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Abstract

Many important engineering problems, ranging from antenna design to seismic imaging,

require the numerical solution of problems of time-domain propagation and scattering of

acoustic, electromagnetic, elastic waves, etc. These problems present several key difficul-

ties, including numerical dispersion, the need for computational boundary conditions, and

the extensive computational cost that arises from the extremely large number of unknowns

that are often required for adequate spatial resolution of the underlying three-dimensional

space. In this thesis a new class of numerical methods is developed. Based on the re-

cently introduced Fourier continuation (FC) methodology (which eliminates the Gibbs phe-

nomenon and thus facilitates accurate Fourier expansion of nonperiodic functions), these

new methods enable fast spectral solution of wave propagation problems in the time do-

main. In particular, unlike finite difference or finite element approaches, these methods

are very nearly dispersionless—a highly desirable property indeed, which guarantees that

fixed numbers of points per wavelength suffice to solve problems of arbitrarily large extent.

This thesis further puts forth the mathematical and algorithmic elements necessary to pro-

duce highly scalable implementations of these algorithms in challenging parallel computing

environments—such as those arising in GPU architectures—while preserving their useful

properties regarding convergence and dispersion.

Additionally, this thesis develops a fast method for evaluation of computational bound-

ary conditions which is based on Kirchhoff’s integral formula in conjunction with the FC

methodology and an accelerated equivalent source integration method introduced recently

for solution of integral equation problems. The combination of these ideas gives rise to a

physically exact radiating boundary condition that is nonlocal but fast. The only known

alternatives that provide all three of these features are only applicable to a highly restric-

tive class of domains such as spheres or cylinders, whereas the Kirchhoff-based approach

considered here only requires a bounded domain with nonvanishing thickness. As is the
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case with the FC scattering solvers mentioned above, the boundary-conditions algorithm is

modified into a formulation that admits efficient implementation in GPU and other parallel

infrastructures.

Finally, this thesis illustrates the character of the newly developed algorithms, in both

GPU and parallel CPU infrastructures, with a variety of numerical examples. In particular,

it is shown that the GPU implementations result in thirty- to fiftyfold speedups over the

corresponding single CPU implementations. An extension of the boundary-condition al-

gorithm, further, is demonstrated, which enables for propagation of time-domain solutions

over arbitrarily large spans of empty space at essentially null computational cost. Finally,

a hybridization of the FC and boundary condition algorithm is presented, which is also

part of this thesis work, and which provides an interface of the newly developed algorithms

with legacy finite-element representations of geometries and engineering structures. Thus,

combining spectral and classical PDE solvers and propagation methods with novel GPU

and parallel CPU implementations, this thesis demonstrates a computational capability

that enables solution, in novel computational architectures, of some of the most challenging

problems in the broad field of computational wave propagation and scattering.
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Chapter 1

Introduction

Many physical processes of considerable scientific and engineering importance, ranging from

acoustics to electromagnetics, elasticity, and seismic phenomena, concern wave propagation

and scattering. Acoustic scattering (deflection of pressure waves by particles or bodies in

a medium) is the prototype for many of these physical processes. The precise mathemati-

cal statement of wave interaction amounts to a system of conservation laws which is often

formulated as a hyperbolic system of partial differential equations relating spatial and tem-

poral derivatives of a perturbation in the underlying medium (in the case of acoustic waves)

or in free space (in the case of electromagnetic waves).

This thesis is primarily concerned with exterior acoustic scattering problems. Exterior

problems of acoustic scattering involve the propagation of acoustic waves in an unbounded

medium until they impinge upon one or more obstacles. Since the waves can be described

as solutions of linear partial differential equations, the total solution u is given by the

relation u = ui + us in terms of its two constituent components, the unimpeded incident

wave ui, and the wave us that is scattered from the obstacle(s). The physical nature of

a scatterer is typically quantified as either “sound-soft” (resp. “sound-hard”), implying

that u = 0, and thus us = −ui (resp. ∂u
∂n = 0, and thus ∂us

∂n = −∂ui
∂n ) on the scattering

surface. More generally, so-called impedance boundary conditions, which amount to a

linear combination of these two, are sometimes relevant. A complete set of equations for a

prototypical exterior scattering problem, arising from a field ui incident upon a volume Θ
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with impedance boundary Γ, may be expressed in the form

1

c2

∂2

∂t2
us −∆us = f(x, t) in R3 \Θ× (0,∞) (1.1)

us(x, 0) = u0(x) x ∈ R3 \Θ (1.2)

∂

∂t
us(x, 0) = u̇0(x) x ∈ R3 \Θ (1.3)

aus + bn · ∇us = −aui − bn · ∇ui (x, t) ∈ Γ× (0,∞) (1.4)

lim
r→∞

r

(
∂

∂r
us +

1

c

∂

∂t
us

)
= 0 r = ‖x‖2, (1.5)

where f(x, t) is a compactly supported source and the necessary initial conditions are given

by u0(x) and u̇0(x).

In order for the scattered field us to be uniquely determined it is necessary to require

a certain condition of radiation at infinity (equation (1.5)) which was first introduced by

Sommerfeld [70]. The direct scattering problem, then, is to determine this radiating solution

us given knowledge of the partial differential equation, the incidence ui, and appropriate

conditions (based on the physical properties under consideration) at the boundary of the

scatterer(s). The numerical solution of exterior scattering problems poses unique challenges

not present in bounded domains. Unbounded regions are usually truncated to render them

suitable for numerical simulation, but doing so necessitates the specification of boundary

conditions at the artificial boundary of the computational domain, which relate in subtle

ways to the Sommerfeld radiation condition.

This work presents a combined strategy for the solution of time-domain acoustic scatter-

ing problems that allows for highly efficient execution in parallel computing environments,

with a particular emphasis on graphics processing units (GPUs). An interior solver for

hyperbolic PDEs is described using the accelerated Fourier continuation-Gram polynomial

(FC(Gram)) methodology [18, 53] in Chapter 3 and 5, in particular extending the work

of [1] to support a very fine-grained level of task parallelism, as described in Chapter 4.

This allows for significant gains in performance by taking advantage of GPUs, with GPU-

to-CPU improvement ratios of a factor of no less than 28. In addition, a variant of the

physically exact approach for evaluation of computational boundary conditions described

in [42] is presented in Chapters 6 and 7, taking advantage of the more-compact FC(Gram)

continuation strategy (cf. Section 3.3 in [42]). These boundary conditions are adapted for
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GPU execution, reducing the already-fast CPU boundary condition computing times by a

factor of 50 on average in the GPU implementation, as shown in Section 9.3. Perhaps most

importantly, this work provides the first efficient application of such an exact, radiating

boundary condition to a nonconvex computational domain, and it in fact demonstrates a

framework for the solution of multiple-scattering problems in Section 9.5 whose computing

cost per time-step remains independent of the distance between the scattering surfaces!

The remainder of this chapter presents a literature review on topics concerning the two

main original contributions in this thesis, namely 1) Time-domain solvers for PDE prob-

lems on unbounded domains by means of numerical algorithms on bounded computational

regions, including a corresponding discussion of various numerical methods for evaluation of

computational boundary conditions, (Section 1.1); as well as 2) Implementation in modern

computing hardware leading to efficient, scalable methods for solution of computational

science problems (Section 1.2).

1.1 Time domain methods and applications

1.1.1 Numerical PDE solvers

One of the oldest and best-known approaches for the numerical solution of time-domain

wave propagation is the Yee scheme [78], also known as the finite-difference time-domain

(FDTD) method. The FDTD scheme is appealing for its simplicity, and still sees broad

commercial and scientific applicability, even though it is only accurate to second-order in

both space and time. As is well known and evidenced, for example, in [20] (and shown

in Section 9.1 of this thesis), a second-order FDTD method typically requires at least 96

points per wavelength, over a computational domain only 16 wavelengths across, in order to

achieve a numerical accuracy of even 1%. Furthermore, as the acoustic size of the domain

grows, the per-wavelength discretization must be increased in order to preserve accuracy,

resulting in a requisite discretization that grows super-linearly with respect to the volume

of the domain. Clearly, efficient solution of large scattering problems requires development

of higher-order numerical methods. A thorough, modern accounting of the FDTD approach

can be found in [74].

A description of a variety of high-order finite-difference methods for the solution of hy-

perbolic systems can be found in [50, 58]. In such methods derivatives are approximated as
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linear combinations of neighboring sample points on a regular lattice, with coefficients (or

“stencil”) chosen in such a way that the truncation error, as evaluated through considera-

tion of a relevant Taylor series expansion, tends to zero with a desired power of the mesh

size. High-order FD schemes require increasingly wide stencils, posing difficulty near the

boundary of the domain. So-called Padé or compact schemes, such as presented in [48, 61],

partially alleviate this difficulty by posing an implicit equation for the derivatives, requiring

solution of a banded linear system at each iteration. In either case, explicit or implicit FD,

some accuracy is typically sacrificed near the computational boundary.

In order to model conservation laws directly, finite volume methods (FVM) [49], which

are applicable to structured and unstructured meshes alike, produce the numerical solution

via evaluation of numerical fluxes. By avoiding a formulation in terms of numerically-

computed derivatives, FVMs are especially robust in the face of discontinuous solutions or

“shocks”. Unfortunately, high-order convergence in FVMs is difficult to achieve, and often

involves a nonlinear flux-limiter such as in [51].

The finite element method (FEM), within the broader class of Galerkin methods, replace

the continuous PDE with a discrete weak-formulation. Originally developed for elliptic [63]

and hyperbolic problems in diffusion, elasticity and structural analysis [77] and formalized

in [72], this approach proceeds by dividing the computational domain into a number of

geometric elements, over which the solution is represented as some linear combination of a

set of piecewise-continuous basis functions. Perhaps the chief advantage of the FEM is its

applicability to unstructured meshes, allowing for a broad class of computational domains

to be discretized with relative ease. Evolving a time-dependent hyperbolic problem forward

in time in some cases requires the solution of a sparse linear system at each time-step.

Alternatively, the discontinuous Galerkin finite element methods [39] (DG-FEM) impose

no conditions on the continuity between elements, allowing for an explicit update rule after

the computation of a numerical flux term similar to that which appears in FVMs, at the

expense of a greater number of numerical degrees of freedom.

Spectral methods provide unparalleled convergence and minimal (or zero) numerical

dispersion, and are perhaps the most appealing for problems of linear acoustic waves, but

also the most restrictive in their applicability. Pseudospectral time-domain methods take

advantage of either discrete Fourier or Chebyshev expansions to describe the solution in

space, a discussion of which may be found in [74]. Fourier collocation methods produce
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spectrally-convergent and dispersionless solutions, but may only be applied to a highly re-

strictive class of domains—most commonly rectangular parallelepipeds exhibiting periodic

boundary conditions (possibly under even- or odd-extension). Chebyshev collocation meth-

ods [10], on the other hand, either require stringent CFL conditions, due to refinement near

the boundaries, or must be used in the context of implicit solvers, imposing the cost of

solving a linear system every time-step.

1.1.2 Computational boundary conditions

For all of the numerical approaches discussed above, accurate treatment of an unbounded

physical domain with a finite, bounded computational domain requires the specification of

appropriate boundary conditions at the new (artificial) boundary. One famous approach,

proposed first in [52] and later expanded in [26, 27], is applied in the form of a pseudo-

differential operator based on increasingly accurate local approximations. This was later

adapted in [57] for the case of electromagnetic waves. Similar local asymptotic approxima-

tions generalizing this framework are presented by [8]. Another local boundary operator is

proposed in [41] that is exact for plane waves traveling in a number of discrete directions.

Yet another related approach described in [45] constructs a pseudodifferential operator that

is perfectly absorbing for solutions traveling at a specified group velocity. One of the most

broadly used methods today involves the construction of a “perfectly matched layer” (PML),

first proposed for scattering problems in electromagnetism by [9]. This artificial layer acts

as an absorbing media while producing minimal internal reflections, if the PML is taken

to be sufficiently large. A more complete theoretical understanding of the PML was es-

tablished in [21], and further improvements to the approach are developed in [22, 64]. The

“complete radiation boundary condition”, or CRBC, is a recently introduced local method

that reduces the impact of long-time errors on the solution is described in [36].

In contrast to the methods outlined above, which attempt to control the local behavior of

the solution at the computational boundary by approximating a nonreflecting or absorbing

interface, a family of properly convergent methods exist based on the exact, global behavior

of the radiating solution. A solution constructed through the combination of Dirichlet and

Neumann operators is proposed in [67], but requires costly additional interior evaluations.

An exact condition based on Kirchhoff’s integral formula and applicable to very general

geometries was originally proposed by [75]. First implemented by [31] for linear acoustics,
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and later adapted by [37] to electromagnetics, the historical difficulty in this otherwise

powerful approach lies in the costly evaluation of the integral representations of the solution,

dominating the computational time of the interior solvers. A fast alternative based on

Fourier and Laplace transforms was developed by [3, 4], but loses geometric generality, as

it is only applicable to simple (e.g., spherical, cylindrical) computational domains, thus

leading to very large unnecessary computational costs for problems for which the domain

aspect ratio deviates significantly from one. Another efficient integro-differential approach

was independently developed by [69] and [35], which is only applicable to spherical domains.

In [65] a fast method based on Huygens’ principle and, more specifically, the presence of

lacunae, solves an auxiliary system with the introduction of an inhomogeneity in a layer

conforming to the computational boundary.

1.1.3 Numerical methods developed in this thesis

As mentioned in Section 1.1 and discussed in detail in Section 3.2.3, the most commonly

used numerical PDE solvers for wave propagation problems suffer from significant loss of

efficiency as the acoustical size of the computational domain is increased—owing to the lin-

ear growth of the multiplicative constants in the algorithms error estimates with respect to

the diameter of the domain; see equation (3.18) and Section 3.2.3. This phenomenon, which

is caused by the underlying “dispersion error” (which is also known as “pollution error” in

the finite-element context), is effectively resolved in the context of spectral methods such

as the Fourier collocation and Chebyshev algorithms. The Fourier-continuation-(FC)-based

PDE solvers [1, 18, 53] considered in this work, which are described in detail in Chapter 2,

are spectrally accurate, and hence nearly dispersionless in the interior of the domain, but

they are much more general than classical spectral methods: unlike the Fourier collocation

method, the FC algorithms can be applied to general nonperiodic problems in general do-

mains, and unlike the Chebyshev spectral methods, they do not entail highly restrictive

Courant-Friedrichs-Lewy (CFL) time-step constraints. In this thesis, an FC-based numer-

ical solver for the acoustic wave equation is introduced (Chapter 3), and it is hybridized

with other numerical solvers (Chapter 8).

Similarly, methods for evaluation of computational boundary conditions are unable to

provide a convergent representation on arbitrary boundaries while maintaining computa-

tional efficiency—local methods methods are efficient but inexact, while known “efficient”
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nonlocal methods potentially require the costly extension of the computational domain to

a sphere. In these regards, this thesis extends the work of [42] (a fast method that can

evaluate convergent, nonlocal boundary conditions) to cases that include nonconvex and

even disjoint domains—a feature demonstrated for the first time in the present work (Sec-

tion 9.5).

1.2 Parallel computing

Moore’s law has been a continual boon for all scientific fields that rely on numerical simula-

tions. Originally presented in the 1965 paper [56], this “law” was an expression of the simple

factual observation that the number of transistors available on each new generation of in-

tegrated circuits appeared to be growing exponentially. Though the figure is not exact, the

period over which these devices double in complexity (measured simply by transistor count)

is often quoted to be 18 months [46]. What was once a rather casual observation, however,

has become a self-fulfilling prophecy. For years now, Moore’s law has been a continually

moving target that the semiconductor industry places on its own research and development

efforts. Even though nearly 50 years have passed since Moore’s original publication, this

trend continues today, and with the current technological horizon, is expected to continue

for at least several years, possibly into the next decade [47].

Of far more interest to the mathematical community as consumers of computing tech-

nology, however, is the implied performance. Fortunately this trend has also applied to

measures of computational progress that, from the computational viewpoint, have far more

practical interest—including available random access memory (RAM) and floating point op-

erations per second (FLOPS). As an example, Intel’s original Pentium P5 architecture [44],

introduced in March of 1993, could perform up to 75 MFLOPS, and it accommodated

memory access at up to 554 MB/s. In contrast, November of 2008 saw the release of the

first of Intel’s i7 line, the predominant architecture today, the first instance of which was

the 965 Extreme Edition—which is capable of approximately 51.2 GFLOPS while reading

memory at 27 GB/s. That is, over a span of 15 years, the floating point speed increased by

a factor of roughly 680 (doubling more than nine times over), while the memory bandwidth

increased by a factor of 47 (doubling more than five times).

Unfortunately, reaping the benefits of this trend is not as simple as purchasing the latest
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and greatest on the market. While the potential for raw computational speed has increased,

the requirements for harnessing the full extent of the available computing power have grown

in complexity. There are two major areas where such developments have influenced this

work. Firstly, there has been an increasing gap between the ability of a state of the art

processor to access memory (MB/s) and the rate at which it can perform computation

(FLOPS). If a computation requires a large amount of memory access relative to the number

of floating point operations performed, then the practical increase in computing power over

the last decade is significantly reduced. Notice that, from the release of the first Pentium to

the i7, the comparative speedup between floating point and memory speeds differs by more

than an order of magnitude. Furthermore, the i7 965 EE cannot read memory fast enough

(at 4 bytes per single precision value) to meet the demands of its floating point capabilities,

assuming every operation requires at least one newly fetched operand from memory (such

as summation over an array).

Secondly, there has been an increasing trend, over roughly the past decade or so, towards

multi- and many-core architectures. The i7 processor previously mentioned is only capable

of reaching its peak performance of 51.2 GFLOPS when a considerable degree of parallelism

has been accounted for, taking advantage of all four cores in addition to using vectorized

floating point operations (SSE) on each. If these considerations are neglected, the same

device would only be capable of roughly 3.2 GFLOPS. This second difficulty is of even

greater concern after noting that not every computation can be efficiently parallelized.

