ONE. THERMAL DECOMPOSITION OF n-BUTANE

TWO. FLOW IN ENTRANCE SECTION OF PARALLEL PLATES

Thesis by
Yui Loong Wang

In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California

ACKNOWLEDGEMENT

Professor William H. Corcoran supervised the research program and directed the work on the thermal decomposition of n-butane. Professor Paul A. Longwell directed the work on flow in entrance section of parallel plates. Their invaluable guidance and continuous encouragement led to the completion of this thesis. Professor Robert G. Rinker continuously advised and helped during the progress of this research program and was instrumental for the experimental work. The interest and encouragement of Professors William N. Lacey and Bruce H. Sage are also deeply appreciated.

In the construction of equipment, Willard Dewitt, George Griffith, Seichi Nakawatase and Frederick Wild were most cooperative. Their efforts require special mention.

Remigio Fernandez-Martin assisted in the construction of equipment. He, George Preston and Kathleen Ensz helped in the reduction of the experimental data.

My wife, Ye Lum Wang, and my mother-in-law, Helen Tong, typed the rough drafts of the thesis. The final draft was prepared by Shirley Groves, Joyce Lundstedt and Betty Potter. June Gray and Lou Wood made up the figures. Their excellent works are gratefully acknowledged.

Financial support of the thermal decomposition work was given by the Du Pont Company. Financial assistance was provided by Institute Scholarships. A substantial portion of the thesis expenses was furnished by the Professional Service Group, Marketing Division, Burroughs Coporation. Finally, I would like to acknowledge the patience and encouragement of my wife and family, especially during the final phase of my Ph. D. work.

ABSTRACT

Part One
The thermal decomposition of n-butane was investigated in a flow reactor at a pressure of 1 atm , in a temperature range of 460° to $560^{\circ} \mathrm{C}$, and at low conversion levels, i.e. $0.06-0.68 \%$ for the 460° runs, $0.5-2.3 \%$ for the 510° runs, and 3.5 to 8.2\% for the $560^{\circ} \mathrm{C}$ runs. Temperature, velocity, and concentration profiles at the exit end of the reactor were measured to study the effects of energy, momentum, and mass transports on chemical reaction. It was found after analysis of data that the reactor could be treated as an isothermal reactor with plug flow under the prevailing operating conditions.

Two rate expressions were determined for the reaction; one corresponding to a first-order and the other to a second-order rate. They are

$$
\begin{aligned}
& \text { First-order rate }=3.34 \times 10^{12} e^{\frac{-54,600}{R T}}\left(C_{4} H_{10}\right) \frac{1 \mathrm{~b}}{\mathrm{ft}^{3} \mathrm{sec}} \\
& \text { Second-order rate }=2.55 \times 10^{14} \mathrm{e}^{\frac{-56,800}{R T}}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)^{2} \frac{1 \mathrm{~b}}{\mathrm{ft}^{3} \mathrm{sec}}
\end{aligned}
$$

These two expressions equally well represent the experimental data.

On the basis of the products formed and the rates observed, a Rice-type, free-radical mechanism was proposed for the thermal decomposition of n-butane. The mechanism, which is presented in the section on correlation of data, quantitatively describes
the reaction. One major feature of the mechanism is the consideration of secondary reactions at very low conversions.

Part Two

Flow of an incompressible fluid at the entrance section of parallel plates under isothermal, laminar conditions was investigated by solving the two-dimensional Navier-Stokes equations numerically. The Navier-Stokes equations were transformed into finite-difference equations in terms of stream functions Ψ and vorticities ω with a technique developed by de G. Allen. The finite-difference equations were then solved by an iterative procedure on digital computers. From the solution, point velocities and pressure gradients were computed.

Two cases were studied, both with a Reynolds number of 300 . Case I had a flat velocity distribution at the entrance to the plates. Case II assumed that potential-flow conditions existed only far upstream from the entrance. For both cases, large velocity and pressure gradients were found near the leading edges of the plates, although they were comparatively smaller in Case II. Also the velocity profiles for small distances from the entrance were found to be slightly concave in the central portion between the plates.

Schlichting and others have solved the boundary layer equation for Case I. Their solutions agree well with the present work at large distances from the entrance but deviate considerably
near the leading edges as the boundary-layer equation does not describe the behavior of fluid flow near singular points.

TABLE OF CONTENTS

PART ONE. THERMAL DECOMPOSITION OF n-BUTANE

I. Introduction 1
II. Apparatus 11
III. Reaction Kinetics 22
IV. Experimental Procedure 29
V. Experimental Program 35
VI. Results 37
VII. Correlation of Data 43
VIII. Discussion 57
IX. Conclusions 78
X. Recommendations for Future Work 80
Nomenclature 81
References 83
Figures 85
Tables 99
Appendices 116
List of Appendices 117
List of Figures in the Appendices 118
List of Tables in the Appendices 119
PART TWO. FLOW IN ENTRANCE SECTION OF PARALLEL PLATES 188
I. Introduction 189
II. Formulation of the Problem 196
III. Method of Solution 200
IV. Results 205
V. Discussion 210
VI. Conclusions 218
VII. Recommendations for Future Work 220
Nomenclature 221
References 223
Figures 225
Tables 246
Appendices 282
List of Appendices 283
PROPOSITIONS 306

PART ONE

THERMAL DECOMPOSITION
OF n-BUTANE

I. INTRODUCTION

Thermal Decomposition of Paraffinic Hydrocarbons
Extensive studies of the thermal decomposition of paraffinic hydrocarbons, especially lighter ones, have been made, and a comprehensive review of the work was presented by Steacie (1). The results showed that most of the decompositions roughly follow a first-order rate equation even though they are all very complex and involve free radicals. Furthermore, these decompositions are sensitized by free radicals and inhibited by substances such as NO and propylene which readily react with free radicals.

Rice (2) proposed a free-radical theory for the thermal decomposition of organic substances. In his theory the reaction is initiated by a splitting of the $C-C$ bond. Two free radicals are thus produced, whose subsequent reactions decide the reaction products. This is reasonable as the $C-C$ bond in organic substances is known to be considerably weaker than the $\mathrm{C}-\mathrm{H}$ bond. The bond energy of a $\mathrm{C}-\mathrm{C}$ bond is approximately 71.0 kcal compared with that of 93.3 kcal of a $\mathrm{C}-\mathrm{H}$ bond.

To account for the products in the thermal decomposition of a number of saturated hydrocarbons, Rice proposed mechanisms based on his free-radical theory. Later, Rice and Herzfeld (3) showed that, in order to agree with the experimental facts, these mechanisms could be devised to lead to first-order reactions. Moreover, by a suitable choice of the activation energies of the individual reactions, the apparent activation
energy of the overall reaction could be made to agree perfectly with the experimental value. Thus, in a general way, the kinetics of the decomposition of hydrocarbons can be explained on the basis of the Rice theory. The explanation involves certain rather definite assumptions about the rates of the individual reactions, and the validity of these assumptions can only be demonstrated by experiment.

The inhibition of hydrocarbon decomposition reactions has been exhaustively investigated by Hinshelwood and his co-workers (4,5). The principal inhibitor used was nitric oxide. As the amount of an inhibitor added was increased, the rate approached a limiting value greater than zero. With different inhibitors, identical limiting rates were obtained for many hydrocarbons. The investigators thus concluded that as the limiting rate was reached, the free-radical reactions were completely suppressed, with the residual rate corresponding to a molecular reaction. Although some evidence suggested that maximum inhibition does not necessarily correspond to complete suppression of free radicals $(6,7)$, it is generally accepted that the thermal decomposition of paraffinic hydrocarbons occurs by simultaneous chain and molecular mechanisms.

Thermal Decomposition of n-Butane
Much work has been done on the thermal decomposition of n butane, especially in the low-temperature range of $450-650^{\circ} \mathrm{C}$. Both flow and static methods have been used. Pease and Durgen (8) studied the reaction in a flow reactor at atmospheric
pressure and in a temperature range of $600-650^{\circ} \mathrm{C}$. As did many other earlier investigators, they found the reaction to be homogenous and approximately first order, with an activation energy of about 65,000 calories. The main overall reactions were found to be:

$$
\begin{align*}
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{4} \tag{1}\\
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6} \tag{2}
\end{align*}
$$

The first-order rate constant greatly decreased as the reaction proceeded, and that was attributed to secondary reactions such as rehydrogenation. Within the temperature range studied, the relative amounts of various products were found to remain fairly constant.

Another investigation on this subject was carried out by Steacie and Puddington (9) using a static method at temperatures from $513-572^{\circ} \mathrm{C}$ and pressures from 5 to 60 cm of Hg . The reaction was studied by measuring the rate of pressure increase and by analyzing the products at various times. Like Pease and Durgen, they found the first-order rate constant in a given run to decrease rapidly as the reaction progressed, and also with diminishing pressure. These two facts suggested that chain processes might be involved. The initial highpressure rate constant was calculated to be

$$
\begin{equation*}
\mathrm{k}=5.1 \times 10^{12} \mathrm{e}^{\frac{-58,700}{\mathrm{RT}}} \mathrm{sec} \mathrm{~s}^{-1} \tag{3}
\end{equation*}
$$

which has been generally accepted.

Later, Echols and Pease (10) investigated the decomposition of n-butane in a Pyrex bulb coated with KCl . The work was done at temperatures from 480° to $535^{\circ} \mathrm{C}$ and pressures from 100 to 600 mm of Hg . They decided, contrary to previous conclusions, that the reaction could not be first-order, and their data corresponded to the equation

$$
\begin{equation*}
-\frac{d p}{d t}=k_{1} p^{1.5}+k_{2} p^{2.0} /\left(p_{o}-p\right) \tag{4}
\end{equation*}
$$

where p is the partial pressure of butane at time t, and p_{o} that at $t=0$. An activation energy of 58 kcal was calculated for the reaction which predominated after the high initial rate. The main course of the reactions were given as

$$
\begin{align*}
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{CH}_{4}+\mathrm{C}_{3} \mathrm{H}_{6} \tag{1}\\
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6} \tag{2}\\
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \tag{5}
\end{align*}
$$

At $520^{\circ} \mathrm{C}$ and 25% decomposition, the mole ratio of the products $\left(\mathrm{CH}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}\right):\left(\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}\right):\left(\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}\right)$ was $10: 4: 1$.

Frey and Hepp (11) studied the thermal decomposition of several light paraffins in a flow system. For n-butane, they obtained the first-order reaction rate constant

$$
\begin{equation*}
\mathrm{k}=3.4 \times 10^{13} \mathrm{e}^{\frac{-61,400}{\mathrm{RT}}} \mathrm{sec} \mathrm{e}^{-1} \tag{6}
\end{equation*}
$$

The investigation, however, was conducted only at two different temperatures. By means of low-temperature fractional distillation, Frey and Hepp were able to analyze the products completely. At $575^{\circ} \mathrm{C}$ and 11% reaction, the mole ratio of the products $\left(\mathrm{CH}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}\right):\left(\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}\right):\left(\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}\right)$ was $6: 3: 1$.

In all cases mentioned above, the extent of decomposition of butane usually ranged between $20-50 \%$. For the purpose of identifying the initial products, the percentages of products formed for finite conversions should be extrapolated to their values at zero decomposition. Since secondary reactions could become significant after, say, 10% decomposition, errors involved in these extrapolations could be very large. Crawford and Steacie (12) carried out the reaction at pressures of 4-13 cm of Hg and at $442^{\circ} \mathrm{C}$, with emphasis on low conversion. Due to analytical difficulties, only $\mathrm{H}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ were determined. The rates of formation of these four gases were found to be constant from 1.5 to 9.0% conversion. As the extent of decomposition exceeded 10%, marked decreases in the rates of formation were noted. This was attributed to the inhibition of the reaction by the products (4). On the other hand, relative amounts of each product remained constant up to 24% conversion, agreeing with Pease and Durgen's results. The initial products obtained by extrapolation were: $H_{2}, 4.8 \%$, $\mathrm{CH}_{4}, 58 \%, \mathrm{C}_{2} \mathrm{H}_{4}, 24.5 \%$ and $\mathrm{C}_{2} \mathrm{H}_{6}$, 12.0%. The ratio of $\mathrm{C}_{2} \mathrm{H}_{4}$ to $\mathrm{C}_{2} \mathrm{H}_{6}$ was approximately $2: 1$, a value much larger than those obtained in other investigations.

Neuhaus and Marek (13) studied the decomposition of n-butane at 600° and $650^{\circ} \mathrm{C}$ in a flow reactor under atmospheric pressure for the purpose of determining the initial product distribution. The range of conversion was 2.4 to 6.0% at $600^{\circ} \mathrm{C}$ and 4 to 19% at $650^{\circ} \mathrm{C}$. By interpolating to zero conversion, the number of
moles of a product formed for each 100 moles of butane decomposed at $600^{\circ} \mathrm{C}$ was found to be 48.5 for methane and propylene, 34.5 for ethane and ethylene and 16.0 for hydrogen and butene. Similarly, at $650^{\circ} \mathrm{C}$, these numbers were $48.0,37.7$ and 12.3 respectively. For higher-temperature work, Egloff and his co-workers (14) pyrolyzed n-butane in noncatalytic metal tubes at $600^{\circ}-700^{\circ} \mathrm{C}$ with pressures from 1 to $7 \mathrm{Kg} / \mathrm{cm}^{2}$. Cambron and Bayley (15) also studied the pyrolysis of butane and other lower paraffins in externally-heated quartz tubes under conditions of streamline and turbulent flow, the latter being obtained in baffled tubes. At high temperatures and very short residence times, the activation energy for the thermal decomposition of n-butane was found to be $43,000 \mathrm{cal} / \mathrm{gm}-\mathrm{mole}$. Both investigations, however, were carried out mainly to determine the yield of olefins under various conditions. More recently, Sandler and Y. H. Chung (16) investigated the reaction using both annular and tubular flow reactors made of porcelain or silica. Within the temperature range of 620° $700^{\circ} \mathrm{C}$, they found the best value for the first-order reaction rate constant to be:

$$
\begin{equation*}
\mathrm{k}=9.55 \times 10^{9} \mathrm{e}^{-\frac{45,600}{\mathrm{RT}}} \mathrm{sec} \mathrm{e}^{-1} \tag{7}
\end{equation*}
$$

Sandler and Chung pointed out that the discrepancy between values of activation energy reported, $43,000-74,000 \mathrm{cal} / \mathrm{gm}-$ mole, was largely due to heat transfer. In many flow-system studies, they claimed reported rates for thermal decomposition were actually heat-transfer rates.

As mentioned previously, the main course of n-butane decomposition can be represented by:

$$
\begin{align*}
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{4} \tag{1}\\
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6} \tag{2}
\end{align*}
$$

In actual cases, however, a preponderance of ethylene over ethane and methane over propylene (12, 15, 16) existed, even at low conversions. Rice (2) explained this result by proposing a mechanism based on his free-radical theory. In his mechanism, the primary steps are:

$$
\begin{align*}
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{3} \mathrm{H}_{7} \tag{8}\\
& \mathrm{C}_{4} \mathrm{H}_{10} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \tag{9}\\
& \mathrm{C}_{3} \mathrm{H}_{7} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3} \tag{10}
\end{align*}
$$

followed by chain processes of the usual type:

$$
\begin{align*}
& \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{R} \cdot \rightarrow \mathrm{RH}+\mathrm{C}_{4} \mathrm{H}_{9} \tag{11}\\
& \mathrm{C}_{4} \mathrm{H}_{9} \cdot \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{5} \tag{12}\\
& \mathrm{C}_{4} \mathrm{H}_{9} \cdot \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} \tag{13}\\
& \mathrm{C}_{4} \mathrm{H}_{9} \cdot \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{3} . \tag{14}
\end{align*}
$$

where $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}$, or H :
The existence of free radicals in the thermal decomposition of n-butane was demonstrated by Rice, Johnston and Evering (17). At $800^{\circ}-1000^{\circ} \mathrm{C}$, they found the free radicals were 70% methyl and 30% ethyl.

The effect of additives on the thermal decomposition of n butane has also been exhaustively investigated. The reaction
was inhibited by $N O$, and propylene $(4,5,6,7,10,18)$, with NO being 20 to 30 times more effective than the latter (10). Just as for other paraffins, the relative amounts of various products in the case of the fully-inhibited decomposition of n-butane were roughly constant over the pressure range of 2 to 1400 mm at $530^{\circ} \mathrm{C}$ to $620^{\circ} \mathrm{C}$ (18). From these results, Peard, Stubbs and Hinshelwood (19) concluded that the pyrolysis of n-butane proceeded by simultaneous chain and molecular mechanisms. A free-radical reaction mechanism due to Rice has been given in the last paragraph. The molecular reactions of n-butane are those given by equations 1,2 and 4 .

The effect of a small amount of oxygen on the decomposition of n-butane was studied by Appleby, Avery, Meerbott and Sartor (20) from 486° to $526{ }^{\circ} \mathrm{C}$ under both static and flow conditions. The rate of decomposition was increased a hundred-fold with addition of 0.5% oxygen. The initial-reaction products at low oxygen concentrations consisted exclusively of butenes and water. Thus, oxygen probably acted primarily as a dehydrogenating agent under these conditions.

Reasons for the Present Work
A brief review of previous studies on the thermal decomposition of n-butane showed the need for further investigation. Discrepancies among the experimental results often existed. For instance, values of the activation energy from 43,000 to 74,000 cal/gm-mole were reported. Distribution of the initial reaction products also varied considerably. Even the order of
the reaction is still an open question. Part of the variability in results probably is attributable to the chain-nature of the reaction. In addition, however, some of the variations appeared to have resulted from lack of care in collection and analysis of the data. One of the possible contributors to the spread in the results was the difficulty in extrapolating product compositions to zero conversion. Most of the butane decomposition studies were made in the range of 20 to 50% decomposition without extrapolation to zero conversion. Because secondary reactions become significant after 10% decomposition, extrapolations for the reported investigations involved large uncertainty. Low-conversion investigations, on the other hand, involved the determination of products existing at very low concentrations.

Another error was involved in the mathematical treatment of the reactors. In both batch and flow reactors, energy transport must be properly considered, and it is not clear in the literature if such transport was under control.

The present work was designed to avoid the sources of error just discussed. A flow reactor in which the temperature, velocity, and composition fields were established was used to investigate the thermal decomposition of n-butane at low conversions in the temperature range of 460° to $560^{\circ} \mathrm{C}$. The composition of the reacting mixture was determined accurately by gas chromatography. With low-conversion data, extrapolation to zero conversion was more easily treated. Secondary
reactions were not significant under the conditions studied, and the results should give a more satisfactory understanding of the mechanism of decomposition of n-butane.

II. APPARATUS

A schematic diagram of the reactor assembly is shown in Figure 1. The reactor was originally constructed by Kalvinskas (21) for studying the partial oxidation of n-butane. Since that work, however, a large number of modifications have been made to improve the performance of the reactor. The assembly now has the following sections: (1) a feed and flowregulation section, (2) a preheating section, (3) the reactor, (4) a reactor head, (5) a micromanometer, and (6) a vacuum system. Temperature measurements were made on a Leeds and Northrup type K-3 potentiometer mounted on a central instrument bench in the laboratory. Reaction samples were analyzed by gas chromatography. A description of the chromatograph is given in Appendix A.

Feed and Flow Regulation

Instrumental grade n-butane was used as the feed and was obtained from the Matheson Company in No. lA cylinders. For temperature control, a hot-water line made of $3 / 8$-inch copper tubing was coiled around the cylinder in use. A Fiber-Glas blanket, which covered both the hot-water line and the cylinder, served as insulation.

From the storage cylinder, butane flowed through a doublegauge pressure regulator into a surge tank. The surge tank was a steel cylinder with a volume of approximately 0.5 cu. ft. The insertion of a surge tank was found necessary
in order to reduce fluctuations in the flow.

A needle valve at the exit of the surge tank was used to control the flow of butane into the reactor. From the valve, butane passed through a tee before entering a temperature conditioner. As shown in Figure l, the other arm of the tee could be connected to either a compressed air line or a nitrogen cylinder. Nitrogen was passed through the reactor between runs. Air, if necessary, could be run through the heated preheating section and reactor to burn out any carbon deposited on the walls from the cracking of butane.

The temperature conditioner consisted of 20 ft . of $1 / 4$-inch, 304-stainless-steel tubing coiled and submerged in a con-stant-temperature water bath. The bath temperature was controlled to within $0.5^{\circ} \mathrm{C}$ 。

From the temperature conditioner, the gas entered a Fischer and Porter Tri-Flat Rotameter. Use of either a Size 02F-1/8-25-5 tube with a sapphire float or a Size 8F-1/16-16-4 tube with a stainless-steel float allowed a range of flow from 0.004 to 0.075 cu . ft . of butane per minute at $70^{\circ} \mathrm{F}$ and 760 mm Hg pressure. A six-inch mercury manometer connected to the exit side of the Rotameter measured the gas pressure at that point.

Preheating Section

Butane leaving the Rotameter flowed through the preheating section before entering the reactor. This section consisted
of a pre-preheater and a preheater, each with two parallel lines. One of these lines was installed to carry oxygen in partial oxidation studies.

The pre-preheater was made of two 10 ft. lengths of $1 / 8$-inch stainless-steel tubing wound side by side into a helical coil having a diameter of 4 inches and a height of about 9 inches, with both outflow legs passing through the center of the coil. The coil fitted snugly inside a steel casing having a length of 10 inches, an I. D. of 4 inches, and a wall thickness of $1 / 4$ inch. A layer of zirconium oxide cement was coated over the outflow legs, and a 12-ohm heater of No. 22 Nichrome V wire was wrapped on top of the cement. A McDanel porcelain tube with an I. D. of $11 / 2$ inches and a length of 12 inches was placed between the outflow legs and the inner surface of the coil. Two lengths of 35 ft . of No. 18 Nichrome V wire with a resistance of 14 ohms each were spiraled into $1 / 4$-inch 0 . D. coils which in turn were wound around the porcelain tube. The assembly was then placed in a porcelain dome having a height of 13 inches and a diameter of 5 inches. A fourth heater with a resistance of 20 ohms was wrapped vertically on the dome through slits cut $1 / 2$ inch apart around the circumference at each end. Layers of Micro-Quartz and Fiber-Glas over the dome provided the necessary insulation. The pre-preheater was set on a firebrick base, and the voltage applied to each heater in the pre-preheater, the preheater, and the reactor was regulated by a separate General Radio Variac Type V-5.

The preheater was made of two identical pieces of $3 / 16$－inch stainless－steel tubing，each having a length of 30 inches which could be extended if needed to 40 inches．One end of the preheater was connected to the pre－preheater and the other end to a gas－mixing chamber．A portion of the pre－ heater at the end next to the mixing chamber was housed in a stainless－steel guide tube which had an O．D．of $15 / 16$ inch and a length of 19 inches．A heater ribbon having a resist－ ance of 20 ohms and a width of $1 / 16$－inch was wrapped helically with approximately 1／16－inch spacings between turns on the portion of the preheater tubes inside the guide tube． This ribbon was insulated on both sides with a 1／8－inch layer of asbestos tape．

Two more heaters were wound in series over the portion of the preheater tubes outside the guide tube．Each heater had a resistance of 10 ohms and was 20 ft 。 of No． 18 Nichrome V wire spiraled into $1 / 4$－inch 0 。D．coils．They were placed in quartz fiber sleeves before being put on the preheater． A layer of Micro－Quartz insulation was inserted between the preheater tubes and these heaters to provide further electri－ cal insulation。

When the preheater was connected to the reactor，part of the preheater together with the mixing chamber was mounted inside the reactor．The length of this part was varied to obtain different reactor lengths．The guide tube was clamped to a screw jack which guided the movement of the preheater inside
the reactor so that the preheater and the reactor would not touch each other. The relative preheater position was measured to within ± 0.02 inches with a steel ruler installed next to the screw jack. After the preheater was connected to the reactor, two additional coiled heaters having resistances of 10 ohms each were wrapped on the portion of the guide tube that was not in the reactor. The preheater was then insulated with several layers of Micro-Quartz followed by two layers of Fiber-Glas pipe insulation.

A schematic diagram of the gas-mixing chamber is shown in Figure 2. A function of this chamber was to mix the two inlet streams rapidly by direct impingement upon each other. Two platinum-platinum-10\% rhodium thermocouples made of 5-mil wires were mounted in the chamber. The first thermocouple was in the stainless-steel body about $1 / 32$ inch from the surface as shown in Figure 2. The second thermocouple went through the wall of the chamber and was bent 90° at the wall to fix the junction at the center of the outlet side of the chamber. The second thermocouple thus measured the gasstream temperature at the entrance of the reactor. To insure uniformity in the gas temperature as well as to reduce its volume, the mixing chamber was packed with porcelain pebbles, as in Figure 2.

The thermocouple wires in the mixing chamber were placed in doubleholed porcelain protection tubes to prevent contact with the wall of the chamber. Astroceram cement was used
sparingly to mount the porcelain tubes as well as to seal the wires from the gas. The lead wires from the thermocouples, insulated in single-holed porcelain protection tubes broken to $1 / 2$-inch lengths, were led down along the preheater tubes inside the guide tube before branching off.

In order to obtain a flat velocity distribution at the inlet of the reactor, the feed gas was passed through a quartz nozzle before entering the reactor. The nozzle was made of a quartz tube having a length of $1 / 4$ inches, an I. D. of 23 mm , and an O. D. of 25 mm . At the upper end, the nozzle was packed with $1 / 2$-inch lengths of quartz tubing, each with an O. D. approximately of $3 / 64$ inch and an I. D. of $1 / 32$ inch. The lower end of the nozzle fitted snugly to the outside wall of the mixing chamber as shown in Figure 2. A thin layer of zirconium oxide cement between the shoulder of the chamber and the nozzle insured their attachment to each other.

Reactor

The reactor itself consisted of two concentric McDanel, high-temperature, porcelain tubes. The inside tube was the reactor tube with an I. D. of 1.0 inch, an O. D. of 1.25 inches, and a length of 30 inches. The outside tube, which was a heater tube, had an I. D. of 1.50 inches, an O. D. of 1.75 inches, and the same length as the reactor tube. These two tubes were held together at both ends by two
spacers made of Transite. The reactor was mounted vertically on a steel flange, which in turn was held in place by three bolts on a bracket mounted inside the reactor bay at a height of 37 inches from the floor. The preheater entered the reactor through the center of the flange. A stainless-steel nut at the bottom side of the flange compressed two silicone rubber gaskets to form a gas-tight seal. At the top of the flange, sealing was provided by asbestos string impregnated with a mixture of graphite powder and lubricating oil. The string filled the space between the outer reactor tube and the flange opening and was compressed by a steel ring screwed to the flange. A schematic drawing showing the cross section of the bottom section of the reactor is given in Figure 3.

Five thermocouple holes were drilled six-inches apart along the wall of the heater tube. Through each hole, a chromelalumel thermocouple housed in a double-holed porcelain protection tube was inserted with its junction touching the outer wall of the inner tube. Astroceram cement was again used to hold the porcelain tubes to the wall of the heater tube and to seal the thermocouple wires from the surrounding atmosphere. A heater made of 30 ft . of No. 20 Nichrome V wire was wrapped around the outer tube between each pair of thermocouples. Asbestos string was used to space the wire to avoid electrical shorting, and a layer of asbestos tape 1/8-inch thick was wrapped tightly over the heaters to hold
them in place. Over the tube walls above the first thermocouple and below the fifth one, two 3-ft. Super-Cord heaters made by Glas-Col Company were installed. Each of these heaters had a maximum wattage of 300 and was usable up to $600^{\circ} \mathrm{C}$. Insulation consisting of layers of Micro-Quartz, Micro-Glas, and Fiber-Glas completely filled the space between the reactor and a cylindrical steel shield which had a diameter of 14 inches.

Reactor Head

The reactor head was mounted on top of the reactor tubes. The top and side views of the reactor head are shown in Figure 4. A schematic cross-sectional diagram is given in Figure 5. The lower part of the head was a pressure tap which consisted of two concentric rings. The inner ring was made of soapstone and had an I. D. of 1.0 inch, an O. D. of 2.66 inches, and a thickness of $5 / 8$ inch. The outer ring was made of steel and was $7 / 8$ inch in thickness with an O. D. of 4 inches and an I. D. of 2.66 inches for the upper $5 / 8$ inch and of 2 inches for the lower $1 / 4$ inch. The soapstone part was press-fitted in the upper central portion of the steel ring. Two holes, 180° apart, having a diameter of $1 / 8$ inch were drilled through both soapstone and steel for pressure taps. During operation, one tap was closed while the other one was connected to the static side of a micromanometer.

Next to the pressure tap was another set of soapstone and steel rings having the same diameters as the pressure tap rings but only $3 / 8$ inch in thickness. Two grooves, $1 / 8$ inch in diameter, were drilled along the contacting surfaces of these two sets of rings at right angles to the pressure-tap holes. A pitot-tube probe was placed in one of the grooves and a thermocouple probe in the other.

A picture showing both probes can be seen in Figure 6. The probe thermocouple was made of $\mathrm{Pt}-\mathrm{Pt}-10 \% \mathrm{Rh}$ wires having diameters of 0.003 inch. It was enclosed in a quartz tube which had an O.D. of $1 / 16$ inch and was partitioned into four compartments. The quartz tube was bent 90° at a distance of $21 / 2$ inches from the junction. Part of this tube was then welded into a larger quartz tube for protection. The outer tube, having an O.D. of $7 / 64$ inch, slid easily into the 1/8-inch groove. Similarly, the pitot tube was made of a quartz tube with an I.D. of approximately 0.024 inch and an O.D. of 0.06 inch. Part of the pitot tube was also welded to another 7/64-inch O.D. quartz tube, and the effective length of the probe was $21 / 4$ inches.

To allow precise positioning, each probe was fastened to a syringe externally mounted. Two $1 / 8$-inch holes were drilled at the center on both ends of each syringe piston to allow the probe to pass through. The outer end of the piston was clamped to a brass frame which in turn was connected to a micrometer head.

To hold each probe to the piston, a silicone rubber gasket was compressed between the end of the piston and the brass frame. When the reactor head was mounted onto the reactor, the probes were placed inside the inner reactor tube. Movement of a micrometer head caused the piston to move inside the syringe barrel and consequently the probe to move across the reactor tube.

The pitot tube was connected both to the kinetic side of the micromanometer and to a sampling line through a tee. By clamping off one of the connecting lines, the pitot tube was used to measure the velocity profile or to take reaction samples across the reactor.

Micromanometer

The micromanometer used in the velocity measurements was similar to a differential pressure gauge. As shown in Figure 7, two identical reservoirs were connected at the bottom by a capillary glass tubing. The area ratio between the reservoirs and the capillary tubing was approximately 1000 to 1. The manometer fluid used was methyl alcohol. Instead of using a liquid drop to observe the movement, an air bubble was inserted in the capillary tubing by means of a syringe through a rubber cap on the side. One reservoir was connected at the top to the pressure tap in the reactor head. The other reservoir could be connected to either the pressure tap or the pitot tube by means of two stopcocks.

Any pressure difference between the pressure tap and the pitot tube was measured in terms of the bubble movement. Silicone grease was used for the stopcocks since it does not readily dissolve in methyl alcohol. To insure a minimum of fluctuations in temperature, the micromanometer was covered with a Lucite hood.

Sampling and Vacuum Systems

Figure 1 shows that the sampling line leaving the reactor led to a vacuum valve. A sampling bulb having a capacity of 250 cc could be placed between the valve and a vacuum line to collect samples from the reactor. A total of 15 sampling bulbs was available. Samples used for chromatographic analysis were drawn from these bulbs by means of a separate manifold system.

The upper part of the reactor head was a stainless-steel nozzle which converged to a minimum diameter of $1 / 8$ inch. A sampling port with a diameter of 0.03 inch was located 2 inches downstream from the nozzle and also connected to the sampling line. Samples were taken both from the sampling port and from the pitot tube.

In operation of the reactor, gases were pulled past the port and into the atmosphere by way of a water-jet exhauster, a stripping column, an air compressor, a heat exchanger and a refrigeration unit.

III. REACTION KINETICS

Behavior of a Tubular Flow Reactor
A flow system, in most cases, is defined if its temperature, pressure, density, composition and velocity are known at every point in the system. For a system of n components flowing in a tubular flow reactor with radial symmetry, therefore, there will be a total of $5+(n-1)$ variables. These variables are governed by the same number of equations, namely, the energy balance equation, the equation of continuity, equation of state, two momentum balance equations in longitudinal and radial directions respectively, and material balance equations for $n-1$ components. These equations are all interrelated and highly non-linear. Although they have been discussed in some detail in many standard textbooks on transfer phenomena, no solution of the complete set of these equations has ever been attempted.

If the fluid is a perfect gas and the flow is under laminar and steady-state conditions, the set of governing equations for the system in question can be written as follows:
(a) Equation of State

$$
\begin{equation*}
\rho=P M / R T \tag{15}
\end{equation*}
$$

(b) Equation of Continuity

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \rho u_{r}\right)+\frac{\partial}{\partial x}\left(\rho u_{x}\right)=0 \tag{16}
\end{equation*}
$$

(c) Material Balance for Component k

$$
\begin{align*}
& \frac{1}{r} \frac{\partial}{\partial r}\left(r \rho_{k} u_{r}\right)+\frac{\partial}{\partial x}\left(\rho_{k} u_{x}\right)-\frac{1}{r} \frac{\partial}{\partial r}\left(D_{k} r \frac{\partial \rho_{k}}{\partial r}\right) \\
& \quad-\frac{\partial}{\partial x}\left(D_{k} \frac{\partial \rho_{k}}{\partial x}\right)-R_{k}=0 \tag{17}
\end{align*}
$$

(d) Energy Balance Equation

$$
\begin{gather*}
\rho C_{p}\left(u_{r} \frac{\partial T}{\partial r}+u_{x} \frac{\partial T}{\partial x}\right)-\frac{1}{r} \frac{\partial}{\partial r}\left(k_{c} r \frac{\partial T}{\partial r}\right) \\
-\frac{\partial}{\partial x}\left(k_{c} \frac{\partial T}{\partial x}\right)-\lambda R=0 \tag{18}
\end{gather*}
$$

(e) Momentum Balance in x-direction

$$
\begin{align*}
& \rho\left(u_{x} \frac{\partial u_{x}}{\partial x}+u_{r} \frac{\partial u_{x}}{\partial r}\right)= \\
& \quad-g \frac{\partial P}{\partial x}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{x}}{\partial r}\right)+\frac{\partial^{2} u_{x}}{\partial x^{2}}\right] \tag{19}
\end{align*}
$$

(f) Momentum Balance in r-direction

$$
\begin{align*}
& \rho\left(u_{x} \frac{\partial u_{r}}{\partial x}+u_{r} \frac{\partial u_{r}}{\partial r}\right)= \\
& \quad-g \frac{\partial P}{\partial r}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{r}}{\partial r}\right)+\frac{\partial^{2} u_{r}}{\partial x^{2}}\right] \tag{20}
\end{align*}
$$

A number of assumptions have been made in writing down some of these equations. For example, in the momentum balance equations, the viscosity gradients have been neglected. In the component material balance equation, diffusion other than molecular is not considered. In the energy balance equation, only the conductive and convective thermal energy transports plus the heat sink due to chemical reaction are considered important.

Theoretically, equations 15 to 20 can be solved for the $5+(n-1)$ variables, provided the boundary conditions are given. In actual cases, so far, such a task has not been achieved. Some simplified approaches are usually adopted. In connection with the present investigation, a project has been initiated to solve this complete set of equations by some numerical method for the thermal decomposition of n-butane in a tubular flow reactor. Only partial success has been accomplished so far, mainly due to instability of the numerical schemes used.

Simplified Tubular Flow Reactor Equation

In the study of chemical kinetics by means of a tubular flow reactor, simplifications are usually made to reduce equations 15 to 20 to only one equation. In the simplified approach, the reactor is considered to be isothermal as well as isobaric, and the composition of the reacting mixture is assumed to be uniform with respect to the radius. Further, longitudinal diffusion is neglected. Under these conditions, only equation 17 has to be considered, which now assumes the form

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(u_{x} \rho_{k}\right)-R_{k}=0 \tag{21}
\end{equation*}
$$

Equation 21 is equivalent to the more widely used design equation for flow reactors under steady-state conditions,

$$
\begin{equation*}
\mathrm{Fdx} \mathrm{X}_{\mathrm{k}}=\mathrm{R}_{\mathrm{k}} \mathrm{dv} \tag{22}
\end{equation*}
$$

Equation 22 can be integrated to give

$$
\begin{equation*}
\frac{\mathrm{V}}{\mathrm{~F}}=\int_{0}^{\mathrm{X}_{\mathrm{k}}} \frac{\mathrm{dX}_{\mathrm{k}}}{\mathrm{R}_{\mathrm{k}}} \tag{23}
\end{equation*}
$$

If the relationship between R_{k} and X_{k} is known, equation 23 can be used to determine the dependence of X on the ratio V / F. On the other hand, equation 23 can also be used to determine, by trial and error, a proper expression for R_{k} in terms of X_{k} if a set of data of X vs V / F is available. In the latter case, several expressions for R_{k} are usually derived based on theoretical considerations. Each of these expressions is substituted into equation 23 . The resultant relation between V / F and X_{k} is then compared with the experimental data to determine which expression for R_{k} gives the best fit and hence is probably correct. Presently, the relationship between X and V / F had been obtained experimentally for n-butane, equation 23 was then used to determine the correct rate expression.

Two Possible Rate Expressions for Butane Decomposition
Experimental evidence indicates that the thermal decomposition of n-butane proceeds through a free-radical chain mechanism. A free-radical chain reaction generally consists of four major steps, namely,
(a) Chain-initiating:

$$
\begin{equation*}
R_{i} R_{j}-\underline{a} \longrightarrow R_{i}+R_{j} \tag{24}
\end{equation*}
$$

(b) Chain-carrying:

$$
\begin{align*}
& R_{i} H+R_{j} \cdot \stackrel{k_{b}}{--\underline{k_{j}} H+R_{i}} \tag{25}\\
& R_{i} \cdot \xrightarrow{k_{c}} \xrightarrow{-} R_{j} \cdot+M \tag{26}
\end{align*}
$$

(c) Chain-terminating:

$$
\begin{equation*}
R_{i} \cdot+R_{j} \cdot \stackrel{k_{d}}{--} R_{i} R_{j} \tag{27}
\end{equation*}
$$

In these steps, R_{i} and R_{j}. are free-radicals, $R_{i} R_{j}$ and $R_{i} H$ are stable molecules and M is an unsaturated compound such as an olefin. In a system in which n-butane is the only stable species existing in abundance, the rate of decomposition of n-butane proceeds, therefore, according to equations 24 to 27 ,

$$
\begin{equation*}
-\frac{d\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)}{d t}=\left(\sum_{n} k_{a_{n}}\right)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)+\left[\sum_{j} k_{b_{j}}\left(R_{j}\right)\right]\left(C_{4} H_{10}\right) \tag{28}
\end{equation*}
$$

assuming that the contribution from the chain-terminating step is negligible. The order of the overall reaction thus depends directly on the relationship between the butane concentration and the free-radical concentrations.

The determination of the concentrations of the free-radicals usually involves the assumption that these concentrations are in the steady state, or

$$
\begin{equation*}
\frac{d\left(R_{i} \cdot\right)}{d t}=0 \tag{29}
\end{equation*}
$$

For j free-radicals, j equations can be set up to be solved for the j concentrations. These equations are in general second-order algebraic equations, however, and are very difficult to solve when n is larger than three. Even if a solution is obtainable for a system with more than three freeradicals, the resulting expressions for the free-radical concentrations would be usually too complicated to be helpful in determining the order of the overall reaction. This
happens to be the case for the thermal decomposition of $n-$ butane, which reaction involves five free-radicals from hydrogen to butyl.

On the other hand, it may be surmised that at a given temperature, the dependence of free-radical concentrations on butane concentration varies between zero and first order. The order of the decomposition reaction then lies somewhere between 1 and 2 according to equation 28. To verify this surmise, two reaction rate expressions were tested, one a first-order reaction and the other a second-order reaction.

In the analysis, X_{b} was taken as the conversion of n-butane at a point. For each mole of n-butane decomposed, ($1+Z$) moles of products were formed. A total of $\left(1+\mathrm{ZX}_{\mathrm{b}}\right)$ moles for each mole of initial feed were then present at a given point. The mole fraction of butane at that point was thus ($1-X_{b}$)/ $\left(1+\mathrm{ZX}_{\mathrm{b}}\right)$ and its density

$$
\begin{equation*}
\rho_{\mathrm{b}}=\left(\frac{1-X_{b}}{1+\mathrm{ZX}_{b}}\right) \frac{M_{b} \mathrm{P}}{\mathrm{RT}} \tag{30}
\end{equation*}
$$

For a first-order reaction, the reaction rate can be written as

$$
\begin{equation*}
R_{b}=k_{r b}^{\prime} \rho_{b}=k_{r b}^{\prime}\left(\frac{1-X_{b}}{1+Z X_{b}}\right) \frac{M_{b} P}{R T} \tag{31}
\end{equation*}
$$

where $k_{r b}^{\prime}$ is the first-order reaction rate constant. Substitution into equation 23 gives

$$
\begin{equation*}
\frac{\mathrm{V}}{\mathrm{~F}}=\frac{\mathrm{RT}}{\mathrm{M}_{\mathrm{b}} \mathrm{Pk}_{\mathrm{rb}}^{+}} \int_{0}^{\mathrm{X}_{\mathrm{b}}} \frac{1+\mathrm{ZX}_{\mathrm{b}}}{1-\mathrm{X}_{\mathrm{b}}} d \mathrm{X}_{\mathrm{b}} \tag{32}
\end{equation*}
$$

When a value of unity was used for Z in accordance with the results shown in Tables VIII to X , equation 32 can be integrated to give

$$
\begin{equation*}
\mathrm{k}_{\mathrm{rb}}^{\mathrm{t}}\left(\frac{\mathrm{M}_{\mathrm{b}} \mathrm{P}}{\mathrm{RT}}\right)\left(\frac{\mathrm{V}}{\mathrm{~F}}\right)=-\mathrm{X}_{\mathrm{b}}+2 \ln \frac{1}{1-X_{\mathrm{b}}} \tag{33}
\end{equation*}
$$

or

$$
\begin{equation*}
k_{r b}^{t}=\left(\frac{R T}{M_{b}^{P}}\right)\left(\frac{F}{V}\right)\left(-X_{b}+2 \ell n \frac{1}{1-\overline{X_{b}}}\right) \tag{34}
\end{equation*}
$$

Similarly, when the reaction is second-order,

$$
\begin{equation*}
R_{b}=k_{r b}^{\prime \prime} \rho_{b}^{2}=\left(\frac{M_{b} p}{R T}\right)^{2}\left(\frac{1-X_{b}}{1+X_{b}}\right)^{2} k_{r b}^{\prime \prime} \tag{35}
\end{equation*}
$$

Equation 23 then assumes the form

$$
\begin{equation*}
\mathrm{k}_{\mathrm{rb}}^{\prime \prime}\left(\frac{\mathrm{M}_{\mathrm{b}} \mathrm{p}}{\mathrm{RT}}\right)^{2}\left(\frac{\mathrm{~V}}{\mathrm{~F}}\right)=\left[\mathrm{X}_{\mathrm{b}}+\frac{4 \mathrm{X}_{\mathrm{b}}}{1-\mathrm{X}_{\mathrm{b}}}+4 \ell n\left(1-\mathrm{X}_{\mathrm{b}}\right)\right] \tag{36}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{k}_{\mathrm{rb}}^{\prime \prime}=\left(\frac{\mathrm{RT}}{\mathrm{M}_{\mathrm{b}} \bar{P}}\right)^{2}\left(\frac{\mathrm{~F}}{\mathrm{~V}}\right)\left[\mathrm{X}_{\mathrm{b}}+\frac{4 \mathrm{X}_{\mathrm{b}}}{1-\bar{X}_{\mathrm{b}}}+4 \ln \left(1-\mathrm{X}_{\mathrm{b}}\right)\right] \tag{37}
\end{equation*}
$$

When the operating conditions and conversion of a run are given, the reaction rate constants $k_{r b}^{\prime}$ and $k_{r b}^{\prime \prime}$ can be evaluated for that run using equations 34 and 37 respectively. The reaction rate constant, k_{r}, is in general a function of temperature only and can be related to temperature by the Arrhenius equation

$$
\begin{equation*}
k=A e^{-E / R T} \tag{38}
\end{equation*}
$$

IV EXPERIMENTAL PROCEDURE

Analysis of Feed Butane

The feed butane was instrument grade (99.5\% minimum purity) obtained from the Matheson Company in No. lA cylinders in 110 pound lots. Three such cylinders were used for the thermal decomposition studies. Four or more samples had been withdrawn from each tank before use and the samples analyzed by gas chromatography. The average compositions of the samples from each tank are listed in Table I. The impurities were mostly trans-2-butene, isobutane, propylene and propane.

Calibration of Equipment

The two Rotameters used were calibrated for butane against a wet test meter over their entire ranges. Calibration was performed at room temperature for several pressures. The flow rates thus obtained were converted to flow rates for standard conditions, which were taken to be $70^{\circ} \mathrm{F}$ and 760 mm Hg pressure. The data was then plotted as flow rate of butane at standard conditions against Rotameter readings for given pressures.

The 0.003 -inch Pt and $\mathrm{Pt}-10 \% \mathrm{Rh}$ wires used in making the probe thermocouple were calibrated by the National Bureau of Standards over the range of $0-1100^{\circ} \mathrm{C}$. Calibration was reported to be accurate to within $0.5^{\circ} \mathrm{C}$. The $\mathrm{Pt}-\mathrm{Pt}-10 \% \mathrm{Rh}$
thermocouples at the mixing chamber had not been calibrated, but were assumed to behave identically as the probe thermocouple. Chromel and alumel thermocouples were also made using a single batch of wire. Seven thermocouples made from these wires were compared directly with the calibrated Pt-$\mathrm{Pt}-10 \% \mathrm{Rh}$ thermocouple in a furnace over a temperature range of $380^{\circ}-600^{\circ} \mathrm{C}$. At a given temperature, the deviation in emf readings among these seven thermocouples was less than 0.1 mV or roughly $2.5^{\circ} \mathrm{C}$. Average values of these emf's were plotted against temperature, and the results were used in obtaining reactor temperatures from thermocouple readings.

Inside diameters at both ends of the reactor tube were measured with a micrometer and were 0.981 inch at the upper end and 1.020 inches at the lower end. An average value of 1.00 inch was adopted.

Relationship among the positions of the thermocouple and pitot tube probes and the corresponding micrometer readings were determined with a cathetometer, each with an estimated error of $\pm 0.1 \mathrm{~mm}$. The thermocouple was able to reach within 0.03 inch of the adjacent reactor tube wall and the pitot tube to within 0.15 inch. The bend in the pitot tube was slightly more than 90°, thus preventing it from reaching closer to the wall. When installed, the length of the thermocouple probe inside the reactor tube was 2.25 inches and that of the pitot tube was 2.0 inches.

Surface effects of the reactor tube wall, both in catalyzing the reaction and in terminating the free-radical chains have not been investigated experimentally. The catalytic effects of porcelain were surmised to be small due to consistency of the experimental results.

Operating Procedure

To start the reactor, high-purity nitrogen was allowed to flow through the reactor at a slow rate and exit into the room through a valve in the vacuum line. The variacs which controlled heaters on the reactor as well as the preheating section were turned on. Each variac was set at a voltage which would give approximately the desired temperature of operation. The temperature of the reactor wall, as well as the inlet gas temperature, was recorded continuously on a Micromax recording potentiometer. When steady-state was approached, the variacs were regulated whenever necessary in order to obtain a uniform operating temperature. Final adjustment generally required two to three hours.

An hour or so before starting a run, the flow of nitrogen was stopped and butane flow was started at a predetermined flow rate. The vacuum system was then turned on and the pressure in the reactor adjusted to be slightly above atmospheric (usually a head of $1 / 4$ inch of methyl alcohol or less).

When steady, uniform temperature was reached, the velocity profile was first measured, followed by a complete set of temperature measurements. Samples of the reaction gases were then obtained, followed by a second set of temperature measurements. This completed one run. Each run usually required eight to ten hours. At the end of a run, the butane flow and the vacuum system were turned off. The heaters, however, were left on with nitrogen flowing slowly through the reactor. The heaters were turned off only when no runs were to be made over a period of several days or when repairs were required.

The velocity measurements at any traverse position in the reactor required measurement of the static and velocity heads. One arm of the micromanometer was permanently connected to the pressure tap. The other arm was also connected to the pressure tap when measuring the static head and was connected to the pitot tube for measuring the velocity head. The difference between these two readings gave the relative magnitude of the velocity at that point. Each static-head reading took about three minutes, while a velocity head required fifteen to thirty minutes, depending on the distance over which the air bubble had to travel.

Due to fluctuations in line pressures, flow rates, atmospheric pressures, etc., which all greatly affected the micromanometer readings, several sets of velocity traverse readings were taken for each run.

Thermocouple readings were usually obtained by means of a Type K-3 Universal Potentiometer. When the butane flow was low, however, fluctuations in thermocouple probe readings up to $10^{\circ} \mathrm{C}$ were observed. It is suspected that such phenomenom was associated directly with fluctuations in butane flow. For these cases, the traverse readings were recorded continuously on a Speedomax recording potentiometer, with a period of five minutes for each reading. An average temperature was then determined for that position from the recording chart.

For a regular run, six gas samples were collected, four through the pitot tube at different traverse positions, one from the sample port at the reactor head, and one which was a duplicate sample of any of the first five. In runs during which no velocity measurements were made, usually only two samples were taken through the pitot tube, one at the center of the reactor and one 0.15 inch from the reactor wall.

In order to take a gas sample, the vacuum valve between the sampling bulb and the sampling line was closed.

The sampling bulb and attached tubing were evacuated by means of a vacuum pump. The vacuum pump was then cut off and the vacuum valve opened to let the reaction gas flow into the bulb. This procedure was repeated twice for purging purposes before a sample was taken.

In order to avoid leakage of air into the reactor and the sampling line and to obtain a representative sample at a given position, gas was throttled through the vacuum valve at a desired rate observable on a 30 -inch mercury manometer attached to the sampling system. Two to three minutes were required to fill a bulb of 250 cc capacity to a pressure of one atmosphere. At that rate, the gas sample was withdrawn from the reactor fast enough to minimize further reaction, and yet slow enough to represent the actual composition at the point of sampling.

Samples thus collected were occasionally stored in the sampling bulb for 24 hours before analysis. Several duplicate samples taken up to 24 hours apart from the same bulbs were analyzed. No noticeable difference in composition within each set of duplicate samples was detected as may be noted in Table II.

V. EXPERIMENTAL PROGRAM

Temperature, reactor length and feed rate of butane were the variables investigated. Pressure was held constant at approximately 745 mm Hg , the atmospheric pressure in the Laboratory.

Temperature
The thermal decomposition of n-butane was investigated in essentially an isothermal reactor with temperatures centering about three values, namely, $460^{\circ}, 510^{\circ}$ and $560^{\circ} \mathrm{C}$. In each group, about twenty runs were performed. Despite efforts to attain reaction temperatures exactly at these three values, there were deviations up to $11^{\circ} \mathrm{C}$. These deviations, however, were taken into considerations in the determination of the reaction kinetics.

Reactor Length

For each run, the reactor length was either 18 inches or 22 1/4 inches, which was the distance between the reactor inlet and the pitot tube opening. The reactor length was varied to observe end effects and possible variations in the reaction products and velocity profiles for the same retention times. About one-fourth of the runs was made at a reactor length of $221 / 4$ inches and the rest at 18 inches. In general, no appreciable differences between the results of the two sets of runs were observed.

Flow Rates

The flow rates of butane were set at values which for the particular temperature levels of operation would allow reasonable amounts of reaction. For each temperature, the feed rates were varied several-fold to give a spread in the degree of decomposition. The range of nominal retention times for the three temperatures, in terms of reactor volume divided by the initial volumetric feed rates, and the amounts of butane decomposed were:

$\mathrm{t},{ }^{\circ} \mathrm{C}$	Retention Time, sec	Butane Decomposi
460	4-40	0.05-0.65
510	3-15	$0.5-2.3$
560	$3-7.3$	$3.7-7.8$

VI. RESULTS

Temperature and Its Control

Because the rate constant of a chemical reaction varies exponentially with the inverse of absolute temperature, it is very important in conducting rate experiments to have precise temperature control. In the present work, attempts were made to maintain the reactor isothermally at a predetermined temperature by adjustment of the variacs controlling all the heaters. The voltage input to these variacs was controlled at 115 ± 0.5 volts by an electromechanical voltage regulator, which thus eliminated possible variations in reactor temperature with time due to fluctuations in line voltages.

The reactor wall temperature at any section could be controlled to within $\pm 2^{\circ} \mathrm{C}$. Because of end effects and the long time required to reach a new steady state after each adjustment of the variac settings, however, the maximum difference in temperatures among different sections of the wall for a run usually amounted to $5^{\circ} \mathrm{C}$ or higher. Wall temperatures for several typical runs are given in Table III. It can be seen in Table III that the temperature at the No. 1 thermocouple was often several degrees higher than the others. This situation was due to the intentional overheating of the section of the reactor tube above the No. 1 thermocouple to compensate for end effects due to the reactor head. Moreover, the wall temperature recorded by the thermocouple just below the reactor inlet usually varied considerably from the average reactor
wall temperature. This temperature was an indication of preheating rather than reaction.

Gas temperature at the inlet of the reactor was controlled by the preheaters and the heaters on the reactor wall below the inlet nozzle. Heating of the feed gas in the preheating section was done gradually and mildly to avoid pyrolysis and carbon formation. Stainless steel begins to catalyze the decomposition of butane into carbon and hydrogen at about $600^{\circ}{ }^{\circ}$ $700^{\circ} \mathrm{C}$ (22). Butane, therefore, was heated to about $400^{\circ}-500^{\circ} \mathrm{C}$ in the preheating section before the guide tube and was brought to the reactor temperature in the section enclosed in the guide tube. This latter section had a volume of $0.1 \mathrm{cu} . i n$. compared with a reactor volume of 14 cu .in. with a reactor length of 18 inches. Reaction in the preheater was thus neglegible. Lack of pyrolysis in the preheating section was evidenced by the cleanness of the preheating tubing which was inspected after each series of runs. The gas inlet temperature was controlled to within $\pm 5^{\circ} \mathrm{C}$ of the average reactor wall temperature and ocassionally deviated as much as $10^{\circ} \mathrm{C}$. In a number of runs, i.e. runs $20,21,28$, and 34 , the inlet temperatures were intentionally set at values up to $38^{\circ} \mathrm{C}$ lower than the average wall temperatures to study the effect of inlet temperature on the chemical reaction. In all instance, no appreciable effects were noticed.

The thermocouple probe mounted on the reactor head measured the temperature traverses across the reactor at a depth of
$21 / 4$ inches below the top of the reactor. At low flow rates, the traverse temperatures read low compared with the average wall temperature. The difference was as much as $40^{\circ}-50^{\circ} \mathrm{C}$ at the lowest flow rates. At higher flow rates, the traverse temperature approached that of the wall. This is illustrated in Figures 8 - 10. Furthermore, three types of temperature traverses can be observed. In one case, the temperature is high at the center and decreases toward the wall. Another type of temperature traverse has a W-shape. The third type, on the other hand, has an inverse W-shape. These phenomena are due to end effects, which are discussed in detail both in Appendix C and the Discussion section.

Flow Rate

The flow rate was measured with a Rotameter. Errors in flowrate measurements were mainly due to uncertainties in obtaining the Rotameter reading. The maximum error was estimated to be from $\pm 1 \%$ at high flow rates to $\pm 3 \%$ at low flow rates.

Fluctuations in flow rates were observed for all the runs. One type of fluctuation was a high-frequency oscillation (~ 100 cycles per minute). This was attributed to oscillations in vacuum-line pressure due to vibration. Another type was a long-period drifting mainly due to variations in feed-tank temperature because of changing temperature in the hot water used to control the tank temperature. The drift in flow rate was corrected by occasional adjustment of the flow rate.

Velocity Measurement

Velocity measurement by means of a pitot tube and a micromanometer involved great uncertainties. For instance, Table El in Appendix E shows that the micromanometer reading corresponding to a $1.02 \mathrm{ft} / \mathrm{sec}$ linear velocity of butane at $560^{\circ} \mathrm{C}$ is only 0.77 cm . This was of the same order of magnitude as the noise level in the readings estimated at 0.1 cm . Despite this uncertainty, the taking of velocity measurements over a long period of time (up to eight hours or more) for each run and the making of duplicate runs gave consistent data.

Since the static-head pressure was measured at the pressure tap approximately three inches above the pitot tube, the velocity head was not that usually obtained with a pitotstatic tube, but a combination of the velocity head at the pitot tube and the static pressure drop between the pressure tap and the pitot tube. The pressure drop, though unknown, was assumed to be independent of the pitot tube position for each run. The difference between the pitot-tube reading and the static-head reading, therefore, represented a relative measure of the linear gas velocity at the pitot tube.

Chromatographic Analysis

Gas samples withdrawn from the reactor were analyzed by gas chromatography. Description of the chromatographic system, its calibration, method of interpreting data, as well as its sources of error, are given in Appendix A. A gas sample stored in a sample bulb was transferred to a sampler before
the sample was analyzed. The volumes of the samplers were calibrated with mercury and were nominally either 1.3 cc . or $0.8 \mathrm{cc} . \quad$ The pressure of the sample in the sampler was usually about 40-45 cm Hg and was measured accurately on a mercury manometer with a cathetometer. The exact amount of each sample was therefore known. After a sample had been analyzed, the area of each chromatogram peak was measured and the absolute amount of each component on the sample calculated. From the amount of each component and the total amount of the sample, the percentage composition of each component, with the exception of n-butane, was computed. The percentage of n butane was obtained by difference since n-butane was present in more than 85% in all cases. In all these runs, the concentration variations across the reactor were usually very small and independent of radius.

Small amounts of air ($<0.1 \%$ by volume) were quite of ten found in analysis of the samples. Since the ratio of nitrogen to oxygen agreed with that of atmospheric air, this air was believed to be introduced into the samples during transferring operations and, therefore, was not considered as part of the actual reaction mixture.

The accuracy of the chromatographic analysis was indirectly demonstrated by analyzing duplicate samples withdrawn from the same sample bulb. A number of these duplicate analyses were made. Some typical results are shown in Table II. The results also indicated that the storage of a sample in a bulb
up to 24 hours did not affect the composition of the sample.

In order to check the steady-state assumption of the reactor operation, duplicate samples were collected from the same location in the reactor at different times during some runs. The chromatographic analysis of some of these samples are given in Table IV.

Summary of Results
A total of 58 isothermal runs were made for the thermal decomposition of n-butane. Of these runs, 19 were made centering around $460^{\circ} \mathrm{C}, 20$ around $510^{\circ} \mathrm{C}$, and 19 around $560^{\circ} \mathrm{C}$. The operating conditions for these runs are listed in Tables V to VII. The given conditions for each run are the arithmetic average of the wall temperatures, the gas-inlet temperature, butane feed rate, length of the reactor, number of samples collected, and finally an indication of whether the velocity profile was measured for the run. The composition of the samples withdrawn from the reactor through the pitot tube are listed in Appendix B. The compositions of several samples withdrawn from the sampling port are also given in Appendix B. Because these samples were taken after the gas passed through a relatively cold region near the exit of the reactor their compositions are listed only for comparison purpose.

VII. CORRELATION OF DATA

Temperature

For a run, the traverse temperatures, wall temperatures and gas-inlet temperature, in general, were not identical. For the purpose of studying the reaction kinetics, the arithmetic average of the wall temperatures was used as the reaction temperature. This determination of the reaction temperature was justified by the following considerations:
(1) The measured temperature traverse was not a good representation of the gas temperature inside the reactor at low flow rates due to end cooling near the exit.
(2) Radial transport of thermal energy in the reactor was very rapid. For one thing, the thermal conductivity of n-butane is quite large at the operating temperatures as shown in Table G2 in Appendix G. Moreover, radial convection probably was even more important than conduction. Radial velocities were developed by expansion of gas due to chemical reaction and by the transformation of velocity profile from flat to parabolic due to viscous effects. Radiation, however, was relatively small at these temperatures. Since the difference between the gas-inlet temperature and the average wall temperature was usually small and the heat of

Abstract

reaction was not significant at low conversions, the gas temperature at any depth inside the reactor was considered approximately the same as the wall temperature at that depth.

(3) If (2) is true, the actual reaction temperature was then the "reaction-rate average" of wall temperatures, an average based on reaction-rate considerations. If the wall temperatures did not differ from each other considerably, however, the arithmetic average of the wall temperatures approximates the "reaction-rate average" very well. See Appendix D for information on the method to calculate the "reaction-rate average" temperature and a comparison between the "reaction-rate average" and the arithmetic average.

Velocity Profile

The velocity data were collected in the form of kinetic-head and static-head readings at different radial positions. The difference between a kinetic-head and the corresponding static-head reading was a sum of two terms: the actual kinetic head and the difference in static pressure between the pitot tube and the pressure tap. Direct conversion of the manometer readings into velocities was hindered by the fact that the latter term was an unknown, although it was probably a constant in each run independent of radial posi-
tion. In the determination of velocities, therefore, a velocity profile was first assumed, and the corresponding kinetic-head profile calculated. This kinetic-head profile was then compared with the experimentally-obtained profile to determine whether the assumed velocity profile was the correct one or not. It was found that in all cases the assumption of parabolic velocity profiles agreed well with the experimental results. Further detailed discussion on reduction of the pressure data to obtain velocities is given in Appendix E_{o}.

Reaction Products

From the composition of the reaction mixtures, the following information was obtained for each run at two radial positions, $r / r_{o}=0.0$ and $0.7:$ (1) the number of moles of butane decomposed per 100 moles of feed, (2) a carbon-hydrogen balance for the reaction mixture excluding butane, and (3) the number of moles of each product formed per mole of butane decomposed. The method of calculation is shown in Appendix F. In these calculations, the presence of impurities in the feed was neglected. The values of the number of moles of butane decomposed, the carbon-hydrogen mole ratio, and the total number of products formed per mole of butane decomposed for each run are listed in Tables VIII to X. For each set of runs at a given temperature, the number of moles of each product formed per mole of butane decomposed, P_{i}, was found to be independent of the degree of decomposition for the low-conversion
ranges investigated. A plot of several $P_{i}{ }^{\text {s }}$ s vs. degree of decomposition of butane is given in Figure 11. The average values for P_{i} and their standard deviations are listed in Table XI.

Reaction Kinetics

It has been surmised in the Reaction Kinetics section that the order of reaction for the thermal decomposition of n-butane lies between 1 and 2. For the purpose of determining the kinetics, two rate expressions, one a first-order and the other a second-order, had been developed. For each run, the reaction rate constants corresponding to each of these two rate expressions were calculated from equations 34 and 37 respectively for radial positions $r / r_{o}=0.0$ and 0.7 . The radial position $r / r_{o}=0.7$ was as close to the wall as the pitot tube could reach. Difference between these two sets of data thus represents the variation in results across the reactor. A total of four sets of rate constants were thus obtained. A least-squares fit between $\ln \mathrm{k}$ and $1 / T$ was then carried out for each of the four sets according to equation 38 ,

$$
\begin{equation*}
\ln \mathrm{k}=\ln \mathrm{A}-\mathrm{E} / \mathrm{RT} \tag{38}
\end{equation*}
$$

Values of A and E thus determined, together with their standard deviations, are given in Table XII. Plots of 1 nk vs $1 / T$ for $r / r_{o}=0.7$ for both rate expressions are shown in Figures 12 and 13.

Table XII shows that the experimental data agree with both first- and second-order rate expressions equally well. This is partly because the present work was performed only at one pressure with low conversions. Under such conditions, the concentration of butane varied slightly both within a run and from run to run. The effect of concentration on reaction rate was thus not easily detectable. On the other hand, the agreement does indicate that the order of the reaction lies somewhere between 1 and 2, as predicted.

The values of rate constants obtained by the least-squares fits are also given in Table XII. It can be seen that for a given rate expression, the difference between the rate constants at different radial positions increases with temperature, with those near the wall being the larger. This shows that more reactions occurred near the wall than at the center, even at low conversions probably because of the finite rate of heat transfer, although the difference is very small.

Reaction Mechanism

A reaction mechanism for the thermal decomposition of n-butane is now proposed based on the present experimental results. This mechanism describes the reaction behavior of n-butane for low conversions in the temperature range of 460° to $560^{\circ} \mathrm{C}$. The following restrictions have been imposed: (1) In this reaction, the formation of molecules or free radicals
with more than four carbon atoms is neglected. Such formation occurs when either two free radicals recombine to form a stable molecule or a free radical is added to a stable molecule to form a larger free radical. The former will produce no molecules with more than four carbon atoms according to (4). The latter case occurs only when the stable molecule is an unsaturated compound (23). At low conversions, the presence of butenes is small. Their reactions with free radicals thus are negligible. Propylene reacts more readily with hydrogen or methyl radicals than with ethyl radicals, thus forming free radicals with no more than four carbon atoms. Reactions of ethylene with free radicals do not produce free radicals with more than four carbon atoms, again according to (4)。
(2) Only five free radicals, $i_{\circ} e_{0}, \mathrm{H} \circ, \mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}$, $\mathrm{C}_{4} \mathrm{H}_{9}$, are of importance. Their concentrations are at steady-state。 Formation of free radicals such as $\mathrm{CH}_{2}{ }^{\circ}$ is not likely due to energy considerations.
(3) Free radicals larger than $\mathrm{C}_{2} \mathrm{H}_{5}$ will decompose into an olefin and a smaller radical rather than react directly with another free radical or a molecule (24).
(4) Chain-carrying reactions involving the splitting of a carbon-carbon bond in a butane molecule such as

$$
\begin{equation*}
\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{H}^{\bullet} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{CH}_{4} \tag{39}
\end{equation*}
$$

are considered not very probable and thus can be omitted (2). (5) At low conversions, reactions involving stable reaction products, with the possible exception of propylene, are not important and are thus neglected. This is because methane and propylene are the most important reaction products and yet methane is very stable at the temperature range investigated.

With these restrictions in mind, the proposed mechanism may be represented by the following elementary reactions.

Chain Initiating:
(I) $\quad \mathrm{C}_{4} \mathrm{H}_{10} \xrightarrow{\mathrm{k}_{1}} \mathrm{CH}_{3} \circ+\mathrm{C}_{3} \mathrm{H}_{7}$ 。 with $\mathrm{k}_{1}=10^{13} \mathrm{e}^{-\frac{79,000}{\mathrm{RT}}}$
(II) $\mathrm{C}_{4} \mathrm{H}_{10} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{C}_{2} \mathrm{H}_{5}$.

$$
\begin{equation*}
k_{2}=10^{13} e^{-\frac{82,000}{\text { RT }}} \tag{40}
\end{equation*}
$$

Chain Carrying:
(III) $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{H} \cdot \stackrel{\mathrm{k}_{3}}{\longrightarrow} \mathrm{C}_{4} \mathrm{H}_{9} \cdot+\mathrm{H}_{2} \quad \mathrm{k}_{3}=10^{13} \mathrm{e}^{-\frac{9,300}{\mathrm{RT}}}$
(IV) $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{CH}_{3} \cdot \stackrel{\mathrm{k}_{4}}{\rightarrow} \mathrm{C}_{4} \mathrm{H}_{9} \cdot+\mathrm{CH}_{4} \quad \mathrm{k}_{4}=10^{11} e^{-\frac{8,300}{\mathrm{RT}}}$
(V) $\quad \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{5} \cdot \stackrel{\mathrm{k}_{5}}{-} \mathrm{C}_{4} \mathrm{H}_{9} \cdot+\mathrm{C}_{2} \mathrm{H}_{6} \quad \mathrm{k}_{5}=10^{11} e^{-\frac{7,000}{R T}}$
(VI) $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \stackrel{\mathrm{k}_{6}}{\rightarrow} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$.
$k_{6}=10^{14} e^{-\frac{39,500}{R T}}$
(VII) $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \xrightarrow{\mathrm{k}_{7}} \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H} \cdot$
$k_{7}=10^{14} e^{-\frac{46,000}{R T}}$
(VIII) $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \stackrel{\mathrm{k}_{8}}{\rightarrow} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3} . \quad \mathrm{k}_{8}=10^{14} \mathrm{e}^{-\frac{26,000}{\mathrm{RT}}}$
(IX)
$\mathrm{C}_{4} \mathrm{H}_{9} \cdot \stackrel{\mathrm{k}}{\xrightarrow{9}} \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}$.
$\mathrm{k}_{9}=10^{13} \mathrm{e}^{-\frac{29,000}{\mathrm{RT}}}$
(X) $\mathrm{C}_{4} \mathrm{H}_{9} \cdot \stackrel{\mathrm{k}_{10}}{-} \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{3}$.
$\mathrm{k}_{10}=10^{13} \mathrm{e}^{-\frac{24,500}{\mathrm{RT}}}$
(XI) $\mathrm{C}_{4} \mathrm{H}_{9} \stackrel{\mathrm{k}_{11}}{\xrightarrow{ }} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{5}$.
$\mathrm{k}_{11}=10^{13} \mathrm{e}^{-\frac{26,000}{\mathrm{RT}}}$

Chain-Terminating:

(XIII) $\mathrm{H} \cdot+\mathrm{CH}_{3} \cdot{ }^{\mathrm{k}}-\frac{13}{} \mathrm{CH}_{4} \quad \mathrm{k}_{13}$ small, 3-body collision(52)
(XIV) $\mathrm{H}^{\cdot}+\mathrm{C}_{2} \mathrm{H}_{5} \cdot \stackrel{\mathrm{k}_{14}}{\xrightarrow{2}} \mathrm{C}_{2} \mathrm{H}_{6} \quad \mathrm{k}_{14}=10^{13}$
(xv) $\quad \mathrm{CH}_{3} \cdot+\mathrm{CH}_{3} \cdot \stackrel{\mathrm{k}_{15}}{\xrightarrow{(}} \mathrm{C}_{2} \mathrm{H}_{6} \quad \mathrm{k}_{15}=10^{11}$
(XVI) $\quad \mathrm{CH}_{3} \cdot+\mathrm{C}_{2} \mathrm{H}_{5} \cdot \stackrel{\mathrm{k}_{16}}{\xrightarrow{2}} \mathrm{C}_{3} \mathrm{H}_{8} \quad \mathrm{k}_{16}=10^{11}$
(XVII) $\mathrm{C}_{2} \mathrm{H}_{5} \cdot+\mathrm{C}_{2} \mathrm{H}_{5} \cdot \stackrel{\mathrm{k}_{17}}{=} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{k}_{17}=10^{11}$

Secondary Reactions Involving Propylene:
(XVIII) $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H} \cdot \stackrel{\mathrm{k}_{18}}{-} \mathrm{C}_{3} \mathrm{H}_{7} \cdot \quad \mathrm{k}_{18}=10^{13} e^{-\frac{5,000}{\mathrm{RT}}}$
(XIX) $\quad \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{3} \cdot \stackrel{\mathrm{k}_{19}}{\xrightarrow{n}} \mathrm{C}_{4} \mathrm{H}_{9} \cdot \mathrm{k}_{19}=10^{11} \mathrm{e}^{-\frac{5,000}{\text { RT }}}$

In the above rate constant expressions, R is the universal gas constant with a value of $1.987 \mathrm{cal} / \mathrm{g}$ mole ${ }^{\circ} \mathrm{K}, \mathrm{T}$ is the absolute temperature in ${ }^{\circ} \mathrm{K}$, and the rate constant, k , has units of sec^{-1} for a first-order reaction and cc/(gm mole)
(sec) for a second-order reaction. The activation energies and frequency factors are either experimentally-measured values or are estimated from information available for similar reactions. Further information on how these rate constants were obtained is given in Appendix H. Values of the rate constants k_{1} through k_{11} together with k_{18} and k_{19} have been evaluated at three temperatures, i.e., $460^{\circ}, 510^{\circ}$, and $560^{\circ} \mathrm{C}$, and are listed in Table XIII.

