
PATTERN CLASSIFICATION AND ASSOCIATIVE

RECALL BY NEURAL NETWORKS

Thesis by

Tzi-Dar Chiueh

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1989

(Submitted May 24, 1989)

-u-

To MY BELOVED PARENTS A D MY DEAREST VVIFE

-iii-

Acknowledgements

The author would like to express his gratitude to Professor Rodney M. Goodman

for his guidance and interest in this work. Many helpful a.nd stimulating discussions

with Amir Atiya a.nd John Miller are a.lso acknowledged. Tha.nks are a.lso due to Patrick

Smythe, Sean Coffey, Kathleen Kramer, and Chi-Cha.o Cha.o. The author acknowledges

fina.ncia.l support of two teaching assistantships a.nd various research assistantships from

the Institute.

Last, but not least, the author wishes to gratefully acknowledge his parents Mr. C.

M. Chiueh a.nd Ms. Y. J . W. Chiueh, a.nd his wife Jill J . H. Wang for their encouragement

and support during his period of residence at the Institute.

-IV-

Abstract

The first part of this dissertation discusses a new classifier based on a multilayer

feed-forward network architecture. The main idea is to map irregularly-distributed pro­

totypes in a classification problem to codewords that are organized in some way. Then

the pattern classification problem is transformed into a threshold decoding problem,

which is easily solved using simple hard-limiter neurons . At first we propose the new

model and introduce two families of good "internal representation" codes . Then some

analyses and software simulation concerning the storage capacity of this new model are

done. The results show that the new classifier is much better than the classifier based

on the Hopfield model in terms of both the storage capacity and the ability to classify

correlated prototypes.

A general model for neural network associative memories with a feedback. struc­

ture is proposed . Many existing neural network associative memories can be expressed

as special cases of this general model. Among these models, there is a class of asso­

ciative memories, called correlation associative memories, that are capable of storing

a large number of memory patterns. If the function used in the evolution equation is

monotonically nondecreasing, then a correlation associative memory can be proved to

be asymptotically stable in both the synchronous and asynchronous updating modes.

Of these correlation associative memories, one stands out because of its VLSI imple­

mentation feasibility and large storage capacity. This memory uses the exponentiation

function in its evolution equation; hence it is called exponential correlation associa­

tive memory (ECAM) . It is further proved that the storage capacity of ECAM scales

-v-

exponentially with N (the number of components in memory patterns) when N ap­

proaches infinity. A programmable ECAM chip is designed, simulated, fabricated, and

then tested. The performance of the ECAM chip is shown to be not much worse than that

of a computer-simulated ECAM model in terms of error correcting ability (attraction

radius). Finally, the speed of the prototype ECAM chip is demonstrated by employing

it to do vector quantization on binary images. And it is found that the ECAM chip can

process binary images in real time.

- vi-

Contents

Acknowledgements . 111

Abstract . 1v

List of Figures . Xl

List of Tables . XlV

0 Overview 1

1 Pattern C lassifiers and Associative Memories 7

1.1 Introduction . 7

1.2 An Introduction to Pattern Classifiers . 8

1.3 Design and Implementation of Pattern Classifiers 10

1.3.1 Supervised Parametric Methods 12

1.3.2 Supervised Nonparametric Methods 14

- Vll-

1.3.3 Unsupervised Methods 16

1.4 An Introduction to Associative Memories 18

1.5 Neural Network Implementation of Associative Memories 20

1.5.1 Fully-Connected Neural Network Models 21

1.5.2 Correlation Associative Memories 24

1.5.3 Coded Associative Memory . 26

1.6 Discussions . 28

1.6.1 Relationship Between Pattern Classifiers and Associative Memories 28

1.6.2 Winner-Take-All Circuits . 29

References . 31

2 A Two-Layer Feed-Forward Network C lassifier Based on Coding The-

ory 38

2.1 Introduction . 38

2.2 Transform Techniques . 45

2.3 Codes . 47

2.4 Overall Classifier Structure . 48

- vi.H -

2.5 An Example Using the Hadamard Matrix Code 49

2.6 Performance Analysis . 52

2.7 Simulation Results and A Character Recognition Example 55

2.8 Conclusions . 63

References . 64

3 A General Model for Neural Network Associative Memories 66

3.1 Introduction . 66

3.2 The General Model . 67

3.3 Kanerva. Memory 69

3.4 BMW Associative Memory 71

3.5 Hamming Network Associative Memory 73

3.6 Spectral Associative Memory and Pseudoinverse Associative Memory . . . 74

3.7 Correlation Associative Memories . 76

3.8 Conclusions . 76

Appendix 3.A Asymptotic Stability of Kanerva Memory and BMW

Memory 77

- IX-

References . 81

4 Correlation Associative Memories 82

4.1 Introduction . 82

4.2 A Model for Correlation Associative Memories 83

4.3 The Convergence Property of CAMs . 87

4.4 The Capacity and the Attraction Radius of ECAM 88

4.5 Simulation Results . 92

4.6 Conclusions . 93

Appendix 4.A Proof of the Convergence of CAMs 97

Appendix 4.B Proof of the Capacity Results of ECAM. 99

References 105

5 VLSI Implementation of ECAM 107

5.1 Introduction 107

5.2 Circuit Design of the Static RAM 108

5.2.1 Memory Cell 109

-x-

5.2.2 Sense Amplifier 110

5.2.3 Row Decoder 111

5.3 SPICE Simulation Results of the Static RAM 112

5.4 Design of Associative Recall Circuits 114

5.4.1 Correlation Computation Circuit 114

5.4.2 Exponentiation, Multiplication, and Summing Circuit 116

5.4.3 Threshold Circuit 119

5.4.4 Putting It All Together 119

5.5 AnaLOG Simulation Results 121

5.6 The ECAM Chip and Testing Results 125

5.7 A Vector Quantization Example 130

5.8 Conclusions 134

References . 135

-xi-

List of Figures

1.1 Block diagram of a typical pattern recognition system 9

1.2 Architecture of classifiers based on the discriminant function method . . . 11

1.3 A model of associative memories . 19

1.4 A fully-connected neural network . 21

2.1 Comparison of the minimum Hamming distance classification problem and

the error correction decoding problem . 39

2.2 A matched filter type classifier . 41

2.3 A classifier based on the Hopfield memory 42

2.4 Structure of the proposed classifier . 43

2.5 Overall architecture of the new neural network classifier 50

2.6 Comparison of performance of the Hopfield-memory-based classifier and

the new classifier for N = 63 57

-xii-

2.7 Comparison of performance of the Hopfield-memory-based classifier and

the new classifier for N = 127 . 58

2.8 Effects of using codes of different lengths 60

2.9 The character recognition example with 10% pixel flipping probability in

the input . 61

2.10 The character recognition example with 20% pixel flipping probability in

the input . 62

3.1 Configuration of the Kanerva memory . 70

4.1 Architecture of correlation associative memories 84

4.2 Attraction radius (p = rf N) vs. number of loaded memory patterns (M) . 94

4.3 Number of loaded memory patterns (M) vs. attraction radius (1·) with

N = 32 95

4.4 Number of loaded memory patterns (M) vs. attraction radius (r) with

N = 64 96

5.1 A six-transistor static random access memory cell 109

5.2 Circuit diagram of the sense amplifier used in the ECAM chip 110

5.3 Circuit diagram of the row decoder used in the ECAM chip 111

5.4 Circuit diagram of the correlation computation circuit in the ECAM chip 115

- xili-

5.5 Comparison of the output voltage of a SPICE simulated correlation com-

putation circuit with N = 64 and the ideal response 117

5.6 Circuit diagram of the exponentiation, multiplication, and sumrnlng cir-

cuit in the ECAM chip 118

5.7 Circuit diagram of the thresholding circuit in the ECAM chip 120

5.8 Circuit diagram of the basic ECAM cell 120

5.9 Circuit diagram of an M = N = 8 ECAM used in AnaLOG simulation .. 122

5.10 AnaLOG simulation results of an M = N = 8 ECAM 124

5.11 Block diagram of the ECAM Chip 125

5.12 Microphotograph of the ECAM chip 126

5.13 Comparison of the ability to correct errors of the ECAM chip with different

VBBS and a simulated ECAM with a = 2 129

5.14 32 codewords used in binary image vector quantization 131

5.15 Comparison of (a) the original girl image and (b) the reconstructed girl

image after vector quantization by the ECAM chip 132

5.16 Comparison of (a) the original airplane image and (b) the reconstructed

airplane image after vector quantization by the ECAM chip 133

- xiv-

List of Tables

5.1 Read time (Tr) a.nd write time (Tw) of the static RAM with various driver

sizes obtained from SPICE simulation 112

5.2 Read time (Tr) a.nd write time (Tr) of t he static RAM with various current

source sizes obtained from SPICE simulation 113

-1-

Chapter 0

Overview

The resurgence of neural network research in these past few years has been phenomenal.

Many researchers have done much investigation on neural networks with a view to using

them for solving difficult problems, such as diagnosis, prediction, motor control, pattern

classification, combinatorial optimization, associative recall, etc. In this dissertation, by

"neural networks" we mean massively parallel, analog computation systems consisting

of simple processors (neurons) together with certain construction methods for system

parameters, such as connection weights among neurons and thresholds of neurons. We

are interested in analog computation systems primarily because we feel that most po­

tential applications of neural networks are those problems that require fast, yet fuzzy

computation , which is just what analog computation systems can provide.

Of the many promising applications of neural networks, we are particularly inter­

ested in pattern classification and associative recall. T he simplest form of the pattern

classification problem is the minimum distance classification problem, i. e., the problem

when conditional probability distributions of all classes are assumed to be multivariate

Gaussian and all features uncorrelated. This problem has a very close tie with the as­

sociative recall problem because in both cases one needs to find the nearest prototype

(memory pattern) to the input according to some distance measure. T hese two prob­

lems have attracted much attention for a few decades, and there has already been much

-2-

success in solving them by digital computers. Still, we want to explore neural network

approaches of solving these two problems because we believe that with the speed and

hardware efficiency of massively parallel, analog computation systems, pattern classifi­

cation and associative recall can be done more effectively.

Hopfield proposed an innovative neural network model as an associative memory;

however, it has been reported that his model has some major handicaps - limited

storage capacity and excessively large hardware complexity. Since then, many attempts

have been made to remedy these drawbacks. Nevertheless, many of these new models

e. g., potential function associative memory, were designed without consideration of

implementation issues, so that building such models becomes a formidable challenge.

Therefore, most of them were only simulated by computer program and were never

realized in hardware (optics or silicon). But as just mentioned, the expedition of analog

computation is one of the most important reasons that make neural network approaches

appealing; we thus feel that any good neural network model must be suitable for efficient

hardware realization.

The first part of this dissertation discusses a new classifier based on a multilayer

feed-forward network architecture. The main idea is to map irregularly-distributed pro­

totypes in a classification problem to codewords that are organized in some way. Then

the pattern classification problem is transformed into a threshold decoding problem,

which is easily solved using simple hard-limiter neurons. At first we propose the new

model and introduce two families of good "internal representation" codes. Then some

analyses and software simulation concerning the storage capacity of this new model are

done. The results show that the new classifier is much better than the classifier based

on the Hopfield model in terms of both the storage capacity and the ability to classify

correlated prototypes.

A general model for neural network associative memories with a feedback structure

is proposed. Many existing neural network associative memories can all be expressed as

-3-

special cases of this general model. With this model, new associative memories suitable

for implementation in other technologies can easily be introduced. A class of associa­

tive memories, called correlation associative memories (CAM), can also be expressed as

instances of this general model. It is also proved that if the function used in the evo­

lution equation of a particular CAM is monotonically nondecreasing, then that CAM is

asymptotically stable in both synchronous and asynchronous updating modes.

Of these correlation associative memories, one stands out because of its VLSI im­

plementation feasibility and large storage capacity. This memory uses the exponentiation

function in its evolution equation; hence, it is called exponential correlation associative

memory (ECAM). Furthermore, it is proved that ECAM has a storage capacity that

scales exponentially with N (the number of components in memory patterns) when N

approaches infinity. A programmable ECAM chip is designed, simulated, fabricated, and

then tested. We find that the performance of the ECAM chip is almost as good as that

of a computer-simulated ECAM system in terms of attraction radius. Finally the speed

of the chip is measured by applying it to executing vector quantization on binary images.

And it is found that the ECAM chip is so fast that it can process binary images in real

time.

Chapter one serves as a summary of a comprehensive literature survey about tra­

ditional (digital sequential computer) and neural network approaches of pattern classifi­

cation and associative recall. As mentioned earlier, we are interested in neural network

approaches because we want to take advantage of the speed and hardware efficiency of

analog computation systems. The fir st half of Chapter one reviews the general status of

computer algorithms for pattern classification; corresponding neural network approaches

are also discussed whenever possible. The second half of Chapter one reports a survey

of existing neural network associative memory models. In the last section of Chapter

one, we discuss the relationship between a minimum distance pattern classifier and an

associative memory, and we show how one can be built from the other. Furthermore,

we give an account of drawbacks of existing winner-take-all circuits, which many re-

-4 -

searchers considered a. good solution to pattern classification problems and associative

recall problems.

In Chapter two, we suggest a. new neural network classifier based on a feed-forward

network with one hidden layer. The idea is to specify a. set of "good" internal represen­

tations (activations of the hidden neurons) instead of using ba.ckpropagation to generate

them. The motivation of this new classifier comes from the observation that, except for

how the prototypes (codewords) are generated, minimum distance classification problems

are similar to decoding problems in the error correcting code paradigm. In error correct­

ing code problems, codewords are designed with a. view to fast and simple decoding, while

the prototypes in pattern classification problems are not designed and are distributed in

the feature space randomly. Consequently, if one can map the prototypes in the feature

space to codewords (internal representations) in the code space, the minimum distance

classification problem becomes a. simple decoding problem.

The new classifier uses the connection matrix from the input layer to the hidden

layer to perform the mapping from the feature space to the code space. The connection

weight matrix from the hidden layer to the output layer is responsible for threshold

decoding. We propose two families of good codes for this new classifier - the maximal­

length sequence codes and the Hadamard matrix codes. The storage capacity of the

new classifier is shown to be larger than 0.22N, where N is the number of bits in stored

prototypes. We also run some simulation and find that the new classifier is much better

than a. classifier based on the Hopfield model when it comes to storage capacity and the

ability to classify correlated prototypes.

In Chapter three, we introduce a. general model for neural network associative

memories with feedback structure. This general model subsumes most neural network

associative memories with feedback architecture reported in Chapter one. It is based on

an algorithm similar to the election process in political systems. At any timestep, the

associative memory has a. state, which is an N -bit binary pattern. To find the state of

-5-

the next timestep, weighting functions fk 's defining the strengths of memory patterns

are computed. Then a weighted sum of all memory patterns is calculated, and a decision

is made to determine the polarity of each component in the next state pattern. This is

not unlike a political election process, in which each city (component) has many political

groups (memory patterns), each group has a different number of voters (strength or value

of the weighting function) and party (polarity), and the next assembly (state pattern)

is determined by holding a local election in all cities. We choose four models - the

Kanerva memory, the BMW memory, the Hamming network associative memory, and

the spectral associative memory as examples. And we show that, with proper choice

of weighting functions , they can all be expressed as special cases of the general model.

Moreover, the Kanerva memory and the BMW model are proved to be asymptotically

stable provided that some strong assumptions are made.

Chapter four deals with correlation associative memories (CAMs) in general and

the exponential correlation associative memory (ECAM) in particular. Correlation asso­

ciative memories are models whose weighting functions depend only on some correlation

measures of stored memory patterns and the state pattern of the system. We show

that CAMs are also special cases of the general model in Chapter three. Furthermore,

we prove that they are asymptotically stable in both synchronous and asynchronous

updating modes if their weighting functions are monotonically nondecreasing.

In the second half of Chapter four, we concentrate on the exponential correlation

associative memory, whose weighting functions fk 's are of the exponential form. We feel

that ECAM is most amenable to VLSI implementation, since MOS transistors exhibit

an exponential characteristic between the drain current and the gate-to-source voltage

in the subthreshold range. We proved that for an ECAM with N -bit memory patterns,

more than eN memory patterns can be stored as N approaches infinity. The constant c

is a parameter that depends on the recall error probability, the percentage error in the

input patterns, and the base constant of the exponentiation function . However, it is to

be noted that to build an ECAM storing exponential number of memory patterns, one

-6-

also needs exponential hardware complexity.

A more important result is that for sufficiently large input percentage error, ECA:M

can store as many memory patterns as is allowed by the sphere-packing bound in infor­

mation theory (2N(l-1i(p)), where pis the input percentage error). We also consider the

case when the exponentiation circuits of ECAM have limited dynamic range. It turns out

that the storage capacity will then be proportional to the dynamic range. This finding

is not necessarily discouraging in that the same conclusion about the high-order CAM

has been reached. Finally, we present some computer simulation results showing that

the previous theoretical predictions about the storage capacity of ECAM are valid even

when N is less than 100.

In Chapter five, we are concerned with VLSI implementation of ECAM. The chip

we design is a programmable associative memory chip based on the ECAM model. In

t he first part of the chapter, the design of a static RAM, which holds the informa­

t ion of stored memory patterns, is given. Next, analog computation circuits performing

associative recall function are described. These circuits include 1) the correlation com­

putation circuit; 2) the exponentiation, multiplication, and summing circuit; and 3) the

t hresholding circuit.

Next, we present the layout and the t esting results of the ECAM chip. The final

design of the ECAM chip is capable of storing 32 pa tterns, each 24 bits wide. After

comprehensive testing, it is found that the ECAM chip fares almost as well as a computer­

simulated ECAM with the base in the exponentiation function equal to two. As an

application, we use the ECAM chip to solve the vector quantization problem of binary

images, and we find th at reconstructed images have fairly good quality. What is more

important is that the ECAM chip can process images at a very high rate, more than 20

i mages per second.

-7-

Chapter 1

Pattern Classifiers and Associative

Memories

1.1 Introduction

This chapter serves as the digest of a. comprehensive literature survey about traditional

(digital sequential computer) and neural network approaches of pattern classification

and associative recall. We are interested in neural network approaches because of the

speed and hardware efficiency provided by massively parallel, analog computation neural

systems. The first half of this chapter describes the general status of how pattern clas­

sification is done by digital computer algorithms. Also, corresponding neural network

approaches are introduced whenever possible. The second half of this chapter reports a.

survey of existing neural network associative memory models. Some traditional meth­

ods of doing associative recall, e. g., hash coding and its variations, are not discussed

because they are not suitable for neural network implementation. In the last section,

we discuss the relationship between a. pattern classifier and an associative memory and

show how one can be built from the other. Also, we give a.n account of the drawbacks of

existing winner-take-a.ll circuits, which many researchers claimed to be a. viable solution

to pattern classification problems and associative recall problems.

-8-

1.2 An Introduction to Pattern Classifiers

Pattern recognition is one of the most important subjects in information processing

systems. It has application in various different areas, such as radar signal recognition,

speech recognition, voice identification, production-line inspection, handwritten digit

(character) recognition, medical diagnosis, sonar signal detection, vector quantization,

and so on (52]. Because of its widespread usage, pattern recognition has received a

great deal of attention during the past few decades. However, the problem itself, in its

most general form, is "ill-defined" and thus is very hard. By "ill-defined problems," we

mean problems whose answers are not definitive, such as pattern recognition problems or

"Who is the best player in the National Basketball Association?" Consider the following

handwritten digit recognition problem. A symbol that looks like a "4" as much as a "6"

is presented to a digit recognition system, then that system is asked to make a decision.

How then will the performance of this system be determined ? Obviously, the answer lies

in the opinions of those involved in judging this system. Since each different individual

has a different perception of what a "4" or a "6" should look like, it will be very difficult,

if not impossible, to reach a consensus. Hence, a definitive performance measure of

pattern recognition systems is hard to come by, and we say that the pattern recognition

problems are ill-defined.

We will, in this dissertation , regard patterns as vectors of real numbers, which are

measurements of physical quantities in some environment. Examples of patterns are :

arrays of pixels (picture elements), sampled speech waveforms, symptoms of patients, etc.

Figure 1.1 illustrates a typical pattern recognition system, which consists of four major

components [14, 16]. The data-acquisition block is responsible for capturing signals from

the outside environment and converting them to a form that can be further processed

by the following components in the pattern recognition system. For instance, a camera

is an appropriate device for acquiring images in a production-line inspection system,

while a microphone is the proper choice for converting speech to electrical signals in

a voice identification system. Generally speaking, the amount of information in the

physical
signals

.. .. Data
Acquisition

cap tured
patterns

... Feature ..
Extractor

- 9 -

feature
vectors

.. ..

class
indices

Classifier
... O u tput

Device

Figure 1.1: Block diagram of a typical pattern recognition system

...

patterns is usually too enormous to allow real-time processing. In addition, there is

much redundancy in the patterns. As a result, most pattern recognition systems adopt

an approach called feature extraction to condense the information conveyed in an input

pattern to an N-dimensional feature vector. After this stage, the classifier then works

on the feature vector and determines which category the input pattern belongs to. The

index of that category is then passed on to the output device, which manipulates the

decision and displays it in some format.

The design of any pattern recognition system must take into account the construc­

tion of its feature extractor and classifier. Very often, the efficiency of one has much

influence on the other. For example, if a feature extractor can generate a feature that is

exactly the class index of an output pattern, then no classification is necessary and the

recognition is done. On the other hand, if a classifier is so powerful that it can process

an enormous amount of information and make the right decision relying solely on input

patterns, then that pattern recognition system can do without a feature extractor. As

a matter of fact, the design process of a pattern recognition system usually involves

an iterative procedure, which goes back and forth improving the feature extractor and

the classifier until a satisfactory performance is attained. ~evertheless, feature extrac­

tion depends heavily on the specific problem at hand; therefore, we will concentrate on

classifier design only.

- 10-

Let us now formulate rigorously the problem of pattern classification. In a pattern

classification problem, inputs are N-dimensional feature vectors (for brevity, we call them

patterns), each feature is a real number, and there are M classes, C{l), C(2), · · · , C(M).