Amdahl’s law [5] states no amount of parallelism can ever accelerate a computation beyond

the time required for the longest purely sequential subcomputation. A formal (and slightly

more general) statement is that, given a set of atomic computational tasks and the partial

ordering implied by their dependencies, the minimal time to complete the computation

is the largest sum of task times over any subset for which the partial ordering implies a

unique full ordering. Algorithms that do scale well in this domain, in part by minimizing

this property, will be of ever-greater importance as this trend continues.

1.2.1 Shared and distributed memory environments

Most large-scale parallel computers available today are “distributed memory” clusters, com-

prised of a large number of individual computers (or “nodes”) combined with some kind of

interconnect (InfiniBand and Ethernet are currently the most common) allowing for com-
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munication between them. The most widespread (but not only) model for programming

in such an environment is the message-passing model, the most famous implementations

thereof adhering to the message passing interface (MPI) standard [68], in which a separate

copy of the program is run on each node, with interdependencies in the computation man-

aged by the passing of messages, either point to point (matched send and receive pairs) or

collective group communications (such as broadcast and parallel reductions). In order to

efficiently use such a device, there are two concerns that are typically addressed: the amount

of computational work for which each node is responsible should be reasonably balanced,

and the cost of communication incurred by distributing said work should be limited.

This is in contrast to the less-scalable but simpler “shared memory” model, where a

single program is split into several parallel “threads”, each having direct access to the same

physical memory. Two of the most common APIs for this style of development are POSIX-

threads, for which the manual creation and management of each computational thread is

necessary, and OpenMP [24], which abstracts this work into a much cleaner interface, but

is only well-supported by more recent compilers and tools. Shared memory models have

the advantage of greatly reducing the cost of communication, but place a greater burden on

the programmer to ensure program correctness (thread safety). Furthermore, while most

modern desktop computers naturally support this style of parallelism, the cost of shared

memory hardware tends to grow much faster, as a function of the number of cores, than the

cost of a comparable distributed memory system, and even still necessarily sacrifices some

memory performance owing to purely physical limitations in their construction.

This work does not present an implementation targeted to MPI. Instead, support for

both CUDA (described in the following section) and OpenMP are demonstrated. While

this thesis fully addresses the issues that arise from use of the two latter communication

environments (which are rather similar from a software development standpoint), in the

course of the developing the CUDA implementation, the primary concerns for MPI sup-

port, namely division of labor and efficiency of communication, are addressed. This thesis

work thus introduces concepts that enable applicability of the highly efficient novel FC and

boundary condition methods, see Section 1.1.3, in all three types of modern computational

infrastructures, although it demonstrates the applicability of these concepts only in the

cases of CUDA and OpenMP.
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1.2.2 General purpose graphics processing units

Modern GPUs are an extreme case of the many-core engineering trend. Originally designed

as specialized hardware to perform a fixed number of simple functions on a per-pixel or per-

texel basis, current-generation GPUs are fully programmable and often feature a number

of cores totaling in the hundreds. Each of these cores, however, is far more limited in

functionality than the corresponding cores of a traditional desktop CPU.

NVIDIA Corporation’s Compute Unified Device Architecture (CUDA) provides a pro-

gramming model [59] specifically for these modern many-core programmable GPUs. CUDA

provides both an abstraction of the underlying hardware and its capabilities, as well as a

programming environment (CUDA for C) for developing applications. In the CUDA model,

a single GPU is comprised of a uniform global memory space plus a number of symmetric

multiprocessors (SMPs). Each SMP possesses a number of parallel computing cores called

streaming processors (SPs), which collectively share a small pool of local memory and a

single instruction unit—a detail of great importance, since even though an SMP on a typical

GPU may have 16 SPs, they must all execute identical instructions in lock-step. This results

in what NVIDIA has dubbed the “single-instruction, multiple-thread” or “SIMT” execu-

tion model, whose nomenclature follows from “single-instruction, multiple-data” (SIMD)

and similar designations. For simplicity, a collection of threads running in parallel, over

identical instructions, on an SMP is referred to as a “threadblock”.

Following the SIMT architecture, the second major deviation from standard CPU ar-

chitectures is the manner in which memory is accessed. Each SMP possesses a single

high-bandwidth, but high-latency, connection to global GPU memory. Furthermore, the

memory caching mechanisms present on typical desktop CPUs to hide this physically nec-

essary latency are conspicuously absent, requiring a developer to explicitly manage these

delays, most importantly through a form of thread multiplexing discussed in more detail

in Section 4.1. Finally, since an SMP may only access global GPU memory by reading or

writing a 16-, 32-, or 64-byte contiguous block at a time, the underlying SPs must have

their memory access patterns planned out in such a way that they collectively “coalesce”

into these block operations, or else performance may be (quite literally) decimated.

While numerical computing remains a niche application for GPUs today, many of their

innovations are influencing mainstream chip designers such as Intel with their Larrabee
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architecture [66] (now superseded by the Intel many integrated core (MIC) architecture).

They also provide, effectively, a snapshot into the anticipated future, with respect to relative

floating point versus memory performance. In targeting these devices for development,

then, one not only uses the most powerful floating-point devices currently available, but

also potentially gains a leg-up on the architectural trends of the future.

1.2.3 Limited precision arithmetic

It is becoming increasingly common for GPUs to be designed with support for double pre-

cision arithmetic, partly owing to a growing interest in such capabilities from the academic

community. More commonly, however, double precision arithmetic is only available with

reasonable performance (half that of single precision arithmetic) on a subset of the newest

generation of devices—and on older devices it is available either at a significant perfor-

mance penalty or not at all. Therefore, in this thesis, care has been taken to ensure that

the algorithms used retain both accuracy and stability, insofar as is possible, when imple-

mented with only single precision floating point arithmetic. This design lends itself to one

other advantage—supposing that the provided accuracy is sufficient, and the performance is

memory bound (as is increasingly likely given newer architectures), then a single precision

implementation may offer up to twice the speed of an equivalent double precision code.
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Chapter 2

Fourier continuation

Fourier collocation methods take advantage of the rapid convergence of Fourier series for

smooth, periodic functions in order to enable the numerical solution of suitable problems in

a manner that is both very accurate and efficient. Once a discrete function is expanded in a

Fourier basis, common numerical operations such as differentiation become simple to imple-

ment (as a diagonal operator) and yield spectral convergence. When solving time-dependent

partial differential equations, spurious high-frequency oscillations associated with nonlin-

earity or instability in the numerical solution may also be damped directly in a manner

analogous to the introduction of artificial viscosity, improving the stability of such methods

without significantly impairing the numerical accuracy and without greatly increasing nu-

merical dispersion. Furthermore, the fast Fourier transform [23] (FFT) provides an efficient

means of mapping a function to and from the discrete Fourier basis in only O(N logN)

time. The limitation of the Fourier collocation methods, however, is that the PDE solution

must be a periodic function over a rectangular domain: if the Fourier collocation method

is applied to a nonperiodic function directly, the resulting representation converges very

poorly, with slow convergence in the domain interior, and with an O(1) error near the

boundary. In other words, if Fourier collocation is used for nonperiodic functions, then the

Gibbs phenomenon takes place. The Fourier continuation method provides a means to ad-

dress this difficulty, and thus enables spectral treatment of PDE problems whose solutions

are not periodic functions.

The Fourier continuation (FC) method [1, 11, 15, 18, 19, 53] overcomes the aforemen-

tioned limitations by seeking an interpolating trigonometric function which is periodic on a

domain larger than the original one—allowing for a smooth transition between the function

values at the original boundaries of the nonperiodic domain; see Figure 2.1. To intro-
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duce the Fourier continuation method, consider a given (generically nonperiodic) function

f : [0, 1]→ C, defined in the interval [0, 1], whose discrete samples

fn = f(xn), xn =
n

N − 1
, n = 0 . . . N − 1 (2.1)

are known. In order to represent the function f by a Fourier series while avoiding the Gibbs

phenomenon, a Fourier expansion of f is sought on an interval [0, b] with b > 1. That is,

the Fourier continuation method seeks to produce a function f c of the form

f c(x) =
W∑

k=−W
cke

2πi kx
b (2.2)

which agrees with f as closely as possible, in the in the interval [0, 1] where f is defined.

The function f c smoothly transitions over the interval [1, b] to create a b-periodic extension,

as depicted in Figure 2.1 for the particular case of the function f(x) = x. Unfortunately, it

is no longer possible to directly compute the coefficients ck, of f c with a simple application

of an FFT. The remainder of this chapter discusses two methods for the construction of

such expansions, including an FFT-based algorithm with a cost essentially identical to that

of a single FFT.

2.1 Fourier continuation based on singular value decomposi-

tion

The most direct (if not the most efficient or best conditioned) approach for the determination

of the Fourier series coefficients ck results [11, 15, 19] as the N known data points together

with the definition of f c are interpreted as a system of N equations for M unknowns:

fn =

W∑
k=−W

cke
2πi kxn

b . (2.3)

To address the potential ill conditioning in this problem it is advantageous to let M < N ,

in which case this system of equations is solved in the least-squares sense. (A fast and well

conditioned alternative to the present SVD-based approach is put forth in Section 2.2, but
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Figure 2.1: Fourier continuation f c(x) of the function f(x) = x

the present discussion may prove useful nevertheless.) Defining the matrix A by1:

Amn =


e2πimxn

b when m ≤W

e2πi
(W−m)xn

b otherwise,
(2.4)

the desired coefficients ck are then given by the components of the solution vector y of the

problem

min
y
‖Ay − b‖2, (2.5)

where bn = fn. The singular value decomposition [33]

A = USV H (2.6)

(where U, V are unitary matrices and where S is a nonnegative diagonal matrix) is a natural

choice for the solution of least-squares problems of this type. Defining the pseudo-inverse

S+ of the diagonal matrix S as the diagonal max(M,N)×max(M,N) matrix whose nonzero

1The convention used here follows [1], with indices starting at zero rather than one.
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elements equal the reciprocals of the corresponding nonzero elements of S, in terms of this

decomposition the least solution y is given by

y = V S+UHb. (2.7)

The least-squares problem just considered becomes ill conditioned as N and/or M are

increased—in light of which, it is necessary to use a truncated pseudoinverse of S, S+
ε , that

is, a diagonal matrix with coefficients defined by

(S+
ε )mm =


(Smm)−1 when Smm

S0,0
≥ ε

0 otherwise.
(2.8)

The parameter ε is typically taken to be on the order of machine precision. As demonstrated

by [15], this method converges to order r − 1 provided that f(x) ∈ Cr.

As mentioned above, this approach is computationally expensive and ill conditioned.

Indeed, evaluation of the singular value decomposition requires O(MN2 +N3) operations,

and solution of the system (per set of unknowns, once the SVD is available) requires O(M2+

MN) operations. Although in the surface representation context [15] these issues do not

pose significant difficulties, the application of this approach to the solution of time-domain

PDEs would give rise to a prohibitively expensive solver. Furthermore, the ill-conditioning

inherent in the solution of the least-squares problem would limit severely the size of the

problems that could be considered. Both of these difficulties are eliminated in the Fourier

continuation algorithm presented in the following section.

2.2 Accelerated Fourier continuation based on Gram poly-

nomials

In contrast to FC(SVD) algorithm presented in the previous section, the accelerated FC(Gram)

approach, introduced in [18] and further modified for explicit time-marching algorithms

in [1], first seeks to determine a number C > 0 of artificial function values which smoothly

transition from fN−1 to f0 over the interval [1, b], where the size of the continuation interval

is set explicitly by b = (N + C)/(N − 1). Once this extension fext = {fN , . . . , fN+C−1} is

determined, the frequency domain coefficients cj are computed by an FFT of size N + C.
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The main idea underlying the evaluation of the C extension values involves consideration

of the function f(x), defined in the original interval [0, 1], along with its translation by

distance b, f(x− b), as implied by the fact that a b-periodic extension is desired. Selecting

a positive integer d that prescribes a certain number of “matched point-values” (the length

of the interval where matching takes place is given by δ = (d − 1)h) consider the set of

d right-most discretization points in the interval [0, 1], namely Dright = {xN−d, . . . , xN−1}

as well as the set of d left-most discretization points Dleft = {b+ x0, . . . , b+ xd−1} in the

interval [b, b+ 1]; see, e.g., Figure 2.2. Roughly speaking, the additional C needed function

values in the interval [1, b] are obtained as the point values of an auxiliary trigonometric

polynomial, with periodicity interval [1 − δ, 2b − (1 − δ)] and with appropriately selected

bandwidth, produced by means of an FC(SVD) fit to the function values on Dright ∪ Dleft,

as described in what follows.

Polynomial interpolation of the function values on Dright ∪ Dleft is produced by means

of two Gram (orthonormal) polynomial bases Bright and Bleft of the respective spaces of

polynomials of degree < d on the intervals [1− δ, 1] and [b, b+ δ] and associated orthogonal

projections. (The sets Bright and Bleft are orthonormal bases of the space of polynomials of

degree < d with respect to the natural discrete scalar product defined by the discretization

points Dright and Dleft, respectively.) The algorithm then proceeds by precomputing, for

each polynomial p ∈ Bright, a smooth function defined for x ≥ 1 − δ, which approximates

p closely in the matching interval [1 − δ, 1], and which blends smoothly to zero for x ≥ b.

Such rightward extension is obtained by means of appropriately oversampled least-squares

approximations by Fourier series of periodicity interval [1−δ, b−(1−δ)], as described in [1].

Similarly, the scheme obtains, for each polynomial p ∈ Bright a smooth blending function

that agrees with p in the matching interval [b, b+ δ] and vanishes for x ≤ 1.

Once such smooth blending functions have been precomputed (via a high-precision im-

plementation of FC(SVD) on a refined mesh), an FC extension can be produced, for any

function, from the function values at the set of points Dright ∪Dleft—since the interpolating

polynomials of degree d− 1 on Dright ∪Dleft can be expressed as linear combinations of the

polynomials in the bases Bright and Bleft, with coefficients that can be obtained rapidly by

means of scalar products. This periodic-extension procedure is demonstrated in Figure 2.2.

As indicated above, once the additional C extension values have been obtained, an appli-

cation of the discrete Fourier transform in the interval [0, b] to the vector of function values
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fj augmented by the C additional “continuation” values fext just constructed yields the

desired trigonometric continuation polynomial.
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Figure 2.2: The function f(x) = esin(5.4πx−2.7π)−cos(2πx), sampled at N = 92 evenly spaced
points over the interval x ∈ [0, 1], and its continuation via FC(Gram), using d = 5 matching
points and C = 25 extension points. The periodic continuation is superimposed to the
right.

The operator that extends N given function values into N + C samples of a smooth

periodic function is a sparse matrix operator with simple structure, composed of the N ×N

identity matrix and two small C × d submatrices. The action of the extension operator can

be expressed in the block-matrix form

f̃ =

IN
A

 f =

 f

Af

 , (2.9)

where f is the N -vector of original function values, f̃ is the (N + C)-vector of extended

function values, IN is the N ×N identity matrix and A is a sparse C×N matrix containing

the blending-to-zero basis information and whose only nonzero entries occur in its first d
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and last d columns. Using the notation

fl = (f0, . . . , fd−1)T , fr = (fN−d, . . . , fN−1)T , (2.10)

the vector Af has the form

Af = AlQ
T
l fl +ArQ

T
r fr. (2.11)

Here, each column of Ql and Qr contain the d point values of one of the elements of the

polynomial basis, and the columns of Al and Ar contain the C point values that blend

the corresponding polynomials to zero, toward the left and right, respectively. As described

above, when the left and right blending functions are added, the C needed extension function

values result. Because each of these are small, fixed matrices that can easily be precomputed,

the application of the extension operator (2.11) can be performed very rapidly. By applying

the FFT to the extended vector of function values f̃ the discrete coefficients ck are obtained

and thus the desired representation (2.2) results.

The matrices Ar and Al differ only by row-ordering, and similarly, Qr and Ql only

differ by column-ordering. As a consequence of this fact, only half as much data needs be

stored/loaded as compared to the original presentation in the FC-AD work [18]. That is,

defining Rm as an m×m matrix with ones on the antidiagonal, serving to reverse the order

of elements in an m-vector under multiplication, the composition of matrices AlQl may be

alternatively computed using

AlQl = RCArQrRd. (2.12)

Remark 2.2.1. In some cases it is advantageous to prescribe different values of the parameter

d for each of the two Gram bases, Bleft and Bright. In this case the respective parameters

are denoted dleft and dright, and the order of the pair of Gram bases for the given interval

is defined by (dleft, dright).
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2.3 Numerical differentiation

Once a convergent Fourier series representation of a function is obtained, the corresponding

numerical derivative of the discrete series may be computed directly.

f c(x) =
∑
m∈K

cme
2πimx

b (2.13)

f cx(x) =
∑
m∈K

2πi
m

b
cme

2πimx
b (2.14)

This can equivalently be seen as a diagonal operator applied to the Fourier coefficients,

taking each cm to 2πimb cm. Once the coefficients have been scaled by this complex factor,

they may be inverted in O(N logN) time via an inverse FFT, and finally restricted to the

original N discretization points. The discrete FC differential operator, then, is implemented

as the following sequence of operations:

1. Expand the leftmost d and rightmost d values of f in the Gram polynomial bases

Bright and Bleft, for O(d2) operations.

2. Sum the precomputed Gram polynomial extensions in the interval [1, b], O(Cd) oper-

ations.

3. Compute the FFT of f̃ , O((N + C) log(N + C)) operations.

4. Differentiate the Fourier coefficients, O(N + C) operations.

5. Invert the FFT, O((N + C) log(N + C)) operations.

This algorithm has an overall the cost of order O(d2 +Cd+ (N +C) log(N +C)), which is

dominated by the favorable scaling of the requisite FFTs.