Based on the above reaction scheme, the rate expressions for the free radicals are, in accordance with the steady-state assumption,

$$
\begin{align*}
\frac{\mathrm{d}\left(\mathrm{H}^{\cdot}\right)}{\mathrm{dt}}= & \mathrm{k}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)+\mathrm{k}_{7}\left(\mathrm{C}_{3} \mathrm{H}_{7} \cdot\right)+\mathrm{k}_{9}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right)-\mathrm{k}_{3}(\mathrm{H} \cdot)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right) \\
& -\mathrm{k}_{12}(\mathrm{H} \cdot)^{2}-\mathrm{k}_{13}(\mathrm{H} \cdot)\left(\mathrm{CH}_{3} \cdot\right)-\mathrm{k}_{14}(\mathrm{H} \cdot)\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right) \tag{59}\\
& -\mathrm{k}_{18}(\mathrm{H} \cdot)\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)=0
\end{align*}
$$

$$
\begin{align*}
\frac{\mathrm{d}\left(\mathrm{CH}_{3}\right)}{\mathrm{dt}}= & \mathrm{k}_{1}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)+\mathrm{k}_{8}\left(\mathrm{C}_{3} \mathrm{H}_{7} \cdot\right)+\mathrm{k}_{10}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right)-\mathrm{k}_{4}\left(\mathrm{CH}_{3} \cdot\right)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right) \\
& -\mathrm{k}_{13}\left(\mathrm{H}^{\cdot}\right)\left(\mathrm{CH}_{3} \cdot\right)-\mathrm{k}_{15}\left(\mathrm{CH}_{3} \cdot \cdot\right)^{2}-\mathrm{k}_{16}\left(\mathrm{CH}_{3} \cdot\right)\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right) \tag{60}\\
& -\mathrm{k}_{19}\left(\mathrm{CH}_{3} \cdot\right)\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)=0
\end{align*}
$$

$$
\begin{align*}
\frac{\mathrm{d}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)}{\mathrm{dt}}= & 2 \mathrm{k}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)-\mathrm{k}_{11}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right)-\mathrm{k}_{5}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right) \\
& -\mathrm{k}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)-\mathrm{k}_{14}(\mathrm{H} \cdot)\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)-\mathrm{k}_{16}\left(\mathrm{CH}_{3} \cdot\right)\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right) \tag{61}\\
& -\mathrm{k}_{17}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)^{2}=0
\end{align*}
$$

$$
\begin{align*}
\frac{\mathrm{d}\left(\mathrm{C}_{3} \mathrm{H}_{7} \cdot\right.}{} \mathrm{dt} & =\mathrm{k}_{1}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)+\mathrm{k}_{18}\left(\mathrm{H}^{\cdot}\right)\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)-\mathrm{k}_{7}\left(\mathrm{C}_{3} \mathrm{H}_{7} \cdot\right) \tag{62}\\
& -\mathrm{k}_{8}\left(\mathrm{C}_{3} \mathrm{H}_{7} \cdot\right)=0 \\
\frac{\mathrm{~d}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right)}{\mathrm{dt}}= & \mathrm{k}_{3}\left(\mathrm{H}^{\cdot}\right)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)+\mathrm{k}_{4}\left(\mathrm{CH}_{3} \cdot\right)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)+\mathrm{k}_{5}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right) \\
& +\mathrm{k}_{19}\left(\mathrm{CH}_{3} \cdot\right)\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)-\mathrm{k}_{9}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right)-\mathrm{k}_{10}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right) \tag{63}\\
& -\mathrm{k}_{11}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right)=0
\end{align*}
$$

Similarly, the rate expressions for the stable species are, neglecting the chain-initiating and the chain-terminating steps,

$$
\begin{align*}
& \frac{d\left(\mathrm{H}_{2}\right)}{d t}=\mathrm{k}_{3}(\mathrm{H} \cdot)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right) \tag{64}\\
& \frac{\mathrm{d}\left(\mathrm{CH}_{4}\right)}{\mathrm{dt}}=\mathrm{k}_{4}\left(\mathrm{CH}_{3} \cdot\right)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right) \tag{65}\\
& \frac{\mathrm{d}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)}{\mathrm{dt}}=\mathrm{k}_{5}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)\left(\mathrm{C}_{4} \mathrm{H}_{10}\right) \tag{66}\\
& \left.\frac{\mathrm{d}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)}{\mathrm{dt}}=\mathrm{k}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)+\mathrm{k}_{8}\left(\mathrm{C}_{3} \mathrm{H}_{7} \cdot\right)^{\circ}\right)+\mathrm{k}_{11}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right) \tag{67}\\
& \frac{\mathrm{d}\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)}{\mathrm{dt}}=\mathrm{k}_{7}\left(\mathrm{C}_{3} \mathrm{H}_{7} \cdot\right)+\mathrm{k}_{10}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right)-\mathrm{k}_{18}\left(\mathrm{H}^{\circ}\right)\left(\mathrm{C}_{3} \mathrm{H}_{6}\right) \tag{68}\\
& \frac{-\mathrm{k}_{19}\left(\mathrm{CH}_{3} \cdot\right)\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)}{} \\
& \frac{\mathrm{d}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)}{\mathrm{dt}}=\mathrm{k}_{9}\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right) \tag{69}
\end{align*}
$$

$$
\begin{equation*}
-\frac{\mathrm{d}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)}{\mathrm{dt}}=\left[\mathrm{k}_{3}(\mathrm{H} \cdot)+\mathrm{k}_{4}\left(\mathrm{CH}_{3} \cdot\right)+\mathrm{k}_{5}\left(\mathrm{C}_{2} \mathrm{H}_{5} \cdot\right)\right]\left(\mathrm{C}_{4} \mathrm{H}_{10}\right) \tag{70}
\end{equation*}
$$

It is of interest to note here that equations $64,65,66$ and 70 can be combined to give

$$
\begin{equation*}
-\frac{\mathrm{d}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{H}_{2} \neq \mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}\right) \tag{71}
\end{equation*}
$$

or the rate of decomposition of butane is equal to the sum of the rates of formation of hydrogen, methane and ethane.

For a quantitative discussion of the mechanism, the relationship given by equation 71 is first checked. The first-order rate constant, $\mathrm{k}_{\mathrm{r}}^{\prime}$, for butane decomposition has been obtained from experimental data and its values at different temperatures are tabulated in Table XII. Since at any given temperature the number of moles of each product formed for each mole of butane decomposed, P_{i}, is approximately constant and independent of conversion, the rate of formation of any product i is given by

$$
\begin{equation*}
\frac{d(i)}{d t}=p_{i} k_{r}^{\prime} \quad\left(C_{4} H_{10}\right) \tag{72}
\end{equation*}
$$

For equation 71 to hold,

$$
\begin{equation*}
\mathrm{P}_{\mathrm{H}_{2}}+\mathrm{P}_{\mathrm{CH}_{4}}+\mathrm{P}_{\mathrm{C}_{2} \mathrm{H}_{6}}=1.0 \tag{73}
\end{equation*}
$$

The values of P_{i} 's are given in Table XI. For all three
temperatures, $\left(\mathrm{P}_{\mathrm{CH}_{4}}+\mathrm{P}_{\mathrm{C}_{2} \mathrm{H}_{6}}\right)$ is approximately 0.95 . Values of $\mathrm{P}_{\mathrm{H}_{2}}$ are 0.097 at $560^{\circ} \mathrm{C}$ and not known experimentally for the other two temperatures. At $560^{\circ} \mathrm{C}$, therefore, the experimental value for $\left(\mathrm{P}_{\mathrm{H}_{2}}+\mathrm{P}_{\mathrm{CH}_{4}}+\mathrm{P}_{\mathrm{C}_{2} \mathrm{H}_{6}}\right)$ is 1.05 , which compares well with the predicted value of 1.0 . The value of 0.097 for $P_{H_{2}}$ at $560^{\circ} \mathrm{C}$ is, however, probably a little too high because of some butane cracking at the walls. For the purpose of testing the reaction mechanism, therefore, the values of $\mathrm{P}_{\mathrm{H}_{2}}$ were calculated from equation 73 by difference to be 0.056 , 0.047 and 0.046 for the three temperatures of $560^{\circ}, 510^{\circ}$, and $460^{\circ} \mathrm{C}$ respectively.

From the rates of formation of hydrogen, methane and ethane, the concentrations of $\mathrm{H}^{\cdot}, \mathrm{CH}_{3}{ }^{\cdot}$, and $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\bullet}$, can be readily calculated from equations 64 to 66 respectively. For example,

$$
\begin{equation*}
(\mathrm{H} \cdot)=\mathrm{P}_{\mathrm{H}_{2}} \mathrm{k}_{\mathrm{r}}^{\dagger} / \mathrm{k}_{3} \tag{74}
\end{equation*}
$$

The evaluation of $\left(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{\bullet}\right)$ and $\left(\mathrm{C}_{4} \mathrm{H}_{9} \cdot\right)$, however, are more difficult. These values can be computed from equations 62 and 63 , provided the concentration of propylene is known. Since the concentration of propylene is a function of butane conversion, the concentrations of $\mathrm{C}_{3} \mathrm{H}_{7} \cdot$ and $\mathrm{C}_{4} \mathrm{H}_{9}$. are also dependent on butane conversion and should be treated as such. This, however, complicates the situation beyond possible solution. As the main interest in the present work
is to determine the mechanism of butane decomposition, the effect of secondary reactions due to the presence of propylene may be approximated, at least at low conversions. Two approaches were used for approximation. In the first approach, the presence of propylene is neglected. This is called Case I. In the second approach, which is called Case II from now on, the reaction mixture is considered to be mainly butane with a small but constant percentage of propylene independent of conversion. Case I should apply at very low conversions, such as those for $460^{\circ} \mathrm{C}$ runs. Case II, on the other hand, should approximate the actual situation reasonably well for the 510° and $560^{\circ} \mathrm{C}$ runs, with less than 10% conversion. For Case II, the percentage of propylene is chosen to be 0.2% at 460°, 1% at 510°, and 3% at $560^{\circ} \mathrm{C}$, approximately half of the average percentages of propylene found in the reaction mixtures at these temperatures. The concentrations of $\mathrm{C}_{3} \mathrm{H}_{7}$. and $\mathrm{C}_{4} \mathrm{H}_{9}$ • are then calculated from equations 62 and 63 for both cases. The free radical concentrations thus determined are given in Table XIV.

It can now be seen that the assumption which neglects both chain-initiating and chain-terminating steps in the rate of formation or decomposition of stable species is justified. At $560^{\circ} \mathrm{C}$, for example, the rate of formation of ethane due to reactions XIV and XV is $2.6 \times 10^{-11} \mathrm{gm}$ mole/(cc) (sec) compared with that of $5.6 \times 10^{-8} \mathrm{gm} \mathrm{mole} /(\mathrm{cc})$ (sec) calculated from equation 66.

The rates of formation of the other three products, i.e., ethylene, propylene and butylenes, can now be predicted from equations 67, 68 and 69 respectively. The agreement between the predicted and experimental values is surprisingly well, especially for Case II. These rates are tabulated in Table XV. With the exception of butylenes which existed only in small amounts in the reaction mixtures, the difference between the predicted and experimental rates are only 5% or less. The validity of the proposed mechanism is thus firmly established.

A further test of the mechanism is provided by calculating the rates of formation and disappearance of $\mathrm{H} \cdot, \mathrm{CH}_{3} \cdot$, and $\mathrm{C}_{2} \mathrm{H}_{5}$. If the steady-state assumption is to be valid, the rate of formation of a free radical has to be equal to its rate of disappearance. The rates of formation of these three radicals are the sums of all positive terms in equations 59,60 and 61 respectively. Similarly, their rates of disappearance are the sums of all the negative terms in the same equations. These rates thus calculated are given in Table XVI. The agreement is again better than 5%, with the exception of H. whose rates agree within 30%.

VIII. DISCUSSION

Apparatus

The reactor consisted of a reactor tube and heater tube. Use of a separate heater tube provided a gas jacket between the heater and the reactor tube wall. Due to natural convection, the temperature of the gas in the jacket and consequently the temperature of the reactor tube wall became more uniform than the case in which the reactor was directly heated. The reactor had an I.D. of one inch which was larger than most flow reactors used for laboratory studies of butane decomposition, but was needed to enable traverse measurements.

The thermocouples used in this investigation were made either of platinum and platinum-10\% rodium wires or of chromel and alumel wires. These wires tend to disintegrate in butane at high temperatures. For the purpose of extending their useful lives, therefore, these thermocouples were sealed off from the surrounding atmosphere as well as possible. This was done satisfactorily with the probe and inlet thermocouples. The reactor-wall thermocouples, on the other hand, broke down quite regularly at their junctions. For one thing, they were made of chromel-alumel wires which are unstable even at 460° to $560^{\circ} \mathrm{C}$. For another, the amount of Astroceram cement that could be put over the junction was limited due to the small size of the thermocouple holes in the wall of the outer tube. Probably there was not enough cement to seal completely the thermocouple junctions from the surrounding butane.

End effects due to the reactor head were observed at low flow rates, even though both the thermocouple and pitot-tube probes were approximately two inches inside the reactor. One way to reduce these end effects would be to make these probes longer so that they could reach farther inside the reactor. Long probes with very small diameters, however, are both difficult to make and structurally very weak. A better way would be to redesign the reactor and mount the probes between two pieces of soapstone which in turn would be sandwiched between two porcelain tubes. The bottom tube would be used as the reactor tube. The top tube would serve no other purposes than to maintain the flow pattern of the gas in the reactor tube as well as to avoid any end cooling of the reactor tube.

Both thermocouple and pitot-tube probes had an O.D. of 0.06 inch which was as small as possible to avoid any possible disturbance of the flow pattern. The probe thermocouple was made of wires having diameters of 0.003 inch to minimize conduction losses along the wires.

For a pitot tube to measure the correct total pressure, its axis has to be aligned properly with the gas flow. Since the flow at the exit of the reactor was Poiseuille, the axis of the tube should have been parallel to the axis of the reactor tube. In the present case, the bend in the pitot was approximately 92° corresponding to an angle of yaw of 2°. This, however, did not cause any difficulty in data reduction since, in general, an angle of yaw of 5° or less produces little or
no error in the reading (24). On the other hand, this deviation from a right angle did prevent the pitot tube from reaching within less than 0.15 inch of the wall.

The static pressure was measured at a distance 3 inches downstream from the pitot tube opening. It certainly would be more desirable to measure the static pressure at a point in the reactor tube wall at the same height as the pitot tube opening. The positioning of the static pressure outlet was not critical, however, due to the method used for correlating velocity data.

The micromanometer described in Apparatus was capable of measuring pressure differences as low as 0.0002 cm of methyl alcohol. Although the sensitivity could be improved by increasing the area ratio between the reservoir and the capillary tube, such an increase was not justified because of fluctuations in manometer readings.

Experimental Errors

The operating variables were reactor length, butane feed rate, and temperature. The reactor length was measured to within 0.01 inch and thus introduced practically no errors. The error in measurement of flow rate might have been as high as 3\% at the lowest flow rates. This error was due to uncertainties in reading the Rotameter scale. It was also observed that the feed rate of butane was subject to fluctuations. These fluctuations were combinations of high-frequency oscillations and
long-period drifting. Drifting in flow rate was quickly noticed by making frequent checks on Rotameter readings and corrected by adjustment of the feed-tank pressure. The highfrequency oscillation was inherent to the system and could not be eliminated. Its effect on conversion and velocity measurement was not known, but was probably insignificant due to the high frequency (~ 100 cycles per minute). On the other hand, this oscillation did induce considerable oscillation in probe thermocouple readings at low flow rates, as noted in the Result section.

The main source of error was the control of temperature. Temperature at different sections of the wall for a run varied as much as $5^{\circ} \mathrm{C}$. An end effect caused by the relatively cold reactor head cooled the gas near the exit at low flow rates. Inlet gas temperatures differed in many cases up to $10^{\circ} \mathrm{C}$ from the average wall temperatures. And finally, chemical reaction had an effect in keeping the gas temperature lower than the wall temperature. These effects are now examined individually.

In consideration of the endothermic nature of the reaction, it should be noted that the heat of reaction for the decomposition of n -butane is only $574 \mathrm{Btu} / 1 \mathrm{~b}$ butane at $560^{\circ} \mathrm{C}$. At that temperature, butane has a heat capacity of $1.56 \mathrm{Btu} / \mathrm{lb}^{\mathrm{o}} \mathrm{K}$. If the reaction occurs adiabatically, the temperature drop for a 5% conversion would be $18^{\circ} \mathrm{C}$. Because the conversions for 460° and $510^{\circ} \mathrm{C}$ runs were much smaller than 5% and the reaction was far from adiabatic, the effect due to chemical reaction at
these temperatures can be safely neglected. At $560^{\circ} \mathrm{C}$, the conversion was of the order of 5%. The effect of heat of reaction then became more significant.

The inlet temperatures for four runs, i.e., runs $20,21,28$ and 34 , were intentionally maintained 15 to $38^{\circ} \mathrm{C}$ lower than the wall temperatures to study the effect of inlet temperature on conversion. Runs 20 and 21 were operated under the same conditions except that the inlet temperatures were 491° and $483^{\circ} \mathrm{C}$ respectively. The conversions for these two runs were practically the same as noted in Table IX. Similarly, run 34 had an inlet temperature of $530^{\circ} \mathrm{C}$ compared with $560^{\circ} \mathrm{C}$ in run 32 . Although the retention time in both cases were the same, run 34 actually had a conversion of 6.6% at $r / r_{o}=0.70$ compared with that of 4.9% for run 32 , mainly because the average wall temperature of run 34 was 4° higher than that of run 32 . This agrees with the fact that within the temperature range studied the rate of decomposition of butane double approximately every $15^{\circ} \mathrm{C}$. It was thus concluded that the actual temperature of the reaction was not, within reasonable limits, affected by the gas inlet temperature.

The end effects due to the cold reactor head have been investigated in detail as described in Appendix C. It has been shown that the reactor head cooled the top part of the reactor wall, which in turn cooled the gas next to that portion of the wall, mainly by conduction and convection.

Since the wall temperature three inches below the top of the reactor was known to be approximately the same as the average wall temperature, the cooled portion of the reactor wall could not have been more than three inches in height. The reaction samples, on the other hand, were withdrawn with the pitot tube at a distance of two inches inside the reactor tube. The portion of the reactor length in which the gas temperature could have been lower than the wall temperature was thus less than one inch. Since the reactor length in the present work was at least eighteen inches, the possible error due to neglecting end effects is 5% or less.

The gas temperature in the reactor was closely related to the wall temperature because heat transfer inside the reactor was very fast. If the gas were a perfect conductor, the gas temperature and the wall temperature would then be identical at any height in the reactor. This was the basic assumption made in calculating the average reaction temperature according to Appendix D. In practice, the gas was not a perfect conductor, and the reaction temperature thus calculated would be subject to error. It is estimated that the maximum deviation between the calculated and actual reaction temperature was $2^{\circ} \mathrm{C}$, equivalent to a 10% error in the reaction rate.

Another major source of error, especially at low conversions, was the chromatographic analysis. The minimum detectable amount of a component in a l-cc sample at atmospheric pressure and room temperature was about 0.3% by volume for hydrogen
and 0.005% for all of the other components. Appendix B shows that for runs made at 460° and $510^{\circ} \mathrm{C}$, no hydrogen was detected. This probably means that for these runs, hydrogen was present to less than 0.3% by volume rather than totally absent. Another component that often escaped detection was 1-butene. For the chromatographic unit that was used, the retention time of l-butene was 1129 seconds and that of n-butane 800 seconds. Since the n-butane peak had a pronounced tailing, the peak of l-butene sometimes was not distinguishable, especially when l-butene existed in very small quantities in the sample. Other small peaks, such as those of propane, trans-2-butene and cis-2-butene, were probably also missed occasionally. Even when small quantities of a component were detected the percentage error involved in determining the absolute amounts was high. For a component present to the extent of 0.01% by volume, the maximum possible error was estimated to be 30% or more. For this reason, composition data at low conversions are much less dependable than those at high conversions as evidenced by the scattering of rate constants around $460^{\circ} \mathrm{C}$ in Figures 12 and 13.

When a feed tank was initially acquired, the composition of its contents was determined by gas chromatography. The results are listed in Table I. Very small amounts of impurities were often found. These impurities consisted mainly of isobutane, trans-2-butene, propylene and propane. These components have larger vapor-liquid equilibrium constants than n-butane. Therefore the per cent by volume of all of them except isobutane, whose
equilibrium constant is nearly the same as that of n-butane, decreased rapidly in the discharge from the tank. That was observed experimentally. Since isobutane was not a reaction product, it was treated the same as n-butane in determining the conversions, and the presence of other impurities in the feed was then neglected.

Experimental Results and Their Correlations

Experimental results here refer to the temperature and velocity profiles as well as the composition of the reaction mixture at the exit of the reactor. Samples of the reaction mixtures were also withdrawn through the sampling port in the reactor head. Since these samples were obtained after the stream had passed through a distance of about four inches of "cold" region, they only served to show the distribution pattern of the product in an overall sample. From these samples, it was found that the product distribution was practically independent of radial position, as can be seen in Appendix B.

The measured temperature profiles for several runs at each temperature are shown in Figures 8 to 10 . For runs at 460° and $510^{\circ} \mathrm{C}$ having an average linear velocity greater than $0.2 \mathrm{ft} / \mathrm{sec}$, the temperature is nearly uniform and equal to the wall temperature in the central portion of the reactor, but becomes lower toward the wall. These curves are similar in shape
to those shown in Figures F1 and F2 for cases where heat transfer is dominated by conduction and forced convection. The average linear velocities for all of the $560^{\circ} \mathrm{C}$ runs were greater than $0.2 \mathrm{ft} / \mathrm{sec}$. For these runs, the temperature profiles were lower at both the wall and the center, and higher in between. The conversion for these runs ranged from 3.7 to 8.2%. At these conversion levels, the heat of reaction apparently became significant. This accounts for the lower temperatures at the center. Otherwise, conduction and forced convection still prevailed. When the average linear velocity of a run was much smaller than $0.2 \mathrm{ft} / \mathrm{sec}$. , the gas flowed slow enough to allow a considerable density difference to develop between a point close to the reactor head and a lower point in the isothermal region. Furthermore, forced convection decreased because of lower flow rates. Natural convection thus overshadowed all other modes of heat transfer, and the temperature profile changed to a concave shape. For average velocities around $0.2 \mathrm{ft} / \mathrm{sec}$. (Run 53 at $460^{\circ} \mathrm{C}$ and Run 11 at $510^{\circ} \mathrm{C}$), both natural and forced convection were important; the resulting temperature profiles are thus a compromise between the profile for a higher velocity and that for a lower velocity as can be seen in Figures 8 and 9.

Thirty-six runs with velocity measurements were made. Of these, only sixteen velocity profiles were determined. There are several reasons why data for more than half of the runs were bad.

Many of those runs were made at low flow rates, with average linear velocities less than $0.2 \mathrm{ft} / \mathrm{sec}$. The bubble displacement in the manometer corresponding to a velocity of $0.4 \mathrm{ft} / \mathrm{sec}$ is only 0.2 cm . Since the noise level in the manometer reading was of the order of 0.1 cm because of the high sensitivity, it was very difficult to obtain meaningful velocity data for these low flow rate runs. As the manometer reading approximately varies with the square of the velocity, the accuracy of measured data would rapidly improve with increasing flow rate. Another factor that worked against reliable velocity data at low flow rates was natural convection. It was reasoned in the last paragraph that due to end cooling, natural convection began to appear at an average linear velocity around $0.2 \mathrm{ft} / \mathrm{sec}$. As natural convection caused circulation in the exit end of the reactor, the flow pattern there was probably distorted. As a matter of fact, all sixteen good runs had average linear velocities greater than $0.2 \mathrm{ft} / \mathrm{sec}$.

Leakage was mainly responsible for bad runs with high flow rates. A one-centimeter bubble displacement is equivalent to a head of less than 0.001 inch of methyl alcohol. If a tiny leakage existed either in the connecting lines between the pitot tube or the pressure tap and the micromanometer or in the stopcocks on the micromanometer, considerable error could have been introduced into the velocity data. Leakage in the stopcocks was most bothersome because it occurred frequently. The silicone grease that was used for these stopcocks did not seal well
comparing with many other commonly used stopcock greases such as Kel-F, but was the only one not readily dissolvable in methyl alcohol. Leakage occurred not only during bad runs, but also sometimes during good runs. The only difference was that for a good run, leakage did not occur for a period long enough to allow a sufficient number of data points to be collected.

Although only sixteen out of thirty-six runs had enough velocity data for the determination of velocity profiles, the fact that all these sixteen runs had parabolic velocity distributions at the exit of the reactor is significant. These sixteen runs covered a wide range of conversion and their average linear velocities varied from 0.25 to $0.60 \mathrm{ft} / \mathrm{sec}$. It can thus be concluded that for all the runs in the present work, the velocity profiles were parabolic at the exit in the absence of end cooling.

The conversion and material balance for each run are given in Tables VIII to X. The composition data and hence conversions and material balances were subject to two possible errors: chromatographic analysis and fluctuations in operating conditions with respect to time, as have been discussed.

In general, the composition data and their derivatives, with the exception of conversion, do not seem to vary in any definite pattern with respect to the radial position of the sample. More conversion, however, was observed at points
nearer to the wall than to the center of the reactor. This is expected because of the endothermic nature of the reaction as well as the shorter retention time of gas molecules flowing at the center of the reactor. The interesting point is rather that such differences in conversion are smaller than expected. Even with high-conversion runs at $560^{\circ} \mathrm{C}$, differences in conversion between $r / r_{o}=0.70$ and the center was usually smaller than 5\%. Furthermore, the composition of any component quite often varied randomly with respect to radius. It thus seems that (1) heat and diffusional transfer in the reactor were rapid and (2) the transformation of velocity profile from flat to parabolic was probably slower than the case without chemical reaction. In any event, the reactor may be treated as essentially an isothermal, plug-flow reactor based on conversion and composition data.

Material balances were checked by computing for each sample the mole ratio $\Sigma \mathrm{C} / \Sigma \mathrm{H}$ for all the components other than the butanes. If the presence of impurities is negligible, this ratio has a theoretical value of 0.400 . For runs at 460° and $510^{\circ} \mathrm{C}$, the calculated values are usually a little higher than 0.4 , with a maximum deviation of 2%. For runs at $560^{\circ} \mathrm{C}$, the calculated ratios become lower than 0.4 and have a maximum deviation of 3%. Considering the low levels of conversion, such agreements are quite satisfactory. Furthermore, the deviation from the theoretical value of the ratio C / H at lower
temperatures can be attributed to the presence of small amounts of hydrogen in the samples which were not detected by the analysis. For runs at $560^{\circ} \mathrm{C}$, hydrogen was detected, and the ratio drops below 0.4 , possibly because of some carbon formation due to cracking at the walls. For run 60 with a conversion of 4.6 moles of butane per 100 moles of feed with a C / H ratio of 0.392 , the calculated carbon deposit is 0.4 mole of carbon per 100 moles of feed or 2.1% of the conversion.

The number of moles of products formed per mole of butane converted also varied with temperature. Its value increased from an average of approximately 1.95 to $460^{\circ} \mathrm{C}$ to 2.1 at $560^{\circ} \mathrm{C}$. If a butane molecule is decomposed into two free radicals, a butyl radical is decomposed into a free radical and an olefin, the presence of propyl radicals is negligible, and free radicals smaller than propyl do not further split into two fractions, the number of moles of products formed for each mole of butane decomposed will be two. If some of the ethyl radicals also decompose into an ethylene molecule and a hydrogen radical, as shown in equation 45, this number will be larger than two. The reason that this number is found to be slightly less than two at lower temperatures is again the lack of detection of hydrogen. Values for $\mathrm{P}_{\mathrm{H}_{2}}$ have been estimated to be 0.046 and 0.047 at 460° and $510^{\circ} \mathrm{C}$, respectively, based on the proposed reaction mechanism.

When these values are adopted, the number of products formed per mole of butane decomposed becomes two at $460^{\circ} \mathrm{C}$ and slightly higher than two at $510^{\circ} \mathrm{C}$.

The number of moles of a product formed per mole of butane converted, P_{i}, is also found to be a constant at each temperature for each product, independent of conversion. These average values together with the standard deviations are given in Table XI. Propane in very small quantities was found, mainly at $560^{\circ} \mathrm{C}$. Its value of P was not calculated due to the large uncertainties involved. It is of interest to note that P's for methane and ethane remain almost constant with respect to temperature while those for propylene and butenes decrease with increase in temperature. $\mathrm{P}_{\mathrm{C}_{2} \mathrm{H}_{4}}$, on the other hand, increases with increase in temperature.

The fact that within the temperature range of 450° to $650^{\circ} \mathrm{C}$ the relative amounts of the products remain fairly constant has been reported $(8,12)$. Most investigators (10, 11, 13), however, reported their results as the mole ratio of $\left(\mathrm{CH}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}\right)$: $\left(\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}\right):\left(\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}\right)$. Since values of P_{i} 's are different for different species, the use of such a ratio is not only semi-quantitative but also misleading.

Reaction Kinetics

The reaction-rate constant, k_{r}, for both first-order and second-order rate expressions has been fitted to an

Arrenhius-type expression by the least-squares technique. The values of k_{r}, used in the fit were computed with equation 18 or 21 for each run. For each rate expression, the rate constant was obtained using the conversion data both at $\mathrm{r} / \mathrm{r}_{\mathrm{o}}=0.7$ and 0.0 . The activation energies and frequency factors thus determined are listed in Table XII

In using equations 18 and 21 , the reactor was assumed to be isothermal, and isobaric, the composition of the reacting mixture uniform with respect to the radius, and longitudinal diffusion negligible. How well did the actual operating conditions agree with these assumptions?

The reactor was essentially isobaric. It was isothermal at low conversions with the possible exception of a very short length at the end. At conversions of 5% or higher, the temperature at the center of the reactor was several degrees lower than the wall temperature because of the heat of reaction. For these runs, data at $r / r_{o}=0.7$ should be used as the temperature at that point approximated that of the wall. At lower conversions, the conversion data do not differ appreciably across the reactor.

The composition of the reacting mixture is fairly uniform in the radial direction, as illustrated in Appendix B. Longitudinal diffusion, on the other hand, was found to be negligible.

For the decomposition of n-butane at $560^{\circ} \mathrm{C}$ in a reactor two feet in length with an average velocity of $0.1 \mathrm{ft} / \mathrm{sec}$, the conversion was calculated to be 23.66% when neglecting longitudinal diffusion compared with a conversion of 23.65% with diffusion.

With all these considerations, therefore, the validity of equations 18 and 21 has been proved. Furthermore, the rate constants for both first and second-order reactions are, respectively,

$$
\begin{align*}
& \mathrm{k}_{\mathrm{r}}^{\prime}=3.34 \times 10^{12} \mathrm{e}^{-\frac{54,600}{\mathrm{RT}}} \tag{75}\\
& \mathrm{k}_{\mathrm{r}}^{\prime \prime}=2.55 \times 10^{14} \mathrm{e}^{-\frac{56,800}{\mathrm{RT}}} \tag{76}
\end{align*}
$$

using the conversion data at $r / r_{o}=0.7$. Both constants agree with the experimental data equally well. This is because within the temperature and conversion ranges studied, the concentration of butane varied only to a very small extent. In order to determine the order of the overall reaction accurately, data at several pressures are needed.

Most of the previous investigations reported the rate constant corresponding to a first-order rate expression. Their values for the activation energy ranged from 43 to 74 kcal . Some of these results are given in the Introduction section. The generally accepted value was that of $58,700 \mathrm{kcal}$ by

Steacie and Puddington (9) which agrees reasonably well with the present result. Previous results, however, were based on data at 20 to 50% conversions. At such high conversion levels, secondary reactions, as well as mass and heat transfer in the reactor, could have been of considerable importance in making these results less dependable.

Reaction Mechanism
A free-radical reaction mechanism for the thermal decomposition of n-butane has been proposed in the section of Correlation of Data. Most of the activation energies and some of the frequency factors for the elementary reactions involved in this mechanism were chosen from experimental data collected by Steacie (1) after critical review. The remaining activation energies and frequency factors were estimated from the nature of the reaction, bond-energy considerations, and from values available in Steacie's book for similar reactions. The actual determination of these quantities is described in Appendix H. Because of uncertainties in experimentally measuring or estimating the activation energies and frequency factors, the rate constants for the elementary reactions calculated from these quantities can at best be regarded as semi-quantitative.

One feature of this mechanism is the consideration of secondary reactions due to propylene in the thermal decomposition of n-butane at low conversions. In order to demonstrate the effect of secondary reactions, two cases were investigated.

Case I neglected the presence of propylene. Case II assumed that a constant percentage of propylene existed in the reaction mixture at each temperature independent of conversion. As the amount of propylene in the reaction mixture depends directly on conversion, Case II does not represent any actual situation, but was used to study the effect of propylene as a product on butane decomposition. At low conversions, Case II should still approximate the actual behavior of the reaction mixture reasonably well.

Quantitative discussions of both cases are given in Correlation of Data. The predicted results for both cases based on the proposed mechanism are given in Tables XIV to XVI. The agreement between the predicted and experimental results shown in Table XV is surprisingly good for both cases, in view of the uncertainties in the rate constant data used for the elementary reactions. Case II, nevertheless, agrees with the experimental data better than Case I at higher temperatures where more propylene was present in the reaction mixture because of higher conversions. Furthermore, it has been experimentally observed that more methane existed in the reaction mixture than propylene on a molar basis even at the lowest conversion levels. This is not explainable by Case I which predicts equal amounts of methane and propylene according to equations 60,65 and 68. Case II, on the contrary, does predict a preponderance of methane over propylene because of the secondary reactions XVIII and XIX. The inclusion of these two reactions in
the proposed mechanism is thus justified.

In view of the good agreement between experimental and predicted results, the validity of the proposed mechanism, as represented by reactions I through XIX, is definitely established. This mechanism describes the thermal decomposition of n -butane with less than 10% conversion by taking into consideration the secondary reactions of propylene. At conversions higher than 10%, secondary reactions due to ethylene and butenes should also be considered. According to this mechanism, the initial product distribution of butane decomposition is $2.73 \% \mathrm{H}_{2}, 33.53 \% \mathrm{CH}_{4}, 12.15 \% \mathrm{C}_{2} \mathrm{H}_{6}, 15.86 \% \mathrm{C}_{2} \mathrm{H}_{4}$, $33.53 \% \mathrm{C}_{3} \mathrm{H}_{6}$, and $2.20 \% \mathrm{C}_{4} \mathrm{H}_{8}$ at 560 C . These values were calculated from equations 64 to 69 with free radical concentrations given in Table XIV for Case I.

According to the present mechanism, the overall reaction is first-order with respect to butane and first-order with respect to a combination of hydrogen, methyl and ethyl radicals as given by equation 70 . The dependence of free radical concentrations on butane concentration are not known, but are surmised to vary between 0 and 1 depending on the radical. The overall reaction then has an order between 1 and 2. This agrees with the observations of Echols and Pease (10).

The first free-radical mechanism proposed for the thermal decomposition of n-butane is that of Rice (2), as described in the Introduction.

Rice, however, did not attempt to discuss his mechanism quantitatively. Most recently, Purnell and Quinn (26) investigated the formation of the products of the reaction in a static system in the temperature range of 420° to $530^{\circ} \mathrm{C}$ and at initial pressures between 10 and 150 mm Hg . With the help of a very sensitive gas chromatographic unit, these investigators were able to study the reaction at low conversions up to 10%. On the basis of their experimental results, Purnell and Quinn proposed a free-radical mechanism similar to that of Rice, which gives a quantitative account of the elementary reactions occurring. They, however, did not try to quantitatively discuss the overall reaction, as was done in this thesis.

Purnell and Quinn found that the distribution of the major products of the reaction, i.e. $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{3} \mathrm{H}_{6}$, was independent of conversion at any temperature and initial pressure. These distributions agree with the present results very well. For example, the mole ratios of $\mathrm{CH}_{4}: \mathrm{C}_{2} \mathrm{H}_{6}: \mathrm{C}_{2} \mathrm{H}_{4}$: $\mathrm{C}_{3} \mathrm{H}_{6}$ obtained by Purnell and Quinn at a pressure of 150 mm Hg are 37.7 : 12.0: 12.6: 37.7 at $460^{\circ} \mathrm{C}$ and $36.0: 11.0: 17.0: 36.0$ at $518^{\circ} \mathrm{C}$. In the present work, these ratios were found to be 37.5: 13.3: 13.3: 35.9 at $460^{\circ} \mathrm{C}$ and $35.8: 13.5: 16.0: 34.7$ at $510^{\circ} \mathrm{C}$, both at one atmosphere. Purnell and Quinn, however, found that the yields of methane and propylene were virtually identical, in contrast with the present work.

Because of this fact, they did not incorporate the secondary reactions of propylene in their mechanism, but claimed that the preponderance of ethylene over ethane and the formation of hydrogen were solely due to reaction VI. Purnell and Quinn further claimed that the butenes were not formed by any primary reaction step, such as reaction IX, but were secondary products. They nevertheless failed to show how the butenes were formed.

By varying the initial pressure, Purnell and Quinn were able to show that the overall orders for the formation of the major products lay between 1.4 and 1.6 . This would result in an order for the overall decomposition of n-butane somewhere around 1.5 , as surmised previously.

IX CONCLUSIONS

Thermal decomposition of n-butane has been studied in a homogeneous flow reactor at atmospheric pressure and in the temperature range of 460° to $560^{\circ} \mathrm{C}$. The gas temperature inside the reactor in general remained fairly constant and was equal to the wall temperature for each run. The velocity in the inlet of the reactor was flat across the tube and by measurement was found to be parabolic at the exit. Within the range of conversion of $0.05-8 \%$, concentration gradients across the reactor were found to be insignificant. It was thus concluded that under the operating conditions, the reactor could be treated as essentially an isothermal reactor with plug flow.

The reaction-rate data were then correlated by a least-squares fit to obtain an Arrhenius-type expression for the reactionrate constant. For a first-order rate expression, the constant is

$$
\mathrm{k}_{\mathrm{r}}^{\prime}=3.34 \times 10^{12} \mathrm{e}^{-\frac{54,600}{\mathrm{RT}}}
$$

and for a second-order rate expression it is

$$
\mathrm{k}_{\mathrm{r}}^{\prime \prime}=2.55 \times 10^{14} \mathrm{e}^{-\frac{56,800}{\mathrm{RT}}}
$$

Both constants fit the reaction data equally well. The order of the overall reaction thus lies somewhere between 1 and 2 .

More likely, the actual overall reaction expression is a combination of first and second-order terms, such as:

$$
-\frac{\mathrm{d}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)}{\mathrm{dt}}=\mathrm{k}_{\mathrm{a}}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)+\mathrm{k}_{\mathrm{b}}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)^{2}
$$

Based on the reaction-rate data as well as the product distribution, a Rice-type, free-radical mechanism has been proposed for the thermal decomposition of n-butane. Using carefully chosen values of activation energies for the elementary reactions, as shown in Appendix H, the proposed mechanism compares well with the present experimental results. It seems that even at very low conversions ($\sim 5 \%$), secondary reactions between propylene and free radicals should be considered, as have been done in the present work. This once again stresses the importance of studying free-radical reactions at very low conversion levels.

X RECOMMENDATIONS FOR FUTURE WORK

1) It is recommended that the present reactor be modified to eliminate the end effects due to the reactor head.
2) It is proposed that an experiment be designed which would enable the measurement of free radical concentrations in the reacting stream. Such a measurement, if possible, testifies in a direct manner the validity of the proposed mechanism.
3) It is proposed that the work on the thermal decomposition of n -butane be extended to temperatures above $600^{\circ} \mathrm{C}$ at different pressures and with very low conversions. The use of a microreactor would be ideal for this type of work.

NOME NCLATURE

A frequency factor, $\sec ^{-1}$ for a first-order and cc/ (gm mole) (sec) or cu.ft./(lb) (sec) for a second-order rate constant
C_{p} heat capacity at constant pressure, Btu/(lb) (${ }^{\circ} \mathrm{K}$)
D diffusion coefficient, sq.ft./sec
E activation energy, cal/gm mole
F mass flow rate, lb/sec
g gravitational acceleration, $f t / \sec ^{2}$
$\mathrm{k}, \mathrm{k}_{\mathrm{r}}$ reaction-rate constant, same unit as A
$\mathrm{k}_{\mathrm{c}} \quad$ thermal conductivity, Btu (sec) (sq.ft.) $\left({ }^{\mathrm{O}} \mathrm{K}\right)$
$k_{r}^{\prime} \quad f i r s t-o r d e r$ rate constant, $\sec ^{-1}$
$k_{r}^{\prime \prime} \quad$ second-order rate constant, cu.ft./(lb) (sec)
M molecular weight, lb/lb mole
P total pressure, atm or $\mathrm{lb} / \mathrm{sq} . f \mathrm{f}$.
p partial pressure, atm
P_{i} number of moles of component i formed per mole of butane decomposed, dimensionless

R gas constant, $1.987 \mathrm{Btu} /(\mathrm{lb}$ mole $)\left({ }^{\mathrm{O}} \mathrm{R}\right)$
R_{k} reaction rate for component $\mathrm{k}, \mathrm{lb} /(\mathrm{cu} . \mathrm{ft}$.) (sec)
$r \quad$ radius, $f t$ or in
r_{o} radius of the reactor tube, $f t$ or in
T temperature, ${ }^{\mathrm{O}} \mathrm{K}$ or ${ }^{\circ} \mathrm{C}$
$u_{r} \quad$ velocity component in r-direction, $f t / s e c$
$u_{x} \quad$ velocity component in x-direction, $f t / s e c$
V volume of the reactor, cu.ft.

X moles of butane converted per mole of feed, dimensionless
$x \quad$ longitudinal distance, $f t$ or in
$Z \quad$ increase in number of moles for each mole of butane decomposed, dimensionless
λ heat of reaction, Btu/lb
$\mu \quad$ viscosity, lb/(sec) (ft)
p density, lb/cu.ft.
Subscripts:
b bulk or butane
k component k

REFERENCES

1. E. W. R. Steacie, "Atomic and Free Radical Reactions;' Vol. 1, Reinhold, New York, 1954.
2. F. O. Rice, J. Am. Chem. Soc., 53, p. 1959 (1931).
3. F. O. Rice and K. F. Herzfeld, J. Am. Chem. Soc., 56, p. 284 (1934).
4. F. J. Stubbs and C. N. Hinshelwood, Proc. Roy. Soc. (London), A 200, p. 458 (1950).
5. F. J. Stubbs and C. N. Hinshelwood, Ibid, A 201, p. 18, (1950).
6. E. W. R. Steacie and H. O. Folkins, Can. J. Research, B 17, p. 105 (1939).
7. C. H. Klute and W. D. Walters, J. Am. Chem. Soc., 67, p. 550 (1945).
8. R. N. Pease and E. S. Durgen, J. Am. Chem. Soc., 52, p. 1262 (1930).
9. E. W. R. Steacie and Z. E. Puddington, Can. J. Research, B 16, p. 176 (1938).
10. L. S. Echols and R. N. Pease, J. Am. Chem. Soc., 61, p. 208 (1939).
11. F. F. Frey and H. J. Hepp, Ind. Eng. Chem., 25, p. 441 (1933) .
12. V. A. Crawford and E. W. R. Steacie, Can. J. Research, 31, p. 937 (1953).
13. M. Neuhaus and L. F. Marek, Ind. Eng. Chem., 24, p. 400 (1932) .
14. G. Egloff, C. L. Thomas and C. B. Linn, Ind. Eng. Chem., 28, p. 1283 (1936).
15. A. Cambron and C. H. Bayley, Can. J. Research 9, p. 175 (1933) .
16. S. Sandler and Y. H. Chung, Ind. Eng. Chem., 53, p. 391 (1961).
17. F. O. Rice, W. R. Johnston and B. L. Evering, J. Am. Chem. Soc., 54, p. 3529 (1932).
18. F. J. Stubbs, K. U. Ingold, B. C. Spall, C. J. Danby, and C. N. Hinshelwood, Proc. Roy. Soc. (London), A 214, p. 20 (1952).
19. M. G. Peard, J. F. Stubbs, and C. N. Hinshelwood, Ibid, A 214, p. 471 (1952).
20. W. G. Appleby, W. H. Avery, W. K. Meerbott, and A. F. Sator, J. Am. Chem. Soc., 75, p. 1809 (1953).
21. J. J. Kalvinskas, Ph. D. Thesis, California Institute of Technology, 1959.
22. J. Zanetti, Ind. Eng. Chem., 8, p. 675 (1916).
23. E. W. R. Steacie, "Atomic and Free Radical Reactions", Vol. II, Reinhold, New York, 1954, p. 507.
24. F. O. Rice, J. Am. Chem. Soc., 55, p. 3035 (1933).
25. R. W. Ladenburg, editor, 'Physical Measurements In Gas Dynamics and Combustion", Part 1, Princeton University Press, Princeton, 1954, p. 119.
26. J. H. Purnell and C. P. Quinn, Proc. Roy. Soc. (London), A 270, p. 267 (1962).

LIST OF FIGURES

Figure Page

1. Flow Sheet of Apparatus. 86
2. Schematic Cross-Section of Gas-Mixing Chamber and Quartz Inlet Nozzle. 87
3. Schematic Cross-Section of Inlet End of the Reactor 88
4. Reactor Head 89
5. Schematic Cross-Section of Reactor Head. 90
6. Thermocouple and Pitot-Tube Probes 91
7. Micromanometer Assembly. 92
8. Temperature Profiles for Several 460 C Runs 93
9. Temperature Profiles for Several $510^{\circ} \mathrm{C}$ Runs 94
10. Temperature Profiles for Several $560^{\circ} \mathrm{C}$ Runs. 95
11. P_{i} vs Butane Conversion for Methane, Ethane, Ethylene and Propylene. 96
12. First-Order Rate Constant for n-Butane Decom- position Using Data at $\mathrm{r} / \mathrm{r}_{\mathrm{o}}=0.7$ 97
13. Second-Order Rate Constant for n-Butane Decomposition Using Data at $r / r_{0}=0.7$ 98

A BUTANE STORAGE TANK
B SURGE TANK
C NITROGEN TANK
D COMPRESSED AIR LINE
E TEMPERATURE CONDITIONER
F ROTAMETER
G PRE-PREHEATER
H preheater
I REACTOR
J REACTOR HEAD

K VACUUM SYSTEM MICROMANOMETER
M MERCURY MANOMETER
N SAMPLING BULB
O VACUUM LINE
P ATMOSPHERE
PP PITOT TUBE PROBE
PT PRESSURE TAP
SP SAMPLING PORT
T THERMOCOUPLE

Figure I. Flow sheet of apparatus

Figure 2. Schematic cross-section of gas-mixing chamber and quartz inlet nozzle

Figure 3. Schematic cross-section of inlet end of reactor
-89-

(a) Top View

(b) Side View

Figure 4. Reactor Head

Figure 5. Schematic cross-section of reactor head
-91-

Figure 6. Thermocouple And Pitot-Tube Probes
TO PRESSURE TAP

Figure 7. Micromanometer assembly

Figure 8. Temperature profiles for severol $460^{\circ} \mathrm{C}$ runs

Figure 9. Temperature profiles for several $510^{\circ} \mathrm{C}$ runs

Figure 10. Temperature profiles for several $560^{\circ} \mathrm{C}$ runs

Figure II. P_{i} vs butane conversion for methane δ, ethane ρ, ethylene O and propylene ρ

Figure 12. First-order rate constant for n-butane decompostion using dota at $r / r_{0}=0.70$

Figure 13. Second-order rote constant for n-butane decompostion using data at $r / r_{0}=0.70$

LIST OF TABLES

Table Page
I. Feed Analysis 100
II. Comparison of Duplicate Chromatographic Analysis 101
III. Reactor Wall Temperatures for Several Typical Runs 102
IV. Comparison of Duplicate Samples 103
V. Summary of Reactor Operating Conditions for $460^{\circ} \mathrm{C}$ Runs 104
VI. Summary of Reactor Operating Conditions for $510^{\circ} \mathrm{C}$ Runs 105
VII. Summary of Reactor Operating Conditions for $560^{\circ} \mathrm{C}$ Runs 106
VIII.Summary of Conversion and Material Balance for $460^{\circ} \mathrm{C}$ Runs 107
IX. Summary of Conversion and Material Balance for $510^{\circ} \mathrm{C}$ Runs 108
X. Summary of Conversion and Material Balance for $560^{\circ} \mathrm{C}$ Runs 109
XI. Values of P_{i} 110
XII. First- and Second-Order Reaction-Rate Constants Correlated by Least-Squares Fit. 111
XIII.Numerical Values of Some Reaction-Rate Constants 112
XIV. Free-Radical Concentrations Calculated from the Proposed Reaction Mechanism. 113
XV. Comparison of Experimental Results and Those Predicted from the Proposed Reaction Mechanism 114
XVI. Rates of Formation and Disappearance for Some Free Radicals as Calculated from the Proposed Reaction Mechanism 115

TABLE I. FEED ANALYSIS

FEED SOURCE

TANK 1
Runs

$$
11-22
$$

Used In

Component
-

TANK 2

TANK 3

$$
61-70
$$

61-70

$$
24-60
$$

Propane	--	--	0.071%
Propylene	Trace*	0.022%	0.010%
Isobutane	--	0.148%	0.039%
Trans-2-butene	Trace	0.024%	0.019%
n-Butane**	$\sim 100 \%$	99.806%	99.861%

Less than 0.005%.
Obtained by difference.

$\stackrel{9}{-1}$

$\underset{\sim}{H}$

37.578
$5 / 10 / 62$
$7: 30 \mathrm{p} . \mathrm{m}$.
0.214
0.0845
0.0824
0.218
0.00
0.00
0.0170
0.0130
0.00
99.371
TABLE II. COMPARISON OF DUPLICATE CHROMATOGRAPHIC ANALYSIS*
Run No.
Sample No.
Amount of Sample,
cc-cmHg at $25^{\circ} \mathrm{C}$
Date Analyzed
Time Analyzed
Composition
\% CH_{4}
$\mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{C}_{2} \mathrm{H}_{4}$
$\mathrm{C}_{3} \mathrm{H}_{6}$
$\mathrm{C}_{3} \mathrm{H}_{8}$
$1-\mathrm{C}_{4} \mathrm{H}_{8}$
Trans-2-C $\mathrm{C}_{4} \mathrm{H}_{8}$
$\mathrm{Cis}^{2}-\mathrm{C}_{4} \mathrm{C}_{8}$
Iso-C $\mathrm{C}_{4} \mathrm{H}_{10}$
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}{ }^{* * *}$
Samples withdrawn from the same storage bulb.
Chromatographic peak missed.
Obtained by difference.

ERATURES	FOR SEVERAL TYPICAL RUNS		
	WALL TEMPERATURES		
1	2	3	4
1.0	7.0	13.0	19.0
460	464	459	464
510	507	504	510
508.5	510	509.5	--
460	458	457.5	442.5
562	562.5	558	543.5
561	559	558	542
468	460	468	468.5
513	509	509.3	506
559	557	565	563

* Chromatographic peak missed.
${ }^{* *}$ Obtained by difference.
Velocity
Measurement $\begin{array}{lrl}\text { G CONDITIONS FOR } 460^{\circ} \mathrm{C} \text { RUNS } \\ \text { Reactor } & \text { Number of } \\ \text { Length, Inches } & \text { Samples Taken }\end{array}$ OPERATING
REACTOR
Butane Feed
Rate,s.c.f.m. 0.0178
0.0129
0.0129
0.0153
0.0153
0.0129
0.0129
0.0178
0.0064
0.0049
0.00627
0.0070
0.0064
0.00747
0.0091
0.0117
0.0270
0.0340
0.0211

 Run

 -00000000000000000 506.0
517.0
507.0
509.0
511.0
491.0
483.0
493.0
502.0
508.0
510.0
509.0
505.5
511.0
511.0
502.5
507.5
513.5
510.0
506.0

Run
No.
Average Wall ${ }_{\text {W }}$
Temperature, ${ }^{\circ} \mathrm{C}$

Velocity
Measurement

$\infty \infty \infty \infty$
か N N N N N ∞
0.0416
0.0549
0.0675
0.0549
0.0416
0.0549
0.0271
0.0340
0.0324
0.0262
0.0233
0.0295
0.0367
0.0384
0.0469
0.0426
0.0345
0.0537
0.0510 554.0
560.0
564.0
530.0
550.0
558.0
552.0
549.0
545.0
558.0
561.0
557.0
555.5
559.5
549.0
550.0
555.5
546.0
554.0

上

Run
No.

$$
\text { Moles } C_{4}
$$

$$
\begin{array}{cc}
\text { per } & 100 \\
0
\end{array}
$$

FOR $460^{\circ} \mathrm{C}$ RUNS

$\begin{array}{ll}\text { Excluding } & \text { Butanes } \\ 0 & 0.70\end{array}$

$$
\mathrm{H}_{10} \text { Converted }
$$ 0.3087

0.4589
0.3469
0.2255
0.2587
0.2439
0.3477
0.1808
0.3784
--
0.4213
--
0.3293
0.2758
0.1897
0.1352

TABLE XI. VALUES OF P_{i}

Temperature, ${ }^{\circ} \mathrm{C}$	460°			$\frac{510^{\circ}}{}$		
$\mathrm{r} / \mathrm{r}_{\mathrm{o}}$	0.7	0.0	0.7	0.0	0.7	0.0

(a) CH_{4}

	P	0.704	0.700	0.691	0.705	0.695	0.709
\%	Std deviation	6.73	5.11	3.65	4.50	5.05	3.72

(b) $\mathrm{C}_{2} \mathrm{H}_{6}$

P	0.250	0.258	0.262	0.261	0.249	0.248
\% Std deviation	5.02	7.02	3.98	4.06	2.60	2.08

(c) $\mathrm{C}_{2} \mathrm{H}_{4}$

P	0.250	0.252	0.309	0.302	0.371	0.371
\% Std deviation	5.77	10.20	5.50	5.07	3.04	3.21

(d) $\mathrm{C}_{3} \mathrm{H}_{6}$

P	0.671	0.671	0.670	0.660	0.632	0.631
\% Std deviation	8.32	7.26	3.73	3.39	3.29	2.98

P	0.086	0.087	0.037	0.040	0.026	0.026
\% Std deviation	27.4	35.1	22.8	22.0	15.8	16.3

(f) H_{2}

P	-	-	-	-	0.097	0.093
\% Std deviation	-	-	-	-	15.1	27.7

TABLE XII. FIRST- AND SECOND-ORDER REACTION RATE CONSTANTS CORRELATED BY LEAST SQUARES FIT

$$
k_{r}=A e^{-\frac{E}{R T}}
$$

(a) Values of A and E

First-Order
Second-Order

	First-Order			Second-Order	
$\mathrm{r} / \mathrm{r}_{\mathrm{o}}$	0.7	0.0	0.7	0.0	
$\mathrm{~A}^{*}$	3.34×10^{12}	2.49×10^{12}	2.55×10^{14}	1.88×10^{14}	

\% std deviation
of A
2.41
2.50
2.12
2.20

E, cal/gm-mol
54, 600
54,200
56,800
56,400
\% Std deviation of $\triangle E$
1.96
2.03
1.91
1.98
(b) Values of $\mathbf{k}_{\mathbf{r}}{ }^{*}$ Calculated From

The Least Squares Fit
First-Order

Second-Order

Temperature, ${ }^{\circ} \mathrm{C}$

$\mathrm{r} / \mathrm{r}_{\mathrm{o}}$	0.7	0.0	0.7	0.0
460°	1.71×10^{-4}	1.70×10^{-4}	2.92×10^{-3}	2.90×10^{-3}
510°	1.89×10^{-3}	1.83×10^{-3}	3.52×10^{-2}	3.43×10^{-2}
560°	1.54×10^{-2}	1.48×10^{-2}	3.15×10^{-1}	3.02×10^{-1}

* A and k_{r} have the unit of $\sec ^{-1}$ for first-order and $\mathrm{ft}^{3} / 1 \mathrm{~b}$ sec. for second-order rate expressions.

TABLE XIII. NUMERICAL VALUES OF SOME REACTION RATE CONSTANTS COMPUTED FROM EQUATIONS 40 TO 50 AND EQUATIONS 57 AND 58

	k^{*}		
REACTION	$460^{\circ} \mathrm{C}$	$510^{\circ} \mathrm{C}$	$560^{0} \mathrm{C}$
I	2.80×10^{-11}	8.93×10^{-10}	1.88×10^{-8}
II	3.57×10^{-12}	1.30×10^{-10}	3.07×10^{-9}
III	1.69×10^{10}	2.69×10^{10}	3.63×10^{10}
IV	3.35×10^{8}	4.82×10^{8}	6.64×10^{8}
V	8.19×10^{8}	1.01×10^{9}	1.46×10^{9}
VI	1.67×10^{2}	0.94×10^{3}	0.43×10^{4}
VII	1.77×10^{6}	--	85.5
VIII	2.26×10^{4}	5.54×10^{6}	1.51×10^{7}
IX	4.96×10^{5}	8.05×10^{4}	2.46×10^{5}
X	1.77×10^{5}	1.45×10^{6}	3.73×10^{6}
XI	3.23×10^{11}	5.54×10^{5}	1.51×10^{6}
XVI II	3.23×10^{9}	4.02×10^{11}	4.88×10^{11}
XIX		4.02×10^{9}	4.88×10^{9}

[^0]TABLE XIV. FREE RADICAL CONCENTRATIONS CALCULATED FROM THE PROPOSED REACTION MECHANISM

		Relative Concentration, $(\mathrm{R}) /\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)_{0}{ }^{*}$		
	Case	$460^{\circ} \mathrm{C}$	$510^{\circ} \mathrm{C}$	$560^{\circ} \mathrm{C}$
H	1 and 2	2.81×10^{-11}	2.10×10^{-10}	1.63×10^{-9}
CH_{3}	1 and 2	2.16×10^{-8}	1.74×10^{-7}	1.10×10^{-6}
$\mathrm{C}_{2} \mathrm{H}_{5}$	1 and 2	3.15×10^{-9}	3.15×10^{-8}	1.80×10^{-7}
$\mathrm{C}_{3} \mathrm{H}_{7}$	1	1.58×10^{-17}	1.61×10^{-16}	1.25×10^{-15}
	2	1.71×10^{-13}	2.63×10^{-12}	2.30×10^{-11}
$\mathrm{C}_{4} \mathrm{H}_{9}$	1	2.46×10^{-10}	9.06×10^{-10}	2.81×10^{-9}
	2	2.49×10^{-10}	9.60×10^{-10}	3.23×10^{-9}

[^1]TABLE XV. COMPARISON OF EXPERIMENTAL RESULTS AND THOSE PREDICTED FROM THE PROPOSED REACTION MECHANISM $\frac{\text { Rate of Formation, } \frac{\mathrm{d}(\mathrm{M})}{\mathrm{dt}} /\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)_{0}^{*} \text {, sec. }^{-1}}{460^{\circ} \mathrm{C}} \frac{510^{\circ} \mathrm{C}}{560^{\circ} \mathrm{C}}$
(a) ethylene

Experimental
Case I
Case II
4.28×10^{-5}
5.84×10^{-4}
5.70×10^{-3}
4.41×10^{-5}
5.32×10^{-4}
5.01×10^{-3}
4.49×10^{-5}
5.75×10^{-4}
6.00×10^{-3}
(b) propylene

Experimental

1. 08×10^{-4}
2. 27×10^{-3}
9.73×10^{-3}
Case I
Case II
1.22×10^{-4}
1.32×10^{-3}
10.46×10^{-3}
1.27×10^{-3}
9.29×10^{-3}
(c) butenes

Experimental

1. 21×10^{-4}
7.56×10^{-5}
4.07×10^{-4}
Case I
4.28×10^{-6}
7.29×10^{-5}
6.91×10^{-4}
Case II
5.56×10^{-6}
7.73×10^{-5}
7.95×10^{-4}

* $\frac{d(M)}{d t}$ is the rate of formation of M at zero conversion in $\frac{\text { gm-mole }}{\text { ce sec. }}$, where M is ethylene, propylene, or butenes. $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)_{0}$ is the concentration of pure butane in gm-mole/cc. Both at 1 atm and the given temperature.

TABLE XVI. RATES OF FORMATION AND DISAPPEARANCE FOR SOME FREE RADICALS AS CALCULATED FROM THE PROPOSED REACTION MECHANISM
Temperature $\frac{\text { rate, } \frac{\mathrm{d}(\mathrm{R})}{\mathrm{dt}} /\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)_{0}{ }^{*}, \mathrm{sec}^{-1}}{\text { Case I }}$
formation disappearance formation disappearance

$460^{\circ} \mathrm{C}$	0.61×10^{-5}	0.79×10^{-5}	0.62×10^{-5}	0.82×10^{-5}
$510^{\circ} \mathrm{C}$	1.02×10^{-4}	0.88×10^{-4}	1.07×10^{-4}	1.01×10^{-4}
$560^{\circ} \mathrm{C}$	1.47×10^{-3}	0.86×10^{-3}	1.57×10^{-3}	1.21×10^{-3}

(b) $\mathrm{CH}_{3} \cdot$

$460^{\circ} \mathrm{C}$	1.22×10^{-4}	1.20×10^{-4}	1.22×10^{-4}	1.22×10^{-4}
$510^{\circ} \mathrm{C}$	1.32×10^{-3}	1.31×10^{-3}	1.33×10^{-3}	1.42×10^{-3}
$560^{\circ} \mathrm{C}$	1.05×10^{-2}	1.07×10^{-2}	1.39×10^{-2}	1.31×10^{-2}

(c) $\mathrm{C}_{2} \mathrm{H}_{5}$.
$460^{\circ} \mathrm{C}$
$510^{\circ} \mathrm{C}$
4.35×10^{-5}
4.33×10^{-5}
4.41×10^{-5}
4.33×10^{-5}
$560^{\circ} \mathrm{C}$
5.04×10^{-4}
5.25×10^{-4}
$5.32 \times 10^{-4} \quad 5.25 \times 10^{-4}$
4.60×10^{-3}
4.88×10^{-3}
4.60×10^{-3}

* $\frac{d(R)}{d t}$ is the rate of formation of R in $\frac{g m-m o l e}{(c c)(\sec .)}$ where R is $\mathrm{H} \cdot, \mathrm{CH}_{3} \cdot$, or $\mathrm{C}_{2} \mathrm{H}_{5} \cdot\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)_{\mathrm{o}}$ is the concentration of pure butane in $\frac{\mathrm{gm}-\mathrm{mole}}{\mathrm{cc}}$. Both at 1 atm and the given temperature.
- 116 -

PART ONE
APPENDI CES

LIST OF APPENDICES

Appendix Page
A. Quantitative Analysis of Light Hydrocarbons by Gas Chromatography 120
B. Composition of Samples by Chromatographic Analysis 134
C. End Effects At The Exit of The Reactor 139
D. Evaluation of Average Reaction Temperature in a Non-Isothermal Flow Reactor 158
E. Correlation of Velocity Data 160
F. Method for Calculating Conversion and Checking Material Balance 176
G. Some Empirical Formulas for Calculating Physical Properties of n-Butane and Its Decomposition Products 179
H. Rate Constants for Elementary Reactions I Through XIX 185

LIST OF FIGURES

IN THE APPENDICES

Figure Page
C1 Temperature Profiles for $\mathrm{T}_{\mathrm{h}}=310^{\circ} \mathrm{C}$ at $\mathrm{x}=3.0$ inches and 2.0 inches 155
C2 Temperature Profiles for $\mathrm{T}_{\mathrm{h}}=360^{\circ} \mathrm{C}$ at $x=3.0$ inches and 2.0 inches 156
C3 Proposed Flow Pattern due to Natural Convection 157
C4 Temperature Profile in the Reactor where Natural Convection Predominates 157
E1 Static-Head Reading as a Function of Time for Run 21 170
E2 Experimental and Calculated Kinetic Head for Runs 32, 34 and 36 171
E3 Experimental and Calculated Kinetic Head for Runs 21 and 31 172

LIST OF TABLES IN THE APPENDICES

Table Page
AI. Relative Retention Times and Retention Volumes Compared With Hydrogen for Possible Products from the Thermal Decomposition of n-Butane 129
AII. Comparison of Computed Analyses of Calibration Samples and Measurement by Mass Spectrometer 131
AIII. Summary of Analysis 132
AIV. Comparison of Normalization Factors 133
EI. Velocity and Kinetic Head Profiles for Some Runs Based on a Parabolic Velocity Distribution 173
EII. Measured Kinetic Head Readings for Runs 32, 34 and 36 174
EIII. Measured Kinetic Head Readings for Two "Bad" Runs 175
GI. Numerical Values of Coefficients and Other Pertinent Quantities for Equations Gl to G5 183
GII. Some Properties of n-Butane 184

APPENDIX A: QUANTITATIVE ANALYSIS OF LIGHT HYDROCARBONS BY GAS CHROMATOGRAPHY

ABSTRACT

A three-stage gas chromatograph was developed to allow quantitative resolution of light hydrocarbons through C_{4} components along with oxygen, nitrogen, hydrogen, carbon monoxide and carbon dioxide. The system selected, however, did not allow complete resolution of l-butene and isobutylene. In the analysis, the response of a component in terms of g . moles per unit of chromatogram area relative to that of nitrogen was found useful. The individual response is designated as K and the ratio of responses as N. Within experimental accuracy moderate variations in operating conditions did not change the value of N .

A least-squares analysis of the experimental data was used to determine the value of N for each component. By establishing the value of K for nitrogen each day, it was then possible to compute the amount of each component from its chromtogram area and its value of N. In the calibration of eighteen gases, an average standard deviation of points from the least-square plots was 1.23\%

INTRODUCTION

Much work has been done on the analysis of hydrocarbons by gas chromatography. One of the outstanding studies is that
by Bloch (Al). By use of a four-stage column he was able to separate more than 70 hydrocarbons from C_{1} through C_{7} as well as permanent gases. Work reported here is a less extensive study on possible products from the thermal decomposition of butane, but the data was analyzed statistically and constants were obtained for use in the ready computation of the amounts of substances present.

EXPERIMENTAL PROCEDURE

Several partition liquids carried on firebrick were studied qualitatively. These were tetraisobutylene, didecyl phthalate, di-n-butyl maleate, tetraethylene glycol, dimethyl ether, dimethyl sulfolane, and saturated silver nitrate solution in benzyl cyanide. Also, with particular concern for the very low boiling gases, molecular sieves, silica gel, and activated alumina were studied in their roles as absorbent solids.

On the basis of the preliminary data, a three-stage column was developed, in which the first two stages consisted of two sections each. The first section of the first stage was an 8-ft. length of copper tubing with an inside diameter of $3 / 16$ in. It was packed with 30 to 60 mesh firebrick which was coated with 30% by weight, on a dry basis, of di-n-butyl maleate. A second part of that same stage was a $35-f t$. length of tubing packed with 30 to 60 mesh firebrick which was coated with 33% by weight of dimethyl sulfolane and 3.5% didecyl phthalate. The first section of the second stage
was a 9 -in. length of tubing packed with 35 to 48 mesh basic activated alumina. That was followed with an 18-in. length containing 35 to 48 mesh silica gel. The third stage was a 20-ft. length of tubing packed with 28 to 48 mesh molecular sieve, type 13x.

A dual-thermistor thermal conductivity cell was used as a sensing element at the discharge of each stage. The thermistors were matched within 0.1%, and the resistance of each was 8000 ohms. at $25^{\circ} \mathrm{C}$. Cells and columns were mounted in an air thermostat in which the temperature was controlled at $30 \pm 0.5^{\circ} \mathrm{C}$.

Helium was used as the carrier gas. Its inlet pressure was varied from 18 to 22 psig. and was maintained to within ± 0.2 psig. The gas flowing through the final stage was discharged directly to the atmosphere. Under these conditions a flow rate of 45 to $60 \mathrm{cc} . / \mathrm{min}$. , as measured at 1 atm . and 70° F., was maintained. For a given rate the variation in flow was not greater than $\pm 1 \mathrm{cc} . / \mathrm{min}$.

The signal from the first stage was recorded on a Brown continuous recorder with a full-scale deflection of 1 mV and a response time of 1 second. The recorder was equipped with a disc integrator. Signals from the second and third stages were each recorded on a Varian G-10 recorder with a fullscale deflection of 10 mV and a response time of 1 second. Before entering the recorder, each signal passed through a
seven-step attenuator with a maximum attenuation of 200 . A signal was generally attenuated to yield a maximum recordable voltage for the recorder.

The sample cells for the multicomponent mixtures were similar to the design used by Sakaida (A2) with volumes of the order of 1 cc . which were calibrated to within $\pm 0.001 \mathrm{cc}$. For quantitative calibration of the chromatograph, standard mixtures were prepared in a $10-1 i t e r$ bottle. In the preparation, the bottle was first evacuated, and each component was then added through a manifold system. The change in total pressure for each gas was observed on a mercury-filled manometer by means of a cathetometer. Finally helium was used to fill the bottle to slightly above atmospheric pressure. A calibration mixture usually consisted of no more than three components besides helium, wherein one of those was always nitrogen which was present as the internal standard. Dalton's law was used in combination with individual compressibility factors in the computation of the composition of the gas in the bottle. The assumption of Dalton's law for the conditions studied was verified experimentally by the fact that each component gave the same response in pressure whether in a mixture or in its pure form.

EXPERIMENTAL RESULTS

Preliminary runs on the three-stage column showed that it was capable of completely separating the components formed in the
thermal decomposition of n-butane, except for isobutylene and l-butene which were only partially resolved. Relative retention times and volumes for the various components are given in Table AI. Hydrogen was the basis for comparison.

Samples of five calibration mixtures were analyzed in a mass spectrometer. The analyses are shown in Table AII and agreed to within 4% or less with the computed compositions.

In the calibration of the chromatographic system, four or more runs were made for each mixture. The area of each chromatogram was measured with a planimeter, and the response, K, defined as g. moles per unit of chromatogram area, was computed. In the use of nitrogen as an internal standard, the ratio of K for a component to that of nitrogens defined as the normalization factor, N , was not found to vary with modest variations in operating conditions. Average values of N for the first nine components shown in Table AIII were found to be constant with respect to varying amounts of the components. That was not the case for components 10 to 18 , and here N was assumed to be a linear function of a normalized chromatogram area. Coefficients in the function were determined by a least-squares fit. The normalized areas used in the correlation were calculated according to the expression: normalized component area, A_{N}

where $\mathrm{K}_{\mathrm{N}_{2}}^{\mathrm{O}}$ is a standard response for nitrogen arbitrarily selected as $0.0300 \times 10^{-8} \mathrm{~g}$. moles/unit chromatogram area. In applying the above equation, the value of $\mathrm{K}_{\mathrm{N}_{2}}$ was determined in the same run for which the observed component areas were obtained.

By use of the value of N for a given component, the amount of that component in an unknown sample can be determined by the following equation:

Amount of component A in g. moles
$=$ (observed chromatogram area for $A)\left(N_{A}\right)\left(K_{N_{2}}\right)$.
Expected standard deviations for the results are included in Table AIII and were determined from the calibration studies where for most of the components the range of amounts was varied over six to eight-fold and in some cases as high as twenty-fold.

In order to test the invariance of N, the operating conditions were varied over a moderate range. For example, the carriergas flow was varied between 45 and 60 std. cc. $/ \mathrm{min}$., and the thermistor current between 8 and 10 ma . Under these conditions $\mathrm{K}_{\mathrm{N}_{2}}$ varied 3-fold but with no changes in N within experimental error.

Although the minimum amount of the calibration samples analyzed corresponded to 0.7% by volume for isobutane in a 1 cc . sample at atmospheric pressure and 25° C., the minimum detectable amount corresponded to approximately 0.005% or

50 ppm . by volume for all the components except hydrogen which had a minimum of about 0.3%. These low concentrations produced signals ranging in maximum from 0.1 to 0.4 mv . in order of decreasing retention times of the components.

DISCUSSION

In the calibration of eighteen gases, the maximum percent standard deviations from the least-squares fit were 7% or less except for 1,3-butadiene. The average maximum percent standard deviation was 4.77%. Relative to an average value for amount of component present, the average percent standard deviation for all eighteen components was 1.23%.

Among the possible sources of error, an important one was the variation in partition efficiency which resulted from variations in the volume of the gas-sample pellet impinging upon the first plate of the column. For the same amount of a component, small pellet volumes gave lower values of N than larger pellet volumes.

There were other errors of less significance than those resulting from feed problem. Sources for the added variability were in the preparation of calibration mixtures, variations in operating conditions during each analysis of a mixture, inaccuracies in area measurements, and finally in the insensitivity of the recorder near the level of zero signal.

It is interesting to note that the results obtained in this study agree very favorably with those of Messner, et al. (A3). A comparison is presented in Table AIV. In their work, the ratios of the relative response of nitrogen to that of other components correspond to the values of N presented here. As shown in the table, however, the relative responses obtained by Messner for components 10 to 18 are constants which agree to within 5% of values of N obtained in this work for zerovalues of chromatogram areas. The fact that such values of N obtained from entirely different chromatographic systems agree so well gives added validity to their universal applicability. Because of changes with time in the character of the component parts of the chromatographic system, daily calibration is required for quantitative studies. The method presented here, wherein a calibration is based upon the daily response of the system to nitrogen in combination with previously determined constants, is very satisfactory in lieu of a calibration for every component, especially if a system with a large number of components is being analyzed each day.

REFERENCE

Al. Bloch, M. G., "Determinations of C_{1} Through C_{7} Hydrocarbons in a Single Run by a Four-Stage Gas Chromatograph," page 133, Gas Chromatography, Second International Symposium, edited by H. J. Noebels, R. F. Wall, and N. Brenner, Academic Press, New York City, 1961.

A2. Sakaida, R. R., Rinker, R. G., Cuffel, R. F., and Corcoran, W. H., Anal. Chem., 33, 32 (1961).

A3. Messner, A. E., Rosie, D. M., and Argabright, P. A., Anal. Chem. , 31, 230 (1959).

TABLE AI. RELATIVE RETENTION TIMES AND RETENTION VOLUMES COMPARED WITH HYDROGEN FOR POSSIBLE PRODUCTS FROM THE THERMAL DECOMPOSITION OF n-BUTANE

Component	$\begin{aligned} & \text { Retention Time } \\ & \text { (Sec.) } \end{aligned}$	Retention Volume (cc.)
First Stage		
$\begin{gathered} { }^{*} \mathrm{H}_{2}+\text { air }+\mathrm{CO} \\ + \text { methane } \end{gathered}$	0	0
ethane \& ethylene	84	77
CO_{2}	191	175
propane	266	244
propylene	387	355
isobutane	524	481
acetylene	622	570
n-butane	800	734
$\begin{aligned} & \text { l-butane }+ \\ & \text { isobutylene } \end{aligned}$	1129	1035
trans-2-butene	1428	1309
cis-2-butene	1671	1532
methyl acetylene	2067	1895
1,3-butadiene	2357	2161
ethyl acetylene	4596	4215
	econd Stage	
$\begin{gathered} \mathrm{H}_{2}+\text { air }+\mathrm{CO} \\ + \text { methane } \end{gathered}$	0	0
ethane	137	126
ethylene	179	164

[^2]TABLE AI. (Continued)

Component

H_{2}

oxygen
nitrogen
methane
CO

Retention Volume (cc.)

Third Stage
0
0
39
118108
189173
$261 \quad 239$

TABLE AII. COMPARISON OF COMPUTED ANALYSES OF CALIBRATION SAMPLES AND MEASUREMENT BY MASS SPECTROMETER ${ }^{\text {a }}$

Mixture No.	Component	Mole \% Computed	Mole \% Reported
1	methane	9.84	9.5
	ethylene	5.87	5.9
	propylene	4.05	4.0
	nitrogen	80.25	80.4
	propane	-	0.2
2	propane	4.85	4.9
	isobutane	5.10	5.0
	nitrogen	90.05	90.1
3	trans-2-butene	4.96	5.0
	1,3-butadiene	2.03	2.0
	nitrogen	93.02	93.0
4		1.04	1.0
	acetylene	1.09	1.1
	nitrogen	97.87	97.9
$5 \& 6^{\text {b }}$	methane	2.85	2.7
	propane	3.08	3.0
	nitrogen	94.07	94.1
	ethane	-	0.2

[^3]table ali. summary of analyses

$\mathrm{K}_{\mathrm{N}_{2}}=0.0300 \times 10^{-8} \mathrm{~g} . \mathrm{mole} / \mathrm{unit}$ chromatogram area for components $10-18$.