The goal of a classifier is to categorize input patterns to their "right" classes. To achieve

this goal, a classifier need information about intrinsic properties of all classes and in­

teractions among classes. Usually, it is assumed that each class has a conditional prob­

ability distribution over the sample space R N; i.e., there exist Pk(z) : R N ---* R , for

k = 1,2, ... ,M and

k = 1,2, ... ,M,

where R is the field of real numbers. Furthermore, since results for the equal a priori

probabilities case are easily generalized to the case when not all M a priori probabilities

are equal, input patterns are assumed to occur from these M classes with equal a priori

probabilities. In order to minimize the probability of making an incorrect classification,

the classifier first calculates Pk(x), fork = 1,2, . . . ,M, where xis the input pattern,

then finds the maximum of these M conditional probabilities , and categorizes the input

pattern to the class with maximum conditional probability. The above procedure for

finding the right class for an input pattern is called the Bayes decision rule. Unfortu­

nately, the conditional probability distributions P1(x), P2(x) , · · ·, PM(x) are usually not

known; therefore, the primary duty of a classifier designer is to estimate these condi­

tional probability distributions with the help of a set of sample input patterns drawn

from these M classes (training set).

1.3 D esign and Implementation of Pattern Classifiers

There has been extensive exploration of many pattern classifiers using the traditional

(digital computer) methods [7, 14, 15, 16, 20, 49, 59, 64). In this section , we will sum­

marize these traditional approaches for solving pattern classification problems and give

the corresponding neural network implementation whenever possible.

-11-

g (x)
1

g (x)
2

X • • MAX
feature •
vector ljf(x)

gN-l(x)

g (x)
N

Figure 1.2: Architecture of classifiers based on the discriminant function method

Before we present different types of pattern classifiers, let us introduce the idea

of discriminant function [14, 16]. Of the many ways to represent classifier designs, the

most common one is through a set of discriminant functions, 9k(x), k = 1, 2, ... , M , one

for each class. In classification systems based on discriminant functions (see Figure 1.2),

the classifier decides that the input pattern x belongs to class j if

V k = 1,2, ... ,M,and k :/; j . (1.1)

The design method of classifiers can be either supervised or unsupervised. The

former is the case when all sample patterns in the training set are labeled with the in­

dices of the classes they are drawn from, while in the latter case no labelin g is available.

Another dichotomy of classifier design methods is parametric versus nonparametric. In

parametric methods , it is assumed t hat the form of the conditional probability distribu-

- 12-

tions is known, and the designer has to estimate parameters of those distributions from

the training set. While in nonpara.metric methods, no knowledge about the conditional

probability distributions is assumed.

1.3.1 Supervised Parametric Methods

In a supervised, parametric classifier design method, not only the training set is labeled,

but also the form of Pk(x) is assumed to be known.

• Linear Classifiers

If Pk(x), k = 1, 2, ... , M are assumed to be multivariate Gaussian with identical

covariance matrix, and if all N features in input patterns are sta.tistica.lly uncor­

related, then finding the "right" class of a.n input pattern x becomes finding the

maximum of

9k(x) = - (J.Lk- x)t (J.Lk- x), k = 1, 2, ... ,M, (1.2)

where J.Lk is the mean feature vector ("prototype") of sa.mples labeled C(k) in the

training set.

Since the discriminant functions in Equation (1.2) can usually be expressed in linear

forms, these classifiers are usually called linear classifiers, correlation classifiers,

or template-matching classifiers [14]. Furthermore, since the discriminant function

is proportional to the square of the Euclidean distance between ILk and x , these

classifiers are also called minimum Euclidean distance classifiers. If the input

features are binary instead of real; i. e., when the input pattern space is B N =
{ -1, 1 }N, then these classifiers become minimum Hamming distance classifiers,

and gk(x) = - 4 dHam.ming(J.LJ., x). Linear classifiers can be realized by a. one-layer

neural network followed by a. winner-take-all circuit as suggested by Lippmann [39) .

-13-

• Quadratic Classifiers

If all M conditional probability distributions are multivariate Gaussian but with

different covariance matrices, then the discriminant functions become quadratic

and

k=1,2, ... ,M, (1.3)

where 'Ek is the covariance matrix of the set of samples labeled C(k). This type of

classifiers can be implemented by a one-layer, high-order neural network [17, 38)

followed by a winner-take-all circuit [39).

• Piecewise Linear Classifiers

When some Pk(x)'s are multimodal, it is desirable to use piecewise linear functions

as class boundaries. A discriminant function is said to be piecewise linear if its

output is obtained by a "max" operation [14). Suppose class C(k) has nk subclasses,

each with prototype J-Lkj, j = 1, 2, ... , nk; then the discriminant functions become

piecewise linear,

k = 1, 2, ... , M, (1.4)

This type of classifiers can be implemented by a one-layer, high-order neural net­

work [17, 38] followed by two layers of winner-take-all circuits.

• Classifiers with Internal Representation Codes

Since there are many drawbacks in winner-take-all circuits (for detail, see Sec­

tion 1.6), there has been much research on building classifiers without winner­

take-all circuits. We proposed a two-layer neural network classifier utilizing an

internal coding scheme that transforms minimum distance classification problems

to threshold decoding problems ([9); also see Chapter two). Various other models

taking advantage of coded internal representations have also been suggested, and

all of them showed satisfactory results [6, 27, 31).

- 14-

1.3.2 Supervised Nonparametric Methods

In thjs type of classifier design methods, no assumption is made on the form of the M

conditional probabilities; so different approaches are taken to design classifiers. In the

following djscussion, only the two-category case is discussed since the multicategory case

can be obtained by generalization.

• Perceptron with Perceptron Learning Rule

The archltecture of tills type of classifiers is a one-layer perceptron with one hard­

limiter neuron, whose output is "-1" if the activation level at the input is negative,

"+ 1" otherwise. The discriminant fu nction used is

g(x) = w t x. (1.5)

The coefficients in theN x 1 vector ware to be estimated from the t railling set in

such a way that for each X j labeled class C(l), wt X j > 0, and for each Xj labeled

class C(2), w t X j < 0, or equivalently, - wt X j > 0. Accordingly, if all samples

labeled C(2) in the training set are replaced by their negative counterparts, correct

classification on all samples in the training set is obtained if

for all x in the new training set. (1.6)

Rosenblatt proposed a way of successively updating the coefficients of w with a

view to satisfying the above inequality [55). It was also shown that this updating

procedure will eventually converge to a vector w 0 that satisfies the inequality in

Equation (1.6) as long as such a vector exists, namely, as long as sample patterns

of these two categories in the training set can be separated by a straight line

("Perceptron Convergence Theorem" [14, 47]).

- 15-

• Perceptron with Other Minimum Squared Error Procedures

Instead of the inequality in Equation (1.6), one can require that the following

equation be satisfied

(1.7)

where columns in X are samples in the training set and all components of y are

positive. Since the dimension of y is usually very large when compared to the

dimension of w, it is usually difficult to find a w that satisfies Equation (1. 7)

exactly. Therefore, a few methods minimizing the sum of squared errors have been

suggested, such as the pseudoinverse method [32, 33], Widow-Hoff procedure [67],

and Ho-Kashyap method [23]. These classifiers can all be realized by a one-layer

perceptron.

• Multilayer Feed-forward Neural Networks

Lippmann showed that a three-layer perceptron consisting of hard-limiter neurons

can produce class regions of any shape [39, 40, 27]. For the sake of applying

gradient descent, Rumelhart and his colleagues adopted neural networks made up

of neurons with sigmoidal response instead. They proposed a training algorithm

that is a gradient descent method minimizing a cost function - the sum of squared

output errors of all input-output pairs in the training set [56]. This procedure,

called error backpropagation or generalized delta rule, has been shown to provide

good performance in solving many different pattern recognition problems [1, 28,

35, 37, 40, 50, 60, 66, 68]. Nevertheless, there is one big disadvantage, which often

renders the backpropagation method awkward, if not useless : The amount of time

it takes to train a particular neural network is very long, and what's worse, as the

training_ set grows larger, the training time seems to grow faster than linear with

the training set size.

- 16 -

• Parzen Window Method and K-Nearest-Neighbor Method

In the Parzen window approach , the continuous probability distribution Pk(x) is

constructed by summing N-dimensional window functions centered a.t those posi­

tions where sample patterns from C(k) lie. These window functions approach the

N -dimensional Dirac delta function as the size of the window functions shrinks.

After all Pk(x)'s are constructed, Bayes decision rule can be applied to do classi­

fication. The problem with the Parzen window approach is that it requires a very

large training set in order to get satisfactory recognition performance.

As for the K-nearest-neighbor method, the formula. is : Given an input pattern x,

find the](nearest neighbors of x in the training set, then count the number of

nearest neighbors for each class, and categorize x to the class that has the largest

number of nearest neighbors. The main disadvantage of this method is that the

whole training set needs be stored during classification, which is very undesirable.

The Reduced (Restricted) Coulomb Energy (RCE) network proposed by a. group

led by Cooper [54, 58] is the neural network implementation of a variation of the

K-nearest-neighbor method.

1.3.3 Unsupervised Methods

The only difference between supervised learning and unsupervised learning is that in

unsupervised learning methods , patterns in the training set are not labeled. A simple

strategy for solving unsupervised classifier design problems is to apply clustering pro­

cedures to the training set and then form clusters of patterns so that all patterns in a.

cluster are close to one another in some similarity measure. All patterns in the training

set can be labeled; then a. supervised learning method can be applied to the newly labeled

training set. In this subsection, we will concentrate only on clustering techniques.

- 17-

• K -Mean Clustering Algorithm and ISODATA

The J(-mean clustering algorithm works as follows : At first, choose J(initial

cluster means randomly from the training set. Next, for each sample in the set,

find the nearest cluster mean in some similarity measure, label that sample with

the index of that cluster, and then compute the new cluster mean. The algorithm

terminates when all](means stay unchanged after one run through the training

set.

The ISODATA (Iterative Self-Organization Data Analysis Technique A) is similar

to the K-mean method, except that ISODATA employs more "heuristics," which

are results of experience gained through experimentation. With those heuristics,

ISODATA can merge, discard, or split clusters whenever necessary. Another varia­

tion of the J(-mean method is the Kohonen 's self-organizing feature map technique

[33], in which case means of neighboring clusters are also updated.

• Leader Clustering Algorithm

The leader clustering algorithm introduced here is a somewhat sophisticated version

of the original leader clustering method [22]. In the leader clustering algorithm,

an input pattern in the training set is presented to the classifier, the similarity

measures of this pattern with all cluster means are computed, and the cluster

with maximum similarity measure is activated, while all the other clusters are

suppressed. If the maximum similitrity measure is not large enough, create a new

cluster with the current input pattern as its cluster mean. Otherwise the input

pattern has to pass a "vigilance test," which checks how close the input pattern is

to the cluster mean of the activated cluster. If the input pattern fails the vigilance

test, it is checked for vigilance against the cluster with the next largest similarity

measure, etc. If the input pattern passes the vigilance test, the cluster mean of

that particular cluster is recomputed, taking the input pattern into account. The

algorithm then goes back to process the next pattern in the training set. This

- 18 -

algorithm is realized by the Adaptive Resonance Theory (ART) model introduced

by Carpenter and Grossberg [8, 21 , 45]. The major drawback of ART model is

that it can perform well with perfect input patterns, but even a small amount of

noise can cause problems [39].

• Other Clustering Techniques

There are various other interesting clustering techniques, such as the cluster seeking

algorithm, the maximin distance clustering method, hierarchical clustering algo­

rithms, graph theoretic clustering algorithms, and so forth [7, 14, 29, 64]. Since we

cannot find any neural implementation for them, we will not discuss them here.

1.4 An Introduction to Associative Memories

Memory plays a very crucial role in information processing of both biological organisms

and digital computers. In a system of the Von Neumann type, an "addressing" memory

(listing memory) works with a central processing unit in order to execute useful oper­

ations. By addressing memories, we mean memories whose data items are accessed by

providing their addresses. The Von Neumann model, albeit effective, has been known

to suffer from a bottleneck between the central processing unit and the system memory.

One of the reasons is that as the VLSI fabrication technology advances, t he speed of
(

CPUs has grown phenomenally, while commercial memory chips still cannot run as fast

as CP Us. For instance, the latest Intel 80860 can run at a speed of 40 MHz or 25 ns

cycle time, while commercial DRAM chips have a typical access time of about 80 ns.

Another factor is that as computers grow more powerful , more information goes through

the channel between the CPU and the system memory, so the channel becomes a bottle­

neck. The human brain, on the other hand , distributes processing among many simple

processors (neurons) , which process information in situ. Collectively, these processors

perform complicated functions, such as reasoning, mobile control, recognition, etc.

Input
Probe

~--

1 I-
I I

- 19 -

Associative
Memory

Output
Responese

I
I
I

I I I I I ----------- I

Figure 1.3: A model of associative memories

In Figure 1.3, we delineate a simple model for associath·e memories. Suppose a

set of M key-response pairs {(u (k), z(k)) } has been stored in the associative memory.

The function of the associative memory is : Given an input pattern x , find the nearest

key u (j) in some metric (similarity measure) and put out the corresponding response

z {i). There are, however, many possible metrics. The one most often used is Euclidean

distance if input patterns have real components and Hamming distance if input patterns

have binary components .

There are basically two different types of associative memories : autoassociative

memory and heteroassociative memory. The former refers to those associative memories

with identical key patterns and response patterns, i.e., u (k) = z(k), k = 1, 2, . .. , M, and

the latter otherwise. The dashed feedback path is desirable in autoassociative memory

system. With that path, the system need not generate a perfect recall at once. Instead,

it can first produce a partially correct response, feed it back to the input end as the key

to the system again, and im prove the response gradually through iteration to obtain a

complete recall.

-20-

In this dissertation, only autoassocia.tive memories will be explored. The reason for

this decision is twofold : 1) Any heteroassociative memory can be built by cascading a

look-up table to an appropriate autoassocia.tive memory and 2) a.utoassociative memories

are mostly systems with feedback loops and thus often exhibit more interesting behaviors.

1.5 Neural Network Implementation of Associative

Memories

Since associative recall is a vital aspect of human brain functions, it is no surprise that

neural network research has played a. major role in the study of associative memory.

Earlier neural network associative memory models can be found in various references

[3, 32]. Although many potential applications have been suggested and researched, these

models have neither drawn much attention nor made any major breakthrough. By the

time when digital computer technology started to take off, most attention was focused

on the "addressing" memory systems compatible with digital computers, e. g., RAMs,

ROMs.

It was not until 1982, when Hopfield [24] debuted his associative memory model,

which is based on the sum-of-outer-product construction rule and the energy-minimizing

principle, that neural network associative memories began to attract attention again.

Since then, many researchers have tried, with a certain degree of success, to improve

the Hopfield model with a view to overcoming the limited storage capacity problem. In

the remainder of this section, a review of important neural network associative memory

models will be presented. Before we proceed, let us define some terms : Let N be the

number of components in the patterns, M be the number of memory patterns stored in

the autoassociative memory, and u (l), u <2>, · ·. , u (M) be those memory patterns.

•
•
•

-21-

•••

T ..
1)

• ••

Figure 1.4: A fully-connected neural network

1.5.1 Fully-Connected Neural Network Models

This type of associative memories have N neurons, each of which is connected to the

other N - 1 neurons and possibly to itself through connection weights. The system's

evolution can be expressed in a discrete-time or a continuous-time formulation. For the

discrete-time formulation, the neurons can be either hard-limiter neurons or sigmoidal

neurons. Furthermore, there are two possible operation modes for the discrete-time

formulation : synchronous and asynchronous; the former case is when all N neurons

update themselves at the same time, and the latter is when one and only one neuron

updates itself in every iteration. Figure 1.4 illustrates the architecture of this type of

neural network associative memories. Most models differ from the others only in how

the connection weight matrix and thresholds are determined.

-22-

• Hopfield Model

This is by far the most popular model, for it can serve as an associative memory

[24, 25] as well as a quadratic optimization problem solver [26]. The connection

matrix T is constructed by the sum-of-outer-product method and

T := { I: u (k) u (k)' } - MI,
k=l

(1.8)

where I is the identity matrix. The system uses the discrete-time formulation,

hard-limiter neurons, and asynchronous updating. The evolution equation is

x' = sgn{Tx}, (1.9)

where x', x are the next and the current state pattern of the system .

A major handicap of the Hopfield model is its limited capacity. It has been re­

ported that only 0.15N patterns can be stored in the Hopfield memory with N

neurons for N between 30 and 100 [24). McEliece et al. [43] also proved that as

N approaches infinity, the capacity of the Hopfield model grows no faster than

Nj21ogN . Other drawbacks include: 1) N 2 connection weights are needed, and

2) the model converges to a stable state only in the asynchronous updating mode.

• Correlation-Matrix Associative Memory

Many researchers, through a couple of decades, have proposed a type of memory

called correlation-matrix memory or nonholographic memory [4, 5, 34, 46, 69).

At first , they are intended to be used as linear associators; namely, the neurons

are linear neurons without any nonlinearity. Most suggested models focused on

heteroassociative memories; however , Kohonen showed that it can be also used as

an autoassociative memory. T he correlation-matrix associative memory constructs

its connection matrix by the sum-of-outer-product rule except that, unlike the

Hopfield model, the diagonal is not zeroed. Gindi et al. (18] and Stiles and Denq

[63] have independently tried this connection matrix on a fully-connected network

-23-

with haxd-limiter neurons. Both groups found that the storage capacity of this

associative memory is approximately 0.15N, which is about the same as that of

the original Hopfield model. In addition, it can be shown that this associative

memory converges in both synchronous and asynchronous updating modes (see

Chapter four for detail).

• Pseudoinverse Associative Memory and the Spectral Meth od

Pseudoinverses of matrices are also called generalized inverses and they possess

many properties that true matrix inverses do [32, 33). However, they are more

general because a matrix can be nonsquaxe and it still have a pseudoinverse, while

a matrix must be square in order to have a true inverse. The connection weight

matrix for the pseudoinverse associative memory [32, 48) is defined as

T = u (utu)-1
U 1, (1.10)

where the kth column of U is the kth memory pattern u(k).

Venkatesh [65) generalized the pseudoinverse method and proposed a spectral

method, in which the "strength" of any memory pattern can be controlled by

adjusting the magnitude of the corresponding eigenvalue. Suppose that the M

memory patterns are to have strengths of A1 , A2, · · · , AM, respectively; then the

connection matrix is

(1.11)

where A is a diagonal matrix with entries A1, A2 , ···,AM in the diagonal. It was

also shown by simulation that the spectral method is better than the Hopfield

model in terms of the storage capacity and the ability to perform perfect recall.

Poggio [51] proposed a general nonlineax associative recall method, whose first

order approximation is the pseudoinverse method. However , the procedure is very

complicated and we will evade further discussion.

-24 -

• Associative Memory Trained by the Backpropagation

Kam et al. [30) offered another approach to building the connection matrix for a

fully-connected neural network. He proposed that the backpropagation learning

rule be used to generate the connection weights. In this scheme not only the

associative recall function can be performed but also regions of attraction of the

memory patterns can be controlled. He also claimed that this model has larger

attraction regions as well as a smaller number of spurious states than the Hopfield

model.

1.5.2 Correlation Associative Memories

By its definition , associative memory should produce, as its output, the nearest memory

pattern to the input pattern. The similarity measure used is often some distance :

Hamming distance for binary patterns and Euclidean distance for real patterns. In

the case of binary memory patterns and the case of real memory patterns with equal
\

distances to the origin, the previous two distance measures can both be replaced by the

ordinary correlation. The following binary associative memories all take advantage of

this fact and perform au toassociative recall by 1) calculating the correlations between

the input binary pattern and all M binary memory patterns; 2) applying certain function

to those correlations; 3) using the previous quantities as weights to compute a weighted

sum of all M memory patterns; 4) thresholding the result component by component;

5) feeding the output back to the input side; and 6) repeating this procedure until the

system reachs a stable state, which is the final recalled pattern. The evolution equation

of the correlation associative memories based on the ordinary correlation is

(1.12)

where < , > is the ordinary correlation (inner product) of two patterns. Next we will

discuss existing correlation associative memories based on the ordinary correlation one

by one.

-25 -

• Correlation-Matrix Associative Memory

This aforementioned memory can be formulated as an instance of the correlation

associative memories based on the ordinary correlation with the function f(t) = t.

• High-Order Correlation Associative Memory

A few groups of researchers independently suggested the use of high-order corre­

lation matrices in the implementation of associative memories [17, 38, 53, 61, 62].

In this type of memory the nonlinear function has the form of some power of the

ordinary correlation

(1.13)

where q is usually an integer and q > 1. The storage capacity of this type of

associative memories has been shown to be proportional to Nq asymptotically

[62], which is much larger than that of the Hopfield model.

• Potential Function Correlation Associative Memory

Sayeh and Han [57] and Dembo and Zeitouni [12, 13] independently proposed this

model, which is based on the distance measure rather than on the correlation. The

original model is for a continuous-time system and patterns with real components,

yet it is easily transformed into a discrete-time formulation for binary patterns.

The evolution equation is Equation (1.12) with

1
f(t) := (N- t)L ' (1.14)

where L is an integer and L > 3. Note that N- < u (k), x > is proportional to the

Hamming distance between u (k) and x. The storage capacity of this model has

been demonstrated to be limited only by the information theory sphere-packing

bound. The major disadvantage of this model is that hardware implementation of

the nonlinear potential function is very complicated.

-26-

• Exponential Correla t ion Associa tive Memory (EC AM)

We introduced a new correlation associative memory that uses the exponentiation

function in Equation (1.12) and

(1.15)

where a > 1 (10]. The capacity of ECAM has been proved to be proportional to

~, where the constant c depends on the required error probability and percentage

error in input patterns (see Chapter four for detail). ECAM was designed with a

view to implementing it by VLSI. It turns out that ECAM is most amenable to

VLSI implementation because MOS transistors exhibit an exponential relationship

between the drain current and the gate-to-source voltage when working in the

subthreshold region.

All the aforementioned correlation associative memories can be shown to converge

to a stable state in both synchronous and asynchronous updating modes (see Chapter

four) . Since the latter three models all seem to have larger storage capacity than needed

in most real-life applications, an important factor in favoring one over the other is the ease

of electronic or optical realization. For instance, the high-order associative memory with

q = 2 is easily realized by optical components, while ECAM can be readily implemented

using VLSI technology.