2.3.1 Data filtering

It is often the case that higher-frequency terms correspond to numerical errors or noise

rather than an important component of the solution. A particular convenience of the FC-

based methods is that, as an intermediate step, the numerical data is expanded explicitly

in Fourier series—this allows normally expensive frequency domain filters to be applied

directly and efficiently. These filters map a function fc to a smoothed approximation fσc
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by applying a scaling factor to the Fourier coefficients that dampen the contribution of

higher-frequency terms. Given the finite series expansion

fc(x) =
∑

cke
ikx, (2.15)

the smoothed approximation is defined by

fσc (x) =
∑

σ(
2k

N
)cke

ikx (2.16)

for a suitable function σ(s), defined over the normalized range of frequencies s ∈ [−1, 1].

It was observed in [1] that the spectral filter

σ(s) = e−α|s|
p
, (2.17)

discussed also in [38] and displayed in Figure 2.3, is particularly well suited to explicit

time-domain solvers built using the FC(Gram) method. In [1] the parameter α is chosen to

roughly equal − ln εmachine (where εmachine is the “machine epsilon” [71]) in order to make

the coefficients effectively vanish for |s| = 1, and p is taken to grow linearly with N , which

results in a spectrally accurate filter. In the context of this work, however, it is found that

a different choice of filter parameters is appropriate. The precise reasons for this, as well as

the particular selection of values that prove to be useful, are presented in Chapter 4.

Algorithmically, the application of these filters follows that of the numerical differen-

tiation operators from the previous section. Furthermore, it is especially convenient to

compose the filtering and differentiation operators in frequency space. Not only does this

eliminate the cost of additional FC expansions and forward and inverse FFTs, but it is

also results in better numerical conditioning. Similarly, if both the results of the filtering

operator and the differentiation operator are needed at the same time, work may be saved

in this FFT-based approach by sharing the computed Fourier expansion between the two

operators.
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Part II

Hyperbolic solver for bounded

domains
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Chapter 3

One-dimensional solvers

This chapter focuses on the spatially one-dimensional version of the types of problems under

consideration in this thesis. Under this greatly simplified setting an FC-based method-of-

lines is introduced, its stability and accuracy are studied, and its efficiency is compared

with those of other available high-order solvers. Additional comparisons of the FC one-

dimensional solver are presented in sections 4.2.2 and 9.1. The full three-dimensional solver

is introduced in Chapter 5 and demonstrated in Chapter 9.

3.1 First-order hyperbolic systems

Hyperbolic equations characterize “wave-like” phenomena. Formally, a PDE is hyperbolic

if the Cauchy initial value problem is locally solvable in the neighborhood of an arbitrary,

noncharacteristic initial surface [29]. A linear hyperbolic PDE may, by the introduction of a

sufficient number of auxiliary unknowns, be re-expressed as a first-order hyperbolic system.

In one dimension, these systems for a vector unknown u(x, t) take the form

ut +A(x, t)ux = f(x, t) (3.1)

for some everywhere-diagonalizable matrix A(x) and inhomogeneity f(x, t).

Equipped with an FC-type operator for computing spatial derivatives, it becomes imme-

diately possible to attempt the numerical solution of the system via the method of lines—by

first discretizing the problem in space in such a way that it becomes semidiscrete, and then

integrating the resulting ODE forward in time. For the one-dimensional problems under

consideration it is desirable to select an equidistant discretization in x, since such discretiza-
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tions minimize the restrictions imposed by the CFL condition. Unless otherwise stated, for

all of the examples in this chapter the domain is the unit interval [0, 1]: a problem on any

other bounded interval is reduced to the interval [0, 1] by an affine change of variables. The

sample points are then

xn = nh, h =
1

N − 1
, n = 0 . . . N − 1; (3.2)

the corresponding function values at time t = tm will be denoted by umn ≈ u(xn, tm). (In

the event that the domain under consideration is periodic the mesh size h = 1
N−2 is used

instead, in order to avoid the prescription of a redundant sample point.)

Of the possible methods for time integration, the explicit Runge-Kutta and Adams-

Bashforth methods [71], both of orders three and four, are of particular interest in the

context of this thesis. The region of absolute stability for all four of these methods includes

a symmetric interval, around the origin, along the imaginary axis. This is especially helpful

for the class of problems discussed in this thesis. (In the case of the one-dimensional wave

equation on a bounded domain, with typical (Dirichlet or Neumann) boundary conditions,

for example, the eigenvalues of A(x) are strictly imaginary.)

In order to accommodate nontrivial computational boundary conditions that may take

the form of an ODE in time at the boundary, such as those discussed in Chapter 6, it is

desirable to avoid the additional complexity introduced by the intermediate steps of the

Runge-Kutta methods. Therefore the method of choice for time integration will be the

Adams-Bashforth method, of order four (AB-4). It is necessary to initialize the first several

steps of the method—but this is typically inconsequential, as these scattering problems

normally have initial conditions of zero throughout the domain.

3.1.1 Advection equation

The simplest hyperbolic system is the linear advection equation for the scalar unknown

u = u(x, t),

ut + cux = 0, (3.3)

which admits the trivial exact solution u(x, t) = u0(x+ ct). Although simple, this problem

provides a useful testbed for the development and study of numerical methods for general
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hyperbolic systems in arbitrary spatial dimensions. Boundary conditions for hyperbolic

problems are required wherever the characteristic curves enter the domain. Without loss of

generality, in what follows it is assumed that c > 0.

3.1.2 Wave equation

The most common second-order form of the one-dimensional wave equation,

utt + c2uxx = 0

u(x, 0) = f(x)

ut(x, 0) = g(x),

is not expressed in the standard form of a first-order hyperbolic system. It is readily verified,

however, that this equation is equivalent to the system

u
v


t

+

 0 −c

−c 0

u
v


x

= 0 (3.4)

with the corresponding initial condition on v

v(x, 0) =

∫ 1

0
g(s)ds+ const. (3.5)

With an appropriate normalization, the unknowns u and v in this system correspond to

pressure and velocity, respectively.

3.2 Accuracy, stability, and dispersion

In this section it is shown that the numerical approach mentioned above in this chapter

(an FC-based method-of-lines with time-evolution based on AB-4), gives rise to high-order

convergent methods with excellent (minimal) numerical dispersion properties: as shown in

the following sections the discrete derivative approximation enjoys spatial accuracy of order

O(∆xd) [18] and the semidiscrete operator has a ‖ · ‖2 norm that grows only linearly with

N . Stability, on the other hand, is typically very difficult to discuss analytically with the

nonnormal (in the linear algebraic sense) FC-type operators. In the one-dimensional case
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presently under consideration stability will be demonstrated over a wide range of parame-

ters, and the corresponding CFL condition and Courant number of the algorithm will be

found. Finally, the near-dispersionless character of the method will be demonstrated by

examining the performance of the algorithm as the size of spatial domain and the corre-

sponding final solution time are dramatically increased while using a fixed number of sample

points per wavelength.

3.2.1 Advection equation

Consider first the advection problem (3.3), and take zero initial conditions, in conjunction

with the boundary condition

u(0, t) = e−a(t−0.5))2

where the parameter a = −4 ln 10−16 is chosen such that the function vanishes, to numerical

precision, at t = 0. This problem admits the exact solution

u(x, t) = e−a(t−x−0.5)2 .

As part of this work it was found experimentally, in agreement with the conclusions

presented in [1, 53], that dleft ≤ 5 must be used in order to ensure numerical stability

where the physical boundary condition is applied. On the other hand, at the free right-side

boundary, it is possible to select dright = 12. This does not improve the overall order of the

scheme in this case, since the left-side boundary still contributes a lower-order error, but it

does offer some advantage, as will be shown below.

In order to study the convergence of the method, numerical solutions were evolved up

to time T = 2, at which point the exact solution vanishes to machine precision within the

computational domain. The time step ∆t was taken sufficiently small so as to allow the

error to be dominated by the ∆x contribution. Both the peak error (worst error at any

time-step) as well as the final error (at T = 2) are displayed in Figure 3.2. The peak

error is a better estimate of the overall numerical accuracy of the method, but the final

error is indicative of how well certain qualitative properties of the PDE are preserved, in

particular how reliably the numerical solution exits the domain. In this regards the choice
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Figure 3.1: Advecting Gaussian

of a higher-order matching polynomial at the right-side boundary clearly distinguishes itself

in Figure 3.2(b), even though the formal order of accuracy is not improved, as is seen in

Figure 3.2(a) (though the error does decrease slightly as well).

To determine the CFL condition numerically, the solver may be run for many different

discretizations in both space and time so that a consistent CFL relationship of the

µ =
∆t

∆x
≤ C (3.6)

is obtained, under which solution remains bounded for all time. In order to achieve greater

confidence in such a numerically determined Courant number C, randomized initial data

was used. This strategy takes advantage of the fact that time-stepping the solution is

equivalent to application of the power iteration scheme (for evaluation the largest eigenvalue

of a matrix, see [71]) to the linear time evolution operator. (It is not strictly necessary that

randomized data be used, but it allows for a greater degree of confidence to be achieved

with a small amount of computational effort. Since the initial conditions are random,

their inner product with any unstable eigenmodes is almost surely nontrivial, thus ensuring
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Figure 3.2: Spatial convergence of the 1d advection solver for various values of the order
(dleft, dright)

comprehensive testing of solution space with one, or a few, code runs.) If the solution,

then, remains comfortably bounded for a very large number (typically millions to hundreds

of millions) of time-steps, it can be inferred that the method is stable insofar as any practical

application is concerned. In Figure 3.3 the error as a function of time is shown for several

choices of µ. These few examples suggest C ≈ 1
7 , which has been tested extensively, for

many values of N , all run for millions of time-steps with random initial data.

In order to study convergence with respect to time, on the other hand, a spatially

periodic configuration is considered—since for such a configuration the accuracy the of FC

solver is particularly high, and, thus, the need for fine spatial meshes (which, in view of the

CFL constraint, would prevent consideration of the larger time-steps in a time-convergence

analysis) is minimized. For this convergence test the advection equation in the interval [0, 1]

was considered, with the initial condition

u(x, 0) = e−a(x−0.5)2

and with the periodic boundary conditions

u(n)(0, t) = u(n)(1, t), n = 0, 1. (3.7)

Remark 3.2.1. The periodic FC algorithms considered in this thesis enforce periodic bound-
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Figure 3.3: Maximum norm over time of the FC numerical solution of the advection equation
the for several values of the parameter µ = ∆t

∆x . For µ−1 = 7 the solution remains bounded
indefinitely.

ary conditions such as (3.7) implicitly, by extending the discrete mesh points xn = nh to

include a number df of additional points

{x−df , x−df+1, . . . , x0, . . . , xN−1, . . . , xN−1+df }

which, reaching past each one of the two boundary points, are also used as solution sampling

points. The additional “fringe” points (namely x−df , . . . , x−1 and xN , . . . , xN−1+df ) do not,

however, correspond to additional unknowns in the numerical system—instead, the function

values at the fringe points are prescribed to equal the function values at the corresponding

image points within the domain [0, 1); for example, u−df = uN−df . This is equivalently

described in block-matrix form: taking FM to be some FC-type operator (either differen-

tiation or filtering) over M points (as previously defined in Chapter 2), the corresponding
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periodic operator F̃M is defined by

F̃M =
(

0 IM 0
)
FM+2df


0 Idf

IM

Idf 0

 . (3.8)

In order to demonstrate the convergence over a large range of discretizations in time,

the spatial discretization is also refined, maintaining a fixed ratio µ = 1/8. Figure 3.4 shows

the resulting convergence using AB-3 and AB-4, where in both cases the error is clearly

dominated by the order of the time integration scheme.
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Figure 3.4: Temporal convergence of 1d advection solver

Remark 3.2.2. The application of the FC method to a periodic domain (which is clearly

unnecessary since the full Fourier collocation method could be utilized instead) is only

used, here and later in this thesis, to demonstrate the behavior of the FC method under

very controlled settings. It is worth pointing out, however, that the FC method in this

context does not take advantage of the [0, 1]-periodicity—since, indeed, it uses a periodicity

interval larger than 1.

3.2.2 Acoustics

This section presents results akin to those put forth in the previous section, but, this time,

for the full hyperbolic system (3.4) associated with the linear wave equation with zero
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Dirichlet boundary conditions

u(0, t) = u(1, t) = 0

and with initial conditions given by

u(x, 0) = e−a(x−0.5)2

v(x, 0) = −e−a(x−0.5)2 .

Note that these initial conditions specify a right-moving wave packet much like the one used

in the advection example of the previous section. In fact, by taking the periodic extension

G(x) =

∞∑
n=−∞

χ[0,1] (x+ 2n) e−a(x+2n−0.5)2 ,

where χ[0,1] denotes the characteristic function of the interval [0, 1], the exact solution for

all time can be expressed in closed form

u(x, t) = G(x− t)−G(x+ t− 1)

v(x, t) = G(x+ t− 1)−G(x− t).

Boundary conditions may be applied on any linear combination of u and v that contains

a component in the direction of the incoming characteristic derivative. The boundary

condition here is applied to u only, while the corresponding boundary values of v remain

free variables in the system. In order to ensure stability two steps were taken, namely 1) The

degree of the matching Gram polynomials were restricted at the physical boundaries, but

now at both ends of the domain, as well as for both unknowns; and 2) The exponential

filter (2.16) introduced in the previous chapter was used. This filter is applied twice at each

time-step: once as part of the numerical differentiation, and again, independently, to the

solution unknowns. The overall filtered explicit r-step time integration scheme with weights

wj can be expressed in the form

un+1 = Iσu
n + ∆t

r−1∑
j=0

wjDσu
n−j , (3.9)

where Dσ denotes the filtered FC derivative operator, and Iσ is the FC filtering operator (in
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the unfiltered Adams-Bashforth methods, this operator would simply be the identity). An

important observation is that, since the matrices Iσ and Dσ do not necessarily commute,

the traditional stability criterion (root condition) for the Adams-Bashforth methods does

not apply, at least not exactly. With this caveat, however, the root condition remains a

good indicator of stability, whose predictions can be once again verified via comprehensive

numerical studies.

Figure 3.5 demonstrates that, in absence of the exponential filter mentioned above,

spurious oscillations in the numerical solution occur. As shown in Figure 3.6, in contrast,
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Figure 3.5: Instability of the unfiltered FC wave-equation solver at two different points in
time. The problem was discretized using N = 54 points in space. At t = 1 the instability
is visible, as it first occurs, and by t = 1.5 it strongly dominates the true solution.

the filtered algorithm is stable provided a CFL condition is satisfied. The filter parameters

p = 8 and α = −8µ ln 10−2 (3.10)

are used here and elsewhere in this thesis—whenever the exponential filter is applied. This

is notably different from the typical usage of this filter as described in [38], since the coeffi-

cients do not numerically vanish for the highest frequency modes. On the other hand, this

selection is entirely sufficient to ensure stability for the solvers considered in this thesis, and

furthermore, it is a closer approximation of the identity operator. The resulting method

has Courant number roughly C ≈ 1
7 , as is demonstrated in Figure 3.6.

Detailed space and time convergence studies for the wave-equation system, similar to
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system form) for several values of the parameter µ = ∆t
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those presented in Section 3.2.1 for the advection equation, are presented here in Figure 3.7.

The present error curves replicate almost exactly those presented earlier for the advection

equation with matching polynomials of degrees dleft = dright = 5.

Remark 3.2.3. There is no need to independently test the stability of this method for

Neumann boundary conditions: such boundary conditions may be put forth equivalently as

a Dirichlet condition on the auxiliary unknown v. Since the two unknowns of the system

are interchangeable in all other respects, the stability for the Dirichlet problem immediately

implies stability for the Neumann problem.
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Figure 3.7: Convergence of the numerical solution of the wave equation in first-order system
form; cf. the corresponding graphs presented in Figures 3.2 and 3.4 for the advection
equation.

3.2.3 Dispersion

One of the greatest strengths of the FC methodology is the nearly dispersionless character

that results as the method is applied to problems that include some sort of hyperbolic

character and/or wave propagation. In order to quantify this characteristic of the FC

method, it is useful to consider, as in [1], numerical solutions of equation (3.3) in large

domains, in such a way that the propagation errors over long distances may be evaluated.

Using the domain [0, L] with L = 500 and, for simplicity, periodic boundary conditions (see

Remark 3.2.1), the evolution of the initial conditions

u(x, 0) = e−(x−10)2

is considered, for which the exact solution is given by

u(x, t) =

∞∑
n=−∞

χ[0,L] (x+ nL− t) e−(x+nL−t−10)2 .

To place the performance of the FC method for this experiment into an appropriate

context, its accuracy is compared to that resulting from an eighth-order centered differ-

ence scheme, the “spectral-like” Pade method of order four presented [48], as well as the

traditional Fourier collocation approach. For each of these spatial operators, the resulting
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semidiscrete problem is integrated in time using the AB-4 ODE solver for a sufficiently small

time-step that the error for the spatial discretization dominates the solution error. (The

value ∆t = ∆x/200 was used in all cases.) The resulting system was evolved up to the final

time T = 480, just before the solution reaches the right boundary—thus highlighting the

character of the FC method as it propagates waves within the interior of the computational

domain. (The boundary behavior of the FC method was demonstrated in previous sections.)

Figure 3.8 shows that, in this case, the convergence of the FC algorithm closely matches

that of Fourier collocation. It should be noted that this example does not capture the error

due to the polynomial approximation in the matching regions—this aspect, for which the

FC method also displays superior properties, will be considered in detail in Chapter 4.
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Figure 3.8: Convergence of the solution of the advection problem (3.3) resulting from use
of the eighth-order centered difference, fourth-order Pade-like implicit system, Fourier col-
location, and FC differentiation operators.

