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ABSTRACT 

Sufficient conditions for the existence and uniqueness, and estimates, 

of a continuous vector solution y = y(t) to the integral equation 

y(t) = u(t) + EL(t) Ef
t 

M(s) f(s,y(s)) ds + K(t,s) f(s,y(s)) ds, 
t 

0 

are derived. A successive approximation technique involving a double 

sequence is used in the proof . 

This integral equation result is applied to the second order singular 

perturbation problem with differential equation 

Ex"+ p(t,e) x ' + q(t,e) x + r(t,e) + Eh(t,x,x',E) = o, 

and boundary conditions 

b1(e) x(o,e) + b2(e) x'(o,e) 

c 1(e) x(l,E) + c2(e) x'(l,e) 

= £ (e), 
0 

O<t<l, 

Conditions are established under which a certain sequence generated from 

this system is the basis for asymptotic expansions of a solution . 

The singular perturbation problem with differential equation 

Ex" + F(t,x,x' ,e) = 0 

is also studied. Under the assumptions that there exist functions s = s(E) 

and w = w(t,e) and positive constants A and B such that 

1 ew" + F( t, w, w, , e) 1 ~ As ~ Be, o ~ t ~ , , 0 < E < E , 
0 

and certain relationships including w and w' evaluated at the boundaries 

hold as E -> 0+ , "'e obtain an asymptotic expansion with leading term 

w(t,e) for a solution to this problem. 



1. We are concerned with proving the existence and uniqueness of 

solutions for certain classes of ordinary differential equations which 

depend in a singular manner on a small positive parameter €. We are 

further concerned with describing these solutions by obtaining for them 

asymptotic expansions uniformly valid in the whole interval as € -> 0+ 

More precisely, let P = P(€) be a positive function of € with the 

property that P(€) -> 0 as € -> O+, and let t belong to the interval 
00 

I. The formal sum ~ x. ( t, €) is said to be a uniform asymptotic expansion 
• 1 ~ 
~= 

with scale P(€) for x(t,€) if there exists a function A= A(t,€) 

such that for € -> 0+ and m = 1,2, ••• , 

m 
x(t,€) - ~ 

i=1 
uniformly for t in I. 

It is the nature of most perturbation problems, where the small 

( 1.1) 

parameter multiplies the highest derivative in the differential equation, 

to exhibit non-uniform convergence, as € -> O+, in the neighborhood of 

some point or points in the interval. Such problems are usually called 

singular perturbation problems . Most of the literature on singular 

perturbation problems has been concerned with the case when the non-uniformity 

occurs at one of the end points of the interval. It is the custom in this 

case to call the region near this end point a boundary layer in analogy 

with certain hydrodynamic phenomena. Most singular perturbation problems 

with linear differential equations exhibit boundary layers, and in this case 

theoretical means exist for determining when a particular end point is part 

of a boundary layer (see Wasow [1]). Usually, different analytic expressions 

are developed for the boundary layers and the rest of the interval (see, 

e.g., Levin and Levinson [2]). 



2 

In section 2 some results for integral equations are proven . These 

are developed in greater generality than needed for the specific applications 

in the following sections . This is done in the expectation that these 

results will be found useful in connection with other perturbation problems . 

Of fundamental concern in developing the theory for integral equations, 

which have the same solution as a given boundary value problem involving an 

ordinary differential equation, is the solution of Volterra integral 

equations . For such integral equations the convergence technique bas been 

examined in considerable detail for the linear case by Erdelyi [3], [4], 

and [5], and in some detail for the nonlinear case by Erdelyi [6] . Theorem 

2 . 1 in this thesis is a result for nonlinear Volterra integral equations 

similar to Erdelyi ' s result in [6] , but differing enough to warrant a 

separate proof . 

Theorem 2.1 is used to get our main integral equation result Theorem 2 .2, 

which states conditions under which a Fredholm equation of the form 

y(t) = u(t) + E f K(t,s) f(s,y(s))ds , t e I, 

I 

( 1 .2) 

(more precisely, of the form 2 . 3) has a unique vector solution y(t) on I . 

K(t,s) is allowed a discontinuity along t = s, and f(s,y(s)) is assumed 

to satisfy a lipschitz condition with respect to y(s) . 

The nature of the domain ~ in which the lipschitz condition on f 

holds is very important in singular perturbation problems, because it is 

necessary for fJ to include functions y( t) = y( t, E) with non-uniformities , 

At the same time one desires to keep tJ compact . In the statement of 

Theorem 2 .2 the form of /:) is not specified to any great degree . Later, 
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when Theorem 2 .2 is applied to singular perturbation problems expected 

to have a boundary layer at the left endpoint of the interval, iJ is 

specialized to take this into account . 

The possibility exists that Theorem 2 .2 might be applied to problems 

having solutions with non- uniformities in the interior of the interval, 

by choosing the domain ~ in an appropriate manner . Little work seems 

to have been done on such problems . Lagerstrom [7] and his associates 

are presently engaged in research to produce examples of this nature . 

The literature on singular perturbation problems which exhibit boundary 

layers is quite extensive . Wasow [8] proves the existence of a solution 

and develops a single uniform asymptotic expansion for that solution in 

the case of a second order differential equation of the form 

( 1.3) 

with 

( 1.4) 

and a set of boundary conditions of the form 

x(t ,E) = £ , 
0 0 

( 1.5) 

Wasow•s theory applies only to problems that have solutions with at worst 

non-uniformities on the boundary of the interval . Erdelyi [ 9] proves the 

existence of a unique solution for a more general problem than 1 . 3, 1. 5, and 

he shows to some extent the behavior of this solution, as € -> 0+. Using 

integral equation techniques, Erdelyi is able to replace condition 1. 4 by 

€
- 1 ~F the assumption that -- is bounded . The boundary conditions for 

dx ' 2 
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the problem considered by Erdelyi are of the form 1.5, but with 

£1 allowed to depend on € . 

.£ 
0 

A result of Wasow [1] is that most regular second order linear 

and 

singular perturbation problems with solutions have a single boundary layer. 

Hence, it is only natural to expect problems involving an equation of the 

form 

Ex"+ p(t, E)x • + q(t,€)x + r(t,€) + €h(t, x, x ' ,€) = 0, ( 1.6) 

which is only "weakly nonlinear" , to have under very general conditions a 

solution with a boundary layer at the same point as the solution of the 

linear equation 

€x" + p(t,€)x ' + q(t,€)x + r(t,€) = 0 . 

In section 5 we treat the problem composed of equation 1 .6 and 

boundary conditions 

( 1. 7) 

b1(€)x(O,€) + b
2

(€)x •(O,€) = £
0
(€), c 1(€)x(l , €) + c2(€)x •(l,€) = .£1(€) . 

( 1.8) 

Sufficient conditions to guarantee the existence of a unique solution 

x = x(t,€) are stated, and uniform asymptotic expansions exhibiting a 

boundary layer are given for x and x 1 • It is characteristic of these 

asymptotic expansions to consist of parts that may be computed by using 

only ordinary perturbation methods on problems having non- homogeneous first 

order linear differential equations and one boundary condition . 

We consider in section 6 the problem of the "strictly nonlinear" 

equation 1 . 3 with boundary conditions 1 .8 . Instead of considering this 
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problem as merely a "boundary layer problem", as Wasow does in [8] and 

Erdelyi does in [9] , we find conditions sufficient to guarantee the 

existence of a solution of the form 

X = W + Ez, ( 1.9) 

where w = w(t,E) is given so that z can be determined as a solution 

of a weakly nonlinear problem by the theory developed for such problems 

in section 5. 

of class c1 

For a very general class of functions F, e.g., F(t,x,x 1 ,E) 

in t and of class cl in x and x', and E- 1 (f.F = 0( 1) 
dX12 

uniformly (see assumption 6ii for a precise statement of the conditions 

on F), we find it sufficient that w(t,E) satisfy 

II 

Ew( t ,E) + F(t,w(t,E), w1 (t,E),E) = 0(€) uniformly (1.10) 

and a similar weakened version of the boundary conditions . Nothing is 

said about the non-uniformities of w(t,E), nor is w(t,E) determined any 

further than 1.10 and the other general conditions assumed for it . 

One can show that Wasow [ 8] and Erdelyi [ 9] have taken 

where w = w (t) is assumed to satisfy 
0 0 

F(t, 

and 

and where 

wo' •-r '' 0 
0) = 0 

J..L >I.e - w (o)l. 
- 0 0 

( 1.12) 

( 1. 13) 
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sufficiently small, they show the existence of a function 

so that 1. 11 determines w satisfactorily. w
1
(t,E), so 

determined, can have only a boundary layer type of non-uniformity . Also , 

the magnitude of ~ is limited enough to greatly restrict the generality 

of the final result for w(t , E) . 

It seems certain that the integral equation technique developed in 

this thesis could be extended to obtain w( t,E) of the same nature as 

Wasow' s and Erdelyi ' s result, only for our more general problem. For 

boundary conditions of the form 1 • 8, one would choose 

~ > I£ - b
1 

w ( 0) - b
2 

w' ( 0) I 
- 0 0 0 

and then would consider the weakly nonlinear differential equation, where 

"weakly" now means with respect to the new parameter ~, obtained by 

substituting 1 . 11 into 1. 10. 

The uniform asymptotic expansion we obtain for the general problem 

defined by 1.6 and 1 .8 gives, when h = 0, a uniform asymptotic expansion 

for the general second order linear equation with boundary values of the 

form 1.8 . In this case the expansion is obtained under the assumption 

that p(t,E) is from the class c1 and q(t,E) is from the class C. 
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2 . In what follows, t and s denote real variables confined to 

an interval I, which has t 0 as left endpoint and t
1 

as right end-

point . If t
0 

= -~, then t 
0 

then t
1 

belong to 

is not included in 

I. R. is the set 

is not included in I, and if 

I . Otherwise, 

{(t,s) : t € I, 

t
0 

and t
1 

t < s < t) 
0 

may or may not 

; € is a snall 

positive parameter always assumed to be in the interval 

An n-dimensional vector will be thought of as an n X 1 matrix, and 

by x t will be meant the transpose of the n X 1 matrix x . Whenever we 

speak of matrices in general, we will mean scalars, column and row vectors, 

and square matrices compatible with these vectors . All matrices will have 

real numerical functions for elements . As the norm of the matrix 

A= [aij(t)] we take 

.2:. la.;J.(t)l . 
l.,J ... 