1.5.3 Coded A ssociative Memory

This type of associative memories all have the following features : 1) input patterns are

transformed to vectors in a code space, and 2) for each memory pattern u (k), there is a

corresponding codeword y(k) , k = 1, 2, . .. , M.

- 27-

• Hamming Network

The code used in this associative memory is the unary code (grandmother cell code)

[6, 39]. In this code, codewords are M bits wide, and the kth codeword has all "0"

bits except at the kth position, which has a "1." At first, the system calculates the

matching scores (correlations) of the input pattern with all M memory patterns

using M hidden units. It then passes those scores to a winner-take-all circuit to

determine the maximum, and forms the right codeword, which is then used to

retrieve the nearest memory pattern. In principle, if the winner-take-all circuit

can operate perfectly, this system can find the nearest memory pattern in one

operation. Nevertheless, winner-take-all circuits usually have some defects and are

not able to pick the maximum value precisely.

• Distributed Coded Associative Memory

This associative memory was introduced in order to reduce the number of hid­

den units required in Hamming network. Baum et al. [6] proposed an associative

memory model with the following distributed code : Each codeword consists of S

groups and the lth group has r1 bits, where r1's are assumed to be relative prime.

For the kth codeword, the ph bit in the lth group will be "1" if and only if

k = j mod rll

and "0" otherwise. The mapping is done by a one-layer perceptron whose connec­

tion matrix is constructed by the sum of outer products of the memory patterns

and the codewords. A second layer is added to map noisy codewords back to the

feature pattern space. Also, a feedback loop can be augmented to make the system

a feedback associative memory.

• Kanerva Memory

Kanerva [31] introduced an associative memory model, which he claimed to be

closely related to the human cerebellar model of Marr [42] and Albus [2]. His model

- 28-

can be formulated as a two-layer perceptron [11]. The first connection matrix is

made up of random +1 or -1 entries. M random codewords can be found by

feeding M corresponding memory patterns to the first layer. The second layer is

another p erceptron whose connection weights are computed by the sum of outer

products of the memory patterns and the random codewords. Again, this system

can be made recurrent by making a connection between the output end and the

input end.

1.6 Discussions

In the previous sections, we have given an overview of two important functions in in­

formation processing systems, i. e., pattern classification and associative recall, together

with their neural network implementation. In this section, we will discuss two interesting

issues concerning pattern classifiers and associative memories.

1.6.1 Relationship Between Pattern Classifiers and Associative

Memories

As mentioned previously, the simplest form of classification is when all conditional prob­

ability distributions are multivariate Gaussian and when input features are uncorrelated.

In this case, the general classification problem becomes the minimum distance classifi­

cation problem. It can then be treated as a special case of heteroassociative memories,

whose response patterns are unary codewords that encode the indices of output cat­

egories. Consequently, one can build a minimum distance classifier by storing all M

prototypes as memory patterns in an autoassociative memory and cascading the autoas­

sociative memory with a proper content-addressable lookup table.

On the other hand, an autoassociative memory can be constructed based on a

-29-

minimum distance classifier in the following way : M memory patterns are used as

prototypes to design a minimum distance classifier. An input pattern can be fed to that

classifier and the result is a unary codeword encoding the index of the correct class.

That codeword is then used as an address for a lookup table, which stores all M memory

patterns, to retrieve the nearest memory pattern.

1.6.2 Winner-Take-All Circuits

"Winner-take-all" networks are supposed to identify, among a set of an undetermined

yet fixed number of neurons, the neuron with the maximum activation, and to enhance

its output while at the same time suppressing those of all the others. The winner­

take-ill function is a vital component in ma.ny neural network systems. Since they

perform such an important function , many winner-take-a.ll circuits have been suggested.

In the following, we will present some existing winner-take-a.ll circuits and discuss their

disadvantages.

One realization of the winner-take-all function is a binary tree made up of two­

input comparators introduced in [19, 39]. T he drawbacks of this archi tecture include the

following: 1) The number of neurons a.nd weights needed is large, and 2) signals have to

travellog2 M levels of circuits a.nd might have degraded to such a degree that accurate

operation is not possible. The other scheme suggested by Winters and Rose [70] utilizes

a cellular automata, and it also suffers from the signal degradation problem.

A fully-connected neural network with N neurons that performs the winner-take­

all function has been proposed by many researchers [21, 39]. The main disadvantage of

this t ype of implementation is the number of connection weights needed is the square

of the number of categories in the system. Mjolsness and Garrett [44] a.nd Majani ,

et al. [41] both suggested variations of the aforementioned globally inhibitory network,

and they require only O(M) hardware complexity, where M is the number of classes in

- 30-

the system . These models, though more efficient in terms of hardware complexity, are

still continuous-time feedback networks and thus take an indefinite amount of time to

converge.

An MOS VLSI implementation of the winner-take-all function was introduced by

Lazzaro and his colleagues [36]. This circuit is essentially a generalization of two-input

differential amplifiers and requires only O(M) complexity. However, it demands that

the maximum input be larger than all the other inputs by a significant amount, which

is often not true in real applications.

- 31-

References

[1] S. C. Ahalt, F. D. Garger, I. Jouny, and A. K. Krishnamurthy, "Performance of

Synthetic Neural Network Classification of Noisy Radar Signals," in Advances in

Neural Information Processing Systems, Vol. 1, Palo Alto, CA : Morgan Kaufmann

Publishers, 1989, pp. 281- 288.

[2] J. S. Albus, Brain, Behavior, and Robotics. Peterborough , NH BYTE book of

McGraw-Hill, 1981.

[3] J. A. Anderson and E. Rosenfeld (editors), Neurocomputing - Foundation of Re­

search. Cambridge, MA : MIT Press, 1988.

[4] J. A. Anderson and G. L. Murphy, "Psychological Concepts on a Parallel System,"

Physica 22D, 318-336, 1986.

[5] J . A. Anderson, "Cognitive Capabilities of a Parallel System," in Disordered Systems

and Biological Organization, E. Brenenstock (editor), Berlin : Springer-Verlag, 1986.

[6] E. B. Baum, J. Moody, and F. Wilczek, "Internal Representation for Associative

Memory," Biological Cybernetics, Vol. 59, 217- 228, 1988.

[7] S.-T . Bow, Pattern Recognition - Application to Large Data-Set Problems. New

York , NY : Marcel Dekker, 1984.

[8] G. A. Carpenter and S. Grossberg, "ART 2: Self-Organization of Stable Category

Recognition Codes for Analog Input Patterns," Applied Optics, Vol. 26, 4919-4930,

1987.

[9] T. D. Chiueh and R. M. Goodman, "A neural Network Classifier Based on Coding

Theory," in Neural Information Processing Systems, D. Z. Anderson (editor) , New

York , NY :American Institute of Physics, 1988, pp. 174-183.

[10] T. D. Chiueh and R. M. Goodman, "High-Capacity Exponential Associative Mem­

ory," in Proc. Int. Conf. on Neural Networks, San Diego, CA, Vol. I, 1988, pp. 153-

160.

- 32-

[11] P. A. Chou, "The Capacity of the Kanerva Associative Memory is Exponential," in

Neural Information Processing Systems, D. Z. Anderson (editor), New York, ~y:

American Institute of Physics, 1988, pp. 184- 191.

(12) A. Dembo and 0. Zeitouni, "High Density Associative Memories," in Neural In­

formation Processing Systems, D. Z. Anderson (editor), New York , NY: American

Institute of Physics, 1988, pp. 211-218.

[13] A. Dembo and 0. Zeitouni, "General Potential Surfaces and Neural Networks,"

Physical Review A, Vol. 37, No. 6, 2134- 2143, 1988.

[14] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York,

NY : John Wiley and Sons, 1973.

[15] K. Fukunaga, '·Statistical Pattern Classification," in Handbook of Pattern Recogni­

tion and Image Processing, T. Y. Young and K.-S. Fu (editors), San Diego, CA :

Academic Press, 1986.

[16] K. Fukunaga, Introduction to Statistical Pattern Recognition. Orlando, FL : Aca­

demic Press, 1972.

[17] C. L. Giles and T. Maxwell , "Learning, Invariance, and Generalization in High­

Order Neural Networks," Applied Optics, Vol. 26, 4972-4978, 1987.

[18] G. R. Gindi, A. F. Gmitro, and K. Parthasarathy, "Hopfield Model Associative

Memory with Nonzero-Diagonal Terms in Memory Matrix," Applied Optics, Vol. 27,

No. 1, 129- 134, 1988.

[19] G. R. Gindi, A. F. Gmitro, and K. Parthasarathy, "Winner-Take-All Networks and

Associative Memory : Analysis and Optical Realization," in Proc. Int. Conf. on

Neural Networks, San Diego, CA, Vol. III, 1987, pp. 607-614.

[20] R. M. Glorioso and F. C. Colon Osorio, Engineering Intelligent Systems- Concepts,

Theory, and Applications. MA : Digital Press, 1980.

[21] S. Grossberg, "Nonlinear Neural Networks : Principles, Mechanisms, and Architec­

tures ," Neural Networks, Vol. 1, 17-61, 1988.

-33-

[22] J . A. Hartigan, Clustering Algorithms, New York, NY : Wiley and Sons, 1975.

[23] Y.-C. Ho and R. L. Kashyap, "A Class of Iterative Procedure for Linear Inequali­

ties," Journal of SIAM Control, Vol. 4, 112- 115, 1966.

[24] J. J. Hopfield , "Neural Network and Physical Systems with Emergent Collective

Computational Abilities," Proc. Nat. Acad. Sci. USA, Vol. 79, 2554- 2558, 1982.

[25] J. J. Hopfield, "Neurons with Graded Response Have Collective Computational

Properties Like Those of Two-State Neurons," Proc. Nat. Acad. Sci. USA, Vol. 81,

3088- 3092, 1984.

[26] J. J . Hopfield and D. W. Tank, "Neural Computation of Decisions in optimization

Problems," Biological Cybernetics, Vol. 52, 141-152, 1985.

[27] W. Y. Huang and R. P. Lippmann, "Neural Net and Traditional Classifiers," Ill

Neural Information Processing Systems, D. Z. Anderson (editor), New York, NY:

American Institute of Physics, 1988, pp. 387- 396.

[28] W. Y. Huang and R. P. Lippmann, "Comparisons Between Neural Net and Conven­

tional Classifiers," in Proc. Int. Conf. on Neural Networks, San Diego, CA, Vol. IV,

1987' pp. 485-494.

[29] A. K. Jain, "Cluster Analysis," in Handbook of Pattern Recognition and Image

Processing, T. Y. Young and K.-S. Fu (editors) , San Diego, CA : Academic Press,

1986.

[30] M. Kam, R. Cheng, and A. Guez, "On the Design of a Content-Addressable 11em­

ory," in Proc. Int. Conf on Neural Networks, San Diego, CA, Vol. II, 1987, pp. 513-

522.

[31] P. Kanerva, "Parallel Structure in Human and Computer ~!emory," in Neural Net­

works for Computing, J. S. Denker (editor), New York , NY: American Insti tute of

Physics, 1986, pp. 247- 258.

[32] T . Kohonen , Associative Memory: A System Theoretic Approach. Berlin: Springer­

Verlag, 1977.

-34-

[33] T. Kohonen, Self Organization and Associative Memory, 2nd edition. Berlin

Springer-Verlag, 1988.

[34] T. Kohonen, "Correlation Matrix Memory," in Neurocomputing - Foundation of

Research, J. A. Anderson and E. Rosenfeld (editors), Cambridge, MA : MIT Press,

1988.

(35] A. Lapedes and R. Farber, "How Neural Networks Work," in Neural Information

Processing Systems, D. Z. Anderson (editor), New York, NY : American Institute

of Physics, 1988, pp. 442- 456.

[36] J. P. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, " Winner-Take­

All Networks of O(N) Complexity," in Advances in Neural Information Processing

Systems, Vol. 1, Palo Alto, CA : Morgan Kaufmann Publishers, 1989, pp. 703-711.

[37] K. Lee, "Neural Network Applications in Handwritten Symbol Understanding,"

Presented at the INNS First Annual Meeting, Boston, MA, 1988.

[38] Y. C. Lee, G. Doolen, H. H. Chen, G. Z. Sun, T . Maxwell, H. Y. Lee, and C. Lee

Giles, "Machine Learning Using a Higher Order Correlation Network," Physica 22D,

276- 306, 1986.

[39] R. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, Vol. 4, No. 2, 4-22, 1987.

[40] R. P. Lippmann and B. Gold, "Neural Net Classifier Useful for Speech Recognition ,"

in Proc. Int. Conf on Neural Networks, San Diego, CA, Vol. IV, 1987, pp. 417- 426.

[41] E. Majani, R. Erlanson, and Y. Abu-Mostafa, " On the K-Winner-Take-All Net­

work," in Advances in Neural Information Processing Systems, Vol. 1, Palo Alto,

CA : Morgan Kaufmann Publishers, 1989, pp. 634- 642.

[42] D. Marr, "A Theory of Cerebellar Cortex," Journal of Physiology, Vol. 202, 437- 470,

1969.

-35-

[43] R. J. McEliece, E. C. Posner, E. R. Rodemich, S. S. Venkatesh, "The Capacity of

The Hopfield Associative Memory," IEEE Trans. on Information Theory, Vol. IT-

33, 461-482, 1987.

[44] E. Mjolsness and C. Garrett, "Algebraic Transformations of Objective Func­

tions," Research Report, Department of Computer Science, Yale University,

YaleU /DCS/RR-686, 1989.

[45) B. Moor, "ART 1 and Pattern Clustering," in Proc. of Connectionist Summer School

1988, Palo Alto, CA : Morgan Kaufmann Publishers, 1988.

[46] K. Nakano, "Associatron - A Model of Associative Memory," IEEE Trans. on

System, Man, and Cybernetics, Vol. SMC-2, 380- 388, 1972.

[47] N. J. Nilsson , Learning Machines: Foundations of Trainable Pattern Classifying

Systems. New York , NY : McGraw-Hill, 1965.

[48] G. Palm, "On Associative Memory," Biological Cybernetics, Vol. 36, 19- 31, 1980.

[49) E. A. Patrick, Fundamentals of Pattern Recognition. Englewood Cliffs, NJ : Prentice­

Hall, 1972.

[50) T. F. Pawlicki , D. Lee, J . J. Hull, and S. N. Srihari , "Neural Network Models and

Their Application to Handwritten Digit Recognition," in Proc. Int. Conf on Neural

Networks, San Diego, CA, Vol. II, 1988, pp. 63-70.

[51] T. Poggio, "On Optimal Nonlinear Associative Recall," Biological Cybernetics,

Vol. 19, 201-209, 1975.

[52] E. C. Posner, "Potential eural Network Applications," in Proc. of Workshop on

Neural Network Devices and Applications, Jet Propulsion Lab., Feb. , 1987, pp. 1- 11.

[53) D. P saltis and C. H. Park, "Nonlinear Discriminant Functions and Associative Mem­

ory," in Neural Networks for Computing, J . S. Denker (editor), New York, NY :

American Institute of Physics, 1986, pp. 370- 375.

-36-

[54) D. L. Reilly, C. Scofield, C. Elbaum, and L. N. Cooper, "Learning System Archi­

tectures Composed of Multiple Learning Modules," in Proc. Int. Conf. on Neural

Networks, San Diego, CA, Vol. II, 1987, pp. 495-504.

[55) F . Rosenblatt, Principles of Neurodynamics : Perceptrons and the Theory of Brain

Mechanism. Washington, DC : Spartan Books, 1962.

[56) D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Explorations

in the Microstructure of Cognition, Vol. I , Cambridge, MA : MIT Press, 1987.

[57) M. R. Sayeh and J. Y. Han, "Pattern Recognition Using a Neural Network," in Proc.

of SPIE Cambridge Symp. on Opt. and Optoelec. Eng., Cambridge, MA, Nov. , 1987.

[58] C. L. Scofield, D. L. Reilly, C. Elbaum, and L. N. Cooper, "Pattern Class Degeneracy

in an Unrestricted Storage Density Memory," in Neural Information Processing

Systems, D. Z. Anderson (editor), New York, NY :American Institute of Physics,

1988, pp. 674-682.

[59) G. S. Sebestyen, Decision-Making Processes in Pattern Recognition. New York, NY:

Macmillan, 1962.

[60) T. J . Sejnowski and C. M. Rosenberg, "Parallel Networks that Learn to Pronounce

English Text," Complex Systems, Vol. 1, 145- 168, 1987.

[61] A. Shiozaki, "Recollection Ability of Three-Dimensional Correlation Matrix Asso­

ciative Memory," Biological Cybernetics, Vol. 54, 337-342, 1984.

[62] B. Soffer, "Holographic Associative Memories," in Proc. of Workshop on Neural

Network Devices and Applications, Jet Propulsion Lab., Feb., 1987, pp. 125- 146.

[63] G. S. Stiles and D.-L. Denq, "A Quantitative Comparison of the Performance of

Three Discrete Distributed Associative Memory Models," IEEE Trans. on Comput­

ers, Vol. C-36, No. 3, 257- 263, 1987.

[64) J. T. Tou and R . C. Gonzalez , Pattern Recognition Principles. Reading, MA

Addison-Wesley, 1974.

- 37-

[65] S. S. Venkatesh, "Linear Map with Point Rules," Ph. D. dissertation, California

Institute of Technology, 1987.

[66] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang, "Phoneme Recog­

nition Using Time-Delay Neural Networks," Technical Report, ATR Interpreting

Telephony Research Laboratories, TR-I-0006, 1987.

[67] B. Widrow and M. E. Hoff, "Adaptive Switching Circuits," in Neurocomputing -

Foundation of Research, J. A. Anderson and E. Rosenfeld (editors), Cambridge, MA

: MIT Press, 1988.

[68] A. Wieland, R. Leighton, and G. Jacyna., "An Analysis of l'ioise Tolerance for a

Neural Network Recognition System," Technical Report , MITRE, ~P-88W00021,

1988.

[69] D. J. Willshaw, 0. P. Buneman, and H. C. Longuet-Higgins, "Non-Holographic

Associative Memory," Nature, Vol. 222, 960- 962, 1969.

[70] J. H. Winters and Christopher Rose, "On Parallel Networks for Optimum Classifica­

tion," Presented at the INNS First Annual Meeting, Boston, MA, 1988, submitted

to Neural Networks.

-38-

Chapter 2

A Two-Layer Feed-Forward Network

Classifier Based on Coding Theory

2.1 Introduction

In this chapter, we are specifically concerned with binary pattern classification

problems. As mentioned in Chapter one, if the conditional probability distributions of all

classes are assumed to be multivariate Gaussian and if all N features in input patterns are

uncorrelated , then the optimal Bayes decision rule becomes finding the prototype with

minimum Euclidean distance to the input pattern. Moreover, if input features are binary­

valued, the minimum Euclidean distance classification problem becomes the minimum

Hamming distance classification problem. In this chapter we propose a new neural

network classifier for solving the minimum Hamming distance classification problem,

based on the established technique of error control coding. Consider a typical minimum

Hamming distance classification problem (see Figure 2.l(a)). In this problem, one is

given a priori a set of classes, C(k), k = 1, 2, . . . , M, together with their corresponding

prototypes, i. e., patterns that are most representative of their classes. The output of

the classifier under consideration is the index of the class whose prototype is nearest

the input in Hamming distance. Therefore, the N -dimensional binary feature space

B •

-39-

N N
Feature Space = B = { -1, 1}

A •

F • •

(a)

L
Code Space = B

(b)

c
•

G

L
{-1,1}

Figure 2.1: (a) The minimum Hamming distance classification problem vs. (b) the error
correction decoding problem

-40-

BN = {1,-1}N is partitioned into M decision regions, one for each class. All patterns

inside each region are to be categorized to the corresponding class by the classifier.

A similar problem is that of decoding noisy codewords by an error control code

decoder as shown in Figure 2.1(b). In this case codewords are constructed by design

and are usually at least dmin bits apart. The received corrupted codeword is the input

to the decoder, which finds the nearest codeword to the input in Hamming distance.

In principle, if the Hamming distances between all pairs of codewords are greater than

2b + 1, it is possible to decode (classify) a noisy codeword (binary pattern) and then

find the correct codeword (prototype) provided that the Hamming distance between the

noisy codeword and the nearest codeword is no more than b. However, in the minimum

Hamming distance classification problem, there is no guarantee that the prototypes are

uniformly distributed in B N; consequently, the attraction radius (the maximum number

of errors that can occur in any given input pattern such that it can still be correctly

classified) depends on the minimum Hamming distance among all prototypes.

Many solutions to the minimum Hamming distance classification problem have been

suggested. The one commonly used is the Hamming network, which is similar to the

matched filter construction in statistical communication theory. Lippmann [12] proposed

a two-stage Hamming network that solves the minimum distance classification problem

by first correlating the input pattern with all prototypes , and obtaining the class index of

the nearest prototype by picking the maximum correlation. Lippmann suggested using

a "winner-take-all" circuit to pick the maximum. In Figure 2.2, XJ, x2, · · · , XN are N

binary input features, and Yl! Y2, · · ·, YM are the correlations (similarity measures) of x

with M prototypes. The second block picks the maximum of y1 , Y2 , · · ·, YM and produces

the index of the class with maximum similarity measure. The main disadvantage of such

a classifier is the constraints on the winner-take-all circuit (for detail, see Section 1.6.2).

Recently, Lazzaro et al. [11] and Majani et a/. [13] proposed new architectures for the

winner-take-all function. However, both architectures have some drawbacks : Lazzaro's

architecture requires that the maximum input value be much larger than the others,

-41-

Figure 2.2: A matched filter type classifier

which is often not true. MajanPs circuit uses a continuous-time Hopfield memory, which

might take a long time to converge.

A second solution is to use feed-forward networks with hidden units and to apply

the backpropagation rule (generalized delta rule) [16] . However, it has been reported

that applying the backpropagation rule to training sets on networks with hidden units

is usually a slow process. What's worse, in minimum Hamming distance classification

problems, training sets are so huge that the time it takes to train is usually unbearably

long.