To examine the performance, demonstrated in Figure 3.8, of the various high-order

methods under consideration, Fourier analysis was applied to the semidiscrete problem

ut +Du = 0. (3.11)
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Putting aside at first the particular choice of spatial differentiation approximation D (either

that arising from the FC method, or from the other high-order methods considered in

Figure 3.8 or, indeed, from any spatial discretization method), a discrete initial condition

f(x) may be represented as a linear combination of the Fourier basis functions

ψk(x) = e2πikx/L (3.12)

of the form

f(x) =

N/2∑
k=−N/2

fkψk(x) (3.13)

where fk denote the Fourier coefficients. It is natural and convenient to examine the behav-

ior of each basis function independently, since this choice of basis diagonalizes any differ-

entiation operator with a translationally invariant kernel [73], such as the finite difference

or Fourier collocation schemes. Assuming initial conditions ψk(x), the exact solution of the

continuous problem is given ψk(x− t) = ψk(x)ψk(−t).

In the corresponding semidiscrete problem the continuous spatial derivative ∂
∂x is re-

placed by the discrete approximation D. Introducing the scaled coordinate yj = Nxj/L =

xj/∆x and scaled wave-number ωk = 2πk/N (so that ωk ∈ [−π, π] independently of the

discretization used), there holds

Dφk(yj) = iω′kφk(yj) (3.14)

where

φk(y) = eiωky, (3.15)

and where ω′k is the modified numerical wave-number of the operator. The function ω′ =

ω′(ω) for a given discrete operator is called the “dispersion relation” of the operator. The

time-dependent factor for the corresponding semidiscrete solutions is given by

φ′k(−t) = e−iω
′
kt/∆x. (3.16)

Since the FC operator is not translationally invariant, the basis (3.12) does not exactly

diagonalize the corresponding FC differentiation operator. In such a case equation (3.14)
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does not hold exactly, and the dispersion relation may instead be redefined, following [1],

by the expression

ω′k =
(Dφk, φk)

i(φk, φk)
. (3.17)
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Figure 3.9: Dispersion relation for various schemes, and decay of the Fourier coefficients of
the Gaussian-bump initial condition f(x) = e−(x−10)2

Historically, the dispersion error has been related to the departure of ω′ from ω, that

is, by the deviation of the graph ω′ = ω′(ω) from the ideal line ω′ = ω. In Figure 3.9(a)

the dispersion relations for the spatial differentiation operators under consideration are

compared, and, for reference, in Figure 3.9(b) the Fourier coefficients for N = 5000 points

are shown. It can be seen that the coefficients of f(x) vanish to machine precision for all

ω ≥ 1.25, restricting the solution to a range of frequencies seemingly well approximated

by all of the spatial operators under consideration. Consideration of Figure 3.8, however,

shows this not to be the case.

To fully explain this disagreement, closer inspection of the dispersion relation is required.

To do this it can be noted that, for each basis function ψk, the error in the approximate

solution is given by

|ψk(x)ψk(−t/∆x)− ψk(x)ψ′k(−t/∆x)| = |ψk(−t/∆x)− ψ′k(−t/∆x)|

= |e−itωk − e−iω′kt/∆x|

= |1− ei(ω′k−ωk)t/∆x|. (3.18)
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In other words, the approximate solution contains a phase error equal to

t

∆x
|ω′k − ωk|, (3.19)

large values of which imply that the overall solution is necessarily highly inaccurate. For the

example under consideration it is given t/∆x = 480/0.1 = 4800, and hence large errors in the

numerical solution may arise even when |ω′k−ωk| is small. In Figure 3.10, the error estimate

4800|ω′k − ωk| is displayed for the various methods under consideration, yielding, in each

case, the expected error in the final solution on a per-frequency basis. The results displayed

in this figure justify the superior performance of the FC method first observed in Figure 3.8,

in spite of the fact that, as noted earlier from consideration of Figure 3.9(a), the dispersion

relations for all four differentiation methods under consideration are indistinguishable for

values of ω ≤ 1.25, for which the exact solution has Fourier coefficients above the machine

precision level.
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Figure 3.10: Error estimate 4800|ω′k −ωk| for the model advection problem as a function of
ω
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Chapter 4

Segmentation and parallel
computation

This chapter describes modifications of the basic FC algorithms presented in Chapter 2

that enable implementation of the corresponding FC-based PDE solvers for arbitrary spa-

tial dimensions (see Chapters 3 and 5) in cutting edge high-performance parallel computing

infrastructures. As shown in this and subsequent chapters, the resulting algorithm is well

adapted for execution in specialized modern many-core processors such as GPUs and multi-

core CPU clusters, with high-quality parallel scalability and minimal impact on the excellent

numerical properties of the underlying numerical methods.

4.1 Thread multiplexing

In some cases it is desirable to configure a parallel computation in such a way that a com-

putational task is divided over a large number of threads—possibly in a number of threads

that outnumbers the number of available computing cores. In the latter case some or all

processors must execute more than one thread, thus giving rise to “thread multiplexing”.

Use of thread multiplexing with numbers of threads that far outnumber the numbers of

processors can lead to highly efficient load balancing during runtime provided special soft-

ware or hardware support is available to lessen the overhead associated with switching

between threads. In fact, in the GPU literature, the nomenclature “thread-multiplexing” is

almost exclusively reserved for such “many-thread-per-core” situations—which, in fact, are

particularly well suited for execution in GPU infrastructures.

Thread multiplexing is explicitly built into a number of modern concurrency-oriented
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languages, including the CUDA programming environment for GPUs as well as the CPU

languages Erlang [6], Scala [60], and Go [34]. Not only does multiplexing readily enable

dynamic load-balancing, but, for CUDA applications, it is in fact necessary, as discussed

below, in order to produce memory-efficient code.

Each SMP on a CUDA-capable device may multiplex over a set of executable threads

in order to hide the extremely long latency involved in global GPU memory access. Once

a threadblock has made such a memory request, it halts progress until the operation is

completed, or “blocks the threadblock”, and the SMP switches to a new ready threadblock

at a negligible cost. As long as a sufficient number of distinct tasks is available to the SMP,

this multiplexing strategy hides the long memory-access times (which in many cases could

otherwise dominate the computational cost) by “staggering” many parallel read/writes in

time. Effective hiding of memory-access times requires that the problem be subdivided into

a number of tasks far outnumbering the number of cores. In addition, the memory footprint

of each task must be small enough that many threads can be resident simultaneously within

the local memory of an SMP, in order to allow for efficient context switching from blocking

to ready threadblocks.

4.2 Line segmentation

The largest atomic unit of computation associated with the FC methodology presented

in Section 2.2 is the FFT (direct and inverse) along each line in the domain. While it is

possible to implement these transforms in parallel, the communication cost incurred in doing

so typically dominates the computational time. Thus parallel FFTs present a significant

problem: as larger and larger domains are considered, either the requisite communication

(if each FFT is parallelized) or the atomic subcomputations themselves (if separate FFTs

are evaluated in separate cores) grow in size without bound. Fortunately the size of the

FFTs required by the FC method grows sublinearly, as N1/d, with the overall number N of

unknowns, for a given problem in d-dimensional space. But, if left unchecked, this growth

still hinders the GPU performance—as the per-thread memory footprint increases to a level

for which a very small number of threads can remain resident per core, and efficient thread

multiplexing becomes impossible.

With only slight modification, however, the FC method may be executed in a way that
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only requires O(1) storage and computational work per atomic task. In fact, as a by-

product of this modification, the overall computational cost required by the FC algorithm

is reduced to O(N)—eliminating the logarithmic component arising from the FFT. The

modified approach is, in fact, straightforward: the FC method need not be applied to an

entire line of points at once. Each line may instead be split into smaller segments consisting

of a number ns of discretization points each. The more compact FC operator, now of size

ns, is applied independently to each segment.

Figure 4.1: A line containing N = 20 points, split into three segments with ns = 8 points
each. Here there are din = 2 points per overlap region (colored in blue), resulting in 7, 6,
and 7 interior points for the three segments, from left to right.

Instead of using interdomain boundary conditions, the approach presented here ensures

consistency of the PDE solution across pairs of adjacent segments by selecting segment-

placements for which any two neighboring segments on a given line overlap and share no

less than a number din of “fringe” points. Thus, Gram polynomials are constructed using

different numbers of matching points on the left and right matching subintervals, see Re-

mark 2.2.1, with orders (dleft, dright) = (d0, din) for the left-most segment, (dleft, dright) =

(din, din) for internal segments, and (dleft, dright) = (din, d0) for rightmost segments. Through-

out this work the values d0 = 5 and din = 12 were used. Clearly, under this setup two values

of the solution are obtained, for any time-step, at points within overlap regions (one from



43

the computation on the segment extending to the left, and another from the segment ex-

tending to the right). This ambiguity is resolved by selecting the result from the segment

for which the evaluation point is most-internal. If there are an odd number of points in the

overlap, the rightmost value is assumed for the (equallydistant) central point.

Remark 4.2.1. The segmentation method described above in this section is a direct gener-

alization of the one-dimensional FC solver for periodic problems presented in Section 3.1.1.

A useful feature in this context is that, for interior overlaps where the matching polyno-

mials of the FC(Gram) method are not applied at physical boundaries, Gram polynomials

of very high degree can be used while retaining stability. In line with the observations made

in [1], the value din = 12 provides very high order of accuracy on the interior while still

allowing for a stable overall numerical scheme.

For simplicity, convenience and efficiency in GPU implementation, the segmentation

structure is constructed in such a way that all the segments have the same size. When

a line does not evenly divide into segments of length ns, as is frequently the case, this

constraint may be accommodated by simply increasing some of the intermediate segment

overlaps. Furthermore, the GPU implementation takes advantage of this structure by re-

placing the FFT-based sequence of operations in the FC(Gram) algorithm with a single,

dense matrix-vector product (see Remark 4.2.2 below). Matrices corresponding to each type

of FC(Gram) operator (differentiation, filtering) are precomputed with respect to the pre-

scribed segment size ns. The requirement that segments have a fixed size, which introduces

only a small amount of redundant computation, eliminates special cases in the evaluation of

the differential operators, and it further improves parallelism in the GPU implementation

by guaranteeing that all of the resulting matrix-vector products have identical dimensions.

Note that the order of accuracy of the spatial operator is unaffected—using the same

number of matching points d = 5 at all physical boundaries, the only additional approxi-

mation introduced by segmentation of the domain is accurate to twelfth order.

Remark 4.2.2. If ns is sufficiently small, it is preferable to explicitly construct a matrix

form of the FC operator, which may then be applied in O(n2
s) operations per segment,

and thus O(Nns) operations overall per time-step. This has been found to yield superior

performance, as compared to the FFT-based approach, for parameter values ns ≤ 40,

though in practice the break-even value of ns depends on the hardware used, as well as the
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availability of high-performance, small-sized FFT implementations. Special care must be

taken in constructing the matrix form, however, or else some numerical precision is lost.

In particular, subtractive cancellation effects may be avoided by precomputing the matrix

using higher-precision arithmetic—an inexpensive initialization step requiring only O(n2
s)

operations.

4.2.1 Stability

When computed via a segmented application of FC(Gram), the filtering operator Sσ is

no longer defined continuously over the entire domain. It therefore becomes necessary to

consider the action of the operator Sσ on the din points shared by two neighboring segments.

Even though this filter serves to dampen higher-frequency oscillations, the Fourier series

expansions are necessarily different between the two segments, and therefore the filtered

unknown uσ inside of the overlap may disagree when computed from the right or from

the left. Since half of the point values of the solution in the overlap are computed from

respective Fourier series in the two adjoining segments, the filtering procedure typically

introduces a discontinuity within each segment of a size comparable with the numerical

error of the solution. In light of the comparatively mild filter used in the FC solvers

considered in this thesis, see Chapter 3, this discontinuity is very small, and the methods

resulting from the segmented FC method retain numerical stability. For the filter parameter

value α = − ln 10−16 used in [1], on the other hand, a larger mismatch caused by the filter

between solutions in neighboring segments occurs and, as has been observed with the solvers

presented in this work, the method can become unstable. Thus, the mild filter parameters

α = −8µ ln 10−2 are used for all of the numerical results presented in this thesis.

4.2.2 Dispersion

The introduction of segmentation could conceivably have a negative impact on the excellent

numerical dispersion properties of the FC method. Indeed, a traveling wave solution crosses

Gram polynomial matching regions O(N1/3) times in three-dimensional space (albeit with

a small constant of proportionality) as opposed to the O(1) crossings inherent in the orig-

inal unsegmented algorithm. To address this concern, studies of dispersion error similar

to those presented in Section 3.2.3 are presented here but using the segmented operator

instead, including several examples of segmented and unsegmented FC spatial operators
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Figure 4.2: Expanded plot of dispersion relations, now including the behavior of segmented
FC, for ns equal to 16, 32, and 128. A cursory visual inspection suggests that the rela-
tion for ns = 32 is comparable to that of the Pade scheme. In fact, the convergence of
the corresponding FC solution is significantly faster than that of the corresponding Pade
solution.

corresponding to values of ns equal to 16, 32, and 128. Figure 4.2 shows an expanded

set of numerical dispersion relations (comparable to Figure 3.9) which include results for

the segmented FC variants. A cursory inspection might suggest that the ns = 32 scheme

possesses dispersion characteristics similar to those associated with the spectral-like Pade

scheme [48], and that the ns = 16 segmented scheme is significantly more dispersive. As

it happens, however, the graphical deviations from the exact line ω′ = ω are insufficient to

fully judge the dispersions produced by the algorithm over long distances (cf. Section 3.2.3

for a comparable discussion concerning the unsegmented algorithm). A discussion of the

true dispersion character of the segmented FC algorithm is presented in what follows.

An error estimate analogous to the one shown in Figure 3.10, that characterizes the

dispersion character of the segmented FC method more precisely than Figure 4.2, is given

by equation (3.19) and displayed in Figure 4.3. This estimate demonstrates that all three

of the segmented operators considered above (ns = 16, 32 and 128) retain most of the
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dispersionless character of the unsegmented FC method. While some precision is certainly

lost relative to the unsegmented FC scheme, all three of the segmented approaches consid-

ered here achieve errors of 1 · 10−4 to 1 · 10−5 at discretizations of approximately 10 points

per wavelength ((ω ≈ 0.5) for which the spectral-like Pade method and the eighth-order

centered difference algorithm produce an accuracy of no more than one digit.
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Figure 4.3: Error estimate 4800|ω′k − ωk| for the model advection problem as a function of
ω, including behavior of the segmented FC methods for values of ns equal to 16, 32, and
128

4.2.3 Relative performance

As mentioned in the previous section, the segmented FC method is somewhat less accurate

than its unsegmented counterpart, and the question thus arises as to what is the cost that

would be incurred, say, in a single processor, to produce by means of segmented FC method

the accuracy resulting from the unsegmented approach.

To address this issue it may be noted, for example, that numerical experiments consis-

tently show that the segmented approach with ns = 32 requires 1.4 times as many points

to achieve the same numerical error as the unsegmented approach (cf. Figure 4.3). In

three dimensions, the denser sampling required for the segmented algorithm to reach an



47

error comparable to that resulting from the unsegmented method would lead to an overall

increase in computing time by a factor of 1.44 ≈ 3.84. However, this cost factor is mitigated

by the fact that the segmented operator can be evaluated more efficiently. Indeed, the un-

segmented FC operator requires roughly 0.5 CPU seconds, in a modern CPU, to evaluate a

numerical derivative with respect to a single variable at one million points in two- and three-

dimensional space (1000× 1000 and 100× 100× 100 points in two- and three-dimensional

space, respectively) [18]. The segmented approach, in turn, can be applied to the same

problem in shorter computing time: approximately 0.16 seconds per million unknowns on

the same hardware. Taking both factors into account, the segmented approach thus re-

quires an increased computing time by a factor of 1.44 × 0.16
0.5 ≈ 1.23 over the unsegmented

algorithm, to produce the same accuracy. At such a low overhead, the segmented approach

enables a sufficiently fine-grained level of parallelism to allow for efficient execution on GPU

infrastructures.
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Chapter 5

Multipatch scattering solver

The FC numerical solvers presented in Chapters 3 and 4 can be generalized to any number

of spatial dimensions. However, in contrast with the one-dimensional case, computational

boundaries in higher dimensions can give rise to significant complexity and must be treated

adequately. This chapter 1) outlines the standard form of hyperbolic problems in multiple

spatial dimensions, 2) presents an extension of the FC operators to the multidimensional

context which allows for the use of curvilinear coordinates, and 3) presents an overset

grid strategy which can be used to decompose the domain into a number of overlapping,

possibly curved patches, along with a procedure for enforcement continuity and smoothness

of solutions across the artificial boundaries.

5.1 Hyperbolic problems in multiple spatial dimensions

The present chapter introduces extensions of the one-dimensional PDE solvers put forth in

Chapter 3 to general hyperbolic systems of the form

ut +
d∑
j=1

Aj(x)uxj = f(x, t) (5.1)

in d-dimensional spatial domains Ω (d > 1). Once again, the Cauchy problem is locally

uniquely solvable given initial conditions on a noncharacteristic surface. A necessary and

sufficient condition for hyperbolicity for equation (5.1) is the diagonalizability of any (non-

trivial) linear combination of the matrices Aj(x), for all x [28].

For example, the traditional second-order scalar form of the linear acoustic wave equa-
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tion

utt + c2∇2u = 0 (5.2)

can easily be expressed as a hyperbolic system. Indeed, following the corresponding cal-

culation for the one-dimensional equation (3.4), here a d-component vector quantity v is

introduced along with the system

ut = −c∇ · v

vt = −c∇u,
(5.3)

which is clearly equivalent to equation (5.2). Taking d = 3 as an example, and defining the

4-component vector unknown

u =


u

v1

v2

v3

 , (5.4)

the system may be written in the form

ut +A1
∂u

∂x1
+A2

∂u

∂x2
+A3

∂u

∂x3
= 0 (5.5)

where the matrices Aj are given by

A1 =


0 −c 0 0

−c 0 0 0

0 0 0 0

0 0 0 0

 A2 =


0 0 −c 0

0 0 0 0

−c 0 0 0

0 0 0 0

 A1 =


0 0 0 −c

0 0 0 0

0 0 0 0

−c 0 0 0

 (5.6)

and therefore the system is hyperbolic (as anticipated), and, in fact, symmetric-hyperbolic,

that is, the matrices Aj are real symmetric for all j.

