
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the solid line represents the linear result, while the dashed line, the dot-dashed
line, and the dot-dot-dashed line represent the NL 1, NL 2, and NL 3 results,
respectively. The graphs in Figures 4.16 and 4.17 show the mean squared relative
displacement response profilés for the four analysis cases at four fixed values of
time. On these graphs, time is measured in multiples of the signal propagation
time across a linear beam with the same properties. This transit time is given by
f"- where ¢ is the shear wave propagation speed in the linear material, given by

A

P

(4.105)

and L is the length of the beam.

The top graph in Figure. 4.16 shows the response profiles at a time corre-
sponding to one-half of the signal transit time across a linear beam,i.e., t = 0.5{-‘-.
One effect of the nonlinearity is already clear: the signals are propagating more
slowly for the more nonlinear cases. This eflect is easily explained, however, since
the material tangent modulus decreases with increasing response levels, thus de-
creasing the effective Wavespeed as the response builds up. At this early time,
there is no significant difference in the magnitude of the response between the
linear and nonlinear cases.

The bottom graph in Figure 4.16 shows the response profiles at a time
equal fto six linear signal transit times across the structure. The propagating
front has smoothed out, and the response profiles are nearing their stationary
shapes. The nonlinear profiles show a much sharper gradient near the base of
the beam than does the linear profile, and this effect increases with increasing
degree of nonlinearity, Thus, most of the deformation is concentrated near the
base, with the remainder of the beam participating little in the response.

At time equal to 12 linear signal transit times across the structure, the
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top graph in Figure 4.17 shows that the concentration of the deformation at the
base of the structure has become even more pronounced. This effect is slightly
visible in the NI 1 case, becomes prominent in the NL 2 case, and is extreme in
the NL 3 case. For the two most nonlinear cases, only the first 3 or 4 elements
participate significantly in the response.

At time equal to 40 linear signal transit times across the structure, the
bottom graph in Figure 4.17 shows that the profile shapes are very similar to
those in the previous graph. The response magnitudes for the two most nonlinear
cases have increased slightly, but the Shapes remain largely unchanged.

Figure 4.18 shows the time history of the free end variance for each of
the four analysis cases. As expected, the most nonlinear case attains the highest
response level, with the other cases correspondingly lower. The linear case leads to
a lower response level than does any of the nonlinear cases. This is expected, since
the softening behavior of the constitutive nonlinearity tends to increase response
levels over those of the linear system, which has a constant stiffness. This graph
also shows that attainment of stationarity is delayed due to the nonlinearity.
Again, this is a result of the softening behavior of the system, which slows down
the propagation of signals at higher response levels, thus requiring more time
for a fixed number of traversals of the beam. For the parameter values used in
this set of analyses, % ~ 2.5, so t = 0.5%,6.0%,12.0%, and 40.0% approximately
correspond to actual problem times of ¢ = 1.25,15, 30, and 100, respectively. As
seen in Figure 4.18, the linear response becomes stationary near ¢ = 10, while the
mildést nonlinear case NL 1 becomes stationary near ¢ = 35, and the remaining
two nonlinear cases NL 2 and NL 3 reach stationarity at ¢ = 60 and ¢ = 80,

respectively. Based on these observations, it appears that the concentration of
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deformation near the base of the beam, as observed in Figure 4.18, continues as

stationarity is reached.

4.4.7 Engineering Implications

The above results suggest severa;l important observations for engineering applica-
tions involving a softening material. First, in contrast to the hardening material,
the softening material attenuates the propagation speed of the signal, and thus
a given location in the structure will experience motion later than it would in a
corresponding linear structure. Also, this slower propagation speed lengthens the
time required for the system to reach stationarity, thus underscoring the impor-
tance of treating the response of a softening system as a nonstationary random
process.