Another alternative to solving the minimum Hamming distance classification prob­

lem is to build a classifier based on the Hopfield memory [6, 7]. This design consists

of a fully-connected feedback network and a correlation-calculating connection matrix

-42 -

u
y1

x1
y2

x2 Hopfield
• Model • •
• Associative •

X Memory •
N -1

XN YM

l/f(x)

Figure 2.3: A classifier based on the Hopfield memory

followed by M hard-limiter neurons with thresholds all set at N - 1/2 (see Figure 2.3).

At first the Hopfield memory is programmed with M prototypes as memory patterns.

The input pattern is fed to the Hopfield memory, and the Hopfield memory is allowed to

run until it becomes stable. Then the output of the Hopfield memory is checked against

all M prototypes u (k), k = 1, 2, . . . , M by the second stage. The output neuron whose

prototype is identical to the response of the Hopfield memory will be activated (+1). If

the response of the Hopfield memory is not any of the M prototypes, all output neurons

will be off (-1), which signifies rejection of the input pattern.

It has been reported that the number of memory patterns that can be stored in

an N-neuron Hopfield memory is about 0.15N for N between 30 and 100 [6]. McEliece

et al. showed that in synchronous updating mode, the Hopfield memory stores about

N f2logN memory patterns reliably when N approaches infinity [14] . Abu-Mostafa and

-43-

(k)
x = u + e

(k)
y = v + e'

l/f(x)

Feature Space Code Space

Figure 2.4: Structure of the proposed classifier

St. Jacques [1] predicted that the upper bound for the number of memory patterns that

can be stored in an N -neuron fully-connected feedback network is N . We believe that it

is possible to design a new classifier with M - the number of stored prototypes, linear

inN for large N.

Our main idea is to map patterns in the feature space to vectors in some code space

so that each prototype corresponds to a codeword in that code. The code should prefer­

ably (but not necessarily) have the property that codewords are uniformly distributed in

the code space; namely, the Hamming distances between all pairs of codewords are the

same. With this mapping, we turn a minimum Hamming distance classification problem

into a decoding problem. We then do error correction decoding on the vector in the code

space to obtain the index of the nearest codeword and thus classify the original input

pattern, as shown in Figure 2.4.

This chapter develops the construction of such a classifier as follows. At first we

consider the problem of mapping input patterns from the feature space to the code

space. Two perceptrons [15] working as heteroassodative memories are introduced for

-44-

doing this mapping. The first perceptron constructs its connection weight matrix by

summing outer products of the prototypes and the codewords. The second perceptron

generates its connection weight matrix by the pseudoinverse technique [9] . Given that

we have transformed the problem of minimum Hamming distance classification into the

problem of decoding a. noisy codeword, we consider suitable codes for the new classifier.

The codewords in this code should be orthogonal or pseudo-orthogonal; namely, the ratio

of the cross-correlation to the autocorrelation of the codewords is zero or very small. Two

classes of good codes suitable for this particular decoding problem a.re the Ha.da.ma.rd

matrix codes and the maximal-length sequence codes [2]. Next the complete decoding

algorithm is formulated, and it is shown how the new classifier can be implemented by

a two-layer neural network. The first layer performs the mapping on the input pattern,

and the second one decodes t he corresponding vector in the code space and produces

the index of the class to which the input belongs. Finally, we work a small example by

hand to give a feel of the classification process.

The second part of this chapter deals with the performance of the new classifier.

We first analyze the performance of the new classifier by finding the relation between the

maximum number of classes that can be stored and the m.isclassification rate. We show

(when using a mapping based on the sum-of-outer-product method) that for a negligible

m.isclassification rate and large N, a not very tight lower bound on M is 0.22N. Then

comprehensive simulation results, which confirm and exceed our theoretical predictions

when N is moderately large, are presented. The simulation results compare the new

classifier with the Hopfield-memory-based classifier for both the sum-of-outer-product

method and the pseudoinverse method, and for both analog and clipped connection

matrices. The misclassification rate of all classifiers is set at 0.2%; in other words, if

we average over many different sets of randomly chosen prototypes, the classifiers must

classify correctly more than 99.8% of t he time when presented with random inputs of a

given error rate. In all cases the new classifier outperforms the Hopfield-memory-based

classifier in terms of the number of prototypes that can be reliably stored. For example,

consider the case of N = 127, a clipped connection matrix, and an attraction radius

-45-

of zero (no error in input patterns); the Hopfield-memory-based classifier has a storage

capacity of approximately 7, while the new classifier can store 83 prototypes.

2.2 Transform Techniques

Our objective is to build a classifier that discriminates among binary input patterns and

classify them to the appropriate classes. Suppose u(k) E BN is the prototype of the

corresponding class C(k), k = 1, 2, . .. , M . Given the binary input pattern x, we want

the classifier to identify the class whose prototype is closest to x in Hamming distance;

i. e., we want to calculate the classification function W, W : BN - {1, 2, ... , M} and

w(x) = I iff dHanu:ning(u(/) , x) < dHamrning(u(k), x),

k = 1,2, ... ,M, k f; l. (2.1)

We approach the problem by seeking a transform T that maps each prototype u(k)

in BN to a corresponding codeword v Ck) in B L. An input pattern x = u (k) + e is mapped

to a noisy codeword y = vCk) + e', where e is the error added to the prototype, and e' is

the corresponding error pattern in the code space. We then do error correction decoding

on y to get the index of the nearest codeword. Note that e' may not have the same

Hamming weight as e since the mapping T may either generate or eliminate errors.

We require T to satisfy the following equation ,

k=1,2, ... ,M. (2.2)

Two schemes for constructing T are proposed. Both of them are a one-layer neural

network working as a heteroassociative memory. Essentially, we construct a connection

weight matrix according to u(k) 's and v(k) 's, call it T, and then define T as

T = sgnoT,

-46 -

where sgn is the vector threshold operator that maps a vector in RL to BL, and R is

the field of real numbers.

Let U be an N x M matrix whose kth column is u(k) and V be an L x M matrix

whose kth column is y(k). The two methods of constructing the matrix T are as follows:

• Sum-of-Outer-Product Method [9, 10] :

In this scheme the matrix T(a) is defined as the sum of outer products of all

prototypes and codewords; i. e.,

M

-E
k=l

or equivalently,

(2.3)

• Pseudoinverse Method [9] :

We want to find a matrix T(.B) satisfying the following equation,

In general, U is not a square matrix, so u-1 may not exist. To circumvent this

difficulty, we can find the pseudoinverse (denoted as ut) of the matrix U instead.

Let

(2.4)

then T(.B) is defined as

(2 .5)

- 47-

2.3 Codes

The codes we are looking for should preferably have the property that its codewords

are distributed uniformly in B L; in other words, the distance between each pair of

codewords should be the same and as large as possible. Two such families of codes are

the Hadamard matrix codes and the maximal-length sequence codes. First, let us define

the word pseudo-orthogonal.

Definition : Let v(k) = (v~k), v~k), · · ·, vl,k)) E B L be the kth codeword of a code,

where k = 1, 2, ... , M. This code is said to be pseudo-orthogonal if and only if

< v(k) , v<l) >
i=l

{ ~
• Hadamard Matrix Codes :

k=l

k i: l
k,l = 1,2, .. . ,M.

These are orthogonal codes of length L with L rows of an L x L Hadamard matrix

as codewords. For these codes, f = 0 and the distance between any two codewords

is L/2. It is conjectured that there exist such codes for all L that are multiples of

four, thus providing a large family of codes [2].

• Maximal-Length Sequence Codes :

There exists a family of maximal-length sequences (also called pseudo-random or

PN sequences), generated by shift registers and a modulo-2 adder [5]. Suppose

that <f>(z) is a primitive polynomial of degree d over GF(2) and let L = 2d - 1;

then if

1

</>(z)

00

L Ci z',
i=O

co, c1 , is a periodic sequence of period L (since </>(z) I zL - 1).

-48-

The code whose L codewords are L cyclic-shifted versions of

v = (1- 2co,1- 2c1.··· ,1- 2cL-1)

satisfies pseudo-orthogonality with f = -1. It is also apparent that the minimum

distance of this code is (L -1)12, which gives a correcting power of approximately

L I 4 errors for large L.

2.4 Overall Classifier Structure

Now let us describe the overall classifier structure. Essentially, it consists of the mapping

T followed by a error correction decoder for the Hadamard matrix code or the maximal­

length sequence code. Since we would like to implement the decoder by a perceptron,

it is most desirable to use threshold decoding , i. e., decoding algorithms that work by

performing bitwise modulo-2 additions , counting ones, and thresholding counts. The

decoder we propose operates by first correlating the transformed pattern in the code

space with all codewords and then thresholding the results at (L + £)12, respectively.

The rationale of this algorithm is as follows: Since the distance between every two

codewords in this code is exactly (L - £)12 bits, the decoder should be able to correct

any error pattern with no more than l(L - f) I 4 J errors if the threshold is set halfway

between Land f (i . e., (L + £)12), where l J is the integer floor function.

Suppose the input to the decoder is y = y(l) + e and e is of Hamming weight h;

i.e. , e has h nonzero components, we then have

L- 2h

k = 1,2, ... ,M, k :j:.l .

From the above equation, one sees that if h is no more than l(L- f) I 4 J , then < v(l), y >

will be no less than (L + £)12 and for all k = 1, 2, ... , M, k :f. l , < v(k), y > will be

- 49-

less than (L + £)/2. As a result of this observation, we arrive at the following decoding

algorithm,

where j

V(y) = sgn (yt y - L ; f j) ,
(11 · · · 1)t is an M x 1 vector.

(2.6)

In the case when £ = -1 and less than l (L + 1)/4 J errors in the decoder input,

the output pattern will have only one positive component (+ 1), the index of which is

the index of the class that the input pattern is classified to. However, if there are more

than l (L + 1) f 4 J errors, the output may be either the all-negative (-1) pattern (decoder

failure) or another pattern with one positive (+1) component (decoder error).

The classification function ca.n now be defined as the composition ofT a.nd V,

llf =: VoT. (2.7)

The overall structure of the new classifier is depicted in Figure 2.5. It can be viewed

a.s a. two-layer feed-forward neural network (perceptron) with L hidden neurons and M

output neurons. Also note that all neurons are hard-limiter neurons. The first layer maps

the input pattern to a noisy codeword in the code space (the "internal representation")

and the second layer decodes the first's output and produces the index of the class to

which the input belongs.

2.5 An Example Using the Hadamard Matrix Code

We now give an example of the classification procedure of the new classifier. Suppose

N = L = 4 and M = 3; let u(l) = (1 -1 -1 -1)t, u (2) = (1 -1 1 1)t and u <3> (1

1 1 1)t; also choose the codewords as rows in a. 4 x 4 Hadamard matrix, so v<1> (1

-1 1 -1)t, v(2) = (1 1 -1 -1)t and v(3) = (1 - 1 - 1 1)t a.nd £ = 0. We then

calculate three outer product matrices as follows:

- 51 -

3 -1

-1 -1

1

1

1

1

-1 -1 -3 -3

- 1 3 1 1

If the input pattern is x = u (l) = (1 - 1 -1 -1)t, then

T(x) = y = sgn (T · x)

= sgn ((2 -2 6 -6Y)

(1 - 1 1 -1)t

and

(:
1

- 1 1
-1 l y t . y- (~) j -1

= 1 -1 -1
1

- 1 -1 1
-1

= (2 -2 -2)1
•

- (2 2 2)t

And the class index can be found by thresholding the above pattern,

(1 -1 -1)t.

We then conclude that the input feature vector (1 -1 -1 -1)t should be classified to

the first class.

- 52-

2.6 Performance Analysis

From the previous sections, we know that the new classifier will make an error only if the

transformed vector in the code space has more than L (L- £)/4 J errors. Let us now find

the error rate of the new classifier with the sum-of-outer-product construction scheme

when the input is one of the prototypes, say x = u(l). Following the approach taken by

McEliece et al. [14], we have

sgn (N v~l) + t t v}k) uy> up>) .
] =1 k=l,k¥1

Assume, without loss of generality, that vJ
1
l = - 1; then

iff (2 .8)

Note that we assumed all u (k)•s to be random; namely, that each component of any

u (k) is the outcome of a Bernoulli trial. Accordingly, the left hand side of the inequality

in Equation (2.8) is the sum of N(M- 1) independent, identically-distributed random

variables with zero mean and unit variance. In the asymptotic case, when N and Mare

both very large and if the ratio of N over M stays fixed, the central limit theorem [4) can

be applied. The left hand side of the inequality in Equation (2.8) can be approximated

by a Gaussian distribution with zero mean, variance N M. Therefore, we can find the

probability of the event in Equation (2.8) as follows:

p

1 r>O e~ dt
J2rrNM }N

(2.9)

-53-

where

Q(x)
1

=..[2;
t~

e2 dt .

Next we can find the misclassification rate of the new classifier (Pe) by summing

the probabilities of all cases that have no less than l (L - !)/4 J errors. Assuming that

! ~ L yields

(2 .10)

Because we are interested in the asymptotic behavior when L is large, the integer

floor function can be dropped for clarity. Since in general it is not possible to express

Equation (2.10) analytically, we use the Chernoff method to bound Pe from above.

Multiplying each term in the sum by a number larger than unity (et(i-~), with t > 0)

and summing from i = 0 instead of i = ~, we obtain

v t > 0. (2.11)

Let G(t) be the right hand side of Equation (2.11), then

-Lt
e-4- {1 -IJ + et p)L. (2.12)

Since Equation (2.11) is true for all positive t, we can achieve a tighter bound for

the misclassification rate by finding the smallest G(t). So set the derivative of G(t) with

respect to t to zero and solve for the optimal t 0 ,

G'(to) = 0

1-p
3p . (2 .13)

- 54-

The condition that to > 0 implies that p < 1/4, which is automatically satisfied since we

are dealing with the case when pis small. Substituting the optimal t 0 in Equation (2.11)

and Equation (2 .12) yields

L L (~) c ~ p) 4 (1 _ p)L

L 3L
I L p4 (1- p)4, (2.14)

4
where 1 = 30.75 = 1.7547654.

From Equation (2.9) and (2.14), we can determine the relation betw~n M, the

number of classes that can be classified with negligible misclassifica.tion rate when the

input is one of the prototypes, and the misclassification rate (Pe)· Suppose that Pe = 8

and 8 is a. fixed small number; then

and

(2.15)

For small t, we have Q-1(t) ~ j2log(1/t). As N, L, M approach infinity we have

M > N [Q-I (,-• {1- p)-3 61;) r'
N

8log1 + 6log(1- p)- (8/L) log8

N

8log1

0.22N. (2.16)

From the above lower bound for M, one can e.asily see that this new classifier is

able to store more than a constant times N prototypes and perform minimum Hamming

- 55-

distance classification. Also, since (N / M) stays bounded, the approximation leading to

Equation (2.9) is valid. Although the above analysis is done when N, L, and M approach

infinity, yet the simulation results in the next section shows that when N, L, and M are

moderately large (e. g., 63), the above lower bound applies .

For the case when the pseudoinverse method is used to construct t he connection

matrix forT, we see no way of analyzing the performance in general, but conjecture that

it will be better than the sum-of-outer-product case, especially when the prototypes are

correlated.

2. 7 Simulation Results and A Character Recognition

Example

We have simulated both the Hopfield-memory-based classifier and the proposed new

classifier (using maximal-length sequence codes) for the cases L = N = 63 and L = N =
127. Six different classifiers considered are :

• a Hopfield-memory-based classifier

• a new classifier whose connection matrix is generated by the sum-of-outer-product

method.

• a new classifier whose connection matrix is generated by the pseudoinverse method.

• a Hopfield-memory-based classifier with clipped connection weights (-1, 0, 1).

• a new classifier whose connection matrix is generated by the sum-of-ou ter-product

method and the components of the connection matrix are clipped (-1, 0, +1).

• a new classifier whose connection matrix is generated by the pseudoinverse method

and the components of the connection matrix are clipped (-1, 0, +1).

-56-

For each case and each choice of N, the program fixes M and the number of errors

in input patterns, then randomly generates 10 sets of M prototypes and computes the

connection matrix for each classifier. For each classifier it randomly picks a prototype,

and adds noise to the prototype by randomly complementing a specified number of bits

to get a trial input pattern. In total, 100 trial input patterns are generated for each set of

M prototypes. It then feeds the trial inputs to those six classifiers under consideration,

checks to see whether the inputs are classified to their respective nearest classes, and

reports the percentage of success for each classifier. The simulation results are shown in

Figure 2.6 and 2.7. In all figures , the horizontal axis is the number of loaded prototypes

(M) and the vertical axis is the attraction radius (r)- the largest number of bit errors

allowed. The data are obtained by collecting only those cases where the success rate

is more than 99.8%. Here we use the attraction radius of -1 to indicate that for this

particular M , with input patterns being prototypes, the success rate is less than 99.8%.

In all cases, our classifier exceeds the performance of the Hopfield-memory-based

classifier in terms of storage capacity. For example, consider the case of N = L = 63 and

clipped connection weights; we find that for an attraction radius of zero, that is, no error

in the input vector, the Hopfield-memory-based classifier has a classification capacity of

approximately 5, while our new model can store 37. In the case of N = L = 127, clipped

weights, and zero attraction radius, we have 7 versus 83.

We also notice that the conjectured superiority of the pseudoinverse method over

the sum-of-outer-product method is not obvious. The reason for this is that the pseu­

doinverse method is best for decorrelating the dependency among prototypes, yet the

prototypes in this experiment are generated randomly and are presumably independent.

Consequently, the advantage of the pseudoinverse method is not obvious from the sim­

ulation results. For problems with correlated prototypes, we expect the pseudoinverse

method to do much better (see next example).

-57 -

1·•- HM
~ oP ·•- PI

1 2

1 0

8

3 7 1 1 1 5 19 23 27 3 1 35 39 43 47 5 1 55 59 63

M

(a)

r ~: t •,
1·•-HMC -o- OPC ·• - PIC

14 t;; •
12 1{ /'~
10 t/ ~·

8 ~-,~
6 _.

4 ' a.
-.....n '•

2 -....o-n'•-•
0 ' -....., ~~

·-·-·-·-·-·-·-·-·-·-·-·-·-~·-·-·-·-·-·-·-·-·-·-·-·-·-·-· . 2
3 7 1 1 1 5 19 23 27 3 1

M

(b)

35 39 43 47 51 55 59 63

Figure 2.6: Comparison of performance of the Hopfield-memory-based classifier and the
new classifier for N = 63 and (a) original connection weights (b) clipped connection
weights. HM is the Hopfield-memory-based classifier, OP is the sum-of-outer-product
scheme, and PI is the pseudoinverse scheme.

-58-

1-•-HM -o- OP -•- PI 46

42l •
38 bf~~

r 34 • .,~

·-·~~
·~ '·-~~ •,o-Q...

30

26

22

1 8

14

•
..... • O....a

'\. """'o.... _. O....,.....Q
.... , ..., "o....

1 0

6

..... o-o...,o.....
'•-•.... o-o....o.....

.............. o-o-~
...... O""Q.

2 '•-•... "'o _.
-2 +-~~·~-~·-~·-~·-~•r-~•r-~•r-~•r-~•r-~•r-~•r-~•r-~•r-~•r-,•~-,·~-,·~-,·~-,·~-~·-~·-~·T-~·T-~•r-~•r-~•r-~•r-~·r-~·

3 11 19 27 35 4 3 51 59 67 75 83 91 99 107115123

M

(a)

46

42 I .
1·•- HMC ·O- OPC -•- PIC

38 l4'.
r 34Y '•

30 Q '~
26 ~.

~­~-~ 22
1 8

1 4

1 0

~~
• '0-" ·~· ~ "". ~ v<• 6

2

- 2

• . '·:::~ "-

... ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·~-~-~·-·-·-·-·-·-·-·
3 1 1 19 27 35 43 5 1 59 67 75 83 9 1 99 107 115 1 23

M

(b)

Figure 2.7: Comparison of performance of the Hopfield-memory-based classifier and the
new classifier for N = 127 and (a) original connection weights (b) clipped connection
weights. HM is the Hopfield-memory-based classifier, OP is the sum-of-outer-product
scheme, and PI is the pseudoinverse scheme.

-59-

Another simulation using N = 127 and successively shorter codes (L = 127, L = 63,

and L = 31) reveals that by shortening the code used, the performance of the new

classifier degrades only slightly as long as the number of prototypes is less than the code

length (see Figure 2.8). Therefore, we think that it is possible to use traditional error

correcting codes (e. g., the BCH code) as "internal representation" code. Actually, there

have been attempts to use some codes (random or deterministic) with a higher rate

than the Hadamard matrix codes and the maximal-length sequence codes as the internal

representation code [3, 17, 8]. However, by going to a higher-rate code, one is trading

complexity (number of hidden units) for minimum distance, and will possibly get poorer

performance.

Next we present an example of applying the new classifier to recognizing characters.

Each character is represented by a 9 x 7 binary pixel array. Noisy inputs are generated by

flipping each pixel with 0.1 and 0.2 probability. An input pattern is fed to five classifiers:

a Hopfield-memory-based classifier, the new classifiers using the pseudoinverse method

and the sum-of-outer-product method with L = 7 and L = 31.

Figures 2.9 and 2.10 show the results of all 5 classifiers for 0.1 and 0.2 pixel flipping

probability, respectively. A blank output means that the classifier refuses to make a

decision (rejection). At first, note that the L = 7 case is not necessarily worse than the

L = 31 case. This confirms the earlier conjecture that the performance of networks with

fewer hidden units (shorter codes) is only slightly poorer if the number of prototypes is

less than the code length. Also, one easily sees that the pseudoinverse method is better

than the sum-of-outer-product method because of the correlation among prototypes.

All four new classifiers outperform the Hopfield-memory-based classifier since the latter

mixes prototypes that are to be remembered and produces a blend of prototypes rather

than the prototypes themselves; accordingly, it cannot classify input patterns without

mistakes.

r

- 60 -

I ··- OP31 <>- PI31 · - OP63 .Q- PI63 ... OP127 -6.- P1127 1

46l
42 ~
38~~~~~
34 ~-
30

26

22

1 8

1 4

1 0

6

2

-2 +---~~---T---r--~--r-~---T---r--~--+---~~--~

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

M

(a.)