5.2 Generalized numerical operators

To extend the fine-grained parallel-scalable FC-type operators described in Chapter 4 to

the present d-dimensional context, a numerical operator D1 is introduced, which applies
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the corresponding FC derivative operator along each line parallel to the first spatial dimen-

sion. Analogous operators Dj are defined, for 2 ≤ j ≤ d. These operators compute spatial

derivatives with respect to the local parameterization in each patch, however, so if curvi-

linear coordinates are used, the chain rule must be applied in order to construct numerical

approximations of the true spatial derivatives. As an example with d = 3, a numerical

approximation of the gradient of a scalar function u within a given patch takes the form

∇u ≈ J−1


D1

D2

D3

u (5.7)

and, similarly, the divergence of a vector unknown v may be computed by

∇ · v ≈
d∑
j=1

eTj J
−1


D1

D2

D3

vj (5.8)

where ej is the j-th standard basis vector, and J−1 is the inverse Jacobian matrix corre-

sponding to the local coordinate system.

For some particular curvilinear coordinates (including those arising from use of spherical

coordinates), it is possible to calculate ∇ · v in fewer than d2 applications of an FC-type

operator over lines in the domain, since some of the components of the vectors eTj J
−1 may be

zero. In the interest of generality, however, the implementation presented here ignores such

special cases, instead supporting only the two extremes—an arbitrary change of variables,

for which no assumptions beyond smoothness are made, and no change of variables, where

J−1 = I and, hence, only d applications of such an FC-type operator are required.

Finally, it is necessary to describe the filtering algorithm in the present setting. To do

this, let S1, . . . , Sd be the one dimensional filtering operators in the directions x1, . . . , xd,

respectively. Note that, since each parameter patch is discretized as a cube within its own

coordinates, the subdomain is separable and the smoothing operators all commute with one

another. Having established that the order of filtering operations is irrelevant, smoothing

over each patch may be achieved by a simple composition of the individual smoothing
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operators,

S =
d∏
j=1

Sj ≈ I (5.9)

Certain special cases will be introduced in Section 5.5 which do not preserve this separa-

bility property, resulting in filtering operations which no longer commute. Experimentally,

however, this choice of a patch-wise spatial filter remains sufficient to stabilize the FC solver

without accuracy deterioration.

5.3 Domain decomposition

For most computational domains of interest, a single, rectangular Cartesian patch is insuf-

ficient to capture both the domain and a possibly complex boundary. By taking the overset

grid approach (see [12] and references therein), a given domain can be decomposed into a

number of overlapping patches, a local coordinate transform may be chosen so that each

patch is logically a simple domain (such as a cube) within its own parameter space, but

conforms to an arbitrary (smooth) boundary or intervening space as needed.

As long as the scattering boundary itself is smooth, it is always possible to decompose a

tubular neighborhood thereof in this fashion. These conforming patches are typically then

embedded into a larger Cartesian patch, as demonstrated for a simple circular boundary

in Figure 5.1. It should be noted that boundaries with edges, corners, or relatively sharp

curvatures pose some difficulty, since sufficiently fine discretizations of the neighborhood of

these features may have unfavorable consequences with respect to the global CFL condition.

A resolution for this issue, based on use of temporal subcycling, is discussed in Section 8.1.3.

5.4 Patch interpolation

The setting outlined in Section 5.3 obviates the need to use domain-cutting operations that

are often prohibitively complex. A significant difficulty that arises in this context, however,

concerns enforcement of a sufficient degree of continuity and smoothness in the patch-

overlap regions. For the one-dimensional segmented operator introduced in Chapter 4, it is

convenient that the mesh points for adjacent segments line up exactly (which they do, as

they are defined as overlapping, contiguous subsets of the same base mesh). In the present

patch-interpolation context, in contrast, the conditions are not quite so favorable—but a
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similar approach can be used. For some integer parameter p, the subset of mesh points in a

given patch that lie within a distance (p−1)∆x (measured in the local coordinate system) of

a patch boundary that does not coincide with a true physical boundary (or computational

boundary of the overall domain) are called “fringe” points. These fringe points do not

correspond to true degrees of freedom in the solver, but are implicitly defined by a value

interpolated from the patch for which that point is most internal. The overlaps between the

patches is chosen to be large enough that each fringe point in a given patch is “sufficiently

internal” to some other patch, that is there exists another patch, containing that point, but

for which said point does not lie in its fringe region.

At each time-step, after the solution in each patch has been evolved independently of

the evolution in other patches, the unknown at each fringe point is re-assigned by interpo-

lating from an appropriate neighboring patch. These operations are performed by means

of polynomial interpolation of a certain order r, where the order is chosen to match the

order of the boundary matching Gram polynomials, and, thus, the overall spatial order of

the solver. A multidimensional version of Neville’s algorithm is employed for this task. In

addition, a careful choice of interpolation domain is made in order to allow as many fringe

points as possible to share the same set of (r+ 1)d sample mesh points. This is most easily

accomplished by dividing the patches a priori into interpolation domains of r intervals to a

side, and then simply grouping target points by interpolation domain. This approach has

been found to be especially useful in the GPU implementation of this method. Even though

the number of floating point operations is naturally greater (by roughly a factor of r) than

it would be if precomputed weights were used for interpolation, as is done in [12], the mem-

ory overhead is reduced quite significantly, increasingly so as the interpolating polynomial

degree r is increased. Across the various experiments within this work, memory overhead

has been reduced typically by a factor of 50 using this optimization, as compared to a naive

implementation.

5.5 Complex interfaces

The overlapping patch methodology presented thus far can be further extended to support

hole cutting—so that not every patch needs to be discretized as the entirety of a cube within

its respective parameter space.
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Due to the nature of the FC operators which act only along lines in parameter space, the

validity of the remaining mesh (once arbitrary holes have been cut) can be qualified by the

following: each point that remains on the computational mesh must, along each cardinal

direction in the local parameter space, be a member of a sequence of ns contiguous mesh

points corresponding to a computational segment. Any convex hole which is sufficiently

interior (by ns points), for example, satisfies this criterion trivially. The hole cut need not

even be smooth, and in most cases where this condition would be violated, the hole need

only be enlarged slightly in order to accommodate the condition.

The concept of fringe region must also be extended to include a sufficient layer of points

around any cut holes. The same concept used previously to define fringe points—that is, a

fringe point in a patch is any discretization point in that patch within a distance equivalent

to r discretization points of the patch boundary—similarly now holds for cut holes.

To illustrate the hole-cutting/overlapping-patch methodology consider the following two-

dimensional example. Let the PDE domain Ω be given by

Ω = {x | ‖x‖∞ ≤ 1 and ‖x‖2 ≥ 0.26} (5.10)

which corresponds to a square of side 2 with a circular hole of radius 0.26, both centered at

the origin. This may be decomposed into overlapping patches Ω1 . . .Ω5,

Ω =
5⋃
j=1

Ωj , (5.11)

as described in what follows.

The patch Ω1 is given by Ω1 = {x | ‖x‖∞ ≤ 1 and ‖x‖2 ≥ 0.4} with a Cartesian mesh.

The patch Ω1 resembles Ω, but its hole is somewhat larger—to ensure that a neighborhood

of the interior boundary ‖x‖2 = 0.26 is excluded. The patches Ω2 through Ω5, in turn, are

polar coordinate domains which cover a neighborhood of the interior physical boundary;

they are given by

Ωj =

{
(r cos θ, r sin θ) | r ∈ [0.26, 0.53] and θ ∈

[
−π
3
,
π

3

]
+

(j − 1)π

2

}
, j = 1 . . . 4.

(5.12)

Figure 5.1(a) displays the resulting overlapping-patch decomposition together with a
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(a) Five-patch parameterization (b) Detailed view, fringe points marked by small circles

Figure 5.1: Sample discretization of a 2d box domain containing a circular internal boundary

discretization of the corresponding patches for which the largest grid spacing on the polar

patches matches the uniform spacing on the Cartesian patch, and such that the radial spac-

ing and the smallest angular spacing on the polar patches coincide. Finally, in Figure 5.1(b),

a set of fringe points (arising from the fringe parameter r = 1, which, for improved visibil-

ity, is taken much smaller than used in practice) are shown in closer detail for three of the

patches.
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Part III

Numerical boundary conditions for

unbounded domains
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Chapter 6

Kirchhoff’s integral formula

Kirchhoff’s integral formula [7] provides an analytic interpretation of Huygens’s principle

for wave motion in three dimensions. To introduce this formula, following the conventions

of [7], the retarded value [u] of a function u(x, t) of position and time is used, where for any

point y in space, and letting r = ‖x− y‖2, [u] is defined by the expression

[u] = u(y, t− r

c
). (6.1)

In other words, for fixed (x, t) values, [u](y) gives the value taken by the field u at the

position y at a time r/c before the “present” time t.

Equipped with this notation, Kirchhoff’s integral formula states that, for the domain

exterior to any closed surface S that encloses all sources and inhomogeneities, a radiating

solution to the wave equation may be expressed in the form

u(x, t) =
1

4π

∫
S

{
[u]

∂

∂n

(
1

r

)
− 1

cr

∂r

∂n

[
∂u

∂t

]
− 1

r

[
∂u

∂n

]}
ds(y) (6.2)

where ∂
∂n is the derivative in the direction of the outward-facing normal. For x outside

of S this integral explicitly yields the solution u at the point (x, t) strictly in terms of its

causal dependencies; for x inside S, in turn, the Kirchhoff integral vanishes identically.

Clearly, this integral expression may be used to evaluate the solution u at the boundary of

a finite computational domain and, as shown in Chapter 7, a corresponding fast high-order

convergent algorithm for truncation of the computational domain can thus be devised (but

see Figure 6.2 and associated text).

In order to fully take advantage of this integral representation of the solution at the
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Figure 6.1: Illustration of a computational domain Ω enclosing an ellipsoidal scattering
boundary Γ, along with the artificial boundary B, on which the radiating solution may be
computed via an integral over the intermediate Kirchhoff surface S

boundary, two important issues must be considered: 1) It must be determined how such

boundary conditions may be used in such a way that the resulting algorithm is stable; and

2) An accurate and efficient algorithm must be used for the numerical evaluation of the

Kirchhoff integrals: a naive approach would lead to an expensive methodology, for which

the evaluation of the boundary conditions would dominate the overall computational costs

in terms of both computing time and memory.

This chapter investigates problem 1) in a one-dimensional context, and it introduces a

boundary condition at the computational boundary for which stability can be expected in

the overall three-dimensional time-domain solver. A discussion in Chapter 7 then addresses

problem 2) by evaluation of the necessary integrals via an excursion into the frequency

domain—without the accuracy losses that typically arise from the Gibbs phenomenon.

6.1 One-dimensional interpretation

Following [42], a boundary condition similar to equation (6.2), which is useful in the de-

termination of computational boundary conditions leading to stability, is established in

what follows for the case of the one-dimensional wave equation in the semi-infinite do-

main [0,∞). For definiteness, zero initial conditions are prescribed in conjunction with the
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“physical boundary condition”

u(0, t) = f(t), t ≥ 0; (6.3)

for consistency it is required that f(t) = 0 for t ≤ 0.

The combination of equation (3.4) with the initial and boundary conditions introduced

above admits only the right-moving solution

u(x, t) =


f(t− x) if t− x ≥ 0

0 otherwise.

(6.4)

The solution of this problem via numerical methods requires truncation of the PDE domain

to some bounded interval [0, xB], and, thus, an additional numerical boundary condition at

x = xB—which, generically, may be expressed in the form

Lu(xB, t) = g(t) (6.5)

for some operator L and some function g(t).

The evaluation of the expression (6.5) requires knowledge of u (and possibly its deriva-

tives) at the point x = xB. Such values can be obtained by means of the Kirchhoff for-

mula, the one-dimensional version of which is particularly simple: using a “Kirchhoff point”

xS ∈ (0, xB) (that, substituting for the Kirchhoff surface S, separates xB from all sources)

the Kirchhoff formula takes the form of the delayed potential

u(xB, t) = u(xS , t−
xB − xS

c
). (6.6)

This expression could in principle be used directly as a computational boundary condition

(thus taking L = I, taking xS to coincide with a mesh point, and selecting the time-step ∆t

in such a way that it evenly divides ∆x/c). With such a computational boundary condition,

the boundary value at xB coincides with the value of the numerical solution at xS and at a

certain number of time-steps prior to the present time t.

To explore the properties of these computational boundary conditions, the one-dimensional

FC solver introduced in Chapter 3 is used in the interval [0, xB], with xB = 1; for definite-
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ness a number N = 128 of discretization points is used in the computational domain [0, 1].

A “Kirchhoff point” is then placed at xS = xB − ndiff∆x, for some integer parameter ndiff,

and a time-step of ∆t = ∆x/16 is used. This ensures that the boundary data depends

explicitly on data at a discretization point from a discrete, integer number of time-steps

prior to the current time t.

Unfortunately, the use of the boundary condition in this form does not give rise to a sta-

ble numerical scheme: Figure 6.2 demonstrates the high-frequency oscillations that develop

in the corresponding numerical solution. This is in agreement with the behavior observed

in [32, 42]. In [32] it is suggested that a dissipative interior scheme can be used to allevi-

ate this difficulty. In order to preserve the high-order convergence and near-dispersionless

character of the FC solvers, however, a different approach, following [42] and based on

consideration of the Sommerfeld radiation condition, is taken.
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Figure 6.2: The Kirchhoff-like boundary condition applied in Dirichlet form results in a
long-time instability at the boundary x = xB.

In the present one-dimensional context, Sommerfeld’s radiation condition reads

(
1

c

∂

∂t
+

∂

∂x

)
u|x=xB = 0. (6.7)
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Rather than apply this directly at the boundary (which would have limited use when gen-

eralized to problems in multiple spatial dimensions), equation (6.7) can be used as the basis

for a boundary operator L. Taking some linear combination of a differential operator of

this form with a Dirichlet condition results in

Lα = α+
1

c

∂

∂t
+

∂

∂x
, (6.8)

with respect to the parameter α, which must be nonzero if a Neumann boundary condition

is to applied at x = 0—otherwise the solution is not unique, as any constant on the interior

satisfies both the wave equation and the resulting boundary condition.

In order to apply the boundary operator Lαu = g to the one-dimensional FC solver, the

boundary equation (6.5) may be expanded and rearranged to yield

ut(xB, t) = c

{
g(t)− αu(xB, t)−

∂u

∂x
(xB, t)

}
(6.9)

where

g(t) = Lαu(xS , t−
xB − xS

c
). (6.10)

Rather than project the boundary discretization points to some Dirichlet boundary value,

equation (6.9) yields an equation for the time derivative at the boundary. This boundary

equation is then integrated using the same time integration scheme as the rest of the solver.

The unstable solution displayed in Figure 6.2 is stabilized with this Sommerfeld-type

boundary operator if, for ndiff > 2, a system of overdetermined matching Gram polynomials

is used—the same d = 5 matching points are used near each boundary, but only the first four

basis polynomials are extended to create the continuation. This results in a reduction of the

spatial accuracy by precisely one order. In addition, the range of values of α that gives rise

to stability, which are summarized in Table 6.1, is slightly narrower than the corresponding

range observed in [42], but the approach presented here still possesses a significantly higher

order of accuracy (fourth as opposed to second order, and full spectral accuracy in the

domain interior).

More importantly, this complication does not arise in the context of three-dimensional

solvers, for which no reduction of order or over-determination of the matching polynomi-

als is required, as is demonstrated by the examples in Chapter 9. The generalization of
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ndiff Stable range for α

1 [−0.05, 1.75]

4 [−0.05, 1.5]

16 [−0.05, 1]

Table 6.1: Range of values of α leading to stability in the FC solver for the 1d wave equation
in first-order system form

equation (6.8) suggested in [42] to an arbitrary number of spatial dimensions is

Lα = α(x) +
1

c

∂

∂t
+ d(x) · ∇, (6.11)

where the vector d(x) is taken as the outward-facing unit normal on the surface B at the

point x, and where the scalar field α(x) given by

α(x) =
d(x) · x
‖x‖22

. (6.12)

(But see also Section 9.3: a different choice of d(x) is found to give rise to a more favorable

CFL condition in the context of the FC solver in cases in which the computational boundary

contains corner points.)



62

Chapter 7

FC-ES: Equivalent source
algorithm for numerical boundary
conditions

For the fully three-dimensional wave equation, Kirchhoff’s integral formula (6.2) depends

on values of the solution u over the surface S for a continuous interval of time. In order

to use this formula to evaluate computational boundary conditions, the Kirchhoff integral

expression must be computed accurately and efficiently for each point on the boundary

surface B. A direct evaluation of the necessary values of the Kirchhoff integral would

be exceedingly expensive—as it would require integration over O(N2/3) source points for

each one of O(N2/3) observation points, resulting in an overall computational complexity

of O(N4/3) for the boundary condition algorithm—which would exceed the computational

cost of the interior solver, and thus would dominate the total computing time.