TABLE AIV. COMPARISON OF NORMALIZATION FACTORS

Component
No.
-
1
2

3

4

5
6
7

8

9
10
11
12
13
14
15
16
17
18

Component
N^{*}
(Authors
Values)

1
1.071
1.05
1.112
1.17

Methane
1.016
1.00
0.761
0.82

Ethylene
0.805
0.88

Carbon Dioxide
0.848
0.88

Propane
0.640
0.65

Propylene
0.663
0.67

Acetylene
0.947

Hydrogen
32.29
0.51
n-Butane
0.512
0.49

1-Butene
0.522
0.52

Isobutylene
0.511
0.51

Trans-2-Butene
0.503
0.49

Cis-2-Butene
0.519
0.48

Methyl Acetylene
0.678

1,3-Butadiene
0.530
0.53

[^4]appendix b. COMPOSITION of samples by chromatographic analysis
Run No. Sampling Position
Composition of Samples, Mole \&

	r / r 。	H_{2}	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$	${ }_{1-\mathrm{C}_{4} \mathrm{H}_{8}}$	trans-2-C4 ${ }_{4}{ }_{8}$	Cis-2-C4 ${ }_{4} \mathrm{H}_{8}$	1so-C4 ${ }_{4}{ }_{10}$	$\mathrm{n}^{-\mathrm{C}_{4} \mathrm{H}_{10}}$
11	Overall	-	1.275	0.444	0.559	1.081	-	-	0.018	0.018	-	96.605
	0.70	-	1.133	0.430	0.535	1.064	-	-	0.026	0.014	-	96,798
	0.45	-	1.243	0.424	0.523	1.119	-	-	0.023	0.019	-	96.649
	0.25	-	1.200	0.425	0.529	1.073	-	-	0.030	0.021	-	96.722
	0	-	1.101	0.425	0.507	1.061	-	-	0.027	0.023	-	96.856
12	overall	-	0.711	0.265	0.306	0.647	-	-	0.023	0.015	-	98.033
	0.70	-	0.686	0.247	0.301	0.639	-	-	0.020	0.011	-	98.096
	0.50	-	0.670	0.241	0.296	0.630	-	-	0.024	0.015	-	98.124
	0.25	-	0.685	0.248	0.297	0.614	-	-	0.016	0.013	-	98.127
	0	-	0.658	0.257	0.296	0.646	-	-	0.023	0.017	-	98.103
13	overall	-	0.313	0.087	0.091	0.205	-	-	0.025	0.031	-	99.248
	0.70	-	0.214	0.085	0.082	0.218	-	-	0.017	0.013	-	99.371
	0.50	-	0.188	0.076	0.074	0.210	-	-	0.022	0.013	-	99.417
	0.25	-	0.229	0.086	0.083	0.207	-	-	0.016	0.017	-	99.362
	0	-	0.204	0.078	0.068	0.201	-	-	0.019	0.014	-	99.416
14	overall	-	0.324	0.122	0.123	0.287	-	-	0.014	0.008	-	99.122
	0.70	-	0.283	0.103	0.102	0.261	-	-	0.014	0.023	-	99.244
	0.50	-	0.278	0.111	0.111	0.271	-	-	0.021	0.017	-	99.191
	0.30	-	0.289	0.109	0.104	0.275	-	-	0.016	0.017	-	99.190
	0	-	0.309	0.119	0.111	0.297	$=$	-	0.021	0.020	-	99.123
15	0.70	-	0.839	0.320	0.385	0.884	-	0.007	0.024	0.022	-	97.519
	0.45	-	0.783	0.304	0.373	0.798	-	0.007	0.024	0.020	-	97.692
	0.25	-	0.844	0.320	0.391	0.770	-	0.007	0.022	0.019	-	97.627
	0	-	0.783	0.283	0.341	0.741	-	0.007	0.019	0.019	-	97.817
16	0.70	-	0.768	0.291	0.353	0.762	-	0.007	0.025	0.022	-	97.773
	0.40	-	0.755	0.293	0.350	0.767	-	0.007	0.025	0.022	-	97.781
	0	-	0.762	0.280	0.334	0.759	-	0.007	0.024	0.020	-	97.814
17	0.70	-	0.254	0.093	0.096	0.256	-	-	0.015	0.013	-	99.286
,	0.50	-	0.245	0.079	0.082	0.233	-	-	0.016	0.021	-	99.324
	0.25	-	0.235	0.085	0.083	0.232	-	-	0.015	0.015	-	99.335
	0	-	0.219	0.087	0.090	0.230	-	*	0.015	0.015	-	99.344
18	0.70	-	0.154	0.057	0.059	0.166	-	-	-	-	-	99.564
	0.50	-	0.159	0.056	0.056	0.135	-	-	-	-	-	99.594
	0.25	-	0.148	0.056	0.055	0.156	-	-	-	-	-	99.585
	0.05	-	0.173	0.056	0.061	0.164	-	-	-	-	-	99.546
19	0.70	-	0.729	0.269	0.326	0.728	-	0.007	0.013	0.015	-	97.914
	0.50	-	0.684	0.264	0.313	0.609	-	0.007	0.020	0.016	-	98.087
	0.25	-	0.674	0.253	0.306	0.599	-	0.007	0.019	0.015	-	98.127
	0	-	0.628	0.246	0.281	0.620	-	0.007	0.019	0.021	-	98.178
20	0.70	-	0.663	0.244	0.299	0.652		-	0.018	0.016	-	98.108
	0.50	-	0.626	0.226	0.285	0.604	-	-	0.018	0.016	-	98.225
	0.25	-	0.590	0.237	0.301	0.831	-	-	0.022	0.015	-	98.204
	0	-	0.668	0.228	0.289	0.606	-	-	0.024	0.016	-	98.169

Run No.	Sampling Position						Composition of Samples, Mole \&					
	r/ro	H_{2}	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$	${ }_{1-\mathrm{C}_{4} \mathrm{H}_{8}}$	trans-2-C $\mathrm{C}_{4} \mathrm{H}_{8}$	C1s-2-C4 ${ }_{4} \mathrm{H}_{8}$	1so-C $\mathrm{C}_{4} \mathrm{H}_{10}$	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$
21	0.70	-	0.608	0.202	0.267	0.543	-	-	0.020	0.019	-	98.341
	0.50	-	0.577	0.215	0.258	0.556	-	-	0.020	0.019	-	98.355
	0.25	-	0.555	0.209	0.248	0.523	-	-	0.020	0.019	-	98.426
	0	-	0.539	0.200	0.238	0.556	-	-	0.020	0.019	-	98.428
22	Overall	0.600	4.665	1.499	2.420	4.046	-	0.045	0.043	0.040	-	86.642
	0.70	0.600	4.274	1.488	2.394	4.168	-	0.045	0.045	0.043	-	86.943
	0.50	0.444	4.102	1.453	2.346	3.867	-	0.039	0.053	0.040	-	87.656
	0.25	0.656	4.252	1.494	2.413	3.994	-	0.051	0.048	0.033	-	87.059
	0	0.619	4.083	1.425	2.318	3.859	-	0.046	0.047	0.037	-	87.567
24	0.70	-	0.187	0.069	0.062	0.173	-	-	-	-	0.151	99.346
	0.50	-	0.193	0.073	0.073	0.169	-	-	-	-	0.132	99.360
	0.25	-	0.208	0.075	0.074	0.189	-	-	-	-	0.157	99.297
	0	-	0.191	0.073	0.074	0.183	-	-	-	-	0.131	99.349
25	0.70	-	0.170	0.058	0.057	0.145	-	-	0.020	-	0.141	99.409
	0.50	-	0.175	0.062	0.060	0.149	-	-	0.023	-	0.148	99.403
	0.25	-	0.172	0.067	0.059	0.149	-	-	0.020	-	0.148	99.385
	0	-	0.175	0.062	0.052	0.166	-	-	0.018	-	0.153	99.385
26	0.70	-	0.271	0.088	0.077	0.204	-	-	0.027	-	0.130	99.204
	0.50	-	0.241	0.092	0.088	0.223	-	-	0.027	-	0.145	99.184
	0.25	-	0.265	0.085	0.095	0.221	-	-	0.027	-	0.141	99.019
	0	-	0.257	0.092	0.096	0.219	-	-	0.024	-	0.141	99.171
27	0.70	-	0.121	0.044	0.041	0.115	-	-	0.023	-	0.145	99.511
	0.50	-	0.127	0.049	0.042	0.115	-	-	0.023	$\stackrel{ }{*}$	0.147	99.497
	0.25	-	0.125	0.042	0.042	0.114	-	-	0.024	-	0.141	99.511
	0	-	0.119	0.044	0.036	0.116	-	-	0.024	-	0.150	99.511
28	0.70	-	0.668	0.259	0.299	0.675	-	-	0.029	-	0.133	97.937
	0.50	-	0.649	0.259	0.303	0.649	-	-	0.029	-	0.129	97.982
	0	-	0.696	0.243	0.269	0.661	-	-	0.039	-	0.129	97.963
29	0.70		0.580	0.211	0.236	0.541	-	-	0.024	-	0.140	98.268
	0.50	-	0.535	0.218	0.238	0.529	-	-	0.030	-	0.142	98.308
	0.25	-	0.557	0.204	0.230	0.507	-	-	0.028	-	0.128	98.346
	0	-	0.519	0.187	0.205	0.496	-	-	0.028	-	0.143	98.422
30	0.70		0.763	0.311	0.360	0.766	-	-	0.034	-	0.130	97.636
	0.50	-	0.734	0.299	0.336	0.751	-	-	0.035	-	0.121	97.724
	0.25	-	0.731	0.298	0.332	0.739	-	-	0.035	-	0.146	97.719
	0	-	0.885	0.285	0.342	0.733	-	-	0.035	-	0.121	97.599
31	0.70	-	0.546	0.214	0.217	0.490	0.021	0.020	0.051	0.020	0.117	98.304
	0.50	-	0.555	0.212	0.223	0.463	0.023	0.011	0.045	0.016	0.127	98.325
	0.25	-	0.533	0.215	0.218	0.471	0.022	0.016	0.049	0.016	0.128	98.332
				. 209	0.22	0.472	0.021	0.019	0.053	0.017	0.237	98.301

Run No.	Sampling						Com	tion of	, Mole 4			
	r / r 。	H_{2}	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$	${ }_{1-\mathrm{C}_{4} \mathrm{H}_{8}}$	trans-2-C4 ${ }_{4}$	cis $-2-\mathrm{C}_{4} \mathrm{H}_{8}$	1so-C4 C_{10}	$\mathrm{n}^{-} \mathrm{C}_{4} \mathrm{H}_{10}$
61	0.70	0.578	4.740	1.635	2.464	3.918	0.206	0.058	0.078	0.043	0.039	86.241
	0	0.552	4.951	1.717	2.621	4.101	0.218	0.063	0.073	0.042	0.043	85.619
62	0.70	0.727	5.232	1.849	2.750	4.690	0.227	0.073	0.094	0.055	0.040	84.263
	0	0.749	5.133	1.798	2.691	4.340	0.190	0.076	0.083	0.046	0.042	84.852
63	0.70	0.553	4.458	1.578	2.355	4.119	0.221	0.062	0.080	0.045	0.047	86.482
	0	0.598	4.665	1.535	2.329	3.850	0.211	0.046	0.062	0.057	0.042	86.605
64	0.70	0.642	3.901	1.411	2.095	3.444	0.211	0.050	0.060	0.027	0.046	88.113
	0.50	0.618	3.981	1.412	2.061	3.633	0.220	0.063	0.075	0.040	0.055	87.842
	0.25	0.685	3.881	1.348	2.051	3.478	0.216	0.047	0.067	0.036	0.046	88.245
	0	0.696	3.888	1.376	2.078	3.418	0.217	0.048	0.058	0.033	0.058	88.130
65	0.70	0.525	4.362	1.502	2.273	3.746	0.170	0.044	0.053	0.035	0.041	87.249
	0.50	0.489	4.225	1.388	2.103	3.605	0.169	0.047	0.057	0.034	0.039	87.844
	0.25	0.500	4.122	1.541	2.303	3.616	0.167	0.043	0.054	0.034	0.047	87.573
	0	0.509	4.151	1.434	2.142	3.606	0.173	0.045	0.061	0.034	0.042	87.803
66	0.70	0.285	2.788	0.965	1.423	2.395	0.127	0.027	0.041	0.023	0.045	91.881
	0.50	0.225	3.014	1.056	1.566	2.643	0.139	0.036	0.052	0.027	0.042	91.200
	0.25	0.226	3.017	1.036	1.522	2.573	0.135	0.031	0.047	0.021	0.043	91.123
	0	0.179	2.785	0.971	1.435	2.461	0.126	0.033	0.048	0.028	0.038	91.896
67	0.70	0.393	3.227	1.126	1.621	2.843	0.142	0.041	0.046	0.024	0.046	90.491
	0.50	0.347	3.107	1.087	1.580	2.686	0.137	0.036	0.047	0.031	0.039	90.903
	0.25	0.275	3.066	1.033	1.529	2.689	0.148	0.035	0.048	0.033	0.044	91.100
	0	0.253	2.960	1.001	1.496	2.626	0.139	0.039	0.049	0.032	0.041	91.364
68	0.70	0.695	4.385	1.555	2.270	3.784	0.120	0.062	0.069	0.039	0.040	86.981
	0.50	0.700	4.573	1.485	2.276	3.830	0.120	0.058	0.070	0.043	0.041	86.804
	0.25	0.724	4.573	1.544	2.312	3.764	0.120	0.046	0.070	0.040	0.037	86.770
	0	0.705	4.396	1.547	2.427	3,918	0.132	0.046	0.062	0.036	0.037	86.720
69	0.70	0.372	2.647	0.934	1.297	2.107	0.106	0.031	0.046	0.022	0.035	92.403
	0.50	0.382	2.738	0.953	1.356	2.335	0.119	0.033	0.053	0.027	0.041	91.963
	0.25	0.341	2.832	0.933	1.343	2.353	0.120	0.039	0.059	0.028	0.039	91.913
	0	0.301	2.699	0.891	1.279	2.187	0.115	0.033	0.061	0.030	0.040	92.364
70	0.70	0.498	3.193	1.126	1.641	2.621	0.112	0.034	0.051	0.024	0.032	90.688
	0.50	0.504	3.148	1.041	1.518	2.580	0.115	0.035	0.051	0.037	0.029	90.942
	0.25	0.582	2.933	1.015	1.465	2.530	0.122	0.034	0.053	0.022	0.042	91.202
	0	0.437	2.941	0.989	1.400	2.437	0.123	0.037	0.066	0.031	0.042	91.497

APPENDIX C: END EFFECTS AT THE EXIT OF THE REACTOR

End effects on temperature traverses were observed for many runs. Specifically, the temperature traverses were found to be a strong function of the flow rate. At high flow rates, the temperature traverses were approximately the same as the wall temperatures. As the flow rate was decreased, the temperature traverses read up to $50^{\circ} \mathrm{C}$ lower than the average wall temperatures. This was illustrated in Figures 8 to 10.

The reactor head temperature was selected as the cause of this temperature effect. The head was made mainly of steel and was connected to the vacuum system by cast-iron piping. As steel and iron are excellent thermal conductors, the temperature of the reactor head remained considerably lower than the wall temperatures when the reactor was heated. This low reactor head temperature, in turn, affected the gas temperature inside the reactor both directly and indirectly. Directly, the gas temperature was lowered due to conduction, convection and radiation. Indirectly, the reactor wall temperature was lowered by conduction and radiation. Moreover, the traverse thermocouple reading was lowered as much as 5 C because of conduction loss along the leads. These effects are discussed qualitatively in this appendix. Wherever possible, quantitative estimates are also made.

In these discussions, the dependence of the fluid properties on both temperature and composition will be neglected. Furthermore, the effect of the reactor head will be considered as equivalent to an imaginary boundary four inches above the top thermocouple in the reactor wall. The gas and wall temperatures at this boundary were at a constant temperature, T_{h}, which was much lower than the average reactor wall temperature for any run. Also this imaginary boundary does not affect the flow pattern of the fluid. Under such circumstances a fairly general energy balance equation for a moving fluid can be written as follows (C1):

$$
\begin{equation*}
u \nabla T-\mathcal{F} \nabla^{2} T+\frac{s}{C_{p} P}+\frac{4 a \sigma}{C_{p} p} \sum_{i} F_{i}\left(T^{4}-T_{w i}{ }^{4}\right)=0 \tag{Cl}
\end{equation*}
$$

In equation $C 1$, the first term describes the hydrodynamic transport, the second term thermal transport due to conduction, the third term an energy source term, and the fourth term thermal transport due to radiation. It should be pointed out that in this equation, a is the absorption coefficient over the entire wavelength range. This absorption coefficient will be discussed later in connection with thermal radiation.

Consider now the situation under which conduction and forced convection prevail. For simplicity, u_{r} is neglected, Equation Cl now assumes the form

$$
\begin{align*}
u_{x} \frac{\partial T}{\partial x}-\mathcal{H}\left[\frac{\partial^{2} T}{\partial x^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)\right] & =0 \tag{C2}\\
\text { or } \quad u_{x} \frac{\partial T}{\partial x}-\mathcal{F}\left[\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial}{\partial R}\left(2 R \frac{\partial T}{\partial R}\right)\right] & =0 \tag{C2a}
\end{align*}
$$

where $R=0.5 \mathrm{r}^{2}$ and \mathcal{F} is the thermal diffusivity. If the gas temperature is constant and identical with the average wall temperature, T_{av}, at a distance x_{o} below the reactor head, the boundary conditions at both ends are then

$$
\begin{array}{lll}
T=T_{a v} & \text { for } & x=0 \\
T=T_{h} & & x=x_{o} \tag{C4}
\end{array}
$$

At the side walls, it will be assumed that the temperature varies linearly with distance in the section between the top thermocouple and the reactor head, i.e.,

$$
\begin{align*}
\mathrm{T} & =\mathrm{T}_{\mathrm{av}}, \text { for } \mathrm{r}=\mathrm{r}_{\mathrm{o}}, 0 \leq \mathrm{x} \leq\left(\mathrm{x}_{\mathrm{o}}-4\right)=\mathrm{x}_{1} \\
& =\mathrm{T}_{\mathrm{av}}-\left(\mathrm{T}_{\mathrm{av}}-\mathrm{T}_{\mathrm{h}}\right)\left(\mathrm{x}-\mathrm{x}_{1}\right) / \mathrm{x}_{\mathrm{o}}, \mathrm{r}=\mathrm{r}_{\mathrm{o}}, \mathrm{x}_{1} \leq \mathrm{x} \leq \mathrm{x}_{\mathrm{o}} \tag{C5}
\end{align*}
$$

Finally, the flow is assumed to be Poiseuille, i.e.,

$$
\begin{equation*}
u_{x}=u_{x m}\left[1-\left(r / r_{o}\right)^{2}\right] \tag{C6}
\end{equation*}
$$

Equation C2a can now be solved for the boundary conditions C3, C4, and C5. Because of the presence of the convective terms, however, an analytical solution is not readily obtainable.

Instead, a numerical method of solution has been devised. This method called for the transformation of equation C2a into a finite-difference equation. The difference equation was then solved by an iterative procedure. In the finitedifference equation, the derivative $\partial T / \partial x$ was replaced by a backward-difference formula while all the other first and second derivatives were substituted with central-difference formulas. It has been found that the numerical solution of equation C 2 a by an iterative procedure would be stable for all values of $u_{x m}$ only when a backward-difference formula was used for $\partial T / \partial x$. A computer program was then written and the actual computations performed on a Datatron 220 computer at the Computing Center of California Institute of Technology. Solutions were obtained for various values of $u_{x m}$ and T_{h}. For all these cases, the following quantities were used: $\mathrm{x}_{\mathrm{o}}=6$ inches, $\mathrm{T}_{\mathrm{av}}=510^{\circ} \mathrm{C}, \mathcal{C}=0.232 \times 10^{-3} \mathrm{ft}^{2}, \Delta \mathrm{x}=0.2$ inch and $\Delta R=0.025$ inch 2. The value of thermal diffusivity \mathcal{F} was calculated based on butane properties at $510^{\circ} \mathrm{C}$. Two values of T_{h} were used: $310^{\circ} \mathrm{C}$ and $360^{\circ} \mathrm{C}$. Values of T as function of r for various values of $u_{x m}$ are plotted in Figures C1 and C2 for $x=2$ inches and $x=3$ inches. The latter value of x represents approximately the position of the thermocouple probe. The plot at this height therefore demonstrates the effect of wall cooling on the gas temperature at the probe thermocouple. It can be seen that at low flow rates, the gas temperature would drop considerably at the probe.

At $\mathrm{x}=2$ inches, however, the gas temperature remains essentially the same as T_{av} for even the lowest flow rate.

The above analysis admittedly is not a rigorous one. A number of assumptions have been made. It nevertheless demonstrates the strong dependence of gas cooling on the flow rate due to a cold reactor head. Moreover, the effects of cooling due to radiant and natural convective transfer will be considered. These effects, when superimposed on the results obtained in the above analysis, improve the visualization of the actual situation.

When a gas flowing in a vertical tube under laminar conditions is heated or cooled by the walls, both natural and forced convection occur. Due to changes in viscosity and density, radial flow is developed. In the case of gas being cooled, the gas will flow from the center towards the wall, resulting in a flatter velocity profile (C2). Martinell and Boelter (C3) analytically treated the case of fluid flowing vertically in heated or cooled tubes having uniform wall temperature and obtained the relation
$\mathrm{Nu}=1.75 \mathrm{M}_{1}\left[\frac{\mathrm{WC}_{\mathrm{pb}}}{\mathrm{k}_{\mathrm{b}} \mathrm{L}}+0.0722 \quad \frac{\mathrm{D}}{\mathrm{L}} \operatorname{GrPr} 0.75\left(\mathrm{M}_{2}\right)\right] \frac{1}{3}$
where the Grashof number Gr, is based on tube diameter and initial Δt, which is positive for both heating and cooling. In equation C7, the first term in the cubic root is the contribution due to forced convection and the second term
due to natural convection. For butane flowing in the reactor at an average linear velocity of \bar{u}_{x} at $510^{\circ} \mathrm{C}$ and 1 atm with L taken to be 4 inches, the first term has an approximate value of $70 \bar{u}_{x}$. On the other hand, if a value of $50^{\circ} \mathrm{C}$ is used for $\Delta \mathrm{t}$, the Grashof number is calculated to be 19,000 while the Prandtl number is 0.955 . The second term thus has a value of 39.7 based on $M_{2}=1.0$. Since \bar{u}_{x} ranged from 0.05 to $0.6 \mathrm{ft} / \mathrm{sec}$. in the present work, it is apparent that natural convection is at least of the same order of magnitude as forced convection for these velocities. This analysis, of course, does not necessarily apply to the present situation. For example, the wall temperature in the present work is not uniform. It does, however, point out the importance of natural convection in heat transfer at the exit of the reactor.

What effect will natural convection have on the temperature traverse then? Figure C3 shows a schematic diagram of the portion of the reactor tube next to the reactor head. It is assumed that at a height $x=0$, the gas and wall temperature are uniform and equal to the average wall temperature. Above $x=0$, the end effects due to the reactor head begins to become significant and the gas temperature will drop as the flow moves upward. At high flow rates, the gas does not have time to cool much before it exits through the reactor head.

Under such circumstances, natural convection will be suppressed. On the contrary, sufficient cooling of the gas occurs when the flow rate is low enough, and consequently, natural convection takes place. As the gas at $x=0$ is hot, the reactor head cold and the reactor wall relatively warm, some circulation of the gas in a pattern shown in Figure C3 will be induced due to natural convection. Consider now the temperature at a height x slightly over the $\mathrm{x}=0$ line. Cold gas comes down from the top at some radius r between the center and wall, the temperature there is therefore quite low. From this radius, gas flows radially both towards the center and the wall and in doing so is heated by the hot gas at $\mathrm{x}=0$. The temperature of the gas thus becomes higher the farther the gas moves away from r. As the gas moving towards the wall is also heated by the wall, its temperature rises more sharply than the gas moving towards the center. The resulting temperature profile thus will be similar to the one shown in Figure C4.

Radiant transfer of energy of gases differ from that of solids and liquids. Gases absorb and radiate energy only within certain limited wavelength ranges. Moreover, gases need great thickness to absorb the major part of incident energy, if any absorption occurs. The absorption and radiation of gases are caused by changes in the energy levels of the gas molecules in accordance with Planck's law.

At temperature up to $5000^{\circ} \mathrm{F}$, say, the bulk of radiation is connected with changes in the rotational or vibrational energy of the molecules in the infrared region. An infrared absorption spectrum of n-butane is available (C4). The absorption by a gas of a monochromatic beam with wavelength λ is described by the equation

$$
\begin{equation*}
\frac{d I_{\lambda}}{I_{\lambda}}=-a_{\lambda} d_{s} \tag{C8}
\end{equation*}
$$

where s is the distance in the gas the beam has travelled, I_{λ} the intensity of the beam at s and a_{λ} is the so-called absorption coefficient. The quantity a_{λ} is roughly proportional to the number of molecules per unit volume and it increases with temperature. Furthermore, a_{λ} depends strongly on wavelength (C5).

When the temperature and gas concentration are constant, equation $\mathbf{C 8}$ can be integrated to result in

$$
\begin{equation*}
I_{\lambda}=I_{\lambda_{0}} e^{-a_{\lambda} s} \tag{C9}
\end{equation*}
$$

where $I_{\lambda 0}$ is the intensity of the beam at $s=0$. By definition, the absorptivity of a gas layer of thickness s is then

$$
\begin{equation*}
\alpha_{\lambda}=1-e^{-a_{\lambda} s} \tag{C10}
\end{equation*}
$$

The emissivity E_{λ} is equal to the absorptivity according to Kirchhoff's law.

Equations C8 to Cl0 apply to radiation at some particular wavelength only. In practice, however, only the total radiated heat integrated over all wavelengths is of importance. Theoretically, a_{λ} for any gas can be evaluated as a function of temperature, pressure and wavelength from the molecular structure of the gas. Such evaluation, even if possible, is usually impractical for other than diatomic molecules (C6). Recently, Bevans and Dunkle (C7) pointed out the applicability of band measurements for engineering calculations. The band absorption of a band is defined as the absorption

$$
\begin{equation*}
A_{i}=\int_{\lambda_{1}}^{\lambda_{2}} \alpha_{\lambda} d \lambda \tag{C11}
\end{equation*}
$$

associated with a certain transition in the vibrational molecular energy and simultaneous rotational energy changes. Empirical band absorption correlations for CO_{2} based on experimental measurements have been given by Edwards (C8). Work (C9) has also been performed to determine the overall emissivity E for a gas at different temperatures as a function of the product ps , where p is the partial pressure of the particular gas and s the thickness of the gas layer. Data are available for $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}, \mathrm{CO}, \mathrm{NH}_{3}$ and mixtures of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ at a total pressure of 1 atmosphere. For CO_{2} at $510^{\circ} \mathrm{C}$ and a ps of 0.25 ft . atm, the value of E at 1 atm total pressure is given to be approximately 0.09. This overall approach, however, applies only to gray surfaces.

The role of radiant thermal transfer in the end effects will now be examined. This transfer is represented by the term

$$
\frac{4 a \sigma}{C_{p} \rho} \sum_{i} \quad F_{i}\left(T^{4}-T_{w i}^{4}\right)
$$

in equation $C 1$. The significance of this term will be determined by comparing its order of magnitude with that of $u_{x} \frac{\partial T}{\partial x}$ at the thermocouple probe. In order to perform this, however, the values of $F_{i}, a, T_{w i}, T$ and $\frac{\partial T}{\partial x}$ have first to be obtained. Since the overall emissivity of n-butane is not known, that of CO_{2} at $410^{\circ} \mathrm{C}$ and $\mathrm{ps}=0.25 \mathrm{ft}$. atm will be used as an approximation. The reactor is now divided into two parts. The first part is the reactor head which is 3 inches above the probe thermocouple and has a uniform temperature of $310^{\circ} \mathrm{C}$. The second part consists of the rest of the reactor and is at a temperature of $510^{\circ} \mathrm{C}$. The value of F_{i} 's can now be obtained

$$
\begin{aligned}
& \mathrm{F}_{1}=\frac{\left(\frac{1}{2}\right)^{2} \pi}{4(3)^{2} \pi}=\frac{1}{144}=0.00694 \\
& \mathrm{~F}_{2}=1-\mathrm{F}_{1}=0.99306
\end{aligned}
$$

The absorption coefficient a can be calculated from E by the relation $E=1-e^{-a s}$. Since for $s=0.25 \mathrm{ft}$ and $p=1 \mathrm{~atm}$, $E=0.09$,

$$
a=-\frac{1}{s} \ln (1-E)=0.372 \mathrm{ft}^{-1}
$$

The value of T and $\partial T / \partial x$ will be obtained from Figure $C l$ at $x=3$ inches and $r=0$ for $u_{x m}=0.08 \mathrm{ft} / \mathrm{sec}$,

$$
\begin{aligned}
T & =499^{\circ} \mathrm{C} \\
\frac{\partial T}{\partial x} & =-266^{\circ} \mathrm{C} / \mathrm{ft}
\end{aligned}
$$

At $499^{\circ} \mathrm{C}$,

$$
\begin{aligned}
\rho & =0.0571 \mathrm{lb} / \mathrm{cu} . \mathrm{ft} \\
C_{p} & =1.51 \mathrm{Btu} / 1 \mathrm{~b}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

The radiant transfer term becomes

$$
\begin{aligned}
& \frac{4 \times 0.372 \times 0.173 \times 10^{-8}}{0.0571 \times 1.51 \times 3600}\left(\frac{9}{5}\right)^{4}\left[(712.1)^{4}-0.00694(583.1)^{4}\right. \\
& \left.-0.99306(783.1)^{4}\right]=-0.01644^{\circ} \mathrm{C} / \mathrm{sec}
\end{aligned}
$$

The longitudinal convective term is, on the other hand, $0.08 x(-266)=-21.3^{\circ} \mathrm{C} / \mathrm{sec}$.

It can thus be seen that even at very low flow rates, the radiant transport is only 0.1% of the longitudinal convective term. Even if the absorption coefficient of n-butane is actually much larger than that of CO_{2}, the effect of thermal radiation can still be readily neglected.

Finally, possible errors in probe thermocouple readings are to be investigated. In general, the reading of a thermocouple in a flowing fluid is determined by three
factors: heat transfer from gas to the thermocouple, heat conduction along the thermocouple leads, and radiant exchange of energy between the thermocouple and the surrounding surfaces. The net gain of energy is zero at steadystate. Mathematically,

$$
\begin{equation*}
\mathrm{h}_{\mathrm{c}} \mathrm{~A}_{1}\left(\mathrm{~T}_{\mathrm{g}}-\mathrm{T}_{\mathrm{t}}\right)+\sigma \mathrm{EA} \mathrm{~A}_{\mathrm{i}} \mathrm{FF}_{\mathrm{i}}\left(\mathrm{~T}_{\mathrm{wi}}{ }^{4}-\mathrm{T}_{\mathrm{t}}^{4}\right)+\mathrm{kA} A_{3} \frac{\partial \mathrm{~T}}{\partial \mathrm{x}}=0 \tag{C}
\end{equation*}
$$

In equation C12, $\frac{\partial T}{\partial x}$ is the temperature gradient in the thermocouple wire. When the thermocouple probe is at the center of the reactor with $u_{x}=0.08 \mathrm{ft} / \mathrm{sec}$. and $\mathrm{T}_{\mathrm{av}}=510^{\circ} \mathrm{C}$, it has been shown that $\mathrm{T}_{\mathrm{g}}=499^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{w} 1}=310^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{w} 2}=510^{\circ} \mathrm{C}$, $F_{1}=0.00694$, and $F_{2}=0.99306$. The heat transfer coefficient h_{c} can be calculated from the following equation Cl :

$$
\begin{equation*}
h_{c}=\frac{0.44 G^{0.8} T^{0.5} C_{p}\left(r_{h}-0.081\right)}{M^{0.1}\left(r_{h}-0.027\right)} \frac{B t u}{\mathrm{ft}^{2} h r^{0} F^{0}} \tag{C13}
\end{equation*}
$$

whter T is in ${ }^{\circ} R$. For butane, $h_{c}=2.61$ under the prevailing conditions. As an approximation A_{1} and A_{2} are both taken to be equal to the surface area of a sphere having the same diameter as the probe quartz tubing. Thus

$$
A_{1}=A_{2}=4 \pi\left(\frac{1}{32}\right)^{2}=\frac{\pi}{256} \text { sq. in. }
$$

A_{3} is the cross section of the wires. Its value is $2\left(\pi \times 0.0015^{2}\right)=4.5 \times 10^{-6} \mathrm{sq}$. in. For quartz, $\mathrm{E}=1$. For Pt at $500^{\circ} \mathrm{C}, \mathrm{k}_{\mathrm{c}}$ is approximately $50^{\mathrm{Btu} /(\mathrm{hr})}$ (sq ft) (${ }^{\mathrm{O}} \mathrm{F} / \mathrm{ft}$).

Finally, the temperature gradient in the gas is used for that in the wires, or $\partial T / \partial x=-266^{\circ} \mathrm{C} / f t$. Equation Cl2 can now be written as
$2.61\left(\frac{9}{5}\right)\left(772.1-T_{t}\right)+0.173 \times 10^{-8}\left(\frac{9}{5}\right)^{4}\left[0.00694(583.1)^{4}\right.$
$\left.+0.99306(783.1)^{4}-\mathrm{T}_{\mathrm{t}}^{4}\right]-50\left(1.152 \times 10^{-3}\right)(266)\left(\frac{9}{5}\right)=0$
and can be solved for T_{t}. T_{t} thus obtained has a value of approximately $767.1^{\circ} \mathrm{K}$ or $494{ }^{\circ} \mathrm{C}$. The thermocouple therefore reads about $5{ }^{\circ} \mathrm{C}$ lower than the actual gas temperature. Since the temperature gradient in the wires is actually smaller than that in the gas, the actual difference is also smaller.

The end effects due to the cold reactor head have been discussed in detail. Because of the cold reactor head, the temperature of the adjacent reactor walls is lowered, which then cause gas flowing past to be cooled by conduction and convection. Radiant transfer, however, is insignificant. Also, errors in thermocouple readings are not excessive.

NOMENCLATURE

A_{1} area of gas film around the thermocouple, sq.in.
A_{2} surface area of thermocouple junction, sq.in.
A_{3} cross-sectional area of thermocouple wires, sq.in.
a absorption coefficient for thermal radiation, ft. ${ }^{-1}$
C_{p} heat capacity at constant pressure, $B t u / 1 b$ R
D diameter of reactor tube, ft.
F view factor
G mass velocity, lb/ft. ${ }^{2} \mathrm{hr}$
g gravitational acceleration, $32.2 \mathrm{ft} / \mathrm{sec} .^{2}$
Gr Grashof number, $L^{3} \rho^{2} g \beta \Delta t / \mu^{2}$, dimensionless
h_{c} heat transfer coefficient, Btu/hr ft. ${ }^{2}{ }^{\circ} \mathrm{R}$
I intensity of radiation beam, Btu/ft. ${ }^{2} \mathrm{hr}$
$\mathrm{k} \quad$ thermal conductivity, Btu/hr ft. R
L characteristic length, ft.
M molecular weight
$M_{1} \quad$ a unique function of temperatures
M_{2} another unique function of temperature
$\mathrm{Nu} \quad$ Nusselt number, hD / k, dimensionless
p partial pressure, atm
Pr Prandtl number, $C_{p} \mu / k$, dimensionless
R $\quad 0.5 r^{2}$, sq $f t$ or $s q$. in.
r radius, ft. or in.
r_{h} hydraulic radius of the thermocouple, ft. or in.
r_{o} radius of the reactor, $f t$. or in.
s distance, ft.
T temperature ${ }^{\circ} \mathrm{K}$ or ${ }^{\circ} \mathrm{R}$
t temperature, C or F
\bar{u} average linear velocity, $f t / h r$
u velocity $f t / h r$
u_{i} component velocity, $f t / h r$
$u_{x m}$ maximum velocity in x-direction, $f t / h r$
W mass flow rate, $\mathrm{lb} / \mathrm{hr}$
$x \quad$ longitudinal distance, $f t$ or in.
a absorption, dimensionless
β thermal expansion coefficient, ${ }^{\circ} \mathrm{F}^{-1}$
\triangle difference
E emissivity, dimensionless
λ wavelength, microns
$\mathcal{F} \mathcal{C}$ thermal diffusivity, $k / C_{p} p, f t .^{2}$
$\mu \quad$ viscosity, $\mathrm{lb} / \mathrm{hr} \mathrm{ft}$.
p density, lb/ft. ${ }^{3}$
$\sigma \quad$ Stefan-Boltzmann constant, $0.171 \times 10^{-8} \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{hr}{ }^{\circ} \mathrm{R}^{4}$
∇ gradient operator
∇^{2} Laplacian operator
Subscripts:
b bulk
g gas
t thermocouple
w wall
λ at wavelength λ

REFERENCES

Cl. R.C.L. Bosworth, "Heat Transfer Phenomena", John Wiley and Sons, New York, 1952. p. 185.

C2. W.H. McAdams, "Heat Transmission", McGraw-Hill, New York, 1954. p. 229.

C3. R.C. Martinelli and L.M.K. Boelter, Univ. Calif. (Berkeley) Publs. Eng., 5(2), p. 23 (1942).

C4. R.H. Pierson, A.N. Fletcher and E.S.T. Clair Gantz, Anal. Chem. 28, p. 1218 (1956).

C5. E.R.G. Eckert and R.M. Drake, Jr., "Heat and Mass Transfer", McGraw-Hill, New York, 1959. p. 383.

C6. S.S. Penner, J. Appl. Mechanics, 18, p. 53 (1951).
C7. J.T. Bevans and R.V. Dunkle, J. Heat Transfer, Trans. ASME, Series C, 82, p. 1 (1960).

C8. D.K. Edwards, J. Heat Transfer, Trans. ASME, Series C, 84, p. 1 (1962).

C9. W.H. McAdams, "Heat Transmission", McGraw-Hill, New York, 1954. pp. 83, 85, 90, 95-97.

C10. C.S. Robinson, Ind. Eng. Chem., 13, p. 820 (1921).

Figure C I. Temperature profiles for $T_{h}=310^{\circ} \mathrm{C}$ of $x=3.0$ inches (top) and 2.0 inches (bottom)

Figure C2. Temperature profiles for $T_{h}=360^{\circ} \mathrm{C}$ at $x=3.0$ inches (top) and 2.0 inches (bottom)

Figure C 3. Proposed flow pattern due to natural convection

Figure C4. Temperature protile in the reactor where natural convection predominates

APPENDIX D: EVALUATION OF AVERAGE REACTION TEMPERATURE IN A NON-ISOTHERMAL FLOW REACTOR

In a non-isothermal flow reactor, the average reaction temperature should be evaluated based on reaction-rate considerations. Specifically, the thermal decomposition of n-butane following a first-order rate will be discussed. The same discussion, however, applies to many other reactions.

Only one case will be considered here. In this case, the extent of butane decomposition in the reactor is very small. The flow is uniform in the axial direction, x. Finally, the fluid temperature at any distance, x, is taken to be the same as the corresponding wall temperature. The reactor is now divided into m sections of equal length Δx, with each section maintained at a constant temperature T_{i}. The rate of reaction at any section i is thus:

$$
\begin{equation*}
r_{i}=k_{r i}(B)_{i}=A e^{-\frac{E}{R T_{i}}}(B)_{i} \tag{D1}
\end{equation*}
$$

Since the flow is uniform and the concentration of butane practically constant, the average rate of reaction for the entire reactor is then

$$
\begin{equation*}
r_{a v}=\frac{1}{m} A(B) \sum_{i=1}^{m} e^{-\frac{E}{R T_{i}}} \tag{D2}
\end{equation*}
$$

or the average reaction temperature,

$$
\begin{equation*}
T_{\text {rav }}=-\frac{R}{E} \ln \quad \frac{1}{m} \sum_{i=1}^{m} e^{-\frac{E}{R T_{i}}} \tag{D3}
\end{equation*}
$$

$T_{\text {rav }}$ in equation D3 is called the "reaction-rate average" temperature, as it is calculated from the average reaction rate.

In many cases the T_{i} 's differ from each other only slightly. Under such circumstances,

$$
\begin{equation*}
T_{\text {rav }} \sim \frac{1}{m} \sum_{i=1}^{m} T_{i} \tag{D4}
\end{equation*}
$$

or the "reaction-rate average" temperature can be approximated by an arithmetic average. The validity of this approximation can probably be demonstrated most clearly with some numerical examples. Let the reaction rate constant be

$$
\begin{equation*}
k_{r}=A e^{-\frac{29,000}{T}} \tag{D5}
\end{equation*}
$$

(I) If $\mathrm{m}=3, \mathrm{~T}_{1}=738.1^{\circ}, \mathrm{T}_{2}=732.6^{\circ}$ and $\mathrm{T}_{3}=730.6^{\circ}$, from equation $\mathrm{D} 3 \mathrm{Tr}_{\mathrm{av}}=733.9 \mathrm{C}$ compared with the approximation of $733.7^{\circ} \mathrm{C}$ calculated from equation D 4 .
(II) Again let $\mathrm{m}=3$ with $\mathrm{T}_{1}=782.1^{\circ}, \mathrm{T}_{2}=777.6^{\circ}$ and $\mathrm{T}_{3}=779.1^{\circ}$, the "reaction-rate average" temperature is 779.7 compared with the arithmetic average of 779.6. Note that the arithmetic average is always lower than the "reactionrate average".

APPENDIX E: CORRELATION OF VELOCITY DATA

The correlation of velocity data consisted of assuming a velocity profile, calculating a kinetic-head profile corresponding to the velocity profile and comparing the calculated kinetic heads with the measured kinetic heads.

The feed entered in reactor with a practically flat velocity distribution. If no chemical reaction occurred, and since the reactor was essentially isothermal, the velocity would gradually change into a parabolic distribution. Nikuradse (E1) measured the velocity distribution in the inlet portion of a pipe under isothermal and laminar conditions with a flat inlet velocity profile and found that the flow was practically Poiseuille at a distance $\frac{x}{r_{o}}=0.16 R e$, where the Reynolds number, Re, was based on the radius of the pipe, r_{0}. The maximum average linear velocity for all the runs were $0.60 \mathrm{ft} / \mathrm{sec}$. for Run 33 at $566^{\circ} \mathrm{C}$. This corresponded to a Reynolds number of 103 or $\mathrm{x} / \mathrm{r}_{\mathrm{o}}=16$. As the minimum reactor length was 18 inches, the reactor was long enough for the flow to become parabolic at the exit of the reactor.

Two possible effects on the flow pattern of the gas in the reactor are now considered. The first one is that due to chemical reaction. Because the reaction was endothermic, the gas temperature at the center of the reactor would be lower than that close to the wall. Furthermore, as boundary layers began to develop, the retention time of the gas became longer near the wall. More reaction, therefore,
occurred in the boundary layer. The result was a larger increase, percentagewise, in the number of molecules present and consequently, a relatively higher linear velocity in the boundary layer than the case without chemical reaction. The second effect was that due to end cooling. It is shown in Appendix C that when the gas flowing through a tube is cooled by the wall, radial flow in the direction of the wall will develop. This also would result in a relatively higher velocity near the wall. Although both effects probably were insignificant, the discussion here indicates that the velocity profile at the exit of the reactor could not be steeper than a parabolic distribution. As an initial estimate, a parabolic velocity distribution was thus assumed for each run regardless of temperature, flow rate, and other operating conditions.

KINETIC HEAD PROFILE

The pitot tube measures the total pressure, P°, of a moving stream. It was shown experimentally (E2) that

$$
\begin{equation*}
P^{\circ}=P_{s}+C\left(\frac{1}{2 g} \rho u^{2}\right) \tag{E1}
\end{equation*}
$$

where C is a numerical factor dependent on the Reynolds number and the shape of the probe. C is nearly constant and equal to unity for most cases except at very low Reynolds numbers. When the Reynolds number is small, C increases rapidly with decreasing Reynolds number due to viscous
effect.

Miss Barker (E3) measured the velocity of a water stream at the center of a $1.1-c m$ diameter pipe and found that the viscous effect could be neglected when Re >30. The Reynolds number here was based on the inside radius of the pitot tube, r_{p}. For $\operatorname{Re}<30$, she surmised that the viscous effect showed itself in the form of an additional pressure, comparable with that at the nose of a sphere of radius equal to that of the pitot opening。

$$
\begin{equation*}
\mathbf{P} \text { addition }=\frac{3}{2 g} \mu u / r_{p} \tag{E2}
\end{equation*}
$$

Such a supposition was supported by the experimental results.

Later, Hormann (E4) investigated for an incompressible fluid, the effect of viscous force on pitot tube readings both theoretically and experimentally. He obtained the correction factor C as a function of the Reynolds number. The agreement between theoretical and experimental results was good even for very small Reynolds numbers. For a source-shaped tube, which is a tube having a surface contour corresponding to the stagnation stream line of a combination of a point source with a uniform flow, the value of C is given by

$$
\begin{equation*}
C=5.25-0.504 \mathrm{Re} \text { for } R e \leq 6.0 \tag{E3}
\end{equation*}
$$

If the kinetic head, $\Delta \mathrm{P}$, is defined as the difference between the total pressure and the static pressure, from equations E1 and E3,

$$
\begin{equation*}
\Delta \mathrm{P}=\mathrm{P}^{\circ}-\mathrm{P}_{\mathrm{s}}=(5.25-0.504 \mathrm{Re}) \frac{\mathrm{qu}^{2}}{2 \mathrm{~g}} \tag{E4}
\end{equation*}
$$

The kinetic head for any given velocity can then be readily evaluated.

In equation $E 4, \Delta P$ has the unit $1 \mathrm{~b} / \mathrm{ft}_{\mathrm{o}}{ }^{2}$ while the measured kinetic heads were expressed in terms of air bubble displacement, $\Delta \mathrm{D} \mathrm{cm}$. The relationship between $\Delta \mathbf{P}$ and $\Delta \mathrm{D}$ can be obtained as follows: The manometer fluid used was methyl alcohol which has a density of $50 \mathrm{lb} / \mathrm{cu}$. ft . at room temperature. Any pressure difference ΔP between the two sides of the manometer would result in a difference in liquid levels, H_{m},

$$
\begin{equation*}
H_{m}=\frac{1}{50} \Delta \mathrm{p} f \mathrm{ft} \tag{E5}
\end{equation*}
$$

if the effect of gas density is neglected. As the area ratio between the cross sections of the reservoirs and the bore of the capillary tube was 1000 , the resulting air bubble displacement is

$$
\begin{equation*}
\Delta \mathrm{D}=\left(\frac{1}{2} \mathrm{H}_{\mathrm{m}}\right)(1000)(30.48)=15240 \mathrm{H}_{\mathrm{m}} \tag{E6}
\end{equation*}
$$

Combining equations E5 and E6,

$$
\begin{equation*}
\Delta \mathrm{D}=304.8 \Delta \mathrm{P} \tag{E7}
\end{equation*}
$$

The velocity profile at the exit of the reactor is represented by the formula

$$
\begin{equation*}
u_{x}=2 \bar{u}_{x}\left[1-\left(\frac{\mathrm{r}}{\mathbf{r}_{0}}\right)^{2}\right] \tag{E8}
\end{equation*}
$$

where the average linear velocity \bar{u}_{x} is to be calculated by the equation

$$
\begin{equation*}
\bar{u}_{x}=\frac{F}{60 A}[1+(Z-1) x] \frac{T P_{S}}{T_{S} P} \tag{E9}
\end{equation*}
$$

As a numerical example, the kinetic head profile for runs 32, 34 and 36 will be obtained. These three runs were replicate runs at $560^{\circ} \mathrm{C}$ with a feed rate of 0.0549 cu . ft. per minute measured at $70^{\circ} \mathrm{F}$ and 760 mm Hg . The conversion correction term $(Z-1) X$ is calculated from Table X to be 0.056. From equation E9,

$$
\overline{\mathrm{u}}_{\mathrm{x}}=0.512 \mathrm{ft} . / \mathrm{sec}
$$

By substituting the value of \bar{u}_{x} into equation $E 8$, point velocities across the reactor can now be calculated. The bubble displacements, $\Delta \mathrm{D}$, corresponding to these point velocity are then obtained from equations E4 and E7. These values, together with values of C, are given in Table El. In evaluating C, the viscosity is calculated to be $1.303 \times$ $10^{-5} \mathrm{lb} / \mathrm{ft}$. sec. based on a composition of $4.126 \% \mathrm{CH}_{4}$, $1.475 \% \quad \mathrm{C}_{2} \mathrm{H}_{6}, 2.377 \% \mathrm{C}_{2} \mathrm{H}_{4}, 3.993 \% \mathrm{C}_{3} \mathrm{H}_{6}$ and $88.029 \% \quad \mathrm{C}_{4} \mathrm{H}_{10}$. This composition corresponded to that of run 34 at $\mathrm{r} / \mathrm{r}_{\mathrm{o}}=$ 0.70. The results of a similar calculation for runs 21 and 31 are also given in Table El. Since the conversion of these two runs was only 0.8%, the correction due to conversion is neglected。

COMPARING EXPERIMENTAL AND CALCULATED $\triangle \mathrm{D}$

Two difficulties arise in reducing the experimental data to obtain \triangle D. The first one is that the static-head reading fluctuated. This difficulty was removed by plotting the static head reading as a function of time. For each kinetic head reading, the corresponding static head reading was read from the plot at the same time the kinetic head reading was obtained. Figure El shows a typical static head reading time plot.

The second difficulty lies in the fact that the difference between the kinetic head and static head readings was a combination of two things: the actual kinetic head $\Delta \mathrm{D}$ plus the difference between the static head at the pressure tap and that at the pitot tube ΔD_{S}. As the pitot tube could not travel to within 0.15 inch of the wall, ΔD_{S} could not be obtained by extrapolation without considerable error. To overcome this difficulty, the measured readings $\left(\Delta D+\Delta D_{S}\right)$ were compared with the calculated kinetic head. If both profiles were similar in shape, the value of ΔD_{S} could then be easily determined by forcing the measured profile to superimpose on the calculated curve. Part of the measured readings for runs 32,34 and 36 are listed in Table E2. For these runs, the values of ΔD_{S} were obtained by comparison to be $0.735,1.90$ and 2.10 cm respectively. The resulting values of $\Delta \mathrm{D}$ are then plotted in Figure E2, together with the calculated profile. A similar plot for runs 21 and 31
is shown in Figure E3.

Figures E2 and E3 show that the experimental data agree well with the calculated kinetic head, which suggests that velocity profiles for these runs were parabolic. Such agreements have been found for sixteen runs out of a total of thirty-six runs in which velocity measurements were made. Of the remaining twenty runs, either the data scattered too much to enable any correlation or the velocity was too low to result in detectable bubble movement. Some typical data for both cases are given in Table E3.

NOMENCLATURE

A cross sectional area of the reactor, ft^{2}
C a correction factor due to viscous force, dimensionless
$\triangle \mathrm{D} \quad$ manometer bubble movement due to kinetic head, cm
$\Delta \mathrm{D}_{\mathrm{S}}$ manometer bubble movement due to difference in static pressure between the pressure tap and the pitot tube, cm

F
volumeric feed rate measured at T_{S} and $P_{S}, f t^{3} / \mathrm{min}$
g gravitational acceleration, $32.2 \mathrm{ft} / \mathrm{sec}^{2}$
H_{m} methyl alcohol head, ft
p pressure, $1 \mathrm{~b} / \mathrm{ft}^{2}$ or cm Hg
$\mathrm{P}_{\mathrm{S}} \quad$ standard pressure, 76 cm Hg
$\Delta \mathbf{P} \quad$ kinetic head measured by the pitot tube, $1 \mathrm{~b} / \mathrm{ft}^{2}$
r radius, ft
$r_{o} \quad$ radius of the reactor, $f t$
r_{p} radius of the pitot tube opening, ft
Re Reynolds number, pur/u, dimensionless
T temperature, ${ }^{\circ} \mathrm{K}$
$\mathrm{T}_{\mathrm{S}} \quad$ standard temperature, $294.2^{\circ} \mathrm{K}\left(70^{\circ} \mathrm{F}\right)$
point velocity in the direction of the pitot tube axis, ft/sec
$u_{x} \quad$ longitudinal velocity, ft/sec
\bar{u}_{x} average longitudinal velocity, ft/sec
X conversion of butane, dimensionless
x distance from the inlet of a tube, ft
Z
moles of products formed per mole of butane converted, dimensionless
$\rho \quad$ density, lb/cu.ft.
$\mu \quad$ viscosity, lb/ft.sec.

REFERENCES

E1. L. Prandtl and O. G. Tietjens, "Applied Hydro- and AeroMechanics", McGraw-Hill, New York, 1934. p. 26.

E2. S. Goldstein, ed., "Modern Developments in Fluid Dynamics", Vol. 1, Oxford Press, New York, 1938. p. 248 。

E3. M. Barker, Proc. Roy. Soc. (London), Al01, p. 435 (1922).

E4. F. Homann, Z. angew, Math u. Mech. 16, p. 153 (1936).

Figure E2. Experimental and calculated kinetic head for runs 32,34 and 36

Figure E3. Experimental and calculated kinetic heod for runs 21 and 31

TABLE E1. VELOCITY AND KINETIC HEAD PROFILES FOR SOME RUNS BASED ON A PARABOLIC

VELOCITY DISTRIBUTION

$\mathrm{r} / \mathrm{r}_{\mathrm{o}}$	$\mathrm{u}_{\mathrm{x}, \mathrm{ft} / \mathrm{sec}}$	C	$\Delta \mathrm{D} \mathrm{cm}$
	(a) Runs 32,34 and 36		
0	1.024	3.12	0.774
0.2	0.933	3.21	0.735
0.4	0.860	3.46	0.607
0.6	0.655	3.89	0.394
0.8	0.369	4.48	0.145
1.0	0	5.25	0

(b) Runs 21 and 31

0	0.692	3.50	0.447
0.2	0.664	3.57	0.419
0.4	0.581	3.78	0.340
0.6	0.443	4.13	0.216
0.8	0.249	4.62	0.102
1.0	0	5.25	0

TABLE E2. MEASURED KINETIC HEAD READINGS

TABLE E3. MEASURED KINETIC HEAD READINGS FOR TWO "BAD RUNS"

	Run 65			Run 26	
	$)^{u_{x}}=$	$559 \mathrm{ft/sec}$.		$\stackrel{u}{x}^{\text {x }}=$	$01 \mathrm{ft} / \mathrm{sec}{ }_{0}$)
$\mathrm{r} / \mathrm{r}_{\mathrm{o}}$	Time	$\left(\triangle D+\Delta D_{S}\right) \mathrm{cm}$	$\mathrm{r} / \mathrm{r}_{\mathrm{o}}$	Time	$\left(\triangle \mathrm{D}+\triangle \mathrm{D}_{\mathrm{S}}\right) \mathrm{cm}$
0.70	3:34	2.04	0.70	4:01	1.15
	3:59	1.83	0.40	4:13	1.15
	8:20	3.22	0.30	4:35	1.15
0.60	6:02	1.65	0.00	4:23	1.15
0.40	4:21	2.50			
0.30	5:25	1.55			
0.00	4:59	1.98			

APPENDIX F: METHOD FOR CALCULATING CONVERSION AND CHECKING MATERIAL BALANCE

The compositions of samples obtained by chromatographic analysis are listed in Appendix B. From the compositions, the conversions in terms of number of moles of butane converted per 100 moles of feed were calculated for samples at $\mathrm{r} / \mathrm{r}_{0}=0.0$ and 0.70 . Material balances for these samples were also checked by computing the C / H ratio. The results are shown in Tables VIII to X. The method of calculation is given in this appendix.

The basis of calculation is 100 moles of feed with δ moles of components other than butanes. In this treatment, $\mathrm{n}-$ and iso-butanes are not distinguished. After the reaction, X moles of butanes are converted into ZX moles of products. The total number of moles now is $100+(\mathrm{Z}-1) \mathrm{X}$ with ($100-\delta-\mathrm{X}$) moles of butanes and ($\mathrm{ZX}+\delta$) moles of other components. The total mole percentage of these other components in a sample is thus

$$
\begin{equation*}
Y=\frac{Z X+\delta}{100+(Z-1) X} \tag{Fl}
\end{equation*}
$$

If the ratio C / H in the δ moles of impurities is R_{δ}, the overall ratio C / H in the sample excluding the butanes should then be

$$
\begin{equation*}
(\mathrm{C} / \mathrm{H})_{\mathrm{T}}=\frac{0.4 \mathrm{ZX}+\mathrm{R}_{\delta} \delta}{\mathrm{ZX}+\delta} \tag{F2}
\end{equation*}
$$

If the values of Y, Z, δ and R_{δ} are known or calculable for each sample, equation $F 1$ can be used to calculate X and equation F 2 to calculate $(\mathrm{C} / \mathrm{H})_{\mathrm{T}} \cdot(\mathrm{C} / \mathrm{H})_{\mathrm{T}}$ is the theoretical
value of the ratio C / H which provides a basis for checking the material balances. The analysis is rigorous and the computations straightforward.

In practice, however, both values of Z and δ were not easily determinable. The amount of impurities in the feed was noticed to decrease rapidly with time due to favorable equilibrium conditions. Since the initial amount of impurities was small, it was assumed that the presence of impurities could be neglected for the present calculations. The value of Z, on the other hand, varied slightly from run to run around an average value of approximately 2.0 (Tables VIII to X). Since X is almost inversely proportional to Z in equation Fl , the use of a constant value for Z (say 2.0) to calculate X would introduce undesirable errors. X, therefore, was calculated by another approach.

For 100 moles of a sample, there were Y moles of products and (100 - Y) moles of butanes. The values of ΣC and ΣH were calculated for the Y moles of products. Since the products were formed due to butane decomposition, $\Sigma \mathrm{C} / \Sigma \mathrm{H}$ has a theoretical value of 0.4 . The actual values of the ratio $\Sigma \mathrm{C} / \Sigma \mathrm{H}$ varied around this theoretical value due to errors in chromatographic analysis and possible carbon deposits on the walls. The number of moles of butanes equivalent to Y moles of products was thus $\Sigma C / 4$ and the value of Z was $4 Y / \Sigma C$. From equation Fl , with $\delta=0$ and $\mathrm{Z}=4 \mathrm{Y} / \Sigma \mathrm{C}$,

$$
\begin{equation*}
\mathrm{X}=\frac{100(\Sigma \mathrm{C} / 4)}{(100-\mathrm{Y})+(\Sigma \mathrm{C} / 4)} . \tag{F3}
\end{equation*}
$$

Equation $F 3$ was used in actual computations to obtain values of X .

The number of moles of any product formed for one mole of butane decomposed, P_{i} was computed from the formula

$$
\begin{equation*}
P_{i}=Y_{i} /(\Sigma C / 4) \tag{F4}
\end{equation*}
$$

where Y_{i} is the mole percentage of component i in the product stream.

APPENDIX G: SOME EMPIRICAL FORMULAS FOR CALCULATING PHYSICAL PROPERTIES OF n-BUTANE AND ITS DECOMPOSITION PRODUCTS

Much work has been done in measuring and correlating physical properties of pure hydrocarbons. The correlations usually resulted in empirical formulas with some theoretical basis. Work concerning mixtures has been much less extensive. The properties of hydrocarbon mixtures are invariably obtained from the properties of pure substances by assuming the latter are additive either on a molal or weight basis. After a careful literature survey, the following empirical formulas were chosen to be used in the evaluating of physical properties of n-butane and its main decomposition products, i.e., methane, ethane, ethylene and propylene. The choice was based on the simplicity of the formula without appreciable sacrifice of agreement with experimental data.
I) Heat capacity (GI)

$$
\begin{equation*}
C_{p}=a+b T+c T^{2} \tag{G1}
\end{equation*}
$$

II) Viscosity (G2)

$$
\begin{equation*}
\mu \xi=\left(0.291 \mathrm{~T}_{\mathrm{R}}-0.058\right)^{3 / 4} \tag{G2}
\end{equation*}
$$

III) Thermal conductivity (G3)

$$
\begin{equation*}
k=\mu\left(C_{p}+\frac{5 R}{4 M}\right) \tag{G3}
\end{equation*}
$$

IV) Diffusion coefficient (G4)

$$
\begin{equation*}
D_{1-2}=4.63 \times 10^{6} \frac{\mathrm{~T}^{3 / 2}}{\mathrm{P}\left(\mathrm{~V}_{\mathrm{m}_{1}}^{1 / 3}+\mathrm{V}_{\mathrm{m}_{2}}^{1 / 3}\right)^{2}} \sqrt{\frac{1}{\mathrm{M}_{1}+\mathrm{M}_{2}}} \tag{G4}
\end{equation*}
$$

v) Heat of reaction (G5)

$$
\begin{equation*}
\Delta H_{T}=\Delta H_{T_{S}}+\int_{T_{S}}^{T} \Delta C_{p} d T \tag{G5}
\end{equation*}
$$

where $\Delta \mathrm{H}_{\mathrm{T}}$ is the heat of reaction at a standard temperature (usually $25^{\circ} \mathrm{C}$) and can be calculated from the heat of formation or heat of combustion data.

Values of the coefficients and other qualities needed to evaluate these properties are given in Table Gl. Numerical values for n-butane at $460^{\circ}, 510^{\circ}$ and $560^{\circ} \mathrm{C}$ are shown in Table G2. For a mixture, the heat capacity is additive on a weight basis while the viscosity is additive on a molal basis. Equation G3 applies to mixtures as well as pure substances.

NOMENCLATURE

a,b,c	coefficients used in equation Gl
C_{p}	heat capacity at constant pressure, Btu/1b ${ }^{\circ} \mathrm{K}$
D_{1-2}	diffusion coefficient between gases 1 and 2 , $\mathrm{ft}^{2} / \mathrm{sec}$
H	enthalpy, Btu/lb
k	thermal conductivity, Btu/(sec) (ft^{2}) (${ }^{\mathrm{O}} \mathrm{K} / \mathrm{ft}$)
M	molecular weight, lb/lb mole
P	pressure, atm
R	universal gas constant, 3.5766 Btu/1b mole ${ }^{\mathrm{o}} \mathrm{K}$
T	temperature, ${ }^{\mathrm{O}_{\mathrm{K}}}$
T_{c}	critical temperature, ${ }^{\circ} \mathrm{K}$
T_{R}	reduced temperature, $\mathrm{T} / \mathrm{T}_{\mathrm{c}}$, dimensionless
V_{m}	molecular volume of a gas at its normal boiling
	points cc/g-mole
μ	viscosity, lb/ft sec
ξ	a constant for each compound
ΔC_{p}	change in heat capacity of a reacting system due to
	chemical reaction at constant pressure, $\mathrm{Btu} / \mathrm{lb}^{\circ} \mathrm{K}$
ΔH_{T}	heat of reaction at temperature T , Btu/lb

REFERENCES

Gl. O. A. Hougen, K. M. Watson and R. A. Ragatz, "Chemical Process Principles" Part l, John Wiley \& Sons, New York, 1954. p. 255.

G2. L. W. Flynn and G. Thodos, J. Chem. \& Eng. Data, 6, p. 457 (1961).

G3. J. O. Hirchfelder, R. B. Bird and E. L. Spotz, J. Chem. Phys. 16, p. 968 (1948).

G4. E. R. Gilliland, Ind. Eng. Chem., 26, p. 681 (1934).
G5. O. A. Hougen, K. M. Watson and R. A. Ragatz, "Chemical Process Principles" Part 1, John Wiley \& Sons, New York, 1954. p. 347.

TABLE GI. NUMERICAL VALUES OF COEFFICIENTS AND OTHER PERTINENT QUANTITIES FOR EQUATIONS G1 TO G5
(a) Heat Capacity

Compound	a	$\mathrm{bx10}$	
			$-\mathrm{cx} 10^{6}$
Methane	0.3848	2.007	0.4666
Ethane	0.0825	2.503	0.8273
Ethylene	0.1742	1.875	0.3645
Propylene	0.0842	2.131	0.7273
n-Butane	0.0697	2.532	0.8865

(b) Viscosity

Compound	$\mathrm{T}_{\mathrm{c}},{ }^{\mathrm{O}} \mathrm{K}_{\mathrm{K}}$	$\xi \times 10^{4}$
Methane	191.1	6.905
Ethane	305.5	5.313
Ethylene	282.4	5.298
Propylene	365.1	4.821
n-Butane	425.2	4.777

(c) Diffusion Coefficient and Heat of Reaction

Compound $\quad \mathrm{V}_{\mathrm{m}}, \mathrm{cc} / \mathrm{g}-\mathrm{mole} \quad \Delta \mathrm{H}_{\mathrm{C}}$, heat of combustion at $25^{\circ} \mathrm{C}$, Btu/lb

Methane	29.6	21,502
Ethane	51.8	20,416
Ethylene	44.4	20,276
Propylene	66.6	19,683
n-Butane	96.2	19,665

TABLE G2. SOME PROPERTIES OF n-BUTANE

Temperature, ${ }^{\circ} \mathrm{C}$	460	510	560
$\mathrm{C}_{\mathrm{p}}, \mathrm{BTU} / 1 \mathrm{~b}^{\mathrm{O}} \mathrm{K}$	1.449	1.509	1.564
$\mu \times 10^{5}, 1 \mathrm{~b} / \mathrm{ft} \mathrm{sec}$.	1.143	1.204	1.269
$\mathrm{k} \mathrm{x} 10^{5}, \mathrm{BTU} / \mathrm{sec} .\left(\mathrm{ft}^{2}\right)\left(\frac{\mathrm{O}_{\mathrm{K}}}{\mathrm{ft}}\right)$	1.744	1.910	2.082
$\mathrm{D} \times 10^{3}, \mathrm{ft}^{2} / \mathrm{sec}$.			
n-butane-methane	0.4013	0.4430	0.4862
n-butane-ethane	0.2977	0.3286	0.3607
n-butane-ethylene	0.3206	0.3539	0.3885
n-butane-propylene	0.2490	0.2748	0.3017

APPENDIX H: RATE CONSTANTS FOR ELEMENTARY REACTIONS I THROUGH XIX

The rate constants for elementary reactions I through XIX are given in equations 40 to 58 . The frequency factors A and activation energies E in the Arrhenius equation

$$
\begin{equation*}
\mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{E} / \mathrm{RT}} \tag{38}
\end{equation*}
$$

for these rate constants were obtained from experimental informations collected by Steacie (1) either directly or indirectly. The choice of these quantities is described here. The page numbers which are referred to in this appendix correspond to those in reference (1).

In a reversible reaction, the activation energies for the forward and reverse reactions, E_{1} and E_{2}, can be related to the heat of reaction at $0^{\circ} \mathrm{K}, \mathrm{Q}_{\mathrm{O}}$, by

$$
\begin{equation*}
E_{1}-E_{2}=Q_{o} \tag{H1}
\end{equation*}
$$

For chain-initiating steps such as reactions I and II, the heats of reaction at $0^{\circ} \mathrm{K}$ are equal to the bond dissociation energies, which are given on page 98. The activation energies for the reverse reactions in which two free radicals combine are zero. Therefore, the activation energies for reactions I and II are equal to the corresponding bond dissociation energies, i.e., 79 and 82 kcal respectively.

Reactions III and IV are described on pp. 473 and 561 respectively. The first one has an activation energy around 9.3 kcal and the second reaction 8.3 kcal . These values were adopted.

The heats of reaction for III, IV and V are $-10,-7$ and -3 kcal respectively. As the difference in E between reactions III and IV is 1 kcal , that between IV and V was surmised to be 1.3 kcal or E for reaction V to be 7.0 kcal .

The activation energy for reaction VI is given on p. 142 to be 39.5 kcal. Those for VII and VIII are found on p. 585 to be 46 and 26 kcal respectively. The activation energies for reactions X and $X I$ are found to be 23 kcal as shown on p .588. For the proposed mechanism, values of 24.5 and 26.0 kcal were assigned to these two reactions. A value of 29.0 kcal was estimated for reaction IX, which is more endothermic than reaction X and $X I$.

Reactions XII through XVII are radical-combination processes, the activation energies of which are negligible. For reactions XVIII and XIX, the activation energies are also very small, as discussed on pp. 442 and 557 respectively. They are both around 5 kcal . Other reactions between propylene and free radicals, such as

$$
\begin{align*}
& \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H} \cdot \tag{H2}\\
& \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{3}+\mathrm{C}_{3} \mathrm{H}_{5} . \tag{H3}\\
& \mathrm{CH}_{4}+\mathrm{C}_{3} \mathrm{H}_{5} .
\end{align*}
$$

are described on pp. 442 and 556. They have activation energies 2 to 3 kcal higher than those of reactions XVIII and XIX. As the propylene concentration was low, they were neglected.

Experimentally-determined frequency factors are even less dependable than activation energies. A for reaction VI has a
value of $3 \times 10^{14} \mathrm{sec}^{-1}$ as shown on p. 142. For the present purpose, a value of $10^{14} \mathrm{sec}^{-1}$ was used. This value was carried over to reactions VII and VIII. For reactions I, II, IX, X and XI which involve a larger moleclue or radical, A was estimated to be $10^{13} \mathrm{sec}^{-1}$, in agreement with the theoretical value shown on p. 489.

The rest of the reactions are bimolecular reactions with the exception of reactions XII and XIII. A for these reactions has a unit of $\mathrm{cc} /(\mathrm{gm}$ mole) (sec). For these reactions, a value of 10^{13} for A was used for reactions involving a hydrogen radical and 10^{11} for reactions without hydrogen radicals, in accord with the arguments given on p. 493. Reactions XII and XIII probably occur only at triple collisions as discussed on pp. 137 and 511. Their rates are therefore negligible.

PART TWO

FLOW IN ENTRANCE SECTION

OF PARALLEL PLATES

I. INTRODUCTION

The general equations of motion for a Newtonian fluid are the Navier-Stokes equations. Because of the non-linear nature of these equations, very few exact solutions have been derived; and these are generally for the cases in which the non-linear convective terms vanish. A number of approximate solutions have been obtained by neglecting various terms in the equations, such as those obtained by use of boundary layer theory, and the Stokes equation for very slow motion. Although these approximate solutions hold well for some cases, there are still a large number of cases for which no appropriate analytical solutions exist, for instance the flow near the leading edge of a flat plate. Furthermore, few numerical methods for attacking the Navier-Stokes equations are known. The main reason is that there exist no general criteria concerning the stability and convergence of numerical solutions to non-linear partial differential equations, and when conventional numerical methods are applied to the NavierStokes equations, the solutions often are unstable. In the present work, a numerical method has been devised for solving the Navier-Stokes equations for the two-dimensional steady-state flow of an incompressible viscous fluid in the inlet length* of two parallel plates under isothermal, laminar conditions.

[^5]Two cases have been studied. In the first case, potential flow conditions were assumed to exist at the inlet of the plates. In the second case, these conditions were taken to exist only far upstream from the inlet. Numerical solutions were obtained for both cases with a Reynolds number of 300 . Results were computed in terms of stream functions and vorticities. From these, the point velocities and pressure gradients were calculated.

Schlichting (1) obtained an approximate solution for the first case using boundary layer theory. He assumed that the velocity distribution at the inlet was uniform over its width. Owing to viscous effects, boundary layers formed on both walls, and their thickness increased in the downstream direction. Eventually, at a large distance downstream, the velocity profile became parabolic. At small distances downstream from the inlet, the boundary layers grew in the same fashion as those along single plates, with a flat velocity distribution in the center core. In order to satisfy the continuity equation, the velocity in the center had to increase at a rate such as to compensate for the decrease in the rate of flow in the boundary layers. Hence the boundary layers were formed under the influence of an accelerated external flow and their growth was calculated on this basis. This concept was first suggested by Prandtl (2). Farther down the stream, the assumption of a flat velocity distribution in the center core no longer held. Schlichting, however, found it possible to analyze the progressive
deviation in the upstream direction of the velocity profile from its asymptotic parabolic distribution. Having obtained both solutions in the form of series expansions, he then joined them together at an intermediate location where both analyses were applicable. In this way, the flow pattern for the whole inlet length was obtained. Schlichting found that the inlet length was approximately (0.04) (2a) (Re), where 2 a is the distance between the plates and $R e$ the Reynolds number based on 2 a . The acceleration of the flow near the axis in this region gives rise to a pressure drop in addition to that corresponding to Poiseulle's flow, which was evaluated to be $-0.601\left(1 / 2 \rho U_{x o}{ }^{2}\right)$ where $U_{x o}$ is the potential flow velocity. Both the influence of friction in the intake and pressure gradients along the width were neglected.* Another approximate solution for this problem based on the momentum equation as well as experimental results has also been reported $(3,4)$.

Work has also been done on the flow characteristics in the inlet length of a cylindrical tube. Again, potential flow conditions at the inlet were always assumed. Boussinesq (5) was the first to conduct a theoretical investigation of this subject. He linearized the Navier-Stokes equation in the direction of bulk-flow and applied it to the whole inlet

[^6]length. His calculated velocity profiles were in agreement with the experiments of Nikuradse (6) only at some distance away from the entrance. Based on the momentum equation of the boundary layer, Schiller (7) obtained an approximate solution which agreed with Nikuradse's results for the first one third of the inlet length. It is of interest to note here that Schlichting's approach, as outlined above, was in essence a combination of Boussinesq's and Schiller's techniques. Application of Schlichting's method to flow in the inlet length of a cylindrical tube has been carried out by Atkinson and Goldstein (8).

Still another study of the case of a cylindrical tube is that of Langhaar (9), who linearized the Navier-Stokes equation in the direction of bulk flow, x, by assuming $D u_{x} / D t=\nu \beta^{2} u_{x}$; where u_{x} is the x-direction velocity and β is a function of x alone. $D / D t$ is the substantial derivative with respect to time. In addition, his basic assumptions, which were common to the theories of Boussinesq, Schiller and AtkinsonGoldstein, were:
(1) at $\mathrm{x}=\mathrm{o}, \mathrm{u}_{\mathrm{x}}=$ const. $=\mathrm{U}_{\mathrm{xo}}$,
(2) the pressure gradient - $\partial P / \partial x$ is a function of x alone, (3) the term $v \partial^{2} u_{x} / \partial x^{2}$ may be neglected.

His resulting velocity profiles agreed well with Nikuradse's experiments.

In all the analyses mentioned above, certain assumptions were made which are not valid in a region close to the leading edge
of the solid boundary, i.e., $\partial^{2} u_{x} / \partial x^{2} \ll \partial^{2} u_{x} / \partial y^{2}$. Carrier and Lin (10) have investigated the nature of the boundary layer near the leading edge of a flat plate. Briefly, their efforts were aimed at modifying Blasius' solution of the boundary layer equation to include the effect of the leading edge. Carrier and Lin obtained solutions applicable to the region of very slow flow near the leading edge. They pointed out, however, that there was another region between those of very slow flow and potential flow in which it was doubtful that any reasonably simple analytic solution could be found. They suggested that some field solution might be possible for that region. In order to obtain a truer picture of what happens in the inlet length of two parallel plates, expecially near the leading edges, numerical solution seems to be the only feasible approach.

Numerical analysis dealing with partial differential equations has progressed rapidly recently. Most of the work in this field, however, considers only linear partial differential equations. As yet, there exist no general criteria concerning the stability and convergence of solutions to nonlinear partial differential equations by numerical methods. Of the comparatively small number of papers on this subject, the one by de G. Allen (11) is of particular interest. In that paper, he described a special technique for solving the NavierStokes equations by the relaxation method. It was pointed out that the special treatment was necessary because of the "latent exponentials". Since exponentials cannot be closely
represented by polynomials except within a very narrow range, the customary finite difference formulas for derivatives would not work satisfactorily. This difficulty is likely to arise in most problems concerning motions of viscous fluid and to be serious.