1·•- OP31 <>- Pl31 ·•- OP63 ·D- PI63 *" OP127 -6.- Pl1271

:: t
r 38 ~•

34 V

30

26

22

1 8

1 4

10

6

2

-2 +-~r--+--~--+-~r--+--~--r-~---+--1---+-~---;

3 5 7 9 11 13 1 5 17 19 21 23 2 5 27 29 31

M

(b)

Figure 2.8: Effects of using codes of different lengths, N = 127 a.nd (a.) original connection
weights (b) clipped connection weights. OP is the sum-of-outer-product scheme a.nd PI
is the pseudoinverse scheme. The number is the code length; i.e. , L = 31, 63, a.nd 127.

.,.,.,.,.,.,
......
..... ..
.............

.,..,..,..,..,.,
......
.... ..

........... .,

...... ..,
....
......

.., .,

........
..

..
..

..
..

..
:;

:
::

.,.,.,., .. .,.., ...

..
..

..
..

..
..

..
::

..
..

..
.. .. .,,,

..
..

..
..

..
..

..
..

...
..

...,, ., ..,

..
..

..
..

..
..

..
..

.., ., ...

..
..

..
..

..
..

...
..

...
..

.,, ..

.... .,, ...
..

..
..

..
~

....
.... ..

.. ..
..

.. ...
..

.. ..
..

.. ..
..

..
... ..

..
.. ..

..
.. ..

..
..

..
..

..
::.,..,..,:;.,..,..,:: ..

...
..

....................
......... .,,., ...

..................

.. .. .,, .,
..

..
..

.......
8

....
..

.. ..
..

..
....

..
..

:;
::

:: ..
..

..
..

..
:;

::
..

..
..

..
::., :: ::

..
..

................ ., ..
.,.,.,

..

...
..

..
..

..
..

..
..

.. ..
--

..
..

..
:

::
..

.. ..
(1)

::
::

::
..

..
..

..
..

..
.._

.,.,.,.,.,.,.,.., ..

..,.,.,.,.,
... .. .,.,,.,

.. :·=
,,..

....
::

:: ..
....

::::·
~

~

..
..

.,
..

..
..,

..
...

..
.. ..

..
...

.. ..
~

~

..,.,
::

::
:

:
::

::
::

::
::

::
::

::
::
~

I
....

.,
........ ..,,

.... .,..........
...................

....................
...

.............

..,::·::·· ..
..

.... ..
............

..,
....
.... ..

... ., .,,

... .. .,
....
.,.,

., ., .. ., .. ., ..
..

..
..

..
..

..
..

..
..

..
....... .,..,

......
..

..
..

..
..

..
..

..
..

..
...

..
.........................

&
IC

IU
c

&
IC

IU
C

IU
.,.,

..
..

..
..

...
.. ..

...
....

..
...

..
..

........... ., ::
..

..
..

...................

..
..

..
..

..
..

..
..

..
..

.,.,.,.,.,1
&

1
.,

...
..

..
..

..
....

..
...

..
..

.. ..
.. .,,

.. ..
...

..
..

.......................

.
.
.
.
.
.
.
.
.
.
.
.
 f&

l ...
.. ..

....
..

..
..

...
..

..
.,.,

...................
..

..
..

..
..

.. ..
..

.,,
......... .,

..
..

..
..

..
..

..
..

..
..

:: :: ::

..
..

..
..

..
..

..
..

..
..

...
..

..
............ .,

..
..

..
... ..

..
..

..
..

..
..

..
..

..
.,.,.,.,.,.,.,., ..

.. ..
..

..
..

.. ..
..

..
..

..
..

::
::

::
..................,

..
..

..
..

.. ..
..

..
..

.. ..
..

..
..

..
..

..
..

..
.,.,.,.,.,,., ...

.,.,.,.,.,.,.,

......
..

.. ..
...

..
.. ..

..
.. ..

...
..

..
...

..
..

......
..

......
.,,

..

-- u .._ --e -- Cd .._

d
"'0

!'­
.::::<

Q
)

I
>
.
~

I
~..c;>-.:l
·-

>
. "'0

..0

1-4

~

~

0
...

..0
 s '"

0
Q

)
~

8. s "~-<
I

....,

bO
 "'0

~

~

~
 s

·ate
~

o
..o

..o

ca Jl -~
~

Q
)
~

~

..c:i
~

.:...l
....,

0
0.._

u
u

~

0_,,
~

u

-~ 1-4

~

s ~

0
·.::;
u Q

)
~

d 0 u ~ 1-4

~ d
·a '"0

~ en
0..

....,
::::l

..c:~="'C..c:i
-~
 fr e .-=:

~ g ~
 ~

~

....,
li>

li>
o..U

_..,u:::
d
Q
)
=
·
~

._
'"'

0
en

~
8

<.,!..
~

><
u

0
.......

Q
)

1
U

d :::0 s
~

o
.._

..=

Q
),....

·.;:;~
en

c=M

·a ~ ~
 ~

11
~
 g. "[i

...., >-.:l
u

·-
....-....~

~
Q

)
li> :::., =

.. ..c:~t+=

~..0
cv
~

·en-.
.

~
 .~

~
M

C

'
:;l_ (J

II

.._..

~ ~
 ~

>-.:l ~
.z

:
l
=

Q
)
_

..,Q
)

Q)s~_g~
~~..c:i,....::,rn
rO

_
..,"

'C
........_

u

........_
.._

,b
O

0

0
"'0

.._

,
0
"
?
~
.
.
_
,
~

~
<:"1 =

 ~
!'-

~ o..~ S
 II

=
 .s

('j >-.:l
bO

rn

en
~
 ~

~

,......._ "d

....,
(J

 ~
@

"1£ = 7 lUq '(J) SE am'ES (:a) 'L = 7 pu'E
XPl'EUI uoq:>auuo:> asJaAU!opnasd ql!tt\ Jay!sS'Ep A\au a1.p (J) '1£ = 7lnq '(p) SE am'l?s (a)
"L = 7 pu-e xpl'EID uo!pauuo:> pnpoJd-Jalno-;o-ums ljl!.M JaY:!SSE[:> .Mau aql (p) 'JaY:!SS'ep
pas-Eq-i\muram-pyay:doH aq1 (:>) 'lndlno pauo:> (q) 'lndu! atp S! (1?) umnyo:) ·lndu! a1.p
U! ,\l!1!q'EqOJd :au!dd!lJ rax!d %0& qHt.\ ardm'Exa uop!tr:ao:>aJ Ja:P'EJ'Eq:> aq.r, :on~ am:a!a:

~

• iii
ii i
iii i

il
il
i
i

i il
ililiil

il
il
il
il

iii il il
il
il
il

iliiili

iliiililil
il
i
i

ililii
il
il
il

ilililiiil

ililililil
iii i
il il
il i
il i
il il
il il
u i

il iliili

iiili
il il

il
il
il
i
il

il il
iii iii

iliiilil
il il
il il
i i
iii iii

i il
il i
il il
iii iii

il
il
i
iiiiiilil
i il
iii iii

il i
i il

il

(J)

il ilili
ii i
iii i

i
il
i
i

il i
iiili

il
i
il
i

iiii
i
il
il

iliiili

ililililiil
il
il
il

iliiil
il
il
il

ilililiii

ililililil
iii i
il il
il il
il il
il il
il il
ilil i
iliiili

ililiil
il i

il
il
i
i
il

il i
iliii

Uiilil
il i
il i
il i
ilililili

il il
il il
il il
ilililiil

il il
i il
il il
iiilili iii
il il
iii ilil

i il
i il
i

(a)

iiiililil
iii il
il il
i il
i il
i il
i i
iii il
ililililil

iiiil
i i

i
il
i
il
il

il il
iii iii

iiiili
i i
il il
il il
ililililil

il il
il il
i i
ililiilil

il
il

il il
iii iii i iii
il il
iii iii
il il

il i
il

(p)

i iii
iii i
iii i

i
il
i
il

i i
iliilil

i
i
il
i

ililiii
i
il
il

ilililili

iiliili
iii i
i il
i il
i i
il i
il il
iii il
iiliiil

ililiiil
il il
il il
I il
iiililil

il il
il il
i i
ilililii

il il
il il
il il
ililililililil
il il
ilil ilil

il il
il i

il

-&9-

(::>)

ilililiii
il il

il
il
il
il
i

il il
ilililii

ilililii
il i

il
il

iliilil
il
il

il il
iliiiii

iliiilil
il il

il
il

iliili
il
il

il il
ililiilil

Uilii!
il il

il
i
il
il
il

il il
iliiliil

ilililili
il il

i
il

ililii
il
il

il il
ilililiil

iiliili
il il

il
il

iiiilil
il
i

il il

il

•
iii il iii

il il
ililiilililil
• i
iii ilil
il il

i il
il

(q)

il iii
ilil il
ililil il

il
i
il
il

il il
ililiil

il
il
i
i

iiilil
il
il
il

iiiililil

iliiiilil
il
il
il

iliilil
il
il
i

iliil iilil

iliilii
ilil il
il il
il il
il i
il i
il il
ilil i
ililiili

iiilil
i il

il
il
il
il
il

il il
iliilil

ilililili
il il
il i
i i
ililililil

i i
i il
il il
iilililil

i
i

il il
iiiiiiii
il il
iii iii

il il
il i

i

(B)

ilil i
il il iil
ililil il

i il

i
i

iii

i il

i
ilil il

iilililiil
il iii

il il
il iii
ilililil

il ililiil
iii il
il il il

il il
iii ilil
il il

ii
il ililil

iii il iii

iiiiiili
il iii

il iii
ilil iii
il il

il il
iii il
iii i
ililililii

iliii
il il il

il il
i il il
i ii il
iii iii

il
il ilil i
ilililii

ililil
i

iii
il iii
iliilil

il iii
il il il
il iii
iliiiil i

il
il il
ilil i
il il iii iii
i
iii iii

i il il
il il

il il

- 63-

2.8 Conclusions

In this chapter we have presented a new neural network classifier based on coding theory

techniques. The classifier uses codewords from an error correcting code as its "internal

representation." Two classes of codes that have good performance are the Hadamard ma­

trix codes and the maximal-length sequence codes. In performance terms we have shown

that the new classifier is significantly better than the Hopfield-memory-based classifier.

One should also note that when comparing the new classifier with the Hopfield-memory­

based classifier, the enhanced performance of the new classifier does not entail extra

complexity, since it needs only L + M hard-limiter neurons and L(N + M) connection

weights versus N neurons and N 2 weights in a Hopfield memory. In conclusion, we be­

lieve that our model forms the basis of a fast, practical method of classification with an

efficiency greater than other previous neural network techniques.

- 64-

R efe rences

[1] Y. S. Abu-Mostafa and J. St. Jacques, "Information Capacity of The Hopfield

Model," IEEE Tran. on Information Theory, Vol. IT-31, 461- 464, 1985.

[2] E. R. Berlekamp, Algebraic Coding Theory, revised edition. Laguna Hills, CA

Aegean Park Press, 1984.

[3] E. B. Baum, J . Moody, and F. Wilczek, "Internal Representation for Associative

Memory," Biological Cybernetics, Vol. 59, 217-228, 1988.

[4] W. Feller, An Introduction to Probability Theory and its Application, Vol. II, 2nd

edition. ~ew York, NY : John Wiley and Sons, 1971.

[5] S. W. Golomb, Shift Register Sequences. San Francisco, CA : Holden-Day, 1967.

[6] J. J. Hopfield, "Neural Network and Physical Systems with Emergent Collective

Computational Abilities," Proc. Nat. Acad. Sci. USA, Vol. 79, 2554-2558, 1982.

[7] J . J. Hopfield , "Neurons with Graded Response Have Collective Computational

Properties Like Those of Two-State Neurons," Proc. Nat. Acad. Sci. USA, Vol. 81,

3088- 3092, 1984.

[8] P. Kanerva, "Parallel Structure in Human and Computer Memory," in Neural Net­

works for Computing, J . S. Denker (editor), New York, NY : American Institute of

Physics, 1986, pp. 247- 258.

[9] T. Kohonen, Associative Memory: A System Theoretic Approach. Berlin : Springer­

Verlag, 1977.

[10] T. Kohonen, "Correlation Matrix Memory," in Neurocomputing - Foundation of

Research,J. A. Anderson and E. Rosenfeld (editor), Cambridge, MA : MIT Press,

1988.

[11] J.P. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead," Winner-Take­

All Networks of O(N) Complexity," in Advances in Neural Information Processing

Systems, Vol. 1, Palo Alto, CA : Morgan Kaufmann Publishers, 1989, pp. 703-711.

-65 -

[12] R. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, Vol. 4, 4- 22, 1987.

[13] E. Majani, R. Erlanson , and Y. Abu-Mostafa, " On the K- Winner-Take-All Net­

work," in Advances in Neural Information Processing Systems, Vol. 1, Palo Alto,

CA : Morgan Kaufmann Publishers, 1989, pp. 634-642.

[14] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh, "The Capacity

of The Hopfield Associative Memory," IEEE Tran. on Information Theory, Vol. IT-

33, 461-482, 1987.

[15] M. L. Minsky and S. A. Papert , Perceptrons : An Introduction to Computational

Geometry, expanded edition. Cambridge, MA : MIT Press, 1988.

[16] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Explorations

in the Microstructure of Cognition, Vol. I, Cambridge, MA : MIT Press, 1987.

[17] A. Thakoor, "Content-Addressable, High-Density Memories Based on Neural Net­

work Models," Technical Report, Jet Propulsion Lab., JPL D-4166,1987.

-66-

Chapter 3

A General Model for Neural Network

Associative Memories

3.1 Introduction

Because of their wide usage in many information processing systems, associative mem­

ories have attracted much attention from neural network researchers. Unlike traditional

computer memory, associative memories have some error correcting capability because

they can take in some partially wrong patterns as stimuli and still generate accurate

responses. Associative recall is present in many ordinary information processing tasks

taking place all the time in human brains, such as recognizing typographic errors, recall­

ing songs' titles, recollecting friends' telephone numbers, etc. As is exemplified by the

above examples, the recall process is usually achieved by evolution, through which miss­

ing information is gradually filled in until perfect recall is finally reached. It is probably

due to the above observation that most proposals for associative memories are based on

a feedback architecture.

In this chapter, we will introduce a general model for neural network associative

memories. With this model, new associative memories suitable for implementation in

-67-

other technologies can easily be introduced. An important class of associative memories

rely on correlation measures, so they are ca.lled correlation associative memories (CAMs).

Discussion of CAMs will be deferred until Chapter four. In this chapter, the general

model is first presented, and a heuristic justification for its effectiveness is given. The next

part of this chapter deals with four representative neural network associative memory

models : t he Ka.nerva memory [4, 3], the BMW distributed associative memory [2], the

Hamming network associative memory [5], and the spectral associative memory [7]. We

will briefly introduce these models and show that each one of them can be formulated as

a special case of the proposed general model. Also in each case, the hardware complexity,

the capacity, and the stability of the model under consideration will be investigated and

reported.

3 .2 The General Model

The general model proposed here is intended for autoassociative memories that remember

N -bit binary patterns. Suppose u (l), u <2) , · · ·, u (M) are the M memory patterns to be

stored in the associative memory under consideration. Also assume there are a set of M

corresponding L-bit codewords, v <1), v<2), . . . , v (M) and a matrix T for mapping the M

memory patterns to the corresponding codewords. Note that components of the memory

patterns are either +1 or -1, while components of the codewords are either 1 or 0. The

model is essentia.lly a finite state machine with a state pattern that gets updated at each

timestep. To find the next state pattern, the following evolution equation is applied to

the current state pattern:

x' = sgn { f fk (x, u <t), · · ·, u <M), v<1), · · · , v(M), T) u (k)} , (3.1)
k=l

where x and x' are the current and the next state patterns, respectively. The recalling

process is done by initializing the memory with an input pattern and applying the above

evolution equation repetitively until the memory reaches a stable state, which is the final

output response.

- 68 -

Now let us give an insightful explanation for the formula in Equation (3.1). Since

the objective of an associative memory is to find the nearest memory pattern in some

distance measure to the input pattern, it is obvious that the above mechanism will

perform correct associative recall if the following three conditions are met : 1) all M

memory patterns are stables states, 2) any evolution step brings the next state pattern

closer to the correct (nearest) memory pattern, and 3) there is no spurious stable state

in the path from the initial input to the nearest memory pattern. Most associative

memories do not satisfy the third condition, since there always seems to be numerous

spurious stable states in all associative memory systems. Most effort in designing a

good associative memory is spent on meeting the first two conditions. As for the third

condition, one can only hope that the input is close to the nearest memory pattern so

that it is very unlikely that the memory gets stuck at an intermediate spurious stable

state.

What Equation {3.1) does is actually very similar to holding an election for each

component of the state pattern in order to determine the polarity of that component at

the next timestep. For clarity, let us consider only the first component of the next state

pattern, x~. Each memory pattern (group) has a polarity of its first component, u~k)

{the preferred party of a group). The strength of the kth memory (the number of votes

in a group) pattern is decided by a weighting function fk. To determine the polarity

of x~ {the winning party of a citywide election), one takes a weighted sum of all u~k),s

(counts the votes).

The weighting functions, fk 's, depend on the current state pattern x, all M memory

patterns, all M codewords, and the matrix T. If fk is designed in such a way that its

value is large when x is close to u (k) and small when they are far apart , then one sees

that after one iteration {election), the state pattern will tend to be nearer the nearest

memory pattern than it used to be. This is because the nearest memory pattern can be

so strong that it overpowers all the others in most of theN elections, so the next state

pattern might be almost the same as the nearest memory pattern. To satisfy condition

- 69 -

one, one can make A extremely large when x is exactly the same as u(k); then u (k) will

very likely be a. stable state. Therefore, if one carefully designs fk 's and if the memory

is not overloaded (more than allowable memory patterns are stored), the associative

memory can satisfy the first two conditions.

In the next few sections, we will discuss four representative models and show that

they can all be expressed in the form of Equation (3.1). Furthermore, fk 's in those

cases all have the property that their value is large when x and u (k) are similar and

small otherwise. The matrix T and theM codewords y (I), v <2), · · ·, v <M) appear in the

arguments of fk only because some models utilize certain coding techniques, otherwise

fk will depend only on x and u(l), u<2>, · · ·, u (M). As a matter of fact, for correlation

associative memories based on the ordinary correlation, fk relies only on x and u(k), to

be more specific, the correlation of these two patterns, i. e., A = fk (< x , u (k) >).

3.3 Kanerva Memory

Kanerva proposed an associative memory model that is essentially a parallel processing

system consisting of address decoders, counters, binary adders, and threshold circuits [4).

He claimed that his model is similar to the human cerebellar model of Ma.rr·s [6) and

Albus' [1). Chou [3] later formulated the Kanerva memory in terms of a two-layer feed­

forward neural network a.s shown in Figure 3.1. There are .N input nodes, L hidden

neurons, and N output neurons. Further, if one uses the Kanerva memory as an autoas­

sociative memory, then a connection between the input end and the output end can be

made. All hidden neurons and all output neurons are hard-limiter neurons. The only

difference is that the hidden neurons have the following response

1 { 1 step(t) = - (sgn (t - s) + 1) =
2 0

while the response of the output neurons is the sgn function.

t~s

t < s
(3.2)

-70 -

Figure 3.1: Configuration of the Kanerva memory

The first connection matrix T is an L X N matrix randomly populated with +1

and -1 with equal probability. Assume that u<k>,k = 1,2, ... ,Mare theM N -bit

memory patterns with +1 or -1 components; then the corresponding M L-bit codewords

v (k), k = 1, 2, . . . , M are defined as

k = 1,2, ... , M . (3.3)

The second connection matrix W is constructed by the sum of the outer products of the

M memory patterns and theM codewords; i.e.,

M
W = L u (k) v (k)t. (3.4)

k=l

The evolution equation of the Kanerva memory as an autoassociative memory is

x' = sgn {W · step (T x)}, (3.5)

where x and x' are the current and the next state patterns.

-71-

Substituting Equation (3.4) in (3.5) yields

x' = sgn {t < v (k), step(Tx)> u (k) }.
k=l

Consequently, the Kanerva memory is a special case of the general model if

fk (x , v (k), T) = < v (k), step(Tx)>.

(3.6)

The hardware complexity of the Kanerva memory is L + N hard-limiter neurons,

LN binary (+ 1 or -1) connection weights, and LN discrete (-M to M) connection

weights . The storage capacity of the Kanerva memory with zero attraction radius was

shown by Chou [3] to be as large as M = 2aN, where a is a parameter depending on s

and L. It is also shown that M can be no more than L - the number of hidden neurons.

This implies that in order to get exponential capacity, exponential hardware complexity

is necessary. To be more specific,

LN + LNlog2M ~ 2cN (cN2 + 2N)

bits are needed to store 2cN memory patterns. There has been virtually no treatment

of the stability issue of the Kanerva memory. In Appendix 3.A, we prove that with

some assumption, the Kanerva memory is asymptotically stable in both synchronous

and asynchronous updating modes.

3.4 BMW Associative Memory

The BMW associative memory model proposed by Baum, Moody, and Wilczek [2] is

similar to the Kanerva memory, in that they both use a hidden layer to encode the input

pattern before computing the next state pattern. Therefore, the BMW memory has the

same archHecture as the Kanerva memory (see Figure 3.1). Nevertheless, they differ in

how the codes ("internal representations") are specified. In the Kanerva memory, the

-72-

codewords a.re obtained by feedinging the M memory pa.ttems to the first la.yer, while

in the BMW memory, the codewords are specified explicitly. In this section we will

describe two codes tha.t were discussed in Ba.um, et al. 's work. They a.re the localized

(grandmother cell) coding scheme and the distributed coding scheme.