In order to avoid the excessive costs inherent in a direct evaluation of Kirchhoff integrals,

this chapter introduces a transformation of the time-domain integral (6.2) to the frequency-

domain, using the methods of Chapter 2, without the accuracy losses that are typically

associated with the Gibbs phenomenon. In addition this chapter provides a fast algorithm,

based on the equivalent source method [16], for evaluation of the frequency-domain integrals

arising from the Kirchhoff formula, similar to the approach first described in [42]. Special

consideration is given to parallel implementation and algorithmic performance under single

precision arithmetic, so as to allow for fast and accurate execution on GPUs.
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7.1 Expression of the Kirchhoff integral in the frequency do-

main via Fourier continuation

The evaluation of the three-dimensional Kirchhoff integral formula, at some time t0, requires

knowledge of the solution u(x, t) for x ∈ S over some finite interval in time. In detail,

defining Rmin as the shortest distance between points in S and points in B,

Rmin = inf
x∈S
y∈B

‖x− y‖2, (7.1)

and, similarly, Rmax as the longest distance between points in S and points in B,

Rmax = sup
x∈S
y∈B

‖x− y‖2, (7.2)

the boundary condition on B at time t0 depends on past values of the solution on the surface

S over the temporal interval [
t0 −

Rmax

c
, t0 −

Rmin

c

]
. (7.3)

Therefore, to make use of equation (6.2), a history of values on the surface S extending

Rmax
c into the past is required. Moreover, since each boundary point on B requires integra-

tion over the intersection of S with a different past-light cone, a direct implementation of

equation (6.2) would require interpolation of the (discrete) time histories to arbitrary times

in the time interval (7.3) (as is done in [32]). Finally, with O(N2/3) discretization points

on the surfaces S and B, naive integration would require a costly O(N4/3) operations, and

quickly dominate the computational effort of any interior solver—which is in fact linear

O(N) for the FC method presented in this work.

These difficulties are alleviated by re-expressing equation (6.2) in terms of frequency-

domain integrals, as indicated in what follows. Using the previously introduced Fourier

continuation method, a time-periodic FC function ũ is constructed which agrees with the

original function u in the time interval [t0− Rmax
c , t0− Rmax

c + T0] for a certain duration T0,

and which extends it smoothly for an additional time interval Tc, resulting in a periodic

function with period T = T0 + Tc.

Provided T0 >
Rmax−Rmin

c is sufficiently large, ũ agrees with u in the interval (7.3), and
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ũ can therefore be used instead of u in the Kirchhoff integral formula for t = t0. More

precisely, if ũ = u for the interval [t0− Rmax
c , t0− Rmax

c +T0], then the Kirchhoff integral of ũ

agrees with that of u on the boundary B for times t ∈ [t0, t0+T0−Rmax−Rmin
c ]. This interval is

nonempty as long as the lower bound (stated above) on T0 is satisfied. For practical usage

in explicit time-marching methods, the evaluation of the numerical boundary condition

must depend only on the values of the interior solution already computed, corresponding

to those at present or past time-steps—consequently, the choice T0 = Rmax
c results in the

largest possible interval in time for which the periodically continued ũ may be used for

the evaluation of the Kirchhoff-based computational boundary conditions. This selection of

T0 is also the optimal choice with respect to efficiency. This boundary expansion has cost

proportional to T0, and thus has a relative computational efficiency (again with respect to

T0) determined by the relative rate with which it must be recomputed, quantified by

min
{
Rmin
c , T0 − Rmax−Rmin

c

}
T0

, (7.4)

which is clearly maximized for T0 = Rmax
c . This process may be repeated over shifted

intervals in time, offset by increments of Rmin
c resulting in times tn = nRmin

c , at each instance

matching ũ to u on the surface S over the time-interval [tn − Rmax
c , tn − Rmax

c + T0], and

remaining valid for the boundary integral at times t ∈ [tn, tn + Rmin
c ].

Equipped with the time-periodic approximation ũ, which has been shown to be inter-

changeable with u within the Kirchhoff representation for t ∈ [tn, tn + Rmin
c ], a Fourier

series expansion of the integral formula (6.2) is now derived—by producing corresponding

expansions for each one of the two components us and ud defined by

u = us + ud

us = − 1

4π

∫
S

1

r

[
∂ũ

∂n

]
ds

ud =
1

4π

∫
S

[ũ]
∂

∂n

(
1

r

)
− 1

cr

∂r

∂n

[
∂ũ

∂t

]
ds.

Expanding us(x, t) in a Fourier series

us(x, t) =

∞∑
k=−∞

us,k(x) e2πikt/T (7.5)
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over the period [0, T ] followed by interchange of time and space integration yields

us,k =
1

4πT

∫ T

0
e−2πik t

T

∫
S

1

r

[
∂ũ

∂n

]
dsdt

=
1

4πT

∫
S

1

r

∫ T

0
e−2πik t

T

[
∂ũ

∂n

]
dtds

=

∫
S

eikr/c

4πr
· 1

T

∫ T

0
e−2πik t

T
∂ũ

∂n
dtds

=

∫
S
G2πk/c

∂ũk
∂n

ds, (7.6)

where ũk are the Fourier coefficients of the Fourier continuation function ũ, and where

G2πk/c is the free-space Green’s function with wave-number ν = 2πk/c:

Gν =
eiνr

4πr
. (7.7)

The integral ud may be expanded in a similar fashion, yielding the double layer integral

ud,k =

∫
S

∂G2πk/c

∂n
ũk,dds (7.8)

whose kernel equals the normal derivative of the Green’s function (7.7). (The x, y, and z

derivatives needed for the evaluation of ∂ũ
∂n are computed via the FC method every time-

step in the solver framework presented here.) The integrals (7.6) and (7.8) are computed,

then, in the frequency domain, followed by an application of the inverse FFT to recover

the desired time-series values on the boundary B. It is worthwhile to note that, since the

function ũ is both smooth and periodic, the corresponding Fourier series representation

converges very quickly, and the function ũ can be approximated accurately using only a

comparatively small number of Fourier modes.

The “detour” over the Fourier domain facilitated by the Fourier continuation method

enables use of existing fast algorithms for evaluation of integrals of the form (7.6) and (7.8).

As first demonstrated by [42], the equivalent source methodology [16] is particularly well-

suited to this setting, allowing for the boundary expansions to be computed in sublinear

time, with respect to the volumetric discretization of unknowns on the interior, as detailed

in the following section.

It is worthwhile to note that, as a byproduct of the frequency domain formulation
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introduced in this section, the need for interpolation in time mentioned in the paragraph

following equation (7.3) is eliminated.

7.2 Acceleration of frequency-domain integrals

Given a suitable choice of integration nodes xj and weights wj (in the implementation

considered in this thesis the nodes xj correspond to FC mesh-points that lie on the Kirchhoff

surface and the corresponding wj are high-order Newton-Cotes weights, see Section 9.3),

the integrals (7.6) and (7.8) are numerically evaluated by way of a discrete summation of

the form

ψ(x) =
∑
j

wj

{
∂ũk(xj)

∂n(xj)
G2πk/c(xj − x) + ũk(xj)

∂G2πk/c(xj − x)

∂n(xj)

}
. (7.9)

Fast evaluation of these nonsingular integrals (sums) is achieved by means of a generalization

of the acceleration strategy introduced in [16], based on the use of certain distributions

of monopole and dipole “equivalent sources” on Cartesian grids and sparse 3D FFTs, as

discussed in sections 7.2.1 through 7.2.2.

Figure 7.1: Decomposition of the rectangular parallelepiped C whose boundary, in this ex-
ample, coincides with the computational domain boundary B. Each cube ci which intersects
the Kirchhoff surface S (cubes shown in green) must be discretized by means of equivalent
sources.

The method [16] relies on a partition of a rectangular parallelepiped C circumscribing

the boundary B into L1 · L2 · L3 identical cubic cells ci of side H (as shown in Figure 7.1)
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that do not admit inner acoustic resonances; the parameters are selected in such a way

that the real number −(2πk/c)2 is not a Dirichlet eigenvalue of the Laplace operator in the

domain ci.

The main elements in this acceleration algorithm are sets of “equivalent sources”, which

can be used to represent accurately, in large regions of space, the fields produced by the

“true” surface sources (on Γ) contained in each cell ci. As prescribed in [16], the equivalent

sources that represent the fields generated by true sources contained in ci are located on 2D

Cartesian meshes Π`
i contained on circular neighborhoods (with radii slightly larger than

half the diameter of ci) of pairs of opposing faces of the cells ci. Thus, the contributions to

the discrete integral from discretization points contained in ci are approximated, with high-

order accuracy, by a number M eq of equivalent sources placed on Π`
i—for all points in space

nonadjacent to ci, and for l = 1, 2, 3. The precise concept of adjacency used herein (namely,

two cells ci are adjacent if and only if they share a face, an edge, or a vertex) guarantees

that the approximation used for a cell ci is valid, with exponentially small errors, in the

complement of the union of all cells cj adjacent to ci. Clearly, the union of ci and all of the

26 cells cj adjacent to it constitute a cubic region of side 3H; in what follows, the boundary

of the triple-size cubic region is denoted by Si. Further, taking for each l the definition

Π` =
⋃
i Π`

i , it can be noted that Π` is a set of points on a Cartesian grid contained in the

union of L` equispaced planes parallel to the plane x` = 0.

7.2.1 Equivalent sources and FFTs

At each point in Π`
i , one acoustic monopole ξ

(m)`
i,j G2πk/c(x − x`i,j) and one acoustic dipole

ξ
(d)`
i,j ∂G2πk/c(x − x`i,j)/∂x` for j = 1, . . . ,M eq/2 are placed for a total of M eq equivalent

sources on Π`
i . The fields ψci,true radiated by the ci-true sources (that is, all surface sources

on S contained within ci) are approximated by fields ψci,eq radiated by the ci-equivalent

sources, that is, by the expression

ψci,eq(x) =

1
2
Meq∑
j=1

(
ξ

(m)`
i,j G2πk/c(x− x`i,j) + ξ

(d)`
i,j ∂G2πk/c(x− x`i,j)/∂x`

)
. (7.10)

For each `, and for an adequately chosen number M eq of equivalent sources supported

on Π`
i , the unknown monopole and dipole intensities ξ

(m)`
i,j and ξ

(d)`
i,j in equation (7.10) are
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Figure 7.2: A distribution of equivalent source points Π`
i due to a circular extension of the

parallel faces (in gray) of the cube ci

chosen so as to minimize, in the mean-square norm, the array of differences (ψci,eq(x) −

ψci,true(x)) for x varying over a number ncoll of adequately selected collocation points on

Si. Hence, for each `, the intensities in (7.10) are obtained in practice as the least-squares

solution of an overdetermined linear system Aξ = b, where A is an ncoll ×M eq matrix. As

in [16], the work presented here exploits certain symmetries in order to reduce by a factor

of eight the computational cost associated with the solution of these least-square problems.

Because for a given `, the circular regions Π`
i are not pairwise disjoint, it is necessary

to combine equivalent source intensities for all sources supported at a given point x′ that

corresponds to two different cells, say, cr and cs for which x′ = x`r,p = x`s,q for some integers



69

p and q. Thus, the total field is given by

ψ(∗)` =
∑
x′∈Π`

(
ξ

(m)`
x′ G2πk/c(x− x′) + ξ

(d)`
x′ ∂G2πk/c(x− x′)/∂x`

)
(7.11)

where ξ
(m)`
x′ and ξ

(d)`
x′ denote the sum of all intensities of equivalent sources located at a

point x′ ∈ Π`:

ξ
(m)`
x′ =

∑
x`i,j=x′

ξ
(m)`
i,j , ξ

(d)`
x′ =

∑
x`i,j=x′

ξ
(d)`
i,j . (7.12)

Clearly, the quantity ψ(∗)` in equation (7.11) is in a form suitable for evaluation, by means

of 3D FFTs, at all points on the grid Π` not coinciding with the equivalent source points.

Remark 7.2.1. The original presentation of this acceleration method describes a certain

“correction step for local fields”, in which the contribution from equivalent sources that lie

close to evaluation points are subtracted and correctly reintroduced. This costly procedure

accounts for as much as 61% of the computing time (of the equivalent source algorithm)

in the examples given in [17]. In the context of the present work, however, there is always

a nonvanishing separation between the surfaces S, over which sources are integrated, and

B, where the resulting fields are evaluated. Thus this “correction” step may be obviated

by ensuring that the positioning of these two surfaces also implies that any cells ci, cj

enclosing points on S,B, respectively, are strictly nonadjacent. A sufficient condition is

that Rmin > 2
√

3H, and a necessary condition is that Rmin > H. Intermediate distances

(between these two inequalities) may also be suitable, but the nonadjacency requirement

must be checked directly. The exclusion of this step not only simplifies the approach, but

also doubles the effective speed of the resulting boundary condition method.

7.2.2 Interior Dirichlet solutions

To obtain approximations of the Kirchhoff integrals ψ(true)(x) (that is, the fields generated

at x by the true discrete surface sources contained on Γ) at surface points x ∈ B ∩ ci, the

algorithm employs solutions to the Helmholtz equation within ci, with Dirichlet boundary

conditions given by ψ(eq)`, l = 1, 2, 3. These Dirichlet problems can be solved uniquely

(in view of the assumption that 2πk/c is not a resonant frequency), and thus the good

approximation properties of the Kirchhoff integral on the boundary of each cell ci translate
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into good approximations for the same integral on the surface B. Following [16], the algo-

rithm presented here produces the needed solutions of the Dirichlet problems by means of

approximations of the following either the form

P (x) =

nw∑
j=1

γje
2πi k

c
uj ·x (7.13)

or, in the event that the quantity 2πk/c is near (or equal to) zero 1

P (x) =

nw∑
j=1

γjG2πk/c(vj − x), (7.14)

each one of which is valid within cells ci nonadjacent to Γ. Here, the uj are unit vectors

that adequately sample the surface of the unit sphere, and vj are similarly sampled from

the enclosing cube of side 3H, Si. The coefficients γj are obtained in such a way that the

relation P (x) = ψ(true) is satisfied, in the least-squares sense, for all x in an adequately

chosen collocation mesh on the surface of the cube ci.

The representations in equations (7.13) and (7.14) are particularly convenient given the

need to evaluate the boundary operator Lα, applied to the Kirchhoff integral. Time differ-

entiation in the frequency domain simplifies to scalar multiplication, and the representative

basis functions may be differentiated exactly to produce the required normal derivative on

B, in a fashion similar to that used for evaluation of gradients in [13, 14]. In other words,

equation (7.13) and (7.14) give

LαP (x) =

nw∑
j=1

γj

(
α+ i

ω

c
+ 2πi

k

c
d(x) · uj

)
ei

k
c
uj ·x (7.15)

and

LαP (x) =
nw∑
j=1

γj

[(
α+ i

ω

c

)
G2πk/c(vj − x) + d(x) · ∇vjG2πk/c(vj − x),

]
, (7.16)

respectively.

1This second form, generalized slightly from the usual expansion for 2πk/c = 0, is necessary in view of
the increasing near-linear-dependence of the plane wave basis functions as |2πk/c| vanishes.
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7.2.3 Single precision least squares

The linear systems for ξ and γ, used to compute expansions for the outgoing and incoming

solutions may be solved efficiently by means of precomputed matrix factorizations, owing to

the fact that the relative collocation and equivalent source positions (or direction vectors,

in the case of the plane wave expansion) remain fixed relative to the position of each cubic

cell ci. In [16] a QR factorization was employed for this purpose, requiring one unitary

matrix-vector product and one triangular back-substitution per cubic cell per `. When

restricted to single precision arithmetic, however, the conditioning of the matrices prevents

this approach from attaining the desired level of accuracy. Therefore, in this work, a

truncated SVD is precomputed in double precision, then projected down to single precision

for use during GPU execution. The SVD approach requires two unitary and one diagonal

matrix-vector products, which is asymptotically as much as 1.5 times as much computational

effort as the QR-based approach, assuming all singular values are taken into account. Due

to the fast convergence of the combined single- and double-layer representation, however,

the truncated SVD results in a reduced-rank representation with very similar, and in some

cases superior, operation counts as compared to the previous approach. Combined with

the higher efficiency of matrix-vector products (relative to back-substitution), the SVD

approach is almost always as fast, if not faster, than the original QR approach.

This behavior is quantified in the case of the most costly equivalent source configuration

used in the examples presented in Chapter 9. For the wave-number ν = 0 the cube is

taken to have a side of H = 0.08, with circular faces of radius 1.6H2 . Equivalent sources are

distributed with a density of 8 points per H, and collocation points are distributed at 12

points per 3H, resulting in a system of 864 equations for 496 unknowns. A point source of

unit intensity is placed at the most challenging location (as observed by [16]), situated on

an edge of the cube, halfway between the two circular faces of equivalent sources at position

(H/2, H/2, 0), here with the faces perpendicular to the z-axis. Table 7.1 summarizes the

differences in performance between the QR and truncated SVD approaches to solving this

linear system, assuming the corresponding matrix factorizations have been precomputed.

In each test, the relative singular value tolerance ε is chosen to be as large as possible

without impairing the accuracy of the resulting system. The computing time remains the

same in the double-precision case (where most of the singular values are retained), and
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Precision Method Time (seconds) Relative error ‖ξ‖∞

Single
QR 7.3× 10−4 4.5× 10−2 1.4× 105

SVD, ε = 10−6 3.7× 10−4 6.5× 10−5 3.0× 100

Double
QR 3.2× 10−3 2.7× 10−6 1.4× 105

SVD, ε = 10−10 3.2× 10−3 5.3× 10−7 1.0× 102

Table 7.1: Comparison of the performance of the QR and truncated SVD approaches for
evaluation of an equivalent source representation in a single cube, averaged over 1000 runs.
The error is evaluated by means of a finely discretized enclosing cube of side 3.5H. In the
single precision case, 218 singular values (out of 496) are used, while in the double precision
case, 422 singular values are used.

improves by nearly a factor of two in the single-precision case (when retaining only half

of the singular values). In both cases the resulting accuracies of the representations are

improved via the truncated SVD. Furthermore, the solution norm (‖ · ‖∞) is significantly

lower with this approach, mitigating the risk of subtractive cancellation occurring during

the global convolution operation.