Perhaps the most important characteristic observed in the response of a
shear beam composed of a softening material is the concentration of the defor-
mation near the base. As previously pointed out, this effect begins early in the
nonstationary response, and persists as the response becomes stationary. From a
structural engineering poin't of view, a uniform structure composed of this type
of material requires substantially more ductility near the base than in the middle
and upper sections if failure is to be prevented. This result has implications for
structural design in a seismically active area. For example, if a large shear struc-
ture (such as a tall building) is to be located in an earthquake-prone area, it is
important to design sufficient deformation tolerance into the lower floors to en-
sure that the building would safely survive an earthquake event. Since this study
considered uniform stiffness and strength throughout the structure, the results

for an actual building may vary if these conditions are not satisfied.
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Alternatively, in a geophysical or earthquake engineering context, one
might conceptualize the shear beam as a column of soil excited by stochastic
motions of underlying bedrock during an earthquake. Often, the objective of
such an analysis is to develop 'a “transfer function” relating bedrock motions to
surface motions (represented by the free end of the shear beam). In this interpre-
tation, the above results suggest that the “effective mass” for a softening material
is much greater than for a linear material, since after only about 6 transit times
the majority of the column is deforming very little and is simply acting like a large
mass supported on a small spring. In this context, “effective mass” is taken as
the mass of a single degree-of-freedom oscillator which represents the frequency
transfer characteristics of the soil column. This increased effective mass would
tend to shift the spectrum of the surface motions lower in frequency than the
bedrock motions, and attenuate higher frequency inputs. For earthquake resis-
tant design of large buildings, it is imporfant to know the frequency range of
possible inputs. Since tall buildings tend to have lower natural frequencies than
short buildings, this shift of the ground motion frequency content toward lower
frequencies leads to a more severe design environment than would be generated
by a linear ground motion analysis. Allowance for this effect in the structural
design therefore results in a more seismically safe structure. Again, it is empha-
sized that the current example assumes uniform stiffness and strength throughout
the column. If actual conditions are substantially different from those considered
here, then the magnitude of this frequency shifting effect may be altered.

In summary, the presence of a softening material nonlinearity can markedly
alter the system response characteristics, and in many cases these nonlinear effects

render a linear analysis unconservative for design. Thus, a nonlinear analysis of
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Chapter 5

Concluding Remarks

5.1 Summary and Conclusions

In chapter 1, the problem is specified and a general form of the governing nonlinear
partial differential equation is given. This is followed by some general background
on stochastic analysis, and a brief discussion of existing analysis approaches.
The development of the general nonstationary continuous equivalent lin-
earization procedure is presented in chapter 2. The nonlinearity is restricted to
be symmetric and linearizable, and this leads to the general form of the equivalent
linear continuous system. Although the equivalent linear parameters are functions
of space and time, their explicit dependence is on the response statistics, and since
these statistics depend on time in nonstationary problems the equivalent linear
system is given time-varying coefficients. A system difference minimization crite-
ria is defined as the difference in stress between the nonlinear and the equivalent
linear systems. Minimization equations are then derived which give the equivalent
linear parameters in terms of the current response statistics. Finally, an efficient

numerical solution procedure is developed for the minimization equations.
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Chapter 3 introduces a numerical implementation of the method derived
in chapter 2. First, the finite element method is applied to the equivalent linear
system to derive a set of discrete linear ordinary differential equations. Next, basis
functions are specified for the equivalent linear parameters which alleviate the
need to solve a large coupled system of linear equations, and allow determination
of the equivalent linear parameters on an efficient element-by-element basis. The
discrete equations are then transformed into a Liapunov equation for the response
covariance matrix. Simplifications to this equation are shown to arise under
condifions of white noise excitation. Chapter 3 concludes with a summary of
the complete solution algorithm for the nonstationary response of a nonlinear
continuous system.