If all the a .. (t) are integrable functions of t, by 
l.J 

meant the matrix ( f a .. (t)dt]. The derivative A' (t) J l.J 

I A(t)dt is 

is defined in a 

like manner . A partial ordering between matrices is defined component-

wise by 

A < B if a. . ( t) < b . . ( t) 
l.J - l.J 

for all 1, j, and t. 

For later applications we shall need that our results in this section 

be stated with more precision than the estimates afforded by the norm 

defined above. Hence, for any matrix A define IAI to be the column 

t h .th t . vee or w ose 1.-- componen l.S 2: I a .. ( t) I . For scalars this is the 
j l.J 

usual absolute value, and for a column vector x = (xi], lxl is the column 

vector whose ith component is lx.l and lx t I is the scalar 
l. 

2: I x.l. 
l. 

i 
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For any matrices A and B, 

Let 8' be the set of all vectors x( t) which are continuous on I 

and satisfy the vector inequality lx(t)l < d(t) for some fixed positive 

vector d( t) . 

We say that A(t) 

t -

is integrable~ .! if f 1 
A(t)dt exists (is 

t + 
0 

finite); A(t) is locally integrable~ .! if for each s belonging to 

I, A(t) is integrable over (t ,s); 
0 

A(t,s) is locally int egrable ~ 

~ if for each t belonging to I , A(t,s) is integrable over the interval 

( t 't) 
0 

as a function of s; and A(t,s) is integrable ~ R if 

A(t,s) is locally integrable over ~ and 

t - It ~ 1 
A(t1- ,s)ds = lim A(t,s)ds (2 . 1) 

t t->t - t 
0 1 0 

exists . 

A function x = x(t) = x(t,e) is a member of the class ck(I) if 

for each e, o < e < e , the first k der ivatives of x(t,e) with respect 
0 

to t exist on I and these k derivatives and x(t,e) are continuous 

on I. This will be denoted in the usual way by x e ck(I), x(t) e ck(I), 

or x(t,e) e ck(I) . 

For functions p(e) and T(e) we say that p(e) = O(T(e)) if there 

exist positive constants a and e* so that IP(e)l ~a IT(e)l whenever 

o < e < e*, and that p( €) = o ( T( €)) if for any positive number a there 

exists another positive number e*(a) so that IP(e ) l ~a IT(e)l whenever 

o < e < e*(a) . For vectors x(t,e) and y(t,e) defined over I, we say 

that x(t, e) = O(y(t, e)) uniformly over I 
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(or just "uniformly") if there exists positive constants a and E* 

so that lx(t,E)l ~ a ly(t,E)l for all t in I and 0 < E < E*; 

and that x( t, E ) = o ( y( t, €) ) uniformly over I (or just ''uniformly" ) 

if for any positive number a there exists another positive number 

E*(a) so that lx(t,E)I ~ aly(t,E)I for all t in I and 0 < E < e*(a) . 

That these last definitions make sense for matrices follows from our 

previous definition of the absolute value and ordering of matrices. 

We will use the f ollowing well known result (see [10], p . 37): 

Lemma 2 . 1 . Let f(t), g(t), h(t), and k(t) be numerical functions 

defined over I and such that k(t)f(t), k(t)g(t) , and k(t)h(t) are 

locally integrable over I. If 

t 
f(t) ~ g(t) + h(t) J k(s)f(s)ds , 

t 
0 

h(t) ~ o, and k(t) > 0 

for all t in I, then 

t 
f(t) ~ g(t) + h(t) exp( J k(s)h(s)ds) 

t l
t 

k(s)g(s)ds 
t 

0 0 

for all t in I. 

Our first considerations will be for the unknown vector function 

y(t) in the nonlinear Volterra integral equation 

y(t) = u(t) + E i t K(t,s)f(s,y(s))ds. 
to 

(2 .2) 
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Sufficient conditions for the existence and uniqueness of a solution 

y(t) will be stated, and a bound on y(t) - u(t) will be obtained. 

The result for equation 2 .2 will then be used to find sufficient 

conditions to guarantee the existence of a unique solution y(t) to 

the nonlinear integral equation 

y(t) = u(t) + EL(t) 

t -

~ 
1 

M(t1-, s )f(s,y(s))ds + 
t 

0 

t 
E f K( t, s) f( s, y( s) )ds . 

to 

K in equations 2 .2 and 2.3 and LM in equation 2.3 are matrices 

compatible with the vectors y, u, and f . The first integral in 

equation 2 . 3 is defined in the manner of 2 . 1. 

(2 .3) 

Assumption 2i . u(t) E C(I); K(t,s) E C(~ ); and f(t,y) is defined 

on I X iJ . 

Assumption 2ii . There exist nonnegative vector functions m(t) and 

j(t) and a positive scalar function K(t) all continuous on I such 

that I lf(t,x) - f(t,y)l I~ mt (t) lx - Yl whenever (t,x) , (t,y) E I X ~ 

and I K ( t, s ) I ~ j ( t) K( s ) . 

The lipschitz condition satisfied by f and the continuity of m(t) 

imply that f(t,y) as a function of y is continuous on JJ 

Assumption 2iii. There exist locally integrable functions 

and o;(t) over I such that o~(t) ~ K(t) llf(t,u(t)) II and 

o;(t) ~ EK(t) m~ (t) j(t) for all t in I . 

0 1 ( t) 
0 



let 

With 

0 ( t) 
0 

Assumption 2iv. 

o '(s)ds 
0 

, , 

and o1(t) 

6 (t) < d(t), t e I. 
0 -

Suppose y(t) e £} and K(t,s)f(s,y(s)) is locally integrable 

over IR, ; let T be the mapping defined by 

t 
Ty(t) = u(t) + E 1 K(t,s)f(s,y(s))ds 

t 
0 

A fixed point for T belonging to J1 will be constructed by the 

classical method of successive approximations, setting 

(2.4) 

(2.5) 

(2.6 ) 

Although Erdelyi [6 ) works out for considerable generality the technique 

of taking successive approximations with the operator T, the case covered 

by our assumptions is not included. We will prove here that the yk(t) 

converge to a function y*(t) satisfying 2 .2, and we will determine a 

bound for y*(t) - u(t). 

Theorem 2 .1. Under assumptions 2i to 2iv, yk(t) as defined by 2 .6 

exists for all values of k, T as defined by 2.5 has one and only one 

fixed point y*(t) for which y*(t) e J} and K(t) m t (t) IY*(t) I 
is locally integrable over I, and 
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(2 .7) 

Proof . The main part of the proof will be to show by induction 

that for k = 1, 2, • .. , yk( t) exists and belongs to S , and 

(2 .8) 

u(t) E B by assumptions 2i and 2iv; hence, K(t,s)f(s,u(s)) is 

defined in R. K( t, s) f( s, u( s)) is locally integrable over R. , 

if IK(t,s)f(s,u(s))l is locally integrable over ~ , and if 

K(t,s)f(s,u(s)) for each t E I is integrable over all intervals 

* t* < s < t where t < t < t (see [11], p . 437) . Since all functions 
0 

involved are continuous on I by assumption and since any interval of 

* * the fonn ( t , t) where both t and t are in I is bounded, the 

latter requirement is certainly met . IK(t, s)f(s,u(s))l is locally 

integrable over !R , because 

IK(t,s)f(s,u(s))l ~ j(t)K{s)l lf(s,u(s))l I~ j(t)o~(s) (2 .9) 

by assumptions 2ii and 2iii , and j(t) o'(s) is integrable over ~ 
0 

also by assumption . vie conclude that y 1 ( t) exists, and that 

(2 . 10) 

by equation 2 . 6 , inequality 2.9, and the definition of 0 ( t) . 
0 

Applying 

the triangle inequality to inequality 2 . 10, we obtain 

+j(t)Eo(t) . 
0 
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Hence, y1(t) E J1 by assumption 2iv and the continuity of u(t). 

The induction statement has been verified for k = 1. 

Next, suppose that the induction statement holds for k < n where 

n ~ 1. From this hypothesis, assumptions 2ii and 2iii, and the 

definitions of 5
0 

and o1, we obtain 

IK(t,s)f(s,yn(s))l ~ IK(t,s)l llf(s,yn(s))ll < 

n 
j(t)K(s) [ llf(s,u(s)) II + j:

1 
llf(s,y}s)) - f(s,yj _1(s)) II ] < 

n 
j ( t) K( s ) [ II f ( s , u ( s ) ) II + j: 

1 
m t ( s ) I y j ( s ) - y _ 1 ( s ) U ~ 

n 
j ( t) K( s) [ II f( s, u( s)) II + Em T ( s) j ( s) 5

0 
( s) L: 

j=1 

[o
1
(s))j-

1 J 
(j-1)! 

(2. 11) 

Inequality 2 . 11 implies that IK(t,s)f(s,y (s))l 
n 

is locally integrable 

over ~ , and it follows as before that K(t,s)f(s,y (s)) n is locally 

integrable over ~ . We conclude that yn+l(t) exists . Hence, by 

equation 2 .6, assumptions 2ii and 2iii, and inequality 2 .8 for k = n, 

,S j(t) E 

[o1(s)]n- 1 
K( s ) m t ( s ) j ( s ) 5

0 
( s ) ( n -1} ! ds 

' 
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which is inequality (2.8) for k = n + 1. Hence, 

n+1 
jyn+ 1(t)l ~ lu(t)l + ~ jyk(t) - Yk_1 (t)j < 

k=1 

lu(t)l + j(t) E 5 (t) exp( 5
1
(t)) = 6 (t) • 

0 0 

By assumption 2iv, 1Yn+1(t)l ~ d(t), and so yn+ 1(t) E J1 . This 

completely proves the induction statement for k = n + 1 given its 

validity for k = n . We conclude that the induction statement holds for 

all values of k = 1, 2, .••. 