7.3 Implementation of the equivalent-source algorithm in CUDA-

capable devices

The discussion presented above reduces the problem of evaluation of the computational

boundary conditions introduced in Chapter 6 to two main algorithms, namely, 1) Transfor-

mation of the time-domain problem into the frequency domain (Section 7.1), and 2) Fast

evaluation of the resulting frequency-domain integrals by means an equivalent-source algo-

rithm (Section 7.2). The first of these two algorithms does not require extensive computing

times, and is therefore implemented at low cost on the host CPU. The second of these al-

gorithms requires more intensive computations, and is therefore implemented on the GPU.

The equivalent source-algorithm consists of the following sequence of operations:

1. For each ci intersecting Γ, evaluate the true field ψci,true at the collocation points over

Si.

2. For each l, ci intersecting Γ, use the previously computed fields to solve the linear

least-squares problem for the unknown equivalent sources ξ
(m)`
i,j and ξ

(d)`
i,j .
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3. For each `, sum the contributions at overlapping points Π`
i and convolve against the

monopole and dipole kernels in order to evaluate ψ(∗)`.

4. For each ci intersecting B, using the convolved fields for ` = 1, 2, 3, solve the linear

least-squares problem for the plane wave (or monopole) expansion.

5. For each boundary point on B, evaluate the field arising from the plane wave (or

monopole) expansion over the enclosing cell ci computed in step 4.

Steps 1 and 5 represent the least amount of computational effort, and while they require

(concise) custom written CUDA code, they are evaluated very efficiently with minimal effort.

Steps 2–4, on the other hand, represent the bulk of the computing time for the algorithm, but

rely entirely on standard computational primitives. Step 3 involves computing a sequence

of large 3D FFTs, a task for which the CUDA SDK’s built-in CUFFT library is well-

suited.2 Steps 2 and 4, finally, may be optimized by solving the linear equations for many ci

(or all, memory permitting) simultaneously. The computation is thus performed as a small

number of large, dense matrix-matrix products, for which a standard, well-optimized library

function from the CUDA SDK can be leveraged. By not requiring that individual cubes be

computed in sequence, the CUBLAS cgemm implementation is afforded the greatest possible

flexibility in the distribution of the corresponding computation over the available hardware.

The performance of the resulting GPU implementation, in comparison to the CPU-based

approach, is demonstrated in Table 9.2 in Section 9.3, in the context of a full application

of the boundary condition method, along with the interior time domain solver described in

Chapter 5.

2As opposed to the implementation of the segmented FC method presented in Chapter 4, where its use
would have required several additional read-write cycles per time-step.
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Chapter 8

Hybrid FC/DG solver

This chapter presents a hybrid approach which combines the interior FC solver described in

Chapter 5 and the MIDG discontinuous Galerkin finite element code [39] (DG-FEM) with

the FC-ES computational boundary conditions presented in Chapter 7. Hybridization with

DG-FEM provides greater flexibility in the treatment of the scattering surface Γ by FC

solvers, as it enables consideration of surfaces represented by well-tested and mature mesh-

generation codes such as GMSH [30] and it provides an interface with legacy geometries,

while still taking advantage of the accuracy and efficiency of the FC-based interior solver.

(Unlike traditional finite element methods, discontinuous Galerkin methods do not im-

pose any a priori conditions on the continuity of the discrete basis functions between neigh-

boring elements. This results in a larger number of degrees of freedom, and hence a larger

number of unknowns. However, due to the greater locality of the computation, it facili-

tates the construction of highly parallel, explicit solvers. Interactions between elements are

quantified by a numerical flux, in a manner similar to that used by finite volume methods.)

8.1 DG-FEM interface

The DG-FEM solver used in these examples is based on the MIDG (mini discontinuous

Galerkin) package [40]. Only small changes have been made in order to facilitate interfacing

the code to the FC solver presented herein, while preserving a strict separation between the

internals of each code.

In the hybrid algorithm the domain is decomposed using an extension of the approach

presented in Chapter 5. A region immediately around the scattering surface(s), up to a

rectangular parallelepiped interface (or disjoint union of such), is discretized with a finite
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Figure 8.1: A hybrid model with two DG-FEM subdomains, ΩDG,1 and ΩDG,2, marked in
gray, enclosing two scattering surfaces, marked in dark blue. In addition, the FC domain is
shown along with the Kirchhoff surface S and enclosing computational boundary B of the
overall computation domain Ω.

element mesh for the DG-FEM solver. The FC mesh, in turn, is taken as a portion of

a Cartesian mesh in a region surrounding the DG domain(s): the FC mesh equals that

part of the Cartesian mesh contained in the complement of the DG parallelepiped(s). (The

assumption that the interface between the FC and DG regions is a rectangular parallelepiped

is only introduced for simplicity: neither the FC or DG components of the hybrid require

it.) Figure 8.1 displays a generic arrangement: DG meshes are used in the domains ΩDG,1

and ΩDG,2, and a Cartesian mesh is used in ΩFC = Ω \ (ΩDG,2 ∪ ΩDG,2).

8.1.1 Data specification for DG

The nature of the DG-FEM formulation requires the evaluation of a numerical flux over the

faces of each element. For the faces that comprise the exterior boundary of the DG domain,

an incoming flux must somehow be computed from the data on the FC side. The precise

form of this flux is defined by the quantity

R(u,v) = u− n · v

evaluated on either side of the interface. This term is included in a weak formulation of the

wave equation, integrated against the DG test functions φ.

The unknowns u,v are interpolated from the FC grid to quadrature points on the
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interface boundary ∂ΩDG prescribed by the DG algorithm. The capability to provide such

interpolations is available as part of the multi-patch FC method. Clearly this approach

for FC-to-DG communication maintains a strict “black-box” separation between the inner

workings of the two algorithms.

8.1.2 Data specification for FC

The DG algorithm, in turn, provides data to the FC algorithm in the form of the patch-

interpolation strategy outlined in Section 5.3. With reference to the notations introduced in

that section, each grid line in the FC domain that intersects the FC-DG interface is extended

so that it penetrates into the finite element mesh by a number r of FC fringe points. The

solution values at these fringe points are interpolated from the DG-FEM domain, using

the DG representation, at every time-step of the FC method (see Section 8.1.3). The only

requirement imposed on the DG-FEM implementation in these regards is the ability to

evaluate the solution at points interior to its own computational domain.

8.1.3 Temporal subcycling

One additional difficulty arises in the form of the CFL condition for the DG-FEM solver.

Owing to the necessary refinement of DG elements near the scattering surface as well as

the high order of the DG polynomials basis used in the present context (fourth order in the

examples considered in this thesis), the time-step required for DG stability is very small.

The time-steps restrictions associated with the FC algorithm are much more lax, and it is

therefore desirable to select the FC and DG time-steps independently.

Clearly, use of two different time-steps requires interpolation in time. This is most

simply accomplished by using polynomial interpolation over a number of previous time-

steps, in such a way that the interpolation accuracy order matches the order of accuracy of

the time integration scheme. Furthermore, by enforcing that the larger (FC) time-step be

an integer multiple of the smaller (DG) time-step, time-interpolation needs only occur in

one direction, namely, when communicating data from the FC domain to the DG domain.
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Chapter 9

Numerical results

This chapter presents a variety of numerical examples resulting from the application of the

FC, FC-ES, and FC-DG hybridized algorithms to a sequence of acoustic problems featuring

increasingly complex geometries. Both the high-order convergence and the computational

efficiency of the resulting methodologies are demonstrated in both CPU and GPU architec-

tures. All CPU tests presented in this chapter were executed on an Intel Nehalem E5520

with a clock speed of 2.27 GHz; the corresponding GPU results were obtained from runs

on an NVIDIA Tesla C-1060 GPU at 1.30 GHz.

9.1 FC PDE solver: comparison with the FDTD scheme

In order to place the FC numerical solvers in the context of the existing literature, this

section presents a comparison of the FC and FDTD solvers [74]. The FDTD methods are

robust, well tested, and remain widely used. Furthermore, the availability of mature and

highly optimized implementations (such as CPU implementation Meep [62] of a Yee scheme

for Maxwell’s equations, and the corresponding GPU proof-of-concept implementation [55])

provides an excellent benchmark for the computational efficiency of the algorithms presented

herein.

The analysis presented in this section suggests that use of the FC method should be

generally quite advantageous. Indeed, some of the estimates in this section indicate that

tenfold improvements in computing times and three-hundred-fold improvement in memory

requirements result from use of FC methods over the corresponding requirements of the

FDTD algorithm for problems as small as 16 wavelengths in diameter. Very significant

additional improvements result for problems of larger acoustical size: the results of this
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section, for example, indicate that use of a FDTD algorithm for the acoustic hyperbolic

system (5.3) in a three-dimensional geometry 512 wavelengths in diameter (as required

for simulation of scattering by a F-22 Raptor aircraft [76] at the lowest frequency of X-

band, used by the radar onboard the F-22) requires 2 exabytes of memory, more than one

thousand times the memory available on the largest distributed computing clusters currently

operating, such as the Sequoia BlueGene/Q and K Supercomputer [54]; a computation

based on the FC solver, in turn, would require 69 TB—that is, 30,000 times less memory

than that required by FDTD, and 20 times less than that available in aforementioned

computers. Those estimates indicate, further, an improvement of the FC method over the

FDTD method by a factor of 4,000 in computing time.

(As shown in Section 3.2.3, the FC methods have also demonstrated significant perfor-

mance improvements over previous high-order methods. In reference [1], further, a wide

range of hybrids of high-volume and discontinuous Galerkin algorithms [25] of various or-

ders of accuracy are considered; there it is shown that the FC methodology gives rise to

improvements in computing times by factors of the order of 200 over the best of the high-

order algorithms considered in the latter reference. Additional improvements in computing

times, ranging from factors of 200 to 3.3 million, have been reported in various publica-

tions [1, 2, 18, 53].)

In order to demonstrate the relative efficiency of the FC solver in a highly challenging

regime, in this section comparisons of sampling efficiency are made in one-dimensional

problems, followed by extrapolation to three dimensions on the basis of actual timings

of the respective solvers on three-dimensional volumetric meshes. Both, the Yee and FC

schemes are specialized here to the case of a polarized plane wave traveling in vacuum, in

which case the Maxwell’s equations simplify to

∂Ey

∂t
= − 1

ε0µ0

∂Hz

∂x

∂Hz

∂t
= −∂E

y

∂x
,

(9.1)

a system which, taking normalized units so that ε0µ0 = 1, is equivalent to the hyperbolic

form of the wave equation (3.4), with u = Ey, v = Hz, and c = 1. For the Yee scheme

the fields u and v are sampled on uniform, staggered meshes over the periodic interval

x ∈ [0, 1], xj = j−1
N−1 . The discrete fields u1 . . . uN and v1+1/2 . . . vN+1/2 are then evolved in
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time according to the second-order, centered-time, centered-space rule

un+1
j = un−1

j +
∆t

∆x

(
vnj+1/2 − v

n
j−1/2

)
vn+1
j = vn−1

j +
∆t

∆x

(
unj+1 − unj

)
.

(9.2)

This system exactly captures the behavior of the fully three-dimensional Yee scheme when

applied to an axis-aligned, polarized plane wave, and it therefore provides a lower bound

on the discretization required to achieve a given accuracy in the three-dimensional cases.
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Figure 9.1: Required sampling, in points per wavelength (PPW), for the FC and FDTD
methods to produce, with an error of less than 1%, a traveling wave solution for a given
number of wavelengths. Curves for two segmented FC solvers are shown—one using the filter
parameter p = 8, consistent with the that used in the three-dimensional solvers presented in
this chapter, and another with a milder, p = 16 filter, suitable for cases with larger segment
sizes.

The one-dimensional Yee and FC solvers are compared by determining, numerically, the

sampling in points per wavelength (PPW) required to achieve an error of less than 1% when

evolving the exact solution

u(x, t) = v(x, t) = sin (4π (x− t)) (9.3)

a number of W wavelengths, with W ranging from W = 2 to W = 512. Figure 9.1 shows

the corresponding discretization requirements, as a function of the acoustical size, at both
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normal and logarithmic scales. The number of points per segment ns in the FC solver is

allowed to vary slightly in order to more readily accommodate the domain, but is always

bounded by ns ≤ 40. For domains with 16 wavelengths to a side, corresponding to a

similar scale as in the fully three-dimensional experiments described in the remainder of

this chapter, FC has a superior sampling efficiency by a factor of 96/11 ≈ 8.73. In order to

achieve even 1% error in three dimensions, then, the FDTD method for the wave equation

requires an amount of memory of no less than

(4 unknowns)× (3 grids1)× (16 waves)3 ×
(

96
points

wave

)3

×
(

8
bytes

point

)
= 348 GB, (9.4)

and is therefore an intractable problem for a single modern workstation. For the FC method,

by comparison, only

(4 unknowns)× (6 grids2)× (16 waves)3 ×
(

11
points

wave

)3

×
(

8
bytes

point

)
≈ 1 GB (9.5)

is required, cutting the memory requirements by a factor of 348 and easily fitting within

the available resources on a typical desktop PC. An acoustic problem in a cube measuring

512λ to a side would require an astronomical 2 · 109 GB, or roughly 2 EB. The FC solver

would only require 71 TB, an improvement by a factor of over 3 · 104, bringing that same

problem within the reach of modern supercomputers.

In order to compare the computational speed of the respective solvers, times for both

Meep and FC are measured, in a single core, when evaluating a single time-step over a mesh

of 2563 points. The FDTD is significantly faster per unknown, requiring only 0.67 seconds

to evolve 6 equations, compared to 27 seconds for the FC method to evolve 4 equations.

Accounting also for the differences in the three-dimensional CFL conditions as well as the

required numbers of points per wavelength, the relative speedup achieved with FC is a

factor of (√
3

16

)
×
(

4

6

)
×
(

96

11

)4

×
(

0.67

27

)
≈ 10.4, (9.6)

for a three-dimensional domain 16λ across, and it grows to a factor of over 4 · 103 for

2The Yee solver requires storage for three complete meshes, corresponding to the solution at the next,
current, and previous time-steps.

2The FC solver requires storage for the solution at the current and next time-steps, as well as values of
the time derivative over the last four time-steps.
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the larger 512λ case. The result of the differences in memory usage and computational

performance is that, using the FC method instead of FDTD, a single workstation may solve

problems of a size previously only practically approached with the aid of supercomputers,

and supercomputers may be used to solve problems that were entirely out of reach for the

FDTD algorithm.

9.2 Simple examples in three-dimensional space

This section presents a number of simple examples, including three-dimensional accuracy

tests in problems for which exact solutions exist, as well as an illustration of the overlapping

patch methodology described in Chapter 5; demonstrations of the overall methodologies

introduced in this thesis for significantly more complex geometries and including use of

convergent computational boundary conditions are presented in Sections 9.3 through 9.5.

9.2.1 Normal modes in a cube

While solution of PDE problems in a simple cubic geometry does not require use of most

of the methodologies introduced in Chapter 5, this geometric configuration does offer a set

of exact solutions which are both simple and well known—normal modes, also known as

standing waves—which provide an excellent first set of tests for the fully three-dimensional

PDE solvers under consideration. Thus equation (5.3) is solved over the domain Ω = [0, 1]3,

coupled with zero Dirichlet boundary conditions on u, and no boundary conditions on v.

This configuration admits the familiar solutions

u`,m,n(x, t) = sin(`πx1) sin(mπx2) sin(nπx3) cos(
√
`2 +m2 + n2t)

v`,m,n(x, t) = −


`π cos(`πx1) sin(mπx2) sin(nπx3)

mπ sin(`πx1) cos(mπx2) sin(nπx3)

nπ sin(`πx1) sin(mπx2) cos(nπx3)

 sin(
√
`2 +m2 + n2t)√
`2 +m2 + n2

for integers `,m, n > 0. Figure 9.2(a) shows a sample solution at time t = 0 for parameters

(`,m, n) = (10, 14, 18). Figure 9.2(b) demonstrates the convergence of the solution at a final

time T = 1 for a sequence of spatial discretizations. At the finest discretization considered,

N = 2563 spatial mesh points, each time-step requires 47.4 seconds when executed on a
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(a) Cutaway of interior solution
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Figure 9.2: The FC method applied to the normal mode solution of index (`,m, n) =
(10, 14, 18), solved to time T = 1. Both CPU and GPU implementations give rise to fifth-
order convergence at coarser discretizations and higher error levels, but the single precision
arithmetic inherent in the GPU implementation pollutes the GPU solution at lower error
levels.

single CPU, and reduces to only 1.66 seconds on the GPU, an improvement by a factor of

28.6.

9.2.2 Sphere in a cube

In order to evaluate the performance of the FC solver in a simple setting which includes

overlapping patches and inter-patch interpolation, a problem concerning a sound-soft sphere

of radius r = 0.25 contained within the cube [−1, 1]3 is considered; clearly this problem

amounts to a three-dimensional version of the one introduced in Section 5.5. The decom-

position is entirely analogous to that presented in the earlier section: it includes a large

Cartesian patch cut by a spherical hole concentric with and of a slightly larger radius than

the sound-soft sphere (cf. Figure 5.1(b) for the two-dimensional rendition), together with

a sequence of six spherical-coordinate patches each one of which amounts to a square in

angular parameter space (the corresponding two-dimensional situation, including four polar-

coordinate patches, is depicted in Figure 5.1(a)). Finally, the mesh size in each patch is

chosen according to similar criteria as those used in Section 5.5, with the added constraint

that the mesh sizes in each one of the two angular directions in the square parameter-space

discretizations coincide. This selection does decrease slightly the minimal grid spacing, and
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hence the corresponding time-step required by the CFL condition.3

Vanishing initial conditions are used in this example, along with boundary conditions

(on both the internal sphere and external cube boundaries) corresponding to a right-moving

plane wave that smoothly transitions from an amplitude of zero (initially) to one (asymp-

totically, as t→∞), as detailed in what follows. Letting

fk(s) =


e−1/(ks)2 sin ks if s > 0

0 otherwise

(9.7)

the Dirichlet boundary condition is set to

u(x, t)|x∈∂Ω = −fk(x1 − t− 1). (9.8)

(a) Artificial plane wave solution
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Figure 9.3: Right-moving artificial plane wave solution evaluated by the FC method from
correspondingly artificial Dirichlet boundary conditions on Γ and B. A wire-frame grid
(coarsened, for visibility) is overlaid on the first spherical-coordinate patch to illustrate the
overlapping patch decomposition.

