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ABSTRACT 

In Part I, a method is developed for treating reacting-diffusing 

systems whose kinetics lead to a limit cycle behavior with frequency 

varying slowly with position. This is accomplished by including the 

effects of the spatial variation in a phase variable that is introduced 

to parametrize the limit cycles at each point. The normalization of 

this phase variable is chosen such that the limit cycles at each point 

have the same frequency with respect to this variable. The method is 

motivated by treating the weakly coupled behavior of two oscillators 

that, unlike previous works, are not nearly identical. The analogy 

between discrete oscillator systems and continuous chemically reacting 

mixtures is explored by treating a chain of coupled limit cycle 

oscillators and considering various limits as the number of oscillators 

tends to infinity. 

In Part II a different e ffect of spatial nonuniformities is studied: 

the modification of the simple diffusion approximation to treat situa­

tions of large deviations from equilibrium distributions in a mixture or 

proximity to some critical temperature. A technique for treating 

bifurcation from the continuous spectrum by introducing a slow space 

scale is developed. Using this, the onset of a spatially nonuniform 

state in a model chemically reacting system is studied, occurring 

when some reaction rate crosses the values at which linearized theory 

predicts destabilization of the uniform steady state solutions admitted 

by the system. Subs critical bifurcation is also found possible. 
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GENERAL INTRODUCTION 

In this work we shall study some effects of spatial nonuniformities 

in the evolution of che mically reacting mixtures · of fluids. 

We shall limit ourselves to the study of the change of the mixture 

composition at each point due only to the chemical reactions and to the 

·diffusion flux induced by the nonuniformity of the composition. The 

fluid will be assumed at rest, pressure gradients will be ignored, and 

the temperature will be assumed initially uniform. Thus, bulk motion 

of the fluid can only be caused indirectly by the nonuniformity in 

composition leading, for example, to nonuniform reaction rates that 

can create temperature or pressure gradients, etc. The composition 

gradients will be assumed small, so all bulk motion effects can be 

ignored, as of 2nd order in these gradients. 

So, in our case, the Navier-Stokes e quations describing the 

mixture will reduce to a system of coupled continuity equations for the 

various components, of the form 

on. 
__ 1 = 
at G.(t;") - 9 · J . 

1 1 

where n . , G. and J. are respectively the concentration, source term 
1 1 1 

and diffusion flux density for the i~th component of the mixture. 

The diffusion flux density will in general be a function of the 

gradients of the thermodynamic quantities de scribing the mixture, like 

the chemical potential f.L, pressure p, and temperature T. Since we 

-assume all gradients to be small and ignore \1 T and \1 p, we can 
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.assume Ji to be approximately e qual to 

----J. = -a \l f.L· 
1 1 

where increase of the total entropy of the mixture with time dictates 

that a be a positive constant [ 1]. 

Our equations are purely phenomenological in that we assume 

certain functional forms for the thermodynamic potential lJ., that then 

lead to predictions for the behavior of our system. These in turn, 

contrasted to experimental results, will determine the numerical values 

of the various phenomenological coefficients introduced and the domain 

of applicability of the model. 

In Part 1 we work with "Fickian" systems where, sufficiently 

far from critical temperatures at which the qualitative behavior of the 

system undergoes sharp transitions, we assume that lJ. is proportional 

to the concentration. This is the well-charted realm of Reaction-

Diffusion equations. Our work is on two component systems whose 

kinetics is such that, in the absence of diffusion, it would lead to 

temporal oscillations at each point. The form of these o.scillations is 

allowed to vary continuously with position, while the frequency varies 

also with position but only slowly. We develop a method for treating 

this problem, by introducing a new phase variable with respect to which 

uncoupled frequencies at each point are normalized to the same value . 

In Chapter 1 we motivate this method by treating two weakly 

coupled limit cycle oscillators. Then, by utilizing similar ideas for 

the treatment of a . continuous system in Chapter l, we are led to a 
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Burgers'-type equation for the new phase variable that includes a 

forcing term due to the small nonuniformity in intrinsic frequencies. 

This equation can be linearized by the Cole -Hop£ transformation, 

allowing an exact solution for the behavior of the phase of the oscilla-

tions to Oth order, in terms of the eigenfunctions of some Sturm-

Liouville operator. We find that systems of this type exhibit sustained 

traveling waves, as opposed to the uniform kinetics situation LZ]. In 

Chapter 3 we apply these ideas to examine some phenomena encountered 

in chains of cellular electrical oscillators. We find that for the discrete 

model of these systems under consideration here, the diffusive con-

tinuous limit is too drastic. It conceals the threshold phenomena that 

are observed in these systems and which we are able to demonstrate 

using an alternative treatment: by postponing the passage to a continuous 

limit until after we have obtained the secular equations for the phase of 

each oscillator in the chain, we use a WKB-type approximation to 

obtain a first order quasi-linear evelution equation that can lead to 

sharp shocks in the phase, while it has Burgers' equation as a large 

wavelength limit. 

In Part 2 we consider the effects of a nonlocal approximation to 

the chemica!. potential in chemically reacting mixtures far from 

equilibriwn. 

For simplicity, we treat the variation of only one of the com-

ponents of the mixture, the others asswned to be kept constant 

throughout the process. It is well known that mixtures are characterized 

by the existence of a critical temperature T : below T the components c c 

form pure phas e s, separated by a rather sharp interphase in which 



there is some mixing. 

freely in any proportion. 

viii 

On the contrary, above T the substances mix c 

We assume that reactions and mixing occur at constant tempera-

ture and pressure, and that p and T are initially uniform, so that they 

will not change throughout the process. Then, in equilibrium, the 

Gibbs free energy F must attain a minimum value. Following the 

approach adopted in a recent paper by B. Huberman [3] we write F 

in a Landau functional form [4] including nonlocal effects due to inter-

molecular forces. This leads to an approximation for the chemical 

potential valid in the neighborhood of T that we then utilize in our 
c 

continuity equations. 

In Chapter 4 we treat a simple model autocatalytic chemical 

reaction, where only one component is allowed to vary. We find that 

close to the critical point we can be led to behavior of surprising 

c<;>mplexity, including stable striations in the concentration of the con-

sidered chemical. Our system undergoes some interesting "phase 

transitions" and, as expected, the behavior in the neighborhood of the 

"triple point" is considerably more complex. 

In treating the problem in Part 2, we had to develop a technique 

to analyze bifurcation from the continuous spectrum of an operator. 

The idea was basically to introduce a slow space scale to describe 

effects due to the interaction of solutions of the linearized problem with 

wave numbers in a neighborhood of a critical ("most unstable") wave 

number. The nonvanishing of this critical wave number is essential 

for our method. 
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The long time (relaxed) behavior of the system is analyzed here, 

by introducing a slow time scale, coupled to and dictated by the slow 

space scale. Self-consistency of the perturbation scheme we use leads 

to evolution equations for the amplitude of the O(E) solution that are of 

the Ginzburg-Landau type and whose analysis shows us the form of the 

possible final states that the system can attain. 

This technique, developed here independently, has also been 

used by other workers in various contexts [ 5], [ 6]. It appears that 

it was first developed by Newell and Whitehead in their treatment of 

the Bernard instability in fluids [7]. 

We conclude Part 2 with a discussion of other problems from 

physics where similar ideas can be applied as well as possible 

directions in which this work can be extended. 
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1. TWO WEAKLY COUPLED OSCILLATORS 

1. 1 Introduction 

In order to motivate the method used in the next chapter for 

treating continuous systems of oscillatory chemical reactions with 

spatially nonuniform kinetics, we consider two weakly coupled limit 

cycle (l.c.) oscillators. We make no assumptions about their shapes 

or intrinsic frequencies. 

The method we use to study their (weakly) coupled behavior 

assumes that both oscillators have relaxed near their limit cycles. We 

normalize the angular variable e. parametrizing the i-th limit cycle in 
1 

such a way that the period of the i-th oscillator with respect to e. is 1. 
1 

In this way we include in the angle variables e. all effects due 
1 

to intrinsic period differences and avoid all problems that might arise 

when averaging over time. 