Inequality 2 .8 implies that 

~ 

k=1 

and since j(t), 5
0
(t) , and 5

1
(t) are all continuous functions on I, 

+co 
the telescoping infinite series u(t) + ~ [yk(t) - yk_

1
(t)] converges 

k=l 

absolutely and uniformly on every compact subinterval of I to a continuous 
+co 

function y*(t). Since y*(t) - yk(t) = ~ [y. 
1
(t) - y.(t)], 2.8 

i=k 1+ 1 

implies that 

+co 
'y*(t)- yk(t)l < ~ IY j+l ( t) - y.(t)l - J j=k 

+co [5
1
(t)]j 

~ j(t) € 5 ( t) ~ 
j ! (2 . 12) 

0 j=k 

Putting k = 0 in 2 . 12 produces 
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upon an application of the triangle inequality . It follows by 

assumption 2iv that 

We will show next that y*(t) is a fixed point for T. Since 

f(t,y) is a continuous function of y, we have 

f(t,y*(t)) ; lim f(t,yk(t)) . 
k->oo 

(2 . 13) 

In a manner similar to the derivation of 2 . 11, we get 

(2 . 14) 

for all k . The prime in 2 . 14 denotes a derivative with respect to s. 

Letting k -> oo in 2.14, we get by 2 . 13 that 

(2 . 15) 

Inequality 2 . 15 implies that is locally integrable 

over R , and it follows as before that K(t,s)f(s,y*(s)) is locally 

integrable over R, Because of 2 .14, 

lim j t K(t,s)f(s,yk(s))ds; 
k->oo t 

0 

t J K(t,s)f(s,y*(s))ds 
t 

0 

by the Lebesgue dominated convergence theorem . We conclude that 

(2. 16) 

Let x(t) be any fixed point of T in ~ for which K(t) mt (t)lx(t) 

is locally integrable over I. We need this last condition in order to 
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conclude from the assumptions that 

(2 . 17) 

Lemma 2 . 1 may be applied to 2 . 17 for the special case g( t) :: 0 in order 

to conclude that 

(2 . 18) 

Since nothing has been assumed to prevent mt (t) from being zero, we 

need to make one more computation with the true norms, i.e . , 

IY*(t) - x(t)l < E f
t 

I K( t, s) I II f( s, y * ( s)) - f( s, x( s)) II ds 
t 

0 

t 
< E J I K( t, s ) I m t ( s ) I y * ( s ) - x( s ) I ds ~ 0, t E I, 

t 
0 

by 2 . 18 . Thus, y*(t) = x(t) for all t in I . The proof of Theorem 2 . 1 

is now complete . 

Equation 2 . 3 will be considered next . In order to understand the 

basis for the considerations that follow, let Dt be the set of fU O 

vectors x(t) such that x(t) is defined over I, M(t,s)f(s,x(s)) is 

integrable over ~ , and 

t -

u*(t) = u(t) + Ux = u(t) + EL(t) ~ 
1 

M(t
1
- ,s)f(s,x(s))ds 

t 
0 

(2 . 19) 
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satisfies the assumptions of Theorem 2.1 for u(t) . Let iJ1 be the 

subset of vectors y(t) of J1 for which K(t)mt (t)ly(t) j is locally 

integrable over I. vie consider the mapping S of if 
0 

into S 1 

given by 

Sx = z, (2 .20) 

where z = Tz + Ux. Theorem 2 . 1 implies that S is single- valued and 

maps all of cfJ 
0 

into /t1 . We will determine sufficient conditions 

to imply that S has precisely one fixed point in the intersection of 

iJ 
0 

and fJ, . 
The proof will be again by successive approximations, setting 

y~(t) = u(t), y!(t) = u(t) + U y~- 1 (t), k = 1, 2, ... . 
' 

(2.21) 

y~(t) = u y~- 1 (t) + Ty~(t), k = o, 1, •• • (2.22) 

and putting 

K(s) (2 .23) 

Assumption 2v . M(t,s) € C( ~ ), and as t -> t 1- , M(t,s)/K(s) 

converges uniformly for s in I to a function of s which is bounded 

in some non- degenerate subinterval of I with left endpoint t and in 
0 

some non-degenerate subinterval of I with right endpoint t 1 • 

Lemma 2 .2 . If assumption 2v holds and v(s) is a vector function 

such that llv( s) II is integrable over I, then is integrable 

over 



18 

Proof. In order to show that M~C;)) v( s) is integrable over at , 
we must show the existence of the double limit 

lim lim 
t->t - 't->t + 

1 0 

M( t() ( )d ) v s s . K s (2 .24) 

This will follow from the special boundness condition found in assumption 

2v and the uniform convergence of M(t,s)/K(s), also part of assumption 

2v . For the sake of brevity let the capital letter I with a subscript 

zero and any superscript denote a non- degenerate subinterval of I with 

left endpoint t , and let I with a subscript one and any superscript 
0 

denote a non-degenerate subinterval of I with right endpoint t 1 • 

We will prove the existence of the limits in 2 .24 by showing that for 

any positive number a , there exist intervals such that 

II 

when s
1 

v(s)ds -

are in I 0 and 
0 

v( s )ds II ,S a, 

0 s
3 

and s4 are in I
1 

• 

(2.25) 

Suppose 

that s
1

<s2 <s
3

<s4 • 

bounded by 

Then, the left member of inequality 2 .25 is 

IIM(s4,s)ll 
K( s) llv(s)llds + 

liM( s4, s) II 
K( s) II v( s) II ds + 

II v( s ) I I ds • (2 .26) 
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Assumption 2v implies that there exists intervals 

a constant c such that 
0 

IIM(t,s)ll 
K(s) < c 

- 0 

I 1 and I 1 
0 1 

and 

(2 .27) 

when (t,s) I l X I 1 
1 1 • Since llv(s) II is integrable 

over I, there exist intervals 

respectively, such that 

I~ and f, included in I 1 
0 

II v( s) II ds < a/ 3c 
- 0 

and I 1 
1 

(2.28) 

when s, t are both in I~ or f, . Substitution of inequalities 2 .27 

and 2.28 into expression 2 .26 gives that the sum of the first two integrals 

2 is bounded by 3 a when s 
1 

are in I 0 and 
0 

in Suppose that 

I
t, 

II v( s ) II ds ~ c, • 

t 
0 

(2 .29) 

Because M( ~ s) 
s) converges uniformly at t -> t

1
-, there exists an 

interval I 0 included in I 2 such that 
1 1 

IIM(s4,s) - M(s3,s) II 

K( S) 
< a 

3c1 
(2. 30) 

when (s4,s), (s
3
,s) € I~ X I . 

2 .26 is bounded by a/3 when 

It follows that the third integral in 

are in 0 I, . We conclude 

that intervals exist so that 2.25 holds, and hence, so 

that M( t' s) v( s) · · t bl tO K(s) 1s 1n egra e over ~ . 
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Assumption 2vi. L( t) E C( I) , and there exists a locally integrable 

function o~(t) over I such that o~(t) ~ K(t) mt (t) jL(t)l for all 

t in I . 

We define 

= J t o~ ( s ) ds . 
t 

0 

(2 . 31) 

Assumption (2vii) . The limits as t -> t
1

- of o
0
(t), o

1
(t) , and 

o2(t) all exist . 

Assumption (2vii) implies directly that [o2(t)exp(o
1
(t))] ' and 

[ o
0

(t)exp( o1(t))] ' are integrable over I. Hence, we obtain from 

assumption 2v and Lemma 2 .2 the existence of two bounded, continuous 

5 ( t) > 
0 -

! t liM( t z s)! I 
t K{ s 

[ 5
0

(s)exp( o1(s))]' ds, (2 . 32) 

0 

52( t) ~ ( IIM(;t:lll [ o
2 

( s )exp( 5
1 

( s))] ' ds . (2 . 33) 

0 

Let 

61 (t) (2 . 34) 

Assumption (2viii) . E 52(t1) < 1 and 6
0
(t) + E 6 1(t) ~ d(t) 

for all t in I . 
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Theorem 2.2. Under assumptions 2i to 2viii, yk(t) and y~(t) 
~~_.;_- 0 

as defined by equations 2.21 and 2.22 exist for all values of k, S 

as defined by 2 .20 bas one and only one fixed point y(t) for which 

y( t) € IJ and K( t )m t ( t) I y( t) I is integrable over I, 

(2.35) 

and 

ly(t) - u(t)l < [~0(t) - u(t)] + € ~1 (t). (2.36) 

Proof . Once again the main part of the proof will be by induction 

on k = 1, 2, ·• • • The induction statement is : solutions y~(t) and 

yk(t) exist for equations 2.22 and 2.21, y~(t) € £1 , K(t)m~(t)ly~(t)l 
0 

is locally integrable over I, 

lyk(t) - yk-
1
(t)l < [€ 52(t1)]k- 1 5 (t1) € IL(t)l, 

0 0 - 0 

and there exists ok(t) satisfying inequality 2.23 and 
0 

(2.38) and (2 . 39) imply that 

(2 . 37) 

(2.38) 

(2.39) 

by assumption 2viii . This means that assumption 2iv of Theorem 2 .1 is 

satisfied by the integral equation 2 .22 . It follows from Theorem 2 . 1 
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that equation 2 .22 will have a unique solution y~( t) . Thus, if 

inequalities 2 . 38 and 2 . 39 hold for a particular k, then there exists 

a unique solution y~(t) to equation 2 .22, y~(t) E iJ , K(t) J (t)ly!(t)l 

is locally integrable over I, and in general y~(t) satisfies all the 

conclusions of Theorem 2 . 1 . 

Consider the induction statement for k = 1 . y~(t) exists and is 

in S by Theorem 2 . 1 . Hence , y~(t) will exist if M(t,s)f(s,y~(s)) 

is integrable over ~ Inequality 2.15 implies that K(s)l lf(s,y~(s) )l I 

is integrable over I , because [o
0
(s) exp(o1(s))] ' is integrable over 

I by assumption 2vii . Lemma 2 .2 implies then that M(t,s)f(s,y~(s)) 

M( t , s) ( ) ( o( ) ) t0 = K(s) K sf s , y* s is integrable over vu . We obtain from 2.15 

the inequality 

t -! 1 
IIM(t 1 -,s)llllf(s,y~(s))llds~ 

t 
!t 1- IIM(t1- ,s)ll , 

t K(s) [o
0

(s)exp(o1(s))] ds 

0 0 

It follows from the definit ion of 5 (t) given in (2 . 32) that 
0 

Hence, 

t -

J 1 
IIM(t1- ,s)ll jjf(s,y~(s))i!ds~ 5

0
(t1 ) . 

t 
0 

ly\t) - y0 (t)j < E 5 (t
1

) IL(t)l, 
0 0 - 0 

(2 . 40) 

(2 . 41) 

which is 2 . 37 for k = 1 . Inequality 2.38 for k = 1 follows directly 

from 2.41 by the triangle inequality . Finally, o~(t) may be chosen so 

that 2 .23 and 2 . 39 hold, because 
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K( s ) II f ( s, y \ s ) ) II ds < J t K( s ) II f ( s, u ( s ) ) II ds 
0 t 

+ 

0 

Jt 

t K(s)l lf(s,y~(s)) - f(s,y~(s))l Ids~ 
0 

"'- (t) + J t K{s)mt (s) 1
1() 0

( )I d u y s - y s s ' 
0 t 0 0 

0 

and 

by 2 . 41 and the definition of a2 (t) . By a previous discussion we can 

now conclude that y~(t) exists, y~(t) E Ja' , and K(t)mt (t) IY~(t) I is 

locally integrable over I . This completes the proof of the induction 

statement for k = 1. 