Another possible approach to the solution of the Navier-Stokes equations is by means of analog computers. Janssen (12) used this method to investigate flow past a finite flat plate at Reynolds numbers of 0.1 to 10.0 , with the exact nonlinear formulation. The solution gave the stream function and the vorticity in the flow field. From these, the pressure distribution along the plate, the local coefficient of friction and the total drag coefficient were calculated numerically. The difference between the computed and experimental drag coefficient for the most part was attributed to truncation error.

Numerical solution of partial differential equations involves the use of finite difference methods. With the finite difference method, a boundary value problem $F(u)=j$ for the continuous operator F is transformed into a matrix equation

$$
\begin{equation*}
A U=B \tag{1}
\end{equation*}
$$

Equation 1 can be solved either by a direct or iterative procedure. For non-linear partial differential equations, an iterative method is always used. The number of iterations required for a solution is roughly proportional to the square of the dimension of matrix A. When A is large, acceleration of the rate of convergence is very desirable.

More information on the finite difference method for treating boundary-value problems and methods of accelerating the rate of convergence for iterative procedure is provided in Appendix A.

Review of literature revealed that very few exact solutions of the nonlinear Navier-Stokes equations existed. Existing solutions were obtained either by linearizing these equations or neglecting some of the nonlinear terms in these equations. The purpose of this work was to solve by a numerical method the Navier-Stokes equations for a simple problem without making any assumptions. The problem concerned the flow of an incompressible fluid in the inlet length of two parallel plates under isothermal, steady-state conditions. Due to singularity at the leading edges of the plates, the boundary layer equation does not apply to regions near these singular points.

II. FORMULATION OF THE PROBLEM

For an incompressible, viscous fluid flowing isothermally under steady-state conditions, the problem of flow in the inlet length of parallel plates can be formulated as follows: Let there be an infinite number of flat plates of semiinfinite length, all lying parallel to the x-axis between $x=0$ and $x=+\infty$ 。 The free-stream* velocity $U_{x o}$ is independent of y and parallel to the x-axis. If the flow is independent of z, the two-dimensional equations of continuity and motion are respectively:

$$
\begin{gather*}
\frac{\partial u_{x}}{\partial x^{x}}+\frac{\partial u_{y}}{\partial y}=0 \tag{2}\\
u_{x} \frac{\partial u_{x}}{\partial x}+u_{y} \frac{\partial u_{x}}{\partial y}=-\frac{\partial p}{\partial x}+\frac{4}{\operatorname{Re}} \nabla^{2} u_{x} \tag{3}\\
u_{x} \frac{\partial u_{y}}{\partial x}+u_{y} \frac{\partial u_{y}}{\partial y}=-\frac{\partial p}{\partial y}+\frac{4}{\operatorname{Re}} \nabla^{2} u_{y} \tag{4}
\end{gather*}
$$

Equations 2 to 4 are in dimensionless forms. Re is the Reynolds number based on the hydraulic radius:

$$
\begin{equation*}
\operatorname{Re}=\frac{4 y_{0} \mathrm{U}_{\mathrm{xo}}}{\nu} \tag{5}
\end{equation*}
$$

The definition of symbols and the relationship between a variable and its dimensionless form are listed in the Nomenclature section. Throughout this thesis, dimensionless expressions are used unless otherwise specified.

[^7]Let the distance between any two adjacent plates be 2 and consider the two plates at $y=+1$ and $y=-1$. Because of symmetry about the x-axis, it is necessary to be concerned only with the region bounded by $\mathrm{y}=0$ and $\mathrm{y}=+1$. For convenience, this is further divided into two regions: The downstream region where $x \geq 0$ and the upstream region where $x \leq 0$. They have, of course, the common boundary line $x=0$ at the inlet of the parallel plates. Case I assumes that the velocity at the inlet is uniform in the y-direction. Thus it is necessary to study the flow pattern in the downstream region only. Case II, on the other hand, assumes that freestream conditions exists only far upstream from the inlet so that the flow conditions in both regions have to be determined. For both cases, the boundary conditions for the downstream region are:

$$
\begin{array}{lll}
\frac{\partial u_{x}}{\partial y}=0 & , u_{y}=0 \text { for } y=0 & , 0 \leq x \leq+\infty \\
u_{x}=0 & , u_{y}=0 & y=1
\end{array}
$$

The boundary conditions for Case I at the inlet of the plates are:

$$
\begin{equation*}
u_{x}=1 \quad, u_{y}=0 \text { for } x=0 \quad, 0 \leq y<1 \tag{7}
\end{equation*}
$$

For Case II, the boundary conditions for the upstream region are:

$$
\begin{array}{ll}
\frac{\partial u_{x}}{\partial y}=0, u_{y}=0 & \text { for } \\
\frac{y}{}=0 & , 0 \geq x \geq-\infty \\
\frac{\partial u_{x}}{\partial y}=0, u_{y}=0 & y=1,0 \geq x \geq-\infty \tag{8c}\\
u_{x}=1, u_{y}=0 & x=-\infty, 0 \leq y \leq 1
\end{array}
$$

The stream function ψ is now introduced. It is defined by

$$
\begin{align*}
& u_{x}=\frac{\partial \psi}{\partial y} \\
& u_{y}=-\frac{\partial \psi}{\partial x} \tag{9}
\end{align*}
$$

The continuity equation is thus automatically satisfied. Furthermore, elimination of the pressure terms from equations 3 and 4 gives a single equation with one unknown:

$$
\begin{equation*}
\frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\nabla^{2} \psi\right)-\frac{\partial \psi}{\partial x} \frac{\partial}{\partial y}\left(\nabla^{2} \psi\right)=\frac{4}{R e} \nabla^{4} \psi \tag{10}
\end{equation*}
$$

Equation 10 can also be written as the vorticity transport equation:

$$
\begin{equation*}
\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x}-\frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y}=\frac{4}{R e} \nabla^{2} \omega \tag{11}
\end{equation*}
$$

with the vorticity ω defined by

$$
\begin{equation*}
\omega=\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}=-\nabla^{2} \psi \tag{12}
\end{equation*}
$$

In order to avoid difficulties involved in treating numerically a problem with semi-infinite boundaries, a transformation is used to change the independent variable x to η according to the formula

$$
\begin{equation*}
\eta=\eta(x)=1-\frac{1}{1+C x} \tag{13}
\end{equation*}
$$

where C is a constant with a positive sign for the downstream region and a negative sign for the upstream region. This transformation also results in an expansion of scale (in terms of x) near the entrance which is desirable for a diffusional-type problem such as this. In terms of η and y, therefore, both the upstream and downstream regions are transformed into squares bounded by $y=0, \mathrm{y}=1, \eta=0$ and $\eta=1$. As a result, equations 11 and 12 now assume the forms:

$$
\begin{gather*}
\frac{\partial \eta}{\partial x}\left(\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial \eta}-\frac{\partial \psi}{\partial \eta} \frac{\partial \omega}{\partial y}\right)=\frac{4}{R e}\left[\frac{\partial^{2} \eta}{\partial x^{2}} \frac{\partial \omega}{\partial \eta}+\left(\frac{\partial \eta}{\partial x}\right)^{2} \frac{\partial^{2} \omega}{\partial \eta^{2}}+\frac{\partial^{2} \omega}{\partial y^{2}}\right] \tag{14}\\
-\omega=\frac{\partial^{2} \eta}{\partial x^{2}} \frac{\partial \psi}{\partial \eta}+\left(\frac{\partial \eta}{\partial x}\right)^{2} \frac{\partial^{2} \psi}{\partial \eta^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}} \tag{15}
\end{gather*}
$$

In terms of ψ and ω, equation 6 for the downstream region can be rewritten as follows:

$$
\begin{array}{llll}
\psi=0 & , \omega=0 & \text { for } & y=0,0 \leq \eta \leq 1 \\
\psi=1 & , \frac{\partial \psi}{\partial y}=0 & y=1,0 \leq \eta \leq 1 \\
\psi=\frac{3}{2} y-\frac{1}{2} y^{3}, \omega=3 y & \eta=1,0 \leq y \leq 1 \tag{16c}
\end{array}
$$

For Case I at the inlet of the plates, equation 7 assumes the form

$$
\begin{equation*}
\psi=\mathrm{y} \quad, \omega=0 \quad \text { for } \quad \eta=0,0 \leq \mathrm{y} \leq 1 \tag{17}
\end{equation*}
$$

Similarly, for Case II for the upstream region, equation 8 now becomes

$$
\begin{array}{llll}
\psi=0 & , \omega=0 & \text { for } & y=0,0 \leq \eta \leq 1 \\
\psi=1 & , \omega=0 & & y=1,0 \leq \eta \leq 1 \\
\psi=y & , \omega=0 & & \eta=1,0 \leq y \leq 1 \tag{18c}
\end{array}
$$

Equations 14 and 15, with boundary conditions 16a through 18c, describe the entire problem.

III. METHOD OF SOLUTION

With the differential equations and the boundary conditions completely defined in the previous section, the next step was to devise a method for solving the differential equations numerically. Preliminary investigation indicated that an iterative procedure would be in order. The procedure required the transformation of differential equations $11,12,14$, and 15 into difference equations, which are listed below:

$$
\begin{align*}
& \mathrm{C}_{\mathrm{E}}{ }^{\prime}{ }_{\mathrm{E}} \quad=\mathrm{C}_{\mathrm{A}}{ }^{\prime}{ }_{\mathrm{A}}+\mathrm{C}_{\mathrm{B}}^{\prime} \omega_{\mathrm{B}}+\mathrm{C}_{\mathrm{C}^{\prime} \omega_{\mathrm{C}}}+\mathrm{C}_{\mathrm{D}}{ }^{\prime} \omega_{\mathrm{D}} \tag{19}\\
& 2\left[1+\left(\frac{\Delta x}{b}\right)^{2}\right] \Psi_{E} \quad=\Delta x^{2} \omega_{E}+\left(\Psi_{B}+\Psi_{D}\right)+\left(\frac{\Delta x}{b}\right)^{2}\left(\Psi_{A}+\Psi_{C}\right) \tag{20}\\
& \mathrm{C}_{\mathrm{E}} \omega_{\mathrm{E}} \quad=\mathrm{C}_{\mathrm{A}}^{\omega_{A}}+\mathrm{C}_{\mathrm{B}} \omega_{B}+\mathrm{C}_{\mathrm{C}}{ }_{C}+\mathrm{C}_{\mathrm{D}} \omega_{D} \tag{21}\\
& 2\left[C^{2}\left(1-\eta_{E}\right)^{4}\left(\frac{a}{b}\right)^{2}\right] \Psi_{E}=a^{2} \omega_{E}+\left(\frac{a}{b}\right)^{2}\left(\Psi_{B}+\Psi_{D}\right) \\
& +C^{2}\left(1-\eta_{E}\right)^{4}\left(\Psi_{A}+\Psi_{C}\right)-a^{2}\left(1-\eta_{E}\right)^{3}\left(\Psi_{A}-\Psi_{C}\right) \tag{22}
\end{align*}
$$

The complete derivations are shown in Appendix B. Equations 19 to 22 are the same as equations B23, B11, B19 and B10 in Appendix B respectively. The coefficients $C_{i}^{\prime} s$ are defined by equation B20 for equation 21 and B24 for equation 19. Equations 19 and 20 are applicable to a rectangular-meshed $x-y$ net, while equations 21 and 22 apply to a $\eta-y$ net. The terms a and b are the mesh length of the $\eta-y$ net while Δx and b are those of the $x-y$ net. Also, a function with a subscript such as Ψ_{E} represents the value of that function at
point E. The relative positions of points in the net are shown in Figure 1.

The boundary conditions for the finite difference equations can be derived from equations 16,17 and 18 . For the downstream region for both cases, they are, referring to Figure 1,
$\Psi_{\mathrm{E}}=0 \quad, \omega_{\mathrm{E}}=0 \quad$ for $\mathrm{y}_{\mathrm{E}}=0,0 \leq \eta_{\mathrm{E}} \leq 1$
$\Psi_{\mathrm{E}}=1 \quad, \omega_{\mathrm{E}}=2\left(1-\Psi_{\mathrm{D}}\right) / \mathrm{b}^{2} \quad \mathrm{y}_{\mathrm{E}}=1,0 \leq \eta_{\mathrm{E}} \leq 1$
$\Psi_{E}=\frac{3}{2} y_{E}-\frac{1}{2} y_{E}^{3}, \omega_{E}=3 y_{E} \quad \eta_{E}=1,0 \leq y_{E} \leq 1$
The boundary conditions for Case I at the inlet of the plates are:

$$
\begin{equation*}
\Psi_{\mathrm{E}}=\mathrm{y}_{\mathrm{E}}, \omega_{\mathrm{E}}=0 \text { for } \eta_{\mathrm{E}}=0,0 \leq \mathrm{y}_{\mathrm{E}}<1 \tag{24}
\end{equation*}
$$

For Case II, the boundary conditions for the upstream region are:

$$
\begin{array}{lll}
\Psi_{E}=0, \omega_{E}=0 & \text { for } & y_{E}=0,0 \leq \eta_{E} \leq 1 \\
\Psi_{E}=1, \omega_{E}=0 & & y_{E}=1,0 \leq \eta_{E} \leq 1 \\
\Psi_{E}=y_{E}, \omega_{E}=0 & & \eta_{E}=1,0 \leq y_{E} \leq 1 \tag{25c}
\end{array}
$$

Because of differences in boundary conditions, the procedure for solving Case II was more complicated than that for Case I. The two procedures, however, followed the same general scheme. For this reason, only Case II is described in detail here.

In solving Case II, a square-meshed $\eta-y$ net was chosen for both the upstream and the downstream regions. Figure 2 shows a typical $\eta-y$ net together with its corresponding $x-y$ net. The square on the right of $\eta=0$ represents the downstream region and that on the left the upstream region. Values of Ψ and ω were assigned to or calculated for the boundary points according to the boundary conditions. Initial estimates of these functions were made for the interior points. Based on equations 19 to 22 , new values of Ψ and ω were computed and used to replace the old values of each interior point in a systematic way. This procedure was repeated until the values of Ψ and ω converged to the desired degree of accuracy, and thus to the solution. From the solution, point velocities and pressure gradients were calculated. The actual computations were performed on an IBM 7090 digital computer.

In carrying out the iterative calculations, the values of Ψ were first calculated along the $\eta=0$ line from top down. Equation 20 was used. As shown in Figure 2, the $\eta-y$ net is symmetrical about the y-axis when transformed into the $x-y$ net. It was thus possible to treat the lines $\eta=0.2$, $\eta=0$ and $\eta=0.2$, say, as part of a rectangular-meshed $x-y$ net and use equation 20 to calculate Ψ at $\eta=0$.

The next step in the iterative process was to compute values of Ψ in the downstream region using equation 22. This was done by temporarily holding the points on the $\eta=0$ line as boundary points. The computations were begun from the upper
corner of the column next to the $\eta=0$ line, went down to the end of the column and moved to the next column in the direction of increasing η. In the same manner, the values of Ψ were then obtained for the upstream region. Each time a new value of Ψ was calculated, it was substituted for the old value by the process of single-step iteration.

After a new set of $\Psi ' s$ had been obtained for all the interior points, the same sequence was applied to compute new values of ω based on equation 19 or 21 . This then completed one cycle of iteration. At the end of each cycle, convergence was checked to determine whether re-iteration was necessary.

The computation of point velocities and pressure gradients from solutions in terms of Ψ and ω was direct and straightforward. Equations B34, B35, B38, B40, B43, B44 and B45 in Appendix B were derived for this purpose.

In order to accelerate convergence, an overrelaxation method which has been described in Appendix A was employed. Let $\Psi_{m}^{(P)}$ be the value of Ψ at point (m, n) after P-th iteration and $\xi_{m, n}^{(\mathbf{P}+1)}$ be the value of Ψ calculated for point (m, n) from equation 22 during the $(P+1)-t h$ iteration. The new value for Ψ at (m, n) would then be:

$$
\begin{equation*}
\Psi_{\mathrm{m}, \mathrm{n}}^{(\mathbf{P}+1)}=\Psi_{\mathrm{m}, \mathrm{n}}^{(\mathbf{P})}+\mathrm{M}_{\Psi}^{(\mathbf{P})}\left(\xi_{\mathrm{m}, \mathrm{n}}^{(\mathbf{P}+1)}-\Psi_{\mathrm{m}, \mathrm{n}}^{(\mathbf{P})}\right) \tag{26}
\end{equation*}
$$

$M_{\Psi}^{(P)}$, which is called the overrelaxation factor for Ψ, was chosen to be a constant for each iteration, but could vary
from iteration to iteration. Similarly, for ω, an overrelaxation factor $M_{\omega}^{(P)}$ was also employed. $M_{\Psi}^{(P)}$ and $M_{\omega}^{(P)}$ were not necessarily equal for the same iteration, and they had values ranged between 0.5 and 1.5 . The choice of values for the overrelaxation factors was entirely empirical, and to some extent, arbitrary.

The actual computational work was performed on digital computers. Case I was solved on a Datatron 220 computer at the Computer Center of Caltech. Case II was solved on an IBM 7090 at the Jet Propulsion Laboratory. The change from a Datatron to an IBM computer for Case II was entirely due to speed considerations, the latter being approximately 100 times faster. A Fortran program for solving Case II is listed in Appendix C.
IV. RESULTS

During the early stages of this study, various numerical methods were explored for obtaining a stable and rapid solution of the problem described in the section on Formulation of the Problem. A detailed description of this phase of the work can be found in Appendix D. In brief, a marching solution was first tried but soon proved to be instable. An iterative method for solving either equation 10 or equations 11 and 12 in the Cartesian coordinates, on the other hand, was found to be stable only for Reynolds numbers less than fifty. For Reynolds numbers above 100, the solutions diverged very rapidly. Substitution of η for x according to equation 13 allowed for use of a coarser net, and consequently, reduced the time required to reach a solution. This substitution, however, did nothing in improving the stability of the solution for any given Reynolds number.

A new approach was then devised. Based on a technique proposed by de G. Allen (11), difference equations 19 to 22 were derived. The method of solution described in the previous section was adapted. For Case I, the downstream region was divided into a $10 \times 10 \eta-y$ net. Initially, the values of Ψ were taken to vary linearly with η for any given y. Iterative computations were made with Reynolds numbers of 60, 100, 300 and 1000 on a Datatron 205 computer at Caltech. The value of the constant C in equation 13 was so chosen that
the initial values of Ψ did not change markedly during iteration. The value of C, thus, was varied with the Reynolds number. For a Reynolds number of 300, the value of C was chosen to be 1.2. For all four cases, convergence was observed. From 40 to 65 stationary iterations were required to obtain a degree of convergence of 0.001% for Ψ and 0.1% for ω; the number of iterations increased with increasing Reynolds number. The degree of convergence is defined in this work as $\max \frac{\xi_{m, n}^{(P+1)}-\Psi_{m, n}^{(P)}}{\Psi_{m, n}^{(P)}}$. Each iteration took about 120 seconds of machine time.

At this time, a Datatron 220 computer was acquired by Caltech's Computer Center to replace the 205. Further computational work, therefore, was transferred to the new computer. Sixty-seven additional iterations were carried out for the case of $R e=300$ before the Ψ^{\prime} 's converged to all the eight significant digits that are available on the 220. ω, being the second derivative of Ψ, was converged only to the sixth place or better. Because of the higher speed of the 220 , the time required for each iteration for the $10 x 10$ grid was reduced to 16 seconds. The results in terms of Ψ and ω are given in Table I. The corresponding velocities and pressure gradients are tabulated in Table II.

By means of 4 -point Lagragian interpolation, the $10 x 10$ grids were expanded to 20×20 grids for both Ψ and ω. They were
used as the starting values for a new series of iterations with the 20×20 grids. After 600 stationary iterations or approximately ten hours on the computer, the solution converged to a degree of 2×10^{-8} for Ψ. The final values of Ψ and ω are listed in Table III. Point velocities and pressure gradients were also calculated and given in Table IV. Figures 3 and 4 show the streamline pattern and constant vorticity lines for Case I. The velocity distributions are plotted for various values of η in Figure 5. In Figures 6 to $8, u_{y},-\frac{\partial P}{\partial x}$ and $-\frac{\partial P}{\partial y}$ are plotted against η as functions of y respectively.

At this point, the possibility of using an overrelaxation method to accelerate convergence was explored. A trial and error procedure was adapted to determine suitable values of the overrelaxation factors. Starting with the result of the $10 x 10$ grid from Datatron 205 for a Reynolds number of 300 , it was found that a number of stationary iterations at the beginning would help to orient the values of Ψ and ω. After that, the optimum values for the overrelaxation factors lay somewhere around 1.5 . These values should then be decreased slowly as the iterative process progressed and usually the best final values were less than unity. Several runs were made during each of which the overrelaxation factors were held constant. In all these cases, either oscillation or divergence was observed. Although the manner in which these factors should be changed was not fully understood, it was found desirable to decrease M_{ω} faster than M_{Ψ}. By
manipulating the overrelaxation factors, it was possible to reach a converged solution in fourteen iterations as compared with sixty-seven iterations in the case of stationary iterations. Overrelaxation, therefore, seemed to be useful in accelerating the convergence for this problem.

Case I assumes that potential flow conditions exist at the inlet of the parallel plates. In most actual physical situations, however, this assumption can hardly be valid since some effect of the solid walls on the upstream flow would be expected. In order to explore the effect of the leading edge on the upstream flow, Case II was formulated. A Fortran program for Case II was written for the IBM 7090 computer located at Jet Propulsion Laboratory, Pasadena. This program consists of three parts. Part 1 does the iterative calculations of ψ and ω, checks and prints out the degrees of convergence for the upstream region, the downstream region, and points on the $\eta=0$ line after each iteration, and decides whether to re-iterate or exit to Part 2. Part 2 of the program calculates and prints out point velocities and pressure gradients from the latest values of Ψ and ω. Part 3 is actually an independent subprogram. Its function is to expand the number of nodes of a network by means of 4-point Lagrangian interpolation. The program is listed in Appendix C.

In solving Case II with the Fortran program, a square-meshed net with mesh length of 0.1 was used for both the upstream
and downstream region. The solution for Case I was used for the initial estimate of the downstream region. In the upstream region, potential flow conditions were first assumed. These correspond to $\Psi=y$ and $\omega=0$ at every point. Within 150 iterations, a degree of convergence of 2×10^{-8} was arrived for both Ψ and ω. Their values are listed in Table V. The corresponding velocities and pressure gradients are shown in Table VI. The total time required, including the compiling of the Fortran program, is 70 seconds.

The mesh size of the net was then halved to give a 40×20 net. Interpolation of the solution with the $20 x 10$ net again gave the initial estimate. To obtain a degree of convergence of 2×10^{-8} this time, a total of 400 iterations was necessary. Of these, the first 200 were stationary iterations. Overrelaxation factors of 1.3 for Ψ and 1.4 for ω were then used. these values were decreased by 0.1 and 0.2 respectively each 60 iterations, thus ending with $M_{\Psi}=1.0$ and $M_{\omega}=0.8$. Table VII lists the resultant values of ψ and ω for Case II with a 40×20 grid. Streamlines and lines of constant vorticity were constructed from these values and are shown in Figures 9 and 10. In Figures 11 to 18, velocities and pressure gradients are plotted against η for various y^{\prime} s or against y as functions of η. In Tables V to VIII, as well as Figures 9 to 18, negative signs have been added to all the values of η in the upstream region in order to distinguish them from those in the downstream region.

V. DISCUSSION

The simplification of the Navier-Stokes equations to the boundary layer equation by Prandtl proved to be one of the most important contributions in the study of fluid mechanics. It is also well-known, however, that the boundary layer equation, being restricted by certain assumptions, does not apply very well to cases such as flow near the leading edge of a flat plate, where the term $\partial^{2} u_{x} / \partial x^{2}$ is not negligible with respect to $\frac{\partial^{2} u_{x}}{\partial y^{2}}$. This is well illustrated in the problem of flow in the inlet length of two parallel plates. Schlichting solved the problem using the boundary layer equation. In this work, the same problem was approached by solving the Navier-Stokes equations numerically. A comparison of the results in terms of u_{x} is furnished in Table IX. Near the leading edge $(x \ll 1)$, the velocity, u_{x}, for Case I varies more rapidly near the wall than that from Schlichting's solution. This is due to the fact that in this region, $\partial^{2} u_{x} / \partial x^{2}$ is significant and, therefore, cannot be neglected. When the upstream disturbance is also taken into consideration, (Case II), the velocity gradient, $\partial u_{x} / \partial y$, then becomes smaller. Plots of u_{x} vs. η at $y=0.95$ for all three cases are given in Figure 19. At a distance from the inlet say, ($x \geq 3.0$), the resulting velocity profiles for all three cases agree very well. It is very interesting to note here that different boundary conditions upstream have very little effect
on the flow pattern at a distance from the inlet.

In the calculation of pressure drops, Schlichting took into consideration, in addition to the pressure drop due to Poiseuille's flow, a pressure drop resulted from the acceleration of flow near the center. This additional pressure drop was found to be $-0.601\left(\frac{1}{2} \rho U_{x o}^{2}\right)$ over the inlet length. More recently, Collins and Schowalter (17) improved Schlichting's solution by retaining more terms in the series expansions for both downstream and upstream solutions and found the additional pressure drop to be $-0.676\left(\frac{1}{2} \rho U_{x o}^{2}\right)$. This last value agrees with the numerical solution of the boundary layer equation for the same problem (18). In all these instances, however, the pressure variations across the width were neglected. Once again, this assumption is rather poor near the leading edges of the plates as witnessed by the large pressure gradients in the y-direction in this region (Figures 8 and 17). For comparison purpose, the pressure differences between the free stream pressure and that at any point $\eta, \Delta P_{\eta}$, are given in Table X for the present work and Schlichting's case. The values ΔP_{η}, for Cases I and II are obtained by evaluating the integral $\int \frac{\partial P}{\partial \eta} d_{\eta}$ for constant y^{\prime} s using Simpson's rule. They are in general higher than the corresponding values of Schlichting's. Figure 20 plots $\left(\Delta \mathbf{P}_{\eta}-\Delta \mathbf{P}_{\mathbf{S} \eta}\right)$ vs. η for both Case I and Schlichting's result, where $\Delta \mathrm{P}_{\mathrm{s} \eta}$ is the pressure drop due to Poiseuille's flow only.

The streamlines and lines of constant vorticities have been constructed in Figures 3 and 4 for Case I, and in Figures 9 and 10 for Case II. In Case II, deviations from free-stream conditions in the upstream direction are significant up to approximately $x=-0.5$. Because of this, the change in the flow pattern for Case II is more gradual as compared with Case I, although they are rather similar in general.

Figures 5 and 11 show the progressive transformation from the uniform velocity profile to the asymptotic parabolic distribution as the fluid moves downstream. It should be noted that in Figure 5 (Case I), the central portions of the velocity profiles for small η^{\prime} s are concave upward. The same phenomenon, although less profound, can be observed in Figure 11. The difference between the maximum velocity and that at the center at the same cross section may be as much as 0.04 as compared with a free-stream velocity of 1.0 . This may be attributed to the finite time required for transporting the fluid from near the wall toward the center as the fluid enters the plates. This agrees with the fact that near the entrance, u_{y} is very large near the wall and then drops slowly towards the center (Figure 6). In Case II, however, part of the transport from near the wall to center is accomplished in the upstream region (Figure 14) and the concavity, therefore, is less profound. Due to the concavity in the center, the velocity profiles thus have points of inflexion. By Rayleigh's theorem (13), this condition implies instability.

It would be interesting to find out whether this phenomenon would become self-exciting with increase in Reynolds number and hence cause the flow to become turbulent. This concave velocity profile was not obtained by Schlichting due to his assumption of a flat velocity distribution in the center core.

The pressure gradient in the direction of flow is zero in the free-stream region and has a value of 0.04 for a Reynolds number of 300 when the flow approaches the asymptotic parabolic velocity distribution. Near the leading edges of the plates, very large pressure gradients exist (Figures 7, 15, and 16). Figure 15 also shows the presence of positive pressure gradients in the direction of flow before the entrance at some distance away from the center. In the upstream region, the viscous effect is relatively small. Positive pressure gradient, therefore, would be expected where deceleration occurs. As soon as the fluid enters the region between the plates, the viscous forces suddenly become large and the pressure gradient changes sign. Such a region of positive pressure gradient can also be found in Case I, except that it is now located near the walls inside the plates. Since part of the effect of deceleration is now counterbalanced by the viscous effect, the magnitude of the positive pressure gradient is much less in Case I than in Case II.

Two kinds of errors arise in solving a differential equation by finite difference methods: the discretization or truncation error and the round-off error. The latter is
insignificant in the present work as eight digits for each number were conserved throughout the computations. The discretization error, which results from the replacement of derivatives with finite-difference formulas, depends on the size of the grid and the form of the finite-difference formulas used as well as the continuity and smoothness of the dependent variables in the region of interest. If a proper finite-difference expression has been chosen for the differential equation, the discretization error should tend to zero with the grid size. One empirical method to determine the discretization error semi-quantitatively would be to compare the solution of the finite-difference equation for several grid sizes. Table XI compares the values of Ψ and ω at several positions for two different grid sizes. It can be seen that, except for a small region near the leading edge of the plate, the values of Ψ agree fairly well. The values of $\omega_{\text {, }}$ being the second derivative of Ψ, differ from each other to a much greater extent, especially when they are small. Fortunately, when the value of ω is small, it has little effect on the values of Ψ, and consequently the velocities and pressure gradients.

The reason that the values of Ψ vary with the grid size in the region near the leading edge is that there exists a singular point $(x=0, y=1)$. The behaviour of the functions Ψ and ω in this region is, therefore, less smooth as compared with regions farther away from this point. If it is desired
to obtain comparable discretization errors throughout the domain, it would be necessary to use smaller grid sizes in this particular region. Although various methods for changing grid sizes in a network are available, none has been tried for the present work.

That the discretization error is larger near the leading edge can also be indirectly verified. For example, the integral $\Delta \mathrm{P}_{\eta}=\int_{\eta_{1}}^{\eta_{2}} \frac{\partial \mathrm{P}}{\partial \eta} \mathrm{d} \eta$ where η_{1} is in the potential flow region and η_{2} far downstream should have the same value for all y^{\prime} s. The values of this integral for several values of y are presented in Table X. For both Cases I and II, $\Delta \mathrm{P}$ at $\mathrm{y}=0.9$ is lower than those at smaller $y^{\prime} s$, and the difference is more than can be attributed to round-off errors.

The transformation of the x into η proved to be reasonably successful. With the introduction of η, the original semiinfinite domain became a square. This not only allowed the use of fewer points without losing accuracy but also made it possible to treat the boundary conditions at $x=\infty$ nicely. A number of possible transformations, such as arc tan $c x$ and $\mathrm{e}^{-\mathrm{ax}}$, which have similar properties have been studied. Of all these, the present one offered both simplicity and more desirable correspondence to x. For small x, η approximates $C x$. For large x, η approaches $1-\frac{1}{C x}$. The value of C can consequently be chosen to force the values of Ψ to change as
smoothly as possible with respect to η. This has been accomplished to a large extent as can be seen in Figures 3 and 9 .

The discretization of equation 11 by the method of de G. Allen introduced exponential terms into the finite-difference equation 30. It has been shown in Appendix B that when the mesh lengths in terms of a and b approach zero, equation 30 can be reduced to a conventional finite-difference equation with forward-difference formulas for the first derivatives and the central-difference formulas for the second derivatives. When the mesh size increases, however, an exponential cannot be closely represented by a polynomial. For this reason, finite-difference equations using conventional formulas for the derivatives were found to result in instability in the present case. On the other hand, use of the conventional finite-difference expressions has the advantage of simplicity and universal applicability, and the possibility should be further explored.

The use of the overrelaxation method in accelerating convergence of the solution of non-linear finite-difference equations was found to be fruitful. It is true that the method used in the present investigation is entirely empirical and most likely not very efficient. It nevertheless did improve the convergence rate by a factor of 2 to 3 . The finding that the overrelaxation factors had to be decreased as the iteration proceeded is especially interesting. It is
known that the optimum value for the overrelaxation factor for non-linear boundary value problems would change. The fact that it has to be changed, at least in some cases, in order to bring convergence, may shed light on the stability aspect of the problem.

VI. CONCLUSIONS

The two-dimensional flow pattern of an incompressible fluid at the entrance section of two parallel plates has been obtained for two cases, both for a Reynolds number of 300 . Using the Navier-Stokes equations, the solutions are presented in terms of the stream function ψ and the vorticity ω. From these, local velocities and pressure gradients have been calculated. In Case I, potential-flow conditions prevail at the entrance. Case II assumes that these conditions exist only far upstream from the entrance. In the latter case, deviation of the upstream flow pattern from free-stream conditions was found to be significant only within a short distance from the plates, i.e., up to $x=-0.5$. For both cases, large velocity and pressure gradients normal to the wall as well as in the direction of flow are observed in the region near the leading edges of the plates, although they are comparatively smaller in Case II. Also, the velocity profiles for small x were found to be slightly concave in the central portion. This is attributed to the finite time required for transporting the fluid towards the center.

Case I has been solved by Schlichting using the boundary layer equation. A comparison of the results shows that the boundary layer equation does not describe the behavior of the system well near the leading edges of the plates. At larger distances from the inlet, the velocity profiles obtained by Schlichting agree very well with those from Case

I, as well as Case II.

Use of finite-difference equations based on the conventional difference formulas for derivatives resulted in the instability of the solution. The finite-difference equations used for the computations of the vorticity were derived based on a technique suggested by de G 。 Allen to overcome this difficulty. The transformation of x into η helped to reduce the number of nodes and yet retained the accuracy needed. It also made it easier to treat the boundary conditions at infinity.

The use of the overrelaxation method helped to improve the convergence rate of the iterative computations by a factor of 2 to 3 . It has been found that the values of overrelaxation factors used had to be reduced gradually during the process to ensure convergence.
VII. RECOMMENDATIONS FOR FUTURE WORK

1) Using the Fortran program listed in Appendix C, work should be continued to determine the flow patterns at the inlet length of two parallel plates over a range of Reynolds numbers.
2) The theory of hydrodynamic stability concerning plane Poiseuille flow in two dimensions has been studied by many authors, often with contradictory conclusions. Possibilities of numerical approach similar to the one described in this thesis should be explored.
3) As described in Appendix C, numerical solution of the present problem using conventional finite-difference expressions converged only for low Reynolds numbers. This information may help in theoretical study of the stability of numerical solutions of the Navier-Stokes equations.

NOMENCLATURE

a
mesh length in η-direction
b mesh length in y-direction
C a constant used in equation 13
C_{i}^{\prime} s coefficients for $\omega_{i}^{\prime} s$ in equation 20
$C_{i}{ }^{\text {q }} \mathrm{S}$ coefficients for $\omega_{i}^{i} s$ in equation 18
M_{u} overrelaxation factor for function u, dimensionless
p^{t} pressure, lb/sq ft
P dimensionless pressure, $P^{\prime} / \rho U_{x o}^{2}$
$\Delta \mathbf{P}_{\eta}$ pressure difference between a point in the free stream and point η, dimensionless
$\Delta_{\mathbf{S} \eta}$ pressure difference between two points if Poiseuilles' flow prevails throughout, dimensionless

Re Reynolds number, $4 y_{0} \mathrm{U}_{\mathrm{xo}} / v$, dimensionless
$u_{x}^{q} \quad$ velocity component in x-direction, $f t / s e c$
$u_{x} \quad$ dimensionless velocity component in x-direction, $u_{x}^{2} / U_{x o}$
$U_{x o}$ free-stream velocity, ft/sec
$u_{y}^{\prime} \quad$ velocity component in y-direction, $f t / s e c$
u_{y} dimensionless velocity component in y-direction, $u_{y}^{8 / U} \mathrm{U}_{\mathrm{xo}}$
x^{*} Cartesian coordinate, ft
x dimensionless Cartesian coordinate, x^{8} / y_{0}
y^{*} Cartesian coordinate, ft
y dimensionless Cartesian coordinate, $\mathrm{y}^{\mathrm{i}} / \mathrm{y}_{\mathrm{o}}$
$y_{o} \quad h a l f$ width between two parallel plates, ft
∂ partial differential operator
$\frac{\mathrm{D}}{\mathrm{D} \theta} \quad$ substantial derivative operator
$\nabla^{2} \quad$ Laplacian operator in Cartesian coordinates,
$\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$
$\nabla^{2} \nabla^{2}=\partial^{4} / \partial x^{4}+2 \partial^{4} / \partial x^{2} \partial y^{2}+\partial^{4} / \partial y^{4}$
$\lambda \quad$ an expression defined by equation B22
λ^{\prime} an expression defined by equation B26
$\times \quad$ an expression defined by equation B21
a function of x defined by equation 13
$p \quad$ density, lb $\sec ^{2} / \mathrm{ft}^{4}$
$v \quad$ kinematic viscosity, sq ft/sec
$\Psi \quad$ dimensionless stream function defined by equation 9
$\omega \quad$ dimensionless vorticity, $-\nabla^{2} \Psi$

REFERENCES

1. H. Schlichting, ZAMM, 14, p. 368 (1934).
2. L. Prandtl and O. G. Tietjens, "Applied Hydro- and Aero-Mechanics", McGraw-Hill, New York, 1934. p. 25.
3. H. Hahnemann and L. Ehert, Jahrb. (1941), der deutschen Luftfahrtforschung, p. I 21.
4. H. Hahnemann and L. Ehert, Jahrb. (1942), der deutschen Luftfahrtforschung, p. I 186.
5. J. Boussinesq, Compt. rend. 113 , pp. 9 and 49 (1891).
6. L. Prandtl and O. G. Tietjens, "Applied Hydro- and Aero-Mechanics", McGraw-Hill, New York, 1934. p. 26.
7. L. Schiller, ZAMM, 2, p. 96 (1922).
8. S. Goldstein (editor), 'Modern Developments in Fluid Dynamics", Vol. I, Oxford Press, New York, 1938. p. 304.
9. H. Langhaar, J. Appl. Mech., 64, p. A55 (1942).
10. G. F. Carrier and C. C. Lin, Quart. Appl. Math., 6, p. 63 (1948).
11. D. N. de G. Allen and R. V. Southwell, Quart. J. Mech. and Appl. Math., VIII, Pt. 2, p. 129 (1955).
12. E. Janssen, J. of Fluid Mech., 3, Pt. 4, p. 329 (1958).
13. C. C. Lin, "Theory of Hydrodynamic Stability", Cambridge Press, London, 1955.
14. G. E. Forsythe and W. R. Wasow, "Finite-Difference Methods for Partial Differential Equations", John Wiley \& Sons, New York, 1960. p. 214.
15. D. Young, Trans. Amer. Math. Soc., 76, p. 92 (1954).
16. G.E. Forsythe and W.R. Wasow, "Finite-Difference Methods for Partial Differential Equations", John Wiley and Sons, 1960. p. 368.
17. M. Collins and W.R. Schowalter, The Physics of Fluids, 5, p. 1122 (1962).
18. J.R. Bodoia and J.F. Osterle, Appl. Sci. Research, Al0, p. 265 (1961).

LIST OF FIGURES

FigurePage1. Point Patterns in $\eta-y$ and $x-y$ Nets 226
2. A Typical $\eta-y$ Net and Its Corresponding $x-y$ Net with $\eta=1-1 /(1 \pm 1.2 x)$ 227
3. Streamline Pattern, Case I 228
4. Lines of Constant Vorticity, Case I 229
5. Velocity Profiles, Case I 230
6. u_{y} as Function of η for Several y 's, Case I 231
7. $\partial P / \partial x$ as Function of η, Case I 232
8. $\partial P / \partial y$ as Function of η, Case I 233
9. Streamline Pattern of Case II 234
10. Lines of Constant Vorticity, Case II 235
11. Velocity Profiles, Case II 236
12. u_{x} as Function of η, Case II 237
13. u_{y} as Function of y, Case II 238
14. u_{y} as Function of η, Case II 239
15. $\partial \mathrm{P} / \partial \mathrm{x}$ as Function of y , Case II 240
16. $\partial P / \partial x$ as Function of η, Case II 241
17. $\partial P / \partial y$ as Function of y, Case II 242
18. $\partial P / \partial y$ as Function of η, Case II 243
19. Comparison of u_{x} at $y=0.95$ 244
20. Comparison of Pressure Drops 245

LIST OF FIGURES

Figure Page

1. Point Patterns in $\eta-y$ and $x-y$ Nets 226
2. A Typical $\eta-y$ Net and Its Corresponding $x-y$ Net with $\eta=1-1 /(1 \pm 1.2 x)$ 227
3. Streamline Pattern, Case I 228
4. Lines of Constant Vorticity, Case I 229
5. Velocity Profiles, Case I 230
6. u_{y} as Function of η for Several $y^{\prime} s$, Case I 231
7. $\partial P / \partial x$ as Function of η, Case I 232
8. $\partial P / \partial y$ as Function of η, Case I 233
9. Streamline Pattern of Case II 234
10. Lines of Constant Vorticity, Case II 235
11. Velocity Profiles, Case II 236
12. u_{x} as Function of η, Case II 237
13. u_{y} as Function of y, Case II 238
14. u_{y} as Function of η, Case II 239
15. $\partial P / \partial x$ as Function of y, Case II 240
16. $\partial P / \partial x$ as Function of η, Case II 241
17. $\partial P / \partial y$ as Function of y, Case II 242
18. $\partial P / \partial y$ as Function of η, Case II 243
19. Comparison of u_{x} at $y=0.95$ 244
20. Comparison of Pressure Drops 245

Figure I. Point patterns in $\eta-y$ and $x-y$ nets

Figure 2. A typical $\eta-y$ net and its corresponding $x-y$ net with $\eta=1-1 /(1 \pm 1.2 x)$

Figure 3. Streamline pattern, Case I

Figure 4. Lines of constant vorticity, Case I

Figure 5 Velocity profiles, Case I

Figure 6. U_{y} as function of η for several y 's, Case I

Figure 7. $\partial P / \partial x$ as function of η, Case I
-233-

Figure 8. $\partial P / \partial y$ as function of η, Case I

Figure 10. Lines of constant vorticity, Case II.

Figure II. Velocity profiles, Case II.

Figure 13. u_{y} as function of y, Case II

Figure 14. Uy as function of η, Case II

Figure 15. $\partial P / \partial x$ as function of y, Case II

Figure 16. $\partial P / \partial x$ as function of η, Case II

Figure 17. $\partial P / \partial y$ as function of y, Case II

Figure 18. $\partial P / \partial y$ as function of η, Case II
-244-

Figure 19. Comparison of u_{x} at $y=0.95$

Figure 20. Comparison of pressure drops

LIST OF TABLES

Table Page
I. Stream Functions and Vorticities for Case I with a 10×10 Grid 247
II. Velocities and Pressure Gradients for Case I with a 10×10 Grid 248
III. Stream Functions and Vorticities for Case I with a 20×20 Grid 250
IV. Velocities and Pressure Gradients for Case I with a 20×20 Grid 253
V. Stream Functions and Vorticities for Case II with a 20×10 Grid 259
VI. Velocities and Pressure Gradients for Case II with a $20 x 10$ Grid 261
VII. Stream Functions and Vorticities for Case II with a 40×20 Grid 264
VIII. Velocities and Pressure Gradients for Case II with a 40×20 Grid 269
IX. Comparison of Results: u_{x} 278
X。 Pressure Drops, $\Delta \mathbf{P}_{\eta}$, As Function of η 279
XI. Variation of ψ and ω with Grid Sizes 280

TABLE I. Stream Functions And Vorticities For Case I With A 10×10 Grid

ETA ${ }^{\text {a }}$. 0.	
γ	pel
1.000000	1.0n000000
0.900000	0.90000000
0.806000	0.89000000
0.700090	0.79000000
0.600600	0.50959999
0.500680	0.51000000
0.400000	0.40000000
0.300060	0.3n000000
0.200060	$0.2 r 000000$
0.160060	0.00999999
0.	0.

ETA $=0.100000$	
r	P「1
1.000000	1.00000000
0.900000	0.97663830
0.800000	0.87673205
0.700060	0.77264945
0.600000	0.61842515
0.500060	0.51464365
0.400080	0.41127796
0.300000	$0.30822 \mathrm{C77}$
0.200000	$0.2 \sim 537391$
0.168000	0.10265648
0.	0.
	200900

$x=0.092593$

\boldsymbol{r}	pel
1.000000	1.00000000
0.900000	0.94947235
0.806000	0.86553583
0.700000	0.74913613
0.606000	0.64056772
0.500000	$0.5{ }^{2} 240742$
0.400000	0.47501505
0.300000	0.31825805
0.200000	0.21194538
0.100000	0.10590781
0.	0.

ETA $=$	C. 300000
r	pel
1.000080	1.0~000000
0.900060	0.9×458561
0.806000	0.89167188
0.700000	0.77698138
0.606000	0.66560159
0.500060	0.5×319455
0.400000	0.45136123
0.30000 C	$0.3 * 030817$
0.200060	0.21987449
0.10000 C	C. 10984138
0.	0.
ETA $=$	0.400000

Y	pel
$1.0000 e c$	1.07000000
$0.900 C 60$	0.97358308
0.806000	$0.9 \cap 171482$
0.700060	0.87255619
0.600000	0.69119231
0.500060	0.57580429
0.400000	0.45977595
0.300060	0.34415592
0.200000	0.27908986
0.100000	0.11444001
0.	0.

r	Pel	OMEGA
1.000000	1.00000000	0.44615699 El
0.906000	0.97769215	0.40641070 E O1
0.800000	0.91505247	0.30162832 E 01
0.700060	0.87312000	$0.17907541 E 01$
0.600080	0.71444833	$0.88931057 E 00$
0.50006 C	0.59804489	$0.38204153 \mathrm{E}-00$
0.406080	0.47881439	$0.14484055 E-00$
0.306000	0.35891349	C.49056937E-01
0.200000	0.29408675	$0.14926474 \mathrm{E}-01$
0.100000	0.17447533	0.39035829E-02
0.	0.	0.

ETA $=$	$0.600 n 00$	$x=$	1.250000
γ	pel		OPEGA
1.000000	1.00000000		0.40552479E O1
0.900000	0.97972376		0.36134278 E O1
0.800000	0.97337727		0.28999195 E O1
0.700 cec	0.82827864		0.19823246 E O1
0.600000	0.79376811		0.11610050 E OL
0.500000	0.61812450		0.59531698 E 00
0.400000	0.49658694		$0.27218769 \mathrm{E}-00$
0.300060	0.37349419		$0.11237676 \mathrm{E}-00$
0.200080	0.24916802		$0.42020328 \mathrm{E}-01$
0.100080	0.17460700		$0.13298459 \mathrm{E}-01$
0.	0.		0.
ETA $=$	c. 700000	$x=$	1.944444
Y	pe1		OMEGA
1.000080	1.00000000		0.37682880 E O1
0.900060	0.90115855		$0.33046845 \mathrm{E} \mathrm{O1}$
0.800080	0.97928754		$0.27436709 E 01$
0.700080	0.85064759		0.20694099 E O1
0.600060	0.76023969		$0.13962123 E 01$
0.506000	0.67663369		0.84646147 E 00
0.400000	0.51473310		$0.46601263 \mathrm{E}-00$
0.300000	0.30832238		0.23494934E-00
0.200000	0.26967669		$0.10780112 \mathrm{E}-00$
0.100000	0.170 C 2624		$0.40715417 E-01$
0.	0.		0.
ETA	C. 800000	$x=$	3.333333

ONEGA
0.34637799 E OI
0.30447897 E OI
0.25919473 E OI
$0.20956417 E$ O1
$0.15869097 E 01$ 0.11197987 E OI 0.73650720 E 00 $0.45037056 \mathrm{E}-00$ $0.24979272 \mathrm{E}-00$ $0.10961176 \mathrm{E}-00$ 0.

$x=0.357143$ $\begin{array}{cc}\text { OMEGA } & \\ 0.70028779 \mathrm{E} & 01 \\ 0.51894899 \mathrm{E} & 01 \\ 0.25791176 \mathrm{E} & 01 \\ 0.10144486 \mathrm{E} & 01 \\ 0.33664863 \mathrm{E}-00 \\ 0.96765218 \mathrm{E}-01 \\ 0.24437340 \mathrm{E}-01 \\ 0.54713681 \mathrm{E}-02 \\ 0.10915249 \mathrm{E}-02 \\ 0.19041782 \mathrm{E}-03 \\ 0 . & \\ 0 . & 0.555556\end{array}$ | ONEGA | |
| :--- | :--- |
| $0.52833839 E$ | 01 |
| $0.46696924 E$ | 01 |
| $0.29608935 E$ | 01 |
| $0.14611612 \mathrm{E}-00$ | |
| 0.60156233 E | 00 |
| $0.21369444 \mathrm{E}-00$ | |
| $0.66657608 \mathrm{E}-01$ | |
| $0.18450596 \mathrm{E}-01$ | |
| $0.45574936 \mathrm{E}-02$ | |
| $0.97635676 \mathrm{E}-03$ | |
| 0. | | 0.

TABLE II. Velocities And Pressure Gradients For Case I With A 10×10 Grid

	$x=0$.						
γ	$u(x) *$		$u(y) *$	- $\partial p / \partial \eta$	- $\partial \mathrm{P} / \partial \mathrm{x}$	- dp/ar	
1.000000	$0 . C 5999099 E$	01	0.	0.	0.	0.	
0.900000	$0 . C 9999099 E$	01	0.	0.	0.	0.	
0.800000	$0 . C 9999099 E$	01	0.	0.	0.	0.	
0.700060	C.C9995899E	01	0.	0.	0.	0.	
0.600000	C.C9999099E	01	0.	0.	0.	0.	
0.500000	$0 . C 9999099 E$	01	0.	0.	0.	0.	
0.400080	C.C9999999E	01	0.	0.	0.	0.	
0.300000	$0.09999999 E$	01	0.	0.	0.	0.	
0.200000	0.09999099 E	01	0.	0.	0.	0.	
0.100000	C.C5999099E	01	0.	0.	0.	0.	
0.	$0.69999099 E$	01	0.	0.	0.	0.	
			ETA $=0.100000$	$x=0.092$			
r	U(x)		U(Y)	- $\partial p / \partial \eta$	ap/dx	- $\partial p / \partial r$	
1.000000	c.		0.	0.15278520 E 01	$0.14850721 E 01$	$0.59185881 E 00$	
0.900000	$0.86633073 E$	00	-0.24043563E-00	0.98164010 E 00	0.95415416 E 00	$0.23952106 \mathrm{E}-00$	
0.800000	0.10199542 E	01	-0.26990413E-00	$0.49872073 \mathrm{E}-00$	$0.48475654 \mathrm{E}-00$	$0.26700811 \mathrm{E}-00$	
0.700000	C. 10415345 E	01	-0.23880159E-00	$0.48063836 \mathrm{E}-00$	$0.46718048 \mathrm{E}-00$	0.19847048E-00	
0.60000 C	0.10400789 E	01	-0.19715914E-00	$0.44478095 \mathrm{E}-00$	$0.43232708 \mathrm{E}-00$	$0.14393902 \mathrm{E}-00$	
0.500000	0.10357259 E	01	-0.15750004E-00	$0.39963251 \mathrm{E}-00$	0.38844278E-00	$0.10320868 \mathrm{E}-00$	
0.400000	0.10321143 E	01	-0.12157319E-00	$0.36187767 \mathrm{E}-00$	$0.35174509 \mathrm{E}-00$	$0.72330318 \mathrm{E}-01$	
0.300000	0.10295701 E	01	-0.88734121E-01	$0.33456933 \mathrm{E}-00$	$0.32520138 \mathrm{E}-00$	$0.48689673 \mathrm{E}-01$	
0.200000	0.10278714 E	01	-0.58054545E-01	$0.31658734 \mathrm{E}-00$	$0.30772289 \mathrm{E}-00$	$0.29998437 \mathrm{E}-01$	
c. 100000	0.10268696 E	01	-0.28712002E-01	$0.30648056 \mathrm{E}-00$	$0.29789910 \mathrm{E}-00$	$0.14305925 \mathrm{E}-01$	
0.	C. 10265848 E	CI	0.	0. $30323825 \mathrm{E}-00$	$0.29474758 \mathrm{E}-00$	0.	
			ETA $=0.200000$	$x=0.208$			
Y	U(x)		U(r)	$-\partial p / \partial \eta$	- $\partial p / \partial x$	- $\partial \mathrm{p} / \mathrm{\partial} \mathrm{Y}$	
1.000000	c.		0.	0.87652270 E 00	0.67316942 E 00	$0.31771135 \mathrm{E}-00$	
0.900000	0.72232086 EE	00	-0.14725367E-00	0.71672498 E 00	$0.55044477 E 00$	$0.34719498 \mathrm{E}-00$	
0.800000	C. $10016^{\circ} 11 \mathrm{E}$	01	-0.21096890E-00	0.50557079 E 00	$0.38827836 \mathrm{E}-00$	$0.41995411 \mathrm{E}-00$	
0.700060	0.10748405 E	01	-0.20863462E-00	$0.48820481 \mathrm{E}-00$	$0.37494129 \mathrm{E}-00$	0.32693389E-00	
0.600000	$0.10836435 E$	01	-0.18115753E-00	$0.48749418 \mathrm{E}-00$	$0.37439552 \mathrm{E}-00$	$0.22677037 \mathrm{E}-00$	
0.500000	0.10777633 E	01	-0.14803544E-00	$0.45443924 \mathrm{E}-00$	$0.35668932 \mathrm{E}-00$	$0.15603158 \mathrm{E}-00$	
0.400080	0.10707468 E	01	-0.11551978E-00	$0.43551198 \mathrm{E}-00$	$0.33447319 \mathrm{E}-00$	$0.10737102 \mathrm{E}-00$	
0.300000	0.10653583 EE	01	-0.84815580E-01	$0.41101611 \mathrm{E}-00$	$0.31566036 \mathrm{E}-00$	$0.71937365 E-01$	
0.200000	0.10617511 E	01	-0.55682185E-01	$0.39373836 \mathrm{E}-00$	$0.30239105 \mathrm{E}-00$	$0.44328319 \mathrm{E}-01$	
0.100000	0.10597768 E	Cl	-0.27589977E-01	$0.38372691 \mathrm{E}-00$	$0.29470226 \mathrm{E}-00$	$0.21158174 \mathrm{E}-01$	
0.	$0.10590781 E 01$		0.	$0.38047245 \mathrm{E}-00$	$0.29220284 \mathrm{E}-00$	0.	
			ETA $=0.300000$	$x=0.357143$			
r	U(x)		U(v)	- ap/al	- $2 \mathrm{p} / 3 \mathrm{x}$	- Jp/dr	
1.000000	0.		0.	$0.41119909 \mathrm{E}-00$	$0.24178506 \mathrm{E}-00$	$0.13480832 \mathrm{E}-00$	
0.900000	0.59164062 E	00	-0.70885536E-01	$0.31043108 \mathrm{E}-00$	$0.18253347 \mathrm{E}-00$	0.20455660E-00	
0.806000	C.94002113E	00	-0.13576622E-00	$0.39671474 \mathrm{E}-00$	$0.23326826 \mathrm{E}-00$	$0.32401112 \mathrm{E}-00$	
0.700000	c. 10803514 E	01	-0.15705499E-00	$0.41340135 \mathrm{E}-00$	$0.24307999 \mathrm{E}-00$	$0.42767376 \mathrm{~F}-00$	
0.600000	$0.11189^{4} 42 \mathrm{E}$	01	-0.14883630E-00	$0.46008066 \mathrm{E}-00$	$0.27052742 \mathrm{E}-00$	$0.25940152 \mathrm{E}-00$	
0.500000	0.11212 N17E	01	-0.12758678E-00	$0.48660612 \mathrm{E}-00$	$0.28612439 \mathrm{E}-00$	0.19025703E-00	
0.400000	$0.11144^{2} 18 \mathrm{E}$	01	-0.10219704E-00	$0.49037593 \mathrm{E}-00$	$0.28834105 \mathrm{E}-00$	$0.13461396 \mathrm{E}-00$	
c. 300000	0.11074237 E	01	-0.76139741E-01	$0.48400564 \mathrm{E}-00$	$0.28459532 \mathrm{E}-00$	$0.91527694 \mathrm{E}-01$	
0.200000	0.11023239 E	01	-0.50404772E-01	$0.47612880 \mathrm{E}-00$	$0.27996373 \mathrm{E}-00$	$0.56918299 \mathrm{E}-01$	
0.100000	$0.10993724 E$	01	-0.25084640E-01	$0.47059061 E-00$	$0.27670728 \mathrm{E}-00$	$0.27310854 \mathrm{E}-01$	
0.	0.16984138 E	C1	0.	$0.46863697 E-00$	$0.27555854 \mathrm{E}-00$	0.	
			$E T A=0.400000$	$x=0.555$			
\boldsymbol{r}	0. U(x)		0. U(T)	- $\partial p / \partial \eta \quad-\partial p / \partial x$		- $\partial p / \partial \mathrm{r}$	
1.000000			$0.18941096 \mathrm{E}-00$	$0.81825534 \mathrm{E}-01$	$0.47336485 \mathrm{E}-01$		
0.900000	C.49142<92E-00				$0.68073444 \mathrm{E}-01$	$0.29407727 \mathrm{E}-01$	$0.85573410 \mathrm{E}-01$
0.800000	0.85513443E	00	$-0.27446126 \mathrm{E}-01$ $-0.72102074 \mathrm{E}-01$	$0.26816816 \mathrm{E}-00$	$0.11584865 \mathrm{E}-00$	$0.16657075 E-00$	
0.700000	0.10526124 E O1		-0.99659404E-01	$0.74332865 E 00$	$0.32111797 \mathrm{E}-00$	$0.13811983 \mathrm{E}-00$	
0.600090	$0.11337595 E$$0.11570217 E$		-0.10550896E-00	-0.57719892E-02	-0.24934943E-02	$0.20654835 \mathrm{E}-00$	
0.500000			-0.96876752E-01	$0.46365377 \mathrm{E}-00$	$0.20029842 \mathrm{E}-00$	$0.17161078 \mathrm{E}-00$	
0.400000		$0.11582^{2} 18 \mathrm{BE}$	-0.80898823E-01	$0.50812765 E 00$	$0.21451114 \mathrm{E}-00$	$0.13113661 \mathrm{E}-00$	
0.300000	$\begin{array}{ll} 0.11534204 \mathrm{E} & 0 \\ 0.11485795 \mathrm{E} & 0 \end{array}$		-0.6178748BE-01	$0.53294553 E 00$	0.23023246E-00	$0.93450027 \mathrm{E}-01$	
0.200000			-0.41498482E-01	0.54504298800	$0.23545856 \mathrm{E}-00$	$0.59789982 \mathrm{E}-01$	
$\begin{aligned} & 0.100000 \\ & 0 . \end{aligned}$	$\begin{aligned} & 0.11485795 E \\ & 0.11454493 E \end{aligned}$	01	-0.20809331E-01	0.55026126 E 00	$0.23771286 \mathrm{E}-00$	0.29138012E-01	
	0.11444 TOOE O1		0.	0.5515560 E OO	$0.23827218 \mathrm{E}-00$	0.	
			ETA $=0.500000$	$x=0.833$			
Y	- U[T]		0. U(Y)	- $\partial \mathrm{p} / \partial \eta$	- $\partial \mathrm{p} \boldsymbol{\partial} \mathrm{dx}$	- dp/dr	
1.000000			$0.17665018 E-00$	$0.52995054[-01$	0.16252880E-01		
0.900000				0. $0.9211 \mathrm{C185E-02}$	$0.70461104 \mathrm{E}-01$	$0.211383315-01$	$0.29166768 \mathrm{E}-01$
0.800000	$0.42473767 \mathrm{E}-00$$0.77286 \mathrm{C}^{\circ} 76 \mathrm{ECO}$		-0.32493676E-01	$0.21141163 \mathrm{E}-00$	$0.63423487 \mathrm{E}-01$	$0.62449200 \mathrm{E}-01$	
0.700000	C. 1003 CPO OE O1		-0.53583662E-01	$0.31924910 \mathrm{E}-00$	$0.95774730 \mathrm{E}-01$	$0.97220629 \mathrm{E}-01$	
0.600000	0.212537558 OI		-0.63863697E-01	$0.37961054 \mathrm{E}-00$	$0.11388316 \mathrm{E}-00$	0.11208452E-00	
0.500080	0.11781896 E O1		-0.63480320E-01	0.4434670 BE -OO	0.13304012E-00	$0.10668900 \mathrm{E}-00$	
0.400000	C.11956*70E O1		-0.558074.70E-01	$0.50594276 E 00$	$0.15178283 \mathrm{E}-00$	$0.89794100 \mathrm{E}-01$	
0.300000	$0.11986^{282 E} 01$		-0.44007404E-01	$0.55470403 E 00$	$0.166411215-00$	0.68326776E-01	
0.200000	C.11971907E O1		-0.30117239E-01	$0.58679916 E 00$	0.17603975t-00	$0.45604748 \mathrm{E}-\mathrm{U1}$	
0.100000	0.11954237E O1		0.	0.60425980100	$0.18127794 \mathrm{E}-00$	$0.22761148 \mathrm{E}-01$	
0.			0.60908791 E 00	0.18272637E-00	0.		

TABLE II. - Continued

$$
* U(X)=u_{x}, U(Y)=u_{y} .
$$

TABLE III. Stream Functions And Vorticities For Case I With A 20×20 Grid

\times	ETA=	$\begin{gathered} .000000 \\ p \leqslant! \end{gathered}$
1.00000		. 10000000
. 95.0000		- 9sna0000
- 0 anoon		- 9 annoono
-850000		. 85000000
- b7noon		-80000000
. 750000		.75000000
- 7mooor		- 70nconoo
. 650000		. 65000000
. 6000000		-600000000
. 550000		.55000000
- 500000		. 5 nnoonoob
-450000		. 45000000
.40000n		. 40000000
. 350000		- 25000000
-300000		-30000000
. 250000		. 25000000
- 200000		- 20000000
. 150000		. 15000000
. 100000		- 10000000
. 050000		-50000noo
. 0 nnoon		. 00000000

γ	ETA =	$\begin{gathered} .050000 \\ \text { PS } 1 \end{gathered}$
1.00000		.10000000, 01
. 950000		. 96557008 , 00
. 900000		. 91719414,00
. 850000		.86599006, 00
.800000		.81433723, 00
.750000		. 76275421.00
. 700000		. 71133519.80
. 650000		. 66007542 , 00
. 600000		. 60895026 , 00
. 550000		. 55793456 , 00
. 500000		. 50700704, 00
. 450000		.45615042, 00
. 400000		.40535091, 00
-350000		. 35459735.00
-300000		-30388068, 00
. 250000		. 25319335.00
. 200000		. 20252902 , 00
. 150000		-15188219,00
. 100000		. 10124790.00
. 050000		.50621981,-01
000000		.00000000, 00

$x=$

043859

$.27544000,02$
$-80517251,01$
$.23279126,01$
$.65905380,00$
$.18140157,00$
$.48537867,-01$
$.17657277,-01$
$.32259221,-02$
$.80546338,-03$
$.19736216,-07$
$: 47512031,-06$
$.11246870,-06$
$.26172576,-05$
$.59908660,-06$
$+13483572,-06$
$.29829500,-07$
$.64835473,-08$
$.13836860,-08$
$.28935572,-09$
$.57157810,-10$
$.00000000,00$
$x=$
OMEGA

1.00000	. 10000000
. 950000	. 97730552
. 900000	. 93360654
. 850000	.88267796
. 800000	.82979661
. 750000	.7766689
. 700000	.72375814
. 650000	.67114701
. 600000	.61879471
. 550000	. 56667105
. 500000	. 51472880
. 450000	. 46793292
, 4 (00000	- 41125508
. 350000	. 35967339
- 300000	- 30816×15
. 250000	- 25672786
. 200000	. 20532333
- 150000	. 15796217
-100000	- 10762728
. 050000	. 513094
. 0000000	

.00000n .0n000000, 00
-150000
1.00000 - 950000 - 900000 .850000 - 800000 $\begin{array}{r}8500000 \\ -750000 \\ \hline .700000\end{array}$. 7020000
.650000
.600000
.550000
.
-550000
-500000
.590100
.450000
-400000
.350000
$\cdot 300000$
.230000
$20 n 000$
150000
-100000

- 050000
- 10000000 . 0 $.98465707,00$ -94720616. 00 $.89860901,00$ $.84564009,00$. 77714743,00 .68315981 . .57622847 . -52719471. .41774774. OD - $36525 \mathrm{A84}$. - 7: 288759 . 00 - 25840564 . -15625746, 00 - 10414076,00
-52968401.01

$.61852846,-99$
.00000000,
$x=$
$x=\underset{\text { OMFGA }}{.147058}$.10004342 . .59058989,
.28649237. . 12212080. $.4774905^{\circ}$
.169101072 .
$.86703770{ }^{2}$.16910072,
.56703770, - 17985422 . .54349555,
.15733892 , $.47822353 .-$
$+11781956,-$ - $11781956 .-$

$.3+1656852$,
$.773574 \rightarrow 5$,
.

.18958946 , -0
$.45182218,-7$
$.10478284,-26$
.15618217
$.10478284,0$
.23618912.
.49730806
.49730906 .
$.0 n 000000$.
$r^{\text {ET }}$ ETA=

PS 1 $x=$.20833
OMEGA
1.00000
.950000
.900000
.850000
.800000
.850000
.700000
.850000
.800000
.550000
.800000
.850000
.800000
.8500000
.800000
.250000
.200000
.150000
.100000
.850000
.000000
$.89404000,01$ $.86373032,01$ $.63123103,01$ $.37122648,01$ $.18773225,01$
$.84814485,000$.84814485,
.35006417,
.300 $.35006417,00$
$.13396187,00$.48042089. -01 $.16278505,-01$ $.52446532,-02$ $\cdot 16147035,-02$ $.47692572,-03$ $\cdot 13556398,-03$. $37174654,-04$ $+.98538586,-05$ $+25786127,-05$
$.62883041,-06$
$.15135279,-06$ -0n000000, 00

	ETA=	$\begin{gathered} -300000 \\ \text { PSI } \end{gathered}$	$x=$	$\begin{gathered} .357142 \\ \text { OMFGA } \end{gathered}$
1.00000		. 10000000 , 01		.60243200, 01
. 950000		. 99746969 , 00		.62549998, 01
900000		.96952993, 00		. 56969552,01
. 850000		. 93308315,00		. 43734554 , 01
. 800000		.88682977. 00		.28819117, 01
. 750000		.83460842. 00		.16778692, 01
. 700000		.77932758, 00		.88290476.
. 650000		. 72278719.00		.47667377, 00
. 600000		. 66593865.00		.19155986. 00
. 530000		.60921296. 00		.80596378,-01
- 500000		. 55276688 , 00		. $71995634 .-01$
. 450000		.49663050, 00		-12250457,-01
. 400000		.44078270, 00		.43248818,-02
. 330000		. 38518588 . CO		.14844470,-07
- 300000		. 32979989 , 00		.48869680,-03
. 250000		.27458669. 00		-15467915,-07
. 200000		.21951173.00		.47159153,-04
. 150000		. 16454258 , 00		-13867463,-04
- 100000		. 10965336.00		. $39228789,-05$
. 050000		-54814095.-01		-10086449,-05
. 000000		.00000000. OD		. 00000000 , 0n

1.00000	.10000000, ${ }^{\text {n }}$. 53584800 , 01
. 950000	. 99730196 , 00	. 54993974.01
. 900000	.97295515, 20	. 52044364 , 01
. 850000	.93997467. 00	.43254012, 01
. 800000	.89685447, 00	. 31394761,01
. 750000	.84673236.00	-20225007, 01
- 700000	. 79242547.00	. 11779462 , 01
. 650000	.73597181. 00	.62956346. 00
. 600000	.67862955. 60	. 31226245 , 00
- 550000	. 62107803 , 0 O	-14497658.00
-500000	. 56363652 . OC	.63431698,-01
. 450000	. 50642771 , CO	.26296924.01
-400000	. 64947850 , 10	-10375759,-01
- 350000	. 39277403 , 00	. $39105099,-02$
- 300000	. 33628395 . 00	-14120461,-02
. 250000	.27997397. 00	.48971010.-03
. 200000	.22781021, 00	.16344510,-03
-150000	-16776052,00	. $52563787,-04$
- 100000	-11179460, 00	. 16226378,04
. 050000	-55883682,-01	-45031049,-05
. 0000000	. 00000000 , 0 O	.00000000.00

TABLE III. - Continued

	ETA $=$	$\begin{gathered} .400000 \\ \text { PSI } \end{gathered}$	$x=$	$\begin{aligned} & .555555 \\ & \text { OMEGA } \end{aligned}$	\times E	ETA	$\begin{gathered} .600000 \\ \text { PSI } \end{gathered}$	$x=$	$\begin{aligned} & 1.25000 \\ & O M E G A \end{aligned}$
1.00000		.10000000, 01		.49172000. 01	1.00000		.10000000, 01		.40971200. 01
. 950000		. 99385350 , 00		.49567356, 01	.950000		.99487866. 00		. 38851808,01
. 900000		. 97536144,00		.47544531, 01	. 900000		.98004658. 00		. 36465982 , 01
. 850000		.94517536,00		.41559348, 01	. 850000		.95610808. 00		.33506783, 01
. 800000		.90498205, 00		. 32484572 , 01	.800000		.92381778. 00		. 29761850 , 91
.750000		.85720480, 00		.22780562, 01	. 750000		.88413215. 00		.25275685, 01
. 700000		. 80434368, 00		.14503448, 01	. 700000		.83819457.00		.20380900, 21
. 650000		. 74846635, 00		.84865854, 00	. 650000		.78724786. 00		.15560937, 01
. 600000		.69102831.00		.46113139, 00	. 600000		.73251050.00		. 11254749 , 01
. 550000		.63293027. 00		.23459066.00	. 550000		. 67506514.00		.77287833.00
. 500000		. 57466922 , 00		.11246944. 00	. 500000		. 61579325.00		. 50546729.00
. 450000		. 51648736 , 00		.51085794, -01	. 450000		. 55535815.00		. 31585705 , 00
. 400000		.45848335. 00		.22080137.-01	. 400000		.49422549. 00		.18917352, 00
. 350000		.40068222, 00		.91140522,-02	. 350000		.43270225. 00		.10890639, 00
. 300000		. 34307485,00		. 36036322 ,-02	-300000		.37097863,00		.50421171,-01
. 250000		. 28563783 , 00		.13683018,-02	. 250000		.30916534.00		.32374837, -01
. 200000		. 22834273,00		.49994561,-03	. 200000		.24732210.00		. $16773198,-01$
. 150000		. 17116010, 00		. $17596567,-03$.150000		.18547762, 00		.83801540,-02
. 100000		-11406088. 00		. $59327437,-04$. 100000		.12364268, 00		. 39542798 ,-02
. 050000		. 57016752 ,-01		. $17764007,-04$. 050000		.61818201,-01		-15556485,-02
.000000		. 00000000,00		.00000000, 00	. 000000		.00000000. 00		. 00000000 , 00
	ETA $=$. 450000	$x=$. 681818		ETA $=$. 650000	$x=$	1.54761
Y		Psi		OMEGA	r		PSI		OMEGA
1.00000		. 10000000.01		.46122400. 01	1.00000		. 10000000.01		.39739200, 01
. 950000		. 99423472 , 00		.45631358, 01	. 950000		.99503263, 00		.37413272, 01
. 900000		. 97708375 , 00		.43778040, 01	.900000		.98071294. 00		.34921272, 01
. 850000		.94908528, CO		.39389542, 01	. 850000		.95766721. 00		.32082061, 01
. 800000		.91144818. 00		. 37484856,01	. 800000		.92661201. 00		. 28757293.01
. 750000		.86600947, 00		.24404041, 01	. 750000		.88838787.00		.24935945, 01
- 700000		-81486577, 00		.16777188.01	. 700000		.84396148, 00		.20776778, 01
. 650000		. 75995439, 00		. 10643887.01	. 650000		. 79438354.00		.16567639, 01
. 600000		. 70280082,00		.62848997 , 00	. 600000		.74071498, 00		. 12625466 , 01
. 550000		. 64446353.00		. 34795580,00	. 550000		.68394675,00		. 91990101, 00
. 500000		. 58560269.00		.18173801, 00	. 500000		.62493721.00		.64187059. 00
-450000		. 52659096,00		.90005341,-01	. 450000		. 56437988.00		.42985531,00
. 400000		.46761696, 00		.42444996,-01	. 400000		.50280104. 00		.27695339, 00
. 350000		. 40876255.00		-19127608,-01	. 350000		.44057787, 00		.17207978, 00
- 300000		. 35005223 . 00		.82617255,-02	. 300000		.37796637, 00		. 10333260 , 00
. 250000		$.29148200,00$		- 34288894 ,-02	. 250000		-31513219,00		-60071279,-01
. 200000		. 23303472 , 00		.13702156,-02	. 200000		.25217728, 00		. $33816150,-01$
. 150000		. 17468775.00		. $52757444,-03$. 150000		.18916118.00		. $18340134,-01$
- 100000		-11641645, 00		. 19414134 ,-03	- 100000		. 12611662.00		.93291149*-02
. 050000		. 58195624 ,-01		. 62591374 ,-04	. 050000		.63060285,-01		-38820049,-92
. 000000		.00000000, 00		.00000000. 00	.000000		. 00000000 . 00		. 00000000 , 00
	ETA $=$. 500000	x $=$. 833333		FTA $=$	- 700000	$x=$	1.94444
r		PS1		omega	r		PSI		OMEGA
1.00000		. 10000000,01		.43940800, 01	1.00000		. 10000000,81		. 38444000 , 01
. 950000		.99450747. 00		.42734551.01	. 950000		.95519452. 00		.36063577, 01
. 900000		. 97834200,00		.40750911. 01	. 900000		.98137368.00		-33572649, 01
. 850000		.95203674. 00		.37196506. 01	. 850000		.95916181, 00		. 30865162,01
. 800000		.91654139.00		.31816263, 01	. 800000		.92923893.00		.27860559. 01
. 750000		.87327061.00		.25218470, 91	. 750000		.89236053, 00		.24541685, 01
- 700000		.82393298, 00		.18494812, 01	. 700000		.84936166. 00		.20982343, 01
. 650000		. 77026559.00		.12600220. 01	. 650000		.80113832, 00		.17341607, 01
. 600000		. 71369383 , 00		.80222087, 00	. 600000		.74860514. 00		.13822699. 01
. 550000		. 65541411,00		.48020607. 00	. 550000		. 69264558,00		-10617337. 01
- 500000		.59619167. 00		.27173458, 00	. 500000		.63406279,00		. 78616648,00
-450000		. 53652236.00		. 14604463,00	. 450000		.57354576.00		. 56179434,00
. 400000		-47669364.00		.74849630,-01	. 400000		. 51165404 . CO		. 38803490 , 00
-350000		-41685721,00		.36706498,-01	- 350000		.46881940, 00		.25949101, 00
- 300000		. 35708346 , 00		.17275006,-21	. 300000		. 38535980 , 00		. 16826682 , 00
. 250000		. 29739771. 00		.78216421,-02	. 250000		-32:49976. 00		.10589587, 00
. 200000		.23779975.00		. $34136450,-02$. 200000		. 25739160.00		.64597225,-01
- 150000		.17827844, 00		. $14361629,-02$. 150000		.10713501, 00		. 37879045,01
. 100000		. 11881800 , 00		. $57583586,-03$. 100000		.12879334, 00		.20651394,-01
. 050000		. 59398639 -01		.19925778,-03	. 050000		. $65406388 .-01$.90330761,-02
.000000		. 00000000,00		.20000000, 00	. 000000		$.00000000,00$.00000000, 00

$\times \quad \text { ETA }=$	$\begin{gathered} .550000 \\ \text { PS } 1 \end{gathered}$	$x=$	$\begin{gathered} 1.01851 \\ \text { OMEGA } \end{gathered}$
1.00000	.10000000, 01		.42304000, 01
. 950000	.99471207. 00		.40556414, 01
. 900000	.97928991. 00		.38359295, 01
. 850000	.95430062.00		.35208273. 01
. 800000	. 92056304.00		. 30827574 , 01
. 750000	.87921184, 00		.25433710. 21
- 700000	.83163392. 00		-19664977, 01
. 650000	.77930083. 00		-14249739, 01
. 600000	. 72358243,00		. 0707155°, on
. 550000	.66561758. 00		- 52431067 , 90
.500000	.60626562.00		. 28075480,70
. 450000	. 54612291.00		. 22110817,00
-400000	.48557271.00		. 12270626 , 00
- 350000	. 42484425 , 00		.65287155,-01
- 300000	. 36406417 , 00		. $23797006,-21$
. 250000	. 30329569.00		-16464387,-21
. 200000	. 24756498.00		. 78355556.02
. 150000	. 18187770.00		. $25961627,-92$
. 100000	.12122865, 00		-15669649,-02
. 050000	. 60607179 , 01		. 57956825,-03
. 0 noonn			

TABLE III. - Continued

TABLE IV. Velocities And Pressure Gradients For Case I with A 20×20 Grid

\checkmark	U(x)	$\text { U(v) }_{\text {ETA }}=$	$\begin{gathered} .000000 \\ -\partial p / \partial \eta \end{gathered} \quad \begin{gathered} x= \\ \end{gathered}$	$\begin{aligned} & . \\ & . \end{aligned}$	- $\partial \mathrm{p} / \partial r$
1.00000	. 10000000,01	.00000000, 00	.00000000 - 00	. 000000000.00	.00000000. 0 an
. 950000	.10000000, 01	. 00000000 , 00	. 00000000,00	. 000000000 , 00	.00000n00 - 05
-950000	. 100000000.01	.00000000, 00	-00000nan. Mn	- Onancoion. 00	
-85,0000	. 10000000.01	. 00000000 . 00	- 20000000 - 08	. 000000000 , 00	-0nonaram, ma
. $80 n 000$	-10000000. 01	.00000000, 00	- nnnnonos, 00	. 00000000 , 00	.0000nnoc. an
. 250000	. 10000000 , n 1	. 000000000,00	. 0 nncounc 00	. 000000000	. $00000000 \cdot 09$
- 100000	. $10000000 \cdot 01$. 00000000,00	. 00000000 , 00	-00000000. 00	. 00000000 , on
. 650000	. 10000000.01	. 00000000 , 00	. $00000000 \cdot 00$. 000000000 , 00	. 00000000 , on
. 600000	. 10000000 , 01	. 00000000 , 00	. 00000000,00	. 000000000,00	. 00000000 . an
. 550000	. 10000000 . 01	. $00000000 \cdot 00$. $00000000 \cdot 00$. 000000000	.00000000, an
- 50ncoo	. $10000000 \cdot 01$	- 00000000 , 00	. 00000000 , 00	- 00000000000	.00000000, an
.450000	$\cdot 10000000 \cdot 71$. 000000000 , 20	. 000000000 , 00	- 000000000	.00000000. on
- 40nuno	. $10000000 \cdot 01$. 00000000 , 10	. $00000000 \cdot 00$	- 00000000000	.00000n00, M9
. 350000	. 10000000.71	. 000000000 , 00	. 000000000	. 000000000 - 00	. 000000000 - 00
- 300000	. $10700000 \cdot 01$. 000000000 , 00	-00000n00, 20	- 000000000 - 00	.00000000. 07
. 250000	-100c0000, 01	.00000000, of	. $000000000 \cdot 00$. 000000000,00	.00000000, an
. 2 n , ${ }^{\text {a }}$. 10000000 , 01	.00000000, 00	. 000000000 , 00	. 0000000000	.00000000, ma
-150000	. $10000000 \cdot 91$. 00000000 - 70	-200000000 - 00	- 000000000 . 00	-00000000 * Ma
- 100000	. $10000000 \cdot 01$	- $00000000 \cdot 00$	- 00000000 - 00	-000n0000. 00	- 000000000 - an
.050020	-10000000, 91	. 000000000 , 00000000			-00000n00 - 0n

Y	U(x)
1.00000	.00000000, or
. 950000	.82805900. O0
. 900000	.99580020, OC
. 850000	.10285691. 01
-80n000	.10323585. 01
. 750000	-10300204. 01
-700000	-10267879, C1
-65C000	-10238493, 01
. 600000	.10214086. 01
.550000	. 10194322. 01
-5n0000	. 10178414.01
. 450000	-10165613, 01
. 400000	.10155307. 01
-350c00	. 10147023, 01
-300000	-10140400, 01
. 250000	-10135166. Cl
. 200000	-10131116. 01
. 15 तujo	.1C128103. 01
. 100000	. 10126021.01
. 050000	. 10124799.01
. $\mathbf{.}$. 10124396 , 01

ETA $=$
UTY,
.00000000,
.050000
$-\partial p / \partial \eta$

$\partial \mathrm{P} / \partial \mathrm{x}$	- $2 p / \partial r$
.51979400, 01	. 27113698.01
- 38337874 . 01	$.27639127,00$
.13586861. 01	.32790059 , 00
. 93295934.00	. 32356871.00
. 79018930. 00	.30206390 , on
.69009011, 00	.26310906 , on
.60777500, 00	. 21845089 , 00
. 54054770.00	.17726691.00
.48630773, 00	$\cdot 14287441$, 00
.44269012.00	. 11526873. 00
.40757472.00	. 93332145 ,-01
.37924435.00	. $75848542,-01$
.35636143, 00	.61671410, -01
.33790429.00	.49981495,-01
. 32310078.00	. $40166466,-01$
.31136924. 00	- 31714598,-01
. 3022798600	. 24299421 ,-01
. 29550580.00	. 17634822 ,-01
. 29081790.00	-11489383,-01
.28806252.00	. 56649581 ,-02
.28715441.00	.00000000, 00

γ	$u(x)$
1.00000	. 00000000,
. 950000	.66393500.
. 905000	. 94627560 ,
. 850000	. 10380993.
. 870000	. 10600900 ,
. 750000	.10603847.
. 7000001	.10552695.
. 650000	. 10496343.
-60nc00	.10447096.
. 550000	. 10406591.
- 50ncoe	. 10373812.
.457C00	: 10347372 .
. 400000	. 10326053.
- 350000	. 10308893.
- 300000	.10295153.
. 250000	.10284282.
. 200000	.10275869.
. 150000	.10269605,
. 100000	.10265273.
. 050000	-10262728,
. 000000	. 1026188

ETA $=$
UTY1
.00000000,

$\begin{array}{r} .100000 \\ -\partial p / \partial \eta \end{array}$
. 21114605 ,
. 17225095 .
. 11990041.
. 89801924 .
. 76278540 ,
.67103163.
. 59654363.
. 53536032.
.48555721.
. 44514396 .
. 41232097.
. 38560495.
. 36384337.
. 34615596 .
. 33187882 .
.32051124.
. 31166305 ,
. 30504560 .
.30045449,
.29775221.
.29686002 ,

.092592 $-\partial p / \partial x$

. 20523397 , 01
.16742793 .01
. 16742793 . 01
.94275714 .
.87605570.
.67962404.
.50141202

$.74142741,00$
$.65224275,00$
$\mathbf{5} 7984041.00$
52037988723,
.39645331

$\begin{array}{ll}.57984041 .00 & .29645331, \\ .52037024,00 & * 23524246, \\ .47196161 . & 00 \\ . & .18837464,\end{array}$
$\begin{array}{ll}.47196161,00 & -18837464 . \\ .43267993 .00 & .15177987 .\end{array}$
$.40077599 .00 \quad .12285735$. 00
$\stackrel{+37480802 \cdot 00}{+35365576=00} \quad .99770850,-01$ $\begin{array}{ll}+33646360,00 & .65650043,001 \\ .32258622,00 & .52672947\end{array}$ $\begin{array}{ll}. \\ .31153693 .00 & \text {. } 52672947,-01 \\ .41568324,-01\end{array}$ $\begin{aligned}+30293649,00 & +31828361,-01 \\ -29650433,00 & +23078282,-01\end{aligned}$ $\begin{array}{ll}.29650433,00 & * 23078282,-01 \\ .29204177,00 & -15019954,-01\end{array}$ $.28941515,00 \quad .74039083,-62$.00000000n, nn

.150000
$-\partial P / \partial \eta$
.147058
$-\partial P / \partial x$
.69821084, 00
. 46117197, 00
$.73856943,00$
$-71367040,00$
$-67592787,00$
.63842726 . 00
.57497437.
.55063876 .
.5092608.
.55063876 .
. 50992464 .
-44458141,
. 41949895 .
-29863930.