Again, a.ssume tha.t u (k), y(k), k = 1, 2, ... , M a.re the M memory patterns a.nd the

M corresponding codewords. In the ca.se of the localized coding scheme, y (k) 's are M

bits wide (L = M) a.nd

y (k) = (0 0 ... 1 ... 0 0),

i. e., the kth unit vector. For the distributed coding scheme, the L bits in a. codeword

are partitioned into S groups a.nd the zth group ha.s TJ bits, where T J1S a.re assumed to be

relative prime. In the kth codeword, the lh bit of the zth group is

1-1

where t1 = L Ti .

i=l

(k) - { 1
vtr+i =

0

k = j mod r 1

otherwise

In both ca.ses the ma.trix T is constructed by the sum-of-outer-product rule and

M
T = L v (k) u (k)'. (3 .7)

k=l

As in the Ka.nerva. memory, the second connection ma.trix W is

M
W = L u (k) y (k) ' (3.8)

k=l

The evolution equation of the BMW memory is

x' sgn { W · step(T x)}

- 73 -

From the above equation, it is clear that if we let

M

fk (x, u (l), · · ·, u (M), v<1), · · ·, v (M)) = < v(k), step (L < u <l}, x > v (/)) >,
1=1

then the BMW memory is a special case of the general associative memory model.

The hardware complexity required to implement the BMW memory is L + N hard­

limiter neurons and LN discrete connection weights (-M to + M, here only one set

of connection weights is needed since W is the transpose of T). The capacity of the

BMW memory bas been shown to be less than L [2]. The BMW model was originally

proposed as a memory based on a feed-forward network with one hidden layer; hence

very little work bas been done on the stability of the feedback BMW memory. Since the

only difference between the BMW memory and the Kanerva memory is the way that

the codes are prescribed, we expect them to behave similarly in terms of stability. We

show, in Appendix 3.A, that with some assumption the BMW memory is asymptotically

stable.

3.5 Hamming Network Associative Memory

The Hamming network [5] is similar to the BMW model with the unary (grandmother

cell) code, except that the bidden neurons are of the sigmoidal type and there are mu­

tually inhibitory connections among bidden neurons. The bidden layer functions as a

winner-take-all circuit, and only the hidden neuron with maximum input will be ac­

tivated (+ 1), while all the other hidden neurons will be off (0). The two connection

matrices of the Hamming network associative memory T and W are exactly the same

as those of the BMW memory with the unary code.

The evolution equation of the Hamming network associative memory is

x' = sgn {t 8kl u (k) } ,
k=l

(3.10)

where

- 74-

< u (i) x> =max < u (j) x> ' . ']

and 8kl is the Kronecker delta function. Therefore, if we define

< u (k),x>= max < uU>,x>
j

otherwise

then the Hamming network associative memory becomes an instance of the general

model.

The hardware complexity needed to implement the Hamming network associative

memory is M sigmoidal neurons, N hard-limiter neurons, and M 2 + M N connection

weights. The storage capacity of the Hamming network is actually limited only by

the efficiency of the winner-take-all circuit. As the number of hidden neurons grows,

the mutually inhibitory feedback network gradually deteriorates in response time and

accuracy. As for the stability, since the mutually inhibitory network is stable, we conclude

that the Hamming network associative memory is asymptotically stable.

3.6 Spectral Associative Memory and Pseudoinverse

Associative Memory

The spectral associative memory [7] is based on a fully-connected network architecture

with N neurons and the following N x N connection weight matrix,

(3.11)

where U = (u(1), u (2), .. . , u(M)) and A is an M x M diagonal matrix whose entries

are >.17 >.2, ... ,>.M. Substituting Equation (3.11) in the evolution equation of a fully­

connected network gives

- 75 -

x' sgn{T x}

sgn{U A (utu)-
1

ut x}

< u (M)' x > r}

(3.12)

where w is an M x 1 vector and Wk = < u (k), x >. Let V _ (ut u)-1 and y (k) be the

kth row of V , then

sgn { t, [A, t, vj'l (t, uf'l x;)] u (k) }

= sgn { f ().k E f v]k) u~i) Xi) u (k) } .
k= l t=l J=l

Therefore, if we define

N M

Ak '"' '"' v(k) uV) x · - ~ ~] ' ,,
i=l j=l

(3.13)

the spectral associative memory model reduces to an instance of the general model

proposed in Section 3.2.

Since the spectral associative memory is based on anN-neuron fully-connected net­

work structure, it needs N hard-limiter neurons and N 2 continuous connection weights .

As for the storage capacity of the spectral associative memory, Venkatesh showed em­

pirically that it is better than the Hopfield memory. He also proved that the storage

capacity of the spectral associative memory is N when N is large [7]. AS far as the

stability is concerned, Venkatesh also showed that by using

E(x) = <x , Tx >

-76-

as the energy function, the spectral associative memory will converge to a stable state

in both synchronous and asynchronous updating modes.

As for the pseudoinverse associative memory, since it is a special case of the spectral

associative memory with the matrix A equal to the identity matrix, all the above results

apply to it.

3. 7 Correlation Associative Memories

There are many other associative memory models based on correlation (similarity meas­

ures), such as the correlation-matrix associative memory, the high-order correlation as­

sociative memory, the potential function correlation associative memory, the exponential

associative memory, and the associative memories based on the generalized correlation

measure. We will defer the discussion of these models until the next chapter.

3.8 Conclusions

In this chapter we propose a general model that subsumes most neural associative mem­

ory models with feedback architecture reported in Chapter one. It is based on an al­

gorithm similar to the political election process. In the evolution equation, a weighted

sum of all memory patterns is first calculated; then a decision is made to determine the

polarity of each component of the next state pattern. We select four models- the Kan­

erva memory, the BMW memory, the Hamming network associative memory, and the

spectral associative memory as examples and show that with proper choice of weighting

functions, they are all special cases of the general model. Moreover, we also prove that

in both asynchronous and synchronous updating modes, the Kanerva memory and the

B~W model are both asymptotically stable.

- 77 -

Appendix 3.A Asymptotic Stability of Kanerva Memory

and BMW Memory

The strategy used to prove the asymptotic stability of the Kanerva memory is similar to

that of Hop field model. An energy (Liapunov) function is defined and it is shown that

after each timestep the energy will not increase. This fact, together with the fini teness

of the energy function and the fact that the energy cannot stay at the same level forever,

proves that the Kanerva memory is asymptotically stable. At first, let us make the

following assumption:

Assumption : Let x be a binary state pattern and u (k), k = 1, 2, · · · , .M be

the memory patterns; then <step (Tu(k)), step(Tx)> depends only on the distance

between u (k) and x , or equivalently on < u(k) , x >.

Note that the original interpretation of <step(T u(k)), step (T x)> given by Kan­

erva is the number of rows in T that are less than (N- s + 1)/2 bits away from both

u(k) and x. Thus, it is apparent that the assumption holds most of the time if N is large

and L is not much smaller than 2N. It is also clear that as x moves away from u (k) ,

<step (T u (k)) , st ep (T x) > will become smaller and smaller.

Now define a sequence of patterns ~k), x~k), · · · , x~), which constitute a path from

u (k) to -u(k). Also,

(k) - u (k) (k)
Xo - ' X N

and

i=0,1, ... , N.

Let dk = dHamming(u (k), x); and then define the energy associated with u (k) as

d,.

£(k) (x) = L <step (T u(k)) , step (T x~k)) > . (3.14)
i=O

- 78-

Define the total energy of the system at state x as

M

E (x) = L E(k) (x). (3 .15)
k=l

Suppose all neurons in the output layer of the Kanerva memory update themselves

according to Equation (3.5); then the difference between the energies of the current and

the next states is

b.E = E (x')- E (x)

M

= L E(k) (x') - E(k) (x). (3.16)
k=l

Considering only the kth term of the sum in Equation (3 .16) and assuming that

then

d~c

E(k) (x')- E(k) (x) = - L < step(T u (k)) , step (T x~k)) >
i=d~

< - <step(Tu(k)), step(Tx)> · (dk- d~).

(b) if dk < d~ :

d~
E(k) (x')- E(k) (x) = L < step(T u(k)) , step (T x~k)) >

i=d~c

< <step (T u(k)), step(T x)> · (d~- dk)·

- 79-

In both cases, the same inequality holds. Substituting the above inequality in Equa­

tion (3.16) yields

M

b.E < L <step(Tu(k)),step(Tx)>·(d~-dk)
k=l

1 M - L <step (T u(k)) , step (T x) > (< u (k), x > - < u (k), x' >)
2

k=l

4 ~ {f; < step(T ul'l) , step(T x) > . uj'l} (x; - xj)

< 0. (3.17)

We therefore conclude that the Kanerva memory is asymptotically stable in the syn­

chronous updating mode. Similarly, the Kanerva memory is also asymptotically stable

in the asynchronous updating mode.

I

Since the BMW memory is different from the Kanerva memory only in the codes

used as internal representations, we need only make some modification of the previous

proof to show the asymptotic stability of the BMW memory. The assumption to be

made is the same as the previous one except that the measure is changed.

Assumption : The measure < y (k), step ('Lf'!1 < u <l) , x > · v <1)) > depends

only on the distance between u (k) and x , or equivalently, on < u (k), x >.

It is also apparent that as the distance between x and u (k) becomes larger, the

quantity < v (k), step('Lf':!1 < u(l), x> · y (l))>will become smaller.

Again, we can define a sequence of patterns from u(k) to - u (k) and the energy

associated with u(k),

-80 -

dk M

E(k) (x) _ L < v (k), step(L < u(l), x~k) > . v<1)) > . (3.18)
i=O 1=1

Also define the total energy of the system in state x as

M
E (x) _ L E(k) (x). (3.19)

k=l

Following the same derivation, it can be shown that the energy will stay the same

or decrease after every iteration; thus, we conclude that the BMW associative memory

model is asymptotically stable in synchronous updating mode. By the same token, the

BMW associative memory is also asymptotically stable in the asynchronous updating

mode.

I

- 81-

References

[1] J . S. Albus, Brain, Behavior, and Robotics. Peterborough, NH : BYTE book of

McGraw-Hill, 1981.

[2] E. B. Baum, J. Moody, and F. Wilczek, "Internal Representation for Associative

Memory," Biological Cybernetics, Vol. 59, 217-228, 1988.

[3] P. A. Chou, "The Capacity of the Kanerva Associative Memory is Exponential," in

Neural Information Processing Systems, D. Z. Anderson (editor), New York, NY:

American Institute of Physics, 1988, pp. 184- 191.

[4] P. Kanerva, "Parallel Structure in Human and Computer Memory," in Neural Net­

works for Computing, J. S. Denker (editor), New York, NY: American Institute of

Physics, 1986, pp. 247-258.

[5] R. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, Vol. 4, No. 2, 4-22, 1987.

[6] D. Marr, "A Theory of Cerebellar Cortex," Journal of Physiology, Vol. 202,437-470,

1969.

[7] S. S. Venkatesh. "Linear Map with Point Rules," Ph. D. dissertation, California

Institute of Technology, 1987.

-82 -

Chapter 4

Correlation Associative Memories

4.1 Introduction

Since the seminal work of Hopfield [9, 10], there has been much interest in building

associative memory systems using neural network approaches . The storage capacity

of the Hopfield memory has been found , both empirically [9] and theoretically (12], to

scale less than linearly (approximately N flog N) with the number of components in

the memory patterns. Lee et al. [11], Soffer [15], Psaltis and Park [13], and Dembo

and Zeitouni [4, 5] all proposed new architectures that utilize correlation matrices and

nonlinear circuits. Previously, we also proposed a new associative memory model that

adopts the exponentiation function [2]. All these models can be implemented by a

feedback network with two layers: The first layer computes the correlations of the input

pattern and all memory patterns and then applies some nonlinear fu nction; the second

calculates a weighted sum and thresholds that sum.

In this chapter, we discuss a class of neural network associative memories that are

based on correlation measures, which we call correlation associative memories (CAMs).

In Section 4.2, we introduce a model for the correlation associative memories, show

that this model is subsumed by the general model of feedback neural network associa-

-83-

tive memories in Chapter three, and demonstrate that some known associative memory

models can be formulated as correlation associative memories. Section 4.3 deals with

the convergence property of correlation associative memories. First, an energy function

is defined, and it is then shown that this energy function will decrease or stay put after

every iteration. Thus, we conclude that correlation associative memories converge to

stable states in both asynchronous and synchronous updating modes. In Section 4.4,

we concentrate on a particular model called exponential correlation associative mem­

ory (ECAM) and investigate thoroughly the relationship between the storage capacity

and the attraction radius of ECAM. We find that if all input patterns inside a sphere

of some attraction radius around a memory pattern need be attracted to that memory

pattern with high probability, then the storage capacity is proportional to eN, where the

constant c decreases as the attraction radius increases. More importantly, we find that

under some condition the storage capacity of ECAM actually meets the sphere-packing

bound in information theory [3] . Also, it is found that the storage capacity of ECAM

will be proportional to the dynamic range if the dynamic range of exponentiation cir­

cuits in an ECAM is fixed. However, the hardware complexity of an ECAM capable of

storing an exponential number of memory patterns is also exponential. In Section 4.5,

we present the results of some simulation experiments of ECAM and show that they

confirm the theoretical findings about the storage capacity of ECAM, even though N is

not excessively large as assumed when proving the theoretical results.

4.2 A Model for Correlation Associative Memories

First, let us introduce the idea of generalized correlation measure : Let u and x be two

N-bit binary patterns whose components are either +1 or -1, and H beaN x N real

matrix; then the generalized correlation measure of u and x weighted by H is

N N
< u , x > H _ LL uiHijXj.

i= l i=l

(4.1)

-84-

Figure 4.1: Architecture of correlation associative memories

ote that the matrix H works as a way of adjusting the contributions from N components

of u and x to the overall correlation measure. Moreover, if H is the identity matrix,

then the generalized correlation measure reduces to the ordinary correlation; that is,

< u , x > I = < u , x > . Also note that < u , x >= N- 2dHamm.ing(u , x).

Kow, assume that u C1),u (2), · · ·, u (M) are theM memory patterns; then the evolu-

tion equation of correlation associative memories is

x' = sgn { t fk(< u(k), x > H)· u(k) }·
k=1

(4.2)

It is apparent from Equation (4.2) that all correlation associative memories are instances

of the general associative memory model. Figure 4.1 illustrates a neural network archi­

tecture of correlation associative memories. The first connection matrix is

T = Ut H
'

where U is an 1\1 x N matrix that is made up of M memory patterns u (k), k = 1, 2, ... , M.

-85-

Next we will describe how some well known neural network associative memory

models can be expressed in the form of Equation (4.2).

• Corre lation-Matrix A ssociative M emory

This model is essentially the same as the Hopfield memory except that the diagonal

of the connection weight matrix is not zeroed. It can be easily demonstrated that

the correlation-matrix associative memory is an instance of correlation associative

memories with H equal to the identity matrix and all fk's equal to J, where

f(t) = t.

• High-Orde r Correlation Associative M e mory

In this type of associative memory, H is again equal to the identity matrix, but

the weighting function is now a nonlinear function,

(4.3)

where q is usually an integer and q > 1. The capacity of the high-order associative

memory is proportional to N 9 asymptotically [15), which is usually large enough

for all practical purposes.

• Potent ial Function Corre la tion A ssociative Memor y

Sayeh and Han [14) and Dembo and Zeitouni[4, 5] independently introduced this

model, which is proposed originally for continuous-time systems with real-valued

patterns. Still, it is straightforward to express this model in discrete-time formu­

lation. Again , H is the identity matrix, all fk's are equal to/, and

f(t) = (N -t)-L, (4.4)

where L is an integer and L > 3. The capacity of this model has been demon­

strated to be limited only by the sphere-packing bound in information theory [5).

- 86 -

The primary disadvantage of this model is that hardware implementation of the

nonlinear potential function is very cumbersome.

• Exponential Correlation Associative Memory (ECAM)

We introduced a new correlation associative memory that adopts the exponentiar

tion function for all A 's [2]; i. e.,

f (t) = a\ (4.5)

where a > 1. Here H is agaln equal to the identity matrix. The storage capacity

of ECAM will be explored in Section 4.4.

• Correlation Associative Memory based on the Mahalanobis distance

The previous four models are all based on the ordinary correlation, namely, corre­

lation measure with H equal to the identity matrix. Nonetheless, there are t imes

when some distance other than the Hamming distance is more convenient. For

example, if an associative memory is used to solve a pattern classification problem

with multivariate Gaussian distributions, then the Mahalanobis distance is a bet­

ter similarity measure than the Hamming distance [6]. The Mahalanobis distance

from u (k) to x is defined as

dMahalanobis(u (k), x) = (u (k) - x) 'E-1 (u (k) - x),

where we assume that the covariance matrices of all M distributions are the same

and equal to 'E. After some derivation, it can be shown that

(k) _ G c(k) 1 d . ((k)) < U , X > :E-1- 1 + 2 - 2 Mahalanob1s U , X

where G1 is a constant depending only on x and G~k) depends only on u (k). There­

fore, a correlation associative memory with H = 'E-1 and appropriate thresholds

and weighting functions can be used to solve the minimum Mahalanobis distance

classification problem.

-87-

4.3 The Convergence Property of CAMs

Since CAMs are based on a. feedback network structure, understanding their asymptotic

behavior is very crucial , for if a. CAM does not settle down to a. stable state, it would be

impossible to obtain any valid output, rendering it useless.

Hopfield [9] proved that his model is asymptotically stable when running in the

asynchronous update mode (only one neuron in the output layer updates itself at a.

time). At first he introduced an energy (Liapunov) function of the system, and went on

to demonstrate that the energy function will only decrease or stay the same after every

iteration. ..Moreover, he showed that the energy function has a. lower bound and that

the system can not stay at the same energy level forever. These fa.cts together with the

nonincreasing property of the energy function imply t hat the Hopfield memory will even­

tually reach a stable state with minimum energy level. However, if the Hopfield memory

is running in synchronous mode (all neurons in the output layer update themselves at

t he same time), it may not converge to a. fixed point and may become oscillatory between

two states [1].

In this section, we prove that correlation associative memories are asymptotically

stable in both asynchronous and synchronous updating modes. To begin with, let us

introduce a. lemma.

Lemma 4 .1 : Let f(t) be continuous and monotonically nondecreasing over [-N,N];

then a correlation associative memory with the following evolution equation,

x' = s gn { f f (< u (k), x >) . u (k) }

k=l

is stable in both synchronous and asynchronous updating modes.

P r oof : see Appendix 4.A.

-88-

Theorem 4 .2 : All four models based on the ordinary correlation in the previous

section are stable in both synchronous and asynchronous updating modes.

Proof : Since for all t 1 > t2, we have

ti > t2,

tq
1 > ti,

(N- t1)-L > (N- t2)-L,

at' > at2
'

where q > 1, L > 3, and a > 1; therefore, Lemma 4.1 can then be applied and the

theorem proved.

I

The significance of Lemma 4.1 is that it ensures that one can adopt any mono­

tonically nondecreasing function, and the resulting correlation associative memory will

always be asymptotically stable. This proves to be very helpful when it comes to hard-

ware implementation of correlation associative memories, because any physical device

exhibits some deviation from its ideal response characteristic, especially when the in­

put is outside its operating range. Consequently, if the real response is monotonically

nondecreasing, then the system will always be stable, though the performance in stor­

age capacity and error correction ability might become poorer. However, Lemma 4.1

only gives the sufficient condition for a CAM to be stable but says nothing about the

necessary condition.

4.4 The Capacity and the Attraction Radius of ECAM

Since we feel that the exponential correlation associative memory is most suitable for

VLSI implementation, this section is devoted to exploring the storage capacity and error

-89-

correction capability of ECAM. Our definition of the storage capacity is similar to that of

McEliece et al.'s [12]; i.e., if we choose M = M(N) N-bit memory patterns at random,

program an ECAM with those M memory patterns and initialize that ECAM with an

input pattern that is r = pN bits away from the nearest memory pattern, we ask what

the greatest rate of growth M(N) as N ---. oo is so that after one iteration, the bit error

probability (Pe) is less than e-T /V4?f, where Tis a fixed and large. By adjusting T,

one can make a tradeoff between the bit error probability and the storage capacity of an

ECAM.

To begin with, assume that all M N- bit memory patterns u (k), k = 1, 2, .. . , M

are randomly chosen; in other words, each bit in any of the M memory patterns is the

outcome of a Bernoulli trial (-1 or +1). Now let us present the theorem about the

storage capacity of ECAM.

Theore m 4.3 : In an ECAM, if the initial state pattern x is pN bits away from the

nearest memory pattern and

M(N)

(:~) 2N(l-'H(p')) + 1

.f , 1
1 p < -1--2 +a

if p' > 1

1 + a2

{4.6)

memory patterns are stored, where p' = p + 1/ N and 1t(p') is the binary information

entropy of p', then as N ---. oo, the bit error probability, the probability that a bit in

the next state pattern is not the same as the corresponiling bit in the nearest memory

pattern, is asymptotically less than e-T f.J4?t.

Proof : We will give only an outline of the proof, and details of the proof can be

found in Appendix 4.B. To begin with, suppose the input x is r = pN bits away from

the nearest memory pattern, say u{l>; then the evolution equation becomes

x ' = sgn {~a<u<k>, x> u(k) } ,
k=l

- 90-

Considering only the ith component of x' a.nd letting u~l) = -1 without loss of generality

yield

xi = sgn { -aN(l-2p) + t a<u(k), x> u~k) } .
k=l,ki:l

(4.7)

Note that the second term of the argument of the sgn function in the previous equation

is a. sum of M- 1 i.i.d. (independent, identically-distributed) random variables . Define

(k) (k)
W = a<u ' x> U ·

k - ' , k = 1,2, ... , M,

and let

M

w - 2:: Wk,

k=l,ki:l

M

v - LWk -aN(l-2p) + w.

k=1

After some lengthy derivation (see Appendix 4.B) , we have the following results in

order:

E[w] ~ aN(I-2p)

and

V ar[w] < (2~) . a2N(l- 2p) .

As N -+ oo, M -+ oo, the central limit theorem [7] ca.n be applied, which leads to

(4.8)

I

Thus we conclude that ECAM has a. storage capacity that scales exponentially with

N -the number of bits in each memory pattern. More importantly, in the case when

p' ~
1

: a2 , the storage capacity actually meets the ultimate sphere-packing bound in

- 91-

information theory [3). However, note that from Figure 4.1, one sees that in order to store

M memory patterns , one needs M x N connection weights and M exponentiation circuits

and N hard-limiter neurons. Therefore, to store a.n exponential number of memory

patterns, exponential hardware complexity is necessary.