Suppose next that the induction statement holds for k = 1,2, ··· ,n 

and n > 1. Then for k = n, 2 . 38 and 2 . 39 imply the existence of a 

solution y~(t) for equation 2 .22 when k = n . At the same time, the 

induction hypothesis assumes the existence of a solution ~(t) . Both 

these solutions are members of Jj and satisfy the integrability 

condition of Theorem 2 . 1, which implies uniqueness of solution . Hence, 

they must be the same function y~(t) . 

Since the existence of . Y~(t) satisfying 2 .22 can be considered 

a direct result of Theorem 2 . 1, the inequalities included in the proof 

of Theorem 2 . 1 may be used here for y~(t) . For example, inequality 

2 . 1 5 becomes 
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where the prime denotes a derivative with respect to s. It follows 

from assumption 2vii and inequality 2 . 39, which holds for k = n by 

hypothesis, that [o:(s)exp(o1(s))]' is integrable over I. Hence 

K(s)l lf(s,y~(s))l I is integrable over I, and by Lemma 2 .2, 

M(t,s)f(s,y~(s)) and IIM(t,s)ll llf(s,y~(s))ll are integrable over 

<R, , which proves yn+ 1 ( t) as defined by equation 2 .21 exists . Further-
a 

more, for a proper choice of o0 (s), inequalities 2 . 39 and 2 .42 imply 

that 

and 

(2 . 43) 

We obtain now from equations 2.21 and 2 .22 

t -

J 1 
IIM(t1-, s) llmt (s) I Y~(s) -y~- 1 (s) Ids 

t 
0 

(2 . 44) 

(2 . 45) 

by assumption 2ii. The integrals in inequalities 2.44 and 2 . 45 exist 

because of the part of the induction hypothesis Which says K(t)mt(t)ly~(s)l 

is locally integrable over I for k < n . 
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Lemma 2. 1 may be applied t'J 2 45 b F<i ve 

E mt (s)j(s) exp(o
1
(s)) 

It follows from ineouality 2.37 for k = n that 

(exp( o
1
( s)) ~s K(r)m.,. (r) !y~{r) - y~- 1 (r) ldr]

1 < 
:) 

Hence, 

t -J 1 IIM(t 1 -,s)llmt (s)ly~{s) -y~- 1 (s)lds ~50(t1 )(E52(t 1 )] n. 
t 

') 

(2.46) 

(2 47) 

Ineouality 2 37 f'Jr k = n + 1 now follows from inequalities 2.44 and 

2.47. Because E52(t
1

) < 1, 'Jne can prove the validity of inequality 

2.38 for k = n + 1 from the identity 

n+l k k 1 
= u( t) + L: ( y ( t) - y - ( t)] 

k= l 0 0 

and the validity of 2.37 for k < n + 1 . 

Next , 

~t(s) l!f(s,yn+,(s)) II < K(s ) llf( s,u(s ) ) + 
0 



n+l k k 1 
K(s) ~ I jf(s,y (s)) - f(s,y - (s))l I< c ' (s) + 

k=1 0 0 0 

EB
0
(t

1
) 

l - €52(t,) 
(2 .48) 

Inequality 2 .48 implies that there exists a choice for cn+l(t) so that 
0 

both inequalities 2 .23 and 2 . 39 are satisfied . As a matter of fact, in 

all our considerations we could just as well choose 

for all n . 

This implies, as we have just shown by induction, that inequality 2 .23 

holds for all values of k . Inequalities 2 . 39 and 2 .43 hold trivially 

for such a choice of cn(t) . 
0 

By an earlier discussion in this proof, we conclude that y~+ 1 (t) 

exists satisfying equation 2 .22 and the conclusions of Theorem 2 . 1 hold 

for y~+ 1 (t) . This completes the proof of the induction statement . 

For k = 1, 2 , . . . ' 

(2 . 49) 

follows in exactly the same way 2 . 46 was established for the particular 

case k = n . Since a solution y!(t) to equation 2 .22 exists for 
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k = 0,1, ••• , we may use 2 .22 and assumption 2ii to obtain 

Hence, inequalities 2 . 49 and 2 . 37 imply that 

for k = 1 ,2, ••• 

Since E52(t1) < 1 by assumption (2viii) and since in general 

II x II = II ( I xI ) II , it follows that 

(2 . 50) 

+oo E5 (t ) 
I: IIY!(t) - y!-

1
(t)ll ~ ~ 1 

[jiL(t)ll + Eo2(t)exp(o
1
(t))llj(t)IIJ 

k=l 1-€02(t,) 

(2 . 51) 

+oo 
The right side of 2 . 51 is continuous on I, so I: I IY!(t)-y~- 1 (t)l I 

k=l 

is bounded on each compact subinterval of I . Thus, the telescoping 
+oo 

series y~(t) + I: [y~(t) - y~- 1 (t)] converges absolutely on I to 
k=l 

a continuous function y(t) . 

Inequality 2 . 50 gives further that 

+oo 
ly(t) -y~(t)l < I: I Y~+ 1 (t) - y~(t)l ~ 

j=k 



which is precisely inequality 2.35 in the conclusions . Putting 

k = 0 in 2 . 35 and applying the triangle inequality, we get 

ly(t)l ~ IY~(t)l + ~1(t) , 

or 

by inequality 2 . '7 of Theorem 2 . 1 . Assmnption (viii) gives now that 

y(t) € J1 . Since jy(t) - u(t)j ~ jy(t) -y~(t)l+ly*(t) -u(t)j by 

the triangle inequalit y, inequality 2 . 36 of the conclusions follows from 

2 .7 and 2 . 35 . 

We will prove next that y(t) is a fixed point for the mapping S 

defined by equation 2 .20, or what is the same, that y(t) is a solution 

to integral equation 2 . 3 . In order to do this, let k - > +co in equation 

2 .22 . We will show that 

lim 
k- >too 

1 k I
t -

M(t
1
-, s)f(s, y*(s))ds 

t 
0 

t -

= ~ 
1 

M(t
1
-, s)f(s,y(s))ds 1 

to 

and that 

= lim lim 
tr->t 1 - k->too l t k 

M(t, s)f(s,y*(s))ds 
t 

0 

(2 . 52) 

lim 
k->too L

t 
K(t,s)f(s,y~(s))ds = f K(t,s)f(s,y(s))ds . (2 . 53) 

0 0 

Since y~(t) for n = 0,1, ••• is a unique solution by Theorem 2 . 1, 

inequality 2 . 15 found in the proof of Theorem 2 . 1 will be given as 
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inequality 2 . 43 when n = O, 1, ••• Letting n -> ~ in 2 .43, one 

obtains 

(2 . 54) 

because f is a continuous function of y and lim y~(s) = y(s) . 
n->c;o 

The right side of inequality 2 . 54 is integrable over I by assumption 

2vii . Hence , K(t,s)f(s , y(s) ) is locally integrable over ~ • Further-

more, the interchange of limit and integral in 2 . 53 is valid by the 

Lebesgue dominated convergence theorem. 

Writing 

I I M(t,s)f(s,y~(s)) II < IIM(t, s)ll 

K(s) 
K( s) II f( s' y~( s) ) II ' 

we see by inequality 2 .43 and the defini tions 2 . 32 and 2 . 33 of 5
0 

and 52 that I IM(t,s)f(s,y~(s))l I is bounded for all n by an 

integrable function over ~ • Hence, the interchange of limits necessary 

to get the second equality in 2 . 52 is valid by the Lebesgue dominated 

convergence theorem. 

The only dependence of the first integral in 2 . 52 on k is through 

f(s,y~(s)) . In the convergence of the integral as t -> t1 -,K(s)llf(s,y~(s))l 

is uniformly bounded with respect to k by a function i ntegrable over 

I. This implies that lim is uniform with respect to k . The proof 
t->t, -

would proceed in a manner similar to the proof of Lemma 2 .2 . It follows 
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that lim and lim may be interchanged to produce the first 
t->t 1 - k->+oo 

equality of 2.52. The validity of 2.52 and 2.53 implies that y(t) 

is a solution of equation 2.3. 

In the proof of Theorem 2.2 there remains only to prove the unique-

ness part of the conclusions. Suppose that z(t) is any solution of 

equation 2 .3, or, in other words, that z(t) is any fixed point of the 

mapping S, such that K(s)mt (s) lz(s)l is integrable over I . Then, 

t -

m-r(t)ly(t)-z(t)l < Em.,.(t)IL(t)l f 1 
IIM(t

1
- ,s)ll llr(s,y(s)) - f(s,z(s))llds 

t 
0 

t 
+ E mt (t) J IK(t,s)l llf(s,y(s)) - f(s,z(s))llds ~ 

t 
0 

t -

E mT(t)IL(t)l f 1 
IIM(t

1
-, s)llmt-(s)ly(s) - z(s)lds + 

t 
0 

t 
E m1"(t)j(t) 1 K(s)mT(s) ly(s) - z(s) Ids • 

t 
0 

The integral in 2. 55 exist by Lemma 2.2 and the integrability of 

(2 . 55) 

K(s)mt(s) ly(s)l and K(s)mt (s) lz(s)l • Applying Lemma 2 . 1 to inequality 

2 .55, we obtain 

t -J 1 
IIM(t

1
-, s) llmt (s) ly(s) - z(s) Ids , 

t 
0 

Which yields with another application of Lemma 2 .1 

mt (t)ly(t)-z(t)l = 0 . (2 . 56) 
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Inequality 2.55 is valid as a vector inequaltiy without the factor 

mT(t). Hence, it follows from 2.56 that y(t) = z(t) for all t in I. 