This simple right-moving wave is identically zero throughout the domain at t = 0, and,

up to the numerical accuracy of the solver, will move through the domain undisturbed by

the domain boundaries. In Figure 9.3(a), the x3 = 0 slice of the solution at T = 2 for

k = 24 is shown. Again, the convergence of the algorithm as the discretization is increased

3Since the conforming spherical-coordinate patches comprise the majority of computational unknowns,
the overall impact of the more constrained CFL condition on the global time-step is minimal.
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is shown in Figure 9.3(b).

A final example in this section also concerns the domain just considered and related

boundary conditions. (This example further demonstrates how use of the particular choice

made for the function fk can be applied to solve PDE problems involving arbitrary physically

motivated driving sources.) Prescribing Dirichlet boundary conditions as above in this

section on the spherical boundary and zero on the outer (cube) boundary, the resulting

solution equals the scattered field resulting from an incident field of the form −fk(x, t)

on a sound-soft sphere up to the point that the scattered wave reaches the cube boundary.

Figure 9.4(a) demonstrates this radiating solution at time T = 1., for k = 24; the associated

accuracy should be described closely by the right graph in Figure 9.4(b).

This solution continues to represent the true wave scattered by the sphere up to time

T = 1.5, at which point the scattered field impinges upon the boundary of the cube, and

the Dirichlet zero boundary condition applied there no longer coincides with a physically

correct radiating boundary solution. In order to evolve this system further in time, then,

either the domain may be enlarged (at considerable computational expense), or a numerical

radiating boundary condition, such as, e.g., that presented in Chapter 7 and demonstrated

in Section 9.3, must be applied.

(a) Scattered field us (b) Total field u = us + ui

Figure 9.4: The scattered field produced by the FC solver for physically correct Dirichlet
boundary conditions corresponding to an incident plane wave on Γ and zero on B, at time
T = 1. Soon after this point in time, the scattered wave impinges on the computational
boundary, and radiating boundary conditions must be used to evolve the system further.
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9.3 Computational boundary conditions for the sphere-in-

cube problem

Using the FC-ES boundary conditions described in Chapter 7 with Sommerfeld-like bound-

ary operator (6.11), in this section the solution for the sphere-in-cube problem presented in

Section 9.2.2 is continued beyond the time for which the scattered wave reaches the artificial

boundary of the computational domain.

The parameterization of the domain remains the same as in the previous section, and, a

cubic Kirchhoff surface S enclosing the sphere is now used as needed by the FC-ES boundary

conditions described in Section 7.2. This cubic surface is selected in such a way that the

faces are evenly sampled by the discretization points of the enclosing patch, and just large

enough that it does not intersect the cut hole, as depicted in Figure 9.5.
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1

Figure 9.5: Two-dimensional cross section of the Kirchhoff surface S as embedded in the
enclosing Cartesian mesh, using a fairly coarse discretization for ease of visualization. (Fig-
ure 5.1 displays a section of the complete patch decomposition.)



86

Since the faces of this cube are discretized by regular Cartesian grids, a closed composite

Newton-Cotes rule of accuracy order 7 based on this grid, with corresponding integration

weights wj , is used. (Note that the error resulting from the corresponding Kirchhoff inte-

gration for observation points on the computational boundary is of an accuracy order higher

than that inherent in the boundary portion of the FC method.) If necessary, the Kirchhoff

surface is enlarged slightly, until the number n of discretization points in each direction is

equal to n(m− 1) + 1, with m = 7 for this choice of integrating polynomial degree, so that

the composite integration rule correctly divides into a number of equally sized intervals.

Figure 9.6 presents the numerical solution at T = 2.5 (cf. Figure 9.4 in Section 9.2.2).

The application of the FC-ES boundary conditions introduces insignificant additional er-

ror, and it allows for the solution to be evolved to an arbitrary point in time. The needed

FC(Gram) expansion in time of the scattered field on the Kirchhoff surface S (see Sec-

tion 7.1) for this example was taken over a time-period T0 = Rmax
c = 2.79 and updated

every Rmin
c = 0.389 time units. For this test, the first M = 42 positive and negative terms

in the FC(Gram) expansion4 were used; they were integrated rapidly on the Kirchhoff sur-

face for all points on the computational boundary using the equivalent-source representation

described in Section 7.2. Note that use of time frequencies up to M = 42 implies sampling

of discrete wave-numbers up to kmax = 92.33—clearly above the k = 26 inherent in the

present problem. For efficiency, cube sizes ranging over H ∈ [0.05, 0.1] were used for the

various wave-numbers involved, with a sufficient sampling of equivalent sources, collocation

points, and plane wave (or monopole) sources such that the resulting FC-ES method has

an error less than 1 · 10−4, smaller than the anticipated error in the time-domain FC solver.

A high-level breakdown of the computational time required for this problem is provided

in Table 9.1, showing the comparatively small computing times required by the FC-ES

radiating boundary condition algorithm. Table 9.2 summarizes the time required by CPU

and GPU implementations of these boundary integral evaluations, at each step of this

method (as outlined in Section 7.3), when applied to the most computationally intensive

frequency term used in this experiment. This additionally demonstrates the suitability of

this method for such many-core architectures, as the GPU implementation of the FC-ES

boundary condition improves over the corresponding CPU implementation by a factor of

4The negative frequency terms are not explicitly integrated. Since the function u is real-valued, the
negative frequency integrals are simply the complex conjugates of the positive frequency integrals.
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(a) Scattered field us (b) Total field u = us + ui

Figure 9.6: Radiating solution from a sound-soft sphere at T = 2.5, produced by the time-
domain FC method and FC-ES boundary conditions. The resulting shadow is clearly visible
in the total field.

Section Seconds per FC-ES update Percentage overall

FC interior solver 66780 97.75

FC(Gram) on S 52 0.08

FC-ES integration 1417 2.07

IFFT on B 67 0.10

Total 68316 —

Table 9.1: Single-core CPU times required for the sphere-in-box geometry using N =
8224768 discretization points. One complete FC-ES update cycle spans 3180 time-steps
of the interior FC solver.

51.28.

Use of the Sommerfeld-like boundary operator Lα with parameters α(x), d(x) as rec-

ommended by [42], and covered briefly in Section 6.1, results in a worsened CFL condition

for the three-dimensional FC method described here, reducing the Courant number from

C = 1/16 to C = 1/24. This arises due to the discontinuity in the outward-facing normal

vector at edges and corners of the cubic boundary B. In fact, any outward-facing unit vector

may be used, and thus here it is convenient to prescribe

d(x) =
x

‖x‖2
. (9.9)
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Section Time (CPU) Time (GPU) Speedup

1) Evaluate collocation fields ψci,true 6.82 0.02 341

2) Compute equivalent sources ξ
(m),l
i,j , ξ

(d)l
i,j 0.59 0.05 11.8

3) Global convolution for ψ(∗)l 61.90 1.30 47.6

4) Compute plane wave sources γi,j 0.28 0.03 9.33

5) Evaluate boundary operator L̂αP (x) 3.23 0.02 161.5

Total time for frequency-domain integral 72.82 1.42 51.28

Table 9.2: Time in seconds required to compute each portion of the frequency-domain
integral, as outlined in Section 7.3. In this example there are NS = 57624 integration
points and NB = 153600 boundary points, solved for the lowest nonzero frequency mode.
The unusually high gains in steps 1) and 5) are due to significantly the higher throughput
of trigonometric functions on the GPU: the Intel CPU considered has a peak per-core
throughput of 1/117 trigonometric evaluations per cycle [43], whereas the NVIDIA GPU
supports a variable per-core rate of as much as 1 trigonometric evaluation per cycle [59] in
the ideal (small angle) case.

With this slight modification to the parameters α(x) and d(x) of Lα, the resulting numerical

scheme has Courant number 1/17, nearly as good as that required when prescribing only

Dirichlet conditions.

9.4 Stealth aircraft

In order to demonstrate the efficacy and simplicity of the hybrid FC-DG approach, the

scattered field from a sound-hard stealth aircraft is computed, as arising from an incident

ramped plane wave prescribed by the boundary condition on v

v(x, t)|∂Ω =
1

2


1

0

0

 (1 + tanh (30t− 3)) cos (k (t− x1)) (9.10)

for wave-number k = 26π. Several closeups of the aircraft geometry are shown in Figure 9.7,

detailing the piecewise-linear, nonconvex surface Γ. A narrow region of dimensions 0.76 ×

0.2 × 0.5 tightly surrounding this surface is discretized with a finite element mesh for the

DG-FEM solver, which is in turn embedded in a larger cubic FC mesh of side 1.2. The FC-

ES boundary conditions are parametrized as in the example in Section 9.3, now integrating
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only M = 32 discrete frequency terms (in Section 9.3, M = 42 terms were included over

a correspondingly larger domain). For an example of the required computing times, see

Table 9.3 in the following section.



90

(a) Side view (b) Top view

(c) Perspective view

Figure 9.7: Stealth aircraft geometry. Despite the low resolution used to describe the
geometry, a very finely sampled finite element mesh must be used in the volume immediately
surrounding the surface—which accounting for approximately 4% of the volume of the total
computational domain.
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Figure 9.8: Scattered field resulting from right-moving plane wave, as computed by the
FC/DG hybrid solver with FC-ES computational boundary conditions. The wire-frame
outline shows the extent of the DG-FEM subdomain.
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9.5 Multiple aircraft

The experiment of Section 9.4 is now expanded to include several aircraft separated by a

large distance—more specifically two aircraft in close formation, and another two in similar

formation a large distance away. Only the immediate volume around each disjoint group

of aircraft needs to be evolved in the time domain, demonstrating the flexibility of this

approach in handling nonconvex (in this example, not even simply connected) domains.

Figure 9.9 shows the relative orientation of the aircraft, the FC subdomains, and the undis-

cretized intervening space.

Figure 9.9: Four aircraft grouped in two disjoint domains, enclosing two aircraft each. The
white outlines show the extent of the FC discretization. The volume between the two FC
domains is treated, at negligible computational cost, by the FC-ES boundary condition
algorithm.

In fact, it is possible to compute the boundary conditions in such a way that the com-

putational cost (per time-step) remains completely independent of the separation between

the two groups of scatterers illustrated in Figure 9.9. For each pairwise combination of local
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domains Ωj ,Ωk, the integral over Sj to be used as boundary conditions on Bk may each

be computed separately—the integral is summed over the union of the Kirchhoff surfaces,

but the Fourier series expansion on each may be evaluated independently, alleviating the

need to expand over a large interval in time. This does result in a cost that is quadratic

in the number of disjoint domains5, but the sparse convolution grids used to accelerate the

integration, as described in Chapter 7, only need to be large enough to enclose the larger

of Sj and Bk, rather than both simultaneously. This is accomplished by taking the spatial

separation into account directly in the convolution kernel, obviating the need to discretize

the entirety of the convex hull of the two (distant) boundaries.

Such a configuration is shown in Figures 9.9 and 9.10, with the corresponding radiating

solution at time T = 6 arising from an incident field only on the leftmost two aircraft—

this scenario is chosen so that the multiple scattering interactions with the nonilluminated,

secondary aircraft can easily be appreciated. It is readily seen that the upper-right aircraft

is in the shadow of the illuminated aircraft to the left. In addition, this shadow does not

appear on the leading-edge of the scattered field, and only establishes itself a few wavelengths

behind the moving front—a “precursor” behavior that is difficult to capture with purely

frequency-domain methods.

(a) Left-side aircraft, illuminated (b) Right-side aircraft, secondary scatterers

Figure 9.10: Closeup view of the scattered field at time T = 6 over each one of the two
disjoint domains depicted in Figure 9.9. Each cubic domain measures approximately 15.6
wavelengths to a side, and the two domains are separated by a gap of 49.4 wavelengths.

Table 9.3 gives a breakdown of the required computing time for each component in the

5An alternative which may be used to alleviate this concern is outlined in Section A.2.
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FC-DG hybrid solver. The FC, DG, and FC-ES algorithms are executed entirely on the

GPU, while the relatively inexpensive FC(Gram) and FFTs on S, B are executed on the

CPU in order to save the more-limited GPU memory.

Section Seconds Percentage overall

FC solver 19674 53.0

DG-FEM solver 10776 29.0

Communication FC to DG 2726 7.3

Communication DG to FC 221 0.6

FC(Gram) on S 566 1.5

FC-ES integration 2096 5.6

IFFT on B 1046 2.8

Total 37106 —

Table 9.3: Computing times required by each portion of the FC-DG hybrid solver to solve
the four-aircraft problem up to T = 6 using the Tesla C-1060 GPU. Note that the relative
cost of the boundary conditions is increased relative to that shown in Table 9.1, due to the
quadratic cost in the disjoint-domain methodology and the wider (asymptotically a factor
of two) time intervals required on Sj to maintain the consistency of Kirchhoff’s integral
formula.



95

Appendix A

Future work

A.1 Electromagnetics: Maxwell’s equations

Many wave-scattering problems of engineering importance involve electromagnetic rather

than acoustic waves, and hence require the solution of Maxwell’s equations. Since the

methods developed in this work are intentionally built around the general framework of

first-order hyperbolic systems, the FC solver is naturally extensible to problems of electro-

magnetic scattering. Furthermore, the FC-ES radiating boundary conditions can be applied

to both nondissipative and dissipative (after extending the equivalent and plane wave source

representations) materials. Of particular research interest is the determination of the way in

which the FC methodology can be best applied to multiple material interfaces and variable

coefficient media.

A.2 Superscalar algorithm

It has been assumed until now in this work that the ratio Rmin/Rmax is bounded away from

zero. This assumption requires that the size of the gap between Kirchhoff and boundary

surfaces must remain bounded from below, relative to the size of the computational domain.

It is possible to conceive of cases where this constraint is violated—extremely large concave

scatterers, or even a spherical shell of increasing radius but fixed thickness. Any such case

reveals an additional, subtle cost in the FC-ES method, growing linearly with Rmax/Rmin,

the factor of redundancy with which the overlapping time-series data on S is integrated.

Consider the case of a spherical shell of fixed thickness D but of increasing radius R,

discretized volumetrically with N = O(R2) unknowns. In this scenario, in fact, the ratio
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Rmax/Rmin grows linearly in R without bound. (Note that even a very mild growth in the

thickness of the domain alleviates this difficulty.) As a consequence, the requisite FC-ES

boundary condition evaluation time is proportional to O(R11/3), clearly super-linear even

with respect to the volume of the convex hull of the domain. This super-linear growth is,

however, very mild, and furthermore the performance comparison in Table 9.1 suggests a

very favorable constant of proportionality. For sake of completeness, however, a remedy to

this asymptotic cost is discussed in what follows.

A recursive procedure is described here that replaces the linear cost in Rmax/Rmin with

a logarithmic one. The time-series data on S can be decomposed, by the introduction of a

partition of unity, into a recent, fast-updating component ufast and an earlier, slow-updating

component uslow. The slow-updating component is extended by zero into the future by an

application of FC(Gram) over a length of time equal to the support of the recent, fast-

updating component. In doing so, the Kirchhoff integral with respect to uslow remains a

valid representation of a portion of the solution for an amount of time unconstrained by

Rmin.

In order for the subdivision into ufast + uslow to be of practical use, however, a method

for evaluating ufast more quickly is described, requiring approximately half the computing

time required for the integral of uslow. This is in fact be achieved by ensuring that the

periodic continuation of the fast solution ufast remains identically zero outside the support

of its respective partition of unity for a period of time no less than 6
√

2Hmax
c , where Hmax

is the largest cube size used in the FC-ES method. In doing so, the function ufast can then

be periodically continued over an interval in time of half the duration used for uslow, and

correspondingly fewer frequency domain terms need be kept to accurately capture a given

numerical solution. The corresponding integrals are computed over a period in time smaller

than the temporal dependence of the Kirchhoff integral formula. This is made possible by the

fact that the time interval for which ufast remains zero is sufficiently long to result in a well-

defined spatial support in the transformed frequency domain integral—the contribution from

each cubic cell ci’s equivalent source expansion on an arbitrary cube surface corresponds

exclusively to either a field arising from the true, half-period signal or one arising from the

“false” periodically repeated data. This relation from temporal- to spatial-locality allows

for the correct field values to be exclusively integrated (convolved) after careful adjustment

of the corresponding support of the Green’s function kernels has been made. Furthermore,
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this reduction of the support in the kernel also results in a reduction in required FFT grid

sizes, and thus corresponding computing times, by a factor of approximately 3.4 at the first

subdivision, and asymptotically approaching 8 (relative to the original grid size).

This approach can be applied recursively until approaching the minimal period of

6
√

2Hmax
c . At each level, the signal is decomposed into one that remains valid for full

duration (for that level of recursion), and one that is valid for half as long, but may be eval-

uated at half the cost—hence the logarithmic cost in both time and memory. Unfortunately,

this approach as described has a relatively large constant of proportionality (relative to the

FC-ES method as described earlier in this work), only offering significant gains for very

large, irregularly shaped domains. The additional cost arises from the logarithmic number

of subdivided intervals, the one-time doubling of the original time-series period in order to

accommodate a sufficiently long zero-region, and perhaps most severely the increased num-

ber of Fourier series terms required to capture the influence of the multiplicative partition

of unity, a phenomenon observed in a related context in [42].
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