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Abstract 

The first part of this dissertation discusses a new classifier based on a multilayer 

feed-forward network architecture. The main idea is to map irregularly-distributed pro

totypes in a classification problem to codewords that are organized in some way. Then 

the pattern classification problem is transformed into a threshold decoding problem, 

which is easily solved using simple hard-limiter neurons . At first we propose the new 

model and introduce two families of good "internal representation" codes . Then some 

analyses and software simulation concerning the storage capacity of this new model are 

done. The results show that the new classifier is much better than the classifier based 

on the Hopfield model in terms of both the storage capacity and the ability to classify 

correlated prototypes. 

A general model for neural network associative memories with a feedback. struc

ture is proposed . Many existing neural network associative memories can be expressed 

as special cases of this general model. Among these models, there is a class of asso

ciative memories, called correlation associative memories, that are capable of storing 

a large number of memory patterns. If the function used in the evolution equation is 

monotonically nondecreasing, then a correlation associative memory can be proved to 

be asymptotically stable in both the synchronous and asynchronous updating modes. 

Of these correlation associative memories, one stands out because of its VLSI imple

mentation feasibility and large storage capacity. This memory uses the exponentiation 

function in its evolution equation; hence it is called exponential correlation associa

tive memory (ECAM) . It is further proved that the storage capacity of ECAM scales 
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exponentially with N (the number of components in memory patterns) when N ap

proaches infinity. A programmable ECAM chip is designed, simulated, fabricated, and 

then tested. The performance of the ECAM chip is shown to be not much worse than that 

of a computer-simulated ECAM model in terms of error correcting ability (attraction 

radius). Finally, the speed of the prototype ECAM chip is demonstrated by employing 

it to do vector quantization on binary images. And it is found that the ECAM chip can 

process binary images in real time. 
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Chapter 0 

Overview 

The resurgence of neural network research in these past few years has been phenomenal. 

Many researchers have done much investigation on neural networks with a view to using 

them for solving difficult problems, such as diagnosis, prediction, motor control, pattern 

classification, combinatorial optimization, associative recall, etc. In this dissertation, by 

"neural networks" we mean massively parallel, analog computation systems consisting 

of simple processors (neurons) together with certain construction methods for system 

parameters, such as connection weights among neurons and thresholds of neurons. We 

are interested in analog computation systems primarily because we feel that most po

tential applications of neural networks are those problems that require fast, yet fuzzy 

computation , which is just what analog computation systems can provide. 

Of the many promising applications of neural networks, we are particularly inter

ested in pattern classification and associative recall. T he simplest form of the pattern 

classification problem is the minimum distance classification problem, i. e., the problem 

when conditional probability distributions of all classes are assumed to be multivariate 

Gaussian and all features uncorrelated. This problem has a very close tie with the as

sociative recall problem because in both cases one needs to find the nearest prototype 

(memory pattern) to the input according to some distance measure. T hese two prob

lems have attracted much attention for a few decades, and there has already been much 



-2-

success in solving them by digital computers. Still, we want to explore neural network 

approaches of solving these two problems because we believe that with the speed and 

hardware efficiency of massively parallel, analog computation systems, pattern classifi

cation and associative recall can be done more effectively. 

Hopfield proposed an innovative neural network model as an associative memory; 

however, it has been reported that his model has some major handicaps - limited 

storage capacity and excessively large hardware complexity. Since then, many attempts 

have been made to remedy these drawbacks. Nevertheless, many of these new models 

e. g., potential function associative memory, were designed without consideration of 

implementation issues, so that building such models becomes a formidable challenge. 

Therefore, most of them were only simulated by computer program and were never 

realized in hardware (optics or silicon). But as just mentioned, the expedition of analog 

computation is one of the most important reasons that make neural network approaches 

appealing; we thus feel that any good neural network model must be suitable for efficient 

hardware realization. 

The first part of this dissertation discusses a new classifier based on a multilayer 

feed-forward network architecture. The main idea is to map irregularly-distributed pro

totypes in a classification problem to codewords that are organized in some way. Then 

the pattern classification problem is transformed into a threshold decoding problem, 

which is easily solved using simple hard-limiter neurons. At first we propose the new 

model and introduce two families of good "internal representation" codes. Then some 

analyses and software simulation concerning the storage capacity of this new model are 

done. The results show that the new classifier is much better than the classifier based 

on the Hopfield model in terms of both the storage capacity and the ability to classify 

correlated prototypes. 

A general model for neural network associative memories with a feedback structure 

is proposed. Many existing neural network associative memories can all be expressed as 
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special cases of this general model. With this model, new associative memories suitable 

for implementation in other technologies can easily be introduced. A class of associa

tive memories, called correlation associative memories (CAM), can also be expressed as 

instances of this general model. It is also proved that if the function used in the evo

lution equation of a particular CAM is monotonically nondecreasing, then that CAM is 

asymptotically stable in both synchronous and asynchronous updating modes. 

Of these correlation associative memories, one stands out because of its VLSI im

plementation feasibility and large storage capacity. This memory uses the exponentiation 

function in its evolution equation; hence, it is called exponential correlation associative 

memory (ECAM). Furthermore, it is proved that ECAM has a storage capacity that 

scales exponentially with N (the number of components in memory patterns) when N 

approaches infinity. A programmable ECAM chip is designed, simulated, fabricated, and 

then tested. We find that the performance of the ECAM chip is almost as good as that 

of a computer-simulated ECAM system in terms of attraction radius. Finally the speed 

of the chip is measured by applying it to executing vector quantization on binary images. 

And it is found that the ECAM chip is so fast that it can process binary images in real 

time. 

Chapter one serves as a summary of a comprehensive literature survey about tra

ditional (digital sequential computer) and neural network approaches of pattern classifi

cation and associative recall. As mentioned earlier, we are interested in neural network 

approaches because we want to take advantage of the speed and hardware efficiency of 

analog computation systems. The fir st half of Chapter one reviews the general status of 

computer algorithms for pattern classification; corresponding neural network approaches 

are also discussed whenever possible. The second half of Chapter one reports a survey 

of existing neural network associative memory models. In the last section of Chapter 

one, we discuss the relationship between a minimum distance pattern classifier and an 

associative memory, and we show how one can be built from the other. Furthermore, 

we give an account of drawbacks of existing winner-take-all circuits, which many re-
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searchers considered a. good solution to pattern classification problems and associative 

recall problems. 

In Chapter two, we suggest a. new neural network classifier based on a feed-forward 

network with one hidden layer. The idea is to specify a. set of "good" internal represen

tations (activations of the hidden neurons) instead of using ba.ckpropagation to generate 

them. The motivation of this new classifier comes from the observation that, except for 

how the prototypes ( codewords) are generated, minimum distance classification problems 

are similar to decoding problems in the error correcting code paradigm. In error correct

ing code problems, codewords are designed with a. view to fast and simple decoding, while 

the prototypes in pattern classification problems are not designed and are distributed in 

the feature space randomly. Consequently, if one can map the prototypes in the feature 

space to codewords (internal representations) in the code space, the minimum distance 

classification problem becomes a. simple decoding problem. 

The new classifier uses the connection matrix from the input layer to the hidden 

layer to perform the mapping from the feature space to the code space. The connection 

weight matrix from the hidden layer to the output layer is responsible for threshold 

decoding. We propose two families of good codes for this new classifier - the maximal

length sequence codes and the Hadamard matrix codes. The storage capacity of the 

new classifier is shown to be larger than 0.22N, where N is the number of bits in stored 

prototypes. We also run some simulation and find that the new classifier is much better 

than a. classifier based on the Hopfield model when it comes to storage capacity and the 

ability to classify correlated prototypes. 

In Chapter three, we introduce a. general model for neural network associative 

memories with feedback structure. This general model subsumes most neural network 

associative memories with feedback architecture reported in Chapter one. It is based on 

an algorithm similar to the election process in political systems. At any timestep, the 

associative memory has a. state, which is an N -bit binary pattern. To find the state of 
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the next timestep, weighting functions fk 's defining the strengths of memory patterns 

are computed. Then a weighted sum of all memory patterns is calculated, and a decision 

is made to determine the polarity of each component in the next state pattern. This is 

not unlike a political election process, in which each city (component) has many political 

groups (memory patterns), each group has a different number of voters (strength or value 

of the weighting function) and party (polarity), and the next assembly (state pattern) 

is determined by holding a local election in all cities. We choose four models - the 

Kanerva memory, the BMW memory, the Hamming network associative memory, and 

the spectral associative memory as examples. And we show that, with proper choice 

of weighting functions , they can all be expressed as special cases of the general model. 

Moreover, the Kanerva memory and the BMW model are proved to be asymptotically 

stable provided that some strong assumptions are made. 

Chapter four deals with correlation associative memories (CAMs) in general and 

the exponential correlation associative memory (ECAM) in particular. Correlation asso

ciative memories are models whose weighting functions depend only on some correlation 

measures of stored memory patterns and the state pattern of the system. We show 

that CAMs are also special cases of the general model in Chapter three. Furthermore, 

we prove that they are asymptotically stable in both synchronous and asynchronous 

updating modes if their weighting functions are monotonically nondecreasing. 

In the second half of Chapter four, we concentrate on the exponential correlation 

associative memory, whose weighting functions fk 's are of the exponential form. We feel 

that ECAM is most amenable to VLSI implementation, since MOS transistors exhibit 

an exponential characteristic between the drain current and the gate-to-source voltage 

in the subthreshold range. We proved that for an ECAM with N -bit memory patterns, 

more than eN memory patterns can be stored as N approaches infinity. The constant c 

is a parameter that depends on the recall error probability, the percentage error in the 

input patterns, and the base constant of the exponentiation function . However, it is to 

be noted that to build an ECAM storing exponential number of memory patterns, one 
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also needs exponential hardware complexity. 

A more important result is that for sufficiently large input percentage error, ECA:M 

can store as many memory patterns as is allowed by the sphere-packing bound in infor

mation theory (2N(l-1i(p)), where pis the input percentage error). We also consider the 

case when the exponentiation circuits of ECAM have limited dynamic range. It turns out 

that the storage capacity will then be proportional to the dynamic range. This finding 

is not necessarily discouraging in that the same conclusion about the high-order CAM 

has been reached. Finally, we present some computer simulation results showing that 

the previous theoretical predictions about the storage capacity of ECAM are valid even 

when N is less than 100. 

In Chapter five, we are concerned with VLSI implementation of ECAM. The chip 

we design is a programmable associative memory chip based on the ECAM model. In 

t he first part of the chapter, the design of a static RAM, which holds the informa

t ion of stored memory patterns, is given. Next, analog computation circuits performing 

associative recall function are described. These circuits include 1) the correlation com

putation circuit; 2) the exponentiation, multiplication, and summing circuit; and 3) the 

t hresholding circuit. 

Next, we present the layout and the t esting results of the ECAM chip. The final 

design of the ECAM chip is capable of storing 32 pa tterns, each 24 bits wide. After 

comprehensive testing, it is found that the ECAM chip fares almost as well as a computer

simulated ECAM with the base in the exponentiation function equal to two. As an 

application, we use the ECAM chip to solve the vector quantization problem of binary 

images, and we find th at reconstructed images have fairly good quality. What is more 

important is that the ECAM chip can process images at a very high rate, more than 20 

i mages per second. 
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Chapter 1 

Pattern Classifiers and Associative 

Memories 

1.1 Introduction 

This chapter serves as the digest of a. comprehensive literature survey about traditional 

(digital sequential computer) and neural network approaches of pattern classification 

and associative recall. We are interested in neural network approaches because of the 

speed and hardware efficiency provided by massively parallel, analog computation neural 

systems. The first half of this chapter describes the general status of how pattern clas

sification is done by digital computer algorithms. Also, corresponding neural network 

approaches are introduced whenever possible. The second half of this chapter reports a. 

survey of existing neural network associative memory models. Some traditional meth

ods of doing associative recall, e. g., hash coding and its variations, are not discussed 

because they are not suitable for neural network implementation. In the last section, 

we discuss the relationship between a. pattern classifier and an associative memory and 

show how one can be built from the other. Also, we give a.n account of the drawbacks of 

existing winner-take-a.ll circuits, which many researchers claimed to be a. viable solution 

to pattern classification problems and associative recall problems. 
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1.2 An Introduction to Pattern Classifiers 

Pattern recognition is one of the most important subjects in information processing 

systems. It has application in various different areas, such as radar signal recognition, 

speech recognition, voice identification, production-line inspection, handwritten digit 

(character) recognition, medical diagnosis, sonar signal detection, vector quantization, 

and so on (52]. Because of its widespread usage, pattern recognition has received a 

great deal of attention during the past few decades. However, the problem itself, in its 

most general form, is "ill-defined" and thus is very hard. By "ill-defined problems," we 

mean problems whose answers are not definitive, such as pattern recognition problems or 

"Who is the best player in the National Basketball Association?" Consider the following 

handwritten digit recognition problem. A symbol that looks like a "4" as much as a "6" 

is presented to a digit recognition system, then that system is asked to make a decision. 

How then will the performance of this system be determined ? Obviously, the answer lies 

in the opinions of those involved in judging this system. Since each different individual 

has a different perception of what a "4" or a "6" should look like, it will be very difficult, 

if not impossible, to reach a consensus. Hence, a definitive performance measure of 

pattern recognition systems is hard to come by, and we say that the pattern recognition 

problems are ill-defined. 

We will, in this dissertation , regard patterns as vectors of real numbers, which are 

measurements of physical quantities in some environment. Examples of patterns are : 

arrays of pixels (picture elements), sampled speech waveforms, symptoms of patients, etc. 

Figure 1.1 illustrates a typical pattern recognition system, which consists of four major 

components [14, 16]. The data-acquisition block is responsible for capturing signals from 

the outside environment and converting them to a form that can be further processed 

by the following components in the pattern recognition system. For instance, a camera 

is an appropriate device for acquiring images in a production-line inspection system, 

while a microphone is the proper choice for converting speech to electrical signals in 

a voice identification system. Generally speaking, the amount of information in the 
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Figure 1.1: Block diagram of a typical pattern recognition system 

... 

patterns is usually too enormous to allow real-time processing. In addition, there is 

much redundancy in the patterns. As a result, most pattern recognition systems adopt 

an approach called feature extraction to condense the information conveyed in an input 

pattern to an N-dimensional feature vector. After this stage, the classifier then works 

on the feature vector and determines which category the input pattern belongs to. The 

index of that category is then passed on to the output device, which manipulates the 

decision and displays it in some format. 

The design of any pattern recognition system must take into account the construc

tion of its feature extractor and classifier. Very often, the efficiency of one has much 

influence on the other. For example, if a feature extractor can generate a feature that is 

exactly the class index of an output pattern, then no classification is necessary and the 

recognition is done. On the other hand, if a classifier is so powerful that it can process 

an enormous amount of information and make the right decision relying solely on input 

patterns, then that pattern recognition system can do without a feature extractor. As 

a matter of fact, the design process of a pattern recognition system usually involves 

an iterative procedure, which goes back and forth improving the feature extractor and 

the classifier until a satisfactory performance is attained. ~evertheless, feature extrac

tion depends heavily on the specific problem at hand; therefore, we will concentrate on 

classifier design only. 
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Let us now formulate rigorously the problem of pattern classification. In a pattern 

classification problem, inputs are N-dimensional feature vectors (for brevity, we call them 

patterns), each feature is a real number, and there are M classes, C{l), C(2), · · · , C(M). 

The goal of a classifier is to categorize input patterns to their "right" classes. To achieve 

this goal, a classifier need information about intrinsic properties of all classes and in

teractions among classes. Usually, it is assumed that each class has a conditional prob

ability distribution over the sample space R N; i.e., there exist Pk(z) : R N ---* R , for 

k = 1,2, ... ,M and 

k = 1,2, ... ,M, 

where R is the field of real numbers. Furthermore, since results for the equal a priori 

probabilities case are easily generalized to the case when not all M a priori probabilities 

are equal, input patterns are assumed to occur from these M classes with equal a priori 

probabilities. In order to minimize the probability of making an incorrect classification, 

the classifier first calculates Pk(x), fork = 1,2, . . . ,M, where xis the input pattern, 

then finds the maximum of these M conditional probabilities , and categorizes the input 

pattern to the class with maximum conditional probability. The above procedure for 

finding the right class for an input pattern is called the Bayes decision rule. Unfortu

nately, the conditional probability distributions P1(x), P2(x) , · · ·, PM(x) are usually not 

known; therefore, the primary duty of a classifier designer is to estimate these condi

tional probability distributions with the help of a set of sample input patterns drawn 

from these M classes (training set). 

1.3 D esign and Implementation of Pattern Classifiers 

There has been extensive exploration of many pattern classifiers using the traditional 

(digital computer) methods [7, 14, 15, 16, 20, 49, 59, 64). In this section , we will sum

marize these traditional approaches for solving pattern classification problems and give 

the corresponding neural network implementation whenever possible. 
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Figure 1.2: Architecture of classifiers based on the discriminant function method 

Before we present different types of pattern classifiers, let us introduce the idea 

of discriminant function [14, 16]. Of the many ways to represent classifier designs, the 

most common one is through a set of discriminant functions, 9k(x ), k = 1, 2, ... , M , one 

for each class. In classification systems based on discriminant functions (see Figure 1.2), 

the classifier decides that the input pattern x belongs to class j if 

V k = 1,2, ... ,M,and k :/; j . (1.1) 

The design method of classifiers can be either supervised or unsupervised. The 

former is the case when all sample patterns in the training set are labeled with the in

dices of the classes they are drawn from, while in the latter case no labelin g is available. 

Another dichotomy of classifier design methods is parametric versus nonparametric. In 

parametric methods , it is assumed t hat the form of the conditional probability distribu-
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tions is known, and the designer has to estimate parameters of those distributions from 

the training set. While in nonpara.metric methods, no knowledge about the conditional 

probability distributions is assumed. 

1.3.1 Supervised Parametric Methods 

In a supervised, parametric classifier design method, not only the training set is labeled, 

but also the form of Pk(x) is assumed to be known. 

• Linear Classifiers 

If Pk(x ), k = 1, 2, ... , M are assumed to be multivariate Gaussian with identical 

covariance matrix, and if all N features in input patterns are sta.tistica.lly uncor

related, then finding the "right" class of a.n input pattern x becomes finding the 

maximum of 

9k(x) = - (J.Lk- x)t (J.Lk- x), k = 1, 2, ... ,M, (1.2) 

where J.Lk is the mean feature vector ("prototype") of sa.mples labeled C(k) in the 

training set. 