In chapter 4, the new method is applied to the solution of the one-dimensional
wave equation with two types of constitutive nonlinearities: a hardening stress-
strain law and a softening stress-strain law. As a physical conceptualization of
this equation, the base-excited shear beam is chosen for study. It is demonstrated
that results from the nonstationary continuous equivalent linearization method
agree well with those of other methods on benchmark problems for which other
solutions were available. The concept of the response profile is introduced for
studying the way in which the stationary random response becomes established.
This profile is shown as a plot of mean-squared relative displacement vs. z at a
fixed time. The influence of the type of damping and mesh size are discussed in
terms of this response' profile.

Later in chapter 4, a parameter study is described which considers systems
with varying degrees of hardening constitutive nonlinearity. It is found that sharp

gradients develop in the response profiles during the nonstationary phase of the
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solution, and that this becomes more severe with increasing degree of nonlinearity.
Engineering implications of these results are discussed. It is noted that this sharp
response gradient implies a local concentration of deformation, and thus requires
more ductility in the system to preclude failure than would a corresponding linear
system. In this context, ductility is used in the sense of ability to withstand de-
formation without failure. Therefore, a linear analysis for design purposes would
be unconservative for systems with this type of nonlinearity. Also, these sharp
gradients are seen to disappear as the solution became stationary, thus highlight-
ing the importance of considering the nonstationary portion of the response in
an analysis.

In the last part of chapter 4, a parameter study is described which considers
systems with varying degrees of softening constitutive nonlinearity. It is observed
that, as the response progresses, deformation becomes more concentrated near
fhe base of the beam, and the remainder of the structure deforms very little.
Engineering interpretations of these results are discussed in both a structural
and an earthquake ground motion context. The most important conclusion for
a structural system is that this concentration of deformation would require more
ductility near the base of a softening nonlinear structure than in a corresponding
linear structure, thus again making a linear analysis unconservative for design
purposes. In an earthquake ground motion context, one might think of the shear
beam as a column of softening soil excited by bedrock motions. Often, the objec-
tive of such an analysis is the definition of the frequency transfer characteristics
of this soil column. The resulting “transfer function” can then be used to re-
late bedrock motions from a geological analysis to surface ground motions for an

earthquake response calculation. In this application, the present results indicate
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that the effective mass in these frequency transfer function calculations should
be substantially larger than would be indicated by a linear analysis., Thus, in
areas where the soil shear response is of a softening character, the surface ground
motions will have more low frequehcy content than did the bedrock motions.

In conclusion, the newly developed nonstationary continuous equivalent
linearization procedure is seen to be a powerful tool for obtaining the random
response of a nonlinear continuous system. It has been shown to perform well on
two widely different types of nonlinearities. It is expected that the new method
will produce useful engineering results for many nonlinear systems where the
actual response process is nearly Gaussian. Although the numerical solution of
random vibration problems is quite computationally intensive when compared
with deterministic analyses, this method could handle meshes involving several
thousand degrees of freedom using present supercomputers. This capability is
expected to grow rapidly in the coming years gi;\ren the current rate of progress in
supercomputering power. The numerical implementation described herein couples
the new method with the power of finite element analysis to allow nonstationary

response solutions for a broad range of complex engineering problems.

5.2 Recommendations for Further Work

In the course of an investigation such as this, it is inevitable that many more
interesting topics are uncovered than can be explored by the investigator in the
time available. The following paragraphs suggest some possible applications and
extensions to the present work arising from these observations.

One interesting application of the method developed in this thesis would

be systems exhibiting hysteretic behavior. In one dimension, a hidden variable
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model, such as that proposed by Twan and Asano in reference {12}, could be
adapted for use with the present technique. In higher dimensions, hysteretic
models for stochastic analysis are not well developed, and much remains to be
done in this area.

Another interesting application is the area of structural finite elements,
i.e., elements with rotational degrees of freedom. This class of elements includes
beams, plates, and shells, and allows the modeling of many structures of interest
to mechanical and civil engineers. When combined with realistic nonlinear mate-
rial models, these elements could allow construction of a very general analysis tool
for the nonstationary stochastic response analysis of a wide variety of systers.