For the applications of Theorem 2 .2 to boundary value problems with 

second order ordinary di~ferential equations, it will be sufficient to 

use a two-dimensional ~orm of equation 2.3. vle need to further specify 

the "lipschitz function" m( t) and tre domain fJ by specifying d( t). 

Assumption 2ix. uT(t) = ut (t,€) = (u
1
(t,€),u2(t,€)) 

uniformly. 

= 0(1) 

Assumption 2ix is essentially a restriction on the transformations 

between the boundary value problem and its equivalent integral equation 

formulations . Only transforma.tionsyielding uniformly bounded u(t,€) 

can be used . 

Assumption 2x. cr(t,€) is a nonnegative numerical function defined 

for t in I and o < € < € 
0 

such that 

uniformly, and cr(t,€) ~ l~(t,€)1 . 

cr(t,€) € C(I), cr(t,€) = 0(1) 

For two new positive parameters ~ and v independent of t, 

define 

d~ (t) = (~,v + cr(t,€)) . (2 . 57) 

~ and v can be considered measures of the size of the domain J1 

The presence of cr( t, €) permits non-uniformities to occur in the 

second components of vectors in ~ • 

We define next 

(2 . 58) 
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where w = w(~) is a nondecreasing numerical function of ~ . With 

~ and 6 1 defined in 2 . 4 and 2.34 respectively, let 

For m given by 2 . 58, we actually have that 6 = 6(t,€; ~,v) and 

o2 = 52(t,€; ~,v) are functions also of ~ and v . 

Assumption 2xi . There exist positive constants ~*, v* and €* ) 0 

such that o2 (t1 ,€;~*,v*) and 6(t,€;~*,v*) 

and t in I , 

and 

6(t,€;~*,v*) = 0(1) uniformly. 

exist for o < € < €* 
- 0 

(2.60) 

(2 .61) 

Assumptions 2ix to 2xi are sufficient to imply that 6 +€61<d, 
0 -

when ~ is sufficiently large, v = €~, and € is sufficiently small . 

More specifically, let 

~ > ~ = sup limsup max ( I u
1 

( t, €) I ,a ( t, €)) . 
t€I €->0+ 

Then, for ~ so- chosen, let 

~ >sup 
t€I 

limsup ll6(t,€;~,v*) II · 
€->0+ 

(2 .62) 

(2 .63) 

With ~ and ~ fixed and satisfying 2 .62 and 2 .63, we require that 

€ be sufficiently small so that 
0 

( v* ~~ O<€ <min -
0 - . ~ ' ~ ' 

€*)' 0 
(2.64) 
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for o < E < E . 
0 

(2.65) 

(2.66 ) 

From the nature of 6
0 

and 6
1

, one can show that 6 exists for 

all 1J. and v provided it is assumed that it exists for one set of 

values IJ.*, v*. This, of course, depends on € being sufficiently small 

to make E52(t
1
,E; IJ.,v) < 1, which is the reason for 2 .65 . The other 

property of 6 important here is that 6(t,E;IJ.,v) is nonincreasing as 

v decreases, given that t, E, and IJ. are fixed . For we 

have from 2.64 that v = Elt < v*, and hence, 6(t,E;IJ.,v) :S 6(t,E;IJ.,v*). 

It follows from requirement 2 . 66 that 1r >I l6(t,E;IJ.,v)l I 
Hence, 

for o < E < E • 
0 

2.64 implies that lu
1 
I + v :S lu

1 
I + IJ. - IJ. , and from our choice of IJ. 

in 2 .62, it follows that lu
1

1 + v :S IJ. . Since a> 1~1 , we have 

I~ I + v <a + v, and so 

(2 .67) 

Corollary. If asstunptions 2iv and 2viii are replaced by assumptions 

2ix to 2xi and IJ. satisfies inequality 2 .62, then Theorem 2.2 is true 

for d and m given by 2 . 57 and 2 . 58 respectively and € sufficiently 

small. 

The restriction on IJ. is due to the way the assumptions have been 

formulated and is not an important requirement. The domain in which the 

lipschitz condition on f holds has been constructed about the zero 

vector rather than the vector u. 
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3. In this section we will be concerned with relating the second 

order boundary value problem given by 

Ey' + A(t,E)y + Eg(t,E) + E2f(t,y,E) = 0, ( 3. 1) 

( 3 .2) 

to an integral equation problem included in the theory of the previous 

section. All vectors, such as y, g, and f are two-dimensional, and 

( Ea1(t,E) a2 (t,<) ) 
A= ( 3 . 3) 

Ea
3
(t,E) a4(t,€) 

The interval I is taken to be the closed interval O<t < 1. 

Assumption 3i . a2 , a4 E c1(I); a 1, a
3 

E C(I); a 1, a2 , a2, a
3
, a4, a4 

are 0(1) uniformly; and la2(t,E) I, a4(t,E) are positive and bounded 

away from zero for t in I and 0 < € < E • 
0 

(If a4 is negative, the substitution t* = 1 - t will change the 

problem to one of the type that we are considering.) 

The form of equati. on 3. 1 is not unique, i.e., higher order terms in 

E that are linear in y may be considered part of Ay or part of 2 
€ f . 

Under assumption 3i and the assumption that f satisfies a lipschitz 

condition of the type described in assumption 2ii with m given by 2.58, 

one can always determine A*(t,E) and f*(t,y,€) so that 
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A* and f* satisfy conditions of the same form as A and f 

respectively, and Ey' + A*y = 0 has a special kind of fundamental 

solution. We will assume that equation 3.1 is already written in the 

desired form. 

Assumption 3ii . Let 

Ey' + A(t,E)y = 0 

have the fun~ntal solution 

H(t,€) = 
' 

a(t,E)exp s(t,€) 

where 

_, 
a = - € 

rt _, I t 
J_ a 1(r,E)dr - € a 4(r,E)dr) ds , 
s s 

By assumption, a4 is positive and bounded away from zero and a 1 

is uniformly bounded, so, 

o/•(t,E) < o , t € I, 0 < € < € ' 0 

if € is chosen sufficiently small . For brevity we write 
0 

= exp o/(t,E) - o/(s,E) 
€ 



Then, 

( 3.4) 

Assumption 3iii . g(t,e) E C(I) and 

The problem defined by differential equation 3.1 and boundary 

conditions 3.2 is equivalent to the problem of solving an integral 

equation of the type 2 . 3, where 

L(t,e) = -H(t,e) ( 3. 5) 

(3.6) 

( 3 . 7) 

t 
+ J: K(t,s,e)g(s,e)ds. ( 3 .8) 

Suppose that 

T
0

(e) = jb1 + b2 t3(o,e) I -1 ( 3. 9) 

and 

(3.10) 

If 

(3 . 11) 

then 

(

c H(1,E) ) 1 det = 5 exp ( - E-
b H(o,e) 

(3.12) 
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where 

(3.13) 

3. 11 is hardly a restriction in the light of equation 3.4 . 

It follows from equations 3. 5, 3 . 12, and 3. 13 and a(o,€) = 0 

that 

(3 . 14) 

where 

~( t, €) = ( 1 ) 
€ + t(t,o,€) 

We obtain by using IK(t, s,€)1 = O(~(t,€)) uniformly and assumption 

3iii that 

I t lt IK(t, s,€)g(s , €) Ids~ IK(t,s , €) I llg(s,€) lids 
0 0 

= 0(~) uniformly ( 3. 16 ) 

and 

where 

In order to simplify the estimate for lu(t,€)1, we assume that 

(3 . 18 ) 

and 

for some n . ( 3.1 9) 
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Then, 

+ g u(t,e)l o(1) ~ TU(t,e) uniformly, (3 .20) 

where T = T(e) is a constant multiple of 

(3.21) 

It becomes clear now how to choose ~ and a(t,e) in 2 . 57 and 

2.58 so that ~ ~ a(t,E) ~ ~~(t,e)l and ~ ~ lu1(t,e)l for all t 

in I and 0 < € < € < 1 • Let 

and 

o-

a(t,E) = [E + W(t,o,e)] a 
0 

~ > a > limsup T( € ) . 
0 

€ -> o+ 

( 3 .22) 

( 3-23) 

Assumption 3iv. There exists positive constants ~,v, and a
0 

such that for d and m defined by equations 2 . 57 and 2 . 58 with a 

given by 3.22 and ~ and a
0 

satisfying 3.23, f(t,y(t,e),E) € C(I) 

when y(t,E)€ fJ, f(t,o,e) = o, and llf(t,y,E) -f(t,z,E)II~ mt (t)ly- zl 

when (t,y) and (t,z) are in I X ~ and 0 < € < e 
0 

Theorem~ Let assumptions 3i to 3iv and relations 3. 11, 3 . 18, 

and 3.19 hold. If 

(3.24) 

and 

(3 .25) 
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then for sufficiently small E there exists a unique solution 

y = y(t,E) to 3 . 1, 3 .2 such that 

ly(t,E)I = 0(~ T) uniformly (3 .26) 

and 

(3 .27) 

Proof . In the notation of section 2 , we may choose K, o;, and 

j to all be constants for the present problem. Since f(t,o,E) = o, 

the lipschitz condition satisfied by f gives 

llf(t,u,E)II <m-r- (t,E) lui , 

and hence, 

3.14 implies that we may choose 52(t,E) to be a constant multiple of 

E -
1 

T1(1+T
0

Ib1 l) ~(t, €) . 

It follows that 

Hence, 

and 

5
0
(t, E) = O(T) uniformly, 

o2 (t,E) = 0(T1(1+T
0

Ib1 I)] uniformly, 

50(t1,E) = 0(TT
2

) , 

52(t1, €) = O(T1T
2

(1+T
0

Ib1 l)]. 