Since the discriminant functions in Equation (1.2) can usually be expressed in linear 

forms, these classifiers are usually called linear classifiers, correlation classifiers, 

or template-matching classifiers [14]. Furthermore, since the discriminant function 

is proportional to the square of the Euclidean distance between ILk and x , these 

classifiers are also called minimum Euclidean distance classifiers. If the input 

features are binary instead of real; i. e., when the input pattern space is B N = 
{ -1, 1 }N, then these classifiers become minimum Hamming distance classifiers, 

and gk(x) = - 4 dHam.ming(J.LJ., x ). Linear classifiers can be realized by a. one-layer 

neural network followed by a. winner-take-all circuit as suggested by Lippmann [39) . 
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• Quadratic Classifiers 

If all M conditional probability distributions are multivariate Gaussian but with 

different covariance matrices, then the discriminant functions become quadratic 

and 

k=1,2, ... ,M, (1.3) 

where 'Ek is the covariance matrix of the set of samples labeled C(k). This type of 

classifiers can be implemented by a one-layer, high-order neural network [17, 38) 

followed by a winner-take-all circuit [39). 

• Piecewise Linear Classifiers 

When some Pk(x)'s are multimodal, it is desirable to use piecewise linear functions 

as class boundaries. A discriminant function is said to be piecewise linear if its 

output is obtained by a "max" operation [14). Suppose class C(k) has nk subclasses, 

each with prototype J-Lkj, j = 1, 2, ... , nk; then the discriminant functions become 

piecewise linear, 

k = 1, 2, ... , M, (1.4) 

This type of classifiers can be implemented by a one-layer, high-order neural net

work [17, 38] followed by two layers of winner-take-all circuits. 

• Classifiers with Internal Representation Codes 

Since there are many drawbacks in winner-take-all circuits (for detail, see Sec

tion 1.6), there has been much research on building classifiers without winner

take-all circuits. We proposed a two-layer neural network classifier utilizing an 

internal coding scheme that transforms minimum distance classification problems 

to threshold decoding problems ([9); also see Chapter two). Various other models 

taking advantage of coded internal representations have also been suggested, and 

all of them showed satisfactory results [6, 27, 31). 
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1.3.2 Supervised Nonparametric Methods 

In thjs type of classifier design methods, no assumption is made on the form of the M 

conditional probabilities; so different approaches are taken to design classifiers. In the 

following djscussion, only the two-category case is discussed since the multicategory case 

can be obtained by generalization. 

• Perceptron with Perceptron Learning Rule 

The archltecture of tills type of classifiers is a one-layer perceptron with one hard

limiter neuron, whose output is "-1" if the activation level at the input is negative, 

"+ 1" otherwise. The discriminant fu nction used is 

g(x) = w t x. (1.5) 

The coefficients in theN x 1 vector ware to be estimated from the t railling set in 

such a way that for each X j labeled class C(l), wt X j > 0, and for each Xj labeled 

class C(2), w t X j < 0, or equivalently, - wt X j > 0. Accordingly, if all samples 

labeled C(2) in the training set are replaced by their negative counterparts, correct 

classification on all samples in the training set is obtained if 

for all x in the new training set. (1.6) 

Rosenblatt proposed a way of successively updating the coefficients of w with a 

view to satisfying the above inequality [55). It was also shown that this updating 

procedure will eventually converge to a vector w 0 that satisfies the inequality in 

Equation (1.6) as long as such a vector exists, namely, as long as sample patterns 

of these two categories in the training set can be separated by a straight line 

("Perceptron Convergence Theorem" [14, 47]). 
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• Perceptron with Other Minimum Squared Error Procedures 

Instead of the inequality in Equation (1.6), one can require that the following 

equation be satisfied 

(1.7) 

where columns in X are samples in the training set and all components of y are 

positive. Since the dimension of y is usually very large when compared to the 

dimension of w, it is usually difficult to find a w that satisfies Equation (1. 7) 

exactly. Therefore, a few methods minimizing the sum of squared errors have been 

suggested, such as the pseudoinverse method [32, 33], Widow-Hoff procedure [67], 

and Ho-Kashyap method [23]. These classifiers can all be realized by a one-layer 

perceptron. 

• Multilayer Feed-forward Neural Networks 

Lippmann showed that a three-layer perceptron consisting of hard-limiter neurons 

can produce class regions of any shape [39, 40, 27]. For the sake of applying 

gradient descent, Rumelhart and his colleagues adopted neural networks made up 

of neurons with sigmoidal response instead. They proposed a training algorithm 

that is a gradient descent method minimizing a cost function - the sum of squared 

output errors of all input-output pairs in the training set [56]. This procedure, 

called error backpropagation or generalized delta rule, has been shown to provide 

good performance in solving many different pattern recognition problems [1, 28, 

35, 37, 40, 50, 60, 66, 68]. Nevertheless, there is one big disadvantage, which often 

renders the backpropagation method awkward, if not useless : The amount of time 

it takes to train a particular neural network is very long, and what's worse, as the 

training_ set grows larger, the training time seems to grow faster than linear with 

the training set size. 
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• Parzen Window Method and K-Nearest-Neighbor Method 

In the Parzen window approach , the continuous probability distribution Pk(x) is 

constructed by summing N-dimensional window functions centered a.t those posi

tions where sample patterns from C(k) lie. These window functions approach the 

N -dimensional Dirac delta function as the size of the window functions shrinks. 

After all Pk(x)'s are constructed, Bayes decision rule can be applied to do classi

fication. The problem with the Parzen window approach is that it requires a very 

large training set in order to get satisfactory recognition performance. 

As for the K-nearest-neighbor method, the formula. is : Given an input pattern x, 

find the ]( nearest neighbors of x in the training set, then count the number of 

nearest neighbors for each class, and categorize x to the class that has the largest 

number of nearest neighbors. The main disadvantage of this method is that the 

whole training set needs be stored during classification, which is very undesirable. 

The Reduced (Restricted) Coulomb Energy (RCE) network proposed by a. group 

led by Cooper [54, 58] is the neural network implementation of a variation of the 

K-nearest-neighbor method. 

1.3.3 Unsupervised Methods 

The only difference between supervised learning and unsupervised learning is that in 

unsupervised learning methods , patterns in the training set are not labeled. A simple 

strategy for solving unsupervised classifier design problems is to apply clustering pro

cedures to the training set and then form clusters of patterns so that all patterns in a. 

cluster are close to one another in some similarity measure. All patterns in the training 

set can be labeled; then a. supervised learning method can be applied to the newly labeled 

training set. In this subsection, we will concentrate only on clustering techniques. 
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• K -Mean Clustering Algorithm and ISODATA 

The J( -mean clustering algorithm works as follows : At first, choose J( initial 

cluster means randomly from the training set. Next, for each sample in the set, 

find the nearest cluster mean in some similarity measure, label that sample with 

the index of that cluster, and then compute the new cluster mean. The algorithm 

terminates when all ]( means stay unchanged after one run through the training 

set. 

The ISODATA (Iterative Self-Organization Data Analysis Technique A) is similar 

to the K-mean method, except that ISODATA employs more "heuristics," which 

are results of experience gained through experimentation. With those heuristics, 

ISODATA can merge, discard, or split clusters whenever necessary. Another varia

tion of the J( -mean method is the Kohonen 's self-organizing feature map technique 

[33], in which case means of neighboring clusters are also updated. 

• Leader Clustering Algorithm 

The leader clustering algorithm introduced here is a somewhat sophisticated version 

of the original leader clustering method [22]. In the leader clustering algorithm, 

an input pattern in the training set is presented to the classifier, the similarity 

measures of this pattern with all cluster means are computed, and the cluster 

with maximum similarity measure is activated, while all the other clusters are 

suppressed. If the maximum similitrity measure is not large enough, create a new 

cluster with the current input pattern as its cluster mean. Otherwise the input 

pattern has to pass a "vigilance test," which checks how close the input pattern is 

to the cluster mean of the activated cluster. If the input pattern fails the vigilance 

test, it is checked for vigilance against the cluster with the next largest similarity 

measure, etc. If the input pattern passes the vigilance test, the cluster mean of 

that particular cluster is recomputed, taking the input pattern into account. The 

algorithm then goes back to process the next pattern in the training set. This 
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algorithm is realized by the Adaptive Resonance Theory (ART) model introduced 

by Carpenter and Grossberg [8, 21 , 45]. The major drawback of ART model is 

that it can perform well with perfect input patterns, but even a small amount of 

noise can cause problems [39]. 

• Other Clustering Techniques 

There are various other interesting clustering techniques, such as the cluster seeking 

algorithm, the maximin distance clustering method, hierarchical clustering algo

rithms, graph theoretic clustering algorithms, and so forth [7, 14, 29, 64]. Since we 

cannot find any neural implementation for them, we will not discuss them here. 

1.4 An Introduction to Associative Memories 

Memory plays a very crucial role in information processing of both biological organisms 

and digital computers. In a system of the Von Neumann type, an "addressing" memory 

(listing memory) works with a central processing unit in order to execute useful oper

ations. By addressing memories, we mean memories whose data items are accessed by 

providing their addresses. The Von Neumann model, albeit effective, has been known 

to suffer from a bottleneck between the central processing unit and the system memory. 

One of the reasons is that as the VLSI fabrication technology advances, t he speed of 
( 

CPUs has grown phenomenally, while commercial memory chips still cannot run as fast 

as CP Us. For instance, the latest Intel 80860 can run at a speed of 40 MHz or 25 ns 

cycle time, while commercial DRAM chips have a typical access time of about 80 ns. 

Another factor is that as computers grow more powerful , more information goes through 

the channel between the CPU and the system memory, so the channel becomes a bottle

neck. The human brain, on the other hand , distributes processing among many simple 

processors (neurons) , which process information in situ. Collectively, these processors 

perform complicated functions, such as reasoning, mobile control, recognition, etc. 
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Figure 1.3: A model of associative memories 

In Figure 1.3, we delineate a simple model for associath·e memories. Suppose a 

set of M key-response pairs {( u (k), z(k)) } has been stored in the associative memory. 

The function of the associative memory is : Given an input pattern x , find the nearest 

key u (j) in some metric (similarity measure) and put out the corresponding response 

z {i). There are, however, many possible metrics. The one most often used is Euclidean 

distance if input patterns have real components and Hamming distance if input patterns 

have binary components . 

There are basically two different types of associative memories : autoassociative 

memory and heteroassociative memory. The former refers to those associative memories 

with identical key patterns and response patterns, i.e., u (k) = z(k), k = 1, 2, . .. , M, and 

the latter otherwise. The dashed feedback path is desirable in autoassociative memory 

system. With that path, the system need not generate a perfect recall at once. Instead, 

it can first produce a partially correct response, feed it back to the input end as the key 

to the system again, and im prove the response gradually through iteration to obtain a 

complete recall. 
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In this dissertation, only autoassocia.tive memories will be explored. The reason for 

this decision is twofold : 1) Any heteroassociative memory can be built by cascading a 

look-up table to an appropriate autoassocia.tive memory and 2) a.utoassociative memories 

are mostly systems with feedback loops and thus often exhibit more interesting behaviors. 

1.5 Neural Network Implementation of Associative 

Memories 

Since associative recall is a vital aspect of human brain functions, it is no surprise that 

neural network research has played a. major role in the study of associative memory. 

Earlier neural network associative memory models can be found in various references 

[3, 32]. Although many potential applications have been suggested and researched, these 

models have neither drawn much attention nor made any major breakthrough. By the 

time when digital computer technology started to take off, most attention was focused 

on the "addressing" memory systems compatible with digital computers, e. g., RAMs, 

ROMs. 

It was not until 1982, when Hopfield [24] debuted his associative memory model, 

which is based on the sum-of-outer-product construction rule and the energy-minimizing 

principle, that neural network associative memories began to attract attention again. 

Since then, many researchers have tried, with a certain degree of success, to improve 

the Hopfield model with a view to overcoming the limited storage capacity problem. In 

the remainder of this section, a review of important neural network associative memory 

models will be presented. Before we proceed, let us define some terms : Let N be the 

number of components in the patterns, M be the number of memory patterns stored in 

the autoassociative memory, and u (l), u <2>, · ·. , u (M) be those memory patterns. 
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Figure 1.4: A fully-connected neural network 

1.5.1 Fully-Connected Neural Network Models 

This type of associative memories have N neurons, each of which is connected to the 

other N - 1 neurons and possibly to itself through connection weights. The system's 

evolution can be expressed in a discrete-time or a continuous-time formulation. For the 

discrete-time formulation, the neurons can be either hard-limiter neurons or sigmoidal 

neurons. Furthermore, there are two possible operation modes for the discrete-time 

formulation : synchronous and asynchronous; the former case is when all N neurons 

update themselves at the same time, and the latter is when one and only one neuron 

updates itself in every iteration. Figure 1.4 illustrates the architecture of this type of 

neural network associative memories. Most models differ from the others only in how 

the connection weight matrix and thresholds are determined. 
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• Hopfield Model 

This is by far the most popular model, for it can serve as an associative memory 

[24, 25] as well as a quadratic optimization problem solver [26]. The connection 

matrix T is constructed by the sum-of-outer-product method and 

T := { I: u (k) u (k)' } - MI, 
k=l 

(1.8) 

where I is the identity matrix. The system uses the discrete-time formulation, 

hard-limiter neurons, and asynchronous updating. The evolution equation is 

x' = sgn{Tx}, (1.9) 

where x', x are the next and the current state pattern of the system . 

A major handicap of the Hopfield model is its limited capacity. It has been re

ported that only 0.15N patterns can be stored in the Hopfield memory with N 

neurons for N between 30 and 100 [24). McEliece et al. [43] also proved that as 

N approaches infinity, the capacity of the Hopfield model grows no faster than 

Nj21ogN . Other drawbacks include: 1) N 2 connection weights are needed, and 

2) the model converges to a stable state only in the asynchronous updating mode. 

• Correlation-Matrix Associative Memory 

Many researchers, through a couple of decades, have proposed a type of memory 

called correlation-matrix memory or nonholographic memory [4, 5, 34, 46, 69). 

At first , they are intended to be used as linear associators; namely, the neurons 

are linear neurons without any nonlinearity. Most suggested models focused on 

heteroassociative memories; however , Kohonen showed that it can be also used as 

an autoassociative memory. T he correlation-matrix associative memory constructs 

its connection matrix by the sum-of-outer-product rule except that, unlike the 

Hopfield model, the diagonal is not zeroed. Gindi et al. (18] and Stiles and Denq 

[63] have independently tried this connection matrix on a fully-connected network 
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with haxd-limiter neurons. Both groups found that the storage capacity of this 

associative memory is approximately 0.15N, which is about the same as that of 

the original Hopfield model. In addition, it can be shown that this associative 

memory converges in both synchronous and asynchronous updating modes (see 

Chapter four for detail). 

• Pseudoinverse Associative Memory and the Spectral Meth od 

Pseudoinverses of matrices are also called generalized inverses and they possess 

many properties that true matrix inverses do [32, 33). However, they are more 

general because a matrix can be nonsquaxe and it still have a pseudoinverse, while 

a matrix must be square in order to have a true inverse. The connection weight 

matrix for the pseudoinverse associative memory [32, 48) is defined as 

T = u (utu)-1 
U 1, (1.10) 

where the kth column of U is the kth memory pattern u(k). 

Venkatesh [65) generalized the pseudoinverse method and proposed a spectral 

method, in which the "strength" of any memory pattern can be controlled by 

adjusting the magnitude of the corresponding eigenvalue. Suppose that the M 

memory patterns are to have strengths of A1 , A2, · · · , AM, respectively; then the 

connection matrix is 

(1.11) 

where A is a diagonal matrix with entries A1, A2 , ···,AM in the diagonal. It was 

also shown by simulation that the spectral method is better than the Hopfield 

model in terms of the storage capacity and the ability to perform perfect recall. 

Poggio [51] proposed a general nonlineax associative recall method, whose first 

order approximation is the pseudoinverse method. However , the procedure is very 

complicated and we will evade further discussion. 
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• Associative Memory Trained by the Backpropagation 

Kam et al. [30) offered another approach to building the connection matrix for a 

fully-connected neural network. He proposed that the backpropagation learning 

rule be used to generate the connection weights. In this scheme not only the 

associative recall function can be performed but also regions of attraction of the 

memory patterns can be controlled. He also claimed that this model has larger 

attraction regions as well as a smaller number of spurious states than the Hopfield 

model. 

1.5.2 Correlation Associative Memories 

By its definition , associative memory should produce, as its output, the nearest memory 

pattern to the input pattern. The similarity measure used is often some distance : 

Hamming distance for binary patterns and Euclidean distance for real patterns. In 

the case of binary memory patterns and the case of real memory patterns with equal 
\ 

distances to the origin, the previous two distance measures can both be replaced by the 

ordinary correlation. The following binary associative memories all take advantage of 

this fact and perform au toassociative recall by 1) calculating the correlations between 

the input binary pattern and all M binary memory patterns; 2) applying certain function 

to those correlations; 3) using the previous quantities as weights to compute a weighted 

sum of all M memory patterns; 4) thresholding the result component by component; 

5) feeding the output back to the input side; and 6) repeating this procedure until the 

system reachs a stable state, which is the final recalled pattern. The evolution equation 

of the correlation associative memories based on the ordinary correlation is 

(1.12) 

where < , > is the ordinary correlation (inner product) of two patterns. Next we will 

discuss existing correlation associative memories based on the ordinary correlation one 

by one. 
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• Correlation-Matrix Associative Memory 

This aforementioned memory can be formulated as an instance of the correlation 

associative memories based on the ordinary correlation with the function f(t) = t. 

• High-Order Correlation Associative Memory 

A few groups of researchers independently suggested the use of high-order corre

lation matrices in the implementation of associative memories [17, 38, 53, 61, 62]. 

In this type of memory the nonlinear function has the form of some power of the 

ordinary correlation 

(1.13) 

where q is usually an integer and q > 1. The storage capacity of this type of 

associative memories has been shown to be proportional to Nq asymptotically 

[62], which is much larger than that of the Hopfield model. 

• Potential Function Correlation Associative Memory 

Sayeh and Han [57] and Dembo and Zeitouni [12, 13] independently proposed this 

model, which is based on the distance measure rather than on the correlation. The 

original model is for a continuous-time system and patterns with real components, 

yet it is easily transformed into a discrete-time formulation for binary patterns. 