A third area for further work involves coupling the techniques developed
herein with a damage model. The objective here would be a unified structural
analysis for both the stochastic response and the resulting damage level. Clearly,
much work remains to be done before a thorough understanding of the response

of nonlinear systems to stochastic excitation is achieved.
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STRESS-STRAIN CURVE FOR CUBIC HARDENING NONLINEARITY
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Appendix A

Validation Calculations

A.1 Test Problem One: Stationary Response of

a One Element System

As a first check on the accuracy of the nonstationary continuous equivalent lin-
earization method, a problem with only one degree-of-freedom is solved for the
stationary mea,n-squé,red displacement. The stationary value is calculated as the
long-time asymptotic value of the nonstationary displacement variance time his-
tory. Obviously, carrying out the nonstationary solution for a long time is a
very inefficient way to calculate the stationary solution, but it serves as a good
check on both the solution algorithm and the program coding. This test problem
represents the simplest of the nonlinear problems considered.

A schematic diagram of the discrete system is shown in Figure 4.4. The

equation of motion for this nonlinear oscillator is

mw + e + f{w) = —mg(t), (A.1)
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where

f(w) = k{w + dw?) (A.2)
and

e w is the displacement of the mass relative to the base,

m is the mass,

¢ is the viscous damping,

k is the linear spring stiffness,

b is the nonlinearity parameter, and

§(t) is the applied base acceleration.

For this example, § is taken as Gaussian white noise with zero mean and constant
power spectral density Sp. Dividing through the above equation by m yields the
standard form

W+ 2wath + wl{w + bw’) = —§(t), (A.3)
with the linear natural frequency w, given as

(A.4)

and the fraction of critical damping ¢ given as

[

¢ = (A.5)

2vkm
The solution used for comparison is an approximate closed-form analyt-

ical result developed by Iwan and Yang for the SDOF Duffing oscillator under

stationary random Gaussian white noise excitation. In reference [23], they have
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given an approximate solution for the mean-squared relative displacement under

E[w?] = glg [1/1+ EZ)‘;“ ~ 1} . (A.6)

Yang [24] has shown that the above estimate is within 7.5% of the true RMS

stationary conditions as

stationary solution for arbitrarily large nonlinearities, so this formula provides a
good benchmark for evaluation of the new solution method.

The finite element model corresponding to this simple system is shown in
Figure 4.5. For a one element model of unit length (L = 1), a unit stiffness
k = €4 and a unit mass m = }pA,L° were used. Damping corresponding to
10% of critical was added to yield a finite stationary displacement variance. A
unit power spectral density of base acceleration Sy was used as input, and the
nonlinearity parameter was chosen as § = 1.0. The influence of this nonlinearity
is discussed belc;w.

The degree of nonlinearity present in this model can be assessed by ex-

amining the ratio of the restoring force provided by the nonlinear term to that

provided by the linear term at the rms displacement response level ¢,,, where

0y =\ E[w?]. (A.7)

A simple calculation shows that this ratio of the nonlinear restoring force to the
linear restoring force at the rms displacement response level is given by §o2.
Substitution of the above model parameters into the analytical approxi-
mation {A.6) yields an approximate displacement variance E [w?] of 2.127. The
nonstationary equivalent linearization calculation yields a stationary variance of
2.128. At this response level, the nonlinear restoring force is 2.1 times as large as

the linear restoring force, therefore this system is severely nonlinear. The differ-
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ence in variance of relative displacement between the two stationary solutions is

less than 1.0%, well within the accuracy requirements for almost any engineering

analysis.

A.2 'Test Problem Two: Stationary Response of
a Four Element System

The second validation problem presented also addresses only the stationary so-
lution, but for a mesh with multiple clements. Thus, this problem fepresents
the next logical step in iﬁcreasing complexity, The mesh used here consists of
4 elements with linear shape functions. A diagram of the finite element mesh is
shown in Figure 4.6.