Previous investigations were limited to the treatment of the 

weak coupling of nearly identical oscillators. Here we are able to treat 

1. c. oscillators of arbitrary uncoupled periods and shapes, and derive 

conditions for their entrainment. In Section 1. 3, in particular, we 

derive the entrainment condition when the periods are nearly equal. In 

Section 1. 4, we demonstrate the behavior of the solution to Oth order 

by an example, in which we exactly solve the secular equation for the 

phase shift between the two oscillators. 

The case where the oscillators have periods near some integral 

ratio m: n 'I 1, can also lead to entrainment. Apart from the fact that 
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we would have to carry the analysis to a sufficiently high order, our 

method goes through with no added complications. We discuss this in 

Section 1. 4 for m: n = 2. 

1. 2 The General Case 

We consider the system 

u. = F . (u., v.) + E k.f. ( u. , U., V. , V.) 
1 1 1 1 1 1 J 1 J 

v. = G. (u., v . ) + E k g.(u., u., v., v.) 
1 1 1 1 1 1 J 1 J 

i, j = 1, 2, iif. j 

and assume that for k = 0 (uncoupled case) both pairs of equations 

possess a 1. c. solution of period T. 
1 

. 
u. = F.(U., V.) 

1 1 1 . 1 

. 
v. = G.(U., V.) 

1 1 1 1 

i = 1, 2 

with 

U.(t) = U.(t + T.) 
1 1 1 

V.(t) = V . (t + T.) 
1 1 1 

(1) 
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We want to parametrize each limit cycle by an angular variable 

e., so that each has period 1 with respect to e., i.e., 
1 1 

A 

= U. (O. + 1) 
1 1 

A 

= v .(e. + 1) 
1 1 

In the new variables we have 

A I A A 
U. = T . F.(U. , V.) 

1 1 1 1 1 

AI A A 

v. = T.G.(U., V . ) 
1 1 1 1 1 

Having parametrized the limit cycles, we now introduce [2] the 

local coordinate system (Fig; 1): 

A A r 

u. {t) = U.{e.) + t.A.V.(e.) 
1 1 1 1 1 1 

A AI 

v. (t) = V . (e.) - t.A.U.(e.) 
1 1 1 1 1 1 

or 
A A A 

u. (t) = U.{e.) + t.T.A.G.(U., V.) 
1 1 1 1 1 1 1 1 

A A A 

v . (t) = v. (e.) - t.T.A. F.(U., V.) 
1 1 1 1 1 1 1 1 

i = 1, 2 
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\.( . 
I. 

Fig . 1 

We shall assume th at the A . and 8. possess asymptotic 
1 1 

expansions in powers of E of the form: 

and the T . can be also expanded as T. == T? + ET.
1 + 0(E

2
). 

1 1 1 1 

Before r e writing system ( 1) in the new variables , it is con-

venient to derive asymptotic expansions in powers of E of all the 

expressions involved. We have (within 0(E
2

) ) : 
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A 

u? 
0 1 0 

U . (e. ) :::::: + EF . e. T . 
1 1 1 1 1 1 

A v? 0 1 0 
V . (e.) :::::: + E G . e. T. 

1 1 1 1 1 1 

A A 

F? 1 0 ' T? F.(U., V.) :::::: + Ee.(F.) 
1 1 1 1 1 1 1 

A A 

G? 1 0 ' T? G.(U., V . ) :::::: + E e. (G. ) 
1 1 1 1 1 1 1 

U o. o { o L) 1 o o} u . ::::: +ET. F.u.+A.G. 
1 1 1 11 11 

F o. o { 1 o , o ( o o o o)} F . (u. , v.). :::::: + ET . e. (F . ) +A. F. 
1

G . - F. 2F. 
1 1 1 1 1 1 1 1 1, 1 1, 1 

:::::: G.o 0 [ 1 0 ' 0 ( 0 0 0 0)} G.(u., v.) + E T. ~e . (G.) +A. G. 1G.- G. 2F . 
1 1 1 1 1 L 1 1 1 1 , 1 1, 1 

and 

Ekg.(u.,u.,v. ,v . )::::: Ekg? 
1 1 J 1 J 1 

where 
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0 A. 0 0 
U. - U . (8. ), F. _ 

1 1 1 1 
F.(u?,v? ). 

1 1 1 
etc., 

in the obvious convention. 

Assunring also that the coupling introduces a slow time behavior 

in the problem, we introduce the slow time variable 

T - E t 

so that 

d a a 
dt 8t + E 8t 

Then, if we expand time derivatives in a power series in E we get 

• 0 0 0 0 { 0( 1 0) 0 0 U .:::::: T.F. 8 . t+ET. F. 8.t+8. +G. A.t+ · 
1 1 1 1 1 1 1 1T 1 1 

[ 
I I J} 00 0 0 01 100 

+ T . 8.t (G.) A . +(F. ) 8. + E T. F. 8.t 
11 1 1 11 111 

• 0 0 0 0{ 0( 1 0) 0 0 V. :::::: T. G. 8.t + ET . G. 8 . t + 8. -F. A .t + 
1 1 1 1 1 1 1 1T 1 1 

Substituting now the above expressions into system ( 1 ) and 

equating coefficients of same powers of E w e get the hierarchy : 
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0 0 0 F~ T . F . e.t = 1 1 1 1 

0( 1): 

0 0 0 G? T. G. e.t = 1 1 1 1 

0{0(1 0) 00 00 0 0'} 100 T . F. e.t +e. +G. A.t + T . e.tA. (G.) + T. F. e.t = 
1 1 1 1T 1 1 1 1 1 1 1 1 1 

0 0( 0 0 0 0) 0 = +T. A. F. 1G. -F. 2 F. + kf. 
1 1 1, 1 1, 1 1 

0(€) 

0 { 0 ( i 0 ) 0 0 0 0 0 '} 1 0 0 T. G. e.t +e. - F. A . t- T. e.tA. (F.) + T. G. e.t = 
1 1 1 1T 1 1 1 1 1 1 1 1 1 

0 0( 0 0 0 0) 0 =T.A. G. 1G . -G. 2 F . +kg. 
1 1 1, 1 1, 1 1 

Solving the 0( 1) equations we find 

e? = 
1 

t 
-0 + ljJ.(T). 
T. 1 

1 

Using this in the 0(€) system we have, after some manipulation 
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and 

1 ( 0 0) 0 0 0 o 2 
0 o 2 

( 
T. ) O{ F. ,-G. 2 F . G. -F.:-'F.) +G. 1(G.) = _ .1.. + 1 +A. 1,.1 1, 1 1 l!f 1 1, 1 

't'1 T 2 1 2 2 
(T~) (F~) + (G~) 

1 1 1 

0 0 0 0 

(
f. F. + g. G. ) + k 1 1 1 1 

2 2 
(F~) + (G~) 

l. 1 

or 

A~t +A? Mi1(:~ + ljJi(T)) = kMi2(:~ + ljJi(T), :? + ljJj(T)) 

1 1 J 
(2) 

where, according to our convention, the functions Nik' Mik have period 

1 w. r. t. their arguments. 

These equations can be solved in the standard way: firstly, the 

equations for A~ will yield a bounded solution as a consequence of the 
1 

fact that the two uncoupled systems possess stable limit cycle solutions. 

Then, substituting the known forms for the A~ in the equations for e!-
1 1 

and requiring that the e!- are bounded in t (necessary for the validity of 
1 

the asymptotic expansion for 8.) we shall get two coupled equations for 
1 

the ljJ.(T). The process can be carried to any order, to determine the 
1 

behavior of the solution at all times. ·In general, the full solution will 

not be periodic in t. 
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The details of the calculations depend, among other things, on 

0 
the T., and in the next section we carry them out for the special case 

1 

T o = To - 1 
1 2 . 