The evolution equation is Equation (1.12) with 

1 
f(t) := (N- t)L ' (1.14) 

where L is an integer and L > 3. Note that N- < u (k), x > is proportional to the 

Hamming distance between u (k) and x. The storage capacity of this model has 

been demonstrated to be limited only by the information theory sphere-packing 

bound. The major disadvantage of this model is that hardware implementation of 

the nonlinear potential function is very complicated. 
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• Exponential Correla t ion Associa tive Memory (EC AM) 

We introduced a new correlation associative memory that uses the exponentiation 

function in Equation (1.12) and 

(1.15) 

where a > 1 (10]. The capacity of ECAM has been proved to be proportional to 

~, where the constant c depends on the required error probability and percentage 

error in input patterns (see Chapter four for detail). ECAM was designed with a 

view to implementing it by VLSI. It turns out that ECAM is most amenable to 

VLSI implementation because MOS transistors exhibit an exponential relationship 

between the drain current and the gate-to-source voltage when working in the 

subthreshold region. 

All the aforementioned correlation associative memories can be shown to converge 

to a stable state in both synchronous and asynchronous updating modes (see Chapter 

four) . Since the latter three models all seem to have larger storage capacity than needed 

in most real-life applications, an important factor in favoring one over the other is the ease 

of electronic or optical realization. For instance, the high-order associative memory with 

q = 2 is easily realized by optical components, while ECAM can be readily implemented 

using VLSI technology. 

1.5.3 Coded A ssociative Memory 

This type of associative memories all have the following features : 1) input patterns are 

transformed to vectors in a code space, and 2) for each memory pattern u (k), there is a 

corresponding codeword y(k) , k = 1, 2, . .. , M. 
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• Hamming Network 

The code used in this associative memory is the unary code (grandmother cell code) 

[6, 39]. In this code, codewords are M bits wide, and the kth codeword has all "0" 

bits except at the kth position, which has a "1." At first, the system calculates the 

matching scores (correlations) of the input pattern with all M memory patterns 

using M hidden units. It then passes those scores to a winner-take-all circuit to 

determine the maximum, and forms the right codeword, which is then used to 

retrieve the nearest memory pattern. In principle, if the winner-take-all circuit 

can operate perfectly, this system can find the nearest memory pattern in one 

operation. Nevertheless, winner-take-all circuits usually have some defects and are 

not able to pick the maximum value precisely. 

• Distributed Coded Associative Memory 

This associative memory was introduced in order to reduce the number of hid

den units required in Hamming network. Baum et al. [6] proposed an associative 

memory model with the following distributed code : Each codeword consists of S 

groups and the lth group has r1 bits, where r1's are assumed to be relative prime. 

For the kth codeword, the ph bit in the lth group will be "1" if and only if 

k = j mod rll 

and "0" otherwise. The mapping is done by a one-layer perceptron whose connec

tion matrix is constructed by the sum of outer products of the memory patterns 

and the codewords. A second layer is added to map noisy codewords back to the 

feature pattern space. Also, a feedback loop can be augmented to make the system 

a feedback associative memory. 

• Kanerva Memory 

Kanerva [31] introduced an associative memory model, which he claimed to be 

closely related to the human cerebellar model of Marr [42] and Albus [2]. His model 
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can be formulated as a two-layer perceptron [11]. The first connection matrix is 

made up of random +1 or -1 entries. M random codewords can be found by 

feeding M corresponding memory patterns to the first layer. The second layer is 

another p erceptron whose connection weights are computed by the sum of outer 

products of the memory patterns and the random codewords. Again, this system 

can be made recurrent by making a connection between the output end and the 

input end. 

1.6 Discussions 

In the previous sections, we have given an overview of two important functions in in

formation processing systems, i. e., pattern classification and associative recall, together 

with their neural network implementation. In this section, we will discuss two interesting 

issues concerning pattern classifiers and associative memories. 

1.6.1 Relationship Between Pattern Classifiers and Associative 

Memories 

As mentioned previously, the simplest form of classification is when all conditional prob

ability distributions are multivariate Gaussian and when input features are uncorrelated. 

In this case, the general classification problem becomes the minimum distance classifi

cation problem. It can then be treated as a special case of heteroassociative memories, 

whose response patterns are unary codewords that encode the indices of output cat

egories. Consequently, one can build a minimum distance classifier by storing all M 

prototypes as memory patterns in an autoassociative memory and cascading the autoas

sociative memory with a proper content-addressable lookup table. 

On the other hand, an autoassociative memory can be constructed based on a 
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minimum distance classifier in the following way : M memory patterns are used as 

prototypes to design a minimum distance classifier. An input pattern can be fed to that 

classifier and the result is a unary codeword encoding the index of the correct class. 

That codeword is then used as an address for a lookup table, which stores all M memory 

patterns, to retrieve the nearest memory pattern. 

1.6.2 Winner-Take-All Circuits 

"Winner-take-all" networks are supposed to identify, among a set of an undetermined 

yet fixed number of neurons, the neuron with the maximum activation, and to enhance 

its output while at the same time suppressing those of all the others. The winner

take-ill function is a vital component in ma.ny neural network systems. Since they 

perform such an important function , many winner-take-a.ll circuits have been suggested. 

In the following, we will present some existing winner-take-a.ll circuits and discuss their 

disadvantages. 

One realization of the winner-take-all function is a binary tree made up of two

input comparators introduced in [19, 39]. T he drawbacks of this archi tecture include the 

following: 1) The number of neurons a.nd weights needed is large, and 2) signals have to 

travellog2 M levels of circuits a.nd might have degraded to such a degree that accurate 

operation is not possible. The other scheme suggested by Winters and Rose [70] utilizes 

a cellular automata, and it also suffers from the signal degradation problem. 

A fully-connected neural network with N neurons that performs the winner-take

all function has been proposed by many researchers [21, 39]. The main disadvantage of 

this t ype of implementation is the number of connection weights needed is the square 

of the number of categories in the system. Mjolsness and Garrett [44] a.nd Majani , 

et al. [41] both suggested variations of the aforementioned globally inhibitory network, 

and they require only O(M) hardware complexity, where M is the number of classes in 
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the system . These models, though more efficient in terms of hardware complexity, are 

still continuous-time feedback networks and thus take an indefinite amount of time to 

converge. 

An MOS VLSI implementation of the winner-take-all function was introduced by 

Lazzaro and his colleagues [36]. This circuit is essentially a generalization of two-input 

differential amplifiers and requires only O(M) complexity. However, it demands that 

the maximum input be larger than all the other inputs by a significant amount, which 

is often not true in real applications. 
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Chapter 2 

A Two-Layer Feed-Forward Network 

Classifier Based on Coding Theory 

2.1 Introduction 

In this chapter, we are specifically concerned with binary pattern classification 

problems. As mentioned in Chapter one, if the conditional probability distributions of all 

classes are assumed to be multivariate Gaussian and if all N features in input patterns are 

uncorrelated , then the optimal Bayes decision rule becomes finding the prototype with 

minimum Euclidean distance to the input pattern. Moreover, if input features are binary

valued, the minimum Euclidean distance classification problem becomes the minimum 

Hamming distance classification problem. In this chapter we propose a new neural 

network classifier for solving the minimum Hamming distance classification problem, 

based on the established technique of error control coding. Consider a typical minimum 

Hamming distance classification problem (see Figure 2.l(a)). In this problem, one is 

given a priori a set of classes, C(k), k = 1, 2, . . . , M, together with their corresponding 

prototypes, i. e., patterns that are most representative of their classes. The output of 

the classifier under consideration is the index of the class whose prototype is nearest 

the input in Hamming distance. Therefore, the N -dimensional binary feature space 
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Figure 2.1: (a) The minimum Hamming distance classification problem vs. (b) the error 
correction decoding problem 
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BN = {1,-1}N is partitioned into M decision regions, one for each class. All patterns 

inside each region are to be categorized to the corresponding class by the classifier. 

A similar problem is that of decoding noisy codewords by an error control code 

decoder as shown in Figure 2.1(b ). In this case codewords are constructed by design 

and are usually at least dmin bits apart. The received corrupted codeword is the input 

to the decoder, which finds the nearest codeword to the input in Hamming distance. 

In principle, if the Hamming distances between all pairs of codewords are greater than 

2b + 1, it is possible to decode (classify) a noisy codeword (binary pattern) and then 

find the correct codeword (prototype) provided that the Hamming distance between the 

noisy codeword and the nearest codeword is no more than b. However, in the minimum 

Hamming distance classification problem, there is no guarantee that the prototypes are 

uniformly distributed in B N; consequently, the attraction radius (the maximum number 

of errors that can occur in any given input pattern such that it can still be correctly 

classified) depends on the minimum Hamming distance among all prototypes. 

Many solutions to the minimum Hamming distance classification problem have been 

suggested. The one commonly used is the Hamming network, which is similar to the 

matched filter construction in statistical communication theory. Lippmann [12] proposed 

a two-stage Hamming network that solves the minimum distance classification problem 

by first correlating the input pattern with all prototypes , and obtaining the class index of 

the nearest prototype by picking the maximum correlation. Lippmann suggested using 

a "winner-take-all" circuit to pick the maximum. In Figure 2.2, XJ, x2, · · · , XN are N 

binary input features, and Yl! Y2, · · ·, YM are the correlations (similarity measures) of x 

with M prototypes. The second block picks the maximum of y1 , Y2 , · · ·, YM and produces 

the index of the class with maximum similarity measure. The main disadvantage of such 

a classifier is the constraints on the winner-take-all circuit (for detail, see Section 1.6.2). 

Recently, Lazzaro et al. [11] and Majani et a/. [13] proposed new architectures for the 

winner-take-all function. However, both architectures have some drawbacks : Lazzaro's 

architecture requires that the maximum input value be much larger than the others, 
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Figure 2.2: A matched filter type classifier 

which is often not true. MajanPs circuit uses a continuous-time Hopfield memory, which 

might take a long time to converge. 

A second solution is to use feed-forward networks with hidden units and to apply 

the backpropagation rule (generalized delta rule) [16] . However, it has been reported 

that applying the backpropagation rule to training sets on networks with hidden units 

is usually a slow process. What's worse, in minimum Hamming distance classification 

problems, training sets are so huge that the time it takes to train is usually unbearably 

long. 

Another alternative to solving the minimum Hamming distance classification prob

lem is to build a classifier based on the Hopfield memory [6, 7]. This design consists 

of a fully-connected feedback network and a correlation-calculating connection matrix 
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Figure 2.3: A classifier based on the Hopfield memory 

followed by M hard-limiter neurons with thresholds all set at N - 1/2 (see Figure 2.3). 

At first the Hopfield memory is programmed with M prototypes as memory patterns. 

The input pattern is fed to the Hopfield memory, and the Hopfield memory is allowed to 

run until it becomes stable. Then the output of the Hopfield memory is checked against 

all M prototypes u (k), k = 1, 2, . . . , M by the second stage. The output neuron whose 

prototype is identical to the response of the Hopfield memory will be activated ( +1). If 

the response of the Hopfield memory is not any of the M prototypes, all output neurons 

will be off ( -1 ), which signifies rejection of the input pattern. 

It has been reported that the number of memory patterns that can be stored in 

an N-neuron Hopfield memory is about 0.15N for N between 30 and 100 [6]. McEliece 

et al. showed that in synchronous updating mode, the Hopfield memory stores about 

N f2logN memory patterns reliably when N approaches infinity [14] . Abu-Mostafa and 
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Figure 2.4: Structure of the proposed classifier 

St. Jacques [1] predicted that the upper bound for the number of memory patterns that 

can be stored in an N -neuron fully-connected feedback network is N . We believe that it 

is possible to design a new classifier with M - the number of stored prototypes, linear 

inN for large N. 

Our main idea is to map patterns in the feature space to vectors in some code space 

so that each prototype corresponds to a codeword in that code. The code should prefer

ably (but not necessarily) have the property that codewords are uniformly distributed in 

the code space; namely, the Hamming distances between all pairs of codewords are the 

same. With this mapping, we turn a minimum Hamming distance classification problem 

into a decoding problem. We then do error correction decoding on the vector in the code 

space to obtain the index of the nearest codeword and thus classify the original input 

pattern, as shown in Figure 2.4. 

This chapter develops the construction of such a classifier as follows. At first we 

consider the problem of mapping input patterns from the feature space to the code 

space. Two perceptrons [15] working as heteroassodative memories are introduced for 
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doing this mapping. The first perceptron constructs its connection weight matrix by 

summing outer products of the prototypes and the codewords. The second perceptron 

generates its connection weight matrix by the pseudoinverse technique [9] . Given that 

we have transformed the problem of minimum Hamming distance classification into the 

problem of decoding a. noisy codeword, we consider suitable codes for the new classifier. 

The codewords in this code should be orthogonal or pseudo-orthogonal; namely, the ratio 

of the cross-correlation to the autocorrelation of the codewords is zero or very small. Two 

classes of good codes suitable for this particular decoding problem a.re the Ha.da.ma.rd 

matrix codes and the maximal-length sequence codes [2]. Next the complete decoding 

algorithm is formulated, and it is shown how the new classifier can be implemented by 

a two-layer neural network. The first layer performs the mapping on the input pattern, 

and the second one decodes t he corresponding vector in the code space and produces 

the index of the class to which the input belongs. Finally, we work a small example by 

hand to give a feel of the classification process. 

The second part of this chapter deals with the performance of the new classifier. 

We first analyze the performance of the new classifier by finding the relation between the 

maximum number of classes that can be stored and the m.isclassification rate. We show 

(when using a mapping based on the sum-of-outer-product method) that for a negligible 

m.isclassification rate and large N, a not very tight lower bound on M is 0.22N. Then 

comprehensive simulation results, which confirm and exceed our theoretical predictions 

when N is moderately large, are presented. The simulation results compare the new 

classifier with the Hopfield-memory-based classifier for both the sum-of-outer-product 

method and the pseudoinverse method, and for both analog and clipped connection 

matrices. The misclassification rate of all classifiers is set at 0.2%; in other words, if 

we average over many different sets of randomly chosen prototypes, the classifiers must 

classify correctly more than 99.8% of t he time when presented with random inputs of a 

given error rate. In all cases the new classifier outperforms the Hopfield-memory-based 

classifier in terms of the number of prototypes that can be reliably stored. For example, 

consider the case of N = 127, a clipped connection matrix, and an attraction radius 



-45-

of zero (no error in input patterns); the Hopfield-memory-based classifier has a storage 

capacity of approximately 7, while the new classifier can store 83 prototypes. 

2.2 Transform Techniques 

Our objective is to build a classifier that discriminates among binary input patterns and 

classify them to the appropriate classes. Suppose u(k) E BN is the prototype of the 

corresponding class C(k), k = 1, 2, . .. , M . Given the binary input pattern x, we want 

the classifier to identify the class whose prototype is closest to x in Hamming distance; 

i. e., we want to calculate the classification function W, W : BN - {1, 2, ... , M} and 

w(x) = I iff dHanu:ning( u(/) , x) < dHamrning( u(k), x), 

k = 1,2, ... ,M, k f; l. (2.1) 

We approach the problem by seeking a transform T that maps each prototype u(k) 

in BN to a corresponding codeword v Ck) in B L. An input pattern x = u (k) + e is mapped 

to a noisy codeword y = vCk) + e', where e is the error added to the prototype, and e' is 

the corresponding error pattern in the code space. We then do error correction decoding 

on y to get the index of the nearest codeword. Note that e' may not have the same 

Hamming weight as e since the mapping T may either generate or eliminate errors. 

We require T to satisfy the following equation , 

k=1,2, ... ,M. (2.2) 

Two schemes for constructing T are proposed. Both of them are a one-layer neural 

network working as a heteroassociative memory. Essentially, we construct a connection 

weight matrix according to u(k) 's and v(k) 's, call it T, and then define T as 

T = sgnoT, 
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where sgn is the vector threshold operator that maps a vector in RL to BL, and R is 

the field of real numbers. 

Let U be an N x M matrix whose kth column is u(k) and V be an L x M matrix 

whose kth column is y(k). The two methods of constructing the matrix T are as follows: 

• Sum-of-Outer-Product Method [9, 10] : 

In this scheme the matrix T(a) is defined as the sum of outer products of all 

prototypes and codewords; i. e., 

M 

-E 
k=l 

or equivalently, 

(2.3) 

• Pseudoinverse Method [9] : 

We want to find a matrix T(.B) satisfying the following equation, 

In general, U is not a square matrix, so u-1 may not exist. To circumvent this 

difficulty, we can find the pseudoinverse (denoted as ut) of the matrix U instead. 

Let 

(2.4) 

then T(.B) is defined as 

(2 .5) 
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2.3 Codes 

The codes we are looking for should preferably have the property that its codewords 

are distributed uniformly in B L; in other words, the distance between each pair of 

codewords should be the same and as large as possible. Two such families of codes are 

the Hadamard matrix codes and the maximal-length sequence codes. First, let us define 

the word pseudo-orthogonal. 

Definition : Let v(k) = ( v~k), v~k), · · ·, vl,k)) E B L be the kth codeword of a code, 

where k = 1, 2, ... , M. This code is said to be pseudo-orthogonal if and only if 

< v(k) , v<l) > 
i=l 

{ ~ 
• Hadamard Matrix Codes : 

k=l 

k i: l 
k,l = 1,2, .. . ,M. 

These are orthogonal codes of length L with L rows of an L x L Hadamard matrix 

as codewords. For these codes, f = 0 and the distance between any two codewords 

is L/2. It is conjectured that there exist such codes for all L that are multiples of 

four, thus providing a large family of codes [2]. 

• Maximal-Length Sequence Codes : 

There exists a family of maximal-length sequences (also called pseudo-random or 

PN sequences), generated by shift registers and a modulo-2 adder [5]. Suppose 

that <f>(z) is a primitive polynomial of degree d over GF(2) and let L = 2d - 1; 

then if 

1 

</>(z) 

00 

L Ci z', 
i=O 

co, c1 , ...... is a periodic sequence of period L (since </>( z) I zL - 1). 
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The code whose L codewords are L cyclic-shifted versions of 

v = (1- 2co,1- 2c1.··· ,1- 2cL-1) 

satisfies pseudo-orthogonality with f = -1. It is also apparent that the minimum 

distance of this code is (L -1)12, which gives a correcting power of approximately 

L I 4 errors for large L. 

2.4 Overall Classifier Structure 

Now let us describe the overall classifier structure. Essentially, it consists of the mapping 

T followed by a error correction decoder for the Hadamard matrix code or the maximal

length sequence code. Since we would like to implement the decoder by a perceptron, 

it is most desirable to use threshold decoding , i. e., decoding algorithms that work by 

performing bitwise modulo-2 additions , counting ones, and thresholding counts. The 

decoder we propose operates by first correlating the transformed pattern in the code 

space with all codewords and then thresholding the results at (L + £)12, respectively. 