It is important to note a modeling detail at this point. The 4 element
in the finite element mesh of Figure 4.6 is used only to contribute mass to node
4. A simple element mass lumping scheme is used which apportions one-half of
the mass of an element to each of the 2 nodes of that element. Thus, if a node
borders on two elements each having a total mass of m, then that node receives
%m from each element for a total nodal mass of m. On the other hand, if a node
borders only one elemment, then it only rececives half as much mass, so its total
nodal mass is %m. If it is desired that each active node receive equal mass, then an
additional element with no stiffness can be added beyond the last active node, and
the new end node made inactive. The presence of element 4, therefore, leads to
equal amounts of mass being lumped at nodes 2,3, and 4, allowing the analogous
discrete model to also have equal masses. The degree of freedom associated with

node 5 is deleted, and since G4 = 0.0, element 4 contributes no stiffness to the
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problem. This modeling technique allows the total mass lumped at any node of
the finite element mode! to be easily adjusted.

The corresponding discrete model for this test problem is shown in Fig-
ure 4.7. It consists of three equal masses interconnected by three nonlinear springs
and three linear viscous dampers. The configuration of the dampers in this dis-
crete model is not exactly analogous to the mass proportional damping used in
the finite element model. The proper configuration is shown in Figure 4.8. The
error incurred in using the discrete model of Figure 4.7 is that a small contri-
bution to the right-hand-side load term from the damping coefficients times the
input base velocity is neglected, i.e., is not present in the finite elemenﬁ calcula-
tions. However, an analytical estimate of the stationary variance of the system
of Figure 4.7 is available, so it is interesting to compare these results with those
of the numerical procedure.

The restoring force for the ¢** nonlinear spring is computed from
Filws) = kel + 847), (A.8)

where k; is the stiffness coefficient of the ¢** spring, é is the nonlinearity parameter
(assumed constant for all springs), and y; is the relative displacement between
the 1** mass and the (i — 1)* mass. Once again, this system will be subjected to
zero mean Gaussian white noise base excitation.

The benchmark solution for this problem is an approximate analytical
result also developed by Iwan and Yang in reference [23|. They gave the following

expression for the variance in the relative displacement between mass ¢ and mass
(t—1):

s g So
0.1k;

1
ol = —= 1—\1+12 (A.9)

Yi 66
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Once again, it has been shown by Yang in reference [24] that this approximate
analytical solution remains within 7.5% of the true RMS displacement response
solution for arbitrarily large nonlinearities.

In the finite element model, the parameter values were chosen to vary
between elements to verify that capability. The parameters used were %‘%‘ = 3.0,
Ei%z = 2.0, and Ei%’* = 1.0. Rayleigh damping is added to the model, with the

damping matrix taken as proportional to the mass matrix, so
C = 0.10M, (A.10)

where C denotes the global damping matrix and M denotes the global mass
matrix. From these parameter values for the finite element model, the discrete
model parameters are obtained. The spring stiffness values are unequal, with
k, = 3.0,ky = 2.0, and k3 = 1.0. The three masses m; are all taken as unity, and
the damping coefficients ¢; are chosen as 0.1 for all three dampers. The power
spectral density of the input noise process is Sp = 2.23.

The performance of the new solution method on this benchmark problem
is examined for both a mild nonlinearity (6 = 0.1) and a more severe nonlin-
earity (6 = 1.0). The calculated stationary values of the mean-squared relative
displacements FE [y?] are compared against the approximate analytical results in
Table A.1. For comparison, the =7.5% values for the analytical solution are also
shown, since the true solution lies within these bounds.

