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ABSTRACT 

Economists have learned a great deal about investor behavior over the last two decades with the 

availability of large discount brokerage data sets.  While this has given economists a better 

understanding of the trading patterns that characterize individual investor behavior, less success has 

been achieved in understanding what drives these trading patterns.  Part of the difficulty in this 

endeavor is that it is sometimes difficult to test alternative theories of investor behavior using only 

data from the field.  In particular, the two trading patterns we investigate in this thesis, the 

disposition effect and the repurchase effect, are unlikely driven by standard rational models of 

trading, and alternative theories of their causes are difficult to test using only data from the field, or 

data from behavioral laboratory experiments. 

In order to better understand the causes of the disposition effect and the repurchase effect, we use 

neural data, data collected from functional magnetic resonance imaging (fMRI) along with trading 

data to construct empirical tests of different theories.  Chapter 1 uses fMRI data to test a model of 

realization utility, which can readily predict a disposition effect.  In our experiment, we find that 

subjects exhibit strong disposition effects, although they are suboptimal, and the neural data 

strongly supports the realization utility hypothesis.  While Chapter 1 is concerned with the selling 

behavior, we focus on systematic violations of buying behavior in Chapter 2.  We propose a model 

of regret to explain the repurchase effect in the buy-side trading data, for which we find strong 

support in the neural data.  Chapters 3 and 4 study whether the suboptimal trading behavior we find 

in the first two chapters is stable, and we explore what the source of the heterogeneity is.  

Specifically, in Chapter 3 we find that exogenously manipulating the display of information on the 

trading screen can significantly reduce the size of the disposition effect.  Chapter 4 uses an approach 

from behavioral genetics to identify candidate genes that can help explain the cross-sectional 

variation in choice behavior.   
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INTRODUCTION 

Economists have documented several robust empirical facts regarding the behavior of individual 

investors.  Some of this behavior is puzzling from the standpoint of a purely rational model of 

trading, which has led researchers to propose alternative models of trading behavior based on 

different specifications of preferences and/or beliefs.  In this thesis, we aim to provide financial 

economics with a new methodology that can be useful in testing these alternative theories of 

investor behavior.  In particular, we use methods from cognitive neuroscience to collect data from 

the human brain that allows us to construct sharp empirical tests of theories of investor behavior.  

Chapter 1 shows how neural data collected via functional magnetic resonance imaging (fMRI) can 

be useful in understanding why investors exhibit a puzzling behavior known as the disposition 

effect.  We design an experimental stock market and generate disposition effects in the laboratory 

that are strongly suboptimal.  We then use a time series of neural data to test a specific theory of the 

disposition effect, called realization utility, for which we find strong support.  One of the main 

contributions of Chapter 1 is to clearly illustrate the added value of neural data for our 

understanding of economic behavior. 

While Chapter 1 is concerned with understanding systematic violations of the optimal trading 

strategy on the sell-side, in Chapter 2 we investigate the buying behavior of individual subjects.  In 

this chapter, we seek to understand what drives the “repurchase effect”, which is the recently 

documented empirical fact that investors have a great tendency to repurchase stocks that have gone 

down in value since last sale more often than they repurchase stocks that have gone up in value 

since last sale.  We propose that this effect is driven by a regret-devaluation mechanism, and we 

employ empirical tests of this mechanism that cannot be run without neural data.  Our results 

provide support for the regret-devaluation mechanism as we find: 1) stronger regret signals predict a 

higher probability of a repurchase mistake and 2) average regret signals can explain a portion of the 

variation in the size of the repurchase effect across subjects.  Like Chapter 1, this chapter highlights 

the added value of using neural data in testing theories of investor behavior. 

After achieving a better understand of what drives systematic deviations from optimal trading 

behavior on both the sell-side and the buy-side, it is interesting to compare the two behaviors.  

Figure 4 in Chapter 2 shows that the disposition effect and repurchase effect are highly correlated 

across subjects and that there is substantial variation in the size of both effects.  This suggests that 
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there may be a stable and common underlying “factor” that drives buying and selling behavior, but 

that there is heterogeneity in this factor across the population of investors.  We examine these two 

ideas in Chapter 3 and Chapter 4, respectively. 