This exponential capacity is very attractive; however, the dynamic range required

of the exponentiation circuit grows exponentially with N. In any real implementation,

this requirement is very difficult to meet, if not impossible. In a typical CMOS VLSI

process, a transistor operating in t he subthreshold region as an exponentiation circuit

has a dynamic range of approximately 105 to 107 [8) . Hence, we need to study how the

storage capacity of ECA~1 changes if the dynamic range of its exponentiation circuits is

fixed.

Suppose the dynamic range (D) of the exponentiation circuits is fixed and

then as N increases, a will decrease, and M will no longer scale exponentially with N .

We now concentrate on the case when N approaches infinity. Since N is very large and

D is fixed, a will be near unity. Let

a _ 1 + J1.,

where J1. is a small positive number; then

log D = N log a = N log(1 + J1.) ::::- N J1..

As a becomes closer to unity, p' will be less than 1/(1 + a2) in practically all cases;

therefore, only the first formula in Equation (4.6) needs to be considered. It follows that

M (N)

- 92 -

(:;) ((2- 2JJ.)~l + 2p'JJ.))N

,..._ (:;) (1 + N JJ.(1; 2p'))N

(:;) e(l-2p) logD (~) D1-2p
4T . (4.9)

4.5 Simulation Results

A few simulations have been conducted in order to confirm the theoretical results ob-

tained. We let a = 2 and randomly choose 10 sets of M N-bit memory patterns in

each case, then program an ECAM with these M patterns. For each ECAM, 100 input

patterns are generated by randomly picking a memory pattern and flipping b bits. They

are then fed to the ECAM and the ECAM is allowed to run until it becomes stable. The

resulting fixed point is then compared with the original memory pattern, and the run is

called a success if they match. We then collect the number of successes out of 1000 runs

and if this number is greater than 998, we say that loaded with M memory patterns,

ECAM can tolerate b errors. The largest b for a fixed M is called the attraction radius

(r) .

In Figure 4.2, the relative attraction radius p = r / N is plotted against the number

of memory patterns (M) for various N. Note that if a horizontal line is drawn across

the plot, it will intersect these four curves in the figure at points that are equally apart.

Since the four curves correspond to cases with N that increases linearly, the previous

observation implies that for fixed p the storage capacity of ECAM scales exponentially

with N, which confirms Theorem 4.3. Next we let N be fixed and vary the dynamic range

of exponentiation circuits. Figure 4.3 and Figure 4.4 illustrate how the the relationship

between attraction radius (r) and the number of loaded memory patterns (M) changes

for different dynamic ranges. As one can see, in both N = 32 and N = 64 cases, the

- 93-

curves intersect with the vertical axis (r = 1) at points that are approximately twice al

large as the previous point. Since the dynamic ranges of these four curves increase by

twofold successively, thus the storage capacity of ECAM is proportional to the dynamic

range of the exponentiation circuits. Furthermore, if one again draws a vertical line with

larger r, it will intersect the four curves at points equally apart, but this time the distance

among these four points will be smaller than that of the case when r = 1. Therefore,

we conclude that the previous result about the storage capacity of ECAM with fixed

dynamic range exponentiation circuits; i. e., Equation (4.9) is valid.

4.6 Conclusions

In this chapter , we have discussed a group of associative memories that rely on the gen­

eralized correlation measure. We also prove that correlation associative memories based

on the ordinary correlation are asymptotically stable as long as their weighting functions

are monotonically nondecreasing. In particular, a new type of high-capacity neural net­

work associative memory, which we call Exponential Correlation Associative Memory

(ECAM), is presented. We have also investigated the storage capacity of ECAM under

different assumptions, and find that under some condition ECAM meets the sphere­

packing bound . ~loreover, ECAM is more robust than the associative memory using

the winner-take-all function to find the maximum correlation. In the latter associative

memory, the final answer will be wrong if the winner-take-all function make a mistake.

For the ECAM, the exact answer need not to be obtained at once. Since even if several

out of the N binary decisions are wrong, it is still possible to reach a correct answer

t hrough iteration. Finally, we give simulation results showing that theoretical findings

also apply to cases when N is not very large. VLSI implementation of ECAM and its

application to some associative recall problems will be discussed in the next chapter.

- 94-

1/2

p

3/8

1/4

1/8

0 ~-L~~~~~------~---L--~~~~~~----~----~~~
3 5 10 2 0 3 0 50 100 200 300 500

M

Figure 4.2: Attraction radius (p = rf N) vs . number of loaded memory patterns (M),
Curve A : N = 32, Curve B : N = 48, Curve C : N = 64, CurveD : N = 80

- 95 -

200

100

M

50

3 0

20

10

5

3

1 2 3 4 5 6 7 8 9 10

r

Figure 4.3: Number of loaded memory patterns (M) vs. attraction radius (r) with
N = 32, Curve A : D = 24

, Curve B: D = 25, Curve C: D = 26 , CurveD: D = 27

- 96 -

M

2 4 6 8 10 12 14 16 18 20 22
r

Figure 4.4: umber of loaded memory patterns (M) vs. attraction radius (r) with
N = 64, Curve A: D = 24

, Curve B : D = 25 , Curve C : D = 26 , CurveD : D = 27

-97 -

Appendix 4.A Proof of the Convergence of CAMs

The proof of Lemma 4.1 is given in this appendix. At first, define

g(x) = jx f (t) dt;

then by the mean value theorem, there exists some z, which lies between x and y, so

that

g(y)- g(x) = g'(z) · (y - x) = f (z) · (y - x).

Next, by the assumption that f (t) is monotonically nondecreasing, we have the

following:

(a) y > x. In this case, we have

X~ Z ~ y,

thus

f (z) ~ f (x)

and

g(y)- g(x) ~ f (x) · (y- x).

(b) x > y. In this case, we have

y ~ z ~ x,

thus

f(z) ~ f (x)

and

g(y) - g(x) ~ f(x) · (y- x).

In both cases, we have the same inequality, g(y) - g(x) ~ f(x) · (y- x).

- 98-

Now let us define an energy function for the correlation associative memory,

M

E(x) = - L 9(< u(k), x >).
k=l

The difference between the energies of the current state and the state after all neurons

perform one iteration according to the evolution equation is

-t:lE = -E(x') + E(x)

M

L g(< u(k), x ' >) - g(< u (k), x >)
k=l

M

> L 9'(< u(k), x >)· < u(k), x'- x>
k=l

M N

L ! (< u (k),x>) L u~k) · (xi- Xi)

k=l i=l

t, {t, f(< u<•> ,x >) cj•>} · (x:- x;)

~ 0.

Furthermore, t:lE = 0 only if all xi - Xi = 0 or 2; therefore, the associative memory will

eventually become stable at a fixed point. By the same token, if only one neuron updates

itself in every iteration, the associative memory will also converge to a fixed point.

I

-99-

Appendix 4.B Proof of the Capacity Results of ECAM

In this appendix, a rigorous proof of Theorem 4.3 is presented.

For a given p, 0 ~ p < 112, suppose the system is initialized with a state x which

is pN = r bits away from the nearest memory pattern, say u (/); in other words,

x = u (/) + e ,

where e has r nonzero (+2 or -2) components. Furthermore assume, without loss of

generality, that uV) = -1. Since the bit error probability is larger for the case when

ei = +2 than when ei = 0, only the former case will be studied.

First of all, since u (/) is the nearest memory pattern to x , all other M- 1 memory

patterns must be at least r + 1 bits away from x. Suppose

r' = r + 1, and p' = r' IN = p + 1 IN;

we then calculate the probability distribution function of the random variable w1 when

ei = +2; i.e., Xi= + 1 as

Prob[w1 = aN-2i] 1 (N-1)
J(j , j = r', r' + 1, ... , N- 1.

_ 1 (N-1)
- J(j) j = r' - 1, r', . .. , N - 1.

The first formula applies to the case when uP) = + 1, while the second applies to the

case when u~1) = -1. The constant J(is a normalizing factor and

J(N-1 () N-1 ()

i~' N J 1 + i=~l N J 1

- 100 -

N-1 () () N () E~+~=E ~.
i=r1 J i=r1 J

Also, since p < 1/2, then r' = pN + 1 $ r N /21, and

(4.10)

Next let us calculate the expectation of wb

~. {~ (N-: 1) aN-2j _ ~ (N-: 1) aN-2j-2}
A . I J . I 1 J J=r J= r-

<
2
-;_, {f. (N j 1) .-2;}

< 2~~~ L~. (1) .-,;}.
Obviously, E[w1] is positive. Now in order to bound it from above, we apply the Chernoff

method. Multiplying each term in the summation by a number greater than or equal to

unity (et(i -r~). t ~ 0) and summing from j = 0 instead off rom j = r' gives

where t ~ 0.

Similarly, the expectation of wi can be bounded, and we have

- 101-

< a
2

N {E1

(N-: 1) a-4i}
](i=r' J

< 2~:, Lt. (1) a -•;}

where t ~ 0.

Accordingly, the variance of w1 is

< E[wiJ

< where t ~ 0.

Since w is the sum of M- 1 i.i.d. random variables, the expectation and the variance of

w are both M - 1 times those of w1 ; namely,

E[w] = (M- 1) E[wt]

< (M- 1) (2~:1) e- tr' (1 + a-2et)N' where t ~ 0. (4.11)

Var[w] (M- 1) Var[wt]

< (M -1) (;~~~) e-tr' (1 + a-4et)N, wheret~O. (4.12)

To estimate the bit error probability, we need to deal with two cases separately.

1
(a) p' > 1 + a2

- 102-

Since Equations (4 .11) and (4.12) are true for all nonnegative t, we can find an

optimal t so that the right hand sides of both equations are minimized. In Equa­

tion (4.11), let

then

E[w] < (M- 1) (
aN) (1-p')p'N (1)N

2N-1 a2p' 1- p'

= (M _ 1) (aN(1-2p')) (_!.)p'N (- 1-)(1-p')N
2N-1 p' 1- p'

= 2(M- 1) . aN(l-2p') . 2N(1t(p')-l)'

where 1t(x) = -x log2 x- (1- x) log2(1- x), the binary information entropy of p'.

Assume that T is large and let

M(N) = (:;) 2N(I-1t(p')) + 1; (4.13)

it then follows that

E[w] < (;;) aN(l-2p) ~ aN(l-2p). (4.14)

Simil arly, the variance of w can also be upper bounded by substituting

in Equation (4.12).

Var[w] < M - 1 (a2N(I-2p')) (_!.)p'N (-1-)(I-p')N
() 2N-l p' 1 - p'

2(M _ 1) . a2N(1-2p') . ~(1t(p')-l)

-103-

By Equation (4.13) and the above equation, we obtain

1
(b) p' < 1 + a2

Var[w] < (2~) . a2N(t-2p) .

Substituting et = 1 in Equation (4 .11), we have

E[w] < (M- 1) (2~1) (1 + a-2)N

((1 + a2- 2)a2P')N = 2(M- 1) · aN(t- 2p') ·

Now suppose that T is large and

a4 (2)N
M(N) = 4T (1 + a-2)a2P' + 1i

then

E[w] < (;;) aN(l-2p) ~ aN(l-2p).

(4.15)

(4. 16)

(4.17)

Next, an upper bound of Var[w] can be calculated by setting et = a2 in Equa­

tion (4.12),

(

a2N(t -p')) N
Var[w] < (M - 1)

2
N - l (1 + a-

2
)

((2) 2p')N 2(M- 1) . a2N(t-2p') . 1 +a~ a

Combining Equation (4.16) and t he above equation leads to

Var[w] < (~) . a2N(t -2p)
2T . (4.18)

- 104-

We have shown in both cases that E[wJ is significantly smaller than aN(l-2P) when

T is large and thus can be ignored. Also Var[wJ is found to be bounded above by the

same quantity in both cases. We now estimate the probability that an ECAM is not able

to correct a bit error, namely, the probability that v > 0. Since the random variable w

is the sum of M - 1 i.i.d. random variables, as N, M ~ oo, w can be approximated by

a normal distribution, i.e ., JV(E[w], Var[w]) (the central limit theorem [7]). Therefore,

Prob[v >OJ Prob[w > aN(l- 2P) J

w - E[wJ aN(l-2P) - E[wJ
Prob[> J

U w Uw

w - E[wJ aN(1-2p)
Prob[> J

Uw U w

a2N(1-2p))

Var[wJ < Q (v'IT)'

where Uw is the standard deviation of w and

(4 .19)

rote that T is fixed, so we do not have to worry about the large deviation problem in

applying the central limit theorem. If Tis large, we can use the asymptotic formula for

Q(-):

1
Q(t) ~ (V2rr)t

-t2 /2 . e .

By the above formula and Equation (4.19), we have

Pe = Prob[v > OJ

(4.20)

I

- 105 -

R eferences

[1] J. Bruck and J. W. Goodman, "A Generalized Convergence Theorem for Neural

Networks and Its Applications in Combinatorial Optimization," in Proc. Int. Conf

on Neural Networks, San Diego, CA, Vol. III, 1987, pp. 649-656.

[2] T. D. Chiueh and R. M. Goodman, "High-Capacity Exponential Associative Mem­

ory," in Proc. Int. Conf on Neural Networks, San Diego, CA, Vol. I , 1988, pp. 153-

160.

[3] P . A. Chou, "The Capacity of the Kanerva Associative Memory Is Exponential," in

Neural Information Processing Systems, D. Z. Anderson (editor), New York , NY :

American Institute of Physics, 1988, pp. 184-191.

[4] A. Dembo and 0. Zeitouni, "High Density Associative Memories," in Neural In­

formation Processing Systems, D. Z. Anderson (editor), New York , NY: American

Institute of Physics, 1988, pp. 211-218.

[5] A. Dembo and 0 . Zeitouni, "General Potential Surfaces and Neural Networks,"

Physical Review A, Vol. 37, ~o. 6, 2134- 2143, 1988.

[6] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York,

NY : John Wiley and Sons, 1973.

[7] W. Feller, An Introduction to Probability Theory and its Application, Vol. II, 2nd

edition. New York , NY :John Wiley and Sons, 1971.

[8] L. A. Glasser and D. W. Dopperpuhl, The Design and Analysis of VLSI Circuits.

Reading, MA : Addison- Wesley, 1985.

[9] J. J. Hopfield, "Neural Network and Physical Systems with Emergent Collective

Computational Abilities," Proc. Nat. Acad. Sci. USA, Vol. 79, 2554-2558, 1982.

[10] J. J. Hopfield, "Neurons with Graded Response Have Collective Computational

Properties Like Those of Two-State Neurons," Proc. Nat. A cad. Sci. USA, Vol. 81,

3088-3092, 1984.

- 106 -

[11] Y. C. Lee, et al., "Machine Learning Using a Higher Order Correlation Network,"

Physica 22D, 276-306, 1986.

[12] R . J. McEliece, E. C. Posner, E. R. Rodemich, S. S. Venkatesh, "The Capacity of

The Hopfield Associative Memory," IEEE Tran. on Information Theory, Vol. IT-33,

461-482, 1987.

[13] D. Psaltis and C. H. Park, "Nonlinear Discriminant Functions and Associative Mem­

ory," in Neural Networks for Computing, J. S. Denker (editor), New York, NY :

American Institute of Physics, 1986, pp. 37G-375.

[14] M. R. Sayeh and J. Y. Han , "Pattern Recognition Using a Neural Jetwork," in Proc.

of SPJE Cambridge Symp. on Opt. and Optoelec. Eng., Cambridge, MA, Nov., 1987.

[15] B. Soffer, "Holographic Associative Memories," in Proc. of Workshop on Neural

Network Devices and Applications, Jet Propulsion Lab., Feb. , 1987, pp. 125- 146.

-107-

Cl1apter 5

VLSI lmple1nentation of ECAM

5.1 Introduction

In the previous chapters, we introduced a model for correlation associative memories,

which includes a variation of the Ilopfteld memory and the high-order associative mem­

ories as special cases. This model is based on an architecture consisting of binary con­

nection weights. simple hard-limiter neurons, and specialized nonlinear circuits. The

evolut ion equation of this general model is

(5.1)

where u (l), u <2), · · · , u (M) are the 1\1 memory patterns. x and x ' a re the current and the

next state patterns of the system, respectively, and sgn is the threshold function, which

takes on the Yalue +1 if its argument is nonnegative, and -1 otherwise.

'Ve addressed, in particular, the case when f is of the exponentiation form, namely,

when the evolution equation is

x' (5 .2)

- 108 -

and a is a constant greater than unity. The new exponential correlation associative

memory (ECAM) possesses a very large storage capacity, whlch scales exponentially

with the length of memory patterns (1). Furthermore, it has been shown that ECAM is

asymptotically stable in both synchronous and asynchronous updating modes.

The ECAM chlp we designed is programmable; that is, one can change the set of

memory patterns of that associative memory at will. To perform an associative recall,

one first loads a set of memory patterns onto the chip. The chip is then switched to the

associative recall mode, and an inpu t pattern is presented to the ECAM chip. The ECAM

chip then computes the next state pattern according to Equation (5.2) and presents it

at the output port of the chlp. The components of the next state patterns appear in

parallel, after the internal circuits have settled, at the output port. Feedback is easily

incorporated by connecting the output port to the input port. In thls case, the ECAM

chip will cycle until a fixed point is reached.

In this chapter, we first describe a VLSI implementation of ECAM, present the

testing results of the ECAM chip, compare the error correcting performance of the real

chip and that of a simulated ECAM, and finally demonstrate the speed and capability

of the ECAM chip by utilizing it in performing vector quantization on binary images.

5.2 Circuit D esign of the Static RAM

Because of the need for remembering and changing memory patterns of the associative

memory, the ECAM chip is built on top of a basic RAM structure. We first elucidate

the RAM structure, and then describe associative recall circuits as well as input/outp ut

peripheral circuits. The static RAM consists of three major components, whlch will be

described in the following subsections.

- 109 -

bit bit

word

Figure 5.1: A six-transistor static random access memory cell

5.2.1 Memory Cell

A six-transistor static RAM cell is chosen as the memory cell used in the ECAM chip

because it requires least peripheral con trol and because it is most reliable. The RAM

cell consists of two coupled inverters holding one bit of information . This bit can be

accessed by dual-rail bit lines through two NMOS t ransistors controlled by a word line

(see Figure 5.1). If a cell is not being accessed, the word line that controls that cell

remains Low; hence the cell is isolated from the two bit lines. Even with t he presence

of leakage current, information is preserved by the feedback configuration of a coupled

inverter pair. Also note that both the cell's information bit and its complement are

available to other circuits.

-110-

Voo

bit f bit

~ VouT

VIN1 VIN2

READ

Figure 5.2: Circuit diagram of the sense amplifier used in the ECAM chip

5.2.2 Sense Amplifier

We choose a simple differential amplifier as the sense amplifier used in the ECA~l chip [6,

2] (see Figure 5.2). This amplifier, albeit simple, has been shown, by SPICE simulation,

to be good enough for this particular application .

In Figure 5.2, Q5 works as a current source activated by the signal "READ." If

VINl is higher than Vt~2, then the gate-to-source voltage of Q3 is larger than the gate­

to-source voltage of Q4. Therefore, Q3 will sink more current than Q4. ~1oreoYer, the

sum of the drain currents in Q3 and Q4 equals the drain current in Q5 and is fixed.

Consequently, if VINl is sufficiently higher than VIN2, Q3 sinks ;t current orders of

magnitude larger than Q4 does, and Q-! is effectively cut off. Since Q 1 and Q2 have the

same gate-to-source voltage, the drain-to-source voltage of Q2 must be near zero; i. e.,

aO
al
a2

a3

a4

- 111-

word

Figure 5.3: Circuit diagram of the row decoder used in the ECAU chip

VouT will be near Voo. On the other hand, if VIN2 is sufficiently higher than VtNl,

then the gate-to-source of Q4 is higher than that of Q3. Therefore, Q4 will sink most

current that passes through the current source transistor Q5. Also, since Ql and Q2

have the same gate-to-source voltage, the drain-to-source voltage of Q2 must be large

and VouT must be near GND. In conclusion, we see that if VINl is sufficiently higher

than VI:"< 2, then V oUT will be V D D; if the reverse is true, Vo UT will be G No .

5.2.3 Row Decoder

We choose a static NAND-NOR type decoderfor row decoding [7] because of its reliability

and ease of implementation (see Figure 5.3). The associative memory chip is able to store

32 memory patterns addressed by five address bits {aO- a4). The output of a row decoder

goes to a word line driver, which provides the signal that controls the transmission gates

in the memory cells.

- 112 -

word line bit line reading "1" reading "0"
driver size driver size writing "0" writing "1"

Tr(ns) Tw(ns) Tr(ns) Tw(ns)

x4 x4 19.4 13.5 11.8 14.1
x4 x8 19.0 11.6 11.8 12.0
x4 x16 19.2 11.0 11.9 11.0
x8 x4 14.8 13.5 11.5 14.3
x8 x8 14.8 11.6 11.3 12.0
x8 x16 14.3 11.0 11.4 11.0
x16 x4 11.0 13.5 11.3 13.9
x16 x8 11.2 11.6 11.3 12.0
x16 x16 10.9 11.0 11.3 11.0

Table 5.1: Read time (Tr) and write time (Tw) of the static RAM with various driver
sizes obtained from SPICE simulation

5.3 SPICE Simulation Results of the Static RAM

In order to determine the ratio of the sizes of global line drivers and transistors in memory

cells, we conduct extensive SPICE simulation on relevant circuits. Table 5.1 illustrates

the access times during reading and writing for various driver sizes and minimum size

transistors in memory cells.

The first thing one notices is that the size of word line drivers does not affect the

write access time (Tw) significantly in both cases. This is because in the simulation a

read-modify-write cycle is simulated; therefore, the two transmission gates controlled by

the word line are already closed before a write operation begins.

In a read operation, as soon as the signal "READ" rises, the current source transistor

is turned on and starts sinking current. This pulls the ou tput of the sense amplifier down

before the amplifier even has a chance to sense the difference between the two bit lines.