To gain some insight into the size of the nonlinearity, it is helpful to ex-
amine the restoring force f; evaluated at the RMS relative displacement 6,.. As a
measure of the nonlinearity, consider once again the ratio of the nonline;ar restor-
ing force to the linear restoring force at the rms displacerent response level. It is

easily shown that this ratio is given by §o,,%. Values of this ratio for each nonlin-
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Mass Anal. Mild Nonlinearity || Severe Nonlinearity
No. Est. Anal. Comp. Anal. Comp. |
Low (—7.5%) || 2.92 - 1.75 -
1 2.72 2.83 1.63 1.69
High (+7.5%) | 2.52 - 1.51 -
Low (—7.5%) | 3.29 - 1.85 -
2 3.06 3.05 1.81 1.82
High (+7.5%) | 2.83 - 1.67 -
Low (—7.5%) || 4.00 ~ 2.33 -
3 3.72 3.52 2.17 2.02
High (+7.5%) | 3.44 - 2.01 -

Table A.1: Summary of Resuits: RMS Relative Displacements y;

ear spring are shown in Table A.2 for both the mildly nonlinear and the severely

nonlinear cases.

Comparison of the computational and analytical results shows that the
nonstationary equivalent linearization technique performs quite well, yielding re-

sults that are well within the accuracy requirements for engineering analyses even

for a severely nonlinear system.
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Ratio of Nonlinear Spring Force

Spring to Linear Spring Force

Number | Mild Nonlinearity | Severe Nonlinearity

1 0.74 2.7
2 0.94 3.3
3 1.4 4.7

Table A.2: Ratio of Nonlincar to Linear Restoring Forces

A.3 Test Problem Three: Nonstationary Response
of a Four Element System

The final validation calcuIati‘or} presented in this section considers the nonsta-
tionary response of a multiple element shear beam subjected to suddenly applied
base excitation. The response is calculated from zero initial conditions out to
its stationary value. This problem tests all features of the new algorithm and
program, including the solution accuracy during the nonstationary portion of the
response. The finite element mesh used for this problem is identical to that shown
in Figure 4.6 for the second test problem.

The analogous discrete model for this system is shown in Figure 4.8. It is
similar to the model used in the previous test problem, except that the dampers
are now connected between each mass and the base, rather than between each
mass and ground. This modification allows the discrete system to exactly repre-
sent the mass-proportional Rayleigh damping used in the continuous system so-

lution. The nonlinear spring restoring forces are calculated from equation (A.8),
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and the input base acceleration is taken as zero mean Gaussian white noise, sud-
denly applied at ¢t = 0. |

The reference benchmark for this test is a discrete nonstationary equivalent
linearization solution using the method developed by Iwan and Mason in reference
[10]. Their technique gives an expression for each element of the equivalent linear
stiffness matrix in terms of the current response covariance matrix. The resulting
set of discrete equivalent linear equations are next transformed to first order
state space equations, and finally to a Liapunov equation for the state space
covariance matrix. The application of their technique to the above system of
nonlinear ordinary differential equations is briefly outlined below.

The equations of motion for this discrete system are

mlﬁh -+ clu}l -+ kl [w1 + gwﬂ bt kg [(w2 —_ w;) + 5_(’1‘1)2 e wl)a]

= —m(t) (A11)

mathy + cathy + ky [(wz —wy) + §(wy — wl)s]
— ks [(’lﬂg — wy) + 6{ws — w2)3] = —ma§(t) (A.12)

Mgz + cztWs + k3 [(ws — wy} + 6(ws — ‘U)z)s] = —mag(t), (A.13)

where w; denotes the displacement of the i** mass relative to the base. This set

of equations can be combined into a matrix equation of the form
M + hiw,w) = —§(t)M#, (A.14)

where 1 is defined by

(A.15)

L}
il
[y
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Now, define the state vector s as

w

(A.16)

wn
Hi

w
Using this notation, the second order differential equation {A.14) can be written

as a first order state space equation of higher dimension as
$ = h(s) + §{t)r, (A.17)

where r is defined as

r= : (A.18)

Following the procedure described in section 3.4, equation (A.17) above

can be written as a first order matrix Liapunov equation of the form

Q = AQ + QAT + arSyrrT, {(A.19)
where () is the state space covariance matrix given by
Q=E [s ST] . (A.20)

So is the power spectral density of the white noise process §(t), and A is the

equivalent linear system matrix given, in components, by

dh;

A,‘j = 5—3}:

(A.21)

This equation is integrated numerically using a 4°* order Runge-Kutta method
to find the time history of the covariance matrix Q.