* 28140544 , on
$\cdot 36732284,00$
.35599342 .

.34710170 .
.74041079 .
$.7579900^{\prime}$

. 77574904 ,
. 7 -2708785.

0534880. 00	. 77082080 , on
. 39983610,00	.72309873 .00
. 6.4023970 , 00	.82262879. on
1871756.00	. 77289665 , 0n
- 58602600 , 00	.62505930, on
5351644, on	. 48131136, 00
-51584278, 00	. 77165651 , on
* 47740346 , On	. 29186442, 09
.44210415.00	.23265089. O0
.41142417, 00	.18739546, 00
. 28545209 , 00	-151922:3, 00
- 36370559.00	-12359252,00
4562028.00	-10057708, On
77067852,00	-81547188,-01
. 31546891,00	.65520767,-01
. 30864630,00	. $51734867 .-01$
- 20093718. 00	- $39627820,-01$
.20513616 - nc	-28744921,-01
.7910944 . on	-19716802,-01
.28870896.00	.92277705,-02
792017. 00	00000

Y
1.00000
.950000
.900000
.850000
.800000
.750000
.700000
.650000
.600000
.550000
.500000
.450000
.400000
.350000
.300000
.250000
.200000
.150000
.100000
.050000
.000000

ETA $=$
U(Y)
$.00000000,00$
$-.49736064,-01$
$-.13340620,00$
$-.19553011,00$
$-.22397537,00$
$-.22744043,00$
$-.21715952,00$
$-.20086010,00$
$-.18265597,00$
$-.16437657,00$
$-.14669544,00$
$-.12978101,00$
$-.11360739,00$
$-.98087424,-01$
$-.83120947,-01$
$-.68610892,-01$
$-.54467942,-01$
$-.40609612,-01$
$-.26959564,-01$
$-.13446051,-01$
.00000000,

$\begin{aligned} & -200000 \\ & -\partial P / \partial \eta \end{aligned}$	x	$\begin{aligned} & .208333 \\ & -\partial p / \partial x \end{aligned}$
.10524194.	00	.80825813,-01
-. 11013459.	00	-.84583370.-01
.28907942.	00	.22201300 .00
.46461223,	00	.35682220, 00
. 52289895.	00	. 40158640 , 00
. 54735016 ,	00	.42036493.00
. 54942673 ,	00	.42195973, 00
. 53583618 .	00	.41152219.00
. 51456238 ,	00	.39518391.00
.49128098.		. 37730380.00
.46892309.	00	.36013294. 00
. 44873514.		.34462859. 00
.43109279 .		.33107927. 00
. 41600877 .	00	.31949474. 00
.40335653.	00	.30977782.00
. 39297277 .		.30180309. 00
. 38469789.		.29544798. 00
.37840509.		.29061511, 00
. 37398553 ,		.28722089,00
. 37136248 ,		.28520639.00
.37049419.		.28453954.00

$-\partial P / \partial r$
.37824102,00 43565597,00 $.57664951,00$ 65323585 , 00 61331390, 00 .51651348. 00 .41665525 . 33355906,00
26849630.00 26849630.00
.21775242 .00 .21775242. 14523448 .
. 14523448 ,
.11870122 .
. 96589738 , -01 77820790 .-0 61601185 ;-01 47270869 :-01 $47270869:-01$
$34334557,-01$ 22375296,-01 $11036580,-01$
$.00000000,00$

250000
$-\partial P / \partial \eta$ $-.80488177,-01$
$-.25255675,00$
$-64730962,-02$ $.25255675,00$
$.64730962,-02$ $.24497082,00$
.36594896 .00 $.36594896,00$
43286333.00 $.47296041,00$

$.49222090,00$ | $.49222090,00$ |
| :--- |
| .49624127, |
| .49104717, |
| .40 | $.49104717,00$

$.48127174,00$ $\begin{array}{ll}.46981537: & 00 \\ .45829524: & 00\end{array}$ $.45829524,00$

$.44754995,00$ 43800016 : 00 43800016 . $4^{49311407}$. 00 | .42311407, |
| :--- |
| .41789880, | .41418174 . 00 41195591,0

- $\partial p / \partial r$
.19245600. 00
24588649:00
35740953:00

46756942. 00
50691138.00
47710489.00

41447589,00
34708041, 00
28706382; 00
$\begin{array}{ll}23693476, & 00\end{array}$
19572161, 00
16167904, 00
13323878, 00
10913852. 00

88404236 :-01
70256623,-01
54087021:-01
39377890,-01
25703131:-01
12690599:-01
$y \quad u(x)$
1.00000 .950000
.900000 .900000 .850000 .800000 750000
.700000 700000
.650000 .650000 .600000 550000
500000 .500000
.450000 .450000
.400000
. 350000
.300000
.250000
200000
150000
.100000
.050000
.000000
-

U|x

27044900 , 00 53327290,00 $.76100680,00$.93242310 .00 10442900, 01 $.11076055,01$ $\begin{array}{ll}11379592, & 01 \\ 11489378,01\end{array}$ 11499303 , 01 11465032, 01 11415802, 01 11365368
11319455
112800 11289555,01 11280006.01 11247374,01 11221345,01 11201561,01 11179460 ,
11176736 .


```
\(x=\)
```

10461668. 00
-. 22622528 . 0 $-11005231,00$ 93446207:-01 23883743: 00 38890663, 00 31182149. 45899290 , 45899290,00 47949918 . 00 47949918 , 0 47997615.
10461669. 47738765 .
.47332914 . .46877680 : 46431403. .46033017. 45705600 . .45463472 . 45315307 .
.45265365.
.357142
$-.61514613,-01$ $-.13302047,00$.64710760 .01 $.54946370,-01$ $.34946370,-01$
.14043641 , 00 $.14043641,00$.19269754 .00 .22867710 . 00 $.25391104,00$.27848566 .00 .2784552 .00 .28194552 .00
.28222598 .00 .28222598, 00 .27831754, 00 $.27831754,00$.27564076 : 00
.27301665 . 00

. .27067414 . 00 $\stackrel{-26874893 .}{+28732522 .} 00$ | .26732522, |
| :--- |
| .26645401, |
| .20 | .26616035 . 00

$$
u(y)
$$

$.00000000,00$
$-.70159167,-02$
. $29565755^{-20},-01$
$-.29565755,-01$
$-.61307504,-01$
$-.61307504,-01$
$-.92032059,-01$
$-.92032059,-01$
-.11456364, , 00

-.11456364,
-.12683162 , 00
.13019334,

.13019334. 00
$-.13019334,00$
$-.12720457,00$
$-12024076,00$
$-.1110446,00$
-. 111104486 , 00
$-.10067428,00$
$-.89742295,-01$
-. $78566443,-01$
$-.67304047,-01$
.
$-.56029279,-01$
$-.44773170,-01$
$-.33545756,-01$
$-.22346126,-01$
$-.11167470,-01$
$.00000000,00$

350000
$-2 P / 2 \eta$
$-.74118289,-01$
-.15628124 .00
.15628124 .00
-.12121287 .00
$.12121287,00$
$15174891,-01$
15273153.00
$.24896143,00$
24896143,00
31757195.00
.31757195 .00
.37133895 .00
41329917,00
44406650, 00 . 46510264 , 00 .47856739 , 00 $.48663495,00$ 49107544 . 00 49316964. 00 49375031, 00 49376617.00 493345814. 00 4925814. 00 49250307.00
-. 37577973,-01 -.79234589,-01 $.79234589,-01$
$-\quad 1454930,-01$
$.01454930,-01$
$.76936700,-02$
$+76936700,-02$
$.77434940,-01$
.12622345 .00
$.12622345,00$
.16100898 .00
.18828 .00
.16100898.
.18826885 .00
$.20954268,00$
.22514172 . 00
.23580704 .00
. 242633367.00
.24672392 , 00
.24897525 .00
.25003701 .00
.25038211 .00
.25033945 .00
.25012340 , 00
-24987908, 00
.24969906 , 00
.24963292, 00

- ap/ar

10440370, 00 13997229 . 21207541, 30510336. 37207093. 38999750, 00 36852233. 32773235, 00 28243079; 00 23981563, 00 20217435: 00 14150985 . 00 11706222, 00 11706222,00 $95588410,-01$
$76452973,-01$ $59147506,-01$ $.59147506,-01$
.43224150 . -01 28287910*-01 .00000000 . 00
$-\partial p / \partial r$
.59661056.-01 82061920,-01 12525243,00 18969994. .23200339 . 28954329. .29684688 , .28176481 . .25503700 . 25503700 .
22454226. 19449577.00 16657533.00 14125545. 00 11841256 . 00 97718294:-01 $.78828428,-01$ 61394929 ,-01 $.45090572,-01$
29611552,-01
$14672675,-01$

Y	U(x)
1.00000	.00000000, 00
. 950000	.24638600, 00
. 900000	.48678140, 00
. 850000	. 70379390, 00
. 800000	.87970560. 00
. 750000	.10063837. 01
. 700000	. 10873845 , 01
. 650000	-11331537, O1
. 600000	.11553608, 01
. 550000	.11635909, 01
. 500000	.11644291, 01
. 450000	. 11618587 , 01
. 400000	.11580514. 01
. 350000	.11540850, 01
. 300000	.11504439, 01
. 250000	.11473212, 01
. 200000	.11447773, 01
. 150000	.11428185, 01
. 100000	.11414335. 01
. 050000	.11406088, 01
.000000	.11403350, 01

ETA
UTY1
$.00000000,00$
$-.40295232,-02$
$-.17835552 ;-01$
$-.39357835 ;-01$
$-.63044827,-01$
$-.83277115 ;-01$
$-.96942096 ;-01$
$-.10360474,00$
$-.10441988 ; 00$
$-.10102536,00$
$-.94893854,-01$
$-.87105240,-01$
$-.78358147,-01$
$-.69070406 ;-01$
$-.59478969,-01$
$-.49714689,-01$
$-.39849883,-01$
$-.29925633,-01$
$-.19966392,-01$
$-.998758994,-02$
$.00000000,00$
$.^{400000}-\partial P / \partial \eta^{x}$

.555555

- $\partial P / \partial x$
$-\partial P / \partial T$
-35131392,-01 $.49187400,-01$.74444516:-01 $.11490749,00$.16128304 .00 -19905106, 00 .21922347 , $.22159682,00$.21115398 .00 19354542 : 00
.17296925 , 00 17296925,00 13184091,00
13132425.00 11184305.00 .93496226 -01 $.76213890,-01$ -59849513,-01 $.59849513,-01$
$.44231359,-01$.44231359, 001 $.14493352:-01$
.00000000 .00
.45000 - $2 P / \partial$

.36072873,-.24478264,-.14784730	
-. 14784730	
	.238520
.10329214	
.18470214.	
. 30115501.	
	. 3461622
$\begin{aligned} & .38713969 . \\ & .42374611 . \end{aligned}$	
	4551556
	4810464
	50177611
	51799754
	5304412
	397

.681818
$.13094453,-01$ $-.88856100,-03$ $-.53668570,-02$ $+86582800,-02$ $.37495050^{*}-0$
$.67046880^{*}-0$ $.67046880 \%-01$
$.90595200,-01$ $.90595200,-01$.10931927 .0
.12565689 .0 $.12565689,00$
.14053171 .00 .14053171.
.15381984.
.1500 .15381984 .00
.16522150 .00 .17461987 , 00 +18214473 , 00 .18803311 .00 .19255016 , 00 .19593461 .00 $\cdot 19837962,00$ $.20002928,00$ $.20097983,00$. 20128623.00
.833333

- $\partial \mathrm{P} / \partial \mathrm{x}$
. 32166640.-01 $.23945727,-01$ $\cdot 19373588,-0$ $.24210963 .-0$ $+39786490,-0$ $+59430300,-0$ $\cdot 76925410$ *-0 . 90954270 :-01 .10289967 . 0 . 11348524 , 00 $+.12452955,00$.13430489,
$.14301385,00$
.15047784, $+14301385=00$ $.15047784,00$
$.15666742,00$ +16164735 . 00 . 16552541 , 00 .16841466 , 00 .17040884 .00 .17157323 .00 .17194482 .00
1.01851

.46602293,-01 $.41680690,-01$ $-38105865,-01$ $.39133999,-01$ $.46768950,-0$ $.58625210,-0$ $.70563230,-0$ $.80751670,-0$ $.89051000,-0$ $.96492585,-01$.11073455 . 00 .11741776 .00 .12348547 .00 .12876419 .00 .13317302 , 00 .13670393 .00 .13938725 . 00
$+14126089.00$
.14235779 , OD
$\cdot 14269136$. O
$-2 p / \partial r$
21117888 ,-01 29812026*-01 $.44357040, *-01$
$.68209223,-01$ $98581910,-01$ 12804038 . 00 14950186.00 14950186,00
$.15987421,00$.16004179, 00 16004179,00
.15284055 . 00 14119029. 00 12729658. 00 12729658 : 00
11247399,00 97483164;-01 $.82672504,-01$.68181775 ,-01 $54041412,-01$ $40221550,-01$ 26662344 :-01 13284712,-01 .00000000 . 00
- $\partial P / \partial r$
$13094400,-01$.18233699 :-01 26310975,-01 .39563688,-01 $\cdot 57588322,-01$ $\cdot 77206012,-01$ 9421830 :-01 11056934. 00 10978934: 00 .10978462 . 00 $.10478037,00$ $97013520,-01$
$87612455,-01$ 87612455*-01 $77302975,-01$
$66524350 \%-01$ 66524350 :-01
55522792 ;-01 $55522792,-01$ -44429060,-01 $.22195417,-01$ $11092816,-01$.00000000 , 00
$86365440:-02$.11396311 ,01 . 15529239.-01 . 22292031,-01 $.31929300,-01$ $43335870,-01$ $.54494489,-01$. $63427438,-01$ $.68959028,-01$ $70909543,-01$ $.69753413=-01$
$.66239096 ;-01$ 66239096 , -01 $.54807277,-01$ $.47820397,-01$. $40358813,-01$. $32581449,-01$. $24593008,-01$ - 164593008 *-01 .82529210.-02 .00000000 . 00

γ	$u(x)$
1.00000	.00000000, 00
. 950000	.19953500, 00
. 900000	. 38770580,00
. 250000	. 56228800 , 00
. 800000	.71975930, 00
. 750000	.85623210, 00
. 700000	. 96884290 , 00
. 550000	.10568407. 01
. 600000	.11218272, 01
. 550000	.11671725, 01
. 500000	.11970699, 01
. 450000	.12156776, 01
. 400000	.12265590. 01
. 350000	.12324686, 01
. 300000	.12353691, 01
. 250000	. 12365653, 01
- 200000	. 12368772,01
. 150000	. 12367942, 01
. 100000	.12365942, 01
. 050000	-12364268, 01
. 000000	. 12363640 , 01

| $E T A=$ | .600000 | $x=$ | 1.25000 |
| :---: | :---: | :---: | :---: | :---: |
| U(r) | $-\partial p / \partial \eta$ | | |

Y
1.00000
.950000
.900000
.850000
.800000
.750000
.700000
.650000
.600000
.500000
.450000
.400000
.350000
.300000
.250000
.200000
.150090
.100000
.050000
.000000

$U(X)$	
.00000000,	00
.19287100,	00
.37365420,	00
.54100930,	00
.69279340,	00
.82650530,	00
.94004330,	00
.10324650,	01
.11043679,	01
.115777777	01
.119566887,	01
.12213617,	01
.12380201,	01
.12483467,	01
.12544568,	01
.12578909,	01
.12597101,	01
.12606066,	01
.12610090,	01
.12611662,	01
.12612057,	01

ETA $=$
U(Y)
$.00000000,00$
$-.46431420,-03$
$-.19508370,-02$
$-.44889831 ;-02$
$-.79690905,-02$
$-.12095718,-01$
$-.16415916 ;-01$
$-.20418976,-01$
$-.23659120,-01$
$-.25843246,-01$
$-.26856223,-01$
$-.26735786 ;-01$
$-.25619968,-01$
$-.23692210 ;-01$
$-.21140319 ;-01$
$-.18131597,-01$
$-.14802165,-01$
$-.11256363,-01$
$-.75714702,-02$
$-.38046348,-02$
$.00000000,00$
.650000
$-2 p / 2 \eta$
.42193704 .00
.40815721,
.39608292,
.39139261,
.30
.4000
1.54761

.62024746.-01	. $50771840,-02$
.59999110.-01	. 53437672.02
.58224190,-01	$.58385466,-02$
. $57534714,-01$. $68421343 .-02$
. $58813651,-01$.85488434, 002
.62097610,-01	. 10943667 ,-01
. $66495730,-01$. 13768720,-01
. $70870660,-01$. 16594890 --01
. $74554800 \cdot 01$. 18971181.01
, 77526008,-01	. 20576905 ,-01
.80097381,-01	.21267525,-01
.82560691,-01	.21066036,-01
.85056913,-01	. 20099646 ,-01
.87567999,-01	.18530479\%-01
.89971080,-01	. $16507682,-01$
.92139038,-01	. $14154332,-01$
.93971682,-01	. $11563600,-01$
.95405694:-01	. $88046245,-02$
-96405709,-01	.59302015,-02
.96947396,-01	.29827956,-02
. $97003742,-01$.00000000, 00

$u(x)$

$u(x)$
$.00000000,00$
$.17911300,00$ $.17911300,00$ $.34646860,00$.50151700 .00 $.50151700,00$
$.64343920,00$ $.84343920,00$ $.77128300,00$
$.88416800,00$ $.88416800,00$ $.98152390,00$ -11306990, 01 .11830149 , 01 -12237749, 01 $.12542511,01$
$.12763971,01$ $.12920479,01$.13028046 . .13099836 , 01 .13146056 , $.13174150,01$ $-13189110,01$ - '3193788, 01

$-\partial P / \partial \eta$
 .58775875, .57457525, .56326353, .55711711, .56033712, .57420015, .59584470, .61989389, .64178291, .65973724, .67447866, .68779646, .70113899, .71498922, .72894620, .74222937, .75394093, .76329803, .76969021, .77262782,

1.94444
$-2 P / \partial x$

.63477946.-01	.42186240,-02
.62054128,-01	.40440059,-02
. $60832462,-01$	- 39685925,-02
.60168648,-01	.41148467,-02
.60516409:-01	.45809987.-02
.62013617,-01	. 53962896.02
.64351228, -01	.64912977,-02
.66948541.-01	.77066184,-02
.69312555,-01	. 88427250 -02
.71251622,-01	.97148450,-02
. 72843696.01	.10202106,-01
.74282018,-01	. 10263778,-01
.75723011,-01	.99212100.-02
. $77218836,-01$	$.92354350 .-02$
.78726190.-01	.82803660,-02
.80160773,-01	. 71269133.02
.81425621,-01	. 58336513.02
.82436188, -01	.44451493,-02
.83126543,-01	. 29942298 ,-02
.83443805,-01	.15058781,-02

${ }_{U(Y)}^{\text {ETA }}=$	$\begin{gathered} .750000 \quad x= \\ -\partial P / \partial \eta \end{gathered}$	$\begin{aligned} & 2.50000 \\ & -\partial P / \partial x \end{aligned}$	$-\partial p / \partial r$
. 00000000,00	.82161066. 00	.61620800, -01	.33200000,-02
-.29295000,-03	.80816978, 00	. $60612734 .-01$	-30300578,-02
$-.11297475,-02$. 79730766 , 00	. 59798075.-01	.28023970.-02
-.24562950,-02	. 79063725.00	. 59297794.-01	.26967797.-02
-. $41933400,-02$. 79085304. 00	. 59313978,-01	.27577745,-02
-.62261925,-02	. 79921762,00	.59941322,-01	. 30019633,-02
-.84020775,-02	.81460153, 00	.61095115,-01	. 34080910.02
-. 10540987,-01	.83379968, 00	.62534976,-01	. 39161766 ,02
-. $12457515,-01$.85324070, 00	.63993053,-01	.44408778:-02
-. 13987155,-01	.87056616 .00	.65292462,-01	.48910323,-02
-. 15007965,-01	.88533885, 00	. 66400414,01	.51910129,-02
-.15451755,-01	.89854722.00	. $67391042,-01$. 52953087 , -02
-. $15303772,-01$.91144194, 00	.68358146,-01	.51902765,-02
-. 14593927,-01	. 92488361.00	.69366271,-01	. 48912390.02
-.13383060, -01	. 93889654,00	. $70417241,-01$.44283212,-02
-. 11749050,-01	.95283298, 00	. 71462474 ,-01	.38381771,-02
-. $97752825,-02$.96559114 .00	. $72419336,-01$	-31557780.-02
-.75427500,-02	.97592504. 00	. $73194378,-01$. 24107389.02
-. $51258750,-02$.98264209, 00	. 73698157.01	. $16259351,-02$
-. $25914510,-02$.98469636, 00	. $73852227,-01$.81816890,-03
. 00000000 , 00	.98120936 , 00	.73590702,-01	. 00000000 , on

TABLE IV. - Continued

ETA
UTY)
$.00000000,00$
$-.20761440,-03$
$-.78782880,-03$
$-.16920336,-02$
$-.28604640,-02$
$-.42183024,-02$
$-.56748144,-02$
$-.71265216,-02$
$-.84650208,-02$
$-.95874720,-02$
$-.10407273,-01$
$-.10862059,-01$
$-.10917902,-01$
$-.10568817,-01$
$-.98331312,-02$
$-.87478704,-02$
$-.73627248,-02$
$-.57347184,-02$
$-.39241968,-02$
$-.19923302,-02$
$.000000000,000$

$\begin{gathered} .800000 \\ -\partial p, \partial \eta \end{gathered} \quad x=$	$\begin{aligned} & 3.33333 \\ & -\partial P / \partial x \end{aligned}$	- $\partial \mathrm{p} / \partial \mathrm{r}$
.11981238, 01	.57509946.-01	.23050240, -02
-11843678, 01	. $56849658,-01$.20608787,-02
.11741885. 01	. $56361050,-01$. 18592055 ,-02
.11679502, 01	. 56061611.01	.17337667,-02
. 11672441 , 01	. $56027721,-01$. 17059222 ,-02
.11729311. 01	. $56300695,-01$. $17824283,-02$
-11845814. 01	. $56859908 .-01$. 19535023,-02
-12004154. 01	. $57619943,-01$. 21934756 ,-02
.12179977, 01	. $58463891,-01$. 24634473 ,-02
. 12352147.01	.59290308,-01	. $27188740,-02$
-12510519. 01	. $60050495,-01$. 29174243,-02
. 12656111 , 01	.60749335,-01	. 30262870,-02
-12795930. 01	.61420465,-01	.30259622,-02
.12937806. 01	.62101470,-01	. 29110056,-02
.13083509. 01	.62800845,-01	. 26878988,-02
.13227818. 01	.63493531,-01	. 23709698 ,-02
. 13358745.01	-64121978,-01	. $19784065,-02$
.13460080, 01	. $64608385,-01$. $15288830,-02$
. 13514440,01	-64869312,-01	. 10396539 t-02
. 13506077 , 01	.64829172,-01	.52571206:03
.13423267, 01	.64431683,-01	.00000000. 00

U(x)

U(X)
1.00000
.950000
.900000
.850000
.800000
.850000
.700000
.650000
.800000
.550000
.500000
. .450000
.800000
.850000
.300000
.250000
.200000
.150000
.100000
.050000
.000000

U(r)
$.00000000,00$ $-.12155940,-03$ -. $45777420,-03$ $-.97751070,-03$ $-.16450506,-02$ $-.24185952,-02$ $-.32501952,-02$ $-.40868631,-02$ $-.48728979,-02$ $-.55535922,-02$ $-.60792741,-02$
$-.64092303,-02$ $-.64092303,-02$
$-.65147571,-02$ $-.65147571,-02$
$-.63806670,-07$ $-.63806670,-02$
$-.60056235,-02$ $-.60056235,-02$
$-.54011637,-02$ $-.54011637,-02$
$-.45899514,-02$ $-.4389934,-02$
$-.36036360,-02$
$-.24806223,-02$ $-.24806223,-02$
$-.12640509,-02$
.00000000 .00

850000
$-\partial p / \partial \eta$

$-\partial p / \partial x$

$.52160080,-01$

. $51798969,-01$ - $51796969,-01$. $51564030,-01$.51446107,-01 .51465370,-01 $.51628774,-01$ -51922193,-01 $.52310110,-01$.52743337 .01 .53172766 , 01 $.53562896,-01$ $.53896082,-01$ $.54174029,-01$ $.54407448,-01$. $54602371,-01$ $5475291,-01$ *54847433,-01 $.54724510,-01$.54444059,-01 53990866:-01
7.50000
. $46288613,-01$ -46155720.-01 . 46105960, -01 $.46121230,-0$ $46195785,-0$
$.46318534,-0$. $46472270,-01$ 46634130 . -01 46776990 . -01 46874138 ;-01 46903083 ,-01 $46849219,-01$ $46709060,-01$ $46486687,-01$ $46194601,-0$ $45849801,-01$ $.45470584,-01$ $.45075250,-0$ $44681113,-0$ $.44305301,-01$
$.43965322,-01$
$-\partial p / \partial r$
$.12965760 .-02$ $.11446080,-02$ -10161118,-02 92860150 -03 $89260869,-03$ $.91147649,-03$ $98135425,-03$ $.10914741,-02$ $12256046,-0$ $.13640875,-0$ $.14862962,-02$ $15733522,-0$ $.16105223,-0$ $.15883943,-02$ $15034654,-02$ 11562980:-02 $.11562980,-02$ $.52593810,-03$. $31899091,-03$.00000000 .00
$-\partial P / \partial Y$
$.44364800,-03$ $\cdot 38658883,-03$ $+33763300,-03$
$.30354877,-03$ $\cdot 30354877,-03$
$.28745952,-03$ $.29089740,-03$ $+31288074,-03$ $+35034615,-03$ $\cdot 39840881,-03$ $.45088660,-03$.50089580 :-03 . $54157644,-03$ $.56676192,-03$ $.57154170,-03$ $.55275021,-03$. 50913391, -03 $.44139568,-03$ $\cdot \mathbf{3 5 2 0 3 8 2 3 , - 0 3}$ $.24508431,-03$
$.12573915,-03$ $.12573915,-03$
$.00000000,00$

U(x)
$.00000000,00$.14777500 , 00 .28779140 . 0 .42003590 , 00 $.54448960,00$ $.66113310,00$ $.76994860,00$.87092440 . 00 $.96405930,00$.10453653,
.11268706, 01 $+11268706.01$.11966220,
.12586819 , o1 +12586819 , 01 .13131271,
$.13600456,01$.13600456 . . 14316788 , 01 .14565763 . 0 .14565763 , 0 .14743002 : 14849095 .14884417 . 01

U(y)
. 00000000,00 $-.83148000,-05$ $-.27735900,-04$ $-.56406600,-04$ $-.92315100,-04$ $-.13327860 .-03$ $-17692830,-03$
$-.22074000,-03$ $-.22074000,-03$ $-.26211210,-03$ $-.29845560,-03$
$-.32732280,-03$ $-.32732280,-03$ $-.34654530,-03$
$-.35436600,-03$ $-.33436600,-03$
$-.34957290,-03$ $-.34957290,:-03$
$-.33159210,-03$ $-\quad 33159210,-03$
$-.30054090,-03$ $-.30054090,-03$
$-.25724610,-03$
$-.25724610,-03$
$-.20321070,-03$
$-.20321070,-03$
$-.14054010,-03$
-. $71825220,-04$
.00000000 . 00
15.8333
$-2 p / \partial x$
. $41355013,-01$
$41337953 .-0$ $41337953,-01$ $41341861,-01$
$41367489,-01$ $.41367489,-01$ $.41406102,-01$ $41449515,-01$ $41489143,-01$ $41516161,-01$ $41521916,-01$ $41498863,-01$ $41345507 .-01$ 41212462,-01 $41045672,-01$ $41045672,-01$
$40852729,-01$ 40852729,-01 $40432462,-01$.40231462.-01 $.40054675,-01$ $.39914193,-01$
$.39820049,-01$

- $2 p / \partial r$
. 26496000,-04 - 22613073,-04 $-19544163,-04$ $-17848522,-04$ $-17859075=-04$ $-19688100,-04$ $\cdot 23238916,-04$ -28220608,-04 $\cdot 34181452,-04$. $46639720,-04$.51803268 ,-04 $.51803268,-04$
$.55389303,-04$ *55389503.-04 . 55821315. .52073005. $.45622095,-04$. $36890263,-04$ $.25698357,-04$
$.13233129,-04$
.00000000 , an

TABLE IV. - Continued

$u(x)$

 1.00000.950000 .950000
.900000 .900000
.850000 .850000
.800000 .800000
.750000
.700000
650000
600000
.550000
.500000
.450000
400000
350000
.300000
.
200000
150000
100000
.050000
.000000

U(Y)
$\begin{array}{ll}.00000000, & 00 \\ .00000000, & 00\end{array}$ $.00000000,00$.
.00000000 ,
$. .00000000,0$
$.00000000,00$
.00000000 , 00
.00000000 , 00
$.00000000,00$
$.0000000,100$
$.00000000,00$
$.00000000,00$
.00000000 : 00
.00000000 : 00
$\begin{array}{ll}.00000000, & 00 \\ .00000000, & 00\end{array}$
$. .00000000,00$
$.00000000,00$
.00000000 , 00
$.00000000,00$
$.00000000,00$
1.00000
$-\partial p / \partial \eta$
888888888888888888888
-40000000*-01 -400000000,-01 - $40000000,-01$
$.40000000,-01$
. $4000000000,-01$
$.40000000,-01$
$.40000000,-01$
.40000000,-01
-400c0000,-01
. $40000000,-01$
40000000,-01
. $40000000,-01$
$.40000000,-01$
$.40000000,-01$
-40000000:-01
.40000000 *-01
, 400 $10000,-01$
$.40000000,-01$
$40000000,-01$
.40000000,-01

- $\partial P / \partial Y$
.00000000 , 01 .00000000 . an .00000000, on .00000000 , on .00000000 , on
-00000n03, an
00000000 , on
.00000ron, an
00000000 , 00
00000000 , 00
00000000 , on
00000000 , on
.00000000 , 91
.00000000 . O?
00000000 . M9
00000000 . an
00000000 . A1
.00000000 . 03
.00000000 , an
.00000000 , an
.00000000 , an

TABLE V．Stream Functions And Vorticities For Case II With A 20×10 Grid

EIA＝－C． $80 \mathrm{CrCC}^{\circ}$
$x=-3.333333$

γ	F＊I		CrEEA
2． cccccc	1． $\operatorname{crccccc}$	c．	
c．Scccce	c．seccccs？	c．	
C．8CCCCC	C．ECCCCl7e	c．	
C．70CCCC	C．7ecce242	C．	
C．ECCCCC	c．ercceres	c．	
C．SOCCCC	C． 5 CCCOSs	c．	
C． 4 CCCCC	C．4rCCC2E4	c．	
C．30CCCC	C． 3 CCCC24C	C．	
c． 2 CCCCC	C． 2 rcclils	c．	
C．1cCCCC	c．1rcccesz	c．	
c．	c．	c．	

	ETA $=-\mathrm{C.70CPCC}$	$x=$	－1．944444
γ	pet		CNEGA
1． cocccc	1．crecoccc		
c．sccece	c．srccerss		
c．ecccce	c．erccs？${ }^{\text {c }}$		
c．7ccecc	C．7ecci2ss		
C．6CCCCC	C．trccests		
C．5CCCCC	C．srcosçe		
C． 4 cccce	C．4rcces3l		
C．3CCCCC	C．3rcci244		
C．2ccccc	c．2rccs2st		
c． 1 cccec	c．1PCC27EI		
C．	C．		
	ETA $=-C . E O C \sim C C$	$x=$	$-1.25 \operatorname{ccoc}$
r	F＜1		CNECA
1． cocccc	1．crccccce		
c．soccce	c．srczzict		
C．eccecc	C．Erctiscc		
c． 7 CCCCC	C．7rc5735s		
c．ecccec	C．t「CEESEと		
C．5CCCCC	C．brotss41		
C． 4 CCCCC	C．4rcebcet		
c．3ccccc	C． 3 ros58te		
c． 200 CCC	C．2rC4C4C3		
C． 10 CCCC	C．1rc2117E		
C．	c．		

γ	pet	CrECA
1． cocccc	1．crccoccc	c．
c．Scccce	c．Srce3s 16	C． $10252753 \mathrm{E}-29$
c．ecccco	C．EP157524	C．E8C65375E－30
c． 700 CCC	C．7r2l3ses	C． $46315564 E-30$
0．60CCCC	C．tr24EsEC	c． $15163717 \mathrm{E}-30$
C． 5 CCCCC	C． 5 P254725	c．EE65t159E－31
0.4 CCCCC	C．4r237421	C． 2235 ESC7E－31
c． $30 C C C C$	C． 3 P159277	C． $68043745 \mathrm{E}-32$
c． 2 CCCCC	C．e＾14308？	C． $19605239 \mathrm{E}-32$
c．1ccecc	C．1ヶc74t71	C． $51001661 E-33$
c．	c．	c．
	ETA $=-\mathrm{C} .40 \mathrm{CrCC}$	$x=-0.55555 t$
${ }^{\mathbf{r}}$	F¢！	ONEGA
1． cocccc	1．crcccccc	c．
c．SOCCCC	C．se2l6ete	C． $6190 \mathrm{CTE9E-19}$
C．8ccccc	C．Ertcl4tt	C． $41005242 \mathrm{E}-19$
c． 7 CCCCO	C． 7 r53227s	C． $16782335 \mathrm{E}-19$
c．teccce	C．tr6CC153	C． 545917 t9E－20
c． 500 CCC	C．5CEC55C5	C． $1548555 C E-2 C$
C．4CCCCC	C． 4 ¢5：471t	C． 4 C055192E－21
c． 3 CCCCC	C． 3 P4574C3	C． $56823536 \mathrm{E}-22$
c． 2 CCCCC	c． 2 P324688	C． 22162 t10E－22
c． 1 ccccc	C．1C1t8272	C． 4665 CS54E－23
c．	c．	c．

TABLE V, - Continued

ETA $=$	C. 400 Cc	$x=0.555556$
7		
1. OCCCCC	1.crccccc	C. $5582 \mathrm{CS41E} 01$
c.9C6CCC	C. $572 \mathrm{C8553}$	C. 4568 C 230 El
c.6CCCCC	C. 84522122	C. 27454748 ECl
c.7ccc6c	C. 8 CC23418	C. $1269 \mathrm{C274E} \mathrm{Cl}$
c.60CCCC	C.tesesscs	C. $48264877 \mathrm{E}-\mathrm{CO}$
c.5cccce	C. 57558084	C. $15741839 \mathrm{E}-00$
c. 400 CCC	C. $48037 \mathrm{CC6}$	C. $45197752 \mathrm{E}-\mathrm{Cl}$
C.3ccccc	C. 3451 C 54	C. $116324 \mathrm{C} 5 \mathrm{E}-\mathrm{Cl}$
c. $20606 C$	C. 27597158	c. $27153654 \mathrm{E}-02$
c. $1006 c$	C. 11455548	C. $56134817 \mathrm{E}-03$
c.	c.	c.
ETA $=$	c.socrec	$x=0.833333$
Y	PRI	oneca
1.00CCCC	1. CrCCCCCC	C. 4817514 CE 01
0.9 eccc	C. 57551243	C. $41195 \mathrm{CS4E}$ O1
c.eccccc	C. Stcest 37	C. $28861513 E 01$
$0.700 c c c$	C. 81764205	C. 161715 C 5 E O1
c. $600 C C C$	C. 71881455	C. 75496654 ECO
c.5ccecc	C. 50323210	C. 3C43C5E1E-CO
C.4ecccc	C. 47515 C 21	C. $10854 \mathrm{C62E-00}$
c.30CCCC	c. $3 \times 6376 C 4$	C. $34835161 \mathrm{E}-\mathrm{Cl}$
c. 2 eccce	C. 237522C4	C. 1 C155377E-01
c.1ecccc	C. 11873373	C. $25817136 \mathrm{E}-02$
c.	c.	c.
ETA $=$	C. 600 rec	$x=1.25 C C C C$
${ }^{\boldsymbol{r}}$	Pet	ONEGA
1.0ccccc	1. Crccoccc	C.4300C593E 01
$0.900 C 6 C$	C. 5784997 C	C. 37131269 El
c.eocccc	C. 5199311 C	C. 28604969 El
c.7ccccc	C. $8^{2} 257132$	C. 18714582 El
c.60ccec	C. 73762828	C. 1048E230E O1
C.5ecccc	C.E12159C7	C.5150CC7EE 00
C.4ccicco	C. 4 ¢186C43	c. $22622366 \mathrm{E}-00$
c. 3 cccce	c. 3×955237	c. $501895 \mathrm{C8E}-01$
c. 2 ccccc	C. 24652426	C. $32785584 \mathrm{E}-01$
c.acccce	C. 173284 E8	C. $10175666 \mathrm{E}-01$
c.	c.	c.
EJA $=$	c. 700 rcc	$x=1.944444$
${ }^{\top}$	Fet	CNECA
1.cccecc	1.creccecc	C.3893Cs22E O1
C.socccc	C. SPC53454	C. 33762594 El
C.8CCCEC	C. 59732348	C. 27485757 ECO
c. 700 Cc	C. E4t6es 34	C. 2 C 20 E252E C1
C.60CECC	C. 74596138	C. 13264581 El
0.5ccecc	C.62210583	C. $783245 C C E$ CO
C.40CCCC	C. 57656745	C. $42107762 \mathrm{E}-\mathrm{CO}$
c.scccoc	C. 3849362 C	C. $20804124 \mathrm{E}-00$
c. 2000 CC	C. $2=7317 \mathrm{Cl}$	C. $93943179 \mathrm{E}-01$
c. $1006 C C$	C. 17881511	C. 35104311 -01
c.	c.	c.

TABLE VI. Velocities And Pressure Gradients For Case II With A 20×10 Grid

,	U(x)		U(r)	- $\partial p / \partial \eta$	$-\partial \mathrm{p} / \partial \mathrm{x}$	- дp/дY
1. cccccc	C.Cssscesse	Cl	c.		$0 . \quad$ 0prox	c.
0.5 scccc	C.CS59cesse	C1	c.	c.	0.	0.
C.eocccc	C.Cssssesse	C1	c.	c.	0.	0.
C. 700 CCC	C.Css9sesse	C1	c.	0.	0.	0.
c. 6 CCCCC	c. Cssoscose	C1	c.	c.	0.	0.
c. 5 ccccc	C.CSS9Segse	C1	c.	c.	0.	0.
0.4 ccccc	C.CSSsschse	C1	c.	c.	0.	0.
C. 30 CcCC	C.CSSssegse	C1	c.	0.	0.	0.
c. 2 Ccccc	C.Cssasesse	C1	c.	0.	0.	0.
c. 10 CCCC	C.Csssscase	C1	c.	c.	0.	0.
c.	c.Cssascsse	C1	c.	c.	0.	0.
	ETA $=-C . \operatorname{soccco}$			$x=-7.499999$		
Y	U(x)		U(r)	- $\partial \mathrm{p} / \partial \eta$	$-\partial \mathrm{P} / \partial \mathrm{x}$	- $\partial \mathrm{P} / \mathrm{I}^{\text {r }}$
1.000 CcC	C. ICCOCRCIE	C1	c.	$0.47311193 \mathrm{E}-04$	-0.56773442E-06	0.
c. 90 Cccc	C. ICCOCCCCE	C1	-C.56773432E-07	C. $44144701 \mathrm{E}-04$	-0.52973650E-06	-0.27251282E-07
c. 80 Cccc	C. 59595958 C	cc	-C.1C594727E-06	$0.37066630 E-04$	-0.44479963E-06	-0.51069319E-07
c.7cccce	C.CSS9Scsse	C1	-C. $14573338 \mathrm{E}-06$	$0.2738 \mathrm{C} 884 \mathrm{E}-04$	-0.32857066E-06	-0.70166654E-07
c. 60 CCCC	C. CSS99Cass	C1	-C. 1716 E14CE-06	$0.14342378 \mathrm{E}-04$	-0.17210857E-06	-0.82397512E-07
c.50CECC	C.CSS9SCSSE	Cl	-C.17993154E-06	-C.55879354E-06	$0.67055236 \mathrm{E}-08$	-0.86367152E-07
c. 40 CCCC	C.CSSGSESSE	C1	-C. $17032029 \mathrm{E}-\mathrm{C6}$	-0.14714891E-04	$0.17657872 \mathrm{E}-06$	-0.82075588E-07
c. 30 CcCC	C. 59595994 E	c	-C. $14461579 \mathrm{E}-06$	-0.27241174E-04	$0.32689414 \mathrm{E}-06$	-0.69630112E-07
c. 20 CCCC	C. 59595955 E	CO	-0.10494144E-06	-0.37252907E-04	$0.44703496 \mathrm{E}-06$	-0.50371850E-07
c. 10 CCCC	C.CSSASCSSE	C1	-C. $55264651 \mathrm{E}-07$	-0.43725593E-04	$0.52470721 \mathrm{E}-06$	-0.26527025E-07
c.	C. 5 Sc9scsse	CC	c.	$-0.46053900 \mathrm{E}-04$	$0.55264689 \mathrm{E}-06$	0.
			ETA $=-\mathrm{C.800000}$	$x=-3.333$		
${ }^{\text {r }}$	$u(x)$		U(r)	- $\partial \mathrm{p} / \partial \eta$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- dp/ar
1. COCCCC	C. 59595 Cl CE	CC	c.	C. 1398 C884E-02	-0.67108246E-04	0.
C.96CCCO	C.SS¢5ST15E	CC	-C.6710887CE-05	$0.13278667 E-02$	-0.63737605E-04	-0.92280035E-05
c.80cccc	c. 59595953 E	CC	-C. $12747645 \mathrm{E}-04$	$0.11259560 \mathrm{E}-02$	-0.54045889E-04	-0.17540058E-04
c. 70 CCCC	C. 59595458 E	CC	-c.1752C189E-04	$0.81359027 \mathrm{E}-03$	-0.39052334E-04	-0.24106960E-04
c.66CCCC	C. 55595718 E	CC	-C.2C558237E-04	C. $42224833 \mathrm{E}-03$	-0.20267920E-04	-0.28285839E-04
0.50 COCC	c. 1CCOCRCCE	C1	-C.21573CC7E-04	-0.8488C950E-05	0.40742857 E-06	-0.29683248E-04
c. 4 CCCCC	c. $11000-28 \mathrm{E}$	C1	-C.20476878E-04	-0.43596511E-03	$0.20926326 \mathrm{E}-04$	-0.28173147E-04
$0.300 C C C$	C. 1 CCOCR $54 E$	C1	-C.17387867E-04	-C.81901775E-03	$0.39312852 \mathrm{E}-04$	-0.23923893E-04
c. 200 CcC	C. $10 C 0 C C 74 E$	C1	-C. $12614429 \mathrm{E}-04$	-0.11209991E-02	$0.53807959 \mathrm{E}-04$	-0.17358277E-04
c.	C. 10000687 E	C1	-C.E626t2C8E-05	-0.1314C157E-02	$0.63072755 \mathrm{E}-04$	-0.91175628E-05
	c. ICCOCRG2E	C1	c.	-0.13805587E-02	$0.66266818 \mathrm{E}-04$	0.
			ETA $=-\mathrm{C.7000CO}$	$x=-1.944$		
,	U(x)		U(r)	- $\partial \mathrm{p} / \partial \eta$	-дp/ ∂x	- $\partial \mathrm{P} / \partial \mathrm{y}$
1.00 CCCC	C. 55572 TE4E	CC	c.	$0.11 \mathrm{CO3294E}-01$	-0.11883558E-02	0.
c.seccce	C. 55573448 E	CC	-C.11886880E-03	$0.10427736 \mathrm{E}-01$	-0.11261955E-02	-0.27437941E-03
c. 806 CCC	C. 55577478 E	CC	-C. $2253 \mathrm{C} 556 \mathrm{E}-03$	$0.87727755 \mathrm{E}-02$	-0.94745978E-03	-0.52920388E-03
-.7cccec	C. 55583725 E	CC	-C.3C842721E-03	C. $62418103 \mathrm{E}-02$	-0.67411552E-03	-0.72374790E-03
c. $60000 C$	C. 55591556 E	CC	-C. $36019519 \mathrm{E}-03$	$0.31284042 \mathrm{E}-02$	-0.33786765E-03	-0.84426080E-03
c.5cccce	C.1CCOCN17E	C1	-C. $37606716 \mathrm{E}-03$	-0.23300787E-03	$0.25164851 \mathrm{E}-04$	-0.88037168E-03
c. 40 CCCC	c. 1 CCOC*71E	C1	-C. $35522841 \mathrm{E}-03$	-c. $35073229 \mathrm{E}-02$	$0.37879089 \mathrm{E}-03$	-0.83060868E-03
c. 3 CCCCC	C.1CCO1F37E	Cl	-C. 3 C037455E-03	-C.63917290E-02	$0.69030675 \mathrm{E}-03$	-0.70161632E-03
0.200000	C.1000241E	Cl	-C.21723177E-03	-0.26376891E-02	$0.93287043 \mathrm{E}-03$	-0.50700646E-03
c. 1 CCCCC	C.1CC02627E	C1	-C. $11386430 \mathrm{E}-03$	-0.1005¢950E-01	$0.10864746 \mathrm{E}-02$	-0.26561326E-03
c.	C.1CC02761E	C1	c.	-0.10545901E-01	$0.11389573 \mathrm{E}-02$	0.
			ETA $=-\mathrm{C}$. . 000000	$x=-1.250$		
,	U(x)		u(r)	- $\partial \mathrm{p} / \partial \eta$	- $\partial \mathrm{p} / \mathrm{d} \mathrm{x}$	- dp/dr
1. coccce	C.5977ect3E	CC	c.	$0.4047 \mathrm{C925E-01}$	-0.71704178E-02	
$0.900 c c c$	c. $5979 \mathrm{C}=$ C2E	CC	-c.77876329E-03	c. $38 \mathrm{C} 64186 \mathrm{E}-01$	-0.73083238E-02	-0.23151469E-02
c. 800 CCC	C. 55823736 E	CC	-C.1465C541E-02	C. $31302935 \mathrm{E}-01$	-0.60101636E-02	-0.43360032E-02
c. 700 CCC	C. $55876^{\circ} \mathrm{ECE}$	CC	-C.198419C9E-02	$0.21355622 \mathrm{E}-01$	-0.41002796E-02	-0.58341661E-02
c. 6 cccec	C. 59937 rese	CC	-C.22884965E-02	$0.96769702 \mathrm{E}-02$	-0.18579783E-02	-0.66774623E-02
c. 50 CCCC	c. 1CCOC46CE	C1	-C.2359C779E-C2	-0.23327570E-02	$0.44788935 \mathrm{E}-03$	-0.68289124E-02
c. 40 CCCC	C. 1CCOTR37E	C1	-C. $22021436 \mathrm{E}-02$	-0.13507869E-01	$0.25935109 \mathrm{E}-02$	-0.63270529E-02
C. 300 COC	C. 1CC12.32E	C1	-C.18435251E-02	-0.2297C404E-01	$0.44103177 \mathrm{E}-02$	-0.52627894E-02
c. 2 CcCCC	C. 1CC1734 E	C1	-C.13231479E-02	-0.30108973E-01	$0.57809229 \mathrm{E}-02$	-0.37586843E-02
c. 10 cccc	C. 1CC2C)C1E	C1	-c.t9033623E-03	-0.34533609E-01	$0.66304530 \mathrm{E}-02$	-0.19551493E-02
c.	C.1CC2177eE	C1	C.	-C.36031157E-01	$0.69179822 \mathrm{E}-02$	0.
			ETA $=-\mathrm{C.50CCCC}$	$=-0.833$		
${ }^{\text {r }}$	$U(x)$			- $\partial \mathrm{p} / \partial \eta$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{P} / \partial \mathrm{r}$
1. coccce	C. 5916 C 43 E	CC	c.	C. $96563771 \mathrm{E}-01$	-0.28969131E-01	0.
c.90ccce	C. $5921 \mathrm{C}^{\text {P7e }}$	CC	-C.29214285E-02	c. $89087756 \mathrm{E}-01$	-0.26726326E-01	-0.99090282E-02
C. 80 CCCC	C. 59349851 E	CC	-C.53936429E-02	$0.69261560 \mathrm{E}-01$	-0.20778468E-01	-0.17946339E-01
C. 70 CCCC	C. 59554.74 E	CC	-C. $71238129 \mathrm{E}-02$	$0.42655765 \mathrm{E}-01$	-0.12796729E-01	-0.23088548E-01
C.60cccc	C. $59796^{\circ} \mathrm{C} 3 \mathrm{E}$	CC	-C.79974866E-02	$0.14458437 \mathrm{E}-01$	-0.43375313E-02	-0.25173797E-01
C.50cccc	C. $10 \cdot 05^{-14 E}$	C1	-C.80334E17E-C2	-0.11792430E-01	$0.35377289 \mathrm{E}-02$	-0.24564064E-01
c. 40 CCCC	c. $10027723 E$	C1	-C. $73297339 \mathrm{E}-02$	-0.34133208E-01	$0.10239962 \mathrm{E}-01$	-0.21827240E-01
c. 3 CCCCC	C. $10 \mathrm{CC47418E}$	Cl	-C.6023C567E-02	-0.51685358E-01	$0.15505607 \mathrm{E}-01$	-0.17542736E-01
0.2 CCCCC	C. $10062^{2} \mathrm{C} 3 \mathrm{E}$	C1	-C.426425C3E-02	-0.6418C563E-01	$0.19254169 \mathrm{E}-01$	-0.12215085E-01
c.	C. $1 C C 71 \times 41 E$	C1	-C. $22064242 \mathrm{E}-02$	-c. $71625993 \mathrm{E}-01$	$0.21487798 \mathrm{E}-01$	-0.62552328E-02
	C. 1CC74F71E		c.	-0.74096660E-01	$0.22228997 E-01$	0.
			ETA $=-C .400000$	$x=-0.555556$		
,	$u(x)$		U(r)	- $\partial \mathrm{P} / \partial \eta$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{P} / \partial \mathrm{Y}$
1. cccccc	C. $57831.24 E$	CC	c.	c. $18397111 \mathrm{E}-00$	-0.79475522E-01	0.
$0.9000 C C$	c. 57592621 E	CC	-C.e1237256E-02	$0.16221704 \mathrm{E}-00$	-0.70077760E-01	-0.32198653E-01
c. 8 ccccc	c. 58422 C41E	CC	-C.1435t147E-C1	$0.11165159 \mathrm{E}-00$	-0.47974287E-01	-0.53667434E-01
c. 7 CCCCC	C. Sscotal 12 E	CC	-C.18025288E-C1	C.53814171E-01	-0.23247721E-01	-0.62751461E-U1
c. $\begin{gathered}\text { OCCCC }\end{gathered}$	c. 59633 P 73 E	CC	-C.19281536E-01	c. $33126841 \mathrm{E}-02$	-0.14310795E-02	-0.62347411E-01
C. 50 CCCC		C1	-C.18558547E-01	-0.36463622E-01	$0.15752284 \mathrm{E}-01$	-0.55497370E-01
c. 4 CCCCC	C. $10074 C 51 E$	C1	-C.1634E127E-01	-0.65755736E-01	$0.28406477 \mathrm{E}-01$	-0.46421821E-61
c. $30006 C$	C. 16115013 E	C1	-C.13065551E-C1	-C.86183099E-01	$0.37231048 \mathrm{EE}-01$	-0.35332933E-U1
c. 2 Ccccc	c. 1C144*E5E	C1	-C. SC76COCCE-C2	-0.99451663E-01	$0.42963117 t-01$	-0.23663148E-01
c. 1 ccccc	c. 1 C 162744 E	C1	-C.46422277E-C2	-0.10627978E-00	0.46172 C66E-O1	-0.11838751E-01
c.	C. 1C16EJ72E	C1	c.	-0.10926722E-00	0.47203439E-01	0.

- ${ }^{\text {r }}$	(x)		U(r)	- $\partial \mathrm{p} / \mathrm{l}^{\prime}$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{p} / \mathrm{\partial r}$
1.00 CCCC	c. 55395057 F	CC	c.	c. $32 \mathrm{C63125E-00}$	-0.18853117E-00	0.
c. 9 ccccc	C. 55EET195E	CC	-C. 157622C7E-01	C. $25614250 \mathrm{E}-00$	-0.15061179E-00	-0.96606018E-01
c.eccecc	C. STCSERSEE	CC	-C. $31816126 \mathrm{E}-\mathrm{Cl}$	c. $13175978 \mathrm{E}-00$	-0.77498271E-01	-0.13510048E-00
$0.70 c \mathrm{CcC}$	C. 5841473 EE	CC	-C. $36626377 \mathrm{E}-\mathrm{Cl}$	C. $30222269 \mathrm{E}-01$	-0.17770693E-01	-0.13388009E-00
c. 6 ccccc	C. 59672785	CC	-C.36433EECE-01	-0.36969180E-01	0.21737 P77E-01	-0.11561851E-00
c. 5 ccccc	C. 1CC72463E	C1	-C. $33117244 \mathrm{E}-01$	-0.7814C606E-01	$0.45946676 \mathrm{E}-01$	-0.92803939E-01
C.40cccc	C. 10154.73 E	C1	-C.279255CCE-C1	-C. $10256874 \mathrm{E}-00$	$0.60310418 \mathrm{EE}-01$	-0.70580871E-01
c. 30 CCCC	C. 1C2157CEE	C1	-C.216259E7E-C1	-C.11675873E-00	$0.68654136 \mathrm{E}-01$	-0.50448149E-01
c. 20 CCCC	C.1C2573SE	C1	-C. $14695646 \mathrm{E}-\mathrm{Cl}$	-0.12471263E-00	$0.73331030 \mathrm{E}-01$	-0.32380766E-01
c. 10 CCCC	C. 1C281635E	C1	-C.7425178CE-C2	-0.12871821E-00	$0.75686309 \mathrm{E}-01$	-0.15808038E-01
c.	C.1C28segse	C1	c.	-0.12993542E-00	0.76402029E-01	0.
	ETA $=-C .20$			$x=-0.208333$		
${ }^{\text {r }}$	U(x)		U(r)	- $\partial \mathrm{P} / \partial \eta$	- $\partial \mathrm{p} / \partial \mathrm{l}$	- dp/Or
1. cocccc	C. 51105484 E	CC	c.	0.5496 C889E 00	-0.42209961E-00	0.
c. SOCCCC	C. 52581715 E	CC	-C.46328828E-C1	C. $35897228 \mathrm{E}-00$	-0.27569070E-00	-0.28708469E-00
c.eccccc	C. $555544^{\circ} 85 \mathrm{E}$	CC	-C.E25C3C5CE-01	C. $81043612 \mathrm{E}-01$	-0.62241492E-01	-0.29214682E-00
c. $700 c c c$	c.se221\%17E	CC	-C.t32833C7E-01	-0.50953681E-01	$0.39132426 \mathrm{E}-01$	-0.22738344E-00
c.eccccc	C. $1 \mathrm{CCZ3} \mathrm{CEEE}$	C1	-0.57538517E-C1	-0.10499516E-00	$0.80636282 \mathrm{E}-01$	-0.16508909E-00
c. 5 CCCCC	C. 1 C167415E	C1	-C. $49130858 \mathrm{E}-\mathrm{Cl}$	-0.12593228E-00	$0.46715994 \mathrm{E}-01$	-0.11754841E-00
c. 4 CCCCC	C. 16265412 E	C1	-C. $39672845 \mathrm{E}-01$	-C.13334031E-00	$0.10240535 \mathrm{E}-00$	-0.82509406E-01
$0.300 C C C$	C. $10335 ¢ 43 \mathrm{E}$	C1	-C.29836635E-01	-0.13535792E-00	$0.10395488 \mathrm{~F}-00$	-0.55980496E-01
c. 2 ccccc	C. 1 C 38 E 142 E	C1	-C. 19894315 E-01	-0.13543947E-00	$0.10401751 \mathrm{E}-00$	-0.34796082E-01
$0.10 c c c c$	C. 10412338 E	C1	-c.59422225E-C2	-C.13508075E-00	$0.10374202 \mathrm{E}-00$	-0.16694693t-01
c.	C.1C42CF3CE	C1	c.	-C.13490392E-00	$0.10360621 \mathrm{E}-00$	0.
	-C. 10			$x=-0.092593$		
- ${ }^{\text {r }}$	(x)		U(r)	- $\partial \mathrm{p} / \mathrm{m}^{\text {m }}$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{p} / \partial \mathrm{Y}$
$1 . \operatorname{cccccc}$	C.83235657E	CC	c.	0.93273112 EO	-0.90661464E 00	0.
c.socccc	C.ET748T77E	CC	-C.1C87454CE-00	C. $39543816 \mathrm{E}-00$	-0.38436588E-00	-0.83193090E 00
c. 80 Cccc	C.5484sre4E	CC	-c. $10939776 \mathrm{E}-00$	-0.13037907E-00	$0.12672845 E-00$	-0.50121567E 00
c. 7 CCCCC	C.S4C61161E	CC	-0.94477469E-C1	-0.18732624E-00	$0.18208110 \mathrm{E}-00$	-0.28749833E-00
0.60 CCCC	C. $1 \mathrm{C} 151+55 \mathrm{E}$	C1	-C.7847262CE-C1	-C.17701577E-00	$0.17205932 \mathrm{E}-00$	-0.17661678E-00
C. Scccc	C.16305rsce	C1	-C.t3458217E-01	-C.16135824E-00	$0.15684021 E=00$	-0.11539404E-00
0.40 Cccc	C. 104 CECCCE	C1	-C. $49522633 \mathrm{E}-01$	-0.14873195E-00	$0.14456746 \mathrm{E}-00$	-0.77530818E-01
C.3cccec	C.16472735E	C1	-C. $36443229 \mathrm{E}-01$	-0.13964808E-00	$0.13573793 \mathrm{E}-00$	-0.51428335E-01
c.2ccccc	C. 16516432 E	C1	-C.23974377E-01	-0.13361747E-00	$0.12987617 \mathrm{E}-00$	-0.31592835E-01
c.1ccccc	C.1C54CATEE	C1	-C.11893252E-01	-C.13018435E-00	$0.12653919 \mathrm{E}-00$	-0.15072665E-01
c.	C.1C54E*CIE	C1	c.	-0.12907037E-00	$0.12545640 \mathrm{E}-00$	0.
	$=c$.			$x=0$.		
${ }^{\gamma}$	$u(x)$		u(r)	$-\partial p / \partial \eta$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{p} / \partial \mathrm{r}$
$1.006 C C C$	c.		c.	C. 12336863 El	$0.14804235 E 01$	$0.38964686 \mathrm{E}-00$
0.900000	C. E13269CIE	CC	-C.1519C515E-CO	c. 10538635 E 01	0.12646362 E O1	-0.23227257E-00
c. 80 CcCC	C. 57 C 22775 E	CC	-C.14715268E-00	c.45188198E-00	0.54225838 E 00	-0.24559270E-00
c.70CCCC	C. 1 C14C791E	C1	-C.1195t2CSE-00	$0.2895 C 034 E-00$	$0.34680041 \mathrm{E}-00$	-0.18475034E-00
0.6 CCCCC	C. 10342194 E	C1	-C.94596S11E-C1	0.21401937E-00	$0.25682323 \mathrm{E}-00$	-0.12734823E-00
c. 500 CCC	C. 10465755 E	Cl	-C.74058258E-C1	$0.17253742 \mathrm{E}-00$	$0.20704491 \mathrm{E}-00$	-0.87806862E-01
$0.40 C C C C$	C.1C547344E	C1	-C.56607377E-01	$0.14803938 \mathrm{E}-00$	$0.17764726 \mathrm{E}-00$	-0.60732333E-01
c. 3 CCCCC	C. 1C602784E	C1	-C.4111C378E-01	$0.1331 C 764 \mathrm{E}-00$	$0.15972 \mathrm{S17E}-00$	-0.40988678E-01
$0.20 c c c c$	C. 16 C3ET14E	C1	-0.26825140E-01	C. $12412081 \mathrm{E}-00$	$0.14894497 \mathrm{E}-00$	-0.25443409E-01
c.1ccec	C. 1CE5Ecete	C1	-C. $13248464 \mathrm{E}-01$	C. $11928201 \mathrm{E}-00$	$0.14313842 \mathrm{E}-00$	-0.12207551E-01
c.	C.1C6Es*47E	C1	c.	0.11775179E-00	$0.14130215 \mathrm{E}-00$	0.
			ETA $=$ C. 100000	$x=0.092593$		
${ }^{\text {r }}$	U(x)		U(Y)	- $\mathrm{aF} / \mathrm{d} \boldsymbol{\eta}$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{p} / \partial \mathrm{r}$
1.ccccce	c.		c.	0.94 C 25081 EO	$0.91392378 E^{00}$	$0.31407805 \mathrm{E}-00$
c.90ccce	C. 74123 288E	CC	-C. $12464253 \mathrm{E}-00$	c. 85145168 EO	0.82761102800	$0.11433577 \mathrm{E}-00$
c. 800 CCC	C. 57843015 E	CC	-C. $15054233 \mathrm{E}-00$	c.53841885E 00	0.52334312 EO	$0.21132277 \mathrm{E}-01$
c. 7 CCCCC	C. 10392743 E	C1	-C.13185078E-00	$0.39022869 \mathrm{E}-00$	$0.37930228 \mathrm{EE}-00$	-0.40458361E-01
c.60CCCC	C.1C572cete	C1	-C. $10604089 \mathrm{E}-00$	C. $30322365 \mathrm{E}-00$	$0.29473338 \mathrm{E}-00$	-0.52087488E-01
c.50cccc	C. 10656844 E	C1	-0.82838511E-01	0.24E18454E-00	$0.23929136 \mathrm{E}-00$	-0.45680553E-01
C.40cccc	C. 10711573 E	C1	-C.t2961871E-01	C. $20936506 \mathrm{E}-00$	$0.20350283 \mathrm{E}-00$	-0.35670564E-01
c.30cccc	C. $10745^{\circ} \mathrm{ClE}$	C1	-C.45495612E-01	$0.1861 C 589 \mathrm{E}-00$	$0.18089493 \mathrm{E}-00$	-0.25792138E-01
c. 200 ccc	C. 16774413 E	C1	-0.29586465E-Cl	$0.17196656 \mathrm{E}-00$	$0.16715150 \mathrm{E}-00$	-0.16670168E-01
0.10 CCCC	C.1C78ST57E	C1	-0.14582966E-C1	c. $16434806 \mathrm{E}-00$	$0.15974630 \mathrm{E}-00$	-0.81711894E-02
c.	C.1C793-42E	C1	C.	C. $16194081 \mathrm{E}-00$	$0.15740646 \mathrm{E}-00$	0.
			ETA $=0.200000$	$x=0.208333$		
r	U(x)		U(r)	- $\partial \mathrm{p} / \partial \eta$	$-\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{P} / \partial \mathrm{Y}$
1. cocccc	c.		c.	$0.64829826 E 00$	$0.49789305 \mathrm{E}-00$	$0.18695021 \mathrm{E}-00$
C.9ccece	C.658385C7E	CC	-C.81583210E-01	0.58814798 EO	$0.45169763 \mathrm{E}-00$	$0.16449983 \mathrm{E}-00$
c.80cccc	C. 56281189 E	CC	-0.1268C210E-00	0.51158941 EO	$0.39320786 \mathrm{E}-00$	$0.15252821 \mathrm{E}-00$
c.70cccc	C. 1 C598125E	C1	-C. $12613274 \mathrm{E}-\mathrm{CO}$	C. $42118860 \mathrm{E}-00$	$0.32347284 \mathrm{E}-00$	$0.83188342 \mathrm{E}-01$
c. 60 cccc	c. 1Ce4t435E	C1	-C.1C762639E-00	0.3625C860E-00	$0.2784 \mathrm{Cb6OE}-00$	$0.32036474 \mathrm{E}-01$
c.sccece	C. 16908454 E	Cl	-0.86178184E-01	$0.31432162 \mathrm{E}-00$	$0.24139900 \mathrm{E}-00$	$0.75139558 \mathrm{E}-02$
0.40 CCCC	c. 1 C93149CE	C1	-0.t6135CsOE-01	$0.27676532 \mathrm{E}-00$	$0.21255577 \mathrm{E}-00$	-0.21358503E-02
c. 3 ccccc	C. 1CS4ET53E	C1	-C.47972C43E-C1	c. $25008357 E-00$	$0.19206417 \mathrm{E}-00$	-0.48555639E-02
c. 20 CCCC	C.1CS5t787E	C1	-C.3124C817E-01	$0.23275318 \mathrm{E}-00$	$0.17875443 \mathrm{E}-00$	-0.43951790E-02
c.1ccccc	c.1C963.75E	C1	-0.15407383E-01	$0.22369045 \mathrm{E}-00$	$0.17133345 E-00$	-0.24827962E-C2
c.	C. 1 CS65*CSE	C1	-.	$0.21999127 E-00$	$0.16895328 \mathrm{E}-00$	0.
			ETA $=$ c. 300000	$x=0.357143$		
cca	U(x)		U(r)	- $\partial \mathrm{p} / \partial \eta$	$-\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{p} / \partial \mathrm{r}$
1. cccccc	c.		c.	C. $42619350 \mathrm{E}-00$	$0.25060178 \mathrm{E}-00$	$0.94838385 \mathrm{E}-01$
c. 9ccecc	C. 5itl2036E	CC	-C.44615759E-01	$0.34014023 \mathrm{E}-00$	$0.20000245 \mathrm{E}-00$	$0.11126052 \mathrm{E}-00$
c.ecccce	C. 52043 CS4E	CO	-c. $96843154 \mathrm{E}-01$	$0.43133275 \mathrm{E}-00$	$0.25362366 \mathrm{E}-00$	$0.14776223 E-00$
c. 7 cccce	c. 1CE42427E	Cl	-C. 1 C545846E-CO	C. $4012 \mathrm{C400E}-00$	$0.23590795 \mathrm{E}-00$	$0.12889132 \mathrm{E}-00$
c.eccece	C. 11693 228E	Cl	-C.5844ES80E-01	C. $38284674 \mathrm{E}-00$	$0.22511388 \mathrm{EE}-00$	$0.87305600 \mathrm{E}-01$
c. Scccce	C. 111971 ¢5E	C1	-c. $82788 \mathrm{CS3E-01}$	$0.36474609 \mathrm{E}-00$	0.21447070E-00	$0.53296334 \mathrm{E}-01$
c. 4 ccccc	C. $11208=4 \mathrm{EE}$	C1	-c. $65207671 \mathrm{E}-01$	$0.34346817 \mathrm{E}-00$	$0.20195928 \mathrm{E}-00$	$0.31345811 \mathrm{E}-01$
c. 3 ccccc	C. 11203753 E	C1	-0.479623C4E-01	C. $32372016 \mathrm{E}-00$	$0.19034745 \mathrm{E}-00$	$0.17466458 \mathrm{E}-01$
c. 2 ccccc	C.11198431E	C1	-C. $3147111 \mathrm{CE}-01$	C. $30875593 \mathrm{E}-00$	$0.18154848 \mathrm{E}-00$	$0.97024744 \mathrm{E}-02$
c. 1 cccce	C. 111195838 EE	C1	-C.1558C2C4E-01	$0.29968675 \mathrm{E}-00$	$0.17621581 \mathrm{E}-00$	$0.42358176 \mathrm{E}-02$
c.	C.11195P7EE		c.	$0.29665827 E-00$	$0.17443506 \mathrm{E}-00$	0.