This case, namely having nearly equal intrinsic periods for the 

two oscillators, is particularly interesting, as it can lead to the 

phenomenon of entrainment and rhythm splitting. Similar phenomena 

can be observed also when T~ : T~ is close to some other integral 

ratio m : n =F 1, but since the calculations in this case become forbid-

ingly complicated (we must go beyond the first order in E to pick the 

effect) without adding any more insight, we shall not pursue that 

further. 

In Section 1. 4 the theory is applied to a simple ":\-w" system. 

In the 1: 1 case, we shall see that entrainment is. possible, while the 

special symmetry of this problem precludes secondary entrainment for 

other integral ratios. 

Our analysis differs from previous works [ 2] in that we ·show 

that entrainment is possible not just between two nearly identical 

oscillators, but between oscillators of any shape, provided their 

intrinsic frequencies are sufficiently close. 

1. 3 The Case of Nearly Equal Periods: Entrainment 

We assume now that 

i = 1, 2 
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System { 2) then becomes 

0 0 
A . t +A. M . 1(t + ljJ.) = k M. 2 (t + ljJ. , t + ljJ.) 

1 11 1 1 1 1 

8.1t = -(lJl. + T .
1

) + A~N. 1(t+ljJ.) + kN. 2(t+ljJ. , t+ljJ.) 
1 1T 1 1 1 1 1 1 J 

or 

0 0 A A 
A . t + A. M. 1 {t) = k M. 2{t, ljJ) 

1 1 1 1 

1 ( 1) 0 A A 8.t =- ljJ. + T . +A. N. 1{t) + kN. 2(t, ljJ) 
1 1T 1 1 1 1 

with ljJ = ljJ
2

- ljJ
1

, since change in both ljli and lJlz can be incorporated in 

t as a phase shift. All the above functions have period 1 in t and ljJ . 

0 Now, we solve the equations for the A. . We have 
1 

Since for k = 0 (uncoupled systems) both limit cycles are stable, A? 
1 

must decay to zero for k = o. so that 

1 A 

Mii <s>ds = t Mii <s>ds > o 

as a condition for stability . 
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It is easy to show that for k * 0, A~ tends to a periodic function. 

To see this, let 

Then 

Also 

But 

1 A 

A. = j M. 1ds > 0 (by stability.) 
0 1 

{ 

t A } { [ t] + (t- [ t]) /-.. } 
exp - { Mi1 ds = exp _- { Muds = 

A[t] { t-[t] A } = e- exp - j M. ds 
0 11 

A(n-l) 1 A { ~ A } = e J M. 2 exp J M. 1 d~ ds 
. 0 1 0 1 . 
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So, 

t- [t] A { S A } 

+ f M . 2 exp - f M. dg ds 
0 1 0 1 

and, finally, A? can be written as 
1 

A? = [decaying part] + k Y (t, 'II) 
1 

with Y(t, ~), the periodic part (with period 1 in both t and ~), found 

after some algebra to be 

1 We now return to the equations for the 8. . The boundedness require-
1 

ment for e: is 
1 

1 1{ A A } ~- + T . = kf Y.(t, ~)N. 1 (t) + N. 2(t, ~) dt 
1T 1 O 1 1 1 

(In the general case, when there is no single period, the time averages 

will be integrals of the form: t ~00 ! J t ( ), assumed to exist). We 
0 

note that with no coupling present (k = 0), the ~- will drift apart. In the 
1 
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coupled case, though eventually we will have to solve for each tjJ. 
1 

separately, we only need to solve for the difference tjJ = tjJ
2

- tjJ
1 

in order 

to investigate entrainment. A necessary condition for entrainment is 

that tjJ is bounded in T. 

In this general case, the entrainment can be broken by higher 

order effects. 

We demonstrate the behavior of the phase shift tjJ for an example 

in the next section. 

1. 4 Example: A 'A.-w System 

To demonstrate the above ideas, consider the system 

0 u. = u. 'A..(r.)- v.w.(r.) +Ek(u.-u.) 
1 111 111 J 1 

0 v. = u.w.(r.)+v.'A..(r.)+Ek(v.-v.) 
1 111 111 J 1 

i' j = 1' 2, i * j 

with r~ = u~ + v~ and 'A.. = R~- r~ , w. = v. +'A. .. 
1 1 1 1 11 1 1 1 

For k = 0, this 

system has the stable circular limit cycle solution: 

U.(t) = R. cosv.t 
1 1 1 

v .(t) = R. sinv. t 
1 1 1 

Introducing the variables 8. we define 
1 

i = 1., 2 
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/'.. 

U.(O. ) = R.cosO. 
1 1 1 1 

/'.. 

V . (O . ) = R.sinO. 
1 l. 1 l. 

Here we work with the f r equencies v . and assume 
l. 

0 1 2 2 + 0( .c 3) v. :::: v . + E v . + E v . c l. l. l. l. 

Substituting into the expressions derived in Section 1. 2, we get, after 

some manipulations: 

0( 1) 

O(E) 

0 0 0 0 v. e.t = v. v. l. l. l. l. 

0 0 0 0 
U.O. t=v.U. l. l. l. l. 

>e. l. 
0 

= v . t + 'W.(t) l. l. 

1 ( 1) 0 2 (.Rj) . [ 0 0 J e.t=- ljl. -v. - 2A. R. + k R Sl.n (v.-v.)t + ljJ.-ljJ. 
1 1T 1 1 1 i J l. J 1 

To solve this we note that there are two cases that need separate 

0 0 0 0 
attention, namely v 1 if. v 2 and vi = v 2 . 

We treat the case v~ if. v~ first . The equation for A? yields 
1 
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2 
-2Ri t k k(R./Ri) { 2 [ 0 0 l = C e - --2- + 4 0 0 2 2Ri cos (vj -vi )t+lJ;j-lJ;i + 

2R. 4R. + (v. -v.) -
1 1 J 1 

+ ( v . - v. ) s ln ( v . - v . ) t + lJ; . - lJ;. . 0 0 . [ 0 0 ]} 
J 1 J 1 J 1 

For simplicity we ignore the decaying part, setting C = 0. The 

equation for e.1 then gives 
1 

2 

()_1 =- k(R/Ri) 
2 

Ji(2R~+(v?-v?))cos[(v?-v?)t+(v~-~.1 )Tty]+ 
1 

0 0 [ 4 0 0 ]~ 1 1 
J J 1 J . ( v. - v . ) 4R. + ( v. - v. ) 

J 1 1 J 1 

4 . [ 0 0 1 1 ]} + 4 R. s1n (v. -v. )t + (v. -v.) Tty + <j>.(T) 
1 J 1 J 1 1 

where, for e! to be bounde d in t, we required 
1 

lJ;. {T) 
1 

1 = (v. + k) T + const. 
1 

We can continue in this way and find the solution to all orders, but it 

is easy to see that nothing new will emerge out of this process. This 

is due to the linearity of the coupling and the special properties of the 

trigonometric functions: as can be seen easily, the only combination of 

0 0 1 1 the frequencies that can appear is (v. -v. ) + E(v. -v. ), so terms of all 
J 1 J 1 

orders will have essentially the same behavior. 

In particular, in the case v~: v~ = m : n (:#= 1) we see that 

11 secondary entrainment" (i.e., locking to oscillations whose frequencies 

k k are exact multi ples) is impossible if nv 
1 

:#= m v 2 for some k :#= 0. 
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Incidentally, we note that an alternative treatment could introduce 

infinitely many time scales 

k = 1' 2, 

so that 

and demand the ei , j > 0 to be bounded in all the Tk' thus including all 

unbounded behavior in 8?. We think this is a meaningful approach 
1 

(more so if resonance is present) as it is not trying to approximate a 

nonperiodic phenomenon by periodic function; but we shall not expound 

on this further. 

0 
We return now to the case v 1 = 

We find 

A? = C e 
-2R~t 

1 

1 

0 
v 2 and take 

and 8f=. <j>.(T) +(decaying term) with the tjJ. satisfying 
1 1 1 

i = 1, 2 . 

0 
v. = 1 for simplicity. 