For this analysis, the same stiffness, mass, and damping values were used
as for the previous test case. The power spectral density of the input base ac-

celeration for this test was S; = 6.8. In order to test the method on a severely
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nonlinear problem, the nonlinearity parameter & was chosen as 1.4. Calculations
analogous to those described for the previous test problem show that the non-
linear term provides from 1.5 to 2.2 times as much restoring force as does the
linear term at the stationary response level. Thus, the nonlinearity in this model
is quite severe.

The results of the calculations are presented in Figure 4.9 as plots of the
time history of the normalized relative displacement variance at locations cor-
responding to the three masses of the discrete model. For each of these plots,
the actual displacement variance was normalized by the peak value of the dis-
crete variance. In these graphs, the solid line shows results calculated using the
new nonstationary continuous equivalent linearization method, while the dashed
line represents results calculated using the discrete equivalent linearization the-
ory. The top graph corresponds to mass 1, the middle graph to mass 2, and
the bottom graph to mass 3. In the plots, the two lines are coincident in most
places. Thus, these graphs illustrate very good agreement between the discrete
and continuous linearization methods.

Based on the results of the above three validation calculations, the new
nonstationary continuous equivalent linearization method is judged to produce
reasonably accurate response statistics for nonlinear hardening systems. The
long-time asymptotic stationary results calculated with the new method agree
well with stationary statistics calculated from an approximate analytical solution
to an analogous discrete system. The nonstationary results agree well with those

calculated using a discrete equivalent linearization method.
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A.4 Test Problem Four: Stationary Response

of a One Element System with Softening
Constitutive Law

In view of the fact that most of the solution procedure for the arctangent softening
nonlinearity is identical to that used for the cubic hardening nonlinearity, many of
the test problems used for the cubic hardening system apply here also. Therefore,
only the changes required for the arctangent softening nonlinearity are subjected
to validation calculations in this section.

In order to verify the formulation of the arctangent softening nonlinearity
and the resulting minimization equations described above, a one-element {single-
degree-of-freedom) test problem is solved for its stationary solution. This solution
obtained using the nonstationary continuous equivalent linearization method is
compared against an approximate analytical result derived for a stationary dis-
crete SDOF system. The results of this comparison are discussed below.

The equation of motion for the base excited nonlinear SDOF oscillator is
m + e + f{w) = —miy(t), (A.22)

where m is the mass, ¢ is a damping coelficient, f{w) is the nonlinear restoring

force, and Z,(t) is the specified base acceleration. The nonlinear restoring force

f(w) is defined by

flw) = -i—fy tan™! (”:J‘jw) , (A.23)
¥

where f, is the yield force, and k; is the initial stiffness.
The benchmark solution used for comparison is an approximate result

developed by Yang and Iwan in reference {23]. They derived the following expres-
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sion for the mean squared displacement of an arctangent softening SDOF system
under Gaussian white noise base excitation:

plw] = A7), (424

where S; is the power spectral density of the input white noise process. In ref-
erence [24], Yang shows that the RMS displacement calculated from equation
(A.24) is always within 11.4% of the exact solution, so fhis expression offers a
useful benchmark for verification of the solution procedure for the s:)ftening non-
linearity.