- 113 -

current source reacting "1" reacting "0"
transistor size writing "0" writing "1"

Tr(ns) Tw(ns) Tr(ns) Tw(ns)

x1 14.8 11.6 11.5 12.1
x2 19.4 11.7 10.5 12.1
x3 20.2 11.8 10.1 12.1

Table 5.2: Read time (Tr) and write time (Tr) of the static RAM with various current
source sizes obtained from SPICE simulation

Consequently, when reacting a "0," the word line driver size bas almost no influence on

read access time (Tr). But when reacting a "1," Tr decreases as the word line drivers get

bigger because the bigger the word line drivers, the sooner the transmission gates close

and the sooner the sense amplifiers produce valid output. As for the bit line drivers,

making them bigger decreases Tw a.nd a.t the same time increases Tr slightly. Bigger

bit line drivers mean more load for the pull-up transistors in the memory cells, which

in turn slows down the operation of the sense amplifiers and thus induces longer read

access time.

We decide to balance the effects of these two parameters a.nd choose a. configuration

that makes both Tr a.nd Tw sma.ll enough without occupying too much silicon rea.l estate.

The transistors in the word line drivers a.nd bit line drivers a.re ma.de 8 times as wide as

the minimum size transistor, i.e., 32-X wide and 4-X long in the scalable CMOS technology.

Also, the pull down transistors in memory cells a.re of minimum size so tha.t as many

cells as possible ca.n be put on the chip.

We a.lso look into the effects of varying the size of the current source transistors

in the sense amplifiers. Referring to Table 5.2, one notices that making current source

transistors bigger does not produce any significant improvement. When the current

-114-

source is made twice as strong, Tr decreases when reading "0" and increases when reading

"1." This is because once the current source is turned on, the current flowing through

the current source transistor brings the output of the sense amplifier low. Therefor,

bigger current source means larger current, more voltage drop at the output , and longer

time to read "1." We therefore decide to have all current source transistors of minimum

sJZe.

5 .4 D esign of A ssociative R ecall Circuits

In this section, analog computation circuits implementing the ECAM evolution equation

for associative recall are described. From the evolution equation of ECAM, we notice

that there are essentially three circuits that need to be designed in order to build an

ECAM chip. They are:

• < u (k), x>, the correlation computation circuit;

M

• L a<u<k>, x> u (k), exponentiation, multiplication and summing circuit ;
k=1

• sgn(-), the threshold circuit.

Now let us describe each circuit , present its design and simulation results , and

finally integrate all these circuits to get the complete design of an ECAM chip.

5.4.1 C or relation C omput at ion C ircuit

In Figure 5.4. we illustrate a voltage-divider type circuit consisting of NMOS transistors

working as controlled resistors (linear resistors or open circuits). This circuit computes

the correlation between the inpu t pattern x and a memory pattern u (k). If the ith

(k)
U X

1 1

• • •

(k)

u2 x2

- 115 -

• • •

(k)
U X

N-1 N-1

(k)
U X

N N

(k)

Yux

Figure 5.4: Circuit diagram of the correlation computation circuit in the ECAM chip

- 116 -

components of these two patterns are the same, the corresponding XoR gate outputs a

"0" and there is a connection from the node V~ to Va s ; otherwise, there is a connection

from V~ to GND. Hence the output voltage will be proportional to the number of

positions at which x and u(k) match. The maximum output voltage is controlled by

an externally supplied voltage Vas. Normally, Vas is set to a voltage lower than the

threshold voltage of ·.\!lOS transistors (VTH) for a reason that will be explained later.

The conductance of an NMOS transistor in the ON mode is not fixed, but rather

depends on its gate-to-source voltage and its drain-to-source voltage. Thus, some nonlin­

earity is due to occur in the correlation computation circuit. A correlation computation

circuit with N = 64 is simulated by SPICE. In Figure 5.5, we illustrate the SPICE output

voltage V~ and the ideal linear response, i.e., the case when ON transistors are replaced

by linear resistors and OFF transistors by open circuits. As shown in Figure 5.5, there

is only slight deviation from the ideal response throughout the whole operating range­

from OV to Vas . Therefore, we feel that the proposed correlation computation circuit

should be good enough for the ECAM chip.

5 .4.2 E xponentiation, M ultiplication, and Summ ing C ircuit

Figure 5.6 depicts a circuit that computes the exponentiation of V~~, the product of

u~k) and the exponential, and the sum of all M products.

The exponentiation function is implemented by an NMOS transistor whose gate

voltage is V~. Since Vas, the maximum value that V~~ can assume, is set to be

lower than the threshold voltage (VTH); the NMOS transistor is in the subthreshold

region, where its drain current depends exponentially on its gate-to-source voltage [5].

If we temporarily ignore transistors controlled by u~k) or the complement of u~k), the

current flowing through the exponentiation transistor associated with V~ will scale

exponentially with V~. Therefore, the exponentiation function is properly computed.

- 117-

~

0 '-0
(Q
(~h

·~ ~Q
'-0

·~oo If)

s::
·~oo

e.o
0 ·~oo ~
~

·-.. %0 co - rJ) ::l ~ C) s •.oo ,..c; u CJ) ·~00
IXl

('lj
•. 0 s u ·~ 00 0

~ ~ ---.,
e. a ~

(./}

• • . 00
...__

I

·~ 00

;::
9

~ a ('lj
Q) ·~ 00 N ,..c; CJ) C"') s:: ·~% 0 rJ)

0... ~ 0 ~
CJ)

·~ ~ 0 Q)
1-1

·~~
....... - ~
rJ)

~ • . 0 0 Q) • 0 N
Poe '"0 ~ 0

·~oo
~

0
I • . 0 J... • I ·~oo C)

'-0 ~ ·~%

··'b ;;
e.o ~
•o e.o e.o co
·~

..-.... ·~
> <o

(0_,
......... 0
,..:.:: X

- >::s
<X? '-0 ~ N 0

0 0 0 0

Figure 5.5: Comparison of the output voltage of a SPICE simulated correlation compu­
tation circuit with N = 64 and the ideal response

(1)
u .

1

v <2>
ux

(2)
u .

1

v <M>
ux

(M)
u .

1

+
I .

1

- 118-

•
•
•

(1)
u .

1

(2)
u .

1

(M)
u .

1

Figure 5.6: Circuit diagram of the exponentiation, multiplication, and summing circuit
in the ECAM chip

-119-

Since the multiplier u~k) assumes either +1 or -1, the multiplication can be easily

done by forming two branches, each made up of a t ransmission gate in series with an

exponentiation transistor whose gate voltage is V~~. One of the two transmission gates

is controlled by u~k), and the other by the complement of u~k). Consequently, when

u~k) = 1, the positive branch will carry a current t hat scales exponentially with the

correlation of input x and the kth memory pattern u (k), while the negative branch is

essen tially an open circuit , and vice versa..

Summation of M terms in the evolution equation is done by current summing. The

final results are two currents It and Ii, which need to be compared by the threshold

circuit to determine the sign of the ith bit of the next state pattern xi.

5.4.3 Threshold Circuit

The function of the threshold circuit is to generate Voo or GND, depending on whether

or not It is greater than Ii. Thus, any differential amplifier is sufficient. Figure 5.7

depicts the top half of a simple differential amplifier, which can be integrated with the

circuit in Figure 5.6 to decide xi.

5.4.4 Putt ing It All Together

In order for easy VLSI implementation, we design a. basic ECAM cell that realizes all

aforementioned computation. The idea is to draw the correlation computation circuit

and the exponentiation, multiplication, and summation circuit, and then extract a basic

repeating block. This block, together with a RAM cell, makes up the basic ECAM cell

as illustrated in Figure 5.8. The final design of an exponential correlation associative

memory that holds M N-bit memory patterns can be obtained by replicating the basic

ECAM cell in the horizontal direction M times and in the vertical direction N times.

- 120 -

d'.
1

+
I I

Figure 5.7: Circuit diagram of the thresholding circuit in the ECAM chip

(k)
c.

1

RAM
cell

(k)
c.

1
t---~t---,

(k)
c.

1

+
I .

1
I .

1

Figure 5.8: Circuit diagram of the basic ECAM cell

- 121 -

5 .5 AnaLOG Simulation R esults

Before we proceed to lay out the design of ECAM and have it fabricated , some more

simulation needs to be conducted. A functional simulator for neural VLSI systems -

"AnaLOG" [4) is used to simulate a.n M = N = 8 ECAM programmed with the following

memory patterns :

u (l) : -1 1 -1 -1 -1 1 -1 1

u (2) : 1 -1 -1 1 -1 1 -1 1

u (3) : 1 1 1 -1 - 1 -1 1 1

u (4) : 1 1 1 -1 1 1 - 1 1

u (s) : 1 -1 1 1 1 - 1 1 -1

u (6) : 1 1 -1 -1 1 -1 -1 1

u (7) : 1 1 -1 -1 1 1 1 1

u (8) : 1 -1 - 1 -1 - 1 -1 -1 - 1

Because of the memory and execution time constraints, only the first output bit is

simulated; i.e., only circuitry that computes x~ is simulated (see Figure 5.9). The first

input pattern is (-1 -1 -1 1 - 1 1 -1 1), the second input pattern is the first with its

second bit reversed, and the third input pattern is the same as the first (see how INPUT2

in Figure 5.10 changes from -1 to 1 and to -1 again). For ease of comprehension, the

correlations of the three input patterns with all eight memory patterns are listed below.

~
l..__.....,.IJ
q~ G~

r
You t o)-i c)--+

- 122 -

Input2

t- l- t- l- t- l-f l-

l- l- l- T
rr··r···

HH H-I HH >-~ -I t
-o H H HHHHHH©

.... r r···
HHH H HHHH
HHHHHHHH

····r··· ~ --t H -I HI H >--~ >--~
-u-tH >-~ ~ H ; ;,...
H H H' H ~ --a >--~ H
HHHH H HHH
j•jjj jj

HHHHHHH H
HHHHHH H H

.... + + +

H >--~ H H -a -ll >--~ >--~

+ + + +

HH HH HH HH
H HHHHHHH

Figure 5.9: Circuit diagram of an M = N = 8 ECAM used in AnaLOG simulation

- 123 -

< u(l),x> 4 6 4

< u (2),x > 6 4 6

< uC3) x > , -4 -2 -4

< u(4),x> -2 0 -2

< u(5),x > -4 - 6 -4

< u(6) x > , -2 0 -2

< uC7) x > , -2 0 -2

< u(8), x > 0 - 2 0

In Figure 5.10, +1 is encoded as 5V, while - 1 as OV. Since the first components of

all memory patterns except u (l) are +1, and u (2) is nearest the initial input pattern, one

expects x~ = + 1 initially (Yo UT = 5V in Figure 5.10). Note that the correlation-matrix

associative memory where f(t) = t will have an erroneous outcome in this case. Next,

when the second component of the input pattern (INPUT2 in Figure 5.10) is switched

to +1, u (l) becomes the nearest memory pattern. Even with u C2) also being near, x;
still becomes -1 very quickly. Similarly, one sees that when INPUT2 is brought down to

OV, VouT goes to 5V almost instantly. So, we are assured that the analog computation

circuits for associative recall described in the previous section are functionally correct

when they are used to build a small ECAM.

......
::s
0
>

- 124 -

........ ,.....
i
i
i
i
l

........-·

............
................

............

................

........

...............

!

I
i
i
i

............... ...i
........

........................
........

·-....... - -.....,
i
i
i
i

r----+-----·r----+----,_----+----+----~:~---~i· ----+---~0
00 0

>
-I

Figure 5.10: AnaLOG simulation results of an M = N = 8 ECAM

('I
I

M

M

ODE/W

a0-a4

5

' ..)'
row

decoder

• • •
row

decoder

....
ODE/R

- 125 -

DINO DINt DIN22 DIN23

+ + ~ ~
input input input input

demul- demul- ••• demul- demul-
tiplexer tiplexer tiplexer t iplexer

bit bit bit bit
lines lines ••• lines lines

driver driver driver driver

Thresh- Thresh- Thresh- Thresh-
old old ••• old old

circuit circuit circuit circuit

ECAM ECAM
cell cell • • • ECAM ECAM

ce ll cell

• • • 32 x 24 ECAM cells • • •
ECAM ECAM

cell cell ••• ECAM ECAM
cell cell

sense sense sense sense
a mpli- ampli- ••• ampli- ampli-

fier fi er fi er fie r

output output output output
multi- multi- • •• multi- multi-
plexer plexer plexer plexer

~ ~ • t
DOUTO DOUTt DOUT22 DOUT23

Figure 5.11: Block diagram of the ECAM Chip

5 .6 T h e ECAM Chip and Testing R esults

We have explained in detail the circuit design of the proposed ECAM chip; now we

illustrate, in Figure 5.11, a block diagram of the complete ECAM chip, including ECAM

cells, read/write circuit, sense amplifiers, row decoders, and I/ 0 multiplexers.

- 126 -

Figure 5.12: Microphotograph of the ECAM chip

We start out by laying out the basic ECAM cell using the MAGIC VLSI design

editor. The cell turns out to be 100-A by 140-A. A nonprogrammable (ROM type) ECAM

cell is also designed, and it occupies only 32-A by 32-A. Then all other peripheral circuits ,

such as row decoders, multiplexers, etc. are laid out and simulated by the MOSSIM

switch-level simulator. The complete chip is made up of 32 x 24 ECAM cells, which hold

32 memory patterns each 24 bits wide. It is then sent to MOSIS for fabrication (see the

microphotograph in Figure 5.12).

- 127-

There are four groups of signals on the ECAM chip : 1) Input data bus (DINO -

DIN23), which contains 24 bits that carry either memory patterns to be stored or input

patterns x working as probes to the associative memory; 2) output data bus (DouTO

- DouT23), which contains 24 bits that carry either patterns stored in the RAM or

the next state pattern x'; 3) two control signals (MooE/R and MODE/W, which are

select signals to the input demultiplexers and output multiplexers and are responsible

for switching between the programming mode and the associative recall mode; and 4)

power and ground signals for digital circuits and analog circuits, and an external supply

voltage for the correlation computation circuit (Vas).

We have tested the ECAM chip using a specialized VME bus based host computer.

Both the input data bus (DINO - DIN23) and the output data bus (DouTO - DouT23)

as well as the two control signals are connected to 8255 programmable input/output

chips. These 8255 chips are controlled by the host computer via a VME bus. The

testing procedure is first to generate 32 memory patterns randomly and program the

ECAM chip with these 32 patterns. Then pick a memory pattern and flip a specified

number of bits randomly, and feed the resulting pattern to the ECAYI as an input pattern

(x) . The output pattern (x') can then be fed back to the input side of the ECAM chip.

This iteration continues until the pattern on the input bus is the same as that on the

the output bus, at which time the ECAM chip has reached a stable state. We select 10

sets of 32 memory patterns and for each set we run the ECAM chip on 100 trial input

patterns with a fixed number of errors. Altogether, there are 1000 trials tested.

In Figure 5.13, we illustrate the testing results of the ECAM chip. The number

of successes is plotted against the number of errors in input patterns for the following

four cases : 1) The ECAYI chip with Vas = 5V; 2) Vas = 2V; 3) Vas = 1V; and 4)

a simulated ECAM with the constant in the exponentiation, a, equals 2. It is apparent

from Figure 5.13 that as the number of error increases, the number of successes decreases,

which is expected. Also, one notices that the simulated ECAM is by far the best one,

which is again not unforeseen because the ECAM chip is, after all, only an approximation

- 128 -

of the ECAM model and thus will definitely do more poorly. What is really unexpected

is that the best performance is given by the case when Vss = 2V instead of the case

when Vss = 1V (VTH in this CMOS process) as we predicted.

Thls phenomenon is actually the result of two contradicting effects brought about

by increasing Vss. On the one hand, increasing VBB increases the dynamic range of

the exponentiation transistors in the ECAM chip. Suppose that the correlations of two

memory patterns u (l) and u (k) with the input pattern x are t1 and tk, respectively, where

t1 > tk; then

y(I) = t1 VBB
we N '

(k) _ tk VBB
Vux- N .

Therefore, as VBB increases , so is the difference between v~ and v~~, and u (l) becomes

more dominant than u (k) in the weighted sum of the evolution equation. Hence, as Vss

increases, the error correcting ability of the ECAM chip should improve. On the other

hand, as VBB increases beyond the threshold voltage, the exponentiation transistors

leave the subthreshold region and might enter saturation, where the drain current is

approximately proportional to the square of the gate-to-source voltage. Since a second­

order correlation associative memory in general possesses a smaller storage capacity

than an ECAM, one would expect that with a fixed number of loaded memory patterns ,

ECAM should have a better error correcting power than the second-order correlation

associative memory does. In conclusion, two contradicting effects are going on as VBB is

raised; one tends to enhance the performance of the ECAM chip, while the other tends

to degrade it. A compromise of these two effects is reached, and the best performance

is rendered when VBB = 2V as shown in Figure 5.13.

In the case when VBB = 2V, the drain current versus gate-to-source voltage char­

acteristic of the exponentiation transistors is actually a hybrid of a square function and

an exponentiation function : At the bottom it is of an exponential form, and it grad­

ually flattens out to a square function, once the gate-to-source voltage becomes larger

than the threshold voltage. Therefore, the ECAM chip with Vss = 2V is a mixture

of the second-order correlation associative memory and the pure ECAM. According to

- 129 -

>
~

II /. /o;·r co
..0
..0
>

I

Q

.1•/o./)~
r.-...

>
N (/)

II ~
..0

1-;

\0 OJ

~
......

JP
......
ctl

I
0...

Q
;s

I.() 0...
~ >

I.()
~

II ·-..0 (/)
1-;

~ -.:t<
0
1-;
1-;

I CJ
~ ~

0
1-; - OJ

N

v
('() ..0 II s ro ;s

~ (/) s:;
0 OJ (/) (/)
ro (/) ctl N - OJ ·c

r
~ u s u
...... ;s 0
Cf) (/) 0

~ 0
I 0 ~ .,

1-; ~ ~

OJ 0 0

1
...... 0 0 0 0 0
;s 0 0 0 0 0
0 0 co \0 -.:t< N

~

~

Figure 5.13: Comparison of the ability to correct errors of the ECAM chip with different
VBB and a simulated ECAM with a = 2

- 130 -

the convergence theorem for correlat ion associative memories and the fact that f in the

ECAM crup with VBB = 2V is still monotonically nondecreasing, the ECAM ch.ip is still

asymptotically stable in the synchronous updating mode even when VBB = 2V.

5. 7 A V ector Quantization Example

In order to measure the speed of the ECAM chip for real applications, we choose the

binary image vector quantization as an example problem. Vector quantization is a means

of data compression (source coding) on information to be transmitted or stored , e. g.,

speech waveforms, images, etc. [3]. In principle, a vector quantizer should, given a set of

codewords and an input, find the nearest codeword to the input . Then only the index of

the nearest codeword is transmitted or stored instead of the information itself. Usually,

the nu mber of possible codewords is much less than that of possible information patterns;

hence, vector quantization can reduce the bandwidth (number of bits) needed.

The problem wh.ich the ECAM ch.ip solves is the binary image vector quantization

problem, where pixels in the images are either black or wrute. At first input images are

partitioned into 4 x 4 blocks, and each block is vector-quantized by the ECAM chip. A

set of 32 codewords are chosen, and they correspond to all white, all black, horizontal

edge, vertical edge, and diagonal edge blocks as shown in Figure 5.14. The ECAM

chip is programmed with these codewords, and 4 x 4 blocks from a binary image are

fed to the ECAM ch.ip. A reconstructed image is formed by replacing each block by

its corresponding codeword. However, there are times when the output pattern of the

ECAM chip is not a codeword (remember- there are many spurious stable states in any

associative memory), in wh.ich case an all white block is generated instead. Figure 5.15

and Figure 5.16 illustrate two original binary images and their ECAM chip reconstructed

images. It is obvious that the quality of the reconstructed binary images is not as good

as the originals, yet this is the price paid for reduced transmission or storage bandwidth.

- 131 -

Figure 5.14: 32 codewords used in binary image vector quanti zation

- 132-

(a)

(b)

Figure 5.15: Comparison of (a) the original girl image and (b) the reconstructed girl
image after vector quantization by the ECAM chip

- 133 -

(a)

(b)

Figure 5.16: Comparison of (a.) the original airplane image and (b) the reconstructed
airplane image after vector quantization by the ECAM chip

-134-

One thing worth noting is the speed that the ECAM chip can vector-quantize

these binary images. We find that the ECAM chip is capable of doing one associative

recall operation in less than 3 J.LS (this includes the overhead for the ECAM chip to

communicate with 8255 chips). This projects to about 28 ms for the 416 x 352 pixel

girl image in Figure 5.15, or more than 30 images per second. For larger images, more

ECAM chips can work together since each block is quantized independently.

5.8 Conclusions

In this chapter , we have presented a circuit design for implementing the exponential

correlation associative memory proposed in Chapter four. In addition, a VLSI chip for

this design is fabricated and tested. The performance of the ECAM chip is shown to

be almost as good as a simulated ECAM. Finally, the speed of the chip is measured

by employing it to do vector quantization on binary images. And it is found that the

ECAM chip can process binary images in real time, i.e., faster than 20 - 30 images every

second. In conclusion, we believe that the ECAM chip provides a fast and efficient way

for solving associative recall problems and minimum distance classification problems.

- 135 -

References

[1] T. D. Chiueh and R. M. Goodman, "High-Capacity Exponential Associative Mem­

ory," in Proc. of IEEE ICNN, Vol. I, 1988, pp. 153- 160.

[2] L. A. Glasser and D. W. Dopperpuhl, The Design and Analysis of VLSI Circuits.

Reading : MA, Adilison-Wesley, 1985.

[3] R. M. Gray, "Vector Quan tization ," IEEE ASSP Magazine, Vol. 1, 4-29, 1984.

[4] J.P. Lazzaro, "AnaLOG: A Functional Simulatorfor VLSI Neural Systems," Tech­

nical Report, 5229:TR:86, Computer Science Department, California Institute of

Technology.

[5] C. A. Mead, Analog VLSI and Neural Systems. Reading, MA : Adilison-Wesley,

1989.

[6] 0. Minato, T . Masuhara, T. Sasaki , H. Nakamura, Y. Sakai , T . Yasui, K. Vehihori,

"2K x 8 Bit Hi-CMOS Static RAMs," IEEE Journal of Solid-State Circuits, Vol. SC-

15, 656- 660, 1980

[7] . . Weste and K. Eshraghian, Principles of CMOS VLSI Design, A System Perspec­

tive. Reailing, MA : Addison-Wesley, 1985.