1 

It is of interest now to ask whether the phases of the two 

oscillators will lock. To determine this, we must examine their 
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difference, say, "' - "·2 - "·1 . We have (let v - v 1 v 1) 't' 't' 't' - 2- 1 

or 

with 

'l}i 
T 

jJ. = 

ljJ = v + 1J. sin('W + u) 
T 

k J2(Ri + R~) 
R1R2 ' o- = 

2 2 
-1(Rl-R2) tan 2 2 

. R 1 + R2 

which is easily integrated to give 

ljJ( T) + o- = 

2 t -1 [ Jv
2

-p.
2 

t ((T+c) I 2 2) 1!:.] 2 2 
an v an 2 "' v - IJ. - v , v > IJ. 

or 

= 

2 2 
IJ. >v 

Obviously, if jv I > R kR J2(Ri + R~) ·, ljJ{T), (which must be continuous) 
. 1 2 

is unbounded and the two phases pull apart in the slow time scale, while 

otherwise the two phases lock to a phase shift constant in T and 

independent of the initial conditions as shown in Fig. 2. 
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Fig. 2a. (v2 > fl2) • 
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2. REACTING-DIFFUSING SYSTEMS EXHIBITING TEMPORAL 

OSCILLATIONS WITH SPATIALLY DEPENDENT FREQUENCY 

2. 1 Introduction 

Most work done on reacting-diffusing systems is concerned with 

coupled diffusion equations with nonlinear terms due to the creation-

annihilation of chemicals by reactions taking place in the mixture. It 

is usually assumed that the various properties of these systems are 

uniform, i.e., reaction rates and diffusion coefficients do not have 

explicit spatial dependence. 

There are systems of very important application where the 

spatial dependence of the reaction rates cannot be ignored. In some 

reactions the intrinsic rates depend proportionally on some external 

parameter. For instance, in photography, the rate of alteration of the 

photographic film's composition during exposure is proportional to the 

incident light. Likewise, in predator-prey systems, the terrain can 

affect predator ability to hunt or prey ability to hide, etc. 

We shall concern ourselves here with chemical reactions in one 

space dimension that, in the absence of diffusion, exhibit temporal 

oscillations whose frequency varies slowly with position. We shall 

neglect all purely fluid dynamical effects (no .bulk motion, etc.), so 

the Navier-Stokes equations for the mixture under consideration will 

reduce to coupled continuity equations including creation-annihilation 
I 

terms and diffusion flux terms for the various components. For this 

work we shall assume that diffusion and all gradients are small and 

that we are far enough from critical temperatures that Fick' s law holds. 
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(That is, the chemical potential for a component is proportional to its 

concentration at each point). 

The conclusion will be that the phase of the oscillations at each 

point, coupled through diffusion, obeys to 1st order in E (the small 

parameter in the problem determining smallness of diffusion and 

gradients), a Burgers'-type equation including a forcing term. This 

can be solved exactly and it leads to sustained traveling waves of 

chemical concentration, unlike the uniform case in which traveling 

waves are transient. 

2. 2 The Model 

We consider the system 

(: = F(u,v,x) + EU 
XX 

= G(u,v,x) + EV 
XX 

with appropriate conditions specified on an interval. 

We assume that, in the absence of diffusion, the above system 

possesses, at each point, a stable limit cycle solution U(t,x), V(t,x) 

such that 

{ ~(t,x) o 

V(t, x) = 

F(U, V ,x) 

G(U, V ,x) 
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Now, these functions will in general have different frequencies and 

different form at each point. We assume that variation with x is small. 

We rewrite the above functions in terms of a new variable (} = 8(t, x), 

defined so that their frequency with respect to (} is the same everywhere. 

A 

U (t, x) - U (8,x) 

A 

V(t, x) - V (8,x) 

(} = 8(t, x) 

Then 
A A A 

u e . w(x) = F(U, V, x) 

A A A 

ve · w(x) = G(U, V,x) 

where w(x) is the frequency of the limit cycle (no diffusion) at x. 

Without diffusion, e lS just 

9(t,x) = w(x)t + c(x) (arbitrary, not necessarily continuous) 

when diffusion is pre sent the phases (} are coupled through C. Away 

from an initial layer where rough initial conditions are smoothed out 

· (for which our long-time analysis is not valid) C becomes a smooth 

function of x and a slow time variable which we shall have to introduce 

into the problem. 
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We transform to the usual local coordinate system in the neigh-

borhood of the limit cycle at each point 

u = U(O,x) + E A V 
0

(G,x) 

All relevant quantities transform accordingly (analysis is similar in all 

details to that in Section 1. 2, so we shall omit it here-only here we 

work with frequencies instead of periods). 

The frequency w(x) is assumed to have an asymptotic expansion 

w(x) ::::: 1 + E f(x) + O(E 2 ) 

Substitution into the system yields the Oth order equations 

:> ~ = t + ljJ (x, T). 

To get the 1 ~t order system, the only new terms we have to compute 

are the derivatives u and v , and these only to Oth order. We have 
· XX XX 
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u = Uo(Bo,x>/ = 
XX 

XX 

= a [ o o ax l)JxU1(B ,x) + 0 0 J u
2

(8 ,x) 

ljJ uo + l)J2UO 0 0 
= + 2l)JxU 12 + u22 . XX 1 X 11 

now 

while, since we assume small x dependence of F and C, it follows that 

0 0 the terms U 12 and U 22 are of higher order and will not appear in our 

analysis for l)J, and that we can write 

u 0 = u 0 (8) (no x-dependence to this order) 

So, the 1st orde r system will be 
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This is easily transformed to 

}= 

0 The equation for A can be written as 

A~ ,+ M(t + 4J)A O = 

where, since the functions M and N are periodic with respect to their 

arguments, their average over a period will b e a constant, independent 

of the phase shift 4;, i.e., independent of x and T, and the same is 

true for all other functions involved here. 

Solving we find 

A O = C exp (- ~t M(t;, + 4J)ds) + 4;; ~t N(s+4;) e xp (-{t M(~+4J)d~) ds 

2 ~ 
= 4; P(t+4;) + (exponentially dying part): 

X 

>'.<This follows from the s tability of the 1. c. a t each point. 
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where P(t+lfl) is given by an expression similar to that derived in P· 10, 

and is periodic of frequency 1. Using this in the equation for e1 we get 

= - (f(x) + lfJ ) + lfJ 2 
P(t+tjJ) + tjJ + (e xponentially dying term) 

T: X XX 

with P (t+lfl) a periodic function of frequency 1. We demand that e1 , 

found from the above equation, be bounded in t in order for our 

asymptotic expansion for e to be valid, so that 

We let 

1 
j (R. H. S. ) = 0 ~ 

0 

= -f(x) + tjJ 
XX 

1 

+ t~J 2 f 1 
:P (t+lfl) dt 

X 0 

f p (t+lfl) dt = k 
0 

a constant by the reasoning given before. Then 

= -f(x) + tjJ + klfl
2 

XX X 

which is Burgers' equation with a nonhomogeneous term. 

-1 f . ) Letting lJl = k ln<j> (the Cole-Hop£ trans ormatwn . we get 
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~ <j> - <j> = kf(x)<j> 
XX T 

which can now be solved using standard methods. 

Note: In a more general case, where the shape of the limit 

cycles at each point varies to order 1 with x (but w still behaves the 

same) we would get an evolution equation for the phase containing a 

term proportional to ljJ and coefficients dependent on x, which would 
X 

not be linearizeable by the above Cole-Hop£ transformation. So, in 

principle, the method would go through but it would lead us to a non-

linear equation that cannot be solved exactly. 

The equation that we found for <j> is a parabolic equation. 

Application of the appropriate maximum principle ensures us that if <j> 

is initially nonnegative, it will always stay nonnegative, so that the 

transformation is always invertible. 
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3. A CHAIN OF WEAKLY COUPLED OSCILLATORS 

3. 1 Introduction 

Oscillatory phenomena of the relaxation type play a very 

important role in the self-regulation of biological systems. Trans-

mission of information and control in populations of cells and 

coordination of their function is usually accomplished by some con­

trolling agent through modulation of the phase of an oscillation in 

which all the cells are locked. This gets transmitted through the 

population via some medium carrying chemical or ionic messengers­

this medium being also responsible for the coupling of the cellular 

oscillators [8 ]. 