ETA = C.4000CO $\quad x=0.555556$

y	U(x)
1.00080	c.
C. 90CCCC	C. 5038575CE
0.80 CCCO	C. 85927 * $76 E$
c. $76 C C C C$	C. $1 \mathrm{C} 46 \mathrm{E}^{\circ} \mathrm{CEE}$
0.600005	C. 11232 ktEE
c. 5 CCCCC	C. 11473749 E
C. 40000 C	C. 11523765 E
C. 3 CCCC	C. $115190 \mathrm{C4E}$
c. $206 C C C$	C. 11507602 E
0.10 CCCC	C.11458*Sce

2. $\operatorname{coccco}^{\gamma}$
 2. ccccc

 C. 90 CCCC C. 8 CCCCC C. 80 CCC C. 60 CCCC C. 4 CCCCC c. 30 ccc . 2 CCCC c. 1 CCCCC c.| \dagger | $u(x)$ |
| :---: | :---: |
| 2.000000 | C. |
| $0.90 C C C C$ | C. 4 CC34451E-0C |
| 0.80 CCCC | C. 72764788 ECO |
| C. 70 CCCC | C.SE151412E CC |
| c.60CCCC | C.11C4C812E C1 |
| C.50CCCC | C.117agrale Ol |
| C.40CCCC | C. $1213 \mathrm{C}^{2} 34 \mathrm{ECl}$ |
| 0.30 CCCC | C. 1226 E $^{\text {CSE CI }}$ |
| 0.20CCCC | C. 12313385E Cl |
| c. $100 C C C$ | C. 12926212 ECI |
| 0. | C. 12328468 E |

C. $U[x]$
C. 75185792 ECC C. 75185792 ECC C.IC102C91E Cl C. 11215497 ECI C. 11682217 ECl
 C. 116814 CEE Cl C. $1187 \in T C 2 E C 1$ C. 11873073E CI

U(Y)	- $\partial p / \partial \eta$	- $\partial \mathrm{p} / \partial \mathrm{x}$
C.	$0.31258491 \mathrm{E}-00$	$0.13520948 \mathrm{E}-00$
-C. $21321552 \mathrm{E}-\mathrm{Cl}$	C. $20631585 \mathrm{E}-00$	$0.89128447 \mathrm{E}-01$
-C.56337219E-C1	$0.3507 C 504 E-00$	$0.15150457 \mathrm{E}-00$
-C. 7686 ECSIE-01	$0.37574331 \mathrm{E}-00$	0.16232111E-00
-C. $79675742 \mathrm{E}-01$	$0.38285314 \mathrm{E}-00$	$0.16539255 \mathrm{E}-00$
-C. $71586076 \mathrm{E}-\mathrm{Cl}$	$0.39494664 \mathrm{E}-00$	$0.17061695 \mathrm{E}-00$
-C.58675318E-01	$0.40081573 \mathrm{E}-00$	$0.17315239 \mathrm{E}-00$
-C.44186313E-01	$0.39957620 \mathrm{E}-00$	$0.17261691 \mathrm{E}-00$
-0.29387363E-C1	$0.39533022 \mathrm{E}-00$	$0.17078265 \mathrm{E}-00$
-C. $14651153 \mathrm{E}-\mathrm{Cl}$	$0.39156146 \mathrm{E}-00$	$0.16915455 \mathrm{E}-00$

$E T A=C .500000$

$0.31 \mathrm{C} 22427 \mathrm{~F}-00$ 0.31C22427E-00 $0.21 C 76243 \mathrm{E}-00$
$0.31959519 \mathrm{E}-00$ $0.31959519 \mathrm{E}-00$
$0.38510072 \mathrm{E}-00$ $0.38510072 \mathrm{E}-00$ $0.40502119 \mathrm{E}-00$
$0.42978168 \mathrm{E}-00$ $0.42978168 \mathrm{E}-00$ $0.45708095 \mathrm{E}-00$
$0.47744758 \mathrm{E}-00$ $0.48920428 \mathrm{E}-00$ $0.48920428 \mathrm{E}-00$
$0.49458018 \mathrm{E}-00$ $0.49562594 \mathrm{E}-00$

ETA $=\mathbf{C . 6 0 0 0 0 0}$
$x=1.250000$

ETA $=$ C. 700000
$-\partial p / \partial \eta$
$0.40759199 \mathrm{E}-00$
$0.32844592 \mathrm{E}-00$ $0.37972569 \mathrm{E}-00$ C. $45761981 \mathrm{E}-00$ $0.49094352 \mathrm{E}-00$ 0.51542228 E 00 0.54901273 E 00 0.58383922 E 00 0.61067162 E 00 0.62592120 E 00 0.62875566 E OO
$x=1.94444$

$-\partial P / \partial \eta$	
$0.638 C 6528 E$	00
0.57592122 E	00
0.58739269 E	00
0.65117907 E	00
0.69811418 E	00
0.72547035 E	00
0.75778046 E	00
0.79966220 E	00
0.83975046 E	00
0.86492570 E	00
0.86567468 E	00

$E T A=C .800000$

Y	U(x)
1.00 CCCC	c.
0.900 CCC	C. $32975718 \mathrm{E}-\mathrm{CC}$
0.80 CCCC	C. E1374e85E CC
c.7cccce	C.E4776569E CC
0.60 CCCC	C.1C293482E CI
0.50cccc	C. 11605487E C1
c. 40 COCO	C. 12495762 ECl
c. 30 CCCC	C. $13 \mathrm{C6C648E} \mathrm{C1}$
$0.2006 C C$	C. 13388 CH 4 ECl
$0.10 C C C C$	C. $13554634 \mathrm{E} \mathrm{C1}$
c.	C. 13605798 Cl

\dagger	U(x)
1. ccccoc	C.
c. SCCCOC	C. $25825847 \mathrm{E}-\mathrm{CC}$
c.s0CCCC	C. $5614775 C E C C$
c. 700 CCC	C.7e8teraee CC
c.6CCCCC	C. $57934715 E C O$
$0.50 C C C C$	C. 11338412 ECL
c.40CCCC	C. 12538788 Cl
c. 3 ccccc	C. 13422 E71E CI
c. 200 ccc	C. $14 \mathrm{C} 22^{\circ} \mathrm{C} 5 E$
c. 10006	C. 14365 C56E Cl

C. 14482 C 33 E Cl

UTY)
-0.883823E3E-03
-0.88382363E-03
-C.31241333E-02
-0.605575C2E-02
-0.87935441E-02
-C.1C54E17CE-01
-C.10864105E-01
-0.96816579E-02
-C.72153890E-02
-C. $38402925 E-02$

$E T A=C .900000$ U(y)
C. $18493968 E-03$ -C. $5970853 \mathrm{CE}-03$ -C. $11299379 \mathrm{E}-02$ -C. $16502736 \mathrm{E}-02$ -C. 2C221177E-02 -C. 2141 E557E-C2 -C. $19612320 \mathrm{E}-02$ $-C .19612320 \mathrm{E}-02$
$-0.14944381 \mathrm{E}-02$ $-C .80688124 E-03$ c.
$x=3.333333$

$-\partial p / \partial \eta$	
0.1214865 E	01
0.11642403 E	01
0.11618107 E	01
0.12076292 E	01
0.12623393 E	01
0.12990617 E	01
0.13253812 E	01
0.13541070 E	01
0.13823701 E	01
C .139444442 E	01
0.13735440 E	01

$-\partial \mathrm{P} / \partial \mathrm{X}$
$0.58313560 \mathrm{E}-01$
$0.55883539 \mathrm{E}-01$
$0.55766917 \mathrm{E}-01$
$0.57966205 \mathrm{E}-01$
$0.60592290 \mathrm{E}-01$
$0.62354963 \mathrm{E}-01$
$0.63618297 \mathrm{E}-01$
$0.64997142 \mathrm{E}-01$
$0.66353765 \mathrm{E}-01$
$0.66933325 \mathrm{E}-01$
$0.65930114 \mathrm{E}-01$
$0.65930114 \mathrm{E}-01$

$$
-\partial P / \partial x
$$

$0.93067281 \mathrm{E}-01$ $0.63228730 \mathrm{E}-01$ $0.95878556 \mathrm{E}-01$ $0.11553022 \mathrm{E}-00$ $0.12893450 \mathrm{E}-00$ $0.12893450 \mathrm{E}-00$
$0.13712428 \mathrm{E}-00$ $0.13712428 \mathrm{E}-00$
$0.14323428 \mathrm{E}-00$ $0.14676128 \mathrm{E}-00$ $0.14676128 \mathrm{E}-00$ $0.14868778 \mathrm{E}-00$

$$
-\partial p / \partial x
$$

$0.78257664 \mathrm{E}=01$ $0.63061618 \mathrm{E}-01$ $0.72907333 \mathrm{E}-01$ $0.87863004 \mathrm{E}-01$ $0.94261157 \mathrm{E}-01$ $0.98961079 \mathrm{E}-01$ $0.10541044 \mathrm{E}-00$ $0.11209713 \mathrm{E}-00$ $0.11724895 \mathrm{E}-00$ $0.12017687 \mathrm{E}-00$
$0.12072109 \mathrm{E}-00$

- $\partial p / \partial r$ $0.44039814 \mathrm{E}-01$ $0.56227710 \mathrm{E}-01$ $0.91049282 \mathrm{E}-01$ $0.10583328 \mathrm{E}-00$ $0.93288837 E-01$ $0.71063154 \mathrm{E}-01$ $0.50280061 \mathrm{E}-01$ $0.33622450 \mathrm{E}-01$. $20505212 \mathrm{E}-01$. $96963452 \mathrm{E}-0$ 0.
- ap/ar
. $20698187 E-01$ 0.24861351E-01 $0.42658168 \mathrm{E}-01$ $0.60146527 \mathrm{E}-01$ $0.60146527 \mathrm{E}-01$ $0.64467368 \mathrm{E}-01$ $0.57670863 \mathrm{E}-01$ $0.46146704 \mathrm{E}-01$ $0.33797868 \mathrm{E}-01$ $0.21968396 \mathrm{E}-0$ 0.
- $\partial p / \partial y$
$0.10418358 \mathrm{E}-01$. $10793725 \mathrm{E}-01$ $0.16559631 \mathrm{E}-01$ $0.25298740 \mathrm{E}-01$ $0.30975007 \mathrm{E}-01$. $31231278 \mathrm{E}-01$ $0.27360567 \mathrm{E}-01$ $0.21344184 \mathrm{E}-01$ $0.14455435 \mathrm{E}-01$ $0.72698268 \mathrm{E}-02$ 0.
$-\partial p / \partial x$
$0.54233842 \mathrm{E}-02$
$0.62199493 \mathrm{E}-01$ $0.63438412 \mathrm{E}-01$ 0.84223060E-02 0.7539633 E O. $12114757 \mathrm{E}-01$ $0.81840290 \mathrm{E}-01$ 0.86363519 E -01 $0.90693051 \mathrm{E}-01$ 0.9342967 E-O1

$-8 p / \partial x$
$0.46288092 \mathrm{E}-01$ $0.45917112 \mathrm{E}-01$ $0.46141213 \mathrm{E}-01$ $0.46756913 \mathrm{E}-01$ $0.47359222 \mathrm{E}-01$ $0.47491255 \mathrm{E}-01$ $0.46946050 \mathrm{E}-01$ $0.45834303 \mathrm{E}-01$ $0.44433434 \mathrm{E}-01$ $0.43027387 \mathrm{E}-01$ $0.41846146 \mathrm{E}-01$
$-\partial p / \partial \gamma$
$0.23033426 \mathrm{E}-02$ $0.18585636 \mathrm{EF}-02$ $0.18501352 \mathrm{E}-02$ $0.18501352 \mathrm{E}-02$. $23821115 \mathrm{E}-02$ 0.38056816E-02 $0.38056816 \mathrm{E}-02$ $0.34992789 \mathrm{E}-02$ $0.25871935 \mathrm{E}-02$ $0.13666206 \mathrm{E}-02$ 0.
- $2 P / 2 Y$ $0.25051383 \mathrm{E}-03$ $0.18996381 \mathrm{E}-03$ $0.18603746 \mathrm{E}-03$ $0.25691768 \mathrm{E}-03$ $0.38127790 \mathrm{E}-03$ $0.50949004 \mathrm{E}-03$ $0.58587992 \mathrm{E}-03$ $0.57101344 \mathrm{E}-03$ $0.45367420 \mathrm{E}-03$ $0.25081922 \mathrm{E}-03$ 0.

1. cocccc
.
. secccc . 7 CCCCC . OCCCCC SOCCCC c. c. 3 CCCCC c. 20 CCCO c. 1 CCCC c.

$0.39999999 \mathrm{E}-01$

	$-\partial p / \partial Y$
0.	
0.	
0.	
0.	
0.	
0.	
0.	
0.	
0.	
0.	

TABLE VII. Stream Functions And Yorticities For Case II With A 40×20 Grid

$E T A=-C .350000$	
Y	PSI
1. 020000	1. CCOCOOOO
0.950000	0.95150056
C. 90000 C	0.96293527
0.850COC	C. 85424592
0.860000	0.80538730
0.75000 C	0.75632896
0.70000 C	0.70705432
0.650C0C	0.65755846
C. 6 COCOC	0.65784530
0.55000C	0.55792502
0.50000C	0.50781192
0.450000	0.45752276
C. 400000	C.40707560
0.350000	0.35648902
c. 30000C	0.30578162
c. 250000	0.25497176
0.260000	0.20407739
0.150000	0.15311605
0.10000 C	0.10210488
0.050000	0.05106067
c.	0.

ETA $=-0.300000$	
Y	PS 1
1.000000	1.00000000
0.950000	0.95215853
C. 900000	0.90419858
0.85000 C	0.85602278
C.86000C	0.80756529
0.750000	0.75879154
C.7C0000	0.76969199
0.65000 C	0.66027468
0.60000 C	0.61055855
C. 550000	0.56056841
0.50000 C	0.51033171
0.45000 C	0.45987637
0.400000	0.46922963
0.350000	0.35841750
0.350000	0.30746455
0.25000 C	0.25639386
0.20000 C	0.20522720
0.150000	0.15398513
0.150000	0.10268734
0.05000 C	0.05135280
0.	0.

$E T A=-0.250 C 00$

Y	PSI
1.00000 C	1.00000000
0.950000	0.95304870
C. 960000	0.90587623
C. 850000	0.85832321
0.80000 C	0.81030679
C. 750000	0.76180533
0.700000	0.71283583
0.650000	0.66343552
0.60000 C	0.61364973
C. 550000	0.56352506
0.500000	0.51310585
0.450000	0.46243290
0.40000 C	0.41154296
0.350000	0.36046910
0.360000	0.30924099
0.250000	0.25788552
0.20000 C	0.20642722
0.15000 C	0.15488876
0.160000	0.10329138
C. 050000	0.05165529

$x=-0.357143$
BMEGA
0.
$0.96909539 \mathrm{E}-11$
$0.11803395 \mathrm{E}-10$
$0.89228562 \mathrm{E}-11$
$0.52538323 \mathrm{E}-11$
$0.26332369 \mathrm{E}-11$
$0.11773234 \mathrm{E}-11$
$0.48305823 \mathrm{E}-12$
$0.18529411 \mathrm{E}-12$
$0.67306826 \mathrm{E}-13$
$0.23367556 \mathrm{E}-13$
$0.78076752 \mathrm{E}-14$
$0.25239535 \mathrm{E}-14$
$0.79267433 \mathrm{E}-15$
$\mathrm{C} .24266443 \mathrm{E}-15$
$0.72609495 \mathrm{E}-16$
$0.21282587 \mathrm{E}-16$
$0.61204348 \mathrm{E}-17$
$0.17221177 \mathrm{E}-17$
$0.44631887 \mathrm{E}-18$
0.

r	$p S 1$
$1.0 C 000 C$	$1.0 C 000000$
0.95000 C	0.95884109
0.90000 C	0.91548409
0.85000 C	0.86994907
$0.8 C 000 \mathrm{C}$	0.82274383
0.750000	0.77431694
$0.7 C 0000$	0.72498731
0.65000 C	0.67497391
$0.6 C 0000$	0.62442966
0.550000	0.57346467
0.500000	0.52216090
0.45000 C	0.47058138
$0.4 C 0000$	0.41877589
0.350000	0.36678492
$0.3 C 0000$	0.31464215
0.25000 C	0.26237635
0.200000	0.21001261
0.150000	0.15757328
0.100000	0.10507882
0.050000	0.05254832
	0.

Y	PSI
1.000000	1.00000000
C.950000	0.96350293
0.960000	0.92148674
0.850000	0.87595651
0.80000 C	0.82835694
0.75000 C	0.77944750
C. 7C0000	0.72963889
0.650000	0.67917375
0.600000	0.62820828
0.550000	0.57685000
C. 500000	0.52517702
0.450000	0.47324850
0.40000 C	0.42111084
0.350000	0.36880153
0.360000	0.31635179
0.250000	0.26378816
0.200000	0.21113385
0.150000	0.15840954
c. 100000	0.10563412
0.050000	0.05282532
0.	0.

γ	PSI
1.000000	1.00000000
C. 950000	0.97157998
0.96000 C	0.92948017
0.850000	0.88295694
0.810000	C. 83444630
C. 750000	0.78478716
C. 70000 C	0.73435555
0.65000 C	0.68335858
0.60000 C	0.63192717
C. 550000	0.58015174
C. 500000	0.52809855
C. 450000	0.47581834
C. 400000	0.42335133
C. 350000	0.37073029
0.360000	0.31798273
0.250000	0.26513229
0.260000	0.21219969
0.150000	0.15920354
0.10000 C	0.16616098
0.050000	0.05308800
c.	c.

$E T A=-0.150000$		-0.147059
Y	PSI	gMEGA
1.000000	1.00000000	c.
0.950000	c. 95607109	0.13639501E-0
0.96000C	0.91120236	$0.10419635 \mathrm{E}-03$
0.85000 C	0.86510108	$0.50805543 \mathrm{E}-04$
0.860000	0.81783766	C. $20007344 \mathrm{E}-04$
0.750000	0.76959403	$0.69243948 \mathrm{E}-05$
0.70000 C	0.72055466	$0.21941425 E-05$
0.650000	0.67087489	$0.65147810 \mathrm{E}-06$
0.600000	0.62067807	C. $18390054 \mathrm{E}-06$
0.550000	0.57006077	$0.49836247 \mathrm{E}-07$
0.500000	0.51909908	$0.13055231 \mathrm{E}-07$
0.45000 C	0.46785375	$0.33228716 \mathrm{E}-08$
0.400000	0.41637418	C.82493281E-09
0.350000	0.36470120	$0.20036346 \mathrm{E}-09$
0.300000	0.31286932	$0.47727346 \mathrm{E}-10$
0.250000	C. 26090827	$0.11171769 \mathrm{E}-10$
0.200000	c. 26884416	$0.25738823 \mathrm{E}-11$
0.150000	0.15670045	C. $58441322 \mathrm{E}-12$
0.100000	0.10449859	$0.13066958 \mathrm{E}-12$
0.050000	c. 05225870	$0.27612403 E-13$
	0.	c.
	. 100000	-0.092593

$0.82810203 \mathrm{E}-02$ $0.49623283 \mathrm{E}-02$ $0.20002148 \mathrm{E}-02$ $0.67324327 \mathrm{E}-03$ $0.20368095 \mathrm{E}-03$ $0.57339092 \mathrm{E}-04$ $0.15312787 \mathrm{E}-0$ $0.39260907 \mathrm{E}-05$ $0.97418182 \mathrm{E}-06$ $0.23525331 \mathrm{E}-06$ $0.55518158 \mathrm{E}-07$ $0.12843572 E-07$ $0.29196391 \mathrm{E}-08$ $0.65340865 \mathrm{E}-09$. $14418115 \mathrm{E}-09$ 0. 67601404 E $0.14366028 \mathrm{E}-11$ $0.29017 \mathrm{C} 24 \mathrm{E}-12$ 0.
$x=-0.043860$
0.

RMEGA
$0.29085883 \mathrm{E}-00$ $0.12606420 \mathrm{E}-00$ $0.40714610 \mathrm{E}-01$ $0.11585104 \mathrm{E}-01$ $0.30633684 \mathrm{E}-02$ C.77132518E-03 $0.18741576 \mathrm{E}-03$ $0.44301939 \mathrm{E}-04$ $0.10241769 \mathrm{E}-04$ C. $23239382 \mathrm{E}-05$ -. $11421957 \mathrm{E}-06$ $0.24820922 \mathrm{E}-07$ C. $53305446 \mathrm{E}-08$ -. $11323003 \mathrm{E}-08$ $0.23805215 \mathrm{E}-09$ C. $49557102 \mathrm{E}-10$ C. $49557102 \mathrm{E}-10$ $0.20043205 \mathrm{E}-11$
$x=$
gNEGA C. 22736007 E 02 C. 22736007 E
0.62024548 E
01 0.62024548E O1 $0.39805771 \mathrm{E}-00$ C. $96420543 \mathrm{E}-01$ 0. $22879688 \mathrm{E}-01$ $0.53383476 \mathrm{E}-02$ C. $1227323 \mathrm{CE}-02$ $0.27838559 \mathrm{E}-03$ $0.62348542 \mathrm{E}-04$ $0.13796434 \mathrm{E}-04$ $0.30178276 \mathrm{E}-05$ $0.65284421 \mathrm{E}-06$ $0.13973123 \mathrm{E}-06$ $0.29601236 \mathrm{E}-07$ $0.62087570 \mathrm{E}-08$ $0.12897498 \mathrm{E}-08$ $0.26539902 t-09$ $0.54034530 \mathrm{E}-10$ C. $10501622 \mathrm{E}-10$

TABLE VII. - Continued

ETA $=$	0.050000	$x=0.043860$
-	PS1	gMEGA
1.000000	1.00000000	$0.17398572 E 02$
0.95000 C	0.97825179	$0.85688835 E 01$
C.9C000C	0.93779965	$0.31769177 E 01$
0.850000	0.89072090	$0.10096575 E 01$
C. 810000	0.84123395	C.29074664E-00
c. 750000	0.79067720	$0.78165720 \mathrm{E}-01$
0.700000	0.73949701	$0.19986854 \mathrm{E}-01$
0.650000	0.68787537	$0.49198911 \mathrm{E}-02$
C. 600000	0.63591027	$0.11753178 \mathrm{E}-02$
0.55000 C	0.58366710	$0.27398986 \mathrm{E}-03$
0.500000	0.53119478	$0.62569453 \mathrm{E}-04$
0.450000	0.47853198	$0.14035664 \mathrm{E}-04$
0.400000	0.42571034	$0.30989908 \mathrm{E}-05$
0.35000 C	0.37275641	$0.67449216 \mathrm{E}-06$
0.3COCOC	0.31969288	$0.14487676 \mathrm{E}-06$
0.250000	0.26653963	0.30737456E-07
0.200000	0.21331441	$0.64458536 \mathrm{E}-08$
0.150000	0.16003329	$0.13367282 \mathrm{E}-08$
0.160000	0.10671122	$0.27385440 \mathrm{E}-09$
C. 050000	0.05336226	$0.53471288 \mathrm{E}-10$
c.	c.	0.
ETA $=$	0.100000	$x=0.092593$

Y	PSI
1.000000	1.00000000
$0.95 C 00 C$	0.98321863
$0.9 C 0000$	0.94585957
0.850000	0.89924327
0.80000 C	0.84908446
0.75000 C	0.79760697
$0.7 C 0000$	0.74556211
0.650000	0.69319209
0.600000	0.64058360
0.55000 C	0.58777874
0.500000	0.53480636
0.450000	0.48169008
0.400000	0.42845658
0.350000	0.37510630
C .300000	0.32167380
0.250000	0.26816817
0.200000	0.21460333
0.15000 C	0.16099212
0.160000	0.10734680
0.050000	0.05367897
0.	

	0.150000
y	PS1
1.0COCOC	1.00000000
0.950000	0.98656549
0.960000	0.95286500
0.85000 C	0.90779938
0.860000	0.85761945
0.750000	0.80544762
0.760000	0.75254755
0.65000C	0.69935825
C.650000	0.64601544
0.550000	0.59255905
0.500000	0.53900342
0.450000	0.48535768
0.450000	0.43163063
0.350000	0.37783152
0.300000	0.32396974
0.250000	0.27005474
0.260000	0.21609581
0.150000	0.16210204
0.100000	0.10808235
0.050000	0.05404545
Q.	0.

γ	PS1
1.000000	1.00000000
C. 950000	0.98876058
0.96000 C	0.95858616
C.85ccoc	0.91583586
0.860000	0.86639220
0.750000	0.81395847
0.76000 C	0.76036578
$0.650 C O C$	0.70637210
0.600000	0.65224566
0.550000	0.59806569
0.50000 C	0.54384942
0.450000	0.48959786
0.4 COCOC	0.43530992
C. 350000	0.38098592
C. 30000 C	0.32662793
$0.2500 C C$	0.21223925
C. 2 COCOC	0.21782412
C. 150000	0.16338737
0.10000 C	0.10893415
0.050000	0.05446985
0.	0.

$x=0.147059$

$x=$

γ	PSI	gMEGA
1.000000	1.00000000	C.78048586E O1
3.95000 C	0.99024393	0.70478869 E O1
2.96CCOC	0.96313672	$0.54593616 \mathrm{E}^{\text {O }}$ O1
2.850000	0.92305496	C.35157407E 01
2.860000	0.87500580	0.19304159 E O1
3.75000 C	0.82284252	0.93204951 E OO
3.7C000C	0.76885518	$0.40533137 \mathrm{E}-00$
3.650000	0.71417361	$0.16171565 \mathrm{E}-00$
3.6C0000	0.65927526	$0.59990481 \mathrm{E}-01$
3.550000	0.60433225	$0.20918407 \mathrm{E}-01$
3.500000	0.54939359	$0.69150353 \mathrm{E}-02$
3.450000	0.49446586	0.21819177E-02
J.400000	0.43954407	$0.66075445 E-03$
1.350000	0.38462225	0.19289751E-03
2.30000C	0.32969598	$0.54484 \mathrm{CO2E-04}$
). 250000	0.27476285	C. $14933279 \mathrm{E}-04$
3. 200000	0.21982202	0. $39814547 \mathrm{E}-05$
2. 150000	0.16487385	$0.10345068 \mathrm{E}-05$
2.150000	C. 16991956	$0.26165903 \mathrm{E}-06$
2.050000	0.05496091	0.61364727E-07
2.	0.	c.

Y	PSI
1.00000 C	1.00000000
1.95000 C	0.99130770
1.900000	0.96675280
1.85000 C	0.92937253
1.800000	0.88317598
1.75000 C	0.83180580
1.760000	0.77780683
2.650000	0.72264877
1.600000	0.66706149
1.55000 C	0.61136083
1.500000	0.55566358
1.450000	0.56000247
1.40000 C	0.44437942
1.35000 C	0.38878737
1.300000	0.33321819
1.250000	0.27766500
1.20000 C	0.22212256
1.150000	0.16658713
1.100000	0.11105604
1.050000	0.05552746
1.	0.

EMEGA

0.69538413 E OI $0.63988394 E$ OI 0.52920896 E 01 0.37614208 E OI 0.23089854 E OI 0.12505648 E 01 $0.61003341 E 00$ $0.27248918 \mathrm{E}-00$ $0.11291285 \mathrm{E}-00$ $0.43856692 \mathrm{E}-0$ $0.16101170 \mathrm{E}-0$ $0.56254912 \mathrm{E}-02$ $0.18808672 \mathrm{E}-02$ $0.60454904 \mathrm{E}-03$ $0.18750545 \mathrm{E}-03$ O. $56293276 \mathrm{E}-04$ $0.46460906 \mathrm{E}-05$ $0.12771793 \mathrm{E}=05$ $0.32222097 \mathrm{E}-06$ 0.
$x=0.448718$

γ	PSI
1.000000	1.00000000
2.950000	0.99211631
3.900000	0.96966422
2.850000	0.93483292
3.800000	0.89073794
3.750000	0.84059822
2.700000	0.78699563
2.650000	0.73164298
2.650000	0.67551953
2.550000	0.61911868
2.500000	0.56266031
2.450000	0.50622857
0.400000	0.44984750
0.350000	0.39351743
0.300000	0.33723108
0.250000	0.28097969
0.200000	0.22475512
0.150000	0.16855041
0.100000	0.11235961
0.050000	0.05617767
0.	0.

QMEGA
$0.63069521 E 0$ 0.58560017 E O $0.38637643 E$ 0.26018436 E OI 0. 15583604 E O1 0.84328289 E OO . $41822582 \mathrm{E}-00$. $192367292 \mathrm{E}-0$ $33687586 \mathrm{E}-0$ $0.13013668 \mathrm{E}-0$ $0.48027371 \mathrm{E}-02$ $0.17010175 \mathrm{E}-02$ $0.58036949 \mathrm{E}-03$ $0.19135980 \mathrm{E}-03$ $0.61134326 \mathrm{E}-04$ $0.18958171 \mathrm{E}-04$ $0.56884918 \mathrm{E}-05$ 0.
$=0.555556$
gMEGA
$0.57936131 E$ O1 $0.54024324 E$ OI 0.47794174 E C. 288036106 E O $0.28036106 E$
$0.18314552 E$ 0.18314552 E O 0.10874566 E OI 0.59359409 E OO
$0.30095012 \mathrm{E}-00$ 0. $14296500 \mathrm{E}-00$ $0.64104978 \mathrm{E}-01$ $0.27300333 \mathrm{E}-01$ $0.11100002 \mathrm{E}-01$ $0.43278141 \mathrm{E}-02$ $0.16241241 \mathrm{E}-02$ $0.58848852 E-03$ 0. $20642041 \mathrm{E}-03$ $0.70202617 \mathrm{E}-04$ $0.23034222 \mathrm{E}-0$ $0.67694832 \mathrm{E}-05$ 0 .

ETA $=$	C. 450000	$x=0.081818$	ETA $=$	5.650ctic	$x=1.547619$
${ }^{\gamma}$	PS 1	PN\% GA	γ	PSt	CKEGA
1. ccoccc	1. $\operatorname{ccccocos}$	C.53740267t 01	1. 020000	$1 . \operatorname{ccococos}$	C.423213E3E 01
c.95c0CC	0.99328247	0.59159487t 01	C.95000	C.95475883	7. 39499676 t 01
c. 9 CCCCC	C.914C3798	C.45156157E 01	c. scccec	0.97954717	c. 36407223 t 01
C. 85 CCOC	C.94359133	C. 37971719 O 01	C. 85 ccoc	C.95329128	C. 3235439 Rt 01
C. 8 COCOC	C.9C382398	C. $242 \overline{161 C 3 C=~ C 1 ~}$	C. 8 CCOOC	C.92284016	C.28773417t 01
c. 750006	0.85697766	0.2054475日t 01	c. 75000 C	$0.8 E 322596$	$0.242739 C 1 t$ 01
c. 7 CCCCC	C.0C525230	C.13241s18t Cl	c. 7 CCCCC	0.83758540	$0.19625419 E^{01}$
C. 65 CCCC	C. 75047093	c.76854538t CO	C. 65 CCOC	0.78709041	C. 15168677 t 01
C. 6 CCCOC	C. 69394761	C. $43747151 t-\mathrm{CO}$	C. 6 COCOC	C. 73286133	0.1120469 Cr 01
C. 550000	c. 63652597	c. 227834272 -00	C. 55000 C	C.67505135	0.79195916200
0.5COCCC	c. 57869605	C.1121354tE-00	c.5CCCCC	C.617C0032	0.53672963 L 00
C. 45 CCOC	C.52071749	C. $52449442 \mathrm{t}-01$	C. 45 CCCC	C. 55622220	C. $34964275 t-00$
C. 4 COCCC	C. 46271510	C. $214271351-01$	C. 40000 C	0.49581902	2.21347C59E-00
c. 35000 C	0.46474176	0.10034715E-01	0.350006	0.43436960	$0.13310695 t-30$
c. 3 CCCCC	0.34681471	C.41366538t-02	c. 3 cccce	C. $3725 \mathrm{C409}$	C. 18154944E-01
C. 25 COOC	0.28893515	C. 16461 (43t-02	C. 25000 C	C. 31653305	C. $44509588 \mathrm{t}-01$
c. 2C0000	0.23109746	C.63395394t-03	C. 2 CCOOC	C. 24847510	C.24595349E-01
c. 15000 C	0.17329368	C.2365479Ct-03	c. 15000 C	0.18637465	C. $13124300 \mathrm{t}-01$
c.1Cccce	0.11551521	C. $848764035-04$	0.1c0ccc	C. 12425536	$0.6588 \mathrm{C} 245 \mathrm{t}-02$
C. 05 CCOC	0.05775345	C. $26889722 \mathrm{t}-04$	c. CSCCCC	C.062128P0	c. 27167 (21t-02
c.	0.	0.	c.	0.	c.
ETA $=$	0.500006	$x=0.833333$	ETA $=$	0.7cccec	$x=1.944444$
${ }^{\text {r }}$	PS 1	2VEGA	${ }^{\text {y }}$	PS 1	RMEGA
1.00000 C	$1.00 \operatorname{cccc} 00$	C. 50234734 E 01	1.0COCOC	$1.000000^{\circ} \mathrm{O}$	$0.401569 C C E$ O1
C. 95 CCOC	0.99372066	C.46939935t 01	c.95CCCC	C.9549AC 19	C. 37497865 E O1
c. 9 CCOOC	C.97571950	0.42656132 t 01	C.9COCOC	C.98053744	C. 34667794 t 01
C. 850600	C.94710393	0.36844108 ECL	C. 850000	C.95753199	C. 31542554801
c. 86000C	0.96937702	$0.29723 C 50601$	c. 8 COOOC	0.92660054	0.2806675 se 01
C. 75 CCOC	C.86436705	C. 22213260 E O1	c. $7500 C C$	C.88866851	C.24282337t of
C. 7 CCCOC	0.81398360	C. 1537A718t O1	C. 7 CCCOC	C.84468874	C. 20334408 tc
c. 65000 C	0.75994682	C.9902207tE CO	c. 650006	0.79565457	C. 16432551 E 01
0.600006	0.7C361818	0.59678666 E 00	C. 610000	C.74254619	0.12797891 t 01
C. 55 CCCC	0.64596318	$0.33868 \mathrm{C} 38 \mathrm{t}-00$	C. 55 Cccc	C.62627489	C.96056346t 00
C.5CCCCC	C.5876C472	c. $18201672 t-00$	c. 5 CCCCC	0.62763929	C.64544949E OO
c. 45000 C	c. 52891234	$0.93106103 t-01$	c. 450000	0.56730076	C. $48640474 \mathrm{E}-00$
C. 4 COCOC	0.47008855	$0.455319292-01$	0.400000	$0.5 C 577915$	$0.32921670 \mathrm{E}-00$
C. 35 CCOC	C.41123530	C. $21369957 \mathrm{E}-01$	C. 35 CCOC	C.44346382	C. $216 \mathrm{C} 2242 \mathrm{E}-00$
c. 3 CCOOC	C. 35239860	C.96582615t-02	C. 360000	C. 38063364	C. $13764138 \mathrm{E}-00$
0.25c000	C. 25359516	C.42153523E-02	C. 250000	0.31748044	C.85240271E-01
C. 2 COO C	0.2348275 C	$0.17809942 \mathrm{E}-02$	C. 2 COOOC	0.25413121	$0.51250079 \mathrm{t}-01$
C. 15 CCCC	$0.176 C 9151$	0.7286429Ct-03	C. 150000	0.19666717	c. $29677111 \mathrm{E}-01$
c. 1 CCCOC	0.11738031	0.285593C9E-03	c. 100000	0.12713864	C. $16017374 \mathrm{E}-01$
C. 050000	0.05868593	c. $97272182 \mathrm{E}-04$	c. cscocc	c.C6357644	C.6959288CE-02
c.	c.	0.	c.	0.	c.
ETA $=$	c. 55 CCCC	$x=1.018519$	E1A=	c.750000	$x=2.500000$
r	PS1	anEGA	${ }^{\boldsymbol{r}}$	PSI	ENEGA
1. OCCCCC	1. $\operatorname{Ccccoc} 00$	O.47248601E OI	1. CCCCOC	1.06000000	C. 35061439 E O1
c. 95 CCCO	0.99459392	C.44132C00t O1	c.95C00C	0.99524231	C. 35594565 ECl
c. 9CCCOC	C. 97716229	C. 40370416 E 01	c. 900000	0.98158661	C.33021133E O1
C. 85000 C	0.95016666	0.35558316 t 01	C. 85000 C	0.95967792	0.30264381E O1
c. 8 CCCCC	0.91434669	C. 29713713 E 01	C. 8 CCCCC	0.93020809	C. 27285662 E O1
c. 75 CCCC	C.87117819	C.23338243E 01	C. 75 CCCC	0.89392517	C. 24098583 E O1
c. TCCCOC	0.82229943	C.17174017E O1	c. 700000	0.85162964	C. 20774551 ECO
c. 65000 C	$0.76926 C 35$	C.11854813E 01	0.6500CC	0.86415617	0.17432590 t O1
c. 6 CCCCC	0.71339334	$0.77 C 36886 \mathrm{E} 00$	c. 6 CCCCC	C. 75234327	C. $14214422 E$ O1
C.55CCCC	0.65572926	C. $47340751 \mathrm{E}-00$	C. 55000 C	C. 69699768	C. 11253837 E O1
c. 5 COCOC	C. 59699794	c. 276370565 -00	c. Sccooc	0.63386064	C. 86514327 E OC
c. 45000 C	0.53767726	$0.15393487 \mathrm{E}-00$	c. 450000	0.57858278	$0.6461743 C E$ OD
0.4 COCCC	C.4786587C	0.82123298E-01	0.4 CCCCC	0.51671650	C. $46934040 \mathrm{E}-00$
C. 35 CCOC	c. 41830833	C.42110813t-01	c. 35000 C	0.45368423	C. $33184858 \mathrm{t}-00$
c. 3 COCCC	C. 35851429	C. 208188C9E-01	C. 360000	C. 38984545	C. 27857 CRGE -CC
C. 25000 C	0.25871912	C.9949559Ct-02	c. 250000	0.32544588	$0.15331943 \mathrm{E}-00$
0.2 CCCCC	$0.23894 C 40$	C. $46054857 \mathrm{E}-02$	C. 2 CCCOC	C. 26068307	C.99825267t-01
c. 150006	C. 17918260	c. $20633554 \mathrm{t}-02$	c. 15000 C	$0.19567+16$	C.62341329t-01
c. 160006	C. 11944360	C. $88147257 \mathrm{E}-03$	c. 16000 C	C. 12052039	C. $3590136 \mathrm{CE}-01$
c. 0500 CC	0.05971826	$0.32156681 t-03$	c. C5000C	0.06527945	$0.16317382 \mathrm{t}-01$
c.	0.	c.	c.	c.	c.
$E T A=$	c.600coc	$x=1.250000$	ETA $=$	C. 8 cccoc	$x=3.333333$
${ }^{\gamma}$	PSI	OVEGA	${ }^{r}$	PSt	RMEGA
1. CCCCOC	1.06000000	C.44649362E 01	1. ceccce	1. $\operatorname{CCOCOCOO}$	C. 75970569 E O1
c.95000C	0.99441883	C.41680862C 01	c. 95000 C	0.99550368	0.33724373 E O1
c.900006	0.97842155	0.3829435Ct 01	c. 96000c	0.98257656	c. 31415225 t 01
C. 850000	C. 95286661	C. 34203401 E 01	C. 85 CCCO	c. 96179678	C.28998382E O1
C. 8COCCC	0.91879462	C. 29353423 t 01	c. 8 CcCOC	C. 93376986	C. 26449972 K O1
C. 750000	C.87743049	C.2399217CE O1	C. 75 CCCC	0.85713458	C.23772933E 01
0.76000 C	0.83015731	0.18587358 EL	c. 7 CcCOC	0.85856210	$0.21000417 E 01$
C.65CCCC	C. 77831557	C. 13613179 E 01	C. 65 CCCC	C. 81274746	C.18193583t OI
c. 6 CCCOC	0.72315792	C.948151t9t oo	C. 650000	0.76239417	C. 15432812 E O1
C. 55000 C	C. 6 E572186	c. t 2691949 t OC	C. 55000 C	0.76817385	0.12804143 E 01
c. 5 COOCC	0.65680490	C. $39547937 t-00$	c. 5 COCOC	0.65086473	0.10385054 t O1
C. 45 CCCC	C. 54697721	C. 23 d74614t-00	0.45 CCCC	C.3Sc83201	C. 82332849 EO
C. 4 CCCOC	C.48662C81	C. 13847190t-00	C. 4 CCCCC	0.52981359	C.63810942E 00
c. 35 CCCC	0.42597675	c. $77318203 \mathrm{E}-01$	c.350CCC	C. 4 E521197	C. $48350502 \mathrm{E}-00$
c. 3C000C	0.36518861	C.41711395t-01	0.3COCOC	0.45041272	$0.35799291 t-00$
C. 25 CCOC	C. 36433704	C. $21784893 \mathrm{E}-01$	c. 25 CCCC	c. 33472832	C. $25847115 \mathrm{E}-00$
c. 2 CCCCC	c. 24346413	C. $11029719 \mathrm{t}-\mathrm{Cl}$	c. 2 COCCC	9.2684C615	C.18088239E-00
C. 150000	0.18258964	C. $54001143 \mathrm{t}-02$	c. 150000	C. $2 \mathrm{C163853}$	$0.12073708 \mathrm{E}-00$
c. 10000 C	0.12172684	$0.25365459 \mathrm{t}-02$	C. 10000 C	0.13457417	$0.73474564 \mathrm{t}-01$
c. 05 CCCC	C.CtC85月4\%	0.974 P/C85t-03	c.05CCCC	0.06732956	$0.34654 C 03 E-01$
c.	c.	c.	c.	c.	c.

ETA $=$	0.850000	$x=4.722222$	ETA $=$	C. 950000	$x=15.833332$
$\stackrel{\text { r }}{\text { r }}$	PSI	EMEGA	r	PS 1	EMEGA
1. 010000	1.0cccoceo	C. $33874691 E$ O1	1. Occcc	1.0CCCOOOO	0.30359446E O1
C.950c0C	0.95576566	0.31869707 t 01	C. 95 cocc	0.99620507	C. 28804749 E 01
C. Scccce	C. 98356405	0.29831909 E 01	C. 960000	0.98520894	C.27247799E O1
C. 85 CCOC	C. 96390498	C.27738237t O1	0.85000C	0.96740089	0.25687111 E O1
C. 8 Cccoc	0.93731242	C. 25576083 E 01	C. 86	C.94317108	0.24121968 O1
c. 75000 C	0.96432768	C. 23345442 E O1	C. 750000	0.91291083	C. 22552490 E 01
C. 7CCCCC	0.86550923	$0.2106 C 378 E 01$	C. 760000	C.877C1250	0.20979666 E 01
C. 65 CCCC	C. 82142925	C. 18748832 EE 01	0.65000 C	0.83586933	0.19405354 E O1
C. 6 CCOCC	C.77266645	C. 16450126 E O1	C.6CCCCO	C. 78987493	C. 17832202 E O1
C. 55000 C	0.71979634	C.14210287E OI	C. 550000	0.73942263	C. 16263486 E 01
c. 5 cccce	0.66337945	0.12076 C95E O1	C. 5 CCOOC	c. 68490460	C. 14702869 E O1
$0.45 C C C C$	0.66394979	0.10089105t 01	0.45000 C	0.62671100	0.13154075 E O1
C. 4 C000C	0.54200429	$0.82808612 E$ OC	C. 4 CCCCC	C. 56522906	C. 11620536 E 01
C. 35000 C	0.47799496	0.66700350 E OO	C. $350 C O C$	c. 5 C084215	C. 10105047 E O1
0.3 CCCOC	0.41232423	$0.52616 C 61 E 00$	C. 300000	c. 43392918	0.86094492 ECO
C. 250000	0.34534372	0.40477492E-00	C. 25000 C	0.364864 Cl	$0.71343917 E$ OC
C. 260000	c. 27735623	C. $30098188 \mathrm{t}-\mathrm{CO}$	$0.260 C C C$	$0.254 C 1539$	$0.56792077 E 00$
C. 150000	0.2686204%	$0.21208551 \mathrm{t}-00$	C. 150000	0.22174712	C. $42418954 \mathrm{t}-00$
c. 1 CCCOC	0.13935757	0.13477530E-00	C. 1 COCOC	0.14341846	$0.28192201 \mathrm{E}-00$
c. C5CCOC	c. 06975996	C. $65383977 \mathrm{E}-01$	c.05000C	0.07438508	$0.14069206 \mathrm{E}-00$
c.	c.	c.	c.	0.	0.
ETA $=$	$0.9 \operatorname{coccc}$	$x=7.499999$	ETA $=$	1. 000000	$x=\quad \infty$
Y	PSt	2MEGA	${ }^{\text {r }}$	PSI	PMEGA
1.0cOCCC	1. OCOOCCOO	0.31869768101	1. OCOCOC	1.00000000	C. 29999979 El
0.95 CCCC	0.99601628	0.30112433 E 01	c. 95000 C	0.99631249	$0.28499999 E 01$
c.9CCCCC	C. 98450448	C. $28342246 E 01$	0.90000 C	0.98549999	$0.26999999 E 01$
C. 85000 C	0.9659073 C	C. 26550341 E O1	0.85 CCOC	0.96793749	0.25500000 E O1
c. 8 COOOC	0.94067284	0.24731997 t 01	C. 8 COCCO	0.94399998	C. 23999999 El
C. 75 CCCC	C. 96925594	0.22887183 E O1	0.750000	0.91406249	C. 22499999 E1
C. $760 C C C$	C. 87211803	0.21021002 E O1	0.70000C	0.87849998	$0.20999999 E 01$
c. 650000	0.82972597	C. 19143716E O1	$0.650 C C C$	0.83768748	$0.19499999 E 01$
C. 6 COCOC	0.78254931	0.17270218 E O1	0.6C0000	0.79199998	C. 17999999 Ol
$0.550 C C C$	0.73155673	0.15418828 E 01	C. 550000	0.74181249	C. 16499999E 01
C.5CCOCC	0.67571127	0.13609549 El	0.50000 C	0.68749999	$0.14999999 E 01$
C. 450000	0.61696544	C.11861996E O1	0.450000	C.62943748	C.13499999E O1
0.40000 C	0.55525623	0.10193299 E O1	$0.45 C C O C$	0.56799999	0.12000000 E 01
0.35 cccc	0.451 CCOB5	$0.86163227 t 00$	C. 350000	$0.5 C 356250$	C. $1050000 C E$ OI
C. 3CCOCC	C. 42459349	0.71383592 E OO	C. 30000 C	0.43649999	$0.89999999 E 0$
C. 25000 C	0. 35640351	$0.57604551 E 00$	0.25000 C	0.36718749	$0.74999999 E 00$
0.20000 C	0.28677521	0.44773287E-00	C.2COCOC	0.29600000	$0.59999999 E 00$
0.15 Cccc	0.21672909	0.32778081E-00	C. 150COC	c. 22331250	0.45000000 E-00
C. 10000 C	C. 14446471	C. $21456613 \mathrm{E}-00$	0.1COCOC	0.14950000	0.300000CCt-00
0.05000 C	0.07236473	C. $10606932 \mathrm{E}-00$	c. 05 CCOC	0.07493749	$0.15000000 E-00$
c.	0.	0.	c.	c.	c.

TABLE VIII. Velocities And Pressure Gradients For Case II With A 40×20 Grid

γ	U(x)
1.cocccc	C.Cssgsesse Cl
c.95CCCC	C.CSSgsesse Cl
0.90CCCC	C.CSScsecse Cl
0.85 CCCC	C.CSS9SCSSE C1
c.80cccc	C.Cssscesse Cl
0.75 CCCC	C.CSS9Segse Cl
C. 7 CCCCO	C.CSSSSESSE CI
C. 65 COCC	C.Cssssegse Cl
0.60 CCCC	C.CSS9Sc9SE CI
C. 55 CCCC	C.CSSSSCSSE Cl
C.50CCCC	C.Cssasesse Cl
C. 45 CCCC	C.CSSQSCSSE CI
0.40 CCCC	C.CSSGSESSE CI
C. 35 CCCC	C.CSS9sesse Cl
C. 30 CCCC	C.Cssesecse Cl
C. 25 CCCC	C.Cssgseghe C1
0.20 CCCC	C.Cssssegse Cl
C. 15 CCCC	C.CSSSGEGSE CI
C.10cccc	C.CSSSSçse Cl
C.05CCCC	C.CSSssecse Cl
0.	C.CSSSSCSSE C1
${ }^{\dagger}$	U (x)
1.0ccccc	C.Scsitakse CC
$0.95 C C C C$	C.5¢576C57E CC
$0.90 C C C C$	C.S597775SE CC
$0.85 C C C C$	C.Sss7s?07E CC
C.80CCCC	C. 55981152 CC
$0.750 . C C C$	C. Ss983E5EE CC
0.70 CCCC	C. 55986.52 ECC
0.65 CCCC	C.99989481E CC
C.60CCCC	C.S5¢9294SE CC
0.55 CCCC	C. $59996{ }^{\text {²8E }}$ CC
C.50CCCC	C.ICCOCRC3E C1
C. 45 CCCC	C. $10000^{2} 67 \mathrm{ECl}$
C. 40 CCCC	C.10COC723E Cl
$0.3500 C C$	C. 10001 C6CE C1
0.300 CCC	C.1CCO127CE CI
0.25CCCC	C.ICCOIF46E O1
C. $2006 C C$	C.ICCOIF8IE CI
0.150060	C.1C002r71E CI
0.10 CCCC	C.1CC02?1CE CI
$0.65 C C C C$	C. 10002794 OI
c.	C.ICCO2\%22E

C. U(y)

$.1527474 \mathrm{CE}-\mathrm{C}$ $.18366426 \mathrm{E}-\mathrm{C}$.2C945259E-C . $23098648 \mathrm{E}-03$. $24625257 \mathrm{E}-\mathrm{C}$ $.25546432 \mathrm{E}-\mathrm{C}$ $.25833696 \mathrm{t}-03$ $.25484875 \mathrm{E}-\mathrm{O}$ $.24511635 \mathrm{t}-\mathrm{C}$. 2293Es22E-0 .2C8C8175E-0 $.18169686 \mathrm{E}-0$ $.15094 \mathrm{C} 64 \mathrm{E}-0$ $.11651114 \mathrm{E}-0$ $.79261289 E-0$ $.40112974 \mathrm{E}-0$	

$\begin{array}{cc}-\partial P / \partial \eta & -\partial p / \partial x \\ 0.75382298 \mathrm{E}-02 & -0.81412884 \mathrm{E}-03\end{array}$ c.75382298E-02 $0.74436089 E-02$ $0.71619718 \mathrm{E}-02$ $0.67007835 \mathrm{~F}-02$ $0.60704503 \mathrm{E}-02$ $0.32903952 \mathrm{E}-02$ $0.43799238 \mathrm{E}-02$ $0.33599523 \mathrm{E}-02$ $0.22647211 \mathrm{E}-02$ $0.11165857 \mathrm{E}-02$ $-C .58757760 \mathrm{E}-04$ $-0.12258773 \mathrm{E}-02$
$-0.23591202 \mathrm{E}-02$ $-0.23591202 \mathrm{E}-02$ $-0.34308698 \mathrm{E}-02$ $-0.44177037 \mathrm{E}-02$ $-0.52925 \mathrm{H21E}-02$ $-C .60374445 E-02$
$-0.66387101 \mathrm{E}-02$ -0.66387101E-02 $-0.73751224 \mathrm{E}-02$
$-0.73407345 \mathrm{E}-02$ $-0.73407345 E-02$
$-0.74311655 E-02$
-0.81412884E-0 $-0.80390979 \mathrm{E}-03$ $-0.77344297 \mathrm{E}-0$ $-0.72368464 \mathrm{E}-0$ $-0.65560865 \mathrm{E}-03$ -0.57136270E-0 -0.47303178E-03 $-0.47303178 \mathrm{E}-03$
$-0.36287487 \mathrm{E}-03$ $-0.36287487 E-03$
$-0.24458988 \mathrm{E}-03$ -0.12059126E-03 $0.63458382 \mathrm{E}-05$ $0.13239475 \mathrm{E}-03$ 0.25478499 E-03 $0.37053395 \mathrm{E}-0$ $0.47711202 \mathrm{~F}-03$ $0.571598 \mathrm{ABE}-03$ $0.65204403 \mathrm{E}-03$..71698071E-O3 $0.76271328 \mathrm{E}-\mathrm{O}$ $0.79279934 \mathrm{E}-03$
$0.80256590 \mathrm{E}-03$
$-\partial p / \partial y$

0.
$-0.11622500 \mathrm{E}-03$ $-0.22438458 \mathrm{EE}-03$ $-0.33688265 \mathrm{E}-03$ -0.43571204E-03 -0.52370558E-03 -0.59849361E-U3 - $0.65833814 \mathrm{E}-03$ $-0.65833814 \mathrm{E}-03$
$-0.70172748 \mathrm{E}-03$ $-0.72760762 \mathrm{E}-03$ -0.73540566E-03 -0.72518884E-03 $-0.69716324 \mathrm{E}-03$ $-0.65223894 \mathrm{~F}-03$ $-0.59132241 \mathrm{E}-03$ $-0.51618550 \mathrm{E}-03$ $-0.42871671 \mathrm{E}-03$
$-0.33016605 \mathrm{~F}-03$ $-0.33016605 \mathrm{E}-03$
$-0.22497239 \mathrm{E}-03$ $-0.22497239 \mathrm{E}-03$
$-0.11388255 \mathrm{~F}-03$ 0.
$E T A=-C .65 \operatorname{CoC} C$
$x=-1.547619$

Y	$U(x)$	
1. cocccc	C. $5552 C^{2}$ t2E	OC
$0.950 C O C$	c.59921253E	CC
$0.900 C C C$	C. $59524^{\circ} \mathrm{C} 4 \mathrm{E}$	CC
0.85 CCCC	C. $59925165 E$	CC
c.8CCCCC	C. $59835^{\circ} 3 \mathrm{CE}$	0 C
$0.750 C C C$	C. 59544 CE3E	CC
0.700ccc	C. 95953 R6EE	CC
$0.650 C C C$	C. 5956461 CE	CC
C.60CCCC	C. $59975 ¢ 81 \mathrm{E}$	CC
c. 55 CCCC	C. $5 ¢ 58811 \mathrm{EE}$	CC
$0.50 c c c c$	C. 1CCOCRS2E	C1
0.450000	C. 1cCOI'gee	C1
C.4CCCCC	C. 1CCO248EE	C1
0.35CCCC	C. 1CC03R23E	C1
0.30 CCCC	C. $10.04 * 67 \mathrm{E}$	C1
C.25CCCC	C.1CC055c3E	Cl
c. 20 CCCC	C. 1600t.333E	Cl
0.15 CCCC	C.ICCOTRISE	C1
0.10 CCCC	C.1CC07481E	C1
0.05 CCCC	C. 10007764 E	C1
c.	C. $1 \mathrm{CCO} 7^{\circ} 6 \mathrm{CE}$	

$-\partial p / \partial \eta$
c. 17971378 F
$C .17971378 \mathrm{E}-01$
$0.17738926 \mathrm{E}-01$ $0.17738926 \mathrm{E}-01$
$0.17047522 \mathrm{E}-01$ $0.17047522 \mathrm{E}-01$
$0.15416518 \mathrm{E}-01$ $0.15416518 \mathrm{E}-01$
$0.1438 C 275 \mathrm{E}-01$ $0.1438 C 225 E-01$
$0.12482623 E-01$ $0.12482623 \mathrm{E}-01$ -. $78276505 \mathrm{E}-01$ C.
$0.58267984 E-02$
$0.51960757 E-02$ $0.51960757 \mathrm{E}-02$
$0.24557341 \mathrm{E}-02$ -0.31917767E-03 -0. $30657659 \mathrm{E}-02$ -0.5717760 ちE-02 $-0.82129234 \mathrm{E}-\mathrm{n2}$ -0.82493112E-01 -C. $12507834 \mathrm{E}-01$ - $0.14218877 \mathrm{E}-01$ -C. $15586642 \mathrm{E}-01$ -0.16581435E-01 -C. $17187721 \mathrm{E}-01$
$-\partial p / \partial x$ $-0.26417926 \mathrm{E}-02$ $-0.26076223 \mathrm{E}-02$ $-0.25059859 \mathrm{E}-02$ $-0.23397283 \mathrm{E}-02$ -0.21138931F-02 $-0.18349457 \mathrm{E}-02$ $-0.15106462 \mathrm{~F}-02$ -0.151505462E-02 $-0.76382317 \mathrm{E}-03$ $-0.36099293 \mathrm{E}-03$ $0.46919119 \mathrm{E}-04$ $0.45066760 \mathrm{~F}-03$ $0.84051083 \mathrm{E}-03$ $0.12072998 \mathrm{E}-02$ $0.15424876 \mathrm{E}-02$ $0.18386516 \mathrm{~F}-02$ $0.20901750 \mathrm{E}-02$ $0.22912366 \mathrm{E}-02$ 0.24374711E-02 $0.24374711 \mathrm{E}-02$ $0.25566307 E-02$
$x=-1.250000$
ETA $=-C .6000 C 0$

$$
\begin{aligned}
& \begin{array}{c}
\text { C. } U(Y) \\
\text {-C. } 33253669 E-03
\end{array} \\
& \begin{array}{l}
\text {-C. } 33253669 \mathrm{E}-03 \\
\text {-C. } 6560 \mathrm{C} 394 \mathrm{E}-03
\end{array} \\
& \text {-C. } 6560 \mathrm{C} 344 \mathrm{E}-03 \\
& \text {-C. } 5615 \mathrm{C} 3 \mathrm{SBE}-03 \\
& \text {-C. } 12405114 \mathrm{E}-02 \\
& \text {-C.1487CC24E-02 } \\
& \begin{array}{l}
\text {-C. } 1487 \mathrm{CC} 24 \mathrm{E}-02 \\
\text {-C. } 16935395 \mathrm{~F}-02
\end{array} \\
& \begin{array}{l}
\text {-C. } 16935395 \mathrm{E}-02 \\
\text {-C. } 18557452 \mathrm{E}-02
\end{array} \\
& \text {-C. } 18557452 \mathrm{E}-02 \\
& -\mathrm{C} .15701 \mathrm{CC} 3 \mathrm{E}-02 \\
& \text {-C. } 20344448 \mathrm{E}-02 \\
& \text {-C. } 2048 \mathrm{C} 4 \mathrm{SOE}-\mathrm{Cl} \\
& \begin{array}{l}
\text { - C. } 20114453 \mathrm{E}-02 \\
-\mathrm{C} .19263339 \mathrm{~F}-\mathrm{Cl}
\end{array} \\
& \text {-C. } 17954921 \mathrm{E}-02 \\
& -0.16226864 E-02 \\
& -0.14124513 \mathrm{E}-02 \\
& -0.11695963 \mathrm{E}-02 \\
& \text {-C.90115070E-03 } \\
& \text {-C. } 61215340 \mathrm{E}-03 \\
& \text {-C. } 3094 \mathrm{SE3CE}-03 \\
& \text { c. }
\end{aligned}
$$

$-\partial p / \partial \eta$
$0.34568863 \mathrm{E}-01$ $0.34568863 \mathrm{E}-01$
$0.34096545 \mathrm{E}-01$ $0.34096545 \mathrm{E}-01$
$0.32688490 \mathrm{E}-01$ $0.32688490 \mathrm{E}-01$
$0.30393934 \mathrm{E}-01$ $0.30393934 \mathrm{E}-01$ $0.27299938 \mathrm{E}-01$ $0.23505015 \mathrm{E}-01$ $0.19136316 \mathrm{E}-01$ $0.14335718 \mathrm{EE}-01$
$0.92390613 \mathrm{E}-02$ $0.92390613 \mathrm{E}-02$
$0.39922619 \mathrm{E}-02$ $0.39922619 \mathrm{E}-022$
$-0.12648262 \mathrm{E}-02$ $-0.12648262 \mathrm{E}-02$ $-0.11313932 \mathrm{E}-01$ -0.15880619E-01 -0.20015156E-01 -0.23642591E-01 -0.26694552E-01 -0.29117953E-01 $-0.30878936 \mathrm{E}-01$ $-0.31946563 \mathrm{E}-01$ $-0.32302924 \mathrm{E}-01$
$-\partial p / \partial x$
$-0.66372217 \mathrm{E}-02$ $-0.65465367 E-02$ $-0.62761902 \mathrm{E}-02$ $-0.58356354 \mathrm{E}-02$ $-0.52415881 \mathrm{E}-02$ $-0.52415881 \mathrm{E}-02$
$-0.45129630 \mathrm{E}-02$ -0.45129630E-02 $-0.36741728 \mathrm{E}-02$
$-0.27524579 \mathrm{E}-02$ $-0.27524579 E-02$
$-0.17738998 \mathrm{E}-02$ $-0.17738998 \mathrm{E}-02$
$-0.76651429 \mathrm{E}-03$ $-0.76651429 \mathrm{E}-03$ $0.24284665 \mathrm{E}-03$ $0.21722749 \mathrm{~F}-02$ $0.30490789 \mathrm{E}-02$ $0.38429102 \mathrm{E}-02$ 0.45393775F-02 0.51253540 -02 $0.55906472 \mathrm{E}-02$ $0.59287559 \mathrm{~F}-02$ $0.61337402 \mathrm{E}-02$ $0.62021615 E-02$

- $\partial p / \partial r$

-0.40151624E-03 $-0.79255909 \mathrm{E}-03$ $-0.79255909 E-03$
$-0.11622149 \mathrm{E}-02$ - $0.116212815 \mathrm{E}-02$ $-0.15012815 E-02$
$-0.18006862 \mathrm{E}-02$ $-0.18006862 E-02$
$-0.20524955 E-02$ $-0.20524955 \mathrm{E}-02$ $-0.22521758 \mathrm{E}-02$ $-0.24752032 \mathrm{E}-02$ - $0.24450650 \mathrm{E}-02$ $-0.24535737 \mathrm{E}-02$ $-0.23525538 \mathrm{E}-02$ $-0.23525538 E-02$
$-0.21950250 \mathrm{E}-02$ $-0.19856715 \mathrm{E}-02$ -0.17299673E-02 $-0.14338140 \mathrm{E}-02$ - $0.11050270 \mathrm{E}-02$ $-0.11050270 \mathrm{E}-02$
$-0.75103095 \mathrm{E}-03$ $-0.37976241 \mathrm{E}-03$ 0 .

γ	U（x）		L（y）
1． cocccc	C． $59573016 E$	CC	C．
0．85ccce	C．SSS7SRELE	CC	－C．7C105e34E－C3
c．sccece	C． $55596716 E$	CC	－C． 13 c Cs7c1e－02
C． 25 cccc	C． $59624^{\circ} 25$ E	C．	－C．2C195846F－C2
c． 8 ccccc	C．）．9E62T33E	CC	－C． 2598 E34CE－C2
c． 75 CCCC	c．Ss 708＇1se	CG	－C．3102t2C4E－C2
c． 7 ccccc	C． $54761 \times 13 \mathrm{E}$	CC	－C． $251856 \mathrm{C9E-C2}$
c． 65 CCCC	C． $5582 C^{7}$ EEF	CC	－C． $2 \mathrm{e} 38 \in \mathrm{C} 31 \mathrm{E}-\mathrm{C2}$
0.60 CCCC	c． 548820 Jet	CC	－C．4C557112［－C2
C． 55 CCCC	C．55547＊2CE	CC	－C．41675133F－02
c． $500 C C C$	c．ICCOITJCE	C1	－C．417546315－02
C． 45 CCCC	C．16C072 27 E	CI	－C．4C815438E－C2
c． 400 CCC	C． 10013735 E	C1	－C．3891 3 フe9E－02
C． 35 CCCC	C．16C15637E	Cl	－C． $3612 \mathrm{CES5E}-\mathrm{C} 2$
c． 3 ccccc	C．10C24618E	Cl	－C． $32522354 \mathrm{E}-02$
c． 25 CCCC	C．ICC25111E	CI	－C．282162325－C2
0.20 CCCC	C．1cC33 1 14E	C1	－C． 2330 EeC5E－C2
C． 15 CCCC	C．1CC3Er74E	C1	－C．17913549［－C2
c． 1 cccc	C．ICC3E）${ }^{\text {c．}}$ 7E	Cl	－C．121455C4i－02
c． CsCccc	C．ICC35＊4te	C1	－C．E136E971E－C3
C．	C． 1604 CPS	Cl	C．
			$E T A=-6.50 C C$

－$\partial \mathrm{p} / \partial \eta$	－dp／dx
C．57454455E－01	－0．13961432E－U1
C． $565845+7 E-01$	－0．13750057\％－61
c．54C15793E－01	－0．13125838［－01
c．49966639E－01	－0．12117593f－c1
$0.44328447 \mathrm{~F}-\mathrm{Cl}$	－0．10771824E－01
C． $37634984[-01$	－0．414530111－c2
$0.30051716 \mathrm{~F}-01$	－ $0.73025668 \mathrm{~F}-02$
$0.21856085 E-01$	－0．53110287f－02
$0.133223565-01$	－0．32373326［－02
C．47C144611－02	－0．11424620t－02
－0．377724015－02	$0.41787130 \mathrm{E}-03$
－0．1191C515［－01	0． $28442550 \mathrm{E}-\mathrm{U}$
－0．195367478－¢1	$0.47474416 E-02$
－C．26515745t－01	$0.64433260 E-02$
－C． $32739445 \mathrm{t}-\mathrm{C1}$	$0.795569725-02$
－c．38124526［－01	$0.426425495-02$
－C．42602726E－01	$0.10352463 \mathrm{~F}-01$
－C．46127808F－01	$0.112090575-01$
－C．4P66E787F－01	$0.11826515 \mathrm{~F}-01$
－C．5020C755E－C．1	$0.12198783 \mathrm{f}-01$
－C．50711480E－01	$0.12323011 \mathrm{f}-01$

$x=-0.83333$
$E T A=-6.50 C C C C$

$-\partial p / \partial x$
$-0.25980333[-0$
-0.2552680 $-0.25980333 \mathrm{E}-\mathrm{Cl}$
$-0.25526680 \mathrm{E}-\mathrm{C1}$ $-0.24198471 F-61$ －．220101FーO1 －0．19301620［－01 $-0.16015988[-61$
$-0.12385038 \mathrm{E}-01$ $-0.12385038 \mathrm{~F}-01$ $-0.65656691 \mathrm{E}-02$ $-0.46992768 E-02$
$-0.40409 C 575-113$ $-0.40408 C 57 E-13$
$0.272392715-02$ $0.272392711-02$
$0.611212925-02$ $0.61121292 t-02$
$0.42070829 t-62$ $0.42070829 \mathrm{t}-02$
$0.11472696 \mathrm{t}-01$ $0.11472696 \mathrm{t}-61$
$10.14385930 \mathrm{r}-61$ $13.14385930 \mathrm{r}-\mathrm{Cl}$
$0.16433964 \mathrm{E}-01$ $0.18433964 \mathrm{E}-01$
$0.181134 \mathrm{t}-01$ $0.19412041 \mathrm{E}-61$ $0.203402285-01$ $0.20896459[-01$ $0.21082076 \mathrm{E}-01$

C． $55215025 E C C$ C． 59231124 EC C． $542544^{\circ} 77 \mathrm{ECC}$ C． $59316^{\circ} \mathrm{C} 2 \mathrm{CC}$ C． 59391 1 13 EC C． 5947 SO54F CC C． 5458 BC 71 ECC C． 5969 CT 4 4 CC C． $5480572 E E$ CC C． 55922411 FCC C． 1 CCO 2863 Cl C．1CC1E1：CE Cl C． $1 \mathrm{CCOE74EF} \mathrm{CI}$ C． $1 C C 35 \approx E C E C I$
C． $1 C C 44=77 \mathrm{~F}$ C． $1 C C 44=77 E$
$C .1 C C 52057 E ~ C 1 ~$ C．ICC52C57E C1 C．ICC5E483E C1 C． $1 \mathrm{CC6} 7342 \mathrm{E}$ Cl C． 100654 EE C C．ICCTC？11E CI

C．
C． $130923 \mathrm{CBF}-02$ －C． $2573 \mathrm{C} 43 \mathrm{CF}-\mathrm{CL}$ －C． $4 \mathrm{BC11317E-Cl}$ $-C .48 C 11317 E-C 2$
$-C .5+491353 E-62$ $-C .2 E 491353 E-C 2$
$-C . t 422 C 352 F-C 2$ $-C . t 422 C 342 F-C 2$
$-C .65565325 \mathrm{E}-\mathrm{ct}$ －C．7297CE13E－02 －C．7297CEI3E－02 $-\mathrm{C} .744447 \mathrm{CQE}-02$ $-C .7405 C 425 E-02$
$-C .71892 C 29 E-02$ $-\mathrm{C} .71892 \mathrm{C} 29 \mathrm{E}-\mathrm{CL}$
$-\mathrm{C} . \mathrm{EB105420F}-\mathrm{Cz}$ $-\mathrm{C}, \mathrm{\epsilon B105420E-CZ}$ －C． $\mathrm{C} 2848179 \mathrm{E}-\mathrm{C2}$
－C． $562923 \mathrm{C2F}-02$ $-C .562923 C 2 t-02$
$-C .486186145-02$ －C．48618614E－02
－C．400115C85－02

 －C． $10467543 \mathrm{E}-02$ c．

ETA $=-$ C． 45 CCCC $x=-0.681818$

1． $\operatorname{coccc}^{\gamma}$ c． 95 CCCC c．Soccce c． 85 CCCC c．80CCCC c． 75 CCCC ． 700 CCC C． 65 CCCC ． 600 CCCC C． 55 CCCC C．5ccccc c． 45 ClCL C． 4 CCCCC C． 35 CCCC $0.30 C C C C$ c． 25 CCCL C． 2 CCCCC c． 1 Sccc ． 10 cccc C.
c ．

U（x）

 C． $119934 \mathrm{CbE}-0 \mathrm{C}$ $.11244026 \mathrm{~F}-00$ C． $10 \mathrm{C} 72734 \mathrm{E}-00$ $0.85767430 r-n 1$ C．ERESC535E－nI c．50427210r－01 C． $31940632 \mathrm{~F}-01$ 0．14051051F－01 －C．287077C9E－012 $-0.18436276 \mathrm{E}-01$ $-\mathrm{C} .3245 \mathrm{C} 401 \mathrm{E}-01$ －C．44821416k－01 －C．35534967E－01 $-C .64623843 \mathrm{E}-01$ －C． $121486425-01$ $-\mathrm{C} .18179421 \mathrm{E}-01$ $-0.62785456 \mathrm{f}-\mathrm{Cl}$ $-\mathrm{C} .66036065 \mathrm{~F}-6$ $-C .875574 \mathrm{CSF}-\mathrm{C}$ －C．BRS9592U［－01

 $-0.43535066 \mathrm{E}-01$ －．40815R15t－01 $-0.36564026 f-01$ -.31133577 F－01 $0.24920144 \mathrm{t}-01$ $-0.18305077 \mathrm{~F}-01$ －0．11612599t－61 $-0.51005317 \mathrm{E}-02$ $0.10420898 \mathrm{~F}-02$ $0.66423685 \mathrm{~F}-02$ $0.11779445 \mathrm{t}-01$ $0.16270174 \mathrm{E}-01$ Q． $20159192 \mathrm{f}-01$ $0.23458473 F-01$ $0.261849571-01$ $0.78374130 \mathrm{E}-01$ $0.30051120 \mathrm{E}-01$ $0.31228413 \mathrm{E}-\mathrm{CI}$ 0．31978538F－01
$x=-0.555556$
$E T A=-C .4000 C C$

c． Ut

$-c .2$
c.
$-\partial p / \partial \eta$
c． $16678534 \mathrm{E}-00$ C． $16231174 \mathrm{~F}-00$ C． $14953098[-50$ $0.13015892 F-60$ C． 1 C643522t－00 C． $\mathrm{CO} 273183 \mathrm{~F}-01$ c． $243555515-011$ $0.24355451 E-(11$ C． 1450147 FF－01 －C．1450147大た－0 －C． $32652496 \mathrm{E}-\mathrm{il}$ $-\mathrm{C} .48259171 \mathrm{~F}-\mathrm{O1}$ $-C .614627821-\mathrm{Cl}$
$-6.72465760 \mathrm{~F}-\mathrm{O}$ －0．e14 $\mathrm{H} 4 \mathrm{COE}-\mathrm{O} 1$ $-0 . e 14844 \mathrm{COE}-01$
$-\mathrm{C} .88124482 \mathrm{~F}-01$ - C． $88124482 t-01$ $-C .54351090 \mathrm{t}-01$
$-0.48625810 \mathrm{t}-01$ － $0.49625810+-n 1$
－C． $1015 \mathrm{C} 414 \mathrm{~F}-\mathrm{CO}$ －C． $10156414 \mathrm{~F}-\mathrm{Cl}$
－ $.1032462 \mathrm{UF}-\mathrm{CC}$
$-6.103855147-10$ －C．103et51 3i－nC
$-\partial \mathrm{p} / \partial \mathrm{x}$
-0.7205126 HE
$-0.72051264 \mathrm{E}-01$ －0． $7011875 \rightarrow \mathrm{E}-01$ －0． $24547382 \mathrm{t}-01$ － －0．45980U18F－O1 －0．3480761se－c1 －0．23313256F－0． －0．1268552C81－した －．26864385：－02 $0.141058785=61$ 0． $208474015-1$ $0.265514215-01$ $0.263514215-01$ $0.35201260 \mathrm{~F}-01$ $0.38331135 \mathrm{f}-\mathrm{c}$ $0.407764501-01$ 6． $42664017[-\mathrm{L}$ 0．43B77H6BE－01 $0.44623458 f-61$ U． 4686975 日t－01
6.
$-0.23475069 E-$－ 2 $-0.45340601 \mathrm{~F}-02$ －0．66US2479F－07 $-0.84554005 \mathrm{E}-12$ $-0.10031143 \mathrm{E}-01$ $-0.11295655 \mathrm{E}-01$ $-0.12223416 \mathrm{E}-01$ － $.12807257 \mathrm{E}-\mathrm{Cl}$ $-6.130477035-61$ $-0.12958413 \mathrm{~F}-01$ $-0.12559810 \mathrm{E}-\mathrm{Cl}$ －$-11877832 \mathrm{~F}-\mathrm{U} 1$ $-0.10941837 \varepsilon-01$ －0．9783450TE－U2 $-0.84373759 \mathrm{f}-02$ $-0.69342931 F-02$ $-0.53 \cup 77051 E-62$ $-6.35840045 \mathrm{E}-$ v2 $-6.18647278 \mathrm{E}-62$ 0.
0.
－0．45316078t－u2 $-0.88653194[-02$ $-12623846[-61$ －0．16260865E－U －0．19073961E－U － 0.21204483 E－U1 － $0.22634193 \mathrm{~F}-01$ － － $0.2248 .7324 \mathrm{E}-\mathrm{V}$ － $6.22457324 \mathrm{E}-\mathrm{U1}$ $-0.21993056 \mathrm{E}-01$
$-0.20539271 \mathrm{E}-01$ $-0.20339271 \mathrm{E}-01$
$-0.187 U S 752 \mathrm{E}-01$ $-U .187 U 5752 \mathrm{E}-01$
$-0.16556645 \mathrm{E}-01$ $-0.16556645 \mathrm{E}-01$
$-0.14151942 \mathrm{E}-61$ $-0.141519421-6$
$-0.115460281-31$ －0．87861898c－ 42 －0．39164397t－02 $-0.29758702 \mathrm{E}-\mathrm{GZ}$ 0.