The rationale of this algorithm is as follows: Since the distance between every two 

codewords in this code is exactly (L - £)12 bits, the decoder should be able to correct 

any error pattern with no more than l( L - f) I 4 J errors if the threshold is set halfway 

between Land f (i . e., (L + £)12), where l J is the integer floor function. 

Suppose the input to the decoder is y = y(l) + e and e is of Hamming weight h; 

i.e. , e has h nonzero components, we then have 

L- 2h 

k = 1,2, ... ,M, k :j:.l . 

From the above equation, one sees that if h is no more than l( L- f) I 4 J , then < v(l), y > 

will be no less than (L + £)12 and for all k = 1, 2, ... , M, k :f. l , < v(k), y > will be 
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less than (L + £)/2. As a result of this observation, we arrive at the following decoding 

algorithm, 

where j 

V(y) = sgn ( yt y - L ; f j) , 
(11 · · · 1)t is an M x 1 vector. 

(2.6) 

In the case when £ = -1 and less than l (L + 1)/4 J errors in the decoder input, 

the output pattern will have only one positive component ( + 1), the index of which is 

the index of the class that the input pattern is classified to. However, if there are more 

than l ( L + 1) f 4 J errors, the output may be either the all-negative ( -1) pattern (decoder 

failure) or another pattern with one positive ( +1) component (decoder error). 

The classification function ca.n now be defined as the composition ofT a.nd V, 

llf =: VoT. (2.7) 

The overall structure of the new classifier is depicted in Figure 2.5. It can be viewed 

a.s a. two-layer feed-forward neural network (perceptron) with L hidden neurons and M 

output neurons. Also note that all neurons are hard-limiter neurons. The first layer maps 

the input pattern to a noisy codeword in the code space (the "internal representation") 

and the second layer decodes the first's output and produces the index of the class to 

which the input belongs. 

2.5 An Example Using the Hadamard Matrix Code 

We now give an example of the classification procedure of the new classifier. Suppose 

N = L = 4 and M = 3; let u(l) = (1 -1 -1 -1)t, u (2) = (1 -1 1 1)t and u <3> (1 

1 1 1)t; also choose the codewords as rows in a. 4 x 4 Hadamard matrix, so v<1> (1 

-1 1 -1)t, v(2) = (1 1 -1 -1)t and v(3) = (1 - 1 - 1 1)t a.nd £ = 0. We then 

calculate three outer product matrices as follows: 
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3 -1 

-1 -1 

1 

1 

1 

1 

-1 -1 -3 -3 

- 1 3 1 1 

If the input pattern is x = u (l) = (1 - 1 -1 -1)t, then 

T(x ) = y = sgn (T · x ) 

= sgn ((2 -2 6 -6Y) 

(1 - 1 1 -1)t 

and 

(: 
1 

- 1 1 
-1 l y t . y- ( ~) j -1 

= 1 -1 -1 
1 

- 1 -1 1 
-1 

= (2 -2 -2)1
• 

- (2 2 2)t 

And the class index can be found by thresholding the above pattern, 

(1 -1 -1)t. 

We then conclude that the input feature vector (1 -1 -1 -1)t should be classified to 

the first class. 
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2.6 Performance Analysis 

From the previous sections, we know that the new classifier will make an error only if the 

transformed vector in the code space has more than L (L- £)/4 J errors. Let us now find 

the error rate of the new classifier with the sum-of-outer-product construction scheme 

when the input is one of the prototypes, say x = u(l). Following the approach taken by 

McEliece et al. [14], we have 

sgn ( N v~l) + t t v}k) uy> up>) . 
] =1 k=l,k¥1 

Assume, without loss of generality, that vJ
1
l = - 1; then 

iff (2 .8) 

Note that we assumed all u (k)•s to be random; namely, that each component of any 

u (k) is the outcome of a Bernoulli trial. Accordingly, the left hand side of the inequality 

in Equation (2.8) is the sum of N(M- 1) independent, identically-distributed random 

variables with zero mean and unit variance. In the asymptotic case, when N and Mare 

both very large and if the ratio of N over M stays fixed, the central limit theorem [4) can 

be applied. The left hand side of the inequality in Equation (2.8) can be approximated 

by a Gaussian distribution with zero mean, variance N M. Therefore, we can find the 

probability of the event in Equation (2.8) as follows: 

p 

1 r>O e~ dt 
J2rrNM }N 

(2.9) 
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where 

Q(x) 
1 

=..[2; 
t~ 

e2 dt . 

Next we can find the misclassification rate of the new classifier (Pe) by summing 

the probabilities of all cases that have no less than l (L - !)/4 J errors. Assuming that 

! ~ L yields 

(2 .10) 

Because we are interested in the asymptotic behavior when L is large, the integer 

floor function can be dropped for clarity. Since in general it is not possible to express 

Equation (2.10) analytically, we use the Chernoff method to bound Pe from above. 

Multiplying each term in the sum by a number larger than unity (et(i-~), with t > 0) 

and summing from i = 0 instead of i = ~, we obtain 

v t > 0. (2.11) 

Let G(t) be the right hand side of Equation (2.11), then 

-Lt 
e-4- {1 -IJ + et p)L. (2.12) 

Since Equation (2.11) is true for all positive t, we can achieve a tighter bound for 

the misclassification rate by finding the smallest G(t). So set the derivative of G(t) with 

respect to t to zero and solve for the optimal t 0 , 

G'(to) = 0 

1-p 
3p . (2 .13) 
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The condition that to > 0 implies that p < 1/4, which is automatically satisfied since we 

are dealing with the case when pis small. Substituting the optimal t 0 in Equation (2.11) 

and Equation (2 .12) yields 

L L ( ~) c ~ p) 4 (1 _ p )L 

L 3L 
I L p4 (1- p)4, (2.14) 

4 
where 1 = 30.75 = 1.7547654. 

From Equation (2.9) and (2.14), we can determine the relation betw~n M, the 

number of classes that can be classified with negligible misclassifica.tion rate when the 

input is one of the prototypes, and the misclassification rate (Pe)· Suppose that Pe = 8 

and 8 is a. fixed small number; then 

and 

(2.15) 

For small t, we have Q-1(t) ~ j2log(1/t). As N, L, M approach infinity we have 

M > N [Q-I ( ,-• {1- p)-3 61;) r' 
N 

8log1 + 6log(1- p)- (8/L) log8 

N 

8log1 

0.22N. (2.16) 

From the above lower bound for M, one can e.asily see that this new classifier is 

able to store more than a constant times N prototypes and perform minimum Hamming 
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distance classification. Also, since ( N / M) stays bounded, the approximation leading to 

Equation (2.9) is valid. Although the above analysis is done when N, L, and M approach 

infinity, yet the simulation results in the next section shows that when N, L, and M are 

moderately large (e. g., 63), the above lower bound applies . 

For the case when the pseudoinverse method is used to construct t he connection 

matrix forT, we see no way of analyzing the performance in general, but conjecture that 

it will be better than the sum-of-outer-product case, especially when the prototypes are 

correlated. 

2. 7 Simulation Results and A Character Recognition 

Example 

We have simulated both the Hopfield-memory-based classifier and the proposed new 

classifier (using maximal-length sequence codes) for the cases L = N = 63 and L = N = 
127. Six different classifiers considered are : 

• a Hopfield-memory-based classifier 

• a new classifier whose connection matrix is generated by the sum-of-outer-product 

method. 

• a new classifier whose connection matrix is generated by the pseudoinverse method. 

• a Hopfield-memory-based classifier with clipped connection weights ( -1, 0, 1). 

• a new classifier whose connection matrix is generated by the sum-of-ou ter-product 

method and the components of the connection matrix are clipped ( -1, 0, +1). 

• a new classifier whose connection matrix is generated by the pseudoinverse method 

and the components of the connection matrix are clipped (-1, 0, +1). 
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For each case and each choice of N, the program fixes M and the number of errors 

in input patterns, then randomly generates 10 sets of M prototypes and computes the 

connection matrix for each classifier. For each classifier it randomly picks a prototype, 

and adds noise to the prototype by randomly complementing a specified number of bits 

to get a trial input pattern. In total, 100 trial input patterns are generated for each set of 

M prototypes. It then feeds the trial inputs to those six classifiers under consideration, 

checks to see whether the inputs are classified to their respective nearest classes, and 

reports the percentage of success for each classifier. The simulation results are shown in 

Figure 2.6 and 2.7. In all figures , the horizontal axis is the number of loaded prototypes 

(M) and the vertical axis is the attraction radius (r)- the largest number of bit errors 

allowed. The data are obtained by collecting only those cases where the success rate 

is more than 99.8%. Here we use the attraction radius of -1 to indicate that for this 

particular M , with input patterns being prototypes, the success rate is less than 99.8%. 

In all cases, our classifier exceeds the performance of the Hopfield-memory-based 

classifier in terms of storage capacity. For example, consider the case of N = L = 63 and 

clipped connection weights; we find that for an attraction radius of zero, that is, no error 

in the input vector, the Hopfield-memory-based classifier has a classification capacity of 

approximately 5, while our new model can store 37. In the case of N = L = 127, clipped 

weights, and zero attraction radius, we have 7 versus 83. 

We also notice that the conjectured superiority of the pseudoinverse method over 

the sum-of-outer-product method is not obvious. The reason for this is that the pseu

doinverse method is best for decorrelating the dependency among prototypes, yet the 

prototypes in this experiment are generated randomly and are presumably independent. 

Consequently, the advantage of the pseudoinverse method is not obvious from the sim

ulation results. For problems with correlated prototypes, we expect the pseudoinverse 

method to do much better (see next example). 
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35 39 43 47 51 55 59 63 

Figure 2.6: Comparison of performance of the Hopfield-memory-based classifier and the 
new classifier for N = 63 and (a) original connection weights (b) clipped connection 
weights. HM is the Hopfield-memory-based classifier, OP is the sum-of-outer-product 
scheme, and PI is the pseudoinverse scheme. 
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Figure 2.7: Comparison of performance of the Hopfield-memory-based classifier and the 
new classifier for N = 127 and (a) original connection weights (b) clipped connection 
weights. HM is the Hopfield-memory-based classifier, OP is the sum-of-outer-product 
scheme, and PI is the pseudoinverse scheme. 
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Another simulation using N = 127 and successively shorter codes (L = 127, L = 63, 

and L = 31) reveals that by shortening the code used, the performance of the new 

classifier degrades only slightly as long as the number of prototypes is less than the code 

length (see Figure 2.8). Therefore, we think that it is possible to use traditional error 

correcting codes (e. g., the BCH code) as "internal representation" code. Actually, there 

have been attempts to use some codes (random or deterministic) with a higher rate 

than the Hadamard matrix codes and the maximal-length sequence codes as the internal 

representation code [3, 17, 8]. However, by going to a higher-rate code, one is trading 

complexity (number of hidden units) for minimum distance, and will possibly get poorer 

performance. 

Next we present an example of applying the new classifier to recognizing characters. 

Each character is represented by a 9 x 7 binary pixel array. Noisy inputs are generated by 

flipping each pixel with 0.1 and 0.2 probability. An input pattern is fed to five classifiers: 

a Hopfield-memory-based classifier, the new classifiers using the pseudoinverse method 

and the sum-of-outer-product method with L = 7 and L = 31. 

Figures 2.9 and 2.10 show the results of all 5 classifiers for 0.1 and 0.2 pixel flipping 

probability, respectively. A blank output means that the classifier refuses to make a 

decision (rejection). At first, note that the L = 7 case is not necessarily worse than the 

L = 31 case. This confirms the earlier conjecture that the performance of networks with 

fewer hidden units (shorter codes) is only slightly poorer if the number of prototypes is 

less than the code length. Also, one easily sees that the pseudoinverse method is better 

than the sum-of-outer-product method because of the correlation among prototypes. 

All four new classifiers outperform the Hopfield-memory-based classifier since the latter 

mixes prototypes that are to be remembered and produces a blend of prototypes rather 

than the prototypes themselves; accordingly, it cannot classify input patterns without 

mistakes. 
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Figure 2.8: Effects of using codes of different lengths, N = 127 a.nd (a.) original connection 
weights (b) clipped connection weights. OP is the sum-of-outer-product scheme a.nd PI 
is the pseudoinverse scheme. The number is the code length; i.e. , L = 31, 63, a.nd 127. 



.,.,.,.,.,., 
...... .. .. .. 
..... .. 
............. 

.,..,..,..,..,., 
...... .. .. .. 
.... .. 

........... ., 

...... .., .... 
.... .. .. .. .. 
...... 

.. ... ... .. ., ., 

........ ....... 
.. 

.. 
.. 

.. 
.. 

.. 
:; 

: 
:: 

.,.,.,., .. .,.., ... 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
:: 

.. 
.. 

.. 
.. .. ., .... ., .... ., 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

... 
.. 

... ... .., ... ., ., .., 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. .. ... ... ., ., ... 

.. 
.. 

.. 
.. 

.. 
.. 

... 
.. 

... 
.. 

., ........ ., .. 

.... ., .... ., ... 
.. 

.. 
.. 

.. .... 
~
 

.... 
.... .. 

.. .. 
.. 

.. ... 
.. 

.. .. 
.. 

.. .. 
.. 

.. 
... .. 

.. 
.. .. 

.. 
.. .. 

.. 
.. 

.. 
.. 

.. 
::.,..,..,:;.,..,..,:: .. 

... 
.. 

.................... 
......... ., .... .,., ... 

.................. 

.. .. ., .... ., ., 
.. 

.. 
.. 

....... 
8 

.... 
.. .. .. 

.. .. 
.. 

.. 
.... 

.. 
.. 

:; 
:: 

:: .. 
.. 

.. 
.. 

.. 
:; 

:: 
.. 

.. 
.. 

.. 
::., ..... :: ....... :: 

.. 
.. 

................ ., .. 
.,.,., ............ 

.. ............... 

... 
.. 

.. 
.. .... 

.. 
.. 

.. 
.. 

.. .. 
--

.. 
.. 

.. 
: 

:: 
.. 

.. .. 
(1) 

:: 
:: 

:: 
.. 

.. 
.. 

.. 
.. 

.. 
.._

 
.,.,.,.,.,.,.,.., .. 

..,.,.,.,., .......... 
... .. .,., ... .,., 

.. :·=
 ................... ., .... .,.. 

.... 
:: 

:: .. 
.... 

::::· 
~
 

~
 

.. 
.. 

., 
.. 

.. 
.., 

.. 
... 

.. 
.. .. 

.. 
... 

.. .. 
~
 

~
 

..,., 
:: 

:: 
: 

: 
:: 

:: 
:: 

:: 
:: 

:: 
:: 

:: 
:: 
~
 

I 
.... 

., 
........ .., ...... ., 

.... .,.......... 
................... 

.................... 
... ............. .. 

............. 

.. .. ..,::·::·· .. 
.. .. .. 

.... .. 
............ 

.. .. .. ., .... 
.... .. .. .. .. 
.... .. 

... ., ., .... ., 

... .. ., ........ 
.... .. .. .. .... 
.,., .... 

., ., .. ., .. ., .. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
....... .,.., .......... 

...... .. ..... 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
... 

.. 
......................... 

&
IC

IU
c

&
IC

IU
C

IU
.,., 

.. 
.. 

.. 
.. 

... 
.. .. 

... 
.... 

.. 
... 

.. 
.. 

........... ., .. .. :: 
.. .. .. 

.. 
.. 

................... 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.,.,.,.,.,1
&

1
., 

... 
.. 

.. 
.. .... 

.. 
.... 

.. 
... 

.. 
.. 

.. .. 
.. ., ............ ., 

.. .. 
... .. .. .. 

.. 
.. 

....................... 

.
.
.
.
.
.
.
.
.
.
.
.
 f&

l ... 
.. .. 

.... 
.. 

.. 
.. 

... 
.. 

.. 
.,., .................. 

................... 
.. ... .. .. 

.. 
.. 

.. 
.. 

.. .. 
.. 

., ...... ., 
......... ., 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

:: ...... :: ...... :: 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

... 
.. 

.. 
............ ., ............ 

.. 
.. 

.. 
... .. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.,.,.,.,.,.,.,., .. 

.. .. 
.. 

.. 
.. 

.. .. 
.. 

.. 
.. 

.. 
.. 

:: 
:: 

:: 
.................. .. .......... ., .... 

.. 
.. .... 

.. 
.. 

.. .. 
.. 

.. 
.. 

.. .. 
.. 

.. 
.. 

.. 
.. 

.. 
.. 

.. 
.,.,.,.,., ... .,., ... 

.,.,.,.,.,.,., 

...... 
.. 

.. .. 
... 

.. .. .. 
.. .. 

.. 
.. .. 

... 
.. 

.. 
... 

.. 
.. 

...... 
.. 

...... 
., ......... .. .. ., ............ 

.. 

-- u .._ --e -- Cd .._ 

d 
"'0 

!'
.::::< 

Q
) 

I 
>
.
~

I 
~..c;>-.:l 
·-

>
. "'0

 
..0

 
1-4 

~
 

~
 

0 
... 

..0
 s '" 

0 
Q

) 
~
 

8. s "~-< 
I 

...., 

bO
 "'0

 
~
 

~
 
~
 s 

·ate 
~ 

o
..o

..o
 

ca Jl -~ 
~
 

Q
) 
~ 

~
 

..c:i 
~
 

.:...l 
...., 

0 
0.. ........._ 

u 
u 

~
 

0 ...... ...._, ...., 
~
 

u 

-~ 1-4 

~
 

s ~
 

0 
·.::; 
u Q

) 
~
 

d 0 u ~ 1-4 

~ d 
·a '"0 

~ en 
0.. 

...., 
::::l 

..c:~="'C..c:i 
-~
 fr e .-=: 

~ g ~
 ~ 

~
 

...., 
li> 

li> 
o..U

_..,u::: 
d
Q
)
=
·
~
 

._ 
'"' 

0 
en 

~ 
8 

<.,!.. 
~ 

>< 
u 

0 
....... 

Q
) 

1 
U

 

d :::0 s 
~ 

o
.._

..=
 

Q
),.... 

·.;:;~
en 

c=M
 

·a ~ ~
 ~
 

11 
~
 g. "[i 

...., >-.:l 
u 

·-
....-....~ 

~ 
Q

) 
li> :::., =

 
.. ..c:~t+= 

~..0 
cv 
~

·en .....-. 
. 

~
 .~ 

~ 
M

 
C

' 
:;l ........._ (J

 
II 

.._.. 