The characteristics of cellular oscillations can be coupled to 

concentrations of certain substances in the medium surrounding the 

cells. For instance, in the case of neuronal oscillators, modification 

of the composition of the membrane of the sending cell at the synapse 

causes certain chemicals to be transmitted to the receiver cell, 

modifying its state (exciting or inhibiting some functions, etc.). 

Populations of cells can exhibit many types of oscillations, 

either individually, with member cells oscillating regardless of the 

existence of an external periodic forcing, or as network oscillations, 

where certain subsystems form oscillating circuits, with an excitation 

going around the circuit, "passed" from one cell to the next. 

Invariably, the detailed chemical mechanisms responsible for 

these phenomena involve extremely intricate combinations of reactions 

taking place simultaneously. In the vast majority of cases we know 



27 

very little about the actual mechanisms, number of participating 

chemicals, ways by which cells transtnit information or how they 

change when they receive it-the individual cell already being too 

complicated an entity for the present state of our knowledge. 

But even though at this point we can say very little, if any­

thing, about the exact nature of the phenomena involved, we can still 

draw some very general conclusions about how these populations can 

act collectively, provided they conform to some simple conditions. So, 

of necessity, we can only build "naive" models of biological systems at 

this stage. These must be complicated enough so that they can 

mimic some properties of real biological systems, but yet simple 

enough to be solvable by our techniques. 

The usefulness of these models is twofold: solving them we 

might be able to combine seemingly unrelated phenomena, by attributing 

them to some common underlying feature of the model/system. And, 

predictions made based on these models might suggest new fruitful 

experimental directions. That is, building and solving models, provides 

us with a way of organizing what we already know and helps to show 

what we can expect from a self-consistent image of biological phenom­

ena based on our present knowledge. 

In this chapter we · study a finite linear chain of weakly coupled 

>..-w limit cycle oscillators. 

In Section 3. 2 we attempt an exact perturbative analysis in the 

strength of the 11\l.ltu.al coupling (assumed small). We arrive at a 
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system of equations that can be easily analyzed numerically (we do not 

attempt this here), to demonstrate the behavior of the phase in a slow 

time scale. Analyzing numerically these equations instead of the full 

system has the advantage of yielding results that are easier to interpret. 

In Section 3. 3, in order to gain more insight in these systems, 

we consider the limit when the number of oscillators in the chain 

becomes large. We employ two different limiting procedures. The 

first yields a forced Burgers' equation, the analogy with the result in 

Chapter 2 being apparent. The second procedure yields, to lowest 

order, a first order hyperbolic equation which we discuss. Based on 

previous results, we conjecture that similar equations will be o 'btained 

in the large population limit for more general models. 

We conclude the topic with a discussion in Section 3. 4. 

3. 2 The Model 

We consider a chain of X.-w limit cycle oscillators coupled 

weakly via diffusive coupling with free ends. It is described by the 

following system of pairs of 1st order ODE's: 

2 
where r. 

1 

2 2 = u. + v . and v. = 
1 1 1 

w +Ea . • 
1 

i=2, N-1 
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At the two ends (i = 1,N) we have 

the equations for V 1, UN' V N being similar. This system describes a 

chain of N oscillators that, in the absence of coupling (k = 0), would 

each relax to a circular limit cycle in their corresponding phase planes, 

with radius 1 and frequency v . • For N = 2 this reduces to the case 
1 

studied in Section 1. 4 for equal radii and nearly equal frequencies. 

We introduce polar coordinates by the transformation 

u. = r. cos8. 
1 1 1 

v. = r. sin8. 
1 1 1 

under which the system becomes 

i = 2, N-1 

( 1 ) 

with end equations 
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and a similar pair for i = N. 

We introduce the slow time scale T = E t, so that 

d 0 0 
dt = ot + E oT 

and assume that the ri ' ei have asymptotic expansions of the form 

r. = 1 + ER.(t, T) + 0(E
2 ) 

]. ]. 

i = 1, • · • , N 

The form of the 0-th order terms is found by arguments 

similar to those used in the previous chapters. 

Substituting the above expressions in system (1) and retaining 

terms up to O(E) (0( 1) terms cancel since their assumed forms satisfy 

the 0( 1) equations of the hierarchy) we find that the . R. and <j>. satisfy 
. ]. ]. 

i = 2, N-1 
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modified appropriately at i = 1 and i = N. 

Solving the equation for R. we get 
1 

For simplicity, set C. = 0 (ignore transients) and substitute this in the 
1 

equation for <j>. to find 
1 

Since the RHS of this equation is a constant in t, <j>. would be a linear 
1 

· function of t so our assumed asymptotic expansl.on for 8. cannot be 
1 

uniformly valid for large times unless the RHS vanishes.' That is, in 

order to have a consistent scheme we demand that the ljJ. satisfy the 
1 

system: 

At this point we have reduced the problem, to 0-th order in E, 

to that of solving N 1st order coupled quasi-linear ODE's. One could 
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now proceed numerically and study the behavior of this system for 

various values of the a . and the coupling k. In Section 3. 4 we discuss 
1 

some situations in which this model can be useful. For the purposes 

of this work we shall not pursue a numerical attack on this problem, 

but will try to extract some more information from the exact pertur-

bation equations (2) using simple ideas before we analyze, in Section 

3. 3, some properties of the phase shift 4;. in the limit of large N. 
1 

We note that if we introduce the N-1 variables 

we find that they satisfy the system of N -1 equations 

XiT =pi+ k.J2 {(sinxi+l-cosXi) -(sinXi-cosxi_1)}• i= 1, · ··,N-1(3) 

where we set 

Xo 

A question that is of interest in these systems is whether all 

the oscillators in the chain can become "locked, 11 i.e., oscillate with 
I 
I 

the same (average) frequency, so that the phase shift between successive 

oscillators stays bounded. In this spirit we look for solutions of the 

system ( 3) of the form 

X· = C. , (some constants) i = 1, · • ·, N-1 
1 1 
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The constants ci must satisfy the algebraic system 

setting sine. _ 
1 

cosc . 
1 

= J 1-cr~ 
1 

i = 1, • • ·, N -1 

1 

.J2 

This last system is recursive and one can trivially solve for the 

O"i , but there is no guarantee that some IO"i I will not be greater than 

1, or that they will be real. It is clear that this will depend on the 

numbers b./k. 
1 

We can see this clearly in the simplest case, N = 3, 

that can be done explicitly and leads to a 4th order equation in IT 
1

, or 

<T.z. We will not do that here. 

In the following Section 3. 3 we consider the case for large N. 

>:::: 
Note: The only case that N = 3 will not lead to a quartic is when 

b
1
+b

2 
= 0. It is easy to see that in this case the phase plane of x 1 

and X 
2 

will not contain spiral points, which one can show to exist if 

b 
1 

+ b
2 

:f:. 0. In the latter case we conjecture that there must exist 

curves in the b 
1
-b2 plane s uch that when they are crossed, the stability 

of some spiral point changes. In some n e ighborhood of these c urve s 
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3. 3 Approximations for Large N 

In the previous section we derived a system of algebraic 

equations that the constant phas e shifts between successive oscillators 

in our chain must satisfy if their frequencies are locked (in the narrow 

sense). This answers the locking problem in principle, but the nature 

of the answer is not clear a priori and for more than three oscillators 

we cannot get explicit expressions for the solutions (for N oscillators 

we need to solve a polynomial of degree 2(N-1) in general). So, a 

numerical approach to the exact equations is necessary. 

When the number of oscillators in the chain is large, we can 

study their behavior by the use of appropriate asymptotic methods. 

The large N limit is not unrealistic, since in most biological systems 

of interest we .deal with large numbers of cells. 