In particular, Chapter 3 examines whether the preference structure that drives the disposition effect 

is stable and fixed, or whether it is malleable and can be manipulated by exogenous changes in the 

display of information about an investor’s portfolio.  We find that by introducing cues on the 

trading screen that shift attention away from realization utility, we can manipulate the size of the 

disposition effect, and therefore, expected final wealth.  We discuss our experimental results in this 

chapter in connection with a recently enacted US government legislation that effectively increases 

the saliency of the cost basis, and may have unintended consequences for investor behavior. 

Chapter 4 is concerned with studying the underlying source of heterogeneity in suboptimal investor 

behavior that we document in the first two chapters.  We use a different task structure in this 

chapter, where subjects are asked to make a series of choices between a risky lottery and a certain 

option.  We then test whether genetic markers can help explain the variation in choice behavior 

across subjects.  We find significant heterogeneity in choice behavior, and subjects with a specific 

genetic polymorphism, MAOA-L, tend to choose the risky option more often than those with 

MAOA-H.  After estimating a computational phenotype, we find that MAOA-L does not affect 

behavior through preferences, but instead through a different channel, known in computational 

neuroscience as the choice comparator.      
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Chapter 1 

Testing Theories of Investor Behavior Using Neural Data 

 

Over the past twenty years, economists have accumulated a large amount of evidence on 

how individual investors manage their financial portfolios over time. Some of this evidence is 

puzzling, in the sense that it is hard to reconcile with the simplest models of rational trading 

(Barberis and Thaler (2003); Campbell (2006)).  Theorists have responded to this challenge by 

constructing new models of investor behavior. Empiricists, in turn, have started testing these 

newly-developed models. 

Most of the empirical work that tests theories of investor behavior uses field data (Barber 

and Odean (2000); Barber and Odean (2001); Choi et al. (2009); Grinblatt and Keloharju (2009)). 

A smaller set of studies uses data from laboratory experiments. The advantage of experimental 

data is that it gives researchers a large degree of control over the trading and information 

environment, which can make it easier to tease theories apart (Plott and Sunder (1988); Camerer 

and Weigelt (1991); Camerer and Weigelt (1993); Weber and Camerer (1998); Bossaerts and 

Plott (2004); Bossaerts et al. (2007)). 

In this paper, we show that another kind of data, namely measures of neural activity 

taken using functional magnetic resonance imaging (fMRI) while subjects trade in an 

experimental stock market, can also be very useful in testing theories of investing behavior. In 

particular, we show that neural data can be used to test theories designed to explain the 

“disposition effect,” the robust empirical fact that individual investors have a greater propensity 

to sell stocks trading at a gain relative to purchase price, rather than stocks trading at a loss1. 

The disposition effect has attracted considerable attention because it has proven 

challenging to explain using simple rational models of trading behavior. This impasse has 

motivated the development of multiple competing alternative theories, both rational and 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 See for example, Shefrin and Statman (1985), Odean (1998), Genesove and Mayer (2001), Grinblatt and 
Keloharju (2001), Feng and Seasholes (2005), Frazzini (2006), Jin and Scherbina (2011). 
2 In this paper, we use the word “behavioral” in two different senses. Most of the time, as in the last 
sentence of this paragraph, we take it to mean “pertaining to behavior”. Occasionally, we take it to mean 
“less than fully rational” or “psychological”. It should be clear from the context which of the two meanings 
is intended. 
3 See Hsu et al. (2005), Kable and Glimcher (2007), Knutson et al. (2007), Hare et al. (2008), Kennerley et 
al. (2008), Chib et al. (2009), Hare et al. (2009), Hsu et al. (2009), Kang et al. (2009), Hare et al. (2010), 
Levy et al. (2010), Litt et al. (2010), Kang et al. (2011). 
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behavioral (Shefrin and Statman (1985); Odean (1998); Barberis and Xiong (2009); Kaustia 

(2010)). One such theory, which is the focus of this paper, is the realization utility hypothesis 

(Shefrin and Statman (1985); Barberis and Xiong (2011)). According to this theory, in addition to 

deriving utility from consumption, investors also derive utility directly from realizing gains and 

losses on the sale of risky assets that they own. For example, if an investor realizes a gain (e.g., 

by buying a stock at $20 and selling it at $40), he receives a positive burst of utility proportional 

to the capital gain. In contrast, if he realizes a loss (e.g., by buying a stock at $20 and selling it at 

$10), he receives a negative burst of utility proportional to the size of the realized loss. The 

presence of realization utility is important because, in combination with a sufficiently high time 

discount rate, it leads investors to exhibit a disposition effect (Barberis and Xiong (2011)). 