For this comparison, a one element modei was constructed for solution by
the nonstationary continuous equivalent lincarization method. The parameters
used in this one element model of unit length are Qg,ﬁ"- = 4.0, pA.L* = 2.0,
and %ﬂ = 2.0. The stationary solution is obtained as the large time value of the
nonstationary solution. While not efficient, this method serves as a useful check
on the late-time accuracy of the procedure.

| Using relations derived in a previous section, the analogous SDOF discrete
system parameters are found to be ky = 4.0, m = 1.0, and % = 2.0. Damping
corresponding to 5% critical (based on the initial stiffness) was added to both
systems.

Fach model was subjected to zero mean Gaussian white noise base excita-
tion with unit power spectral density. The calculated variance in relative displace-
ment using the numerical procedure is 101.9, while the analytical approximation
(A.24) yields a displacement variance of 123.2. This represents a discrepancy of
6% in RMS relative displacement, which is within the accuracy band of the ap-
proximate solution. Therefore, the continuous equivalent linearization procedure

agrees quite well with this analytical solution. This small problem exercises all
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of the new minimization equations derived {or the arctangent softening system,
so this good agreement between the analytical and numerical solutions indicates
that the theory and numerical implementation are performing as expected.
From the above results for two types of constitutive nonlinearities, it is
believed that the new continuous linecarization technique produces solutions of

sufficient accuracy to be useful in practical engineering analysis.
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Appendix B

Evaluation of the Integral for the
Arctangent Softening

Nonlinearity

In the course of deriving the minimization equations for the arctangent softening

nonlinearity, it is necessary to evaluate the integral

I= [ [ —Tyetan I(E—GD—E) p(e,€)déde, (B.1)
Ty
where
. 1 1 g2 g  2peé
P(e, £) = Iroroed T =7 exp [———-——2(1 0 (0‘_52 + 0—3 - 0‘¢0’¢')]’ (B.2)
and
Fige
p = (=] (B.3)
0.0,

Define some constants:

c1 = 27’1’(7505‘\/(1 — pz), (84)
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€y = 2(]- - p2),

0:0¢

c

2
"

2p

27
€4 = ¥
mey
’H‘GQ

27y

Ly =

Using these constants, the problem can now be written

1 #2032 .

® [oo : *E(ﬁ+ﬁ*é).
I= q/ / gtan” (cze)e T NTT ¢ déde,
—oo 7

- 00

or

o
&

Izqumﬁ%%dewhﬁ f ge N7 ) dg| de.

—o0 -0

Define the € integral as I by

oo -—-,‘_—L—(“' —;f;s')
L=f e \7 dé.
—m .

ol
g A

Using reference [25], entry 3.462.6, it follows that

2 2
_E 5 g0}
I}, = —oi\/mey0f exp .
263

2
deye5

Define two additional constants

e

lx]
o

x)
ars

ey = —=./mes,
263

so equation (B.12} becomes

o2
I = ¢qee®®,

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

Next, substitute this equation (B.13) back into the original double integral

equation (B.10) to get the remaining integral (after some manipulation} as

o . (p-er) e
I= L‘4C7f gtan™ " {ege) e \raci de.
-0

(B.16)
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Define ¢z as

1
cy = ot Cs; (B.17)
so equation (B.16) becomes
oo 2
I= c.,c-;f etan” (e;€) €7 de. (B.18)

From reference {24}, it is known that

LZ rtan~(z) e ¥ dz = éfagerfc(a) . (B.19)
Letting
T = c5¢, (B.20)
defining
at= 2 | (B.21)
C5

I= Tk “erfc(a). (B.22)

Simplifying out the intermediate constants ¢, through es, it is easily shown

that equation (B.22) becomes

2 2
I= \/;Ty,aaée“ erfe(a) , (B.23)

where

\/ETy
= —_— B.24
¢ WGUUS ( )

Finally, from the definitions in chapter 4,
2 TG
I=E [—Tyé tan™! (E,_EE)] , (B.25)
7 2 Ty
so the desired result is
2 . -1 m GQE . \/? a?
E [nysta,n (2 - )] =\ = Typose erfc(a) . (B.26)

This equation appears as equation (4.97} in chapter 4.