Here we shall consider two different limit processes. The first 

(Note: (continued)) 

(on the instability side) we expect, by Hopf's theorem, the existence 

of a stable limit cycle in the phase plane of X 1 and Xz. This case, 

even though it does not fall within the narrow definition of frequency 

locking we used (constant phase shifts), must be characterized as 

phase locking in a broader sense (phase shifts have constant averages 

in the slow time). This phenomenon of oscillating phase shifts 

obviously cannot be observed in the N = 2 case. 
I 

The algebraic com-

plications for b 1 + b 2 -:1= 0 did not allow us to give an explicit example 

of this interesting phenomenon. 



35 

will lead to the forced Burgers' equation we derived in the last 

chapter. The second will lead to a nonlinear PDE that can be reduced 

to a 1st order quasi-linear PDE solvable by the method of characteristics. · 

For the first limit process we define K by 

so that system ( 2 ) is written 

i=1,···,N 

The number L is the "length" of the chain. We introduce a space 

coordinate x and we let the position of the i-th oscillator be 

X.=: i • ~X 
1 

( 2') 

with ~x the (uniform) "distance" between successive oscillators. The 

length of the chain is then 

L = N ·Ax 

Finally, define a continuous variable tV by 

and assume it is sufficiently differentiable so that we can expand in 
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Taylor series : 

Then as N - 00 with N • D. X ::::: L, fixed, system (2' ) becomes 

::::::> ljJT = c:l'(x) + k( ljJ; + ljlxx) + O(~x). (forced Burgers' eqn.) (4) 

The free ends condition becomes ljJ (0) = ~ (L) = o. 
X X 

To examine whether entraimnent is possible in this limit, we 

seek solution of the form 

ljJ = w T + <T(x) . 

Equation { 4 ) becomes 

leading, under the transformation <T = 1. n<j>, to 
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· ( a(x )- w) 
<l>xx + K <I> = 0 

with <j> (0) = <j> (L) = 0 
X X 

and so, in this limit, the problem of entrainment is reduced to that of 

finding the eigenvalues corresponding to positive eigenfunctions of the 

above Sturm-Liouville problem (we need positivity so that the trans-

formation can be inverted-see c omment at the end of Chapter 2). 

We consider now a different limiting procedure: 

Define a new variable w (continuous as before) by 

and change the time scale to 

In terms of these variables, system ( 2 ) gets rewritten as 

(5) 

Now assume that all functions defined thus are sufficiently 

differentiable so that we can write: 
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a(x. + ~x) = a(x.) + ~x · a (x.) + 0(~2) 
1 1 X 1 

and similarly for 'li. Substituting these in ( 5 ) and taking the limit 

N - oo , N • ~x = L , 

we have 

2 

( [N ( '\JI (~x) 
'liT= a(x) + k lim 1 2- cos L 'li'x· ~x+ xx 2 

N~x=L l 
N-oo 

= a(x)+k :~ 00 {2(1-coswx)+0(~2)+(~)·cos'li'x'li'xx+0(~
2)} 

N.6x=L 

:::::;>'liT= a(x)+k{2(1-coswx) }+ (~)cos'li'x'li'xx+0(~2) (6) 

Neglecting the o(~) term, we have 

( 7) 
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Differentiating eqn. ( 7) by x and setting w = ~ , we get 
X 

~T = a + Zk(sin~)~ 
X X (8) 

a quasi-linear 1st order PDE solvable by the method of characteristics. 

This equation gives us a description for the phase "W(x, T) in the limit 

of large slow time T. 

We note that equations ( 4) and ( 7) give us two different 

pictures for the evolution of the phase variable "W(x, T). The first is a 

picture for intermediate (slow) times in which the spatial distribution 

of the phase is more or less smooth. The second is a large (slow) 

times picture, after the system has gone through many cycles ('ilr large). 

At this limit, the s ubcharac teris tics of the 1st order part carry the 

information and sharp shocks in the phase can develop (smoothed out 

by the 0( 1/N) term we wrote in Eq. ( 6 ), which for very sharp shocks 

becomes important). 

We observe a close analogy between the limiting procedures 

employed here, and similar results that we get when rescaling a 

reaction-diffusion equation with oscillatory kinetics. 

The first limit is obviously the analogue of the method used in 

Chapter 2. By similarity we expect that this limit process, applied to 

more general chains, would still lead to the forced Burgers' equation. 

The second procedure is the analogue of using a WKB-type 

approximation for the same reaction-diffusion equation. (Introduce 
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phase variable e with assumed asymptotic expansion 

e ::::: 

while rescaling time and space variables-here we only had to rescale 

the time variable, since the space scale was defined on the basis of 

all other scales we assumed). This scaling leads to a first order 

equation of the form 

in general, (with <T a properly defined variable), solvable by general 

Hamilton-Jacobi theory. Similar scaling has being used [9] by 

Howard and Kopell. 

3.4 Discussion 

In this chapter we showed that even though the exact equations for 

the phase in a linear chain of weakly coupled oscillators are too com-

plicated to handle analytically (though not numerically), in the case of 

large populations we can get, in some limits, exactly solvable 

evolution equations. 

We considered a very simple model here, to not cloud the 

concepts unnecessarily. In light of the results in Chapter 2 though, 
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we feel justified to conjecture that the limiting processes we used 

would lead, applied to more general models, to similar evolution 

equations for the phase, as the ones derived here. 

This work is part of our attempt to understand certain 

phenomena encountered by various workers [ 10] studying a network of 

electrical cellular oscillators that is thought to be responsible for 

peristalsis in the small intestine of mammals. 



PART II 
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CHAPTER 4 

4. ANALYSIS OF NONLOCAL EFFECTS IN THE DIFFUSION FLUX 

FOR A CHEMICALLY REACTING MIXTURE 

4. 1 Introduction - Physical Background 

As is well known, intermixing among the different components of 

a mixture is greatly affected by temperature. More specifically, there 

exists a definite temperature value above which the components mix 

freely, while below it they form separate phases. 

critical temperature T of the mixture. c 

This is called the 

If no heat is released because of the mixing and volumes do not 

change, the equilibrium state of the system will be such as to minimize 

the total (Gibbs) free energy F. Let us consider a solution in which 

the mole fraction n of one of the . components present at each point is 

nonuniform. Due to intermolecular forces, we expect the free energy 

at each point to depend not only on the composition at that point, but 

also on that of the surroundings. 

Following Cahn and Hilliard [11], we assume II V nll to be small 

with respect to the invers e intermolecular distances and f, the free 

energy per molecule per unit volume, to be a continuous function of n 

and its derivatives. Then, at each point, f can be expanded in a 

Taylor series about f 0 , the free energy per molecule of a solution of 

uniform composition. That is 
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( 
2 ) "\' on '\' ( 1) 0 

2
n 

f n, 'Vn, \7 n, · • • = fo(n) + L..I Li ox. + L..I kij -:::o-'x:.....~o=x-. + 
. 1 . . 1 J 
1 1J 

+ ..!_ 2.: k ~ ~) (_E_g_) (_E_g_) + 
2 1J ox. ox. 

. . 1 J 
1J 

where 

and 

k~~) = o 2
f/o(_E_g_) o(E!L\ j etc. 

1J ox. axJ 
1 J 0 

For isotropic solutions (that will be our concern here), f must be 

invariant under rotation-reflections (x.- x . and x. - -x.), so that 
1 J 1 1 

k~~) = 1J 

L . = 0 
1 

k1 0 . . = 1J [ of/o('V
2

n) I 0 .. 
1J 

0 

k~~) 
2 

= k
2

o .. = [o2f/(oi'Vnl) J 1J 1J 
0 

i.e., for the isotropic solutions under study 

The total free energy in a volume is then 

o . . 
1J 
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F = Nv J fdV = Nvf (f0{n) + k\7
2

n + k 2 (\7n)
2 + · ··)dv 

v v 

with N the number of molecules per unit volume. But 
v 

dk1 2 ( 
= -~ dn {'Vn) dV + ~ k 1\7n ·N)ds 

where Sis the boundary surface and N a unit normal vector. Since we 

are not concerned with effects at the external surface, we can pick it 

so as to make the surface integral vanish, so that we have for the free 

· energy 

with 

The effect of nonuniform composition on the diffusion flux for 

chemically reacting mixtures was first discussed by Huberman [3 ]. 