－0．8340\％12E－C2 $-0.16200293 E-$ L 61514E－01 －U． $28932890 \mathrm{E}-\mathrm{U1}$ －0．33346424F－U1 $365051 \mathrm{~F}-01$ $-6.38047465 E-61$ －G．3．3 －0．37020962F－01 －0．36438478F－U1 － 11.31455117 E －01 －0．28229675 $-0.24660632 \mathrm{E}-01$ $-0.2005420 \mathrm{Et}$ $-0.16 d 60851 \mathrm{E}-01$ $-0.127414668-01$ $-0.42844533[-02$ 0.
$\stackrel{y}{\text { y }}$
c． 55 Cccc
c． sCCCCC
C．85CCCC
． 8 CCCCC
c． $75 C C C C$
c． 70 CCCC
C．ESCCCC
C． 60 CCCL
． 5 SCCC
c． 5 CCCCC
C． 40 CCCC
c． 40 CCCC
c．3ccccc
0.25 cccc

C． 2 Ccccc
c． 15 CCCL
c． $10 C C C C$
c．cscccl c． C ．

G．
$-0.14651229 \mathrm{E}-01$ $-0.28515255 \mathrm{E}-\mathrm{U1}$ $-0.40034032 E-U 1$ $-0.48871157 \mathrm{E}-61$ $-0.54894432 E-01$
$-0.58255594 E-01$ $-0.58255594 \mathrm{E}-01$ $-0.54243722 F-41$ $-0.58431714 \mathrm{E}-01$ $-0.56086350 \mathrm{E}-01$ $0.52636755 \mathrm{E}-21$
$-0.48394721 \mathrm{~F}-\mathrm{Ul}$
-0.4361306 Cl $-0.48394721 \mathrm{~F}-\mathrm{Ul}$
$-0.43613466 \mathrm{E}-\mathrm{Cl}$ $-0.43613466 \mathrm{E}-\mathrm{Cl}$
$-0.3 \mathrm{H} 48285 \mathrm{~F}-01$ － $0.33138100 \mathrm{E}-41$ $-C .33138100 \mathrm{E}-01$
$-0.27613646 \mathrm{~F}-01$
-0.22153771 e $-0.22153121 \mathrm{t}-\mathrm{C1}$ $-0.16611232 \mathrm{~F}-\mathrm{Cl}$ $-4.11067732 \mathrm{~F}-01$ $-1.35323762 \mathrm{~F}-02$ 0.
$E 1 A=-C .3 \operatorname{SLCCL} \quad x=-0.448718$

Y	U（r）
1． cccccc	C．Stsherose
c．Ssecce	C．，57C64－34
c．sccecc	C． 57254241%
c． 85 CCCC	C．57547c）1E
c．eccece	C． $57516{ }^{\text {ctit }}$
c．7sccce	C． 5 E332C／1E
c． 7 CCCCC	C．SET7ChyEt
C．65CCCC	C．ss2csrzee
0．60CCCC	C． 5 St334485
0.55 CCCC	C．1ccos？${ }^{\text {c }}$
C． $50 C C C C$	c． $1204 \mathrm{Cl}^{2} 25$
C． 45 CCCC	C．1cc73＇11E
C． 40 CCCC	C．161030731
C． 35 CCCC	c．16125\％${ }^{\text {c }}$
C．3cccce	c．IC151725E
C．25ccce	c．rcilca 228
c． 2 ccccc	C．1C185＊7CE
C．15CCCC	C．1C197351E
c． $160 c c c$	C．1C205e75
c．cscecc	C．1CこICくを7t
c．	C． 16.212134

 c．

ETA $=-$ C．${ }^{\text {．CLCCC }}$
$-\partial p / \partial \eta$
c． $22267048 \mathrm{E}-00$ C． $21462933 \mathrm{~F}-00$ c． $1923 \mathrm{COO} 3 \mathrm{~F}-\mathrm{CC}$ C． 16 C07174E－00 $0.12297055 E-00$ 0． $55204963 \mathrm{E}-01$ C． $49 t 3 C 456 t-61$ C． $1783 \mathrm{C} 504 \mathrm{E}-01$ －C． 3262484 ER $-0.51625733 \mathrm{~F}-01$ － $.51625733 \mathrm{E}-01$ －0． $\mathrm{F} 7 \mathrm{ClE524E}-01$ $-0.79501446 \mathrm{~F}-01$
$-\mathrm{C} .89365457 \mathrm{~F}-01$ － $0.54365457 F-01$
$-0.57162545 \mathrm{~F}-01$ －C． 10312 A6SE－00 －0．10775726E－CO －0．111Cy421E－Ní －0．11104421E－6゙！ －C． 11467530 E － CO

$-\partial f / \partial x$
-0.11289393 E －0．108817C6F－60 $-0.47496112 \mathrm{E}-01$ －0．01156371t－01 $-0.62346069 t-01$ $-0.43148915 t-0$ －C． $25162640 \mathrm{E}-01$ －C．40400653t－02 ． $48601731 \mathrm{E}-02$ $0.165407485-01$ $.26174246 \mathrm{~F}-01$ ． 403072328 ．40307232F－ 4．49261411F－N1 $0.22116646 \mathrm{t}-01$ $0.54632428 \mathrm{E}-01$ $0.56324763 \mathrm{E}-01$ $0.76324763 E-01$
$-7473597 E-C 1$ ？． $27473597 \mathrm{t}-\mathrm{Cl}$ －． $58359735 \mathrm{E}-\mathrm{Cl}$ $x=-0.357143$
$-8 p / \partial \eta$
$c .2962+144 E-c c$ $C .29626144 E-C C$
C． $281 C 152 \mathrm{BE}-00$ C． 24 C6C257F－NO C． $18659736 \mathrm{E}-\mathrm{n}$ O C． 12981034 E － 00 0．77231129E－01 c． $321256845-01$ $-0.4751320 \mathrm{AE}-02$ $-\mathrm{C} .3^{35816 C 4 E-01}$ $-C .56685632 \mathrm{E}-\mathrm{Cl}$ －C．74C $97382 \mathrm{~F}-01$ －0． 0732 ER4 $4 \mathrm{EE}-01$ － $0.57312055 \mathrm{E}-\mathrm{n} 1$ ．10482009F－C0 －C．11C41403F－00 － $117563625-0$ －114681425 －0．114681822－0 －． $12108324 \mathrm{~F}-00$ －C．122142025－00
 $-0.17420172 \mathrm{E}-00$ $-0.16323648 E-$ U0 $-0.14147431 E-00$ －i）． $10471925 \mathrm{E}-00$ $-0.76328480 \mathrm{E}-\mathrm{Cl}$ $-0.45411903 \mathrm{~F}-6$ －． $1888+905 \mathrm{st}-61$ D． $27537766 \mathrm{E}-02$ ． $19481185 \mathrm{E}-01$ C． $33333503 \mathrm{t}-\mathrm{L}$ ． 43569260 T － U ． $513481875-01$ $0.57223016 \mathrm{f}-01$ D．t $1634211 \mathrm{~F}-11$ 0.647264 C31－01 0．t．73ア9020t－01 － $103729125-61$ $.70372912 \mathrm{~F}-0$ 0．71666566t－01 $0.71819511 \mathrm{E}-01$
$x=-0.271778$
$E T A=-C .25 C C C C$

Y	U（x）
1．ccccce	C．53502f03E
C．95CCCC	C． 54123766
C． 4 CSCCC	C． 5472 E4ycf
C．ESCCCC	C． 55365247
C．8cccec	c．st5170 ${ }^{\circ}$ ？
C．75CCCC	C．5747CCE2F
C．70ccce	C．SE3650C7E
C． 65 CCCL	C．SS18ECS3E
c． 6 CCCCC	C． $5 \times 51 \mathrm{CLECE}$
C． 55 CCCC	c．1ccss？ c ＋
O．5CCCCC	C．161CS？15E
C． 45 CCCC	C．1C15t Pet
C． 4 ccccc	C． $16196^{\circ} \mathrm{BC}$
C． 35 CCCC	C．1c23C19tt
O． 30 CCCL	C．1c25EVく7E
C． 25 CCCC	C． 162812775
c． 2 CCCCC	C．1C245alet
c． 15 CCCC	C．1C 213 Eq3E
c． 100 CCO	C．1032334EE
c．csccce	C．1C325938E
c．	C．1C331r5EE

． $14316737 \mathrm{E}-\mathrm{C}$	

$\begin{gathered} -\partial p / \partial \eta \\ \text { c. } 39954654 \mathrm{E}-04 \end{gathered}$
c．367510945－06
6．2917C404E－00
c． $201413015-00$
$6.118110645 \sim 0 C$
C． $50271116 \mathrm{t}-\mathrm{Cl}$
－6．1276L．373t－02
－ $0.36312360 \mathrm{~F}-01$
－¢． $65751013 \mathrm{~F}-(11$
－C．F4t $25447 \mathrm{E}-01$
－0．977E3106F－6．1
－C．106895535－00
－0．113164U4E－00
-0.1174 t 4 E5E－0C
－C．12C36130F－00
－C．12234172r－cio
－0．123638145－00
－C．12447452E－0n
－C．124988445－OL
－6．12526365r－00

$-\partial P / \partial x$
-1.26929846 E
$-U .26429844 \mathrm{E}-00$
$-0.24833441 \mathrm{~F}-00$ $-0.24833441 \mathrm{E}-00$
$-1.2 .19640023 \mathrm{~F}-10$ $-0.19640023 \mathrm{f}-00$
$-0.135453785-00$ -0.13575378 ：-6 $-0.79724684 \mathrm{E}-\mathrm{GI}$
$-0.33933016 \mathrm{E}-1$ $-1) .33933016 \mathrm{E}-\mathrm{G}$
$0.86132520 \mathrm{~F}-03$ ． 266265843 t－0 $.44381934 \mathrm{E}-\mathrm{C}$ ．） $7122175 \mathrm{E}-\mathrm{U}$ 0． $66003596 \mathrm{~F}-61$ $0.72154482 \mathrm{~F}-01$ 7．76399106E－01 7．792886365－01 $0.21257382 t-01$ 0． 02580665 －01 $0.83435743 \mathrm{E}-01$ $0.84 C 203005-61$ U． $643672 C 1 f-01$
U． $64552460 \mathrm{~F}-01$ 0． $\mathrm{H} 4610749 \mathrm{E}-01$ $3 x$
$E T A=-c .200 C C C \quad x=-0.208333$

0． $26245376 \mathrm{E}-\mathrm{Cl}$ $-\mathrm{U} .44394859 \mathrm{E}-\mathrm{Cl}$ $-0.67396730 r-61$ $-6.74524316 \mathrm{E}-\mathrm{L}$ － 6. ． $86118107 \mathrm{E}-51$ $-0.88 \mathrm{C} 8434 \mathrm{HE}-\mathrm{U}$ －C． 186527 868f -61 $-1.8248158 \geqslant \mathrm{E}-\mathrm{U}$ $-4.76794585 t-01$ $.70131412 t-01$ $0.62946031 t-01$ $0.55 .5041 t-2!$ 0．40141441L－U： （1）． $336797165 \mathrm{C}-21$ $0.33678765 \mathrm{E}-\mathrm{UI}$ － $0.26693313 E-61$ －0．13063993E－01 －0．6560137245－01 0.
$-\partial p / \partial Y$
－1．46Y40305t－01 －0．55584255E－01 -0.1116 d154F－00 － $0.125403145-60$ -0.12 y184cye－ur －0．12663076t－u6 $-0.11255757 \mathrm{E}-\mathrm{CO}$ $-1.10872858 \mathrm{~F}-06$ $-4.97675772 \mathrm{~F}-01$ $-0.86612787 \mathrm{E}-\mathrm{C1}$ $-0.76007819 E-41$ $-6.65089466 F-01$ $-0.55448761 F-U 1$ $0.4678 G 2$ ESE－G1
 －．24956710F－01 － 0.1460 3aser－il U． 72504074 E －v 0.
$-0.87090344 \mathrm{E}-4 \mathrm{~L}$ $-6.14484202 \mathrm{E}-00$ $-1.18245912 \mathrm{f}-00$ $-6.19104595 \mathrm{~F}-00$ $-0.16443133 \mathrm{~F}-60$ －0．16485574F－60 $0.16482574 \mathrm{~F}-\mathrm{U0}$ $-0.15206405 E-U 0$
$-0.13576398 \mathrm{~F}-00$ $0.11630713 F-60$ －0．1しU26015r－00 － .65749854 F－ $-0.72718543 \mathrm{E}-\mathrm{0} 1$ $-0.60 \div$ H4568E－01 $-0.5037+170 E-01$ $-0.40682774 t-1$ $-0.31121731 \mathrm{~F}-01$ $-6.23320346 t-1$ $-0.1532542 \mathrm{HE}-\mathrm{U}$ $-0.75 \times 5+76.4 t-02$ U．

u（y）
－C．23211976－01
－C．4C904t72t－c．1
$-\mathrm{C} .52084622 \mathrm{C}-\mathrm{Cl}$
$-\mathrm{C} .57837 \mathrm{CE4F}-\mathrm{Cl}$
－C． $59617236 F-01$
－C．592nC6221－Cl
－C．57136357t－61
－ $6.539176 \mathrm{C11-C1}$
－C．5C194242－－31
$-\mathrm{C} .4 \mathrm{t} 02 \mathrm{fC} 2 \mathrm{Cr}-\mathrm{Cl}$
－ $6.416322 \mathrm{C} 7 \mathrm{~F}-\mathrm{Cl}$
－ 0.2716 ？7471－c1
－6．325025675－1．1
－C．27RES5A1－Cl
－C．2．2314／11：－c1
－6．185621611－01
$-6.13 \cdot 127=3$－ 61
－C．5271 $37 \geq 4$－ c 2

 c． $23276162 f$
$c .484 C 2826 f-n C$ C． $33465839 \mathrm{E}-\mathrm{CC}$ －187644！ 8 FF －CO C． $447945725-01$ $-0.5124 \mathrm{ER16t-01}$ $-0.5124 E 816 E-01$ －C． $.101+125321-01$ － $2.101617521-00$ －C． 117143 R 7 －$=0$ －C． $11989561 \mathrm{E}=\mathrm{CO}$ $-C .12767518 t-00$
$-C .124625101-00$ －C． 12562510 － 120 －C． $17 \times 4717+$－-0 $-C .1266 F 07 c t-0 n$
$-6.12654530 t-0 C$ $-0.12654540 t-\mathrm{CC}$
-L
-17625447 F $-6.125422401-0 c$
-6 -C .12565903 F － CO - C． 12547530 －-00 －C．1） $5.41124 i=c i r$

 C．52543148E CC C．$\cdot 442325$ CF CC C．SइP84T2SE C． $.9723 C^{\circ}$ IEF C．Se4 11 C 1 SE CC
 C．1CCGGE44 C．1C16Ct－4t
 c．1Cフち3ん131 C1 c．ICE己EF17t C．1c？17rノトt r．1c341＊25t
 C． 16274 ？ $61 t \mathrm{C}$
 －1し341＊538

TABLE VIII. - Continued

\section*{| | C.87857028E |
| :---: | :---: |
| 2.coccce
 $0.95 c c c e$ | |
| c.socece | c.sc |
| c.escece | c. |
| c.8occa | c. $53507 \times 48 \mathrm{CC}$ |
| c.75ccec | C.47282C58C CC |
| c.7ccece | c. |
| 0.65ccce | c.ss |
| 0.600 ccc | c. |
| 5cccc | c. 16 |
| cce | c.lc |
| sccce | c.icz |
| ccc | c. 103 |
| ccc | |
| c. 30 cccc | |
| c. 25 cccc | c.10402* 16 EE |
| c. 2 | |
| .15cce | C.10434 SSTE |
| c. | C.10444174E |
| c.osecel | C.10445955 |
| | |

$-\partial p / \partial \eta$
. 3616814800
c. $33679835 \mathrm{E}-00$
0.11 t89648E-00
-0.11385564E-01
-c.7954C130E-01
-0.11381721E-n0
-0.12999923E-00
-0.13670995E-00
-c. $13853318 \mathrm{EE}-00$
-0.13789928E-00
-0.13611542E-00
-c.13389730F-00
-C.13159407E-00
-0.12944181E-00
-C.12754272E-00
-0.12595509E-00
-c.1247C657E-00
-0.12380870E-00
-c. 12327009

$-2 P / \partial \mathrm{x}$
-0.69447423 E $-0.55155777 \mathrm{E} \quad 00$ $-0.29200416 \mathrm{E}-00$ $-0.10134925 \mathrm{E}-00$ $0.98712841 \mathrm{E}-02$ $0.68961293 \mathrm{E}-01$ $0.98679525 \mathrm{E}-01$ $0.11270933 \mathrm{E}-00$ -. 1201852752 E -00 - $111955867 E-$ Vo -11955867く-c0 $0.11508028 \mathrm{E}-00$. $11608028 \mathrm{E}-00$ $0.11409206 \mathrm{~F}-00$ $0.11222604 \mathrm{E}-00$ $0.11057954 \mathrm{~F}-00$ $0.10920306 \mathrm{E}-00$ 0. $10812060 \mathrm{E}-00$ $0.10734214 \mathrm{E}-00$ $0.10671993 \mathrm{E}-00$
-ap/ar
$-0.35893674 \mathrm{E}-00$ $-0.47113584 \mathrm{E}-0 \mathrm{O}$ $-0.44444864 E-00$ $-0.37618242 \mathrm{~F}-00$ $-0.30612373 \mathrm{E}-00$ $-0.24643610 \mathrm{E}-00$ $-0.14478287 E-00$ $-0.16273432 \mathrm{~F}-00$ $-0.13344014 \mathrm{E}-\mathrm{UO}$ -0. $91008160 \mathrm{E}-0 \mathrm{D}$ -0.91533664E-U1 -0.752294U6E-C -0.61357510E-U $-0.40167547 \mathrm{E}-\mathrm{Cl}$ $-0.31055105 \mathrm{E}-01$ $-0.22683638 \mathrm{E}-01$ $-0.14845417 \mathrm{E}-01$ $-0.73406183 \mathrm{E}-02$ 0.

ETA $=-c .1000 C O$

C.
> $-0.11914949 \mathrm{E} \quad 01$
-0.78355016 E $-0.20783348 \mathrm{~F}-00$ 0.50107127E-01 $0.14345449 \mathrm{~F}-00$ $0.17106748 \mathrm{E}-00$ $0.17430436 \mathrm{~F}-00$ $0.16403251 \mathrm{E}-00$ $0.16127183 \mathrm{E}-00$ $0.15330703 \mathrm{E}-00$ $0.14596925 \mathrm{E}-00$ $0.13952447 \mathrm{E}-00$ $0.13400804 \mathrm{E}-00$ $0.12936556 \mathrm{E}-00$ $0.12552267 \mathrm{E}-00$ $0.12240329 \mathrm{E}-00$ $0.11994146 \mathrm{E}-00$ $0.11808458 \mathrm{E}-00$ $0.11678708 \mathrm{E}-00$ $0.11601949 \mathrm{E}-00$ 0.11576547 E -00
0.
-0.81044006 E OO -0.80457725E OO -0.62064307E UO $-0.45641234 \mathrm{E}-00$ $-0.33952098 \mathrm{E}-00$ $-0.25833848 \mathrm{E}-00$ $-0.20134698 \mathrm{E}-00$ $-0.16611465 \mathrm{E}-00$ $-0.12428123 \mathrm{~F}-00$ $-0.10550649 \mathrm{E}-00$ $-0.86622628 \mathrm{E}-01$ -0.71235039E-01 -0.58379818E-C1 -0.47386291E-01 -. -0.29150221E-01 -0. $0.13 \times 22503 \mathrm{E}-01$ $-0.68922603 \mathrm{E}-01$ 0.

ETA $=-C . C 50000$

$-\partial P / \partial \eta$ 0.19313469 E

0.19313469 E
$0.88926540 E O O$ $-0.21375983 \mathrm{E}-00$ $-0.34228904 \mathrm{E}-00$ $-0.31339455 E-00$ $-0.27018671 \mathrm{E}-00$ -0.23429107E-00 $-0.20667358 E-00$ $-0.18552116 \mathrm{E}-00$ - $0.16914121 \mathrm{E}-00$ $-0.15630360 \mathrm{E}-00$ $-0.14614163 \mathrm{E}-00$ -0.13157525E-00 -0.13157825E-00 -0.12642859E-00 $-0.122368511-00$ -0.11923415E-00 $-0.1169 \mathrm{Cl9} 9 \mathrm{E}-00$ $-0.11529190 \mathrm{E}-00$
$-0.11434874 \mathrm{E}-00$ $-0.11434874 \mathrm{E}-00$
$-0.11403636 \mathrm{E}-00$

$-\partial p / \partial x$

$-0.20916486 \mathrm{E} 01$ $-0.96307441 \mathrm{E} 00$ $0.23150140 \mathrm{E}-00$ $0.37069903 \mathrm{E}-00$ $0.33940630 E-00$ $0.29261221 \mathrm{E}-00$ $0.25373723 E-00$ -. $22382749 \mathrm{E}-00$ -.20091942 -18317443E-00 -.16927680t-00 0.14957278E-00 - $142499245-00$ $0.136922165-00$ $0.13252569 \mathrm{E}-00$ $0.12413059 \mathrm{t}-00$ $0.12660485 \mathrm{E}-00$ $0.12486113 \mathrm{E}-00$ $0.12486113 E-00$
$0.12383968 E-00$ $0.12350138 \mathrm{E}-00$

0.
$-0.17456883 \mathrm{E} 01$ $-0.11596213 E \quad 01$ -0.70417774 E OO $-0.46282919 \mathrm{E}-00$ $-0.32422747 \mathrm{E}-00$ $-0.23486119 \mathrm{E}-00$ $-0.18450433 \mathrm{E}-00$ $-0.14584241 E-00$ $-0.11748873 \mathrm{E}-00$ $-0.45823563 \mathrm{E}-01$ -0.78713276E-C1 $-0.53156846 \mathrm{E}-01$ $-0.431880 \mathrm{ELE}-01$ $-0.344593715-01$ $-0.26632784 \mathrm{E}-01$ $-0.19438514 \mathrm{E}-01$ $-0.12731165 \mathrm{E}-01$ 0.62953536 t-02 0.

$x=0$.

$-\partial p / \partial \eta$C. 36741226 E 0.33479514 E ol C. 12956875 E 01 C. 88877749 E OO ..33E $36098 \mathrm{E}-00$. $26 \mathrm{E} 67602 \mathrm{E}-00$. $225 \mathrm{C} 546 \mathrm{E}-00$. $19504945 \mathrm{E}=00$ C. $17337064 \mathrm{E}-00$ C. $1572 \mathrm{C} 919 \mathrm{E}-00$ $0.14488314 \mathrm{E}-00$ 0. $13533289 \mathrm{E}-00$ C. $12786996 \mathrm{E}-00$ $0.12202911 \mathrm{E}-00$ C. $11748439 \mathrm{E}-00$ C. $114 \mathrm{C} 1070 \mathrm{E}-00$ C. $11144627 \mathrm{E}-00$ $0.1096 E 637 E-00$ C. $10865840 \mathrm{E}-00$
$0.10831929 \mathrm{~F}-00$
> - $\partial \mathrm{P} / \partial \mathrm{y}$
> 0.16225801 E $-0.51692142 E \mathrm{JO}$ $-0.62995769 \mathrm{E} \quad 00$ $-0.35627800 \mathrm{~F}-00$ $-0.25411848 \mathrm{E}-00$ $-0.19604822 \mathrm{E}-00$ $-0.15349664 \mathrm{E}-00$ $-0.12315840 \mathrm{E}-00$ $-0.10044441 E-00$ $-0.82772490 \mathrm{E}-01$ $-0.68556542 \mathrm{E}-01$ $-0.56809319 \mathrm{E}-\mathrm{U}$ $-0.46865259 \mathrm{E}-\mathrm{Cl}$ $-0.38252752 \mathrm{E}-01$ $-0.30618133 \mathrm{E}-01$ $-0.23714211 E-01$ $-0.17383970 \varepsilon-61$ $-0.11381426 E-01$
$-0.56354588 E-02$ $-0.56354588 E-U 2$ 0.

TABLE VIII. - Continued

y	U(x)
1.ccccc	c.
c.s5CCCC	C. 622003535 CC
C. SCCCCC	C.E753C8SL CC
c.85CCCC	C.SES657C1E CC
c.80CCCC	C. 1CCO4'ESE CI
c.75CCCC	C.1C172*53E C1
C.7CCCCC	C.1C28C182E Cl
c. 65 CCCC	C. $1035 \mathrm{E}+73 \mathrm{Cl}$
c. 60 CCCC	C. $1042 C^{\circ} 26 E C 1$
C.55CCCC	C.1C471*4EE C1
C.5CCCCC	C.1C512*11E C1
C. 45 CCCC	C. 1 C 548443 ECl
C. 4 CCCCC	C. ICST7ESEL Cl
C. 35 CCCC	C. ICEOITHEE CI
c. $36 C C C C$	C. ICE21*77E CI
c. 25 CCCC	C. ICE37847E CI
c. 2 CCCCC	C.1CE5Ca33E C1
C. 15 CCCC	C.ICESC? $18 E \mathrm{Cl}$
C.1cCCCC	C.ICE671C3E C1
c.osccce	C. $10671122 E$ CI
c.	C. 1CE72452E CI

\dagger	$u(x)$
1. cocccc	c.
c.95CCCC	C. 5414 C 34 LCC
C.90CCCC	C.83575.6CE CC
c.escccc	C.967751C7E CC
c.eccccc	C. $16163+25 E C 1$
C. 750 CCC	C. 16352734 ECl
c. 700 CCC	C. 10441487 ECL
c. 65 CcCC	C. 10497051E CI
C.6CCCCC	C.1C541.35E CI
C. 55 CCCC	C.1C577)23E Cl
0.50CCCC	C. 10t0EOESE C1
c. 45 cccc	C.1Ce3se77e Cl
c. 4 CCCCC	C.10658つ77E Cl
c. 35 CCCC	C. ICET7*T7E CI
C. 30 CCCC	C. 1 CE 93012E C1
C. 25 CcCC	C. 10707 C47E C1
c. 2 ccccc	C. 10717404 Cl
C.15CCCC	C. $1 \mathrm{C} 725 \times 52 \mathrm{ECl}$
c. 10 CCCC	C. $10731^{2} 15 \mathrm{Cl}$
c.osccce	C. $10734 \mathrm{R8CECl}$
c.	C. 10735785 Cl

U(r)
c. -C. $12604648 \mathrm{E}-\mathrm{CO}$ -C. 1773 Ees1E-CC -C. 1763 ECS2E-CO -C.1585?13CE-CC $-\mathrm{C} .1388 \geq 8 \mathrm{b5E}-0 \mathrm{C}$ -C. 1213 E712E-CC -C. 1 C645656E-0C -C.537451C4F-01 -C. $8260 \mathrm{C} 439 \mathrm{E}-\mathrm{Cl}$ -C. $72645579 \mathrm{E}-\mathrm{Cl}$ - C.E359C853E-C1 -C. $55224855 \mathrm{E}-\mathrm{Cl}$ -C.47392177E-01 -C. $399742 \mathrm{C4E}-\mathrm{Cl}$ -C. 2287 EtE6E-01 -C. $26031412 \mathrm{E}-\mathrm{Cl}$ -C. 1937C43CE-01 -C. $12842424 \mathrm{E}-01$ -C. $E 4001927 \mathrm{E}-02$ c.

ETA $=$ c. $1000 C C$
le
C.
-C. $14643519 \mathrm{E}-0 \mathrm{C}$ $-C .1660 C 283 E-00$ -C. $159267 C 8 t-00$ - C. $1435 \mathrm{E} 853 \mathrm{E}-\mathrm{CC}$ -C. $12685125 \mathrm{~L}-00$ -C. $111161358 \mathrm{E}-00$
-C. $98222253 \mathrm{E}-\mathrm{O1}$ -C. $.98222253 \mathrm{E}-\mathrm{C1}$
-C. $86429728 \mathrm{E}-\mathrm{Cl}$ -C. $86429728 E-C 1$
-C. $75895585 \mathrm{E}-\mathrm{Cl}$ -C. $\mathrm{C} 63458 \mathrm{CbE}-01$ -C. C . $57545226 \mathrm{E}-\mathrm{Cl}$ -C. $4533 \mathrm{COR} 7 \mathrm{E}-\mathrm{Cl}$ -C.41571C47E-C1 -C. $34166751 \mathrm{E}-\mathrm{Cl}$ -C. $27035211 \mathrm{E}-01$ -C.2C108164E-C -C. $13327377 \mathrm{E}-\mathrm{Cl}$ -C. 6 E4OE277E-C C.
$-\partial p / \partial \eta$
c. 21741308 E O1 $\begin{array}{ll}C .21741308 E & 01 \\ 0.2026 C 792 E & 01\end{array}$ 0.2026C742E O1
$0.1355 C 053 E ~ 01$ C. $1355 C 053 E 01$ C. $85867037 E$ OO
C. 58645986 E $0.58645986 E$ OO
$0.43343342[-00$ $0.34111056 \mathrm{E}-00$ $0.28138046 \mathrm{E}-00$ C. $24 C 48642 \mathrm{E}-0 \mathrm{C}$ C. $21126349 \mathrm{E}-00$
0.211235 C. $1897 \mathrm{C} 335 \mathrm{~F}-00$ $0.17342062 \mathrm{E}-00$ 0.16 C9122BE-00 $0.15121110 \mathrm{E}-00$ C. $14366804 \mathrm{E}-00$ $0.13782826 \mathrm{E}-00$ C. $13338239 \mathrm{E}-\mathrm{DO}$ C. $13011657 \mathrm{E}-0 \mathrm{C}$ 0.12787892E-00 $0.12657170 \mathrm{E}-00$ C. $12614175 E-0 C$
$-\partial P / \partial x$
$0.23545835 F$ $0.23545835 E$
$0.21942437 E$ 0.21942437 E ol 0.14674707 E O1 0.42993999 E
0.63513602 E 0.63513602 E 00 $0.46940839 \mathrm{E}-00$ $0.36442273 \mathrm{E}-00$ $0.30473503 E-00$
$0.26044733 t-C 0$ $0.2604473 \mathrm{E}-00$ C. $20844872 \mathrm{E}-00$ $0.18781453 \mathrm{E}-00$. $17426800 \mathrm{E}-00$ $0.16376162 \mathrm{E}-00$ $0.15559249 \mathrm{~F}-00$ $0.149268 C 0 \mathrm{E}-00$ 0.14445313E-00 $0.14091624 \mathrm{E}-00$ $0.13849287 \mathrm{E}-00$ $0.13707715 \mathrm{E}-00$ $0.13661151 \mathrm{C}-00$

- $\partial p / \partial r$
0.11475386 E 01 $0.32303645 \mathrm{E}-00$ $0.12976304 E-01$
$-0.13950942 \mathrm{E}-06$ $-0.13950942 E-00$
$-0.17 C 75958 E-00$ $-0.17675958 \mathrm{E}-00$
$-0.15573520 \mathrm{E}-00$ $-0.15573520 E-00$
$-0.13223519 E-00$ $-0.13223519 E-U 0$
$-0.11087556 \mathrm{E}-00$ -0.111087556E-0U $-0.93146227 E-01$ $-0.78515255 \mathrm{E}-01$ $-0.66302427 \mathrm{E}-01$ $-0.55457549 \mathrm{E}-01$
$-0.47050163[-41$ -0.39256976E-01 $-0.32325117 \mathrm{E}-01$ $-0.26063996 \mathrm{E}-\mathrm{U1}$ $-0.20315728 \mathrm{E}-01$ $-0.14916854 \mathrm{E}-01$ $-0.98683951 \mathrm{E}-\mathrm{U2}$ $-0.48611663 \mathrm{E}-02$ 0.
$x=0.092593$

0.12 CS1222E 01
 $-a p / \partial x$ 0.11752668 BE 0

 0.10777845 E 01 0.10838675 E 01 C. 84260909 E $0.63651009 E 00$ $0.49395044 E-00$ C. $39770690 E-00$ C. $33134420 \mathrm{Et-00}$ C. $28418942 \mathrm{E}-00$ C. $24571338 \mathrm{E}-$ กO $0.22391307 \mathrm{E}-00$ C. $20425398 \mathrm{E}-00$ $0.18907824 \mathrm{E}-00$ C. 16807617 E -00 C. $16807617 E-00$ $0.15553093 \mathrm{~F}-00$ C. $15154319 \mathrm{E}=00$ $0.14881094 \mathrm{E}-00$ C. $14881094 \mathrm{E}-00$ 0.14E69222E-000.10476065 E 0.10535142 L O1 .81901602E OO 0.61868780 E OO $0.48015870 \varepsilon-00$. $38657111 \mathrm{~L}-00$. $32206656 E-00$. . $24272140 \mathrm{E}-00$. $19853486 \mathrm{E}-00$. $19853486 \mathrm{t}-00$ $0.17231075 \mathrm{E}-00$. $16337004 \mathrm{E}=00$ $0.16337004 \mathrm{E}-00$ $0.15644541 \mathrm{~L}=00$ $0.15117606 \mathrm{E}-00$ 0.14729448 L-00 $0.14464423 \mathrm{E}-00$ $0.14258483 \mathrm{E}-00$

- ap/ar
0.69400644 E 00 $0.42864773 \mathrm{E}=00$ $0.28380413 \mathrm{E}-60$ $0.12346790 \mathrm{E}-\mathrm{V}$ $0.13977483 E-01$ $-0.37049899 \mathrm{E}-01$ $-0.54894045 \mathrm{E}-\mathrm{C}$ $-0.582125712-01$ $-0.55753034 \mathrm{E}-01$ $-0.51109891 \mathrm{E}-01$ $-0.45725448 \mathrm{E}-\mathrm{DI}$ $-0.40235534 \mathrm{E}-\mathrm{Ul}$
$-0.34899461 \mathrm{E}-01$ $-0.34899461 \mathrm{E}-01$
$-0.29803693 \mathrm{E}-01$ $-0.29803693 \mathrm{E}-01$
$-0.24983082 \mathrm{E}-01$
$-0.2041969 \mathrm{E}-01$ $-0.24983082 \mathrm{E}-\mathrm{UI}$
$-0.20419496 \mathrm{E}-01$ $-0.20419496 \mathrm{E}-\mathrm{O}$
$-0.16060823 \mathrm{E}-01$ $-0.16060823 \mathrm{E}-01$
$-0.11896928 \mathrm{E}-61$ $-0.11896928 \mathrm{E}-\mathrm{Cl}$
$-0.78560711 \mathrm{E}-\mathrm{UZ}$ $-0.39072122 \mathrm{E}-02$ 0.

ETA $=$ C.15CCCC $\quad x=0.147059$
 C.
$E T \Delta=C .2000 C C$

$\stackrel{-}{\mathrm{C} .} \mathrm{C}$
C. 57569975 E OO C. $52508347 E 00$ C. 75187072 E OO 0.72182859 OC C. $61287674 E 00$ 0.51139686 E 0 C. $431 \mathrm{CS940E}-00$ $0.36968160 \mathrm{E}-00$ C. $32288575 \mathrm{E}-00$ C. $28692921 \mathrm{E}-00$ C. $25904407 \mathrm{E}-00$ $0.23724431 \mathrm{E}-00$ C. $2201 \mathrm{CB96E}-00$ C. $2066 C 367 \mathrm{E}-00$ $0.19597834 \mathrm{E}-00$ C. $18769842 \mathrm{E}-00$ $0.18135951 E-00$ C.17668179E-00 C. $17347059 \mathrm{E}-00$ $0.17097449 \mathrm{E}-00$
$-\partial p / \partial x$
$0.58583167 E$ OO $. .45524736 \mathrm{~F}-00$ 0.65187190 F OO 0.62582538 E OU $.53136413 E 00$ $0.44338106 E-00$ $0.37372893 \mathrm{E}-00$. $32051394 \mathrm{E}-00$ $0.27994194 \mathrm{E}-00$ $0.24876761 \mathrm{E}-00$ $0.22459120 \mathrm{E}-00$ 0. $20569081 \mathrm{E}=00$ $0.19083447 \mathrm{E}-00$ $0.17912538 \mathrm{E}-00$ $0.16991321 \mathrm{E}-00$ $0.16273452 \mathrm{E}-00$ $0.15723869 E-00$. $15318311 \mathrm{~F}=00$. $15039900 \mathrm{~F}=00$.. $14876992 \mathrm{E}-00$

- $\partial p / \partial r$
$0.40600255 \mathrm{E}-00$
$0.33087420 \mathrm{E}-\mathrm{UO}$ $0.30621091 \mathrm{E}-00$ $0.23252980 \mathrm{E}-00$ $0.13726961 \mathrm{E}-00$ $0.64420753 \mathrm{E}-\mathrm{U}$ $0.20738564 \mathrm{E}-01$ $-0.27290939 \mathrm{E}-02$ $-0.14583541 \mathrm{E}-61$ -0.20043885E-U1 $-0.21946035 \mathrm{E}-01$ $-0.21818463 \mathrm{E}-01$ $-0.20526599 E-01$ $-0.18562705 \mathrm{C}-\mathrm{U}$ $-0.16222285 \mathrm{E}-01$ $-0.13662358 \mathrm{E}-01$ $-0.10994466 \mathrm{E}-\mathrm{CI}$ $-0.82707280 \mathrm{E}-\mathrm{UZ}$ $-0.55181142 \mathrm{E}-02$ 0.
$x=0.208333$
$\begin{array}{cc}-\partial p / \partial \eta & -\partial p / \partial x \\ 0.41505998 E-00 & 0.31876605 E-00\end{array}$ $0.41585998 \mathrm{E}-00$ $0.26827346 E-00$ $0.48430160 E-00$
$0.57244924 E O O$ $0.57254924 E O O$
$0.54736684 E 00$ 0.449289457E-00 $0.49289457 \mathrm{E}-00$
$0.43893385 \mathrm{E}-00$ $0.391828 C 6 E-00$ C. $35226023 \mathrm{E}-00$ C. $31953690 \mathrm{E}-00$ c. $.292695225-00$ $0.27 C 8 C 246 \mathrm{E}-00$ $0.25303261 \mathrm{E}-00$ $0.23868562 \mathrm{E}-00$ $0.22719529 E-00$ $0.21811269 \mathrm{E}-0 \mathrm{C}$ $0.21109179 \mathrm{E}-00$ $0.20587445 E-00$ $0.20227110 \mathrm{E}-00$ $0.20015641 \mathrm{E}-00$ $0.19946048 \mathrm{E}-00$

0. $20603400 \mathrm{E}-00$ $0.20603400 \mathrm{E}-00$ $0.37144362 \mathrm{E}-00$ $0.44002500 \mathrm{E}=00$ $0.42037772 \mathrm{t}-00$ $0.37854302 \mathrm{t}-00$ 0.33710119E-00 $0.30092394 E-00$ O. $24540433 \mathrm{E}-00$ $0.22478992 \mathrm{E}-00$ $0.2014762 \mathrm{EE}-00$ $0.19432904 \mathrm{E}-00$ $0.18331055 \mathrm{f}-00$ $0.17448598 \mathrm{E}-00$ $0.16751054 \mathrm{E}-00$ $0.16211849 \mathrm{E}=00$ $0.15811196<-00$ $0.15534420 \mathrm{E}-00$ $0.15372012 \mathrm{E}-00$ $0.15318564 \mathrm{E}-00$
> - $\partial \mathrm{p} / \partial \mathrm{r}$
> $-\partial p / \partial r$
$0.24303222 E-00$ $0.24303222 \mathrm{E}-00$
$0.22246727 \mathrm{E}=00$ $0.22246727 E-00$
$0.24144343 E-00$ $0.24144343 \mathrm{E}-00$
$0.23503731 \mathrm{E}=00$ $0.18729008 \mathrm{E}-00$ $+18729008 \mathrm{E}-00$ $0.12822763 E-00$ $0.79604091 \mathrm{E}-01$
$0.46360088 \mathrm{E}-01$ $0.46360088 \mathrm{E}-01$ $0.11295156 \mathrm{E}-\mathrm{C1}$ $0.24726448 \mathrm{E}-02$ $-0.19838168 \mathrm{EF}-02$ $-0.47259260 \mathrm{~F}-02$ $-0.60099927 E-U 2$ - $0.6307030 \mathrm{EE}-\mathrm{U2}$ $-0.59563061 \mathrm{E}-02$ $-0.51710490 \mathrm{E}-\mathrm{U2}$ -0.40849947E-02 $-0.28179789 \mathrm{E}-02$ $-0.14343084 \mathrm{E}-02$ 0.

TABLE VIII. - Continued
> 1. oocccc c. 55 Cccc c. socccc c. Bocccc c. 75 CCCC C. 70 CCCC . 60 CCCC c. 55 CCCC c. 50 CCCC 0.45 CCCC 0.45 CCCC
0.40 CCCC C. 35 CCCC C. 35 CCCC c. 25 CCCC c. 20 CCCC c. 15 CCCC c. 100 CCC . 05 CCCC c.

\section*{. coccc c. 95 CCC c. 90 CCCC C. 85 CCCC C. .75 CCCC C. 70 CCCC C. 70 CCCC 0.65 CCCC

c .60 CCCC C. 60 CCCC
C. 55 CCCC c. 5 SCCC

c. 50 CCCC 0.45 CCCC c. $40 C C C C$ C. 35 CCCC . 30 Ccc . 25 CCCC . 2 Ccccc c.10cccc 0. 05 CcCC C.
 | U(x) | |
| :---: | :---: |
| | |
| | C. 33247 O3E-CC |
| | C. $t 1935164 \mathrm{E}$ |
| | C. $83576821 E C C$ |
| | C. 9756t731E CC |
| | C. 1 C53EC14E C1 |
| | C.1CS157C3E 01 |
| | C.11C74533E C1 |
| | C. 111128794 ECl |
| | C.1113C7SCE Cl |
| | C. 111135935 ECl |
| | C. 11112845 CI |
| | C. 11121 COSE Cl |
| | C. 11116122 ECl |
| | C. 11112 ? $36 E \mathrm{Cl}$ |
| | C.1110¢*E2E C1 |
| | C. $111107786 E$ C1 |
| | C. 111CEESIE C1 |
| | C. 11110596 CE CI |
| | C. 111105 CLCE Cl |
| | |

U(Y)
-C. 171
-C.55124775E-01
-C. $51372515 \mathrm{E}-01$
-C.1132SC52E-00
-C. $12046952 \mathrm{E}-00$
-C.117727C8E-C0
-C. $10986748 \mathrm{E}-0 \mathrm{C}$
-C. 1 COOCbE5E-OC
-C.89742169E-01
-C.79745542E-C1
-C.70231110E-01
-0.t1219139E-01
-C. $52655716 \mathrm{E}-01$
-C. $44484243 \mathrm{E}-01$
-C. $36623755 \mathrm{E}-01$
-C.29014476E-01
-C. $21598379 \mathrm{E}-01$
-C. $14322826 \mathrm{E}-01$
-C. $71388259 \mathrm{E}-\mathrm{C2}$
c.

ETA

ETA $=C .300 C C C$

U(x)

1. ${ }^{\gamma}{ }^{\gamma}$ 0.95CCCC c. 85 CCCC c.80CCCC c. 75 CCCC C. 70 CCCC C. 65 Cccc c. 60 CCCC . 55 CCCC C. 50 CCCC c. 4 CCCCC 0. 350 CCC C. 3 CCCCC C. 25 CCCC c. 20 CCCC C. 150 CCC 0. 10 CCCC c.csccec c. c.

	(v)	U(y)		- $\partial p / \partial \mathrm{l}$	-дp/ar
Cuccc	C.		C. $26 \mathrm{Cl11204E-00}$	$0.94420671 E-0$	$0.33433516 \mathrm{E}-01$
c.95cccc	C. 25962 2 $25 \mathrm{E}-\mathrm{CO}$	-C. $34445358 \mathrm{E}-02$	C.21307997E-00	$0.77348032 \mathrm{E}-01$	U.33465470E-01
c.90ccec	C.49651141E-CC	-C. $1332 \mathrm{C611E-C1}$	$0.20741134 \mathrm{E}-00$	$0.75290316 \mathrm{E}-01$	$0.37675393 \mathrm{E}-01$
0.85 CCCC	C.7C2I3CSEE CC	-C.27473252E-01	$0.24447077 \mathrm{E}-00$	0.18742890E-01	$0.48030375 E-01$
c. 80 CCCC	C.EEE13R7CE CC	-C.42665475E-01	$0.29996866 \mathrm{~F}-00$	0.10888862E-00	$0.61503249 \mathrm{E}-01$
C.75ccce	C. 5857148 CE CC	-C.55665555E-01	$0.34304799 \mathrm{E}-00$	$0.124526425-00$	$0.73062456 \mathrm{E}-01$
C. 7 CCCCC	C.1CESCAT2E CI	-C.t453C358E-01	C. $36693600 \mathrm{E}-00$	$0.133197765-00$	$0.79191502 \mathrm{E}-01$
$0.65 C C C C$	C.1113C468E C1	-C.688553E4E-01	$0.37965138 \mathrm{E}-00$	$0.13781345 \mathrm{E}-00$	$0.79340377 \mathrm{E}-01$
c. 60 CCCC	C. 113946 GEE C1	-C.69291332E-01	C. 3 R85C172E-00	$0.14102612 \mathrm{E}-00$	$0.74997702[-01$
C. 55 CCCC	C. 1152 S SEE C1	-C.66875554E-01	$0.39613496 \mathrm{E}-00$	$0.14379649 \mathrm{E}-00$	$0.68130441 \mathrm{E}-01$
c. 5 CCCCC	C.1158CP47E C1	-C.62612744E-01	C. $4025 \mathrm{E} 603 \mathrm{E}-00$	$0.14613873 \mathrm{E}-00$	0.60270909E-01
c. 45 CCCC	C.llssersue cl	-C.57246571E-C1	$0.40738461 \mathrm{E}-00$	$0.14788061 \mathrm{E}-00$	$0.52333868 \mathrm{E}-\mathrm{U1}$
c. 40 CCCC	C.11597E72E Cl	-C.51281743E-01	C.41C38235E-00	$0.14896879 \mathrm{E}-00$	0.44757803E-01
C. 35 CCCC	C.1159Cr3EE CI	-C.45017724E-01	$0.4118 \mathrm{C} 541 \mathrm{E}-00$	$0.14448536 E-00$	$0.37706060 \mathrm{E}-01$
c. 3 CCCCC	C. 1158 C+ECE C1	-C.3862C1ece-cl	C. $412 \mathrm{C} 9555 \mathrm{E}-00$	$0.14457762 \mathrm{E}-00$	$0.31197909 \mathrm{E}-01$
0.25 CCCC	C. 11571725 Cl	-C. $32174 \mathrm{CE} 3 \mathrm{E}-\mathrm{Cl}$	$0.41158842 \mathrm{E}-00$	$0.14940659 \mathrm{E}-00$	$0.25195320 \mathrm{E}-01$
C. 200 CCC	C. 1156414 EE Cl	-C.25715642E-01	C.41C75832E-00	$0.14910527 E-60$	$0.19623667 \mathrm{E}-01$
C. 15 CCCC	C. 1155 ET24E C1	-C.14273424[-01	C.40985885E-00	$0.14877876 \mathrm{E}-00$	$0.14405963 \mathrm{E}-01$
c. $100 C C C$	C.115E4C22E Cl	-C.12839817E-C1	0.409CE9545-00	$0.14849950 \mathrm{E}-00$	$0.94555140 \mathrm{E}-\mathrm{U} 2$
O.CSCCCC	C.11551*2CE Cl	-C.E4165286E-02	$0.40857735 \mathrm{E}-00$	$0.14831357 \mathrm{E}-00$	$0.46829555 E-02$
c.	C. 11556 SCE CI	C.	C. $40838419 \mathrm{E}-00$	$0.14824709 \mathrm{~F}-00$	
		ETA $=$ C.50ccco	$x=0.833333$		
- ${ }^{\text {r }}$	U(x)	U(r)		- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{P} / \partial \mathrm{y}$
1. cocccc		c.	$\begin{gathered} -2 P / \partial \eta \\ 0.29287100 \mathrm{E}-00 \end{gathered}$	$0.87861300 \mathrm{E}-01$	U.23889060E-01
c.95ccce	C. 2428 Cc C3t-CC	-C.243435C5E-C2	c. $25505765 \mathrm{E}-00$	$0.76517295 \mathrm{E}-01$	$0.23512162 \varepsilon-01$
0.90 CCCC	C. 4 t616733F-CC	-C. $33725569 \mathrm{E}-02$	$\begin{aligned} & \text { C. } 24474032 \mathrm{E}=00 \\ & \text { C. } 26583497 \mathrm{E}-00 \end{aligned}$	$0.73422097 \mathrm{E}-01$	$0.25414501 \mathrm{E}-61$
c. 85 CCCC	C. 663424 CCE CC	-C.15725983E-01		$0.79750491 \mathrm{E}-01$	$0.3236000 \mathrm{BE}-\mathrm{Cl}_{1}$
c.eccece	C. $22736^{\circ} \mathrm{HCE}$ CC	-C.3155C131E-01	$\begin{aligned} & \text { C. } 26583497 E-00 \\ & 0.30847320 E-00 \end{aligned}$	$0.92541959 \mathrm{E}-01$	U. $41736074 \mathrm{E}-01$
-.75cccc	C. 55393412E CC	-C.42601551E-01		$0.10494072 \mathrm{E}-00$	$0.51278824 \mathrm{E}-01$
c. 700 CCC	C. 10442 r22E Cl	-C.51141387E-01	$\begin{aligned} & C .3498 C 241 \mathrm{E}-00 \\ & 0.37763642 \mathrm{E}-00 \end{aligned}$	$0.11329092 \mathrm{E}-00$	$0.58281977 \mathrm{E}-01$
9.65CCCC	C.11C3t*42E Cl	-C.5636E253E-C1		$0.11824539 \mathrm{E}-00$	$0.61426932 \mathrm{E}-01$
c.6CCCCC	C. $113588^{2} 63 \mathrm{E} \mathrm{Cl}$	-C.58337173E-01	$\begin{aligned} & \text { C. } 39415132 \mathrm{E}=00 \\ & 0.40571265 \mathrm{E}-00 \end{aligned}$	$0.12171379 \mathrm{E}-00$	0.60890783E-01
c. 55 CCCC	C. $11601^{3} 44 \mathrm{ECl}$	-C.57605870E-CI	c. $41616263 \mathrm{E}-00$	$0.12484878 \mathrm{E}-00$	$0.57665806 \mathrm{E}-01$
c. 50 CCC	C.11705R日3E CI	-C. $54905666 \mathrm{E}-\mathrm{Cl}$	C. $42630835 \mathrm{E}-00$	0.12789250 E-00	$0.52850460 \mathrm{E}-\mathrm{U1}$
C. 45 CCCC	C. 11751817 ECl	-C.5C875313E-C1	C. $43559445 \mathrm{E}-00$	$0.13067833 \mathrm{E}-00$	$0.47282082 \mathrm{E}-01$
C.4CCCCC	C.117677C3E Cl	-C.4603C774E-01	$0.44339605 E-00$	$0.13301881 \mathrm{E}-00$	$0.41480763 \mathrm{E}-01$
C. 35 CCCC	C. 11768 cs4E Cl	-C.4C695738E-01	C. $44944502 \mathrm{E}-00$	$0.13483351 \mathrm{E}-00$	$0.35717823 \mathrm{E}-01$
c. 30 CCCC	C.11764r15E Cl	-C.3509E7C5E-01	$0.45383902 \mathrm{E}-00$	$0.13615170 \mathrm{E}-00$	$0.30115841 \mathrm{E}-01$
c. 25 CCCC	C. $11757165 E$ C1	-C.25351938E-01	C. $45686463 \mathrm{E}-00$	$0.13705938 \mathrm{E}-00$	$0.24711198 \mathrm{E}-01$
c. 20CCCC	C. $1175 C^{\text {P C L E Cl }}$	-C.23528845E-01	$0.45885415 \mathrm{E}-00$	$0.13765624 \mathrm{E}-00$	$0.19504286 \mathrm{E}-01$
$0.15 C C C C$	C. 1174471 EE Cl	-C.12666755E-01	$0.46016439 \mathrm{E}-00$	$0.13803131 \mathrm{E}-00$	$0.14468317 \mathrm{E}-01$
$0.10 C C C C$	C.1174CESEE CI	-C.11785158E-C1	$0.46084177 E-00$	$0.13825253 \mathrm{E}-00$	$0.95671876 \mathrm{E}-02$
0.cscccc	C.1173er3le Cl	-C.58944254E-02	$0.46121778 \mathrm{E}-00$	$0.13836533 \mathrm{E}-00$	0.47600387E-02
c.	C. 11737186 El	c.	$0.46131326 \mathrm{E}-00$	$0.13839398 \mathrm{E}-00$	0.
		ETA $=$ C. 55000 C	$x=1.018519$		
${ }^{\text {r }}$	c. $u[x]$	U(y)	$\begin{gathered} -\partial P / \partial \eta \\ c .34201384 \mathrm{E}-00 \end{gathered}$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{p} / \partial \mathrm{r}$
$1.0008 C C$				$0.83109362 \mathrm{E}-01$	$0.16843070 \mathrm{E}-01$
$0.950 C C C$	C. 228377 CEE-CC	-C. $16965568 \mathrm{E}-\mathrm{C} 2$	$0.31109607 \mathrm{E}-00$	$0.75596345 \mathrm{E}-01$	$0.16451219 \mathrm{E}-01$
c.90CCCC		-C.E5655812E-C2	$0.29909737 \mathrm{E}-00$	$0.72680661 \mathrm{E}-01$	0.17664208E-01
c.8scccc	$\begin{aligned} & C .4352796 C E-C C \\ & C ., 28210 C 4 E C C \end{aligned}$	-0.14003333E-01	$0.30974093 \mathrm{E}-00$	$0.75267047 \mathrm{E}-01$	$0.21378512 \mathrm{E}-01$
c. 80 CCCC	C. 7858847 CE CC	-0.22884770E-01	$0.34 C 44567 E-00$	$0.62728299 \mathrm{E}-01$	0.27302931E-01
c. 75 CCCC	C. 52041761 CC	-C.31763617E-01	$0.37667857 \mathrm{E}-00$	$0.41532892 \mathrm{E}-01$	$0.34097356 \mathrm{E}-01$
c. 70 CCCC	C.1C191783E C1	-C. $393021 \mathrm{C} 3 \mathrm{E}-01$	C. $40571923 \mathrm{E}-00$	$0.98589772 \mathrm{E}-01$	$0.40066577 \mathrm{E}-01$
c.65CCCC	C.1C890ROEE CI	-C.4463t082E-01	$0.42492609 \mathrm{E}-00$	$0.10325704 \mathrm{E}-00$	$0.43966032 \mathrm{E}-01$
c. $6015 c c$	C. 113531 CEE C1	-C.47481576E-01	C.43E19991E-00	$0.10648257 \mathrm{E}-00$	$0.45378540 \mathrm{E}-01$
0.55 CCCC	C. 11635835 CE C1	-C.48013589E-01	$0.44975632 \mathrm{E}-00$	$0.10929079 \mathrm{E}-00$	$0.44577546 \mathrm{E}-\mathrm{C1}$
$0.50 c c c c$	C. 11805155 Cl	-C.46656427E-01	C.46144798E-00	$0.11213186 \mathrm{E}-00$	$0.42153855 \mathrm{E}-01$
$0.45 C C C C$	C. 11893924 ECl	-C. $43697636 \mathrm{E}-01$	C.47320327E-00	0.11498839E-00	$0.38707660 \mathrm{E}-61$
c. 4 CCOCC	C. 11936 RS2E C1	-C.40173411E-01	$0.48423548 \mathrm{E}-00$	$0.11766922 \mathrm{E}-00$	$0.34696313 \mathrm{E}-01$
0.35 CCCC	C. 11954641 ECl	-C.358217C6E-01	$0.49385116 \mathrm{E}-00$	0.12000582E-00	$0.30413555 \mathrm{E}-01$
c. 30 CCCC	C. $11558 \mathrm{C}_{\text {2CE C1 }}$	-C.31075731E-C1	0.50172685 E 00	$0.12191962 \mathrm{E}-00$	$0.26028790 \mathrm{E}-01$
c. 2 scCCC	C. 11957288 Cl C1	-C.26102772E-01	0.50785752 E 0	$0.12340938 \mathrm{E}-00$	$0.21626227 \mathrm{E}-01$
c. $200 C C C$	C. 11953653 ECl	-C.20987CC9E-01	C. 51242667 E 00	$0.12451968 \mathrm{f}-00$	$0.17243188 \mathrm{E}-\mathrm{D1}$
c. 15 CCCC	C. 11945875 Cl	-C.1579C433E-01	$0.51567176 E 00$	$0.12530824 \mathrm{E}-00$	$0.12892845 \mathrm{E}-01$
c. 10 CCCC	C. 11948433 ECl	-C.1C547464E-01	C. 51781129 E OO	$0.12582814 \mathrm{E}-00$	$0.85751109 \mathrm{E}-02$
c. C .	$\begin{aligned} & C .11944^{2} 6 \mathrm{CE} \text { C1 } \\ & \text { C. } 11943452 \mathrm{CE} \end{aligned}$	-C.527925s1E-02	0.51900029 EO	$0.12611707 \mathrm{E}-00$	$0.42809162 \mathrm{E}-02$
		c.	0.51931680 E 00	$0.12619398 \mathrm{E}-00$	0.
	$\text { C. } 111943 \times 52 \mathrm{E} \quad \mathrm{Cl}$	ETA $=$ C.EOCOCC	1.25		
	c. $U(x)$	U(Y)	- $\partial \mathrm{p} / \partial \eta$	- $\partial \mathrm{p} / \partial \mathrm{x}$	- $\partial \mathrm{P} / \mathrm{dr}$
1. Cocccc		c.	$0.41229161 \mathrm{E}-00$	0.74159991E-01	$0.11919250 \mathrm{E}-\mathrm{U1}$
0.85 CCCC	C. $21578453 \mathrm{E}-\mathrm{CC}$	-c.118254t6E-02	c. $38649113 \mathrm{E}-00$	0.74206299F-01	$0.11471531 \mathrm{E}-01$
c. scccce	C. 41552 P16E-CC	-C.45789671E-02	$0.3741774 \mathrm{CE}-00$	$0.71842063 \mathrm{E}-01$	$0.11911002 \mathrm{E}-01$
c. 85 CCCC	C. $59626^{\circ} 2 \mathrm{SECC}$	-C.58392724E-C2	C.37818007E-00	$0.12610576 \mathrm{E}-01$	$0.13804409 \mathrm{E}-01$
$0.80 C C C C$	C. 75428121 EC	-C.16318974E-C1	C.39905302E-00	$0.76618181 \mathrm{E}-01$	$0.17159400 \mathrm{E}-01$
c. 75 CCCC	C. E8E37'OTE CC	-C.23131713E-01	C. $42861525 \mathrm{E}-00$	$0.82244130 \mathrm{E}-01$	$0.21406766 \mathrm{E}-01$
c. 70000	C. 59122 ClSE CC	-C.29345074E-01	$0.45636074 \mathrm{E}-00$	$0.87621264 \mathrm{E}-01$	0.25636669E-01
c. 65 cccc	C. ICE9SO3EE C1	-c.34233712E-C1	$0.47701664 \mathrm{E}-00$	$0.41587197 E-01$	$0.28981195 \mathrm{E}-01$
c. $60 C C C C$	C. $11259271 \mathrm{EC1}$	-C.37378535E-01	$0.49155433 \mathrm{E}-00$	$0.94378432 \mathrm{E}-01$	$0.30921864 \mathrm{E}-01$
C.55CCCC	C. $11635^{2} \mathrm{CLECL}$	-C.38711228E-01	C.5034C917F 00	$0.46654562 \mathrm{E}-01$	$0.31357744 \mathrm{E}-01$
c. SCCCCC	$\begin{aligned} & \text { C. } 11874463 E C 1 \\ & \text { C. } 12 C 184 C E E ~ C 1 \end{aligned}$	-C. $38404569 \mathrm{E}-01$	0.51516343800	$0.48911380 E-01$	$0.30492927 \mathrm{E}-01$
c. 45 CCCC		-C.3675e280E-01	C. 52756412 E 00	$0.10129231 E-00$	$0.28656088 \mathrm{E}-01$
c. 4 CCCCC	$\begin{aligned} & \text { C. } 1210 C^{\prime} 4 \text { EE C1 } \\ & \text { C. } 1214392 \mathrm{CE} \end{aligned}$	-C.34095810E-01	$0.54 \mathrm{Cl} 12251 F 00$	$0.10370352 \mathrm{E}-00$	$0.26169232 \mathrm{E}-01$
c. 35 CCCC		-C. $30722823 \mathrm{E}-01$	C. 55196493 E 00	$0.10597727 \mathrm{E}-00$	$0.23281820 \mathrm{E}-01$
c. 3 CCCCC	$\begin{aligned} & \text { C. } 1214392 \mathrm{CE} \mathrm{Cl} \\ & \text { C. } 12163971 \mathrm{Cl} \end{aligned}$	-C.2686C359F-01	0.56237582 E 00	$0.10797615 \mathrm{E}-00$	$0.20159789 \mathrm{E}-01$
c. 25 CCCC	$\text { C. } 12172448 \mathrm{E} \text { C1 }$	-C.22682726E-01	C. 57097888 E 00	$0.10962794 \mathrm{E}-00$	$0.16906525 E-01$
c. 20cccc		-C. 1830 66C6E-01	0.57769850 E 00	$0.11091811 \mathrm{E}-00$	$0.13578981 \mathrm{E}-01$
c. 15 CCCC	$\begin{aligned} & \text { C. } 1217474 \mathrm{CE} \\ & \text { C. } 12174 \% 2 \mathrm{EE} \\ & \text { Cl } \end{aligned}$	-C.1380¢738E-01	C.58264064E OO	0.11186701E-00	0.10210267E-01
$0.10 C C C C$	$\begin{aligned} & \text { C. } 12172115 \mathrm{Cl} \\ & \mathrm{C} .12172 \mathrm{CR} 4 \mathrm{E} \end{aligned}$	-C. $52385596 \mathrm{E}-02$	0.58595514 E 00	$0.11250339 \mathrm{E}-00$	$0.68171801 \mathrm{E}-02$
c. $05 C C C C$		-C.4628225CE-02	0.58778024 E 00	$0.11285380 \mathrm{E}-00$	$0.34116216 \mathrm{E}-02$

TABLE VIII. - Continued

${ }^{\text {r }}$	u(x)	U(Y)	$\partial p / \partial \eta$	- дp/əx	- $\partial \mathrm{p} / \partial \mathrm{y}$
1.00CCCC	c.	C.	0.51205588 E 00	$0.75272218 \mathrm{E}-01$	$0.84847739 E-02$
0.95 CCCC	C. $20452^{\circ} 27 \mathrm{E}-\mathrm{CC}$	-C.82548586E-03	$0.48993316 \mathrm{E}-00$	$0.72020177 \mathrm{E}-01$	$0.79948444 \mathrm{E}-02$
c.90COCC	C. $39418^{*} 48 \mathrm{E}-\mathrm{CC}$	-C. $3183 \mathrm{E6C2E-02}$	$0.47782107 \mathrm{E}-00$	$0.70239701 \mathrm{E}-01$	$0.79715561 \mathrm{E}-02$
0.85 CCCC	C. 56707 T 17 ECC	-0.68581011E-02	$0.47760934 \mathrm{E}-00$	$0.70208576 \mathrm{E}-01$	$0.87422744 \mathrm{E}-02$
0.80 CCCC	C. $72665724 E C C$	-C. 114747 C4E-01	$0.49088863 \mathrm{E}-00$	$0.72160632 \mathrm{E}-01$	$0.10385249 \mathrm{E}-01$
0.75 CCCC	C. 25254751 CC	-C.16508121E-01	$0.51356157 E 00$	$0.75493553 \mathrm{E}-01$	0.126967 COE-01
C.70COCC		-C.21361197E-01	0.53814039 E 00	$0.79106640 \mathrm{E}-01$	$0.15251118 \mathrm{E}-01$
0.65 COCC	C. 10472407 ECl	-0.25488317E-01	0.55883186 E OO	$0.82148286 \mathrm{E}-01$	0.17554476E-01
0.60 CCCC	C. $1111 \mathrm{CCC4E} \mathrm{Ol}$	-0.2850C751E-01	C.57425626E 00	$0.84415673 \mathrm{E}-01$	$0.19208089 \mathrm{E}-01$
C.55CCCC	C. 115861 CCE Cl	-C.30212966E-01	$0.58632211 E 00$	$0.86189353 \mathrm{E}-01$	$0.20009164 \mathrm{E}-01$
c. 500006	C. $11906{ }^{\circ} 15 \mathrm{E}$ Cl	-C. 3062 E549E-01	0.59758964 EO	$0.87845681 \mathrm{E}-01$	0.19448656E-01
$0.4500 C C$	C. 12118129 Cl	-C. $29875612 \mathrm{E}-01$	$0.60956457 E 00$	$0.89605996 \mathrm{E}-01$	$0.19149659 \mathrm{E}-01$
C.400CCC	C. 12251739E O1	-C.28162757E-01	0.62238591 E OO	$0.91490732 \mathrm{E}-01$	$0.17786862 \mathrm{E}-01$
C.35CCCC	C. 12331493 ECl	-C.25705989E-01	0.63535250 E OO	$0.93396822 \mathrm{E}-01$	$0.16029906 \mathrm{E}-01$
0.30 CCCC	C. 12377×7 EE C1	-C.22704191E-01	0.64754394 E 00	$0.95188963 \mathrm{E}-01$	$0.14014173 \mathrm{E}-01$
$0.25 c c c c$	C. 12402097 Cl	-0.19320755E-01	0.65820709 E 00	$0.96756446 \mathrm{E}-01$	$0.11834350 \mathrm{E}-01$
0.20CCCC	C. 12415839 Cl	-0.1568C619E-01	0.66690908 E 00	$0.98035639 \mathrm{E}-01$	$0.95530523 \mathrm{E}-02$
0.15 CCCC	C. 12421074 ECl	-C.11873969E-01	$0.67348307 E 00$	$0.99002016 \mathrm{E}-01$	$0.72080658 \mathrm{E}-02$
0.1 CCCCC	C. $12424{ }^{\text {E }}$ E4E Cl	-0.79641656E-02	C.67791872E 00	$0.99654055 \mathrm{E}-01$	$0.48243119 \mathrm{E}-02$
0.050006	C. 12425535 ECl	-C. $39954057 \mathrm{E}-02$	0.68823764 E 00	$0.99994937 \mathrm{E}-01$	$0.24174463 \mathrm{E}-02$
0.	C. 12425759 El	C.	0.68038345 E OO	$0.10001637 E-00$	0.
		ETA $=$ c. 700000	$x=1.944444$		
${ }^{\text {r }}$	U(x)	U(Y)	- $\partial \mathrm{P} / \mathrm{D}^{\prime} \eta$	- $\partial \mathrm{P} / \partial \mathrm{x}$	0.60349274E-02
1. COCCCC	C. $15412=62 \mathrm{E}-\mathrm{CC}$		$0.65655185 E 00$	$0.70907601 \mathrm{E}-01$	
0.95CCOC		-0.57508439E-03	$0.63692590 E 00$	$0.68787998 \mathrm{E}-01$	$0.55570406 \mathrm{E}-02$
0.90 COCC	C. $374487 \mathrm{SSE}-0 \mathrm{C}$	-C.22025871E-02	0.62511737 E 00	$0.67512677 \mathrm{E}-01$	$0.53163861 \mathrm{E}-\mathrm{U}$
0.85 CCCC	C. 53586 CCCE CO	-0.47375724E-02	$0.62219201 E 00$	$0.67196739 \mathrm{E}=01$	0.54887503E-02
$0.80 C C C C$	C.t8863481E CO	-C.79573658E-02	0.62983526 E 00	$0.68022210 \mathrm{E}-01$	$0.61434846 \mathrm{E}-02$
c.75CCCC	C.e.1s119C2E CO	-0.11555149E-01	0.64 E25745E 00	$0.69795806 \mathrm{E}-01$	0.72227080E-02
0.70000 C	C.93013C42E CC	-0.15167779E-01	$0.66668255 E 00$	$0.72001716 \mathrm{E}-01$	$0.85521968 \mathrm{E}-02$
0.65 CCCC	0.16214354 El	-0.18431024E-01	0.68611863 E 00	$0.74100813 \mathrm{E}-01$	$0.98902594 \mathrm{E}-02$
C.60CCCC	C. 16937066 El	-C.2104C497E-01	0.70197059 E 00	$0.75812826 \mathrm{E}-01$	$0.10999636 \mathrm{E}-01$
0.55 CCCC	C. 1149 CF 89 Cl	-0.22794831E-01	0.71452694 E 00	$0.77168912 \mathrm{E}-01$	$0.11707760 \mathrm{E}-01$
0.50 CCOC	C. 11897413 El	-0.23605149E-01	0.72566812 E 00	$0.78372158 \mathrm{E}-01$	$0.11937158 \mathrm{E}-01$
C.45CCOC	C. 12186 Cl 12 ECl	-C.23501430E-01	0.73720111 E 00	$0.79617722 \mathrm{E}-01$	$0.11696479 \mathrm{E}-01$
C.4CCCCC	C. $12383+93 \mathrm{El}$	-C.22562798E-01	$0.74994239 E 00$	$0.80993780 \mathrm{E}-01$	$0.11052100 \mathrm{E}-01$
C.35CCCC	C. $12514=51 \mathrm{ECl}$	-C.20924377E-01	0.76367038 E 00	$0.82476402 \mathrm{E}-01$	$0.10093836 \mathrm{E}-01$
c.30000C	C. 12598737 ECl	-0.18728689E-01	0.77752107 E 00	$0.83972277 \mathrm{E}-01$	$0.89098940 \mathrm{E}-02$
$0.250 C C C$	C. 1265 C 242 ECl	-0.1611C188E-01	0.79047039 E 00	$0.85370804 \mathrm{E}-01$	$0.75736281 \mathrm{E}-02$
c.20CCCC	C. $12681326 E \mathrm{Cl}$	-0.13184606E-01	0.80163198 E 00	$0.86576255 \mathrm{E}-01$	$0.61391946 \mathrm{E}-02$
c. 150000	C. 12695258 Cl	-C. $10045630 \mathrm{E}-01$	$0.81037477 E 00$	$0.87520477 \mathrm{E}-01$	$0.46441629 \mathrm{E}-02$
0.100000	C. 12709771E Cl	-0.67662317E-02	$0.81628728 E 00$	$0.88159028 \mathrm{E}-01$	$0.31125727 \mathrm{E}-02$
c.05CCCC	C. 12713 P 64 El	-0.34027119E-02	0.81907262 EO	$0.88459844 \mathrm{E}-01$	0.15608230E-02
0.	C. 12715789 Cl .	c.	$0.81841429 E 00$	$0.88388745 \mathrm{E}-01$	0.
		ETA $=$ C. 750000	2.50		
${ }^{\text {r }}$	$u(x)$	U(Y)	- $\partial p / \partial \eta$	- $\partial \mathrm{P} / \partial \mathrm{x}$	$0.41817421 \mathrm{E}-02$
1.000000	C.		0.87711108 EO	$0.65783334 \mathrm{E}-01$	
$0.95006 C$	C. $18412355 \mathrm{E}-\mathrm{CC}$	-0.39246865E-03	0.85910968 EO	$0.64433229 \mathrm{E}-01$	$0.37781207 \mathrm{E}-02$$0.34956680 \mathrm{E}-02$
$0.90150 C$	C. $35564^{2} 53 \mathrm{E}-\mathrm{CO}$	-C.14918351E-02	0.84759829 EO	$0.63569874 \mathrm{E}-01$	
0.85 CCCC	C. $51378=18 \mathrm{CO}$	-C.319859C2E-02	$0.84301407 \mathrm{E}-00$	$0.63226058 \mathrm{E}-01$	$0.34250624 \mathrm{E}-02$
c.80CCOC	C.ES5752752E CC	-0.53765510E-02	$0.84672945 E 00$	$0.63504712 \mathrm{E}-01$	$0.36103354 \mathrm{E}-02$
$0.75 C C C C$	C. 78578442 ECC	-0.78495520E-02	0.85810392 E 00	$0.64357796 \mathrm{E}-01$	0.40409987E-U2
c.70cccc	C.8976EC98E OC	-0.10405020E-01	$0.87433717 E 00$	$0.65575290 \mathrm{E}-01$	0.46524985E-02
c. 65 CCCC	C.9928E277E CO	-C.12819669E-01	0.89174806 E 00	$0.66881107 \mathrm{E}-01$	$0.53401221 E-02$
0.60COCC	C. $10715 \mathrm{P} 48 \mathrm{EC1}$	-0.14885987E-01	0.90754990 EO	$0.68066245 E-01$	$0.59833986 \mathrm{E}-02$
$0.55000 C$	C. $11348762 \mathrm{EC1}$	-0.16435220E-01	0.92092098 E 00	$0.69069076 \mathrm{E}-01$	$0.64750292 \mathrm{E}-02$
$0.500 C C C$	C.1184148SE C1	-0.17374C82E-01	$0.93275285 E 00$	$0.69956467 E-01$	0.67411765E-02
C. 45 CCCC	C. 12215 Cl 14 ECl	-C.17648438E-01	$0.94463380 E O 0$	$0.70847538 \mathrm{E}-01$	$0.67505484 \mathrm{E}-02$
0.4000CC	C. 12489855 ECl	-0.17275824E-01	0.95777365 E 00	$0.71833026 \mathrm{E}-01$	$0.65091446 \mathrm{E}-02$
c.350CCC	C. $12686=04 E C 1$	-0.16311119E-01	$0.97253126 E 00$	$0.72939847 \mathrm{E}-01$	$0.60492349 \mathrm{E}-02$
0.30CCCC	C. 12823433E O1	-0.14834312E-01	0.98835043 E 00	$0.74126285 E-01$	$0.54150338 \mathrm{E}-02$
c. 25 CCCC	C. 12916739 E C1	-0.12935917E-01	0.10041030 E 01	$0.75307731 \mathrm{E}-01$	$0.46518559 \mathrm{E}-02$
0.20cccc	c. 12977272 Cl	-0.1070t159E-01	0.10184389 E O1	$0.76382929 \mathrm{E}-01$	$0.37992527 E-02$
$0.150 C C C$	C. 13616767 ECl	-0.822852C2E-02	$0.10300427 E 01$	$0.77253211 \mathrm{E}-01$	$0.28883216 \mathrm{E}-02$
$0.1000 C C$	C. $13 C 35769 \mathrm{Cl}$	-C.55766550E-C2	0.10377772E O1	$0.77833297 \mathrm{E}-01$	$0.19417901 \mathrm{E}-02$
c. ${ }^{\text {c }}$	c. 13052 C 38 E 01	-0.28148303E-02	0.10407005 E 01	$0.78052543 \mathrm{E}-01$	$0.97529806 \mathrm{E}-03$
	C. 13 C55091E C1	c.	0.1038 C 205 E O1	$0.77851542 \mathrm{E}-01$	0.
		ETA $=6.800600$	$x=3.333333$		
Y	c. U(x)	U(Y)	- $\partial p / \partial \eta$	- $\partial \mathrm{P} / \partial \mathrm{x}$	ठp/ $/$ Y
1. COCCCC		c.	0.12478866 OI	$0.59898559 \mathrm{E}-01$	$0.26827240 \mathrm{E}-02$
$0.950 C C C$	C. $17423443 \mathrm{E}-\mathrm{CC}$	-0.2512C497E-03	$0.1231 C 815 E 01$	$0.59091915 \mathrm{E}-01$	$0.23924991 \mathrm{E}-02$
$0.90 C C C C$	C. 3370 E9C3E-CC	-C.94917297E-03	0.12201320 E 01	$0.58566339 \mathrm{E}-01$	$0.21641026 \mathrm{E}-02$
0.85 COCC	C. $48806 \mathrm{KS} 7 \mathrm{E}-\mathrm{CC}$	-0.20285874E-02	0.12150001 E O1	$0.58320005 \mathrm{E}-01$	$0.20431816 \mathrm{E}-02$
0.80 CCCC	C. 62662195 CC	-0.34100819E-02	0.12166082 E OL	$0.58397196 \mathrm{E}-01$	$0.20542660 E-02$
C. 75 CCCC	C. 752077 E2E CO	-0.45932039E-02	C. 12247391 E O1	$0.58787481 \mathrm{E}-01$	$0.21986394 \mathrm{E}-02$
c.7ccecc	C. 8638712 CE CC	-0.66622030E-02	0.12377942 E O1	$0.59414127 \mathrm{E}-01$	$0.24543831 \mathrm{E}-02$
C.65CCCC	C. SE16792SE CO	-0.8291C763E-02	0.12532671 E OI	$0.60156821 \mathrm{E}-01$	$0.27798511 \mathrm{E}-02$
$0.600 C C C$	c. 10455 6 CE C1	-C.97551297E-02	0.12687807E O1	$0.60901475 E-01$	$0.31214673 \mathrm{E}-02$
0.55 CCCO	C. 11158 CL 3 ECl	-C.1C943355E-01	C. 12829863 E O1	0.61583347E-01	$0.34234767 \mathrm{E}-02$
C.5CCCCC	C. 11736184 ECl	-C.1176SC29E-01	0.12958983 E 01	$0.62203119 \mathrm{E}-01$	$0.36381999 \mathrm{E}-02$
0.45 CCCC	$\begin{aligned} & \text { C. } 12199114 \mathrm{E} \mathrm{Cl} \\ & \text { C. } 12562 \mathrm{CO} 3 \mathrm{E} \mathrm{Cl} \end{aligned}$	-C. 1217 E166E-01	0.13084603 E O1	0.62806098E-01	$0.37326150 \mathrm{E}-02$
$0.400 C C C$		-C. $12141019 \mathrm{E}-01$	0.13218638 E OI	$0.63449463 \mathrm{E}-01$	$0.36914548 \mathrm{E}-02$
c. 35 CCCC	C. 1284 Cr 8 EE Cl	-C.11665150E-01	0.13368251 E O1	0.64167609E-01	$0.35154981 \mathrm{E}-02$
0.30cccc	C. 13048764 ECl	-0.10785815E-01	0.13532100E O1	$0.64954083 \mathrm{E}-01$	$0.32175848 \mathrm{E}-02$
c. $25006 C$	C. 1320 CESEE C1	-C.9549C377E-02	0.13700303 E 01	$0.65761460 \mathrm{E}-01$	$0.28174882 \mathrm{E}-02$
0.20cccc	$\begin{aligned} & \text { C. } 1330898 \mathrm{CE} \mathrm{Cl} \\ & \mathrm{C} .133831 \mathrm{CEE} \mathrm{Cl} \end{aligned}$	-C.8003118CE-02	0.13856755 E O1	$0.66512429 \mathrm{E}-01$	0.23373525E-02
c.15CCCC		-0.62132353E-02	0.13982093 E 01	$0.67114049 \mathrm{E}-01$	$0.17983954 \mathrm{E}-02$
0.10 CCCC	$\begin{aligned} & \text { C. } 13383196 \mathrm{E} \text { C1 } \\ & \mathrm{C} .1343 \mathrm{C} 997 \mathrm{E} \\ & \mathrm{C} .13457417 \mathrm{E} \end{aligned}$	-C.42418465E-02	0.14056972 E O1	$0.67473465 \mathrm{E}-01$	$0.12192333 \mathrm{E}-02$
c. $\operatorname{c5cccc}$		-0.21506435E-02	$0.14 \mathrm{C64482E} \mathrm{O1}$	$0.67509514 \mathrm{E}-01$	0.61542901E-03

TABLE VIII. - Continued

ETA $=$ C.E5COCC $\quad x=4.722222$

Y	$u(x)$
1. COCCCC	C.
$0.55 C C C C$	C. $16435 \mathrm{C} 51 \mathrm{E}-\mathrm{CC}$
c. 90000 C	C. 3186 C - $7 \mathrm{SE}-\mathrm{CC}$
C.85COCC	C. $46251+25 \mathrm{E}-\mathrm{CC}$
0.80 CCCC	C. $59577{ }^{\circ} \mathrm{C} 1 \mathrm{ECC}$
C.75CCCC	C. 7180319 CE CC
c.7ccccc	C. 82898431 CC
c.65cccc	C. $5284278 C E$ CC
0.60CCCC	C. 1C16379CE C1
C. 55 CCCC	C. $10928 \times 99 \mathrm{Cl}$
c. 50 CCCC	C. 11584 E54E C1
$0.4500 C C$	C. $12137=16 \mathrm{Cl}$
C. 40 CCCC	C. 12595483 ECl
C. 35 CCCC	
$0.300 C C C$	C. 13265124 ECl
0.25 CCCC	C. $13496{ }^{\circ} \mathrm{ClE} \mathrm{Cl}$
$0.20 C C C C$	C. 13672731 Cl
c. 15 CCCC	C. $13795^{066 E C l}$
c. 100006	C. 13E8EC43E C1
$0.050 .00 C$	C. 13535757 ECl
c.	C. 13951092 E

ETA $=$ C.SOCOCO

$U(y)$
C. 272955 E -04
-C.52729555E-04
-0.1973E737E-03
-0.4195CS17E-03
-0.7030383RE-03
-0.10299782E-02
-C.13803919E-02
-C.173281C1E-02
-0.2065C178E-02
-C.23551551E-02
-C.2583C177E-C2
-C. $27313448 \mathrm{E}-\mathrm{C} 2$
-C.27865729E-02
-C.27416637E-C2
-C.25925932E-02
-0.23424351E-02
-0.1999C954E-02
-C.15752Ct6E-02
-C.10873069E-02
-C.55501372E-03
c.