Testing among competing theories of phenomena like the disposition effect using field or 

experimental data is difficult because these theories often make similar predictions about 

behavior (Weber and Camerer (1998) is an exception). Furthermore, it is extremely difficult, 

using such data alone, to carry out direct tests of the mechanisms driving behavior (e.g., of 

whether or not people actually receive bursts of utility proportional to realized capital gains). On 

the other hand, a combination of neural measurement and careful experimental design allows for 

direct tests of the extent to which the computations made by the brain at the time of decision-

making are consistent with the mechanisms posited by different models. 

In this paper, we describe the results of an fMRI experiment designed to test the 

hypothesis that subjects experience realization utility while trading in an experimental stock 

market, and that this is associated with trading patterns consistent with the disposition effect. The 

experiment allows us to test several behavioral and neural predictions of the realization utility 

hypothesis.2 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 In this paper, we use the word “behavioral” in two different senses. Most of the time, as in the last 
sentence of this paragraph, we take it to mean “pertaining to behavior”. Occasionally, we take it to mean 
“less than fully rational” or “psychological”. It should be clear from the context which of the two meanings 
is intended. 
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Behaviorally, we find that the average subject in our experiment exhibits a strong and 

significant disposition effect. This stands in sharp contrast to the prediction of a simple rational 

trading model in which subjects maximize the expected value of final earnings. In particular, our 

experimental design induces positive short-term autocorrelation in stock price changes, which 

implies that a risk-neutral rational trader would sell losing stocks more often than winning stocks, 

thereby exhibiting the opposite of the disposition effect. In contrast, the strong disposition effect 

displayed by our subjects is consistent with the existence of realization utility effects.  

When taken literally as a model of the decision-making process, the realization utility 

model also makes several clear predictions about the pattern of neural activity that should be 

observed at different times in the experiment. We describe these predictions in detail in the main 

body of the paper, but summarize them briefly here.  

First, the realization utility model predicts that, at the moment when a subject is making a 

decision as to whether to sell a stock, neural activity in areas of the brain that are known to 

encode the value of potential actions should be proportional to the capital gain that would be 

realized by the trade (i.e. to the difference between the sale price and the purchase price). This 

prediction follows from the fact that, for an individual who experiences realization utility, the 

value of selling a stock depends on the associated capital gain or loss.  Brain regions that have 

been widely shown to correlate with the value of potential actions include the ventromedial 

prefrontal cortex (vmPFC) and the ventral striatum (vSt)3. 

Second, the realization utility model predicts that, across individuals, the strength of the 

disposition effect should be correlated with the strength of the realization utility signal in decision 

value areas such as the vmPFC or the vSt. This follows from the fact that a subject who is 

strongly influenced by realization utility should exhibit both a strong disposition effect and neural 

activity in decision value areas that is highly responsive to the associated capital gain. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 See Hsu et al. (2005), Kable and Glimcher (2007), Knutson et al. (2007), Hare et al. (2008), Kennerley et 
al. (2008), Chib et al. (2009), Hare et al. (2009), Hsu et al. (2009), Kang et al. (2009), Hare et al. (2010), 
Levy et al. (2010), Litt et al. (2010), Kang et al. (2011). 
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Third, the realization utility hypothesis predicts that neural activity in areas that have 

been associated with the encoding of experienced utility (sometimes called “instantaneous 

hedonics”) should increase at the moment that a subject decides to realize a capital gain. Previous 

research in behavioral neuroscience has shown that activity in regions of the vmPFC and the vSt 

also correlates with the reported level of instantaneous experienced utility4. This prediction is 

particularly interesting because it provides the most direct test of the realization utility hypothesis, 

and thus best illustrates the value of neural data for testing theories of financial decision-making.  