He argued that equilibrium for a mixture reacting chemically is not 

identical to chemical equilibrium. The mixture must minimize its total 

free energy both with respect to the chemical reaction taking place and 

with respect to the mixing. Hence when we describe the evolution of 

such systems away from equilibrium, we must use an approximation to 

the free energy of the above nonlocal form. 

Our generalized continuity equation include a diffusion flux 

-current J, that is, in general, a function of the gradients of all the 
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thermodynamic variables describing our system, namely 

Here we ignore temperature and pressure gradients and we assume 

gradients in composition to be sufficiently small, so that we can 

approximate J by the first term in its Taylor series, i.e., 

---J = --M \7 f.L 

where M, the interdiffusion motility, is shown by entropy increase 

arguments [ 1] to be always positive. Now, the chemical potential is 

given by 

and since 

[ 
ofo 2 l 

oF [n] = £ on - 2k\7 n_l ond7 

(vis a small volume in which on * 0 in the usual fashion) it f ollows that 

f.L for such systems can be approximated by 

ato 2 
=- - 2k\7 n on 

In the neighborhool of the critical point we assume, with Huberman, 

that f
0

(n) can be approximated by 
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where a 0 , b > 0 to ensure proper behavior for f (it must have a 

minimum). Then, in this approximation, the chemical potential will be 

a form in which temperature enters as a parameter . In a more com-

plete model, where temperature is not uniform, we would have to 

include a heat flux current and augment our generalized continuity 

equations by a rate equation for heat production, etc. 

The nature of this approximation to some quantum mechanical 

systems, as it is related to the Ginzburg-Landau theory for the 

behavior near critical points, is better understood than in classical 

chemical systems, due to the lack of experiments in this direction in 

the latter. It is hoped that the results of this a1;1alysis will point out 

some experimental possibilities in a way of verifying the theory and 

also some predictions about the behavior of reacting mixtures near the 

critical point. 

In Section 4. 2 we describe a model chemical reaction and write 

a generalized continuity equation in !-dimension, involving the con-

centration of one component (the only one that is allowed to vary). We 

find the stable uniform steady states and show that for some interval 

of a free parameter (here a production rate) they lose their stability 

to some nonuniform state. As we vary the paramete r the change of 
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state of the system can be either smooth or discontinuous, depending on 

other parameters of the problem and simulating either a "2nd" or a " 1st 

order phase transition," as our nonlinear stability analysis in Section 

4. 4 will show. (Section 4. 3 contains a linearized analysis, which deter-

mines the parameter values of interest). 

As it will be seen, linearized analysis of this model does not 

give the full stability picture. A steady state can become unstable to 

finite perturbations before it loses its linearized stability. In Section 

4. 5 we analyze the possible final states for the "2nd order transition" 

case, and in Section 4. 6 we give some quantum mechanical examples 

where similar theory is applicable. We conclude with a discussion of 

some research questions opened by this work. 

4. 2 A Model Autocatalytic Reaction 

We shall describe in this section a model autocatalytic chemical 

reaction proposed by Huberman [ 3 ]. This is 

The concentrations nA and ~ of A and B respectively are assumed to 

be held constant and we are only concerned with changes in the con-

centration n of X. 

The generalized continuity equation for n will be of the form 



an 
at 
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= k [n] - '\/ · J 

where k [n] is a source term found as usual to be 

and J is the diffusion flux current, which for small gradients is 

approximately equal to 

J = -M'V fJ. 

Assuming that fJ. can be expressed by the approximation found in 

the previous section, equation ( ':' ) becomes (considering only one · space 

dimension) 

For easy reference, we list here the various constants involved in the 

model 

1s the rate (per mole of X) at which X is 

produced in the 1st reaction and destroyed in 

the second. It can have either sign and is a free 

parameter that we can adjust to study the system. 

It will serve as our bifurcation parameter 
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reaction rate for 1st reaction assumed 

positive 

M interdiffusion motility, positive always 

by 2nd law of thermodynamics 

with ao positive 

b positive, so that f will have a minimum 

k a positive constant, related to the 

product of the energy of intermolecular 

interactions (here assumed attractive) 

and the square of the range of these 

interactions. 

We proceed now with the linearized analysis of this model, 

finding the possible stable solutions for the various ranges of the 

parameters involved. 

4. 3 Linearized Analysis 

We consider the equation 

= k 1 n - kAn
2 + MEl (an+ bn

3 
- 2k8 n) 

XX · XX 

with bounded solutions in (- oo, oo). 

The uniform steady states are 
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Linearizing about them and assuming solutions of the linearized equation 

of the form 

at 
U = e cosqx 

we find after standard analysis, that ther e are two distinct cases 

depending on the sign of a = a 0 {T-Tc). 

For T > T (a > 0), when fully mixed states are energetically 
c 

favorable, we find that 

i) if k 1 > 0, only n 0 = k/kA is stable 

· ii) if k
1 

< 0, only n
0 

= 0 1s stable. 

For T < T {a < 0), we find the following dispersion relation 
c 

(~) 

We are interested in neutral stability points, i.e., values of q 

such that a = 0. These are 

2 
-(a+ 3bn~) ± 

q = 
4k 
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The dispersion relation for a < 0 i s shown in Fig. 1) 

Fig. 1 

( 1) Ia I 
2 

< 3 bn0 

(2) Ia I 
2 2 I skI k 1 I 

> 3 bn
0 

, Ia + 3 bn0 I < .J M 

(3) Ia I 
2 > 3 bn
0 

, Ia + 3 bn~ I > J 8k~11 
Curves (1) - (3) shown for decreasing lk

1
1. Shaded curve makes 2nd 

order contact with q axis at qc = J8klk 1 1/M 

We observe that as k 1 increases from large negative values, the 

curve moves up and at the value 

a = - J -8:1 

it makes second order contact with the q axis at the point 
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Until this value of k 1 the solution of the linearized equation 

would decay to 0 but as k 1 grows past the above value, the linearized 

solution becomes unstable for a range of wave numbers in the neighbor­

hood of qc. As k 1 grows further to positive values, it reaches a value 

satisfying 

when the curve makes again second order contact with the q -axis. 

the second uniform steady state, i.e., 

Then 

becomes stable. 

These are shown in Fig. 2. This is all the information that one 

can get from a linearized analysis. Stability shown is not global but 

only with respect to small perturbations. For a more complete picture 

we have to include nonlinear effects. We do this in the next section. 



Both uniJorM 
s t:e.a.c!_y s\:.a le.s 
uvts~ab le 

Fig. 2 
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ex 

>!<Notes on Fig. 2. i) Our analysis will not be sufficient in a neighborhood 

of the origin (triple point) of size E'( ('( some positive power). Need 

a different scaling there. ii) For a < 0, c rossing of the shaded curves 

implies a dispersion relation of the form 

while for a < 0, when we linearize about the uniform state that loses 

stability, crossing implies: 
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4. 4 Nonlinear Stability Analysis - Bifurcation from the Continuous 

Spectrum 

The present problem differs from standard bifurcation problems 

in that a whole neighborhood of wave numbers becomes unstable when 

the parameter k
1 

crosses some critical value. So, standard techniques 

assuming a Oth order operator with a discrete set of eigenfunctions and 

writing the lowest order solution as a series in these eigenfunctions with 

slowly varying coefficients would have to be modified here accordingly. 

The technique that we develop here is based on q , the first 
c 

wave number to become unstable being different from zero. It treats 

the behavior of the solution for large times, and it basically entails the 

introduction of a stretched space variable that expresses the effect of 

the interaction of neighboring unstable modes. 

The analysis (similar for both the bifurcation points of our 

problem) is as follows: 

Let k
1 

be close to the critical value k 1, i.e., 

and assume that n has an asymptotic expansion 

We introduce the stretched variables 
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and 

Expanding all expressions in powers of c we have 

-2kM8 n = xxxx 

where we used that 

>:<Note: This scaling for xis suggested by the geometry of the problem, 

as seen in the figure. Combining two cosines, say, with wave numbers 

in a neighborhood of size E, we have 

:::: ~ [cos 2qc x + co s E x] etc . 
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Substituting these in the equation and setting the coe fficients of 

successive powers of E equal to zero,. we get the hierarchy: 

0( 1) 

O(E) 

OO{A A 1 
==:> n 1 = l A(£, T,q) cosqx + B ( £, T,q)sinqx rexp [a(q)t ]dq 

This is the full solution, valid for short times as well, but 

it leads to expressions of unmanageable complexity. The picture 

simplifies somewhat if we ask about the behavior for large times t. 

Then, since a(q) has a maximum of q (a(q ) = 0), we can approximate 
c c 

the integral by La plac e 1 s method to get 

n
1

:::: A(£T) cosq x + B(£, T) sinq x 
c c 

So, from now on, we ignore t-dependence and tacitly assume that our 

analysis is valid for large times. The next order gives 
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+ (Homogeneous soln.) (unimportant for our analysis ) . 

We see that the special properties of the trigonometric functions 

made it impossible to determine A and B, that were arbitrary functions 

in n 1• So, we have to go to the next order: 

+ (higher harmonics). 

To suppress secular terms, demand 
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(a short way of writing the two identical equations satisfied by A and B). 

( 
- Ma 2 2 Ia I 

At n 0 = 0 , this becomes k 1 < 0, k 1 = -~ , qc = 4k 

whose behavior is summarized in the following table 

0 < 0 

0 > 0 

Mbjaj 
4k 

76kk1 
< 0 

9Ma
2 

n 1 blows up, unless it 
is small enough initially 
in which case it decays 

to 0 

n
1 

blows up 

Mbjal 
4k 

76kk1 
- > 0 

9Ma
2 

n 1 decays 

to 0 

n 1 evolves to some 
bounded steady 

state 



(we wrote this in terms of k 1 as it is a better parameter in this case) 

and can get a similar table as for the previous case. 

So if we plot some norm II n II of the solution n(x, g, T) versus 

the parameter k 1, w e get the following bifurcation diagrams (note that 

our analysis yields only the part of the bifurcated curve close to the 

bifurcation values k ~ , k 1 , the rest being conjectured at this point) . 

lin.\\ 

0 k.-
L 

Fig. 3. 1. Bifurcation diagram for case 

2 
3 2 19 kA 
4 Mbq+ > 18k 

+ 
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nnn 

0 1(-
1. 

Fig. 3. 2 . Bifurcation diagram for 

2 
3 2 < 19kA .( 2 k+) ( 2 k+ ) 
4 Mbq+ 18k+ 1 + 3bMqc ki 1 + 4bMqc 19k2 

A 'A 

3 2) 19k! 
4 Mbq_ - --

18k 

11~11 

' 

0 

Fig. 3. 3. Bifurcation diagram for the case 
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e tc . 

We observe that in the cases with turnaround, F ig.3.3, uniform sta t es 

that are linearly stable can in reality be stable only with respect to 

small perturbations, while the y are unstable for larger ones . The 8~~ 

term will not modify this picture much, except by introducing a whole 

class of possible stable solutions instead of just a uniform o ne . We 

analyze the smooth transition case depicted in Fig. 3 . 1 in the next 

section. 

4. 5 Analysis of the smooth transition case 

For smooth transitions (case depicted in Fig. 3 . 1) the 

evolution equations for A and B are of the form 

A 
T 

B 
T 

(all constants can be scaled out). Introduce transformation 

A = R cos<j> 

B = R sin <j> 
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Equations for R and cj> are 

These possess the following ! - parameter family: 

cj> = C ~ (+ arbitrary constant) 

R = R(T;c) 

which for T- oo , evolve to 

cj> = cs 
1/2 

R = ( 1 - c 
2

) _ R 0 ( 1 c 1 < 1) 

After some trivial analysis, we find that these are s table for 

1 
I cl < ,.,[3 

and unstable otherwise (linearized stability). 

So, the possible stable steady state solutions of the original 

problem, in the smooth transition case, will be of the form 
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2 1/2 
n ::: n

0 
+ E ( 1- c ) R e 

Jcl< 1/.J3 

(within some scaling constants). 

e 
ix(q +Ec) 

c + .•• 

The R-<j> equations have another family of exact solutions , namely 

<!> = c 

R = R(£) 

For this class, R has the form of a Jacobian elliptic function . It is 

easy to see that the equation for R, when linearized about a peri odic 

function leads to a PDE whose spatial part is a Hill's operator, s o 

that there always exist positive eigenvalues leading to growing 

exponentials in time, so that all these periodic in R solutions a re un-

stable. 

4. 6 Discussion - Applications 

We described a theory that, by including nonlocal effects in the 

diffusion flux term of a reaction-diffusion equation_ can deal with 

chemical phenomena far from equilibrium and in some neighborhood of 

the critical temperature. 

Similar approximations can be used in the quantum mechanical 

many-body problem near phase transition points. As an e xample , we 

mention the model of the transition from a Peie rls insulator to metallic 
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conductor that under external dynamic excitation e xhibits a passage to 

an intermediate metal-insulator phase proposed by Berggren and 

Huberman [ 12 ]. The equation describing the number tln of exces s 

quasi-particles in the upper band of the insulating phase is 

where I is a forcing term. We can show, in the same fashio n as in 

Sections 4. 2 - 4. 5 that for some critical value of the forcing term the 

uniform state becomes unstable, and we are l e d to some nonuniform 

state that is modulated similarly to this found in the chemical problem. 

We can show that the transition in this case is always smooth (2nd 

order), regardless of parameter values . 

Similar theory can be applied to explain the appe aranc e o f a 

mixed state in the superconductor-normal 2nd order phase transition of 

the BCS state in thin films [13 ], and the appearance of l a y ered 

structures in whisker crystals [ 14]. 

The reason we needed to treat these problems in the infinite 

interval, and thus be led to bifurcation from the continuous spectrum, 

lies in the fact that the critical wavelengths that c haracterize them are 

of the order of either the range of intermolecular forces (in the 

chemical case), or the BCS coherence length (superconductor case), 

etc., that is much smaller than the usual macroscopic sample sizes 

that we deal with experimentally. 
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The rescaling that we used, developed here independently, has 

also been used by other workers, [5 ], [6] in treating instabilities of 

fluid flows. It is implicit in all our work that q * 0, i.e . , the quartic 
c 

dispersion relation has a minimum of q = 0. We can use perturbed 

bifurcation theory methods to treat the singular limit where q - 0 
c 

like some positive power of E; a priori we expect that a different 

scaling will be necessary in this limit. Another point of importance i s 

the case when the coefficient of the cubic term in our modulation 

equations vanishes. Then, higher order analysis is nee es sary to deter-

mine the behavior of the bifurcated branch. 

Finally, it is necessary to comment on our analysis of the 

bifurcation from the state no = 0. Clearly, it is not physically correct 

(although accurate mathematically), since the bifurcated state becomes 

negative, which a chemical concentration cannot do! The analysis has 

to be modified to allow for the fact that only nonnegative initial con-

ditions are possible, but since this would not change the qualitative 

behavior significantly, we did not pursue this direction further. 

It seems that in order to treat the case n = 0 correctly, the 

physics itself will have to be modified. It is not clear at this point 

that our nonuniform concentrations approximation holds when the mix-

ture becomes too dilute. It seems that when the mean distances 

between the solute molecules are larger than the range of the inter-

molecular forces, their effect can be ignored and we can treat the 

solute using a weak solution approximation that basically reinstates 

ordinary diffusion as a way of smearing out nonuniformities,. by treating 

the solute as a perfect gas. 
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