~ ~
 ~ 

>-.:l ~ 
.z

:
l
=

Q
)
_

..,Q
)
 

Q)s~_g~ 
~~..c:i,....::,rn 
rO

_
..,"

'C
........_

 
u

........_
.._

,b
O

 
0 

0 
"'0

 
.._

, 
0
"
?
~
.
.
_
,
~
 

~ 
<:"1 =

 ~ 
!'-

~ o..~ S
 II 

=
 .s ...... 

('j >-.:l 
bO

 
rn 

en 
~
 ~
 
~ 

,......._ "d
 

...., 
(J

 ~
@
 



"1£ = 7 lUq '(J) SE am'ES (:a) 'L = 7 pu'E 
XPl'EUI uoq:>auuo:> asJaAU!opnasd ql!tt\ Jay!sS'Ep A\au a1.p (J) '1£ = 7lnq '(p) SE am'l?s (a) 
"L = 7 pu-e xpl'EID uo!pauuo:> pnpoJd-Jalno-;o-ums ljl!.M JaY:!SSE[:> .Mau aql (p) 'JaY:!SS'ep 
pas-Eq-i\muram-pyay:doH aq1 (:>) 'lndlno pauo:> (q) 'lndu! atp S! (1?) umnyo:) ·lndu! a1.p 
U! ,\l!1!q'EqOJd :au!dd!lJ rax!d %0& qHt.\ ardm'Exa uop!tr:ao:>aJ Ja:P'EJ'Eq:> aq.r, :on~ am:a!a: 

~ 

• iii 
ii i 
iii i 

il 
il 
i 
i 

i il 
ililiil 

il 
il 
il 
il 

iii il il 
il 
il 
il 

iliiili 

iliiililil 
il 
i 
i 

ililii 
il 
il 
il 

ilililiiil 

ililililil 
iii i 
il il 
il i 
il i 
il il 
il il 
u i 

il iliili 

iiili 
il il 

il 
il 
il 
i 
il 

il il 
iii iii 

iliiilil 
il il 
il il 
i i 
iii iii 

i il 
il i 
il il 
iii iii 

il 
il 
i 
iiiiiilil 
i il 
iii iii 

il i 
i il 

il 

(J) 

il ilili 
ii i 
iii i 

i 
il 
i 
i 

il i 
iiili 

il 
i 
il 
i 

iiii 
i 
il 
il 

iliiili 

ililililiil 
il 
il 
il 

iliiil 
il 
il 
il 

ilililiii 

ililililil 
iii i 
il il 
il il 
il il 
il il 
il il 
ilil i 
iliiili 

ililiil 
il i 

il 
il 
i 
i 
il 

il i 
iliii 

Uiilil 
il i 
il i 
il i 
ilililili 

il il 
il il 
il il 
ilililiil 

il il 
i il 
il il 
iiilili iii 
il il 
iii ilil 

i il 
i il 
i 

(a) 

iiiililil 
iii il 
il il 
i il 
i il 
i il 
i i 
iii il 
ililililil 

iiiil 
i i 

i 
il 
i 
il 
il 

il il 
iii iii 

iiiili 
i i 
il il 
il il 
ililililil 

il il 
il il 
i i 
ililiilil 

il 
il 

il il 
iii iii i iii 
il il 
iii iii 
il il 

il i 
il 

(p) 

i iii 
iii i 
iii i 

i 
il 
i 
il 

i i 
iliilil 

i 
i 
il 
i 

ililiii 
i 
il 
il 

ilililili 

iiliili 
iii i 
i il 
i il 
i i 
il i 
il il 
iii il 
iiliiil 

ililiiil 
il il 
il il 
I il 
iiililil 

il il 
il il 
i i 
ilililii 

il il 
il il 
il il 
ililililililil 
il il 
ilil ilil 

il il 
il i 

il 

-&9-

(::>) 

ilililiii 
il il 

il 
il 
il 
il 
i 

il il 
ilililii 

ilililii 
il i 

il 
il 

iliilil 
il 
il 

il il 
iliiiii 

iliiilil 
il il 

il 
il 

iliili 
il 
il 

il il 
ililiilil 

Uilii! 
il il 

il 
i 
il 
il 
il 

il il 
iliiliil 

ilililili 
il il 

i 
il 

ililii 
il 
il 

il il 
ilililiil 

iiliili 
il il 

il 
il 

iiiilil 
il 
i 

il il 

il 

• 
iii il iii 

il il 
ililiilililil 
• i 
iii ilil 
il il 

i il 
il 

(q) 

il iii 
ilil il 
ililil il 

il 
i 
il 
il 

il il 
ililiil 

il 
il 
i 
i 

iiilil 
il 
il 
il 

iiiililil 

iliiiilil 
il 
il 
il 

iliilil 
il 
il 
i 

iliil iilil 

iliilii 
ilil il 
il il 
il il 
il i 
il i 
il il 
ilil i 
ililiili 

iiilil 
i il 

il 
il 
il 
il 
il 

il il 
iliilil 

ilililili 
il il 
il i 
i i 
ililililil 

i i 
i il 
il il 
iilililil 

i 
i 

il il 
iiiiiiii 
il il 
iii iii 

il il 
il i 

i 

(B) 

ilil i 
il il iil 
ililil il 

i il 

i 
i 

iii 

i il 

i 
ilil il 

iilililiil 
il iii 

il il 
il iii 
ilililil 

il ililiil 
iii il 
il il il 

il il 
iii ilil 
il il 

ii 
il ililil 

iii il iii 

iiiiiili 
il iii 

il iii 
ilil iii 
il il 

il il 
iii il 
iii i 
ililililii 

iliii 
il il il 

il il 
i il il 
i ii il 
iii iii 

il 
il ilil i 
ilililii 

ililil 
i 

iii 
il iii 
iliilil 

il iii 
il il il 
il iii 
iliiiil i 

il 
il il 
ilil i 
il il iii iii 
i 
iii iii 

i il il 
il il 

il il 



- 63-

2.8 Conclusions 

In this chapter we have presented a new neural network classifier based on coding theory 

techniques. The classifier uses codewords from an error correcting code as its "internal 

representation." Two classes of codes that have good performance are the Hadamard ma

trix codes and the maximal-length sequence codes. In performance terms we have shown 

that the new classifier is significantly better than the Hopfield-memory-based classifier. 

One should also note that when comparing the new classifier with the Hopfield-memory

based classifier, the enhanced performance of the new classifier does not entail extra 

complexity, since it needs only L + M hard-limiter neurons and L(N + M ) connection 

weights versus N neurons and N 2 weights in a Hopfield memory. In conclusion, we be

lieve that our model forms the basis of a fast, practical method of classification with an 

efficiency greater than other previous neural network techniques. 
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Chapter 3 

A General Model for Neural Network 

Associative Memories 

3.1 Introduction 

Because of their wide usage in many information processing systems, associative mem

ories have attracted much attention from neural network researchers. Unlike traditional 

computer memory, associative memories have some error correcting capability because 

they can take in some partially wrong patterns as stimuli and still generate accurate 

responses. Associative recall is present in many ordinary information processing tasks 

taking place all the time in human brains, such as recognizing typographic errors, recall

ing songs' titles, recollecting friends' telephone numbers, etc. As is exemplified by the 

above examples, the recall process is usually achieved by evolution, through which miss

ing information is gradually filled in until perfect recall is finally reached. It is probably 

due to the above observation that most proposals for associative memories are based on 

a feedback architecture. 

In this chapter, we will introduce a general model for neural network associative 

memories. With this model, new associative memories suitable for implementation in 
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other technologies can easily be introduced. An important class of associative memories 

rely on correlation measures, so they are ca.lled correlation associative memories (CAMs). 

Discussion of CAMs will be deferred until Chapter four. In this chapter, the general 

model is first presented, and a heuristic justification for its effectiveness is given. The next 

part of this chapter deals with four representative neural network associative memory 

models : t he Ka.nerva memory [4, 3], the BMW distributed associative memory [2], the 

Hamming network associative memory [5], and the spectral associative memory [7]. We 

will briefly introduce these models and show that each one of them can be formulated as 

a special case of the proposed general model. Also in each case, the hardware complexity, 

the capacity, and the stability of the model under consideration will be investigated and 

reported. 

3 .2 The General Model 

The general model proposed here is intended for autoassociative memories that remember 

N -bit binary patterns. Suppose u (l), u <2) , · · ·, u (M) are the M memory patterns to be 

stored in the associative memory under consideration. Also assume there are a set of M 

corresponding L-bit codewords, v <1), v<2), . . . , v (M) and a matrix T for mapping the M 

memory patterns to the corresponding codewords. Note that components of the memory 

patterns are either +1 or -1, while components of the codewords are either 1 or 0. The 

model is essentia.lly a finite state machine with a state pattern that gets updated at each 

timestep. To find the next state pattern, the following evolution equation is applied to 

the current state pattern: 

x' = sgn { f fk (x, u <t), · · ·, u <M), v<1), · · · , v(M), T ) u (k)} , (3.1) 
k=l 

where x and x' are the current and the next state patterns, respectively. The recalling 

process is done by initializing the memory with an input pattern and applying the above 

evolution equation repetitively until the memory reaches a stable state, which is the final 

output response. 
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Now let us give an insightful explanation for the formula in Equation (3.1). Since 

the objective of an associative memory is to find the nearest memory pattern in some 

distance measure to the input pattern, it is obvious that the above mechanism will 

perform correct associative recall if the following three conditions are met : 1) all M 

memory patterns are stables states, 2) any evolution step brings the next state pattern 

closer to the correct (nearest) memory pattern, and 3) there is no spurious stable state 

in the path from the initial input to the nearest memory pattern. Most associative 

memories do not satisfy the third condition, since there always seems to be numerous 

spurious stable states in all associative memory systems. Most effort in designing a 

good associative memory is spent on meeting the first two conditions. As for the third 

condition, one can only hope that the input is close to the nearest memory pattern so 

that it is very unlikely that the memory gets stuck at an intermediate spurious stable 

state. 

What Equation {3.1) does is actually very similar to holding an election for each 

component of the state pattern in order to determine the polarity of that component at 

the next timestep. For clarity, let us consider only the first component of the next state 

pattern, x~. Each memory pattern (group) has a polarity of its first component, u~k) 

{the preferred party of a group). The strength of the kth memory (the number of votes 

in a group) pattern is decided by a weighting function fk. To determine the polarity 

of x~ {the winning party of a citywide election), one takes a weighted sum of all u~k),s 

(counts the votes). 

The weighting functions, fk 's, depend on the current state pattern x, all M memory 

patterns, all M codewords, and the matrix T. If fk is designed in such a way that its 

value is large when x is close to u (k) and small when they are far apart , then one sees 

that after one iteration {election), the state pattern will tend to be nearer the nearest 

memory pattern than it used to be. This is because the nearest memory pattern can be 

so strong that it overpowers all the others in most of theN elections, so the next state 

pattern might be almost the same as the nearest memory pattern. To satisfy condition 
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one, one can make A extremely large when x is exactly the same as u(k); then u (k) will 

very likely be a. stable state. Therefore, if one carefully designs fk 's and if the memory 

is not overloaded (more than allowable memory patterns are stored), the associative 

memory can satisfy the first two conditions. 

In the next few sections, we will discuss four representative models and show that 

they can all be expressed in the form of Equation (3.1). Furthermore, fk 's in those 

cases all have the property that their value is large when x and u (k) are similar and 

small otherwise. The matrix T and theM codewords y (I), v <2), · · ·, v <M) appear in the 

arguments of fk only because some models utilize certain coding techniques, otherwise 

fk will depend only on x and u(l), u<2>, · · ·, u (M). As a matter of fact, for correlation 

associative memories based on the ordinary correlation, fk relies only on x and u(k), to 

be more specific, the correlation of these two patterns, i. e., A = fk ( < x , u (k) > ). 

3.3 Kanerva Memory 

Kanerva proposed an associative memory model that is essentially a parallel processing 

system consisting of address decoders, counters, binary adders, and threshold circuits [4). 

He claimed that his model is similar to the human cerebellar model of Ma.rr·s [6) and 

Albus' [1). Chou [3] later formulated the Kanerva memory in terms of a two-layer feed

forward neural network a.s shown in Figure 3.1. There are .N input nodes, L hidden 

neurons, and N output neurons. Further, if one uses the Kanerva memory as an autoas

sociative memory, then a connection between the input end and the output end can be 

made. All hidden neurons and all output neurons are hard-limiter neurons. The only 

difference is that the hidden neurons have the following response 

1 { 1 step(t) = - (sgn (t - s) + 1) = 
2 0 

while the response of the output neurons is the sgn function. 

t~s 

t < s 
(3.2) 
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Figure 3.1: Configuration of the Kanerva memory 

The first connection matrix T is an L X N matrix randomly populated with +1 

and -1 with equal probability. Assume that u<k>,k = 1,2, ... ,Mare theM N -bit 

memory patterns with +1 or -1 components; then the corresponding M L-bit codewords 

v (k), k = 1, 2, . . . , M are defined as 

k = 1,2, ... , M . (3.3) 

The second connection matrix W is constructed by the sum of the outer products of the 

M memory patterns and theM codewords; i.e., 

M 
W = L u (k) v (k)t. (3.4) 

k=l 

The evolution equation of the Kanerva memory as an autoassociative memory is 

x' = sgn {W · step (T x )}, (3.5) 

where x and x' are the current and the next state patterns. 
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Substituting Equation (3.4) in (3.5) yields 

x' = sgn {t < v (k), step(Tx)> u (k) }. 
k=l 

Consequently, the Kanerva memory is a special case of the general model if 

fk ( x , v (k), T ) = < v (k), step(Tx)>. 

(3.6) 

The hardware complexity of the Kanerva memory is L + N hard-limiter neurons, 

LN binary ( + 1 or -1) connection weights, and LN discrete (-M to M) connection 

weights . The storage capacity of the Kanerva memory with zero attraction radius was 

shown by Chou [3] to be as large as M = 2aN, where a is a parameter depending on s 

and L. It is also shown that M can be no more than L - the number of hidden neurons. 

This implies that in order to get exponential capacity, exponential hardware complexity 

is necessary. To be more specific, 

LN + LNlog2M ~ 2cN (cN2 + 2N) 

bits are needed to store 2cN memory patterns. There has been virtually no treatment 

of the stability issue of the Kanerva memory. In Appendix 3.A, we prove that with 

some assumption, the Kanerva memory is asymptotically stable in both synchronous 

and asynchronous updating modes. 

3.4 BMW Associative Memory 

The BMW associative memory model proposed by Baum, Moody, and Wilczek [2] is 

similar to the Kanerva memory, in that they both use a hidden layer to encode the input 

pattern before computing the next state pattern. Therefore, the BMW memory has the 

same archHecture as the Kanerva memory (see Figure 3.1). Nevertheless, they differ in 

how the codes ("internal representations") are specified. In the Kanerva memory, the 



-72-

codewords a.re obtained by feedinging the M memory pa.ttems to the first la.yer, while 

in the BMW memory, the codewords are specified explicitly. In this section we will 

describe two codes tha.t were discussed in Ba.um, et al. 's work. They a.re the localized 

(grandmother cell) coding scheme and the distributed coding scheme. 

Again, a.ssume tha.t u (k), y(k), k = 1, 2, ... , M a.re the M memory patterns a.nd the 

M corresponding codewords. In the ca.se of the localized coding scheme, y (k) 's are M 

bits wide (L = M) a.nd 

y (k) = (0 0 ... 1 ... 0 0), 

i. e., the kth unit vector. For the distributed coding scheme, the L bits in a. codeword 

are partitioned into S groups a.nd the zth group ha.s TJ bits, where T J1S a.re assumed to be 

relative prime. In the kth codeword, the lh bit of the zth group is 

1-1 

where t1 = L Ti . 

i=l 

(k) - { 1 
vtr+i = 

0 

k = j mod r 1 

otherwise 

In both ca.ses the ma.trix T is constructed by the sum-of-outer-product rule and 

M 
T = L v (k) u (k)'. (3 .7) 

k=l 

As in the Ka.nerva. memory, the second connection ma.trix W is 

M 
W = L u (k) y (k) ' (3.8) 

k=l 

The evolution equation of the BMW memory is 

x' sgn { W · step(T x)} 
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From the above equation, it is clear that if we let 

M 

fk (x, u (l), · · ·, u (M), v<1), · · ·, v (M)) = < v(k), step ( L < u <l}, x > v (/)) >, 
1=1 

then the BMW memory is a special case of the general associative memory model. 

The hardware complexity required to implement the BMW memory is L + N hard

limiter neurons and LN discrete connection weights (-M to + M, here only one set 

of connection weights is needed since W is the transpose of T ). The capacity of the 

BMW memory bas been shown to be less than L [2]. The BMW model was originally 

proposed as a memory based on a feed-forward network with one hidden layer; hence 

very little work bas been done on the stability of the feedback BMW memory. Since the 

only difference between the BMW memory and the Kanerva memory is the way that 

the codes are prescribed, we expect them to behave similarly in terms of stability. We 

show, in Appendix 3.A, that with some assumption the BMW memory is asymptotically 

stable. 

3.5 Hamming Network Associative Memory 

The Hamming network [5] is similar to the BMW model with the unary (grandmother 

cell) code, except that the bidden neurons are of the sigmoidal type and there are mu

tually inhibitory connections among bidden neurons. The bidden layer functions as a 

winner-take-all circuit, and only the hidden neuron with maximum input will be ac

tivated ( + 1 ), while all the other hidden neurons will be off (0). The two connection 

matrices of the Hamming network associative memory T and W are exactly the same 

as those of the BMW memory with the unary code. 

The evolution equation of the Hamming network associative memory is 

x' = sgn {t 8kl u (k) } , 
k=l 

(3.10) 
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< u (i) x> =max < u (j) x> ' . ' ] 

and 8kl is the Kronecker delta function. Therefore, if we define 

< u (k),x>= max < uU>,x> 
j 

otherwise 

then the Hamming network associative memory becomes an instance of the general 

model. 

The hardware complexity needed to implement the Hamming network associative 

memory is M sigmoidal neurons, N hard-limiter neurons, and M 2 + M N connection 

weights. The storage capacity of the Hamming network is actually limited only by 

the efficiency of the winner-take-all circuit. As the number of hidden neurons grows, 

the mutually inhibitory feedback network gradually deteriorates in response time and 

accuracy. As for the stability, since the mutually inhibitory network is stable, we conclude 

that the Hamming network associative memory is asymptotically stable. 