Our fMRI measurements reveal patterns of neural activity that are consistent with the 

three neural predictions. This provides novel and strong support for the mechanisms at work in 

the realization utility model, and to our knowledge, provides the first example of how neural 

evidence can be used to test economic models of financial decision-making. We emphasize that 

the results do not imply that realization utility provides a complete description of the forces 

driving investor behavior, even in the context of our experiment. However, the fact that activity in 

the decision-making circuitry corresponds to some of the computations hypothesized by the 

realization utility model provides novel evidence that realization utility plays a significant role in 

the decisions made by our experimental subjects. It further suggests that mechanisms of this kind 

might also be at work in the real-world transactions of individual investors. 

Using neural data to test an economic model is an unusual exercise in the field of 

economics because a common view in the profession is that models make as-if predictions about 

behavior, and are not to be taken as literal descriptions of how decisions are actually made (Gul 

and Pesendorfer (2008); Bernheim (2009)).  In contrast to this view, we adopt a neuroeconomic 

approach which is based on the idea that knowledge about the computational processes that the 

brain uses to make decisions should be of central interest to economists because, since these 

processes describe the actual determinants of observed behavior, they provide valuable insights 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 See Blood and Zatorre (2001), De Araujo et al. (2003), Kringelbach et al. (2003), Rolls et al. (2003), 
Small et al. (2003), McClure et al. (2004), Plassmann et al. (2008). 
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into the drivers of economic behavior (Camerer et al. (2005); Camerer (2007); Fehr and Rangel 

(2011)).  

Our study contributes to the nascent field of neurofinance, which seeks to characterize the 

computations undertaken by the brain to make financial decisions, and to understand how these 

computations map to behavior. Several early contributions are worth highlighting.  Lo and Repin 

(2002) investigated the extent to which professional experience affects the emotional arousal of 

traders in stressful situations, where arousal was measured using skin conductance responses and 

changes in blood pressure.  Kuhnen and Knutson (2005) measured neural responses using fMRI 

during a simple investment task and found that activity in brain regions previously associated 

with emotional processing, such as the nucleus accumbens and the insula, predicted subjects’ 

subsequent willingness to take risks.  Knutson et al. (2008)  took these ideas further by showing 

that exogenous emotional cues (e.g., erotic pictures) could be used to affect investment behavior, 

and that these cues increased activity in the same areas that they identified in their previous study. 

More recently, Bruguier et al. (2010) have shown that neural fMRI measurements of the extent to 

which subjects activate brain areas associated with concrete cognitive skills, such as the ability to 

predict others’ state of mind, might be useful in identifying which subjects would be successful 

traders.  

Our paper contributes to this literature by showing, for the first time, that a combination 

of fMRI neural measurements and careful experimental design can be used to test the validity of 

specific economic theories of financial decision making. Our work also contributes more broadly 

to the rapidly growing field of neuroeconomics, which seeks to characterize the computations 

made by the brain in different types of decisions, ranging from simple choices to choices 

involving risk, self-control and complex social interactions. For recent reviews, see Fehr and 

Camerer (2007), Glimcher et al. (2008), Rangel et al. (2008), Bossaerts (2009), Kable and 

Glimcher (2009), Rangel and Hare (2010), and Fehr and Rangel (2011).  
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The paper is organized as follows. Section I presents some background information about 

the disposition effect and realization utility. Section II describes the experimental design and the 

predictions of the realization utility hypothesis. Section III provides a detailed description of how 

the neural predictions can be tested using fMRI. Section IV describes the results. Section V 

briefly concludes. 

 

I. Background: The Disposition Effect and the Realization Utility Model 

  

 Using an argument based on Kahneman and Tversky’s (1979) prospect theory, Shefrin 

and Statman (1985) predict that individual investors will have a greater propensity to sell stocks 

trading at a gain relative to purchase price, rather than stocks trading at a loss. They label this the 

“disposition effect” and provide some evidence for it using records of investor trading. More 

detailed evidence for the effect can be found in Odean (1998), who analyzes the trading activity, 

from 1987 to 1993, of 10,000 households with accounts at a large discount brokerage firm. The 

phenomenon has now been replicated in several other large databases of trading behavior. 