I j(~(t, €) - lu(t,E)I)I I = O(ET) = 0(€) uniformly 
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We get that u(t,€) ~ 0(1) uniformly from 3.20 and T ~ 0(1). 3.24 

gives that € 52 (t1,E) ~ o(1) . We conclude that the corollary to 

Theorem 2 .2 applies in the present case . Relations 3 .26 and 3.27 follow 

from 2 . 36. 
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4. In this section we will consider the second order scalar 

differential equation given by 

Tx =ex"+ x' + q(t,E)x + r(t,E) + Eh(t,x, x' , E) 

along with boundary conditions of the form 

B[x] = b1(E)x(o,e)+Eb
2

(e)x•(o, E) = 

C[x] = c1(e)x(1,E)+Ec2(E)x ' (1,E) = 

.£ ' 0 

o, ( 4 . 1 ) 

( 4 .2) 

( 4.3) 

The notation in 4 .2 and 4 . 3 is not meant to imply that Eb2(E) and 

Ec2(E) will later be assumed to be O(E) . It is only a convenience 

to allow us to identify vectors b = (b1,b2 ) and c = (c1,c2 ) , 

which will be used in applying the results of section 3 . Equation 4 . 1 

is not a specialization of equation 1.6 but is the result of an elementary 

change of independent variable . 

We will show how the existence of a solution to the complete system 

4 . 1, 4 .2, 4 . 3 depends on the existence of certain "approximate solutions" 

to systems that have a differential equation similar to 4 . 1 and only one 

boundary condition . 

Associated with the equation Tx = o is another equation of a 

similar type which we propose to call an "adjoint equation" of 4 . 1 . In 

order to define this adjoint equation of 4 . 1, let Tx = Px + Gx where 

Px is linear in x and its derivatives and Qx contains no derivatives 

of x higber than the first order . Furthermore, suppose that for the 

vector (x, Ex'/ in !} , Qx = r( t, E) + 0( E+e- tj E) uniformly, where 

r(t,E) is the function occurring in equation 4 . 1. It follows by the 

linearity of P that 
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v T(x + w) = v (Px + Pw) + v Q(x + w) = 

v (Px + Qx) + v rw + v [Q(x + w) - Gx] = v (Px + Qx) + 

I * [B(v,w)] + w P v + v [Q(x + w) - Gx] , 

* where B(v,w) is the bilinear concomitant of v and w and P is 

the formal adjoint to P. We set 

B(v,w) = 0 (4.4) 

and assume that w can be determined as a function w( t, v) of t and 

v . The differential equation adjoint to Tx = 0 with respect to P is 

defined to be the equation in v given by 

* * T v = w P v + v [Q(x + w) - Qx] = o, 
X 

(4.5) 

where w = w(t , v) and Tx = Tx(t,E) = 0. 

For the considerations that follow, we choose 

Px = Ex" + x ' + q (t,E) x . 

It follows that 

up to an arbitrary constant factor, which we have taken equal to unity . 

The equation * T v = 0 
X 

is now determined uniquely by 4.5. 

the arbitrary constant factor in w, it can be shown that 

Except for 

* Tv= 0 
X 

in 

general depends only upon the coefficient of x' in Px = 0 . 

* The significance of the operator T is indicated in the following 
X 

equation: 
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(4.6) 

Assumption 4i . q(t,E), r(t , E) € C(I) and q(t , E) , r(t,E) = 0(1) 

uniformly . 

Define 

T2 = T2 (E) = lc1 I + E lc2 l , 

T
3 

= T
3

(€) = 1 + T1T2 (1 + T
0 

lb1 I) , 

and 

"" t 
U (t,E) (,.,. ( "" ( ( - t/E = u1 t , E), u

2 
t , E)) = l,E+e ) . ( 4.8) 

Assumption 4ii . There exist functions ~ = ~(t,E) and ~ = ~(t,E) 

both in c2(I) such that for a given positive bounded function y(E), 

which satisfies 

we have 

T~ = 0( r) uniformly, (4 . 10) 

- - 1 "" ( ) ~ v = O[E r ~ t,E ] uniformly, (4 . 11) 
X 

(4.12) 
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and 

( 4 . 13) 

Suppose that 

~ -( -( ) -t / E - ( ) Z = Z t,E) = X t,E + e V t , E ( 4 . 14 ) 

and the vector d ( t , E) is defined as in 2 • 57 . However , ass1..1Ille that 

the domain ~ is now defined to be all the vectors x(t,E) in C(I) 

which satisfy lx1(t,E) -;(t, E)I ~ d1(t, E) and l~(t,E) -E; ' (t, E)I < 

for all t in I and o < E < E 
0 

Choose 

where o is a positive constant, and suppose that 
0 

\.I. > 0 • 
0 

For the vector y t = (y1,y2 ), define a scalar function f by 

f(t,y,E) = h(t,y1,E- 1y
2

, E) . 

(4. 15) 

(4. 16 ) 

Assumption 4iii . f(t,y,E) satisfies Assumption 3iv only with 

rfJ , o , and 1..1. as just def ined . 

It is not necessary to assume f(t , o,E) = h(t, o,o, E) = o, which 

is part of assumption 3i v . However, this is not an important point. 

If we now substitute 

X= W + Z ( 4.17) 

into Tx = o, we get the new equation 
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Tx = Pw + T~ + Q( w+~) "' Qz = 0 ( 4 . 18) 

in the unknown w. Similarly, we may obtain two boundary conditions 

for w from the boundary conditions 4.2 and 4 . 3 . Theorem 3.1 will 

be used to prove that this new problem in the unknown w has a solution, 

which has a bound proJ.0rtional to y ( €) • 

Theorem 4 . 1. Suppose that assumptions 4i to 4iii hold. If 

T T e- 1/€ = o(1) 
0 1 ' 

(4 . 19) 

( 4 .20) 

(4.21) 

( 4 .22) 

~ y = 0(1) , ( 4 .23) 

and 

r T
3 

= o( 1) , (4 .24) 

then for € sufficiently small the problem 4 . 1, 4 .2 , 4 . 3 has a 

unique solution x and 

( ,.,. ) x- z 
= 0 

€ X ' -€~ I 

( 4 .25) 

where ~' T
3

, and ~ are defined in 4 . 13, 4 . 7, and 4 .8 respectively . 

Proof . In the application of Theorem 3. 1, let 

y " ( .:. ) ' ( 4.26) 
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( :q(t,<) 

- 1 ) ' A(t,e) = ( 4 .27) 
1 

g(t,e) = 
( :~(t,<) ) 

( 4.28) 

' 

( 0 ) f(t,y,e) = 
' - -1 - --h(t,y1+z,e y2+z',e) -h(t,z, z',e) 

( 4 .29) 

£*(e) = .e -B[~]' 
0 0 

(4 . 30) 

.ere e) = £1 - C[~] • (4 . 31) 

In the notation of section 3, we get here that 

and 

- 1 = -€ 
ft J_ q(s,e)exp(s;t)ds • 
0 

Thus, T. (i = 0,1,2) and u(t,e) defined in 4 .7 and 4 .8 are identified 
l. 

with Ti(i = 0, 1, 2) and ~(t,e) of section 3. It follows that relations 

4 . 19 through 4 .22 correspond to relations 3. 11, 3 .25, 3. 19, and 3. 18 

respectively. 

We will show next that 4 .23 corresponds to 3.24 by proving 

T = 0(T
3
y) . From 4 . 31, 4 . 12, and 4 .9, we obtain 
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T1(1+T
0

Ib1 l)£t ~ 0(YT
3

) + l(c 1 +c2 )~(1,E)

Ec2 ~'(1,E) e- 1/E T
1

(1+T
0

Ib1 I)= 0(rT
3

) + 

0[E-1e-1/E T1~ (1+T
0

Ib
1

l )] = O(yT
3

) • 

4 . 30 and 4 • 1 3 imply 

For g(t,E) as defined in 4 .28, we get 

llg(t,E) II < IT~ I < IT~I + e-t/E I~'; I , 
- - X 

and hence, from 4 . 10 and 4 . 11 

II g( t' €) II = < 1+€ _, e -2t/ €) o< r) . 

It follows that a constant multiple of y(E) may be taken for g(E) 

in assumption 3iii. From the definition of T given by 3.21, we see 

that T = O(T
3
y) . 

There remains to show that f as defined by 4 .29 satisfies 

assumption 3iv. One obtains f(t , o, E) = 0 immediately. Assumption 

4iii implies that 

when y and z are in [} as defined in this section. Since 

T(E) = O(yT
3

) and yT
3 

= o(l) by 4 .24, we have T(E) = o(l), and 

hence, for sufficiently small E, 

~ ~ o(t,E) ~ T(E) 
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The assumptions of Theorem 3. 1 hold for the present problem, 

and we conclude that there exists a unique vector 

y = ( €:. ) = ' 

where x is a solution to the problem 4 . 1, 4 .2, 4 . 3. Relation 4 .25 

follows from 3 .26 of Theorem 3 . 1 and T = O(yT
3

) . 



49 

5. Theorem 4 .1 reduces the problem of existence and asymptotic 

expansion of a solution of the second order equation Tx = 0 with two 

boundary conditions to a problem of finding asymptotic expansions x 

and v of certain solutions of the second order equations Tx = 0 

and ~ v = 0 each with one boundary condition . We will determine 
X 

analytic expressions that have the properties of X and v by a 

method involving only regular perturbation procedures for weakly non-

linear first order equations with one boundary condition . 

Because there exists only one boundary condition to satisfy, one 

is at first tempted to treat the higher order terms Ex" and Ev" as 

part of the perturbations in the successive approximation schemes . 

This will require that the weakly nonlinear term, which will also occur 

in the perturbation term, be analytic in all its variables . Furthermore, 

all the derivatives need to be bounded uniformly for o<E<E . 
0 

Such 

cannot be the case for very general circumstances for the weakly non-

linear term in the equation T*v = 0, because of the presence of the 

factor - t/E e . 
X 

Hence, we shall proceed in a different manner . Multiply Tx = 0 

by an integrating factor for Ex" + x ' and then integrate between zero 

and t, setting x '(o,E) = 0. This gives 

t/E Ee x ' + 

t 
E J: es/E h(s,x(s,E) , x'(s,E),E)ds = 0. 

0 

( 5. 1) 
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Integration by parts of the second term in equation 5. 1 and subsequent 

multiplication of the equation by E- 1 e - t/E produces the integro-

differential equation 

x'+p(t,E)x+E- 1 J t r(s,E)ex:p(s~t) ds + 
0 

f t[h(s,x(s,E),x ' (s , E),E) - p(s,E)x•(s,E)]ex:p(s;t)ds = 0, 
0 

where 

( 5 .2) 

(5 .3) 

Equation 5.2 will be called the perturbation equation for Tx = 0 . 

We formally substitute 

CX) 

X= ~(t,E) = ~ Ek~(t,E) 
k=o 

into the perturbation equation 5.2, and set successively 

k = o, 1, .•• ' (5 .4) 

where 

Q_
1
(s,E) = r(s,E), 

k = o, 1' . . . ' (5 . 5) 

and 

~= 
i=o 

k 
~ Ei X. • 

~ 
( 5.6) 
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The constants of integration appearing in the general solutions 

of the equations comprising 5.4 represent exactly one degree of freedom 

for x. vle will use this freedom to determine ;( t, €) at t = 1 so 

that 

The solutions,if they exist, to the equations in 5.4 subject to 

the boundary conditions 5.7 are given by 

where 

Also, 

~(t,E) = ~ exp( !
, 

t 
p(s,E)ds) + 

k = o, 1, ••• ' 

k = 1, 2, •.• 

T; (t,E) 
n 

n+l = € ~(t,E), n=o, 1, •••• 

Suppose that n is specified and that ; (t,E) 
n 

a formal expansion 

V (t,E) = n 

( 5 .8) 

( 5 .9) 

(5 . 10) 

(5 .1 1) 

exists . Then, 
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for v in equation 'l\'v v = 0 and boundary condition 4 .2 may be 
X 

n 

constructed in the same way as 

will write 

If 

X = lim X 
oo rr->oo n 

exists, tren 

x was devised. 
n 

For brevity, we 

will represent an asymptotic expansion. We will state conditions under 

"' "' "' which X and v exist for all n and assume the role of X and n n 
"' v for y = € 

n+l in section 4 . These same conditions will imply 

"' that X and v exist . 
(X) (X) 

A' Suppose that q..J is the set of continuous vectors y(t,€) = 

on I such that 

jy,(t,€) - x
0 
c t, €) I < ~ ' 

IY2(t,€) - x ' (t,E)j <n+ 
_, 

cr(t,€) € = 0 

_, 
-; (t,€) n: + 0' € 

0 

for given constants ~, ~ , and cr
0

, which satisfy 

~ > 0' > 0 
0 

and tt>O . 

(5 . 12) 

Assumption 5i . For 0 < € < €
0

, h(t,x,x 1 ,€) is of class c2 

in x and x ' and of class C in t, when (x,x')T € J)' and t € I; 
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b(t,x (t,E),x•(t,E),E) = 0(1) 
0 0 

uniformly; and $! = 0( 1 )+0( x 1 - x ) , ox 0 

db d2b ( ~ = 0( 1 ) , """"""! = 0 1 ) , and 
OX' OXOX' 

d2
b 

--
2 

= 0(€) uniformly when 
dX 1 

( )f € Q. I x,x 1 IV 

and t € I . 

Let ~ 1 be a fixed positive constant not larger than min(~,n+a ) . 
0 

Two applications of the mean value theorem and use of assumption 5i 

give 

lb(t,x,x', E) - b(t,z,z ' ,€)1 ~ m1(1x- zl + lx'-z ' 1), ( 5. 14) 

when lx-x I+ lx'- x • l and lz-z I+ lz' - z ' l are not greater than 
0 0 0 0 

~ 1 • m1 is a constant whose value depends in general on ~ 1 • 

Lermna 2 Let assumptions 4i and 5i bold . If 

then for sufficiently small € and n = o, 1, .•. , ~ (t,E) exists 
n 

- n k 
on I, xn(t, E) = Z € ~(t,E) where ~(t,E) is defined by equation 

k=o 
5.8, a function ~(t,€) in c2(I) exists so that lim~ (t,E )= ~(t,€) 

n->oo n 

and lim~~ (t,E) = ~·(t,€) uniformly for all t in I, 
n->oo n 

I~ (t,€) - x (t,E)I+I~• (t,€) -x•(t,€)1 < ~ 1 , n o n o - (5 . 16) 

l~(t,€)-x (t,E)I+I~• (t,€) -x•(t,€)1 
0 0 ~ ~1' 

#V n+1 
Tx (t,E) = 0(€ ) uniformly for t in I, n (5.18) 

and 

T~(t,€) = o. (5 . 19) 

Proof . For any function Q(t,€) -- define Q by 



Q =sup I jQ(t,E)I 1. 
tEI 

From equation 5 .8 and 5. 9 we obtain 

for some constant R. Hence, 

follows from equation 5. 4, and so 
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( 5 .20) 

( 5 .21 ) 

Q < p x' + h(t,x ,x' ,E) = 0(1) (5 .22) 
0 - 0 0 0 

by equation 5 . 15 and h(t,x ,x' ,E) = 0(1) uniformly . 
0 0 

Define 

s 
Q = Q( E) = 1 + (l+p)(l+T1 1Ec2 1) sup exp( J p(r,E)dr) . 

o<t<s<1 t 
( 5 .23) 

We will show by induction that for E sufficiently small and n = 0,1, . • • 

( 5.24) 

and that equation 5 . 16 holds . 

Suppose that equations 5 . 16 and 5 .24 hold for n < k and k > 0 . 

Then, 

and 

I~ - x l + l~' - x ' I < K+1 0 K+1 0 -

k+1 
E 

i=l 
Ei(lx.l+lx! l) < 

~ ~ -
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if € is fixed small enough to make 
0 

( - - 1 ) 2EQ max ro1+p, l-! 1 Q
0 

~ 1, o < E < E
0 

€
0 

can be so chosen because EQ and EQQ
0 

are 0(€) by equation 5.15 

and h(t,x0 ,x~,E) = 0(1) uniformly . We conclude that ~+1 (t,E) is 

defined, and 

Equation 5.24 for n = k + 1 follows now from equation 5. 14 . This 

completes the induction proof . 

T -x -- O(En+1 ) ·f rml f t · I f ll f un1 o y or 1n o ows rom 
n 

equation 5 . 11 and Q = 0( 1) uniformly . We obtain n 

from equation 5.25. Because 2 € Q(ro
1
+p) ~ 1 

+co 
infinite series 

for o < € < € , the 
0 

t in I and o < € < € to a sum 
0 

l ess than l-!
1

• It follows that 

there exists a function ~(t,E) in c1(I) such that 

lim ~ (t,E) = ~(t,E) 
n n->co 

and lim ~' ( t, € ) = ~' ( t, € ) uniformly. 
n- >co n 

From equation 5 . 11, we see that €X II 

n 
is a linear combination of 

.... n+1 
x ' , x, and € Q . n n n n->co 

lim En+ 1 ~ = 0 uniformly for 
n Because 

we conclude that Ex" converges uniformly for t in I and o < € < € n o 

to a function which must be ~~~ ( t, €) • Hence , 



lim T~ ( t, e ) = 
n--> oo n 

T lim~ (t,e) 
n n->oo 

The proof of the lemma is now complete . 

For n fixed, n = o, 1 , ... , oo, we will consider next 

~ (t, e) . The convention ~ (t,e) = ~(t,e) ~s used i n what follows . n oo 

vle vlri te T* in the form 

where 

Set 

and 

where 

X n 

ev" - v ' + q*(t,e)v + eh*(t,v,v ' ,e) , 

q*(t,e) = q(t,e) - ad~ (t,x (t,e), x 1 (t,e),e), 
X 0 0 

t/e ~ - t/e ~ h*(t, v, v•,e) = e [h(t,x+ve ,x' + n n 

- t/e - 1 - t/e ) ( ~ ~ )] v ' e - € ve ,e - h t , x ,x' ,e + 
n n 

k = 0, 1, • . • , n, 

k = 1, • . • , n, ( 5 .28) 
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J 
1 

q*(s,€)exp(t- s) ds, 
t € 

~1(t,€) = o, 

~(t,€) = p*(t, €) vk(t,€)+€-k[h*(t,~nk'~rik,€) 

- h*( t, ~ k 
1

, ~ k 1, €) ], k = 0, 1, . • • , n . n, - n, -

"' v = nk 

k i k 
~ € v . = ~ 

i=o n1. i=o 

i 
€ v., k = 

l. 
0, . • . , n; and v = o. n, - 1 

This will produce 

n+1 * 
~ vn = € Q"'n 

X 
n 

The solution of the system of differentia l equations 5 .27 subject 

to the boundary conditions 5 .28 is given by 

€
_1 rt J t ! 1 d_ [exp( p*(r,€)dr)] ~-1 (r , €)exp(s;r)dr ds , 

0 s s 

k = 0, 1, . • . , n, ( 5 . 30) 

where 

k = 1, ••• , n . ( 5 . 31) 

Because of assumption 5i we obtain upon two applications of the 

mean value theorem the existence of a constant so that 



lh*(t,v, v ' , E) -h*(t,w,w ' , E) I < m2 [ lv'-w' I 

when v, we c1(I) and v, w satisfy 

I"' - t/e I x - x +xe n o 1;'-x ' + n o 

( ) - 1 - t/el - 1 "' ( ) Ex '-x e e ~ n + € o
0 
~ t,€ 

(5 . 32) 

(5 . 33) 

for x . rx - x 1 and 1;'-x ' 1 may be lJBde arbitrarily small uniformly n o n o 

in n by choosing ~, of Lemma 5. 1 small . Hence, the inequalities 

5 . 33 hold for all e and ~, sufficiently small, when v and w are 

c1(I) and satisfy for x, 

Asswnption 5ii . 

I I _, - t/€ - 1 "' 
ex'-x € e ~ n-~ 1 + e o

0 
~-

Let v (t,e) be defined by equation 5. 30. 
0 

any positive number a, there exists a number € (a) 
0 

such that 

when t e I and o < e < e (a) . 
0 

Define 

0 ], 
0 

( 5. 34) 

For 

( 5. 35) 

Lemma 5 .2 . Suppose t hat assumptions 4i, 5i, and 5ii and equation 

5. 15 hold . If 

(5 . 36) 
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then for sufficiently small E, ~ (t,E) exists on I, ~ (t,E) 
n n 

n k 
= ~ E vk(t,E) where vk(t,E) depends upon n and is given by 5.30, 

k=o 

and 

T* ~ (t,E) = 0[E~2(t,E)] uniformly . 
"' n 
X 

n 

(5 . 37) 

Proof . One can show from the definition of h* and from equations 

5. 15 and 5 . 36, which imply that v (t,E) and v ' (t,E) are 0(1) 
0 0 

uniformly, that 

by using the mean value theorem twice and assunption 51 . It follows from 

the definition of Q* that Q* < Q E- 1 
u_ 

0 0- c 
"' uniformly, where Q is a 

constant independent of E and n . 