3.6 Spectral Associative Memory and Pseudoinverse 

Associative Memory 

The spectral associative memory [7] is based on a fully-connected network architecture 

with N neurons and the following N x N connection weight matrix, 

(3.11) 

where U = ( u(1), u (2), .. . , u(M)) and A is an M x M diagonal matrix whose entries 

are >.17 >.2, ... ,>.M. Substituting Equation (3.11) in the evolution equation of a fully

connected network gives 
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x' sgn{T x} 

sgn{U A (utu)-
1 

ut x} 

< u (M)' x > r} 

(3.12) 

where w is an M x 1 vector and Wk = < u (k), x >. Let V _ (ut u)-1 and y (k) be the 

kth row of V , then 

sgn { t, [A, t, vj'l (t, uf'l x;) ] u (k) } 

= sgn { f ().k E f v]k) u~i) Xi ) u (k) } . 
k= l t=l J=l 

Therefore, if we define 

N M 

Ak '"' '"' v(k) uV) x · - ~ ~ ] ' ,, 
i=l j=l 

(3.13) 

the spectral associative memory model reduces to an instance of the general model 

proposed in Section 3.2. 

Since the spectral associative memory is based on anN-neuron fully-connected net

work structure, it needs N hard-limiter neurons and N 2 continuous connection weights . 

As for the storage capacity of the spectral associative memory, Venkatesh showed em

pirically that it is better than the Hopfield memory. He also proved that the storage 

capacity of the spectral associative memory is N when N is large [7]. AS far as the 

stability is concerned, Venkatesh also showed that by using 

E(x) = <x , Tx > 
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as the energy function, the spectral associative memory will converge to a stable state 

in both synchronous and asynchronous updating modes. 

As for the pseudoinverse associative memory, since it is a special case of the spectral 

associative memory with the matrix A equal to the identity matrix, all the above results 

apply to it. 

3. 7 Correlation Associative Memories 

There are many other associative memory models based on correlation (similarity meas

ures), such as the correlation-matrix associative memory, the high-order correlation as

sociative memory, the potential function correlation associative memory, the exponential 

associative memory, and the associative memories based on the generalized correlation 

measure. We will defer the discussion of these models until the next chapter. 

3.8 Conclusions 

In this chapter we propose a general model that subsumes most neural associative mem

ory models with feedback architecture reported in Chapter one. It is based on an al

gorithm similar to the political election process. In the evolution equation, a weighted 

sum of all memory patterns is first calculated; then a decision is made to determine the 

polarity of each component of the next state pattern. We select four models- the Kan

erva memory, the BMW memory, the Hamming network associative memory, and the 

spectral associative memory as examples and show that with proper choice of weighting 

functions, they are all special cases of the general model. Moreover, we also prove that 

in both asynchronous and synchronous updating modes, the Kanerva memory and the 

B~W model are both asymptotically stable. 
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Appendix 3.A Asymptotic Stability of Kanerva Memory 

and BMW Memory 

The strategy used to prove the asymptotic stability of the Kanerva memory is similar to 

that of Hop field model. An energy (Liapunov) function is defined and it is shown that 

after each timestep the energy will not increase. This fact, together with the fini teness 

of the energy function and the fact that the energy cannot stay at the same level forever, 

proves that the Kanerva memory is asymptotically stable. At first, let us make the 

following assumption: 

Assumption : Let x be a binary state pattern and u (k), k = 1, 2, · · · , .M be 

the memory patterns; then <step (Tu(k)), step(Tx)> depends only on the distance 

between u (k) and x , or equivalently on < u(k) , x >. 

Note that the original interpretation of <step(T u(k)), step (T x )> given by Kan

erva is the number of rows in T that are less than (N- s + 1)/2 bits away from both 

u(k) and x. Thus, it is apparent that the assumption holds most of the time if N is large 

and L is not much smaller than 2N. It is also clear that as x moves away from u (k) , 

<step (T u (k)) , st ep (T x ) > will become smaller and smaller. 

Now define a sequence of patterns ~k), x~k), · · · , x~), which constitute a path from 

u (k) to -u(k). Also, 

(k) - u (k) (k) 
Xo - ' X N 

and 

i=0,1, ... , N. 

Let dk = dHamming( u (k), x ); and then define the energy associated with u (k) as 

d,. 

£(k) (x ) = L <step (T u(k)) , step (T x~k)) > . (3.14) 
i=O 
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Define the total energy of the system at state x as 

M 

E (x) = L E(k) (x). (3 .15) 
k=l 

Suppose all neurons in the output layer of the Kanerva memory update themselves 

according to Equation (3.5); then the difference between the energies of the current and 

the next states is 

b.E = E (x')- E (x) 

M 

= L E(k) (x') - E(k) (x). (3.16) 
k=l 

Considering only the kth term of the sum in Equation (3 .16) and assuming that 

then 

d~c 

E(k) (x')- E(k) (x) = - L < step(T u (k)) , step (T x~k)) > 
i=d~ 

< - <step(Tu(k)), step(Tx)> · (dk- d~). 

(b) if dk < d~ : 

d~ 
E(k) (x')- E(k) (x) = L < step(T u(k)) , step (T x~k)) > 

i=d~c 

< <step (T u(k)), step(T x )> · (d~- dk)· 
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In both cases, the same inequality holds. Substituting the above inequality in Equa

tion (3.16) yields 

M 

b.E < L <step(Tu(k)),step(Tx)>·(d~-dk) 
k=l 

1 M - L <step (T u(k)) , step (T x) > ( < u (k), x > - < u (k), x' >) 
2 

k=l 

4 ~ {f; < step(T ul'l) , step(T x) > . uj'l} (x; - xj) 

< 0. (3.17) 

We therefore conclude that the Kanerva memory is asymptotically stable in the syn

chronous updating mode. Similarly, the Kanerva memory is also asymptotically stable 

in the asynchronous updating mode. 

I 

Since the BMW memory is different from the Kanerva memory only in the codes 

used as internal representations, we need only make some modification of the previous 

proof to show the asymptotic stability of the BMW memory. The assumption to be 

made is the same as the previous one except that the measure is changed. 

Assumption : The measure < y (k), step ( 'Lf'!1 < u <l) , x > · v <1) ) > depends 

only on the distance between u (k) and x , or equivalently, on < u (k), x >. 

It is also apparent that as the distance between x and u (k) becomes larger, the 

quantity < v (k), step('Lf':!1 < u(l), x> · y (l) )>will become smaller. 

Again, we can define a sequence of patterns from u(k) to - u (k) and the energy 

associated with u(k), 
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dk M 

E(k) (x ) _ L < v (k), step( L < u(l), x~k) > . v<1) ) > . (3.18) 
i=O 1=1 

Also define the total energy of the system in state x as 

M 
E (x) _ L E(k) (x). (3.19) 

k=l 

Following the same derivation, it can be shown that the energy will stay the same 

or decrease after every iteration; thus, we conclude that the BMW associative memory 

model is asymptotically stable in synchronous updating mode. By the same token, the 

BMW associative memory is also asymptotically stable in the asynchronous updating 

mode. 

I 
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Chapter 4 

Correlation Associative Memories 

4.1 Introduction 

Since the seminal work of Hopfield [9, 10], there has been much interest in building 

associative memory systems using neural network approaches . The storage capacity 

of the Hopfield memory has been found , both empirically [9] and theoretically (12], to 

scale less than linearly (approximately N flog N) with the number of components in 

the memory patterns. Lee et al. [11], Soffer [15], Psaltis and Park [13], and Dembo 

and Zeitouni [4, 5] all proposed new architectures that utilize correlation matrices and 

nonlinear circuits. Previously, we also proposed a new associative memory model that 

adopts the exponentiation function [2]. All these models can be implemented by a 

feedback network with two layers: The first layer computes the correlations of the input 

pattern and all memory patterns and then applies some nonlinear fu nction; the second 

calculates a weighted sum and thresholds that sum. 

In this chapter, we discuss a class of neural network associative memories that are 

based on correlation measures, which we call correlation associative memories (CAMs). 

In Section 4.2, we introduce a model for the correlation associative memories, show 

that this model is subsumed by the general model of feedback neural network associa-
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tive memories in Chapter three, and demonstrate that some known associative memory 

models can be formulated as correlation associative memories. Section 4.3 deals with 

the convergence property of correlation associative memories. First, an energy function 

is defined, and it is then shown that this energy function will decrease or stay put after 

every iteration. Thus, we conclude that correlation associative memories converge to 

stable states in both asynchronous and synchronous updating modes. In Section 4.4, 

we concentrate on a particular model called exponential correlation associative mem

ory (ECAM) and investigate thoroughly the relationship between the storage capacity 

and the attraction radius of ECAM. We find that if all input patterns inside a sphere 

of some attraction radius around a memory pattern need be attracted to that memory 

pattern with high probability, then the storage capacity is proportional to eN, where the 

constant c decreases as the attraction radius increases. More importantly, we find that 

under some condition the storage capacity of ECAM actually meets the sphere-packing 

bound in information theory [3] . Also, it is found that the storage capacity of ECAM 

will be proportional to the dynamic range if the dynamic range of exponentiation cir

cuits in an ECAM is fixed. However, the hardware complexity of an ECAM capable of 

storing an exponential number of memory patterns is also exponential. In Section 4.5, 

we present the results of some simulation experiments of ECAM and show that they 

confirm the theoretical findings about the storage capacity of ECAM, even though N is 

not excessively large as assumed when proving the theoretical results. 

4.2 A Model for Correlation Associative Memories 

First, let us introduce the idea of generalized correlation measure : Let u and x be two 

N-bit binary patterns whose components are either +1 or -1, and H beaN x N real 

matrix; then the generalized correlation measure of u and x weighted by H is 

N N 
< u , x > H _ LL uiHijXj. 

i= l i=l 

(4.1) 
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Figure 4.1: Architecture of correlation associative memories 

ote that the matrix H works as a way of adjusting the contributions from N components 

of u and x to the overall correlation measure. Moreover, if H is the identity matrix, 

then the generalized correlation measure reduces to the ordinary correlation; that is, 

< u , x > I = < u , x > . Also note that < u , x >= N- 2dHamm.ing(u , x ). 

Kow, assume that u C1),u (2), · · ·, u (M) are theM memory patterns; then the evolu-

tion equation of correlation associative memories is 

x' = sgn { t fk(< u(k), x > H)· u(k) }· 
k=1 

(4.2) 

It is apparent from Equation ( 4.2) that all correlation associative memories are instances 

of the general associative memory model. Figure 4.1 illustrates a neural network archi

tecture of correlation associative memories. The first connection matrix is 

T = Ut H 
' 

where U is an 1\1 x N matrix that is made up of M memory patterns u (k), k = 1, 2, ... , M. 
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Next we will describe how some well known neural network associative memory 

models can be expressed in the form of Equation ( 4.2). 

• Corre lation-Matrix A ssociative M emory 

This model is essentially the same as the Hopfield memory except that the diagonal 

of the connection weight matrix is not zeroed. It can be easily demonstrated that 

the correlation-matrix associative memory is an instance of correlation associative 

memories with H equal to the identity matrix and all fk's equal to J, where 

f(t) = t. 

• High-Orde r Correlation Associative M e mory 

In this type of associative memory, H is again equal to the identity matrix, but 

the weighting function is now a nonlinear function, 

(4.3) 

where q is usually an integer and q > 1. The capacity of the high-order associative 

memory is proportional to N 9 asymptotically [15), which is usually large enough 

for all practical purposes. 

• Potent ial Function Corre la tion A ssociative Memor y 

Sayeh and Han [14) and Dembo and Zeitouni[4, 5] independently introduced this 

model, which is proposed originally for continuous-time systems with real-valued 

patterns. Still, it is straightforward to express this model in discrete-time formu

lation. Again , H is the identity matrix, all fk's are equal to/, and 

f(t) = (N -t)-L, (4.4) 

where L is an integer and L > 3. The capacity of this model has been demon

strated to be limited only by the sphere-packing bound in information theory [5). 
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The primary disadvantage of this model is that hardware implementation of the 

nonlinear potential function is very cumbersome. 

• Exponential Correlation Associative Memory (ECAM) 

We introduced a new correlation associative memory that adopts the exponentiar 

tion function for all A 's [2]; i. e., 

f (t) = a\ (4.5) 

where a > 1. Here H is agaln equal to the identity matrix. The storage capacity 

of ECAM will be explored in Section 4.4. 

• Correlation Associative Memory based on the Mahalanobis distance 

The previous four models are all based on the ordinary correlation, namely, corre

lation measure with H equal to the identity matrix. Nonetheless, there are t imes 

when some distance other than the Hamming distance is more convenient. For 

example, if an associative memory is used to solve a pattern classification problem 

with multivariate Gaussian distributions, then the Mahalanobis distance is a bet

ter similarity measure than the Hamming distance [6]. The Mahalanobis distance 

from u (k) to x is defined as 

dMahalanobis(u (k), x ) = ( u (k) - x ) 'E-1 ( u (k) - x ), 

where we assume that the covariance matrices of all M distributions are the same 

and equal to 'E. After some derivation, it can be shown that 

(k) _ G c(k) 1 d . ( (k) ) < U , X > :E-1- 1 + 2 - 2 Mahalanob1s U , X 

where G1 is a constant depending only on x and G~k) depends only on u (k). There

fore, a correlation associative memory with H = 'E-1 and appropriate thresholds 

and weighting functions can be used to solve the minimum Mahalanobis distance 

classification problem. 
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4.3 The Convergence Property of CAMs 

Since CAMs are based on a. feedback network structure, understanding their asymptotic 

behavior is very crucial , for if a. CAM does not settle down to a. stable state, it would be 

impossible to obtain any valid output, rendering it useless. 

Hopfield [9] proved that his model is asymptotically stable when running in the 

asynchronous update mode (only one neuron in the output layer updates itself at a. 

time). At first he introduced an energy (Liapunov) function of the system, and went on 

to demonstrate that the energy function will only decrease or stay the same after every 

iteration. ..Moreover, he showed that the energy function has a. lower bound and that 

the system can not stay at the same energy level forever. These fa.cts together with the 

nonincreasing property of the energy function imply t hat the Hopfield memory will even

tually reach a stable state with minimum energy level. However, if the Hopfield memory 

is running in synchronous mode (all neurons in the output layer update themselves at 

t he same time), it may not converge to a. fixed point and may become oscillatory between 

two states [1]. 

In this section, we prove that correlation associative memories are asymptotically 

stable in both asynchronous and synchronous updating modes. To begin with, let us 

introduce a. lemma. 

Lemma 4 .1 : Let f(t) be continuous and monotonically nondecreasing over [-N,N]; 

then a correlation associative memory with the following evolution equation, 

x' = s gn { f f ( < u ( k), x >) . u ( k) } 

k=l 

is stable in both synchronous and asynchronous updating modes. 

P r oof : see Appendix 4.A. 
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Theorem 4 .2 : All four models based on the ordinary correlation in the previous 

section are stable in both synchronous and asynchronous updating modes. 

Proof : Since for all t 1 > t2, we have 

ti > t2, 

tq 
1 > ti, 

(N- t1)-L > (N- t2)-L, 

at' > at2 
' 

where q > 1, L > 3, and a > 1; therefore, Lemma 4.1 can then be applied and the 

theorem proved. 

I 

The significance of Lemma 4.1 is that it ensures that one can adopt any mono

tonically nondecreasing function, and the resulting correlation associative memory will 

always be asymptotically stable. This proves to be very helpful when it comes to hard-

ware implementation of correlation associative memories, because any physical device 

exhibits some deviation from its ideal response characteristic, especially when the in

put is outside its operating range. Consequently, if the real response is monotonically 

nondecreasing, then the system will always be stable, though the performance in stor

age capacity and error correction ability might become poorer. However, Lemma 4.1 

only gives the sufficient condition for a CAM to be stable but says nothing about the 

necessary condition. 

4.4 The Capacity and the Attraction Radius of ECAM 

Since we feel that the exponential correlation associative memory is most suitable for 

VLSI implementation, this section is devoted to exploring the storage capacity and error 
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correction capability of ECAM. Our definition of the storage capacity is similar to that of 

McEliece et al.'s [12]; i.e., if we choose M = M(N) N-bit memory patterns at random, 

program an ECAM with those M memory patterns and initialize that ECAM with an 

input pattern that is r = pN bits away from the nearest memory pattern, we ask what 

the greatest rate of growth M(N) as N ---. oo is so that after one iteration, the bit error 

probability (Pe) is less than e-T /V4?f, where Tis a fixed and large. By adjusting T, 

one can make a tradeoff between the bit error probability and the storage capacity of an 

ECAM. 

To begin with, assume that all M N- bit memory patterns u (k), k = 1, 2, .. . , M 

are randomly chosen; in other words, each bit in any of the M memory patterns is the 

outcome of a Bernoulli trial ( -1 or +1). Now let us present the theorem about the 

storage capacity of ECAM. 

Theore m 4.3 : In an ECAM, if the initial state pattern x is pN bits away from the 

nearest memory pattern and 

M(N) 

( :~) 2N(l-'H(p')) + 1 

.f , 1 
1 p < -1--2 +a 

if p' > 1 

1 + a2 

{4.6) 

memory patterns are stored, where p' = p + 1/ N and 1t(p') is the binary information 

entropy of p', then as N ---. oo, the bit error probability, the probability that a bit in 

the next state pattern is not the same as the corresponiling bit in the nearest memory 

pattern, is asymptotically less than e-T f.J4?t. 

Proof : We will give only an outline of the proof, and details of the proof can be 

found in Appendix 4.B. To begin with, suppose the input x is r = pN bits away from 

the nearest memory pattern, say u{l>; then the evolution equation becomes 

x ' = sgn {~a<u<k>, x> u(k) } , 
k=l 
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Considering only the ith component of x' a.nd letting u~l) = -1 without loss of generality 

yield 

xi = sgn { -aN(l-2p) + t a<u(k), x> u~k) } . 
k=l,ki:l 

(4.7) 

Note that the second term of the argument of the sgn function in the previous equation 

is a. sum of M- 1 i.i.d. (independent, identically-distributed) random variables . Define 

(k) (k) 
W = a<u ' x> U · 

k - ' , k = 1,2, ... , M, 

and let 

M 

w - 2:: Wk, 

k=l,ki:l 

M 

v - LWk -aN(l-2p) + w. 

k=1 

After some lengthy derivation (see Appendix 4.B) , we have the following results in 

order: 

E[w] ~ aN(I-2p) 

and 

V ar[w] < ( 2~) . a2N(l- 2p) . 

As N -+ oo, M -+ oo, the central limit theorem [7] ca.n be applied, which leads to 

(4.8) 

I 

Thus we conclude that ECAM has a. storage capacity that scales exponentially with 

N -the number of bits in each memory pattern. More importantly, in the case when 

p' ~ 
1 

: a2 , the storage capacity actually meets the ultimate sphere-packing bound in 
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information theory [3). However, note that from Figure 4.1, one sees that in order to store 

M memory patterns , one needs M x N connection weights and M exponentiation circuits 

and N hard-limiter neurons. Therefore, to store a.n exponential number of memory 

patterns, exponential hardware complexity is necessary. 

This exponential capacity is very attractive; however, the dynamic range required 

of the exponentiation circuit grows exponentially with N. In any real implementation, 

this requirement is very difficult to meet, if not impossible. In a typical CMOS VLSI 

process, a transistor operating in t he subthreshold region as an exponentiation circuit 

has a dynamic range of approximately 105 to 107 [8) . Hence, we need to study how the 

storage capacity of ECA~1 changes if the dynamic range of its exponentiation circuits is 

fixed. 

Suppose the dynamic range (D) of the exponentiation circuits is fixed and 

then as N increases, a will decrease, and M will no longer scale exponentially with N . 

We now concentrate on the case when N approaches infinity. Since N is very large and 

D is fixed, a will be near unity. Let 

a _ 1 + J1., 

where J1. is a small positive number; then 

log D = N log a = N log( 1 + J1.) ::::- N J1.. 

As a becomes closer to unity, p' will be less than 1/(1 + a2 ) in practically all cases; 

therefore, only the first formula in Equation ( 4.6) needs to be considered. It follows that 

M (N) 
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(:;) ((2- 2JJ.)~l + 2p'JJ.))N 

,..._ (:;) ( 1 + N JJ.(1; 2p'))N 

( :; ) e(l-2p) logD ( ~) D1-2p 
4T . (4.9) 

4.5 Simulation Results 

A few simulations have been conducted in order to confirm the theoretical results ob-

tained. We let a = 2 and randomly choose 10 sets of M N-bit memory patterns in 

each case, then program an ECAM with these M patterns. For each ECAM, 100 input 

patterns are generated by randomly picking a memory pattern and flipping b bits. They 

are then fed to the ECAM and the ECAM is allowed to run until it becomes stable. The 

resulting fixed point is then compared with the original memory pattern, and the run is 

called a success if they match. We then collect the number of successes out of 1000 runs 

and if this number is greater than 998, we say that loaded with M memory patterns, 

ECAM can tolerate b errors. The largest b for a fixed M is called the attraction radius 

(r) . 

In Figure 4.2, the relative attraction radius p = r / N is plotted against the number 

of memory patterns (M) for various N. Note that if a horizontal line is drawn across 

the plot, it will intersect these four curves in the figure at points that are equally apart. 

Since the four curves correspond to cases with N that increases linearly, the previous 

observation implies that for fixed p the storage capacity of ECAM scales exponentially 

with N, which confirms Theorem 4.3. Next we let N be fixed and vary the dynamic range 

of exponentiation circuits. Figure 4.3 and Figure 4.4 illustrate how the the relationship 

between attraction radius (r) and the number of loaded memory patterns (M) changes 

for different dynamic ranges. As one can see, in both N = 32 and N = 64 cases, the 
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curves intersect with the vertical axis (r = 1) at points that are approximately twice al 

large as the previous point. Since the dynamic ranges of these four curves increase by 

twofold successively, thus the storage capacity of ECAM is proportional to the dynamic 

range of the exponentiation circuits. Furthermore, if one again draws a vertical line with 

larger r, it will intersect the four curves at points equally apart, but this time the distance 

among these four points will be smaller than that of the case when r = 1. Therefore, 

we conclude that the previous result about the storage capacity of ECAM with fixed 

dynamic range exponentiation circuits; i. e., Equation (4.9) is valid. 

4.6 Conclusions 

In this chapter , we have discussed a group of associative memories that rely on the gen

eralized correlation measure. We also prove that correlation associative memories based 

on the ordinary correlation are asymptotically stable as long as their weighting functions 

are monotonically nondecreasing. In particular, a new type of high-capacity neural net

work associative memory, which we call Exponential Correlation Associative Memory 

(ECAM), is presented. We have also investigated the storage capacity of ECAM under 

different assumptions, and find that under some condition ECAM meets the sphere

packing bound . ~loreover, ECAM is more robust than the associative memory using 

the winner-take-all function to find the maximum correlation. In the latter associative 

memory, the final answer will be wrong if the winner-take-all function make a mistake. 

For the ECAM, the exact answer need not to be obtained at once. Since even if several 

out of the N binary decisions are wrong, it is still possible to reach a correct answer 

t hrough iteration. Finally, we give simulation results showing that theoretical findings 

also apply to cases when N is not very large. VLSI implementation of ECAM and its 

application to some associative recall problems will be discussed in the next chapter. 
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Figure 4.2: Attraction radius (p = rf N) vs . number of loaded memory patterns (M), 
Curve A : N = 32, Curve B : N = 48, Curve C : N = 64, CurveD : N = 80 
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Figure 4.3: Number of loaded memory patterns (M) vs. attraction radius (r) with 
N = 32, Curve A : D = 24

, Curve B: D = 25, Curve C: D = 26 , CurveD: D = 27 
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Figure 4.4: umber of loaded memory patterns (M) vs. attraction radius (r) with 
N = 64, Curve A: D = 24

, Curve B : D = 25 , Curve C : D = 26 , CurveD : D = 27 
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Appendix 4.A Proof of the Convergence of CAMs 

The proof of Lemma 4.1 is given in this appendix. At first, define 

g(x) = jx f (t) dt; 

then by the mean value theorem, there exists some z, which lies between x and y, so 

that 

g(y)- g(x) = g'(z) · (y - x) = f (z) · (y - x). 

Next, by the assumption that f (t) is monotonically nondecreasing, we have the 

following: 

(a) y > x. In this case, we have 

X~ Z ~ y, 

thus 

f (z) ~ f (x) 

and 

g(y)- g(x) ~ f (x) · (y- x). 

(b) x > y. In this case, we have 

y ~ z ~ x, 

thus 

f(z) ~ f (x) 

and 

g(y ) - g(x) ~ f(x) · (y- x). 

In both cases, we have the same inequality, g(y) - g(x) ~ f(x) · (y- x). 
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Now let us define an energy function for the correlation associative memory, 

M 

E(x ) = - L 9(< u(k), x >). 
k=l 

The difference between the energies of the current state and the state after all neurons 

perform one iteration according to the evolution equation is 

-t:lE = -E(x') + E(x ) 

M 

L g( < u(k), x ' >) - g( < u (k), x >) 
k=l 

M 

> L 9'(< u(k), x >)· < u(k), x'- x> 
k=l 

M N 

L ! ( < u (k),x>) L u~k) · (xi- Xi) 

k=l i=l 

t, {t, f( < u<•> ,x >) cj•>} · (x:- x;) 

~ 0. 

Furthermore, t:lE = 0 only if all xi - Xi = 0 or 2; therefore, the associative memory will 

eventually become stable at a fixed point. By the same token, if only one neuron updates 

itself in every iteration, the associative memory will also converge to a fixed point. 

I 
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Appendix 4.B Proof of the Capacity Results of ECAM 

In this appendix, a rigorous proof of Theorem 4.3 is presented. 

For a given p, 0 ~ p < 112, suppose the system is initialized with a state x which 

is pN = r bits away from the nearest memory pattern, say u (/); in other words, 

x = u (/) + e , 

where e has r nonzero ( +2 or -2) components. Furthermore assume, without loss of 

generality, that uV) = -1. Since the bit error probability is larger for the case when 

ei = +2 than when ei = 0, only the former case will be studied. 

First of all, since u (/) is the nearest memory pattern to x , all other M- 1 memory 

patterns must be at least r + 1 bits away from x. Suppose 

r' = r + 1, and p' = r' IN = p + 1 IN; 

we then calculate the probability distribution function of the random variable w1 when 

ei = +2; i.e., Xi= + 1 as 

Prob[ w1 = aN-2i] 1 (N-1) 
J( j , j = r', r' + 1, ... , N- 1. 

_ 1 (N-1) 
- J( j ) j = r' - 1, r', . .. , N - 1. 

The first formula applies to the case when uP) = + 1, while the second applies to the 

case when u~1 ) = -1. The constant J( is a normalizing factor and 

J( N-1 ( ) N-1 ( ) 

i~' N J 1 + i=~l N J 1 
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N-1 ( ) ( ) N ( ) E~+~=E ~. 
i=r1 J i=r1 J 

Also, since p < 1/2, then r' = pN + 1 $ r N /21, and 

(4.10) 

Next let us calculate the expectation of wb 

~. {~ ( N-: 1 ) aN-2j _ ~ ( N-: 1 ) aN-2j-2} 
A . I J . I 1 J J=r J= r-

< 
2
-;_, {f. ( N j 1 ) .-2;} 

< 2~~~ L~. ( 1) .-,;}. 
Obviously, E[w1 ] is positive. Now in order to bound it from above, we apply the Chernoff 

method. Multiplying each term in the summation by a number greater than or equal to 

unity ( et(i -r~). t ~ 0) and summing from j = 0 instead off rom j = r' gives 

where t ~ 0. 

Similarly, the expectation of wi can be bounded, and we have 
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< a
2

N {E1 

( N-: 1 ) a-4i} 
]( i=r' J 

< 2~:, Lt. ( 1 ) a -•;} 

where t ~ 0. 

Accordingly, the variance of w1 is 

< E[wiJ 

< where t ~ 0. 

Since w is the sum of M- 1 i.i.d. random variables, the expectation and the variance of 

w are both M - 1 times those of w1 ; namely, 

E[w] = (M- 1) E[wt] 

< (M- 1) ( 2~:1 ) e- tr' ( 1 + a-2et)N' where t ~ 0. (4.11) 

Var[w] (M- 1) Var[wt] 

< (M -1) (;~~~) e-tr' (1 + a-4et)N, wheret~O. (4.12) 

To estimate the bit error probability, we need to deal with two cases separately. 
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Since Equations (4 .11) and (4.12) are true for all nonnegative t, we can find an 

optimal t so that the right hand sides of both equations are minimized. In Equa

tion ( 4.11 ), let 

then 

E[w] < (M- 1) (
aN ) (1-p')p'N ( 1 )N 

2N-1 a2p' 1- p' 

= (M _ 1) (aN(1-2p') ) (_!.)p'N ( - 1-)(1-p')N 
2N-1 p' 1- p' 

= 2(M- 1) . aN(l-2p') . 2N(1t(p')-l)' 

where 1t(x) = -x log2 x- (1- x) log2(1- x ), the binary information entropy of p'. 

Assume that T is large and let 

M(N) = ( :; ) 2N(I-1t(p')) + 1; (4.13) 

it then follows that 

E[w] < ( ;; ) aN(l-2p) ~ aN(l-2p). (4.14) 

Simil arly, the variance of w can also be upper bounded by substituting 

in Equation ( 4.12). 

Var[w] < M - 1 (a2N(I-2p') ) (_!.)p'N (-1-)(I-p')N 
( ) 2N-l p' 1 - p' 

2(M _ 1 ) . a2N(1-2p') . ~(1t(p')-l) 
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By Equation ( 4.13) and the above equation, we obtain 

1 
(b) p' < 1 + a2 

Var[w] < (2~) . a2N(t-2p) . 

Substituting et = 1 in Equation (4 .11), we have 

E[w] < (M- 1) ( 2~1 ) (1 + a-2 )N 

( (1 + a2- 2)a2P' )N = 2(M- 1) · aN(t- 2p') · 

Now suppose that T is large and 

a4 ( 2 )N 
M(N) = 4T (1 + a-2)a2P' + 1i 

then 

E[w] < ( ;; ) aN(l-2p) ~ aN(l-2p). 

(4.15) 

(4. 16) 

(4.17) 

Next, an upper bound of Var[w] can be calculated by setting et = a2 in Equa

tion ( 4.12), 

(

a2N(t -p') ) N 
Var[w] < (M - 1) 

2
N - l ( 1 + a-

2
) 

( ( 2) 2p' )N 2(M- 1) . a2N(t-2p') . 1 +a~ a 

Combining Equation ( 4.16) and t he above equation leads to 

Var[w] < (~) . a2N(t -2p) 
2T . (4.18) 
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We have shown in both cases that E[wJ is significantly smaller than aN(l-2P) when 

T is large and thus can be ignored. Also Var[wJ is found to be bounded above by the 

same quantity in both cases. We now estimate the probability that an ECAM is not able 

to correct a bit error, namely, the probability that v > 0. Since the random variable w 

is the sum of M - 1 i.i.d. random variables, as N, M ~ oo, w can be approximated by 

a normal distribution, i.e ., JV(E[w], Var[w]) (the central limit theorem [7]). Therefore, 

Prob[v >OJ Prob[ w > aN(l- 2P) J 

w - E[wJ aN(l-2P) - E[wJ 
Prob[ > J 

U w Uw 

w - E[wJ aN(1-2p) 
Prob[ > J 

Uw U w 

a2N(1-2p)) 

Var[wJ < Q ( v'IT)' 

where Uw is the standard deviation of w and 

(4 .19) 

rote that T is fixed, so we do not have to worry about the large deviation problem in 

applying the central limit theorem. If Tis large, we can use the asymptotic formula for 

Q(-): 

1 
Q(t) ~ ( V2rr )t 

-t2 /2 . e . 

By the above formula and Equation (4.19), we have 

Pe = Prob[v > OJ 

(4.20) 

I 
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Cl1apter 5 

VLSI lmple1nentation of ECAM 

5.1 Introduction 

In the previous chapters, we introduced a model for correlation associative memories, 

which includes a variation of the Ilopfteld memory and the high-order associative mem

ories as special cases. This model is based on an architecture consisting of binary con

nection weights. simple hard-limiter neurons, and specialized nonlinear circuits. The 

evolut ion equation of this general model is 

(5.1) 

where u (l), u <2), · · · , u (M) are the 1\1 memory patterns. x and x ' a re the current and the 

next state patterns of the system, respectively, and sgn is the threshold function, which 

takes on the Yalue +1 if its argument is nonnegative, and -1 otherwise. 

'Ve addressed, in particular, the case when f is of the exponentiation form, namely, 

when the evolution equation is 

x' (5 .2) 
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and a is a constant greater than unity. The new exponential correlation associative 

memory (ECAM) possesses a very large storage capacity, whlch scales exponentially 

with the length of memory patterns (1). Furthermore, it has been shown that ECAM is 

asymptotically stable in both synchronous and asynchronous updating modes. 

The ECAM chlp we designed is programmable; that is, one can change the set of 

memory patterns of that associative memory at will. To perform an associative recall, 

one first loads a set of memory patterns onto the chip. The chip is then switched to the 

associative recall mode, and an inpu t pattern is presented to the ECAM chip. The ECAM 

chip then computes the next state pattern according to Equation (5.2) and presents it 

at the output port of the chlp. The components of the next state patterns appear in 

parallel, after the internal circuits have settled, at the output port. Feedback is easily 

incorporated by connecting the output port to the input port. In thls case, the ECAM 

chip will cycle until a fixed point is reached. 

In this chapter, we first describe a VLSI implementation of ECAM, present the 

testing results of the ECAM chip, compare the error correcting performance of the real 

chip and that of a simulated ECAM, and finally demonstrate the speed and capability 

of the ECAM chip by utilizing it in performing vector quantization on binary images. 

5.2 Circuit D esign of the Static RAM 

Because of the need for remembering and changing memory patterns of the associative 

memory, the ECAM chip is built on top of a basic RAM structure. We first elucidate 

the RAM structure, and then describe associative recall circuits as well as input/outp ut 

peripheral circuits. The static RAM consists of three major components, whlch will be 

described in the following subsections. 
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bit bit 

word 

Figure 5.1: A six-transistor static random access memory cell 

5.2.1 Memory Cell 

A six-transistor static RAM cell is chosen as the memory cell used in the ECAM chip 

because it requires least peripheral con trol and because it is most reliable. The RAM 

cell consists of two coupled inverters holding one bit of information . This bit can be 

accessed by dual-rail bit lines through two NMOS t ransistors controlled by a word line 

(see Figure 5.1). If a cell is not being accessed, the word line that controls that cell 

remains Low; hence the cell is isolated from the two bit lines. Even with t he presence 

of leakage current, information is preserved by the feedback configuration of a coupled 

inverter pair. Also note that both the cell's information bit and its complement are 

available to other circuits. 
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Voo 

bit f bit 

~ VouT 

VIN1 VIN2 

READ 

Figure 5.2: Circuit diagram of the sense amplifier used in the ECAM chip 

5.2.2 Sense Amplifier 

We choose a simple differential amplifier as the sense amplifier used in the ECA~l chip [6, 

2] (see Figure 5.2). This amplifier, albeit simple, has been shown, by SPICE simulation, 

to be good enough for this particular application . 

In Figure 5.2, Q5 works as a current source activated by the signal "READ." If 

VINl is higher than Vt~2, then the gate-to-source voltage of Q3 is larger than the gate

to-source voltage of Q4. Therefore, Q3 will sink more current than Q4. ~1oreoYer, the 

sum of the drain currents in Q3 and Q4 equals the drain current in Q5 and is fixed. 

Consequently, if VINl is sufficiently higher than VIN2, Q3 sinks ;t current orders of 

magnitude larger than Q4 does, and Q-! is effectively cut off. Since Q 1 and Q2 have the 

same gate-to-source voltage, the drain-to-source voltage of Q2 must be near zero; i. e., 
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word 

Figure 5.3: Circuit diagram of the row decoder used in the ECAU chip 

VouT will be near Voo. On the other hand, if VIN2 is sufficiently higher than VtNl, 

then the gate-to-source of Q4 is higher than that of Q3. Therefore, Q4 will sink most 

current that passes through the current source transistor Q5. Also, since Ql and Q2 

have the same gate-to-source voltage, the drain-to-source voltage of Q2 must be large 

and VouT must be near GND. In conclusion, we see that if VINl is sufficiently higher 

than VI:"< 2, then V oUT will be V D D; if the reverse is true, Vo UT will be G No . 

5.2.3 Row Decoder 

We choose a static NAND-NOR type decoderfor row decoding [7] because of its reliability 

and ease of implementation (see Figure 5.3). The associative memory chip is able to store 

32 memory patterns addressed by five address bits {aO- a4). The output of a row decoder 

goes to a word line driver, which provides the signal that controls the transmission gates 

in the memory cells. 
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word line bit line reading "1" reading "0" 
driver size driver size writing "0" writing "1" 

Tr(ns) Tw(ns) Tr(ns) Tw(ns) 

x4 x4 19.4 13.5 11.8 14.1 
x4 x8 19.0 11.6 11.8 12.0 
x4 x16 19.2 11.0 11.9 11.0 
x8 x4 14.8 13.5 11.5 14.3 
x8 x8 14.8 11.6 11.3 12.0 
x8 x16 14.3 11.0 11.4 11.0 
x16 x4 11.0 13.5 11.3 13.9 
x16 x8 11.2 11.6 11.3 12.0 
x16 x16 10.9 11.0 11.3 11.0 

Table 5.1: Read time (Tr) and write time (Tw) of the static RAM with various driver 
sizes obtained from SPICE simulation 

5.3 SPICE Simulation Results of the Static RAM 

In order to determine the ratio of the sizes of global line drivers and transistors in memory 

cells, we conduct extensive SPICE simulation on relevant circuits. Table 5.1 illustrates 

the access times during reading and writing for various driver sizes and minimum size 

transistors in memory cells. 

The first thing one notices is that the size of word line drivers does not affect the 

write access time (Tw) significantly in both cases. This is because in the simulation a 

read-modify-write cycle is simulated; therefore, the two transmission gates controlled by 

the word line are already closed before a write operation begins. 

In a read operation, as soon as the signal "READ" rises, the current source transistor 

is turned on and starts sinking current. This pulls the ou tput of the sense amplifier down 

before the amplifier even has a chance to sense the difference between the two bit lines. 
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current source reacting "1" reacting "0" 
transistor size writing "0" writing "1" 

Tr(ns) Tw(ns) Tr(ns) Tw(ns) 

x1 14.8 11.6 11.5 12.1 
x2 19.4 11.7 10.5 12.1 
x3 20.2 11.8 10.1 12.1 

Table 5.2: Read time (Tr) and write time (Tr) of the static RAM with various current 
source sizes obtained from SPICE simulation 

Consequently, when reacting a "0," the word line driver size bas almost no influence on 

read access time (Tr ). But when reacting a "1," Tr decreases as the word line drivers get 

bigger because the bigger the word line drivers, the sooner the transmission gates close 

and the sooner the sense amplifiers produce valid output. As for the bit line drivers, 

making them bigger decreases Tw a.nd a.t the same time increases Tr slightly. Bigger 

bit line drivers mean more load for the pull-up transistors in the memory cells, which 

in turn slows down the operation of the sense amplifiers and thus induces longer read 

access time. 

We decide to balance the effects of these two parameters a.nd choose a. configuration 

that makes both Tr a.nd Tw sma.ll enough without occupying too much silicon rea.l estate. 

The transistors in the word line drivers a.nd bit line drivers a.re ma.de 8 times as wide as 

the minimum size transistor, i.e., 32-X wide and 4-X long in the scalable CMOS technology. 

Also, the pull down transistors in memory cells a.re of minimum size so tha.t as many 

cells as possible ca.n be put on the chip. 

We a.lso look into the effects of varying the size of the current source transistors 

in the sense amplifiers. Referring to Table 5.2, one notices that making current source 

transistors bigger does not produce any significant improvement. When the current 
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source is made twice as strong, Tr decreases when reading "0" and increases when reading 

"1." This is because once the current source is turned on, the current flowing through 

the current source transistor brings the output of the sense amplifier low. Therefor, 

bigger current source means larger current, more voltage drop at the output , and longer 

time to read "1." We therefore decide to have all current source transistors of minimum 

sJZe. 

5 .4 D esign of A ssociative R ecall Circuits 

In this section, analog computation circuits implementing the ECAM evolution equation 

for associative recall are described. From the evolution equation of ECAM, we notice 

that there are essentially three circuits that need to be designed in order to build an 

ECAM chip. They are: 

• < u (k), x>, the correlation computation circuit; 

M 

• L a<u<k>, x> u (k), exponentiation, multiplication and summing circuit ; 
k=1 

• sgn(-), the threshold circuit. 

Now let us describe each circuit , present its design and simulation results , and 

finally integrate all these circuits to get the complete design of an ECAM chip. 

5.4.1 C or relation C omput at ion C ircuit 

In Figure 5.4. we illustrate a voltage-divider type circuit consisting of NMOS transistors 

working as controlled resistors (linear resistors or open circuits). This circuit computes 

the correlation between the inpu t pattern x and a memory pattern u (k). If the ith 
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Figure 5.4: Circuit diagram of the correlation computation circuit in the ECAM chip 
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components of these two patterns are the same, the corresponding XoR gate outputs a 

"0" and there is a connection from the node V~ to Va s ; otherwise, there is a connection 

from V~ to GND. Hence the output voltage will be proportional to the number of 

positions at which x and u(k) match. The maximum output voltage is controlled by 

an externally supplied voltage Vas. Normally, Vas is set to a voltage lower than the 

threshold voltage of ·.\!lOS transistors (VTH) for a reason that will be explained later. 

The conductance of an NMOS transistor in the ON mode is not fixed, but rather 

depends on its gate-to-source voltage and its drain-to-source voltage. Thus, some nonlin

earity is due to occur in the correlation computation circuit. A correlation computation 

circuit with N = 64 is simulated by SPICE. In Figure 5.5, we illustrate the SPICE output 

voltage V~ and the ideal linear response, i.e., the case when ON transistors are replaced 

by linear resistors and OFF transistors by open circuits. As shown in Figure 5.5, there 

is only slight deviation from the ideal response throughout the whole operating range

from OV to Vas . Therefore, we feel that the proposed correlation computation circuit 

should be good enough for the ECAM chip. 

5 .4.2 E xponentiation, M ultiplication, and Summ ing C ircuit 

Figure 5.6 depicts a circuit that computes the exponentiation of V~~, the product of 

u~k) and the exponential, and the sum of all M products. 

The exponentiation function is implemented by an NMOS transistor whose gate 

voltage is V~. Since Vas, the maximum value that V~~ can assume, is set to be 

lower than the threshold voltage (VTH); the NMOS transistor is in the subthreshold 

region, where its drain current depends exponentially on its gate-to-source voltage [5]. 

If we temporarily ignore transistors controlled by u~k) or the complement of u~k), the 

current flowing through the exponentiation transistor associated with V~ will scale 

exponentially with V~. Therefore, the exponentiation function is properly computed. 
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Figure 5.6: Circuit diagram of the exponentiation, multiplication, and summing circuit 
in the ECAM chip 
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Since the multiplier u~k) assumes either +1 or -1, the multiplication can be easily 

done by forming two branches, each made up of a t ransmission gate in series with an 

exponentiation transistor whose gate voltage is V~~. One of the two transmission gates 

is controlled by u~k), and the other by the complement of u~k). Consequently, when 

u~k) = 1, the positive branch will carry a current t hat scales exponentially with the 

correlation of input x and the kth memory pattern u (k), while the negative branch is 

essen tially an open circuit , and vice versa.. 

Summation of M terms in the evolution equation is done by current summing. The 

final results are two currents It and Ii, which need to be compared by the threshold 

circuit to determine the sign of the ith bit of the next state pattern xi. 

5.4.3 Threshold Circuit 

The function of the threshold circuit is to generate Voo or GND, depending on whether 

or not It is greater than Ii. Thus, any differential amplifier is sufficient. Figure 5.7 

depicts the top half of a simple differential amplifier, which can be integrated with the 

circuit in Figure 5.6 to decide xi. 

5.4.4 Putt ing It All Together 

In order for easy VLSI implementation, we design a. basic ECAM cell that realizes all 

aforementioned computation. The idea is to draw the correlation computation circuit 

and the exponentiation, multiplication, and summation circuit, and then extract a basic 

repeating block. This block, together with a RAM cell, makes up the basic ECAM cell 

as illustrated in Figure 5.8. The final design of an exponential correlation associative 

memory that holds M N-bit memory patterns can be obtained by replicating the basic 

ECAM cell in the horizontal direction M times and in the vertical direction N times. 
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Figure 5.7: Circuit diagram of the thresholding circuit in the ECAM chip 
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Figure 5.8: Circuit diagram of the basic ECAM cell 
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5 .5 AnaLOG Simulation R esults 

Before we proceed to lay out the design of ECAM and have it fabricated , some more 

simulation needs to be conducted. A functional simulator for neural VLSI systems -

"AnaLOG" [4) is used to simulate a.n M = N = 8 ECAM programmed with the following 

memory patterns : 

u (l) : -1 1 -1 -1 -1 1 -1 1 

u (2) : 1 -1 -1 1 -1 1 -1 1 

u (3) : 1 1 1 -1 - 1 -1 1 1 

u (4) : 1 1 1 -1 1 1 - 1 1 

u (s) : 1 -1 1 1 1 - 1 1 -1 

u (6) : 1 1 -1 -1 1 -1 -1 1 

u (7) : 1 1 -1 -1 1 1 1 1 

u (8) : 1 -1 - 1 -1 - 1 -1 -1 - 1 

Because of the memory and execution time constraints, only the first output bit is 

simulated; i.e., only circuitry that computes x~ is simulated (see Figure 5.9). The first 

input pattern is ( -1 -1 -1 1 - 1 1 -1 1), the second input pattern is the first with its 

second bit reversed, and the third input pattern is the same as the first (see how INPUT2 

in Figure 5.10 changes from -1 to 1 and to -1 again). For ease of comprehension, the 

correlations of the three input patterns with all eight memory patterns are listed below. 
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Figure 5.9: Circuit diagram of an M = N = 8 ECAM used in AnaLOG simulation 
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< u(l),x> 4 6 4 

< u (2),x > 6 4 6 

< uC3) x > , -4 -2 -4 

< u(4),x> -2 0 -2 

< u(5),x > -4 - 6 -4 

< u(6) x > , -2 0 -2 

< uC7) x > , -2 0 -2 

< u(8), x > 0 - 2 0 

In Figure 5.10, +1 is encoded as 5V, while - 1 as OV. Since the first components of 

all memory patterns except u (l) are +1, and u (2) is nearest the initial input pattern, one 

expects x~ = + 1 initially (Yo UT = 5V in Figure 5.10). Note that the correlation-matrix 

associative memory where f(t) = t will have an erroneous outcome in this case. Next, 

when the second component of the input pattern (INPUT2 in Figure 5.10) is switched 

to +1, u (l) becomes the nearest memory pattern. Even with u C2) also being near, x; 
still becomes -1 very quickly. Similarly, one sees that when INPUT2 is brought down to 

OV, VouT goes to 5V almost instantly. So, we are assured that the analog computation 

circuits for associative recall described in the previous section are functionally correct 

when they are used to build a small ECAM. 
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Figure 5.11: Block diagram of the ECAM Chip 

5 .6 T h e ECAM Chip and Testing R esults 

We have explained in detail the circuit design of the proposed ECAM chip; now we 

illustrate, in Figure 5.11, a block diagram of the complete ECAM chip, including ECAM 

cells, read/write circuit, sense amplifiers, row decoders, and I/ 0 multiplexers. 
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Figure 5.12: Microphotograph of the ECAM chip 

We start out by laying out the basic ECAM cell using the MAGIC VLSI design 

editor. The cell turns out to be 100-A by 140-A. A nonprogrammable (ROM type) ECAM 

cell is also designed, and it occupies only 32-A by 32-A. Then all other peripheral circuits , 

such as row decoders, multiplexers, etc. are laid out and simulated by the MOSSIM 

switch-level simulator. The complete chip is made up of 32 x 24 ECAM cells, which hold 

32 memory patterns each 24 bits wide. It is then sent to MOSIS for fabrication (see the 

microphotograph in Figure 5.12). 
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There are four groups of signals on the ECAM chip : 1) Input data bus (DINO -

DIN23), which contains 24 bits that carry either memory patterns to be stored or input 

patterns x working as probes to the associative memory; 2) output data bus (DouTO 

- DouT23), which contains 24 bits that carry either patterns stored in the RAM or 

the next state pattern x'; 3) two control signals (MooE/R and MODE/W, which are 

select signals to the input demultiplexers and output multiplexers and are responsible 

for switching between the programming mode and the associative recall mode; and 4) 

power and ground signals for digital circuits and analog circuits, and an external supply 

voltage for the correlation computation circuit (Vas). 

We have tested the ECAM chip using a specialized VME bus based host computer. 

Both the input data bus (DINO - DIN23) and the output data bus (DouTO - DouT23) 

as well as the two control signals are connected to 8255 programmable input/output 

chips. These 8255 chips are controlled by the host computer via a VME bus. The 

testing procedure is first to generate 32 memory patterns randomly and program the 

ECAM chip with these 32 patterns. Then pick a memory pattern and flip a specified 

number of bits randomly, and feed the resulting pattern to the ECAYI as an input pattern 

(x) . The output pattern (x') can then be fed back to the input side of the ECAM chip. 

This iteration continues until the pattern on the input bus is the same as that on the 

the output bus, at which time the ECAM chip has reached a stable state. We select 10 

sets of 32 memory patterns and for each set we run the ECAM chip on 100 trial input 

patterns with a fixed number of errors. Altogether, there are 1000 trials tested. 

In Figure 5.13, we illustrate the testing results of the ECAM chip. The number 

of successes is plotted against the number of errors in input patterns for the following 

four cases : 1) The ECAYI chip with Vas = 5V; 2) Vas = 2V; 3) Vas = 1V; and 4) 

a simulated ECAM with the constant in the exponentiation, a, equals 2. It is apparent 

from Figure 5.13 that as the number of error increases, the number of successes decreases, 

which is expected. Also, one notices that the simulated ECAM is by far the best one, 

which is again not unforeseen because the ECAM chip is, after all, only an approximation 
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of the ECAM model and thus will definitely do more poorly. What is really unexpected 

is that the best performance is given by the case when Vss = 2V instead of the case 

when Vss = 1V (VTH in this CMOS process) as we predicted. 

Thls phenomenon is actually the result of two contradicting effects brought about 

by increasing Vss. On the one hand, increasing VBB increases the dynamic range of 

the exponentiation transistors in the ECAM chip. Suppose that the correlations of two 

memory patterns u (l) and u (k) with the input pattern x are t1 and tk, respectively, where 

t1 > tk; then 

y(I) = t1 VBB 
we N ' 

(k) _ tk VBB 
Vux- N . 

Therefore, as VBB increases , so is the difference between v~ and v~~, and u (l) becomes 

more dominant than u (k) in the weighted sum of the evolution equation. Hence, as Vss 

increases, the error correcting ability of the ECAM chip should improve. On the other 

hand, as VBB increases beyond the threshold voltage, the exponentiation transistors 

leave the subthreshold region and might enter saturation, where the drain current is 

approximately proportional to the square of the gate-to-source voltage. Since a second

order correlation associative memory in general possesses a smaller storage capacity 

than an ECAM, one would expect that with a fixed number of loaded memory patterns , 

ECAM should have a better error correcting power than the second-order correlation 

associative memory does. In conclusion, two contradicting effects are going on as VBB is 

raised; one tends to enhance the performance of the ECAM chip, while the other tends 

to degrade it. A compromise of these two effects is reached, and the best performance 

is rendered when VBB = 2V as shown in Figure 5.13. 

In the case when VBB = 2V, the drain current versus gate-to-source voltage char

acteristic of the exponentiation transistors is actually a hybrid of a square function and 

an exponentiation function : At the bottom it is of an exponential form, and it grad

ually flattens out to a square function, once the gate-to-source voltage becomes larger 

than the threshold voltage. Therefore, the ECAM chip with Vss = 2V is a mixture 

of the second-order correlation associative memory and the pure ECAM. According to 
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Figure 5.13: Comparison of the ability to correct errors of the ECAM chip with different 
VBB and a simulated ECAM with a = 2 
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the convergence theorem for correlat ion associative memories and the fact that f in the 

ECAM crup with VBB = 2V is still monotonically nondecreasing, the ECAM ch.ip is still 

asymptotically stable in the synchronous updating mode even when VBB = 2V. 

5. 7 A V ector Quantization Example 

In order to measure the speed of the ECAM chip for real applications, we choose the 

binary image vector quantization as an example problem. Vector quantization is a means 

of data compression (source coding) on information to be transmitted or stored , e. g., 

speech waveforms, images, etc. [3]. In principle, a vector quantizer should, given a set of 

codewords and an input, find the nearest codeword to the input . Then only the index of 

the nearest codeword is transmitted or stored instead of the information itself. Usually, 

the nu mber of possible codewords is much less than that of possible information patterns; 

hence, vector quantization can reduce the bandwidth (number of bits) needed. 

The problem wh.ich the ECAM ch.ip solves is the binary image vector quantization 

problem, where pixels in the images are either black or wrute. At first input images are 

partitioned into 4 x 4 blocks, and each block is vector-quantized by the ECAM chip. A 

set of 32 codewords are chosen, and they correspond to all white, all black, horizontal 

edge, vertical edge, and diagonal edge blocks as shown in Figure 5.14. The ECAM 

chip is programmed with these codewords, and 4 x 4 blocks from a binary image are 

fed to the ECAM ch.ip. A reconstructed image is formed by replacing each block by 

its corresponding codeword. However, there are times when the output pattern of the 

ECAM chip is not a codeword (remember- there are many spurious stable states in any 

associative memory), in wh.ich case an all white block is generated instead. Figure 5.15 

and Figure 5.16 illustrate two original binary images and their ECAM chip reconstructed 

images. It is obvious that the quality of the reconstructed binary images is not as good 

as the originals, yet this is the price paid for reduced transmission or storage bandwidth. 
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Figure 5.14: 32 codewords used in binary image vector quanti zation 
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(a) 

(b) 

Figure 5.15: Comparison of (a) the original girl image and (b) the reconstructed girl 
image after vector quantization by the ECAM chip 
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(a) 

(b) 

Figure 5.16: Comparison of (a.) the original airplane image and (b) the reconstructed 
airplane image after vector quantization by the ECAM chip 
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One thing worth noting is the speed that the ECAM chip can vector-quantize 

these binary images. We find that the ECAM chip is capable of doing one associative 

recall operation in less than 3 J.LS (this includes the overhead for the ECAM chip to 

communicate with 8255 chips). This projects to about 28 ms for the 416 x 352 pixel 

girl image in Figure 5.15, or more than 30 images per second. For larger images, more 

ECAM chips can work together since each block is quantized independently. 

5.8 Conclusions 

In this chapter , we have presented a circuit design for implementing the exponential 

correlation associative memory proposed in Chapter four. In addition, a VLSI chip for 

this design is fabricated and tested. The performance of the ECAM chip is shown to 

be almost as good as a simulated ECAM. Finally, the speed of the chip is measured 

by employing it to do vector quantization on binary images. And it is found that the 

ECAM chip can process binary images in real time, i.e., faster than 20 - 30 images every 

second. In conclusion, we believe that the ECAM chip provides a fast and efficient way 

for solving associative recall problems and minimum distance classification problems. 
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