$E T A=C .55000 C$

	$u(y)$
	-C.88863833E-05
	-C.25865C61E-04
	-C.EC905823E-04
	-0.598144C1E-04
	-0.14419647E-03
	-C.19145857E-03
	-C.23884539E-03
	-C.283520C4[-03
	-C.32267292E-03
	-C. $35366160 \mathrm{E}-\mathrm{C3}$
	-C. $37416150 \mathrm{E}-03$
	-C.38231297E-03
	-0.37684542E-03
	-C.35715519E-03
	-C.32351972E-03
	-C.27674366E-03
	-0.2185C228E-03
	-0.15105868E-03
	-C.77183035E-04

$E T A=1 . C 00000$
?!?!????!??!????!????
u(r)
. 44 E25CC2E-CC C. 2850 CRC3E-CC C. $41625^{\circ} \mathrm{CIE}$-CC C. $54 \mathrm{COCRO}^{\prime}$ CIE CC C. $E 5 E 25$ CC2E CC C. 7 ESOCRC1E CC C. $\varepsilon 6625$ CCIE CC C. S6COCRCIE CC c. 1 C 46245 SE CI C. 1125 C COCE C. 11962495 C C. 12595 CSSE Cl C. 13162° CCE C 1 C. 13645 CSSE CI C. 14 C 62495 C C1 C. $1439 \mathrm{SC9SE} \mathrm{Cl}$ C. 14662° CCE C1 C. $1485 \mathrm{C}^{\circ} \mathrm{CCE}$ Cl
C. $14562^{*} \mathrm{CCE} \mathrm{Cl}$ C. 15 COCRCCF
> $\begin{array}{cc}-\partial P / \partial \eta & -\partial P / \partial X \\ 0.19802310 \mathrm{E} \text { O1 } & 0.53466240 \mathrm{E}-0\end{array}$ 0.19802310E OI O. 19648797 E 01 0.19555163 E O1 0.19517218 E O1 $0.19538507 E$ O1 $0.19615783 E$ OI $0.19737069 \mathrm{E} \quad 01$ $0.19883471 E 01$ $0.20034178 \mathrm{E} \quad 01$ 0.20172764 E 01 0.20291131 E OI $0.20390070 \mathrm{E} \quad 01$ 0.20476088 E
0.20556401 E
0.21 0.20556401 E
0.20634151 E 0.20634151 E O1 0.20705704 E 01 0.20760793 E OI 0.20783991 E 01 0.20669367 E O1 C.20507821E Ol $.53051757 \mathrm{E}-01$ $.53798945 \mathrm{E}-0$. $52696493 \mathrm{E}-01$ 0.52753972 E - 0 $0.52962618 \mathrm{E}-0$ $0.53290091 \mathrm{E}-01$ $0.53685375 \mathrm{E}-01$ $0.54092285 \mathrm{E}-01$ $0.54466467 \mathrm{E}-01$ $0.54786057 \mathrm{E}-01$ $0.55053195 \mathrm{E}-0$ $0.55285443 \mathrm{E}-0$ $.55502289 \mathrm{E}-0$ $0.55712213 \mathrm{E}-01$ $0.559054 \mathrm{C} 4 \mathrm{E}-0$ $0.56054146 \mathrm{E}-01$. $56116779 \mathrm{E}-01$. $55807295 \mathrm{E}-01$ 0.55371121 E - 0
$x=7.499999$

- $\partial p / \partial \eta$		- $\partial \mathrm{p} / \mathrm{\partial x}$
C.39051884E	01	0.46862268
0.38929316 E	Cl	$0.46715187 \mathrm{E}-01$
0.38883410 E	01	$0.46660101 \mathrm{E}-01$
0.38901274 E	01	$0.46681537 \mathrm{E}-01$
0.38974476 E	01	0.46769379 E
0.3909 C 35 BE	01	$0.46908438 \mathrm{E}-$
$0.39230285 E$	01	$0.47076350 \mathrm{E}-\mathrm{O}$
$0.3937 C 962 \mathrm{E}$	01	0.47245163 E
C. 39486916 E	01	0.47384308
0.39554851 E	01	0.47465830
0.3955725 BE	01	$0.47468717 \mathrm{E}-01$
0.39485238 E	01	$0.47382294 \mathrm{E}-0$
$0.39339191 E$	01	0.47207037 E
C.39127094E	01	$0.46952522 \mathrm{E}-$
0.38862089 E	01	0.46634515 E
0.38559330E	01	$0.46271203 \mathrm{E}-$
0.38233728 E	01	$0.45880482 \mathrm{E}-$
$0.37898789 E$	01	0.45478554 E
0.37566711 E	01	$0.45080061 \mathrm{E}-01$
0.37249165 E	01	$0.44699006 \mathrm{E}-0$
0.36958759 E	01	$0.44350519 E$

$x=15.833332$
$-\partial F / \partial \eta$
$0.13819533 E_{0}$ 0.13813341 E 02 C. 13816341 E C. $13816723 E 02$ C. 13826912 E 02 $0.13841354 E O 2$ C. $13857209 E 02$ C.13871482E 02 O. 1388 C980E 02 C. 138 . 02 0.13873624 E 02 $0.13852023 E 02$ 0.13816817E 02 $0.13768259 E 02$ 0.13707870 E O2 $0.13638423 E \quad 02$
$0.13563760 E \quad 02$ 0.13563760 E 02
$0.13488343 E ~ O 2$ $0.13488343 E$ OZ
0.13416978 E 0.13416478 E O2
0.13354363 E $0.13304721 \mathrm{E} \quad 22$ $0.13271460 E \quad 02$
$-\partial p / \partial x$.41458607E-0 $.41440029 \mathrm{E}-0$ $.41450178 \mathrm{E}-01$ $0.41480743 \mathrm{E}-01$ $0.41524070 \mathrm{E}-0$ $.41571636 \mathrm{E}-01$..41614455E-01 $0.41642948 \mathrm{E}-\mathrm{O1}$.41647796く-01 . 1520880 E-0 . $1456079 E-0$ $0.41450460 \mathrm{E}-01$ $.41304783 \mathrm{E}-01$ $0.41123616 \mathrm{E}-01$ $.40915275 \mathrm{E}-01$ $0.40691287 \mathrm{E}-01$ $.40465035 \mathrm{E}-01$. $40250941 \mathrm{E}-01$. $40063096 \mathrm{E}-01$ $0.39814388 \mathrm{E}-01$
0.14435439 E $0.14435439 \mathrm{E}-02$ $0.12732495 \mathrm{E}-02$ $0.10394520 \mathrm{E}-02$ 0. $10088848 \mathrm{E}-02$ $0.10427062 \mathrm{~F}-02$ $0.11346747 \mathrm{E}-02$ $0.12704477 \mathrm{E}-02$ $0.14245555 \mathrm{E}-\mathrm{U} 2$ $0.15883318 \mathrm{E}-02$ $0.17231330 \mathrm{E}-02$ $0.18135387 F-02$ $0.18445176 \mathrm{E}-02$ $0.18075667 \mathrm{E}-02$ $0.17006744 \mathrm{E}-02$ $0.15273255 \mathrm{E}-02$ $0.12951560 \mathrm{E}-02$ $0.59681642 \mathrm{E}-03$ O. 39681642 E-03 0.

- дp/ar $0.48330315 \mathrm{E}-03$ $0.4830315 \mathrm{E}-03$ $0.42086796 E-03$
$0.36785473 E-03$ $0.36785473 \mathrm{E}-03$
$0.33108675 \mathrm{E}-03$ $0.33108675 \mathrm{E}-03$
$0.3146383 \mathrm{E}-03$ $0.31463838 E-03$
$0.31487140 \mathrm{E}-03$ $0.31487140 E-03$
$0.34553542 E-03$ $0.34553592 E-03$
$0.38800123 E-03$ $0.44165951 E-03$ $0.44952111 \mathrm{E}-03$ $0.55395155 \mathrm{E}-03$ $0.59745947 \mathrm{E}-03$ $0.62345775 \mathrm{E}-03$ $0.62686931 \mathrm{E}-03$ $0.60452976 \mathrm{E}-63$ $0.55537567 E-C 3$ $0.48039853 \mathrm{E}-03$ $0.38244377 E-03$ $0.26389507 E-U 3$ $0.13630409 E-03$ 0.

$-\partial \mathrm{DP} / \partial \mathrm{Y}$
$0.28755765 \mathrm{E}-04$

$0.21476413 E-04$ $0.25341648 \mathrm{E}-04$ $0.30751325 \mathrm{E}=04$ 0.37208798F-04 $0.44080973 \mathrm{E}-04$ 0. $50653531 \mathrm{E}-04$ $0.56192806 \mathrm{E}-04$ $0.60011996 \mathrm{E}-04$ $0.61534093 \mathrm{E}-04$ $0.60346832 \mathrm{E}-0.4$ $0.56240950 \mathrm{E}-04$ $0.49233086 E-04$ $0.39568258 \mathrm{E}-\mathrm{U}$ $0.27700642 \mathrm{E}-04$ 0.
$-\partial P / \partial x$
$0.34999999 E-01$ $0.39999999 E-01$
$0.39999999 E-01$. $39999999 \mathrm{E}-0$ $.39999999 \mathrm{E}-0$. $39999999 \mathrm{E}-0$. $39999999 \mathrm{E}-0$ $0.39999999 \mathrm{E}-0$ $0.39999999 \mathrm{E}-0$. $39999999 \mathrm{E}-0$. $39999994 \mathrm{~F}-0$. $39999999 \mathrm{E}-0$. $39999999 \mathrm{E}-0$. $39999999 \mathrm{E}-0$ $0.39999499 \mathrm{E}-0$ 0. $39499999 \mathrm{E}-0$ $0.39999999 \mathrm{E}-0$ $0.39949999 \mathrm{E}-0$ $0.39999999 \mathrm{E}-0$ $0.39949999 \mathrm{E}-0$..39999999E-01

- $\partial p / \partial \eta$ 88888888888888888888

TABLE IX. COMPARISON OF RESULTS: u_{x}

$$
\eta=0 \quad x=0
$$

y	Schlichting's	Case I	Case II
0.95	1.0	1.0	0.7052
0.9	1.0	1.0	0.8862
0.8	1.0	1.0	0.9817
0.7	1.0	1.0	1.0143
0.6	1.0	1.0	1.0321
0.5	1.0	1.0	1.0433
0.4	1.0	1.0	1.0509
0.3	1.0	1.0	1.0560
0.2	1.0	1.0	1.0593
0.1	1.0	1.0	1.0612
0.0	1.0	1.0	1.0618

$$
\eta=0.20 \quad x=0.208333
$$

y	Schlichting's	Case I	Case II
0.95	0.399	0.4261	0.4141
0.9	0.720	0.7624	0.7292
0.8	1.046	1.0615	1.0188
0.7	1.088	1.1046	1.0759
0.6	1.088	1.0940	1.0831
0.5	1.088	1.0807	1.0847
0.4	1.088	1.0713	1.0861
0.3	1.088	1.0650	1.0875
0.2	1.088	1.0610	1.0885
0.1	1.088	1.0588	1.0892
0.0	1.088	1.0581	1.0894

$$
\eta=0.80 \quad x=3.33333
$$

y Schlichting's Case I Case II

0.95	0.172	0.1712	0.1742
0.9	0.333	0.3315	0.3371
0.8	0.619	0.6177	0.6266
0.7	0.858	0.8547	0.8639
0.6	1.041	1.0390	1.0455
0.5	1.175	1.1715	1.1736
0.4	1.265	1.2587	1.2562
0.3	1.317	1.3111	1.3048
0.2	1.338	1.3397	1.3309
0.1	1.346	1.3533	1.3431
0.0	1.347	1.3572	1.3466

TABLE

$$
\begin{array}{ccc}
\text { X. PRESSURE DROPS, } \Delta P_{\eta}, \text { AS } \\
& \text { Case I } \\
\hline \mathrm{y}=0.9 & \mathrm{y}=0.5 & \mathrm{y}=0.1 \\
0 & 0 & 0 \\
0.0506 & 0.0277 & 0.0207 \\
0.1638 & 0.0719 & 0.0508 \\
0.1955 & 0.1186 & 0.0882 \\
0.1863 & 0.1663 & 0.1336 \\
0.1787 & 0.2107 & 0.1861 \\
0.1854 & 0.2525 & 0.2428 \\
0.2123 & 0.2998 & 0.3036 \\
0.2697 & 0.3686 & 0.3822 \\
0.3931 & 0.4998 & 0.5225 \\
0.9108 & 1.0237 & 1.0270 \\
\infty & \infty & \infty
\end{array}
$$

$$
\begin{array}{ccc}
\text { CTION OF } \eta & \\
& \text { Case II* } & \\
\hline \mathrm{y}=0.9 & \mathrm{y}=0.5 & \mathrm{y}=0.1 \\
-0.0563 & 0.0463 & 0.0628 \\
0.0119 & 0.0550 & 0.0688 \\
0.1193 & 0.0774 & 0.0837 \\
0.1693 & 0.1066 & 0.1040 \\
0.1925 & 0.1413 & 0.1314 \\
0.2116 & 0.1797 & 0.1675 \\
0.2364 & 0.2225 & 0.2137 \\
0.2743 & 0.2746 & 0.2727 \\
0.3380 & 0.3485 & 0.3557 \\
0.4661 & 0.4842 & 0.5013 \\
0.9882 & 1.0126 & 1.0089 \\
\infty & \infty & \infty
\end{array}
$$

[^8]\[

$$
\begin{aligned}
& \text { Schlichting }
\end{aligned}
$$
\]

$$
\begin{aligned}
& 8
\end{aligned}
$$

TABLE XI. VARIATION OF ψ AND ω WITH GRID SIZES

Case II	
20×10 Grid	40×20 Grid
0.94480	0.94586
0.53765	0.53481
0.10794	0.10735
0.97591	0.97572
0.59323	0.58760
0.11873	0.11738
0.98422	0.98450
0.67605	0.67571
0.14482	0.14446

CONTINUED

Case I
13
-IX GTGVL

Case I	
$10 \times 10 \mathrm{Grid}$	$20 \times 20 \mathrm{Grid}$
14.673	18.156
3.534	4.585
5.547×10^{-3}	3.506×10^{-4}
1.802×10^{-6}	3.061×10^{-9}
4.462	4.394
4.064	4.075
0.3820	0.2717
3.904×10^{-3}	5.758×10^{-4}
3.1406	3.1718
2.7988	2.8234
1.3774	1.3722
0.2300	0.2197

PART TWO
APPENDI CES

LIST OF APPENDICES

Appendix
A. Finite-Difference Method for Solving Boundary- Value Problems 284
B. Derivation of Finite-Difference Equations 288
C. A Fortran Program for Solving the Two- Dimensional Navier-Stokes Equations 298
D. Detailed Description of Preliminary Investigations. 302

APPENDIX A: FINITE-DIFFERENCE METHOD FOR SOLVING BOUNDARY-VALUE PROBLEMS

A boundary-value problem, $F(u)=j$, for the continuous operator F, when discretized, takes the form

$$
\begin{equation*}
\mathrm{AU}=\mathrm{B} \tag{1}
\end{equation*}
$$

The term discretization refers to the transformation of differential equations into finite-difference equations. In equation $1, B$ is a vector of constants determined by j and by the boundary conditions, U the vector of unknown u, and A a matrix determined by F and by the boundary conditions. For linear problems, A is constant. For non-linear problems, A is also a function of U. Methods for solving a matrix equation like equation 1 are ordinarily divided into direct and iterative. The direct methods are confined almost exclusively to linear systems. They can render exact solutions in a finite number of steps if there are no round-off errors. A typical direct method is Gaussian elimination. Iterative methods, on the other hand, consist of the repeated application of a simple algorithm and would result in the exact answer only as a limit of a sequence. When A is large, iterative methods are preferred because they usually take full advantage of the numerous zeros in the matrix (14). Moreover, the round-off errors of an iterative method tend to be self-correcting and are minimized, in contrast to the direct method. Finally, for non-linear systems, iterative methods are invariably used.

In applying the iterative method, equation 1 can be written as a system of N algebraic equations with N unknowns, $u_{i}{ }^{\text {is. }}$. A one-to-one correspondence between the N unknowns and the N equations can thus be obtained with each equation to be solved for the corresponding unknown. For partial difference equations, it is natural to use the equation of a node to solve for the unknown at that node。 Let $U^{(P)}$ be the vector U obtained from equation 1 after P-th iteration. The method of simultaneous displacements, or total step iteration, is one which determines $U^{(P+1)}$ based on the values of $U^{(P)}$. On the other hand, with the method of successive displacements, or single-step iteration, a certain order of the systems of equations has to be fixed; i.e., the order in which the components, $u_{i}{ }^{\prime} s$, will be computed. In solving equation 1 for $u_{i}^{(P+1)}$, the latest computed values of $u_{i}{ }^{i} s$ are used; i.e., $u_{j}^{(P+1)}{ }^{(P}$, for $j<i$ and $u_{j}^{(P)}{ }^{(P}$ for $j \geq i$.

The number of iterations required for the solution of a system of linear equations to converge to a given degree of accuracy is roughly proportional to the square of number of equations. For non-linear systems, this number would presumably be more dependent on the number of equations. When the number of nodes involved in a discreted partial differential equation of boundary-value type is large, the time of computation required may become too large, even when handled by a high-speed digital computer. Acceleration of the rate of convergence, therefore, is often a necessity.

Of the various iterative methods available, the one that converges most rapidly is the method of successive overrelaxation, or simply overrelaxation. In using overrelaxation, the value of $u_{i}^{(P+1)}$ is computed by the formula

$$
\begin{equation*}
u_{i}^{(P+1)}=u_{i}^{(P)}+M_{u}\left(v_{i}^{(P+1)}-u_{i}^{(P)}\right) \tag{A1}
\end{equation*}
$$

In equation $A l, u_{i}^{(P)}$ is the value of u_{i} after the $p-t h$ iteration; $v_{i}^{(P+1)}$ is the value of the function u_{i} computed by the governing difference equation for point i; and finally M_{u} is the overrelaxation factor which is ordinarily larger than 1. With M_{u} equal to unity, the iteration is called stationary and when M_{u} is smaller than unity, the process is sometimes called underrelaxation.

Overrelaxation is not very useful when coupled with the method of simultaneous displacements. With the method of successive displacements, however, Young (15) found that overrelaxation was very helpful in dealing with a class of matrices with, what he called, property A. Further investigations by others revealed that overrelaxation also improved the rate of convergence for matrices which do not satisfy property A, even though it was theoretically unjustifiable at the time. It was found that, for certain types of matrices, the method of overrelaxation gives convergence for all values of M_{u} between 0 and 2 , and that the most rapid convergence occurs for a value of $M_{u_{o p t}}$ between 1 and 2. The determination of $M_{u_{o p t}}$ for a system of linear equations
involves the determination of the dominant eigenvalue of the matrix A in equation 1 , and is a tedious job. For non-linear boundary-value problems, matrix A is a function of U. Under such circumstance, the value of $M_{u_{o p t}}$ requires frequent determination without prior knowledge (16). It is, therefore, probably more efficient to determine the value of M_{u} empirically by trial-and-error. The rate of convergence using successive overrelaxation, with $M_{u} \sim M_{u_{\text {opt }}}$, is roughly P times the rate of successive displacements, wherein P is the dimension of matrix A. When P is large, the use of the overrelaxation method thus results in a substantial saving of time.

APPENDIX B: DERIVATION OF FINITE-DIFFERENCE EQUATIONS

The derivation of finite-difference equations from differential equations involves the replacement of derivatives by difference formulas. Some of the more commonly used formulas for first derivatives are the central-difference, the forwarddifference and the backward-difference formulas. Referring to Figure 1, which shows the point pattern of a rectangular mesh net with mesh lengths of a and b s the central-difference formulas can be written as:

$$
\begin{align*}
& \left(\frac{\partial \Psi^{\partial}}{\partial \eta}\right)_{E}=\frac{1}{2 \mathrm{a}}\left(\Psi_{A}-\Psi_{C}\right) \tag{B1}\\
& \left(\frac{\partial \Psi}{\partial y}\right)_{E}=\frac{1}{2 \mathrm{~b}}\left(\Psi_{B}-\Psi_{D}\right)
\end{align*}
$$

The forward-difference formulas have the form:

$$
\begin{align*}
& \left(\frac{\partial \Psi}{\partial \eta}\right)_{E}=\frac{1}{a}\left(\Psi_{A}-\Psi_{E}\right) \\
& \left(\frac{\partial \Psi}{\partial y}\right)_{E}=\frac{1}{b}\left(\Psi_{B}-\Psi_{E}\right) \tag{B2}
\end{align*}
$$

Similarly, the backward-difference formulas are:

$$
\begin{align*}
& \left(\frac{\partial \Psi}{\partial \eta}\right)_{E}=\frac{1}{a}\left(\Psi_{E}-\Psi_{C}\right) \tag{B3}\\
& \left(\frac{\partial \Psi}{\partial y}\right)_{E}=\frac{1}{b}\left(\Psi_{E}-\Psi_{D}\right)
\end{align*}
$$

For the second derivatives, the difference formulas most frequently used are based on central-differences as given by :

$$
\begin{align*}
& \left(\frac{\partial^{2} \Psi_{2}^{2}}{\partial \eta^{2}}=\frac{1}{a^{2}}\left(\Psi_{A}+\Psi_{C}-2 \Psi_{E}\right)\right. \tag{B4}\\
& \left(\frac{\partial^{2} \Psi^{2}}{\partial y^{2}}\right)_{E}=\frac{1}{b^{2}}\left(\Psi_{B}+\Psi_{D}-2 \Psi_{E}\right) \tag{B5}\\
& \left(\frac{\partial^{2} \Psi}{\partial \eta \partial y}\right)_{E}=\frac{1}{4 a b}\left(\Psi_{F}-\Psi_{G}+\Psi_{H}-\Psi_{I}\right) \tag{B6}
\end{align*}
$$

The errors which result in using these formulas are discussed in nearly all standard numerical analysis books. More elaborate formulas than the ones given above are available and are used mostly for large mesh sizes. In this work, centraldifference formulas were used in most instances.

Consider now equations $11,12,14$ and 15. Equations 12 and 15, being linear, present no particular problem. Equation 15 can be rewritten as:

$$
\begin{equation*}
-\omega=\frac{\partial^{2} \Psi}{\partial y^{2}}+\left(\frac{\partial \eta}{\partial x}\right)^{2} \frac{\partial^{2} \Psi}{\partial \eta^{2}}+\frac{\partial^{2} \eta}{\partial x^{2}} \frac{\partial \Psi}{\partial \eta} \tag{B7}
\end{equation*}
$$

Since $\quad \eta=1-\frac{1}{1+C x}$
then $\quad \frac{\partial \eta}{\partial x}=C(1-\eta)^{2}$
and $\quad \frac{\partial^{2} \eta}{\partial x^{2}}=-2 C^{2}(1-\eta)^{3}$
Substituting equations $\mathrm{B} 1, \mathrm{~B} 4, \mathrm{~B} 5, \mathrm{~B} 8$ and B 9 into B 7 and solving for Ψ at point E results in

$$
\begin{gather*}
2\left[C^{2}\left(1-\eta_{E}\right)^{4}+\left(\frac{a}{b}\right)^{2}\right] \Psi_{E}=a^{2} \omega_{E}+\left(\frac{a}{b}\right)^{2}\left(\Psi_{B}+\Psi_{D}\right) \tag{B10}\\
\quad+C^{2}\left(1-\eta_{E}\right)^{4}\left(\Psi_{A}+\Psi_{C}\right)-a C^{2}\left(1-\eta_{E}\right)^{3}\left(\Psi_{A}-\Psi_{C}\right)
\end{gather*}
$$

Similarly, the difference expression for equation 12 at point E in the $x-y$ net is:

$$
\begin{equation*}
2\left[1+\left(\frac{\Delta \mathrm{x}}{\mathrm{~b}}\right)^{2}\right] \Psi_{E}=\Delta \mathrm{x}^{2}{\omega_{E}}+\left(\Psi_{\mathrm{B}}+\Psi_{\mathrm{D}}\right)+\left(\frac{\Delta \mathrm{x}}{\mathrm{~b}}\right)^{2}\left(\Psi_{A}+\Psi_{C}\right) \tag{B11}
\end{equation*}
$$

The approach used in obtaining equations BlO and Bll, however, was not applied to equations 11 and 14. Preliminary investigations indicated that a special device, due to de G. Allen (11), had to be used in order to induce stability. Equation 14, when rearranged, becomes

$$
\begin{align*}
& {\left[\frac{\partial^{2} \omega}{\partial y^{2}}+\left(\frac{R e}{4} \frac{\partial \eta}{\partial x} \frac{\partial \Psi}{\partial \eta}\right) \frac{\partial \omega}{\partial y}\right]} \\
& \quad+\left(\frac{\partial \eta}{\partial x}\right)^{2}\left[\frac{\partial^{2} \omega}{\partial \eta^{2}}+\left(\frac{\frac{\partial^{2} \eta}{\partial x^{2}}-\frac{R e}{4} \frac{\partial \eta}{\partial x} \frac{\partial \Psi}{\partial y}}{\left(\frac{\partial \eta}{\partial x}\right)^{2}}\right) \frac{\partial \omega}{\partial \eta}\right]=0 \tag{B12}
\end{align*}
$$

or symbolically

$$
\begin{equation*}
A+\left(\frac{\partial \eta}{\partial x}\right)^{2} \quad B=0 \tag{B12a}
\end{equation*}
$$

where

$$
\begin{equation*}
A \equiv \frac{\partial^{2} \omega}{\partial y^{2}}+\left(\frac{R e}{4} \frac{\partial \eta}{\partial x} \frac{\partial \Psi}{\partial \eta}\right) \frac{\partial \omega}{\partial y} \equiv \frac{\partial^{2} \omega}{\partial y^{2}}+k \frac{\partial \omega}{\partial y} \tag{B13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{B} \equiv \frac{\partial^{2} \omega}{\partial \eta^{2}}+\left(\frac{\frac{\partial^{2} \eta}{\partial x^{2}}-\frac{R e}{4} \frac{\partial \eta}{\partial x} \frac{\partial \Psi}{\partial y}}{\left(\frac{\partial \eta}{\partial x}\right)^{2}}\right) \frac{\partial \omega}{\partial \eta} \equiv \frac{\partial^{2} \omega}{\partial \eta^{2}}+\lambda \frac{\partial \omega}{\partial \eta} \tag{B14}
\end{equation*}
$$

When k and A are held invariant, equation Bl3 can easily be solved to give

$$
\begin{equation*}
\mathrm{k} \omega=\mathrm{Ay}+\mathrm{P}+\mathrm{Q} \mathrm{e}^{-\mathrm{xy}} \tag{B15}
\end{equation*}
$$

\mathbf{P} and \mathbf{Q} are constants of integration. Referring to Figure 1 again, the following equations can be written:

$$
\begin{align*}
& \kappa \omega_{B}=A y_{B}+P+Q e^{-\kappa y_{B}} \\
& \kappa \omega_{E}=A y_{E}+P+Q e^{-\kappa y_{E}} \tag{B16}\\
& \kappa \omega_{D}=A y_{D}+P+Q e^{-\kappa y_{D}}
\end{align*}
$$

Elimination of P and Q from Bl6 results in an expression for A at point E:

$$
\begin{equation*}
A_{E}=\frac{k_{E}\left[e^{k_{E} b}\left(\omega_{B}-\omega_{E}\right)-\left(\omega_{E}-\omega_{D}\right)\right]}{b\left(e^{k_{E} b}-1\right)} \tag{B17}
\end{equation*}
$$

Similarly, by holding λ and B invariant, solution of equation Bl4 gives

$$
\begin{equation*}
B_{E}=\frac{\lambda_{E}\left[e^{\lambda_{E}}{ }^{a}\left(\omega_{A}-\omega_{E}\right)-\left(\omega_{E}-\omega_{C}\right)\right]}{a\left(e^{\lambda_{E}}-1\right)} \tag{B18}
\end{equation*}
$$

Substituting equations B17 and B18 into B12a and solving for ω_{E} results in:

$$
\begin{equation*}
C_{E} \omega_{E}=C_{A} \omega_{A}+C_{B} \omega_{B}+C_{C} \omega_{C}+C_{D} \omega_{D} \tag{B19}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{A}=\left(\frac{\partial \eta}{\partial x}\right)_{E}^{2} \lambda_{E} e^{\lambda_{E}{ }^{a} / a\left(e^{\lambda_{E}}-1\right)} \\
& C_{B}={x_{E}} e^{x_{E} b} / b\left(e^{x_{E} b}-1\right) \\
& C_{C}=\left(\frac{\partial \eta}{\partial x}\right)_{E}^{2} \lambda_{E} / a\left(e^{\lambda_{E} a}-1\right) \tag{B20}\\
& \left.C_{D}={ }_{k_{E} / b} / e^{k_{E} b}-1\right)
\end{align*}
$$

and

$$
C_{E}=C_{A}+C_{B}+C_{C}+C_{D}
$$

To evaluate k and λ, the central-difference formulas are applied to the partial derivatives of Ψ. Thus:

$$
\begin{align*}
\kappa_{E} & =\frac{R e}{4}\left(\frac{\partial \eta}{\partial x} \frac{\partial \Psi}{\partial \eta_{E}}=\frac{R e}{8 a} C\left(1-\eta_{E}\right)^{2}\left(\Psi_{A}-\Psi_{C}\right)\right. \tag{B21}\\
\lambda_{E} & =\left(\frac{\partial^{2} \eta}{\partial x^{2}}-\frac{R e}{4} \frac{\partial \eta}{\partial x} \frac{\partial \Psi}{\partial y}\right) /\left(\frac{\partial \eta}{\partial x}\right)^{2} \\
& =-\frac{2}{1-\eta_{E}}-\frac{R e}{8 b} \frac{1}{C\left(1-\eta_{E}\right)^{2}}\left(\Psi_{B}-\Psi_{D}\right) \tag{B22}
\end{align*}
$$

In a like manner, equation 11 can be transformed into the following form:

$$
\begin{equation*}
C_{E}^{\prime} \omega_{E}=C_{A}^{\prime} \omega_{A}+C_{B}^{\prime} \omega_{B}+C_{C}^{\prime} \omega_{C}+C_{D}^{\prime} \omega_{D} \tag{B23}
\end{equation*}
$$

with

$$
\begin{align*}
& C_{A}^{\prime}=\lambda_{E}^{\prime} e^{\lambda_{E}^{\prime} \Delta x} / \Delta x\left(e^{\lambda_{E}^{\prime} \Delta x}-1\right) \\
& C_{B}^{\prime}=\kappa_{E}^{\prime} e^{\kappa_{E}^{\prime} b} / b\left(e^{\kappa_{E}^{\prime} b}-1\right) \\
& C_{C}^{\prime}=\lambda_{E}^{\prime} / \Delta x\left(e^{\lambda_{E}^{\prime} \Delta x}-1\right) \tag{B24}\\
& C_{D}^{\prime}=\kappa_{E}^{\prime} / b\left(e^{\kappa_{E}^{\prime} b}-1\right)
\end{align*}
$$

and

$$
C_{E}^{\prime}=C_{A}^{\prime}+C_{B}^{\prime}+C_{C}^{\prime}+C_{D}^{\prime}
$$

In equation B24,

$$
\begin{equation*}
\kappa_{E}^{\prime}=\frac{R e}{4}\left(\frac{\partial \Psi}{\partial x}\right)_{E}=\frac{R e}{8 \Delta x}\left(\Psi_{A}-\Psi_{C}\right) \tag{B25}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{E}^{\prime}=-\frac{\mathrm{Re}}{4}\left(\frac{\partial \Psi}{\partial \mathrm{y}}\right)_{E}=\frac{\mathrm{Re}}{8 \mathrm{~b}}\left(\Psi_{\mathrm{D}}-\Psi_{\mathrm{B}}\right) \tag{B26}
\end{equation*}
$$

It is now time to take a closer look at the above transformation. Equation B17 can be rewritten as
$A_{E}=\frac{{ }_{k_{E}}\left(e^{{ }^{k_{E} b}}-1\right)\left(\omega_{B}-\omega_{E}\right)+\left(\omega_{B}+\omega_{D}-2 \omega_{E}\right)}{b\left(e^{k_{E} b}-1\right)}$
or

$$
\begin{equation*}
A_{E}=x_{E} \frac{\omega_{B}-\omega_{E}}{b}+\frac{k_{E}}{b} \frac{\left(\omega_{B}+\omega_{D}-2 \omega_{E}\right)}{\left(e^{k_{E}}-1\right)} \tag{B27}
\end{equation*}
$$

as by definition,

$$
\begin{equation*}
A_{E}=\kappa_{E}\left(\frac{\partial \omega}{\partial y}\right)_{E}+\left(\frac{\partial^{2} \omega}{\partial y^{2}}\right)_{E} \tag{B13}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left(\frac{\partial \omega}{\partial y_{E}}\right)_{E}=\frac{\omega^{-\omega}}{b} \tag{B28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial^{2} \omega_{1}^{2}}{\partial y^{2}}{ }_{E}=\frac{{ }^{k_{E}}}{b} \frac{\left(\omega_{B}{ }^{+\omega_{D}}{ }^{-2 \omega_{E}}\right)}{\left(e^{k_{E} b}-1\right)}\right. \tag{B29}
\end{equation*}
$$

By expanding $e^{\kappa_{E} b}$ in terms of powers of $\kappa_{E} b$; equation $B 29$ becomes:

$$
\begin{align*}
\left(\frac{\partial^{2} \omega}{\partial y^{2}}\right) & =\frac{\kappa_{E}}{b} \frac{\left(\omega_{B}+\omega_{D}-2 \omega_{E}\right)}{\kappa_{E} b\left(1+\kappa_{E} b / 2!+\left(\kappa_{E} b\right)^{2} / 3!+\ldots\right)} \\
& =\frac{1}{b^{2}} \frac{\left(\omega_{B}+\omega_{D}-2 \omega_{E}\right)}{1+\kappa_{E} b / 2!+\left(\kappa_{E} b\right)^{2} / 3!+\ldots} \tag{B30}
\end{align*}
$$

When b approaches zero, equation B 30 gives:

$$
\begin{equation*}
\lim _{b \rightarrow 0}\left(\frac{\partial^{2} \omega_{1}}{\partial y^{2}}\right)_{E}=\frac{\left(\omega_{B}+\omega_{D}-2 \omega_{E}\right)}{b^{2}} \tag{B31}
\end{equation*}
$$

which is the conventional central difference formula for a second derivative. Following the same reasoning, we can obtain from equations B14 and B18 these relationships:

$$
\begin{equation*}
\left(\frac{\partial \omega_{\partial \eta}}{}\right)_{E}=\frac{\left(\omega_{A}-\omega_{E}\right)}{a} \tag{B32}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{a \rightarrow 0}\left(\frac{\partial^{2} \omega}{\partial \eta^{2}}\right)=\frac{\omega_{E}^{+\omega_{C}} C^{-2 \omega_{E}}}{a^{2}} \tag{B33}
\end{equation*}
$$

It is thus shown that for small mesh lengths equation B19 is equivalent to a conventional finite-difference representation of equation B12. The same argument holds for equation B23.

The point velocities and pressure gradients can be calculated directly from the values of stream function and vorticity once the latter have been determined. By definition:

$$
\begin{align*}
\left(u_{x}\right)_{E} & =\left(\frac{\partial \Psi}{\partial y}\right)_{E}=\frac{1}{2 b}\left(\Psi_{B}-\Psi_{D}\right) \tag{B34}\\
\left(u_{y}\right)_{E} & =-\left(\frac{\partial \Psi}{\partial x}\right)_{E}=\frac{1}{2 \Delta x}\left(\Psi_{C}-\Psi_{A}\right) \tag{B35}\\
& =-\left(\frac{\partial \eta}{\partial x}\right)_{E}\left(\frac{\partial \Psi}{\partial \eta^{\prime}}\right)_{E}=\frac{C\left(1-\eta_{E}\right)^{2}}{2 a}\left(\Psi_{D}-\Psi_{B}\right)
\end{align*}
$$

Rearranging equation 6 gives

$$
\begin{equation*}
-\left(\frac{\partial P}{\partial x}\right)=u_{x} \frac{\partial u_{x}}{\partial x}+u_{y} \frac{\partial u_{x}}{\partial y}-\frac{4}{R e} \nabla^{2} u_{x} \tag{B36}
\end{equation*}
$$

In terms of Ψ and ω, this becomes

$$
\begin{equation*}
-\left(\frac{\partial P}{\partial x}\right)=\frac{\partial \Psi}{\partial y} \frac{\partial^{2} \Psi}{\partial x \partial y}-\frac{\partial \Psi}{\partial x} \frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{4}{\operatorname{Re}} \frac{\partial \omega}{\partial y} \tag{B37}
\end{equation*}
$$

the finite difference form of which is

$$
\begin{align*}
-\left(\frac{\partial P}{\partial x}\right)_{E}=\frac{1}{8 \Delta x b^{2}}[& \left(\Psi_{B}-\Psi_{D}\right)\left(\Psi_{F}-\Psi_{G}+\Psi_{H}-\Psi_{I}\right)-4\left(\Psi_{A}-\Psi_{C}\right) \tag{B38}\\
& \left.\left(\Psi_{B}+\Psi_{D}-2 \Psi_{E}\right)\right]+\frac{4}{\operatorname{Reb}}\left(\omega_{B}-\omega_{E}\right)
\end{align*}
$$

Similarly, since

$$
\begin{align*}
-\left(\frac{\partial P}{\partial y}\right) & =u_{x} \frac{\partial u_{y}}{\partial x}+u_{y} \frac{\partial u_{y}}{\partial y}-\frac{4}{R e} \nabla^{2} u_{y} \tag{B39}\\
& =\frac{\partial \Psi}{\partial x} \frac{\partial^{2} \Psi}{\partial x \partial y}-\frac{\partial \Psi}{\partial y} \frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{4}{\operatorname{Re}} \frac{\partial \omega}{\partial x}
\end{align*}
$$

then

$$
\begin{align*}
-\left(\frac{\partial P}{\partial y}\right)_{E}= & \frac{1}{8 \Delta x^{2} b}\left[\left(\Psi_{A}-\Psi_{C}\right)\left(\Psi_{F}-\Psi_{G}+\Psi_{H}-\Psi_{I}\right)\right. \\
& \left.-4\left(\Psi_{B}-\Psi_{D}\right)\left(\Psi_{A}+\Psi_{C}-2 \Psi_{E}\right)\right]-\frac{4}{\operatorname{Re\Delta x}}\left(\omega_{A}-\omega_{E}\right) \tag{B40}
\end{align*}
$$

Note that the forward-difference representations for $\partial \omega / \partial x$ and $\partial \omega / \partial y$ are used, which is in agreement with equations B28 and B32.

When η replaces x as the independent variable, equations B37 and B39 assume the following form:

$$
\begin{align*}
-\left(\frac{\partial P}{\partial x}\right)= & \frac{\partial \eta}{\partial x}\left(\frac{\partial \Psi}{\partial y} \frac{\partial^{2} \Psi}{\partial \eta \partial y}-\frac{\partial \Psi}{\partial \eta} \frac{\partial^{2} \Psi}{\partial y^{2}}\right)+\frac{4}{\operatorname{Re}} \frac{\partial \omega}{\partial y} \tag{B41}\\
-\left(\frac{\partial P}{\partial y}\right)= & \left(\frac{\partial \eta}{\partial x}\right)^{2}\left(\frac{\partial \Psi}{\partial \eta} \frac{\partial^{2} \Psi}{\partial \eta \partial y}-\frac{\partial \Psi}{\partial y} \frac{\partial^{2} \Psi}{\partial \eta^{2}}\right) \\
& -\frac{\partial^{2} \eta}{\partial x^{2}} \frac{\partial \Psi}{\partial y} \frac{\partial \Psi}{\partial \eta}-\frac{4}{\operatorname{Re}} \frac{\partial \eta}{\partial x} \frac{\partial \omega}{\partial \eta} \tag{B42}
\end{align*}
$$

Based on these equations, the point pressure gradients can be calculated as follows:

$$
\begin{align*}
-\left(\frac{\partial P}{\partial x}\right)_{E}= & \frac{C\left(1-\eta_{E}\right)^{2}}{8 a b^{2}}\left[\left(\Psi_{B}-\Psi_{D}\right)\left(\Psi_{F}-\Psi_{G}+\Psi_{H}-\Psi_{I}\right)\right. \\
& \left.-4\left(\Psi_{A}-\Psi_{C}\right)\left(\Psi_{B}+\Psi_{D}-2 \Psi_{E}\right)\right]+\frac{4}{\operatorname{Reb}}\left(\omega_{B}-\omega_{E}\right) \tag{B43}\\
-\left(\frac{\partial P}{\partial y}\right)_{E}= & \frac{C^{2}\left(1-\eta_{E}\right)^{4}}{8 a^{2} b}\left[\left(\Psi_{A}-\Psi_{C}\right)\left(\Psi_{F}-\Psi_{G}+\Psi_{H}-\Psi_{I}\right)-4\left(\Psi_{B}-\Psi_{D}\right)\right. \\
& \left.\left(\Psi_{A}+\Psi_{C}-2 \Psi_{E}\right)\right]+\frac{C^{2}\left(1-\eta_{E}\right)^{3}}{2 a b}\left(\Psi_{B}-\Psi_{D}\right)\left(\Psi_{A}-\Psi_{C}\right) \tag{B44}\\
& -\frac{4 C\left(1-\eta_{E}\right)^{2}}{R e a}\left(\omega_{A}-\omega_{E}\right)
\end{align*}
$$

The values of - $(\partial P / \partial \eta)$ can easily computed from - $(\partial P / \partial x)$ by the relation:

$$
\begin{equation*}
-\left(\frac{\partial P}{\partial \eta}\right)_{E}=-\left(\frac{\partial P}{\partial x}\right)_{E} /\left(\frac{\partial \eta}{\partial x}\right)_{E} \tag{B45}
\end{equation*}
$$

appendix c. a fortran prograil for solving the tmo-digensional mavier-stores bquations


```
                    PAGE }
    208 WRITE CUTPUT TAPE 6,253,(Y(J),UX(J,1),UY(J,1),PPETA(J,1),
        I-PPX(J,I),PPY(J,1):J=1,M2)
        E=-ETA(I)
        E=-ETA(I)
        WRITE CUTPUT TAPE 6,251,(E,XX)
        WRITE CUTPUT TAPE 6,252
209 WRITE CUTPUT TAPE 6,253,(Y(J),UXB(J,1),UYB(J,1),PPETAB(J,1),
```



```
    251 FORMATT/32X,6HETA =,F10.6,5X,5H X = ,F10.6)
    252 FORMAT//7X,1HY,11X,4HU(X),14X,4HU(Y),14X,5H P/ ,13X,
    1 5H P/ }x,13x,5H\mathrm{ P/ Y/1
    23 FORMAT(F10.6,5E18.8)
        CALL EXIT
    * part }3\mathrm{ begins here. it is a subprogram for reducing the mesh siles
    * of a gIVEN RECTANGULAR NET. by mEANS OF 4 POINT LAGRAGIAN
    * INTERPOLATION, the meSh length in both oirections are reduced
    * by a factor of ino. in this particular program, only
        THE DOWNSIREAM REGION WILL BE TREATED.
    - THE INITIAL NET HAS TO BE FURNISHED IN PUNCHED CARDS AS DATA
    - THE DIMENSIONS CF THE EXPANDED NET SHOULD BE GIEN BELON
        M=19
        N=19
        A=0.05
        B=0.05
        M2 =M+2
        N2=N+2
        READ INPUT TAPE 5,350,((PSI(J,1),J=1,M2,2),I=1,N2,2),
        l((OMEGA(J,I),J=1,M2,2),I=1,N2,2)
        DO 300 J=1,M2
        r=B*FLCATF(N2-J)
        PSI(J,N2)=Y*(1.5-0.5*Y**2)
    300 OMEGA(J,N2)=3.0*Y
        CO 301 I=1,N2
        PS (1 (1, 1)=1.0
        PS I (M2,1)=0.0
    301 OMEGA(M2,1)=0.0
        OO 302 I=1,N,2
        PSI (2,1)=0.0625*(5.0*PSI(1,1)+15.0*PSI(3,1)-5.0*PSI (5,1)+PSI(7,1))
        OMEGA}(2,1)=0.0625*(5.0*OMEGA(1,1)+15.0*OMEGA(3,1)-5.0*OMEGA(5,1
        l
        PSI(M+1,I)=0.0625*(15.0*PSI(M,1)-5.0*PSI(M-2,I)*PSI(M-4,I))
        OMEGA(M+1,1)=0.0625*(15.0*OMEGA(M,1)-5.0*OMEGA (M-2,1)
            +OMEGA(M-4,1))
        OO 302 J=4,M,2
        PSI(J,1)=0.0625*(9.0*PSI(J+1,I) +9.0*PSI(J-1,I)-PSI(J+3,1)
    1 -PSI(J-3,1))
    302 OMEGA(J,1)=0.0625*(9.0*OMEGA (J+1,1)+9.0*OMEGA (J-1,1)
        -OMEGA(J-3,1)-OMEGA(J+3,1))
            DO 303 J=1,M
        PSI(J+1,2)=0.0625*(5.0*PSI(J+1,1)+15.0*PSI(J+1,3)-5.0*PSI(J+1,5)
        1 OMEGA(J+1,2)=0.0625*PSI(J+1,7))
        OMEGA(J+1,2)=0.0625*(5.0*OMEGA(J+1,1)+15.0*OMEGA(J+1,3)
        -5. O.OMEGA (J+1,5)+OMEGA(J+1,7))
        PSI(J+1,N-2)+PSI(J+1,N-4)1(J)(J+1,N)-5.0
        OMEGA(J+1,N+1)=0.0625*(5.0*OMEGA(J+1,N2)+15.0*OMEGA(J+1,N)
        DO 303 I=4,N,2
        PSI(J+1,I)=0.0625*(9.0*PSI(J+1,1+1)+9.0*PSI (J+1,1-1)-PSI(J+1,1+3)
    1 -PSI(J+1,1-3))
    303 OMEGA(J+1,1)=0.0625*(9.0*OMEGAI }+1,1+1)+9.0*OMEGA(J+1, 1-1
        -OMEGA(J+1,1+3)-OMEGA(J+1,1-3))
            OIMENSION PSI(21,21),OMEGA(21,21),PSIB}(21,21),OMEGAB(21,21)
            WRITE C TPUT TAPE 6,350,((PSI(J,1), J=1,M2),I=1,N2),
            1 ((OMEGA ( },1,1),j=1,M2), 1=1,N2
        350 FORMAT(4E18.8)
            CALL EXIT
            ENC(1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)
```

APPENDIX D: DETAILED DESCRIPTION OF PRELIMINARY INVESTIGATION

The purpose of the preliminary investigations for the problem was to devise a method of solution which would be both stable and rapid. Only Case I was studied for this purpose. To start with, equation 10 was derived in the Cartesian coordinates.

$$
\begin{equation*}
\frac{\partial \Psi}{\partial y} \frac{\partial}{\partial x}\left(\nabla^{2} \Psi\right)-\frac{\partial \Psi}{\partial x} \frac{\partial}{\partial y}\left(\nabla^{2} \Psi\right)=\frac{\Psi}{R e} \nabla^{4} \Psi \tag{10}
\end{equation*}
$$

For equation 10 , difference equations were obtained based on backward, central, and forward-difference formulas for the first and third-order derivatives. The difference formulas used for the second and fourth-order derivatives were always based on central differences. These formulas are listed in Appendix B.

A marching solution was first tried with a Reynolds number of 16 for two grid sizes. One was square-meshed with a mesh length of 0.1 and the other a rectangular meshed grid with $\mathrm{x}=0.025$ and $\mathrm{y}=0.1$. In both instances, divergence was observed almost instantly. The instability associated with applying a marching solution technique to a boundaryvalue problem such as this, however, was not unexpected.

An iterative approach was studied next. An inlet length of 0.08 Re , as given by Schlichting was assumed, although theoretically, it should be infinity. Over this length, a coarse grid of 8×2 was initially set up for hand computation.

Equations 11 and 12 were derived and transformed into two sets of difference equations, using central_difference and backward-difference formulas for the first derivatives respectively. With each set, several iterations were carried out both by the total-step and by the single-step iteration methods for a Reynolds number of 96 . The results thus obtained indicated that the backward-difference formulas were stable while the central-difference formulas were not. Also solution by the single-step iteration appeared to converge more rapidly than that by the total-step iteration. Similar conclusions were drawn with equation 10.

Based on these findings, a computer program was written for solving equation 10 for Ψ using the backward-difference formulas and single-step iteration. The scheme of solution followed the same pattern as that described in Method of Solution. Equation 10 was used because it contains only one dependent variable Ψ. The Datatron 205 digital computer then located in the Computer Center of the California Institute of Technology was used. For a Reynolds number of 300 , the inlet length was assumed to be 0.08 Re or 24 . Over this, a $x-y$ net with a grid of 150×10 was laid. Since the values of Ψ at $\mathrm{x}=0$ as well as $\mathrm{x}=24$ were known, linear interpolation of these values for each value of y gave an initial estimate of Ψ at every interior point. Fourteen iterations were carried out, each requiring approximately 400 seconds.

Very slow rate of convergence was observed.

Hoping that a better initial estimate for the values of Ψ would greatly reduce the number of iterations required to reach a solution, the tabulated values of u_{x}, as calculated by Schlichting (1), were integrated to give values of Ψ as functions of position. These values were used as a new estimate to start a new series of iteration. This time, the result after ten iterations started to diverge. Investigations revealed that for this Reynolds number and grid size, upstream errors tended to be self exciting, thus causing the solution to diverge. This instability, however, disappeared when the Reynolds number was lowered. A run consisting of 53 iterations was then made on the 205 computer with $\mathrm{Re}=30$. The solution converged smoothly, though very slowly. The latter was attributed to the large number of nodes in the net.

In order to reduce the number of nodes as well as to avoid the necessity of assuming an inlet length, the transformation

$$
\begin{equation*}
\eta=1-\frac{1}{1+C x} \tag{13}
\end{equation*}
$$

was introduced. Equation 10 now assumes the form

$$
\begin{equation*}
C(1-\eta)^{2} \frac{\partial \Psi}{\partial y} \frac{\partial}{\partial \eta}\left(\nabla_{\eta-y}^{2} \Psi\right)-\frac{\partial \Psi}{\partial \eta} \frac{\partial}{\partial y}\left(\nabla_{\eta-y}^{2} \Psi\right)=\frac{4}{R e} \nabla_{\eta-y}^{4} \Psi \tag{D-1}
\end{equation*}
$$

where $\nabla_{\eta-y}^{2} \Psi=\frac{\partial^{2} \Psi}{\partial y^{2}}+C^{2}(1-\eta)^{4} \frac{\partial^{2} \Psi}{\partial \eta^{2}}-2 C^{2}(1-\eta)^{3} \frac{\partial \Psi}{\partial \eta}$

$$
\begin{aligned}
& \text { and } \nabla{ }_{\eta-\mathrm{y}}^{4} \Psi=\frac{\partial^{4} \Psi}{\partial y^{4}}+2 \frac{\partial^{2} \Psi}{\partial y^{2}} C^{2}(1-\eta)^{4} \frac{\partial^{2} \Psi}{\partial \eta^{2}}-2 C^{2}(1-\eta)^{3} \frac{\partial \Psi}{\partial \eta} \\
& +C^{4}(1-\eta)^{8} \frac{\partial^{4} \Psi}{\partial \eta^{4}}-12 C^{4}(1-\eta)^{7} \frac{\partial^{3} \Psi}{\partial \eta^{3}}+36 C^{4}(1-\eta)^{6} \frac{\partial^{2} \Psi}{\partial \eta^{2}} \\
& -24 C^{4}(1-\eta)^{5} \frac{\partial \Psi}{\partial \eta}
\end{aligned}
$$

Equation (D-1) was again transformed into a finitedifference equation using backward-difference formulas for the first and third derivatives. Iterative computations were then performed on the Datatron 205 for Reynolds numbers of $60,100,200$ and 300 with a $10 \times 10 \eta-y$ grid. Except for the case with Reynolds number of 60 , the solutions were unstable. Thus, the introduction of the new variable η had no apparent effect on the stability of the solution, even though it is possible to cut down the size of the grid greatly without losing much accurracy.

Finally, the discretion of equations 11 and 12 based on de G. Allen's method was performed. Detailed description from this stage on is given in the Results section.

- 306 -

PROPOSITIONS

PROPOSITION I

For a quantitative discussion of the mechanism of a complex reaction involving free radicals, such as the thermal decomposition of hydrocarbons, the concentrations of the free radicals have to be determined. The usual approach is to assume that these free radicals are at steady-state. The rate equations for these free radicals can then be set up and solved for the free-radical concentrations. From these concentrations, the rates of formation or disappearance of the stable species can then be predicted for comparison with the experimental results. Some typical examples have been worked out by Steacie (1).

When the number of species of free radicals is large, however, the solution of the rate equations of the free radicals becomes very complicated and is sometimes unattainable. It is proposed that under such circumstances some of the free-radical concentrations can be obtained from the rate equations of some of the stable products and the experimentally-determined reaction rates for these stable products. The remaining free-radical concentrations can be computed from their respective rate expressions. The validity of the mechanism can then be checked by comparing the rates of formation or disappearance of the rest of the stable species both determined experimentally and predicted from the mechanism.

This method has been applied to the quantitative discussion of the mechanism for n-butane decomposition, as described on pp. 54-56 in Part One of this thesis under correlation of data.

PROPOSITION II

Finite-difference methods are most useful in solving partial differential equations. In applying the method, the domain of interest is treated as a network of nodes. When the domain is not closed in one direction, say the x-direction, the net will contain infinite number of nodes, which becomes impractical.

When the domain is semi-infinite in the x-direction, i.e., $0 \leq x \leq \infty$, some simple transformation of the x-coordinate such as $e^{-a x}$ may be performed to obtain a new domain of finite dimensions. When $-\infty<x \leq \infty$, however, mere transformation of the coordinates is not sufficient. For such cases, it is proposed that the domain be divided into two regions; one with $\mathrm{x} \geq 0$ and the other with $\mathrm{x} \leq 0$. Each region may then be treated separately with their solutions to be matched at the common boundary line $x=0$. This technique was used successfully in solving the two-dimensional NavierStokes equations. For detailed information, refer to pp. 202203 in Part Two of this thesis in the section of method of solution. It was found that with the transformation $\eta=$ $1-1 /(1+C x)$, the use of a $10 x 10-y$ net results on a solution having the same accuracy as that obtained with a $150 \times 10 \mathrm{x}-\mathrm{y}$ net for small x and having better accuracy for large x.

PROPOSITION III

The importance of axial mixing in chemical flow reactor designs has been stressed (2). With axial mixing, the reactor design equation for a tubular flow reactor operated under isothermal, steady-state conditions may be written as

$$
\begin{equation*}
\frac{d}{d x}\left(D \frac{d C}{d x}\right)-u_{x} \frac{d C}{d x}-k C^{n}=0 \tag{1}
\end{equation*}
$$

When the order of the reaction n is other than zero or one, equation 1 is non-linear, and analytical solutions for it are not available. Numerical solutions, however, have been worked out by Fan and Bailie (3) with $\mathrm{n}=2$ and 3 for constant D and u_{x}.

It is proposed that when n is an integer, equation 1 can be readily solved analytically by the perturbation method with the resulting solution in the form of say,

$$
\begin{equation*}
C=C_{0}+C_{1} D+C_{2} D^{2}+\cdots \tag{2}
\end{equation*}
$$

Substitution of equation 2 into equation 1 results in a power series of D, the coefficients in which series should each be equal to zero. For the D° term, the coefficient is

$$
\begin{equation*}
u_{x} \frac{\mathrm{dC}_{0}}{\mathrm{dx}}-\mathrm{kC}_{0}^{\mathrm{n}}=0 \tag{3}
\end{equation*}
$$

if D is taken to be a constant. Equation 3 can be readily solved for C_{0} which is also the solution of equation 1 with negligible axial diffusion.

The next coefficient in the series is

$$
\begin{equation*}
\frac{d^{2} C_{0}}{d x^{2}}-u_{x} \frac{d C_{1}}{d x}-\mathrm{nC}_{0}{ }^{n-1} C_{1}=0 \tag{4}
\end{equation*}
$$

which is a first-order linear differential equation with respect to C_{1}. This equation can thus be solved for C_{1} using the solution of C_{0} obtained from equation 3 . Similarly, the solutions of $\mathrm{C}_{2}, \mathrm{C}_{3}$, etc. can be determined. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, etc. may be regarded as corrections to C_{0} due to the existence of axial diffusion.

When D is small, equation 2 converges very rapidly. Equation 1 can then be solved much faster with the perturbation method than with any numerical method. Furthermore, for reactor design purpose, analytical solutions such as equation 2 are always preferred over numerical solutions. A major advantage in having an analytical solution is that the solution can be differentiated with respect to any parameter.

PROPOSITION IV

The rigorous solution of a multicomponent distillation problem at steady-state requires the determination of temperature, compositions, and flow rates at every plate in the column, provided that the pressure in the column is known. For a column with theoretical plates, the conditions at each plate are defined when the temperature as well as the composition and flow rate of, say, the vapor stream are known. For a n-component system, there will therefore be $(n+1)$ variables for each plate governed by the energy balance equation, the dew-point relationship equation and the ($n-1$) material balance equations for the components. Since the conditions of different plates are interrelated, there will be a total of $m(n+1)$ equations with $m(n+1)$ unknowns for a $m-p l a t e ~ c o l u m n ~ i n c l u d i n g ~ t h e ~$ condenser and the reboiler, or

$$
\begin{equation*}
\mathrm{Mx}=\mathrm{b} \tag{5}
\end{equation*}
$$

where x is the vector of unknowns, b is a vector determined by the boundary conditions and M a matrix based on the governing equations. x and b both have a dimension of $m(n+1)$. M is a square matrix also with a dimension of $m(n+1)$.

Equation 5 is a non-linear algebraic matrix equation and
can be solved only by some iterative procedures. A number of methods of solution were proposed $(4,5)$. In these methods, the matrix equation 5 is invariably solved by the method of block iteration. With block iteration, equation 5 is divided into p sets of equations corresponding to p sets of unknowns. These sets of equations are then solved one at a time in a predetermined sequence for their corresponding unknowns. This would be repeated until all the variables do not change with respect to iteration. The division of equation 5 can be done either by plates (4) or by variables such as temperature, flow rate and composition (5).

The methods mentioned above work well with certain types of distillation problems but not all of them, especially problems with multi-feeds and multi-withdrawals. It is proposed that a more general method should be used for stubborn cases, i.e., to solve equation 5 in a single step each time. By taking advantage of the numerous zeros in the matrix M, equation 5 can be solved on a high-speed digital computer reasonably fast. For example, for a 10-component system with a 30plate column, each solution of equation 5 is estimated to require approximately one minute on an IBM 7090 digital computer.

As the number of elementary operations required to solve a
matrix equation is approximately proportional to the cube of the dimension of the matrix, the use of block iteration greatly reduces the number of operations required in solving equation 5 as compared with the proposed one-step solution . The nature of the block iteration, however, is such that for each iteration it tends to overcorrect some sets of the variables while undercorrect the others. This often leads to instability in the solution. With the proposed one-step solution, such non-uniformity in correction should be reduced or even eliminated. It should therefore be used wherever the method of block iteration gives divergent solutions.

PROPOSITION V

The use of least-squares technique in correlating experimental data is well accepted. If a set of P observations, F_{p}, can be represented by the expression

$$
\begin{equation*}
G=G\left(X_{j}, A_{k}\right) \tag{6}
\end{equation*}
$$

where $X_{j}{ }^{\prime}$ s are the independent variables and A_{k} 's are constants, the least-squares fit then calls for the determination of the constants A_{k} 's based on the experimental observations such as to minimize the function

$$
\begin{equation*}
T=\sum_{p=1}^{P}\left[F_{p}\left(X_{j_{p}}\right)-G_{p}\left(X_{j_{p}}, A_{k}\right)\right]^{2} \tag{7}
\end{equation*}
$$

This is equivalent to solving the set of M equations

$$
\begin{align*}
U_{i} & =\frac{\partial T}{\partial A_{i}}=0 \\
& =\sum_{p=1}^{P} 2\left[F_{p}-G_{p}\right] \frac{\partial G}{\partial A_{i}} \quad i=1,2, \cdots, M \tag{8}
\end{align*}
$$

for the M constants A_{1} through A_{M}.

When G is linear with respect to A_{k} 's, equation 8 can be solved directly. When G is not linear with respect to A_{k} 's, however, equation 8 is usually solved by the iterative Newton's method. With the Newton's method, a set of values
for A_{i} 's is initially assigned. This set of values is then adjusted according to the formula

$$
\begin{equation*}
\left(A_{i}\right)_{\text {new }}=\left(A_{i}\right)_{\text {old }}+\Delta A_{i} \tag{9}
\end{equation*}
$$

where the adjustments ΔA_{i} 's are computed by solving the set of equations

$$
\begin{equation*}
\sum_{i=1}^{M} \frac{\partial U_{n}}{\partial A_{i}} \Delta A_{i}=-U_{n} \quad n=1,2, \cdots, M \tag{10}
\end{equation*}
$$

The values of A_{i} 's are to be repeatedly adjusted by the above procedure until they all converge to the solution.

With the Newton's method, however, convergence is often unattainable. It was found that in many textbooks, the formula for $\partial U_{n} / \partial A_{i}$ is given to be (6)

$$
\begin{equation*}
\frac{\partial U_{n}}{\partial A_{i}}=-2 \sum_{p=1}^{P}\left(\frac{\partial G_{p}}{\partial A_{n}}\right) \quad\left(\frac{\partial G_{p}}{\partial A_{i}}\right) \tag{11}
\end{equation*}
$$

while the correct expression should be

$$
\begin{equation*}
\frac{\partial U_{n}}{\partial A_{i}}=2 \sum_{p=1}^{p}\left[\left(F_{p}-G_{p}\right) \frac{\partial^{2} G_{p}}{\partial A_{n} \partial A_{i}}-\left(\frac{\partial G_{p}}{\partial A_{n}} ;\left(\frac{\partial G_{p}}{\partial A_{i}}\right)\right]\right. \tag{12}
\end{equation*}
$$

When equation 12 is used instead of equation 11 , the solutions to many cases which previously diverged have been obtained.

NOMENCLATURE

A_{k} 's constants in G
C concentration, lb/cu. ft.
C_{0}, C_{1}, \cdots pertubated concentrations, $1 \mathrm{~b} / \mathrm{cu} . f t$.
D diffusion coefficient, sq.ft/sec
F experimentally-observed value for G
G any function of the independent variables $X_{j}{ }^{\prime}$ s
k reaction-rate constant, (lb/cu.ft.) ${ }^{-(n-1)} \mathrm{sec}^{-1}$
$\mathrm{n} \quad$ order of a reaction, dimensionless
T a function defined by equation 7
$\mathrm{U}_{\mathrm{i}} \quad \partial \mathrm{T} / \partial \mathrm{A}_{\mathrm{i}}$
u_{x}
longitudinal velocity, ft/sec
$X_{j}{ }^{\prime} s \quad$ some independent variables
$x \quad$ Cartesian coordinate, ft.
$\nabla^{2} \quad$ the Laplacian operator, $\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$

REFERENCES

1. E.W.R. Steacie, "Atomic and Free Radical Reactions", Reinhold, New York, 1954.
2. O. Levenspiel and K.B. Bischoff, Ind. Eng. Chem., 51, p. 1431 (1959).
3. L.T. Fan and R.G. Bailie, Chem. Eng. Sci., 13, p. 63 (1960).
4. J. Greenstadt, Y. Bard and B. Morse, "Multicomponent Distillation Calculation on the IBM 704", IBM report, January 29, 1958.
5. N.R. Amundson and A.J. Pontinun, Ind. Eng. Chem., 50, p. 730 (1958).
6. E.M. Grabbe, S. Ramo and D.E. Wooldridge, editors, "Handbook of Automation, Computation, and Control", vol. 1, John Wiley \& Sons, New York, 1958. p. 14-07.

[^0]: k has the unit of $\sec ^{-1}$ for a first-order reaction and cc / g-mole sec. for a second-order reaction.

[^1]: This is the ratio of free radical concentration (R) to that of pure butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)_{0}$, both in gm-mole/cc at 1 atm and the given temperature.

[^2]: * Components coming out together or as partially separated peaks.

[^3]: ${ }^{\text {a Courtesy }}$ of the California Research Corporation
 b Duplicate samples, with identical reported analyses

[^4]: For components $10-18$, the value of the normalized area, A_{8} was taken as zero to allow comparison with Messner (3).

[^5]: *The inlet length is defined here as the distance inside the plates over which the flow pattern changes from potential flow to parabolic velocity distribution.

[^6]: *Recently, Schlichting's solution has been modified and a numerical solution for the problem has been obtained. These are mentioned in the Discussion Section.

[^7]: *The term "free-stream" is used throughout the text to represent the region in which the effects of the plates on the flow are negligible.

[^8]: * Relative to free-stream pressure at $-_{\infty}$.