Define 

~ = sup exp J t p*(r,E )dr 
o<s<t<1 s 

and 

The bar in p* and in what follows has the meaning attached to it in 

equation 5.20 . Q* = 0(1), because T4 = 0(1) by assumption. 

We will sketch the induction proof that for E sufficiently small 

and k = o, .. . , n 

l~nk(t,E)e-t/EI ~ 1! - 1-1
1

, IE~:UC(t,E) -

"' I - t/E "' vnk(t,E) e ~ (n~ 1 )E + o
0 
~(t,E), and 

~~(t,E)j ~ (ru2+p*)k Q*k Q €- l ~(t,E) . (5 . 38) 
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- -The existence of v = v follows from equation 5. 38 . n nn Furthermore, 

( ) ( n- -1 ~ ) ( -1~ ) 
~ t,€ = 0 Q* Q € ~ = 0 € ~ uniformly for t in I and 

equation 5.29 imply equation 5.37 of the lemma . 

The first step in getting from i ~ k to i ~ k + 1 (k ~ 0) in 

the induction consists of using equation 5.30 and the induction hypothesis 

to obtain 

i = o, ... ' k . 

Thus, by assumption 5ii 

- ' k i+l 
lvn,k+ll ~ lv0 l + .z: € lvi+ 1 1 < lv0 l + 

~=o 

l ~(u,€ )1 ds 
~ 

( 5.39) 

(5 . 40) 

for sufficiently small € independent of k and n. The bound obtained 

in equation 5. 39 for v. 
1 

and the first order differential equation 
~+ 

satisfied by vi+ 1 give 

lv~+ 1 I < P*lv. 1 I + sup IQt(s,€)1 ~ 
... - ~+ t<s<1 ... 

i = o, 1, ... 'k. (5.41) 
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It follows by assumption 5ii that 

I ,., .... I 
EV 1 

- V n,k+1 n,k+1 < + < 

lv I + O(E) < o , 
0 0 

for sufficiently small E independent of n and k . Hence, ~+1 (t,E) 
exists, and 

+ E- 1 ~.)t,E)(T4 f 1 l ~(s,E) I e - s/E ds + 
0 

t J sup IG{(r , E) jds)] ~ (m2+P*)( 1+ 
o s<r<1 

t f sup IG{(s,E) je- s/E ds)] • 
o s<r<l 

The complete induction statement for k + 1 follows . 

The lemma is essentially proven if n is finite . For n = oo the 

additional problem of considering the convergence of ; (t,E) gives no 
00 

difficulty, because equations 5 .40 and 5 . 41 are then valid for i = 0,1, •. • 

Both 
+oo +oo 

Ei v.(t,E) and 
~ i=o i=o 

Ei v !(t,E) 
~ 

are uniformly convergent in I . 

Hence, equation 5.29 gives that E ';" (t €) converges uniformly in I 
ook ' 

as k -> oo . The end result is that there exists a function ~(t,E) 

= ~00(t,E) in c2(I) such that 

*"" Tvv =O . 
X 

00 
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Theorem~· Suppose that assumptions 4i, 51, 5ii and equations 

4 . 19 to 4 .22, 5.15, 5.36 hold . Let n be specified, n = 0, 1, ..• ,+oo, 

and i (t , E) 
n 

Choose y(E) 

and~ (t,E) 
n 

= En+ 1 if n 

be given by Lemmas 5 . 1 and 5 .2 respectively . 

is finite and y(E) = e- 1/E if n is 

infinite . If 

(5 . 42) 

t hen for E sufficiently small a unique solution x = x(t, E) exists 

for equation 4 . 1 and boundary conditions 4 .2 and 4 . 3, and 

x(t,E) = ~ (t,E)+ e - t/E ~ (t,E) + O(rT3) 
n n 

uniformly for t in I, 

( ) - ( ) - t/E - ( ) - 1 - t/E - ( ) X 1 t,E = X 1 t , E + e V 1 t,E - E e V t,E n n n 

+ O[E- 1 rT
3 
~(t,E)] uniformly for t in I . (5 . 44) 

Proof . This theorem is an immediate consequence of Lemmas 5 . 1 and 

5.2 and Theorem 4 . 1. The choice for y (E) satisfies equation 4 . 9 and 

makes equation 4 .24 a consequence of equation 4 .20 . Using equations 4 .20 

and 5 . 15 and the definition of T2 , we get that equation 5 . 42 implies 

the validity of equation 4 .23 in the present case. Assumption 4ii holds 

here because of the conclusions of Lemmas 5 . 1 and 5 .2 and the choice 

for y . Assumption 4iii holds because of assumption 5i . This is shown 

by equations 5. 32 and 5 . 34 . 



6 . The results of the previous section lvill be reformulated in terms 

of the singular perturbation problem with differential equation 

ey" + F(t, y,y•,e) = 0 

and boundary conditions 

B[y] = 1 ' 0 
C[y] 

( 6 . 1 ) 

(6 .2) 

vle will state sufficient conditions to guarantee the existence of a 

solution y of the form 

y = W + X s(E) 

where the existence of x is given by the theory of section 5, and 

~ = ~(e) is a positive function of e such that 

~ = 0( €) . (6 . 3) 

In what follows let the full argument ( t , y( t, E) ,y ' ( t,e) ,e) of F 

and its derivatives be denoted by [y] = [y(t,e)]. 

Assumption 6i . There exists a function w = w(t,e) of t and e 

such that w(t, e) e c2(I) and ew" + F[w] = 0(~) uniformly . 

Assumption 6ii . F is of class c2 in y and y ' when ly-w(t,e)l + 

IY' - w{t,e)l~ "' 
,.., o2F o2F - 1 o2F 

1-l for some constant 1-l ·- and E J 
2 ' ayay ' ' -ay •2 oy 

= O(e~- 1 ) ly-w( t , E) I+ IY' - •1{ t , e) I "' uniformly for < 1-l and t in I· J 

oF Oy hr] E C(I) 
oF 1 oF oF 

and 7fY' [ w] E C (I) ; cyr ( w), Oy ( w), and ( J;~ [ w] ) ' 

oF 
= 0( 1) uniformly; and cyr [ w] ~ 1l > 0 when t E I and o < E < e

0
, 

for some constant 1'1 · 
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The functions in equations 4 . 1, 4 .2, and 4.3 become in the notation 

of the present problem the following: 

q < t, E ) = <a;~ [ w n -2 ~ [ "'1, 

r(t,e) =<a;~ [w]) -2 (ew" + F[w]) E- 1, 

h(t,x,x',E) = (e
1
/ 2 E

1
/ 2 a;~ [w]) -2 [ <a;~ [w])' E sX' + 

oF 
F[w+Ex] - F[w] - dYf [w] ;x• oF 

- dy [w] 

.£ 0 - B[ w]) - 1 = E ' 0 0 

.£1 = 01 C[w]) E-1 . 

In the context of the present problem, functions 

Ex } , 

(6 . 4) 

q*, p*, x , v , and 
0 0 

T. (i = o, ... , 4 ) can be defined from the equationsof 6 . 4 in the same 
~ 

way as found in sections 4 and 5 . 

Assumption 6iii . For £
0 

and .£1 defined in 6 .4 and depending on 

w, equations 5 . 15 and 5 . 36 hold. Also, equations 4. 19 to 4 .22 hold . 

Assumption 6iv. There exists a constant a such that 
0 

- - 1 a < ~ E s when t E I and 0 < E < E . 
0 0 

!v(t,e)l < 
0 

Assumption 6i v is a requirement that ll is not too small . From this 

condition we get for any positive number a another number e
0

(a) such 

that 

lv (t,e)l + ae < a 
0 0 

( 6 . 5) 

and 
t/E 

e ' (6 .6 ) 



when t E I and o < E < E (a) . 
0 

Equation 6 . 5 is part of assumption 5ii, which must be verified to hold 

for the present problem. Assumption 5i holds for h defined in 6 .4, 

if 

lxl + lx 1 I < ~ ~ - 1 
· 

Thus, assumption 5i holds for 

lx- x I < ~ 
0 

if ~, n, and a are determined so that 
0 

~ + lx I 
0 

- 1 + n + E a 

when t E I and o < E < E • Let 
0 

a be determined by assumption 6iv, 
0 

and then fix ~ > a and n > 0 . Inequality 6 . 7 will result f r om inequality 
0 

6 . 6 when a > ~ + I x I + n + a + I x 1 I , becattse x and x 1 are bounded 
0 0 0 0 0 

for t in I and o < E < E • This follows from equation 5 . 15, which is 
0 

assumed to hold for the present problem. Assumptions 5i and 5ii have been 

shown to be valid . 

i-le conclude that all the assumptions of Theorem 5 . 1 are true here . 

Hence, t he following theorem has been proven . 

Theorem 6 . 1. Suppose that assumptions 6i to 6iv hold, and let n 

be given (n = o, 1, .•. , oo) . If · f · · t d f · n+ 1 d if n ~s ~n~ e, e ~ne y = E , an 

n is infinite, define - 1/E y = e . "' ( ) - ( ) -t/ € "' ( ) Let z t,e = x t,E +e v t,e n -n n 

be given by Theorem 5. 1 wher e the fUnctions of the equations 4 . 1, 4 .2, 4.3 
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are given in 6 .4 . Then, if (1 + T
0 

lb
1 

I)( lc
1 

I + T
0

T2 Ib1 j) ~ T2 Y = 0( 1) , 

the problem consisting of e~uation 6 . 1 and boundary conditions 6 .2 has 

a solution y(t,E) for t in I and € sufficiently small, and 

y(t,E) = w(t,E) + ~(€) ~n(t , E) + 0(~ y T
3

) uniformly, 

y•(t,E) = w•(t,E) + ~(€) ~~(t,E) + 0(E- 1srT3 ~(t,E) ] uniformly . 
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