It will be useful to explain Odean’s (1998) methodology in more detail because we will 

adopt a similar methodology in our own analysis. For any day on which an investor in Odean’s 

(1998) sample sells shares of a stock, each stock in his portfolio on that day is placed into one of 

four categories. A stock is counted as a “realized gain” (“realized loss”) if it is sold on that day at 

a price that is higher (lower) than the average price at which the investor purchased the shares. A 

stock is counted as a “paper gain” (“paper loss”) if its price is higher (lower) than its average 

purchase price, but it is not sold on that day. From the total number of realized gains and paper 

gains across all accounts over the entire sample, Odean (1998) computes the Proportion of Gains 

Realized (PGR): 

PGR = # of realized gains
# of realized gains + # of paper gains
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In words, PGR computes the number of gains that were realized as a fraction of the total number 

of gains that could have been realized. A similar ratio, PLR, is computed for losses: 

PLR = # of realized losses
# of realized losses + # of paper losses

 

The disposition effect is the empirical fact that PGR is significantly greater than PLR. Odean 

(1998) reports PGR = 0.148 and PLR =  0.098. 

 While the disposition effect is a robust empirical phenomenon, its causes remain unclear. 

This is due, in large part, to the fact that standard rational models of trading have had trouble 

capturing important features of the data. Consider, for example, an information model in which 

investors sell stocks with paper gains because they have private information that these stocks will 

subsequently do poorly, and hold on to stocks with paper losses because they have private 

information that these stocks will rebound. This hypothesis is inconsistent with Odean’s finding 

that the average return of the prior winners sold by investors is 3.4% higher, over the next year, 

than the average return of the prior losers they hold on to. Another natural model involves taking 

into account the favorable treatment of losses by the tax code. However, this model also fails to 

explain the disposition effect because tax-loss selling predicts a greater propensity to sell stocks 

associated with paper losses. Another model attributes the disposition effect to portfolio 

rebalancing of the kind predicted by a standard framework with power utility preferences and 

i.i.d. returns. However, under this hypothesis, rebalancing is the “smart” thing to do, which 

implies that we should observe a stronger disposition effect for more sophisticated investors. In 

contrast to this prediction, it is less sophisticated investors who exhibit a stronger disposition 

effect (Dhar and Zhu (2006)). 

 Early on, researchers proposed behavioral economics models of the disposition effect, 

which can potentially explain the stylized facts that the rational explanations just described 

cannot explain. One popular model assumes that investors have an irrational belief in mean-

reversion (Odean (1998); Weber and Camerer (1998); Kaustia (2010)). If investors believe that 
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stocks that have recently done well will subsequently do poorly, and that stocks that have recently 

done poorly will subsequently do well, their optimal trading strategy would lead to a disposition 

effect. We label such beliefs “irrational” because they are at odds with Odean’s (1998) finding 

that the winner stocks investors sell subsequently do well, not poorly. While the mean-reversion 

hypothesis is appealing for its simplicity, and is consistent with some evidence from psychology 

on how people form beliefs5, some studies cast doubt on its empirical validity.  Weber and 

Camerer (1998) ask subjects to trade stocks in an experimental stock market, and find that they 

exhibit a disposition effect in their trading. In order to test the mean-reversion hypothesis, they 

add a condition in which subjects’ holdings are exogenously liquidated at full value at random 

times, after which subjects are asked to reinvest the proceeds across stocks in any way they like. 

Note that if subjects are holding on to stocks with paper losses because of a belief in mean-

reversion, we would expect them to re-establish their positions in these stocks, but in fact, they do 

not.6 

Another popular behavioral economics model posits that the disposition effect results 

from prospect theoretic preferences (Kahneman and Tversky (1979)). Prospect theory is a 

prominent theory of decision-making under risk which assumes that individuals make decisions 

by computing the utility of potential gains and losses measured relative to a reference point that is 

often assumed to be the status quo, and that utility is concave over gains and convex over losses. 

At first sight, it appears that prospect theory preferences may be helpful for understanding the 

disposition effect. If an investor is holding a stock that has risen in value, he may think of it as 

trading at a gain. Moreover, if the concavity of the value function over gains induces risk 

aversion, this may lead him to sell the stock. Conversely, if the convexity of the value function 

over losses induces risk-seeking, he may be inclined to hold on to a stock that has dropped in 

value. Contrary to this intuition, Barberis and Xiong (2009) have recently shown that it is 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  For a review, see Rabin (2002).	  
6 Odean (1998) and Kaustia (2010) provide additional evidence that is inconsistent with the mean-reversion 
hypothesis.	  
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surprisingly difficult to derive behavior consistent with the disposition effect using this model. In 

fact, they show that an investor who derives prospect theory utility from the annual trading profit 

on each stock that he owns will often exhibit the opposite of the disposition effect. Further 

theoretical arguments against this model have been provided by Kaustia (2010), who has shown 

that it predicts that investors’ propensity to sell a stock depends on the magnitude of the 

embedded paper gain in a way that is inconsistent with the empirical evidence. 

 Another behavioral model of the disposition effect is based on the realization utility 

hypothesis (Shefrin and Statman (1985); Barberis and Xiong (2011)). The central assumption of 

this model is that investors derive direct utility from realizing capital gains and losses on risky 

assets that they own: they experience a positive burst of utility when they sell an asset at a gain 

relative to purchase price, where the amount of utility depends on the size of the realized gain; 

and a negative burst when they sell an asset at a loss relative to purchase price, where the amount 

of disutility again depends on the size of the loss realized. Importantly, this hypothesis states that 

trades have a direct utility impact on investors, not just an indirect one through their effect on 

lifetime wealth and consumption.7	   Barberis and Xiong (2011)	  show that linear realization utility, 

combined with a sufficiently high time discount rate, leads to a disposition effect. The intuition is 

simple. If an investor derives pleasure from realizing capital gains and, moreover, is impatient, he 

will be very keen to sell stocks at a gain. Conversely, if he finds it painful to sell stocks at a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7	  Barberis and Xiong (2011) speculate that realization utility might arise because of the way people think 
about their investing history. Under this view, some investors – in particular, less sophisticated investors -- 
do not think about their investing history in terms of overall portfolio return, but rather as a series of 
investing “episodes,” each of which is characterized by three things: the identity of the asset, the purchase 
price, and the sale price. “I bought GE at $40 and sold it at $70” might be one such episode, for example. 
According to this view, an investor who sells a stock at a gain feels a burst of positive utility right then 
because, through the act of selling, he is creating a positive new investing episode. Similarly, if he sells a 
stock at a loss, he experiences a burst of disutility: by selling, he is creating a negative investing episode.  
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capital loss and also discounts future utility at a high rate, he will delay selling losing stocks for 

as long as possible.8  

While the realization utility hypothesis makes predictions about behavior that are 

consistent with the disposition effect, as well as with other empirical patterns 9, it is based on 

assumptions that depart significantly from those of traditional models. In particular, its 

predictions rely on the assumption that utility depends not only on consumption, but also on 

capital gains and losses realized from the sale of specific assets. Given the unusual nature of this 

assumption, it seems especially important to carry out direct tests of the extent to which the 

hypothesized source of utility is actually computed by subjects and affects their decisions. In the 

rest of the paper we show how this can be done using a combination of fMRI measures of neural 

activity and careful experimental design.  

    

II. Experimental Design and Predictions 

 

In this section, we first describe the experimental stock market that we set up to test the 

realization utility model. We then lay out the specific behavioral and neural predictions of the 

theory that we test. 

 

A. Design 

The design of the experimental stock market builds directly on an earlier non-neural 

experiment conducted by Weber and Camerer (1998). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Time discounting is not a critical part of the realization utility hypothesis. The disposition effect also 
follows from realization utility combined with an S-shaped value function, as in prospect theory (Barberis 
and Xiong, 2009). Adopting this interpretation of the realization utility hypothesis would not significantly 
affect the analysis that follows.	  
9	   Barberis and Xiong (2011) show that realization utility can shed light on many empirical phenomena, not 
just on the disposition effect. Some of the other applications they discuss are the poor trading performance 
of individual investors, the greater volume of trading in bull markets than in bear markets, the individual 
investor preference for volatile stocks, and the low average return of volatile stocks. 
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Subjects are given the opportunity to trade three stocks – stock A, stock B, and stock C – 

in an experimental market. The experiment consists of two identical sessions separated by a one-

minute break. Each session lasts approximately 16 minutes and consists of 108 trials. We use t to 

index the trials within a session.10 

 At the beginning of each session, each subject is given $350 in experimental currency 

and is required to buy one share of each stock. The initial share price for each stock is $100; after 

the initial purchase, each subject is therefore left with $50. Every trial t > 9 consists of two parts: 

a price update and a trading decision, each of which corresponds to a separate screen that the 

subject sees (Figure 1). In the price update part, one of the three stocks is chosen at random and 

the subject is shown a price change for this stock. Note that stock prices only evolve during the 

price update screens; as a result, subjects see the entire price path for each stock. In the trading 

part, one of the three stocks is again chosen at random and the subject is asked whether he wants 

to trade the stock. Note that no new information is revealed during this part.  

We split each trial into two parts so as to temporally separate different computations 

associated with decision-making. At the price update screen, subjects are provided with 

information about a change in the price of one of the three stocks, but do not have to compute the 

value of buying or selling the stock, both because they are not allowed to make decisions at this 

stage, and also because they do not know which of the three assets will be selected for trading in 

the next screen. At the trading screen the opposite situation holds: subjects need to compute the 

value of buying or selling a stock, but do not need to update their beliefs about the price process 

since no new information about prices is provided.  

Trials 1 through 9 consist only of a price update stage; i.e., subjects are not given the 

opportunity to buy or sell during these trials. We designed the experiment in this way so that 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10	  We split our experiment into two sessions in order to avoid running the fMRI machine for too long 
without a break, as this could lead to potential medical risks for the subjects.	  	  
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subjects can accumulate some information about the three stocks before having to make any 

trading decisions. 

 Each subject is allowed to hold a maximum of one share and a minimum of zero shares 

of each stock at any point in time. In particular, short-selling is not allowed. The trading decision 

is therefore reduced to deciding whether to sell a stock (conditional on holding it), or deciding 

whether to buy it (conditional on not holding it). The price at which a subject can buy or sell a 

stock is given by the current market price of the stock. 

 The price path of each stock is governed by a two-state Markov chain with a good state 

and a bad state. The Markov chain for each stock is independent of the Markov chains for the 

other two stocks. Suppose that, in trial t, there is a price update for stock i. If stock i is in the good 

state at that time, its price increases with probability 0.55 and decreases with probability 0.45. 

Conversely, if it is in the bad state at that time, its price increases with probability 0.45 and 

decreases with probability 0.55. The magnitude of the price change is drawn uniformly from {$5, 

$10, $15}, independently of the direction of the price change. 

 The state of each stock changes over time in the following way. Before trial 1, we 

randomly assign a state to each stock. If the price update in trial t >1 is not about stock i, then the 

state of stock i in trial t remains the same as its state in the previous trial, t-1. If the price update in 

trial t >1 is about stock i, then the state of stock i in this trial remains the same as in trial t-1 with 

probability 0.8, but switches with probability 0.2. In mathematical terms, if is 

the state of stock i in trial t, then  if the time t price update is not about stock i, whereas 

if the time t price update is about stock i, the state switches as follows: 

 

si,t ! {good, bad}

si,t = si,t!1

! si,t+1=good! si,t+1=bad!
si,t=good! "#$! "#%!
si,t=bad! "#%! "#$!
!
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The states of the stocks are never revealed to the subjects: they have to infer them from the 

observed price paths. To ease comparison of trading performance across subjects, the same set of 

realized prices is used for all subjects. 

A key aspect of our design is that, conditional on the information available to subjects, 

each of the stocks exhibits positive short-term autocorrelation in its price changes. If a stock 

performed well on the last price update, it was probably in a good state for that price update. 

Since it is highly likely (probability 0.8) to remain in the same state for its next price update, its 

next price change is likely to also be positive. 

 At the end of each session, we liquidate subjects’ holdings of the three stocks and record 

the cash value of their position. We give subjects a financial incentive to maximize the final value 

of their portfolio at the end of each session. Specifically, if the total value of a subject’s cash and 

risky asset holdings at the end of session 1 is $X, in experimental currency, and the total value of 

his cash and risky asset holdings at the end of session 2 is $Y, again in experimental currency, 

then his take-home pay in actual dollars is 15 + (X+Y)/24.11 Subjects’ earnings ranged from 

$43.05 to $57.33 with a mean of $52.57 and a standard deviation of $3.35. 

 In order to avoid liquidity constraints, we allow subjects to carry a negative cash balance 

in order to purchase a stock if they do not have sufficient cash to do so at the time of a decision. If 

a subject ends the experiment with a negative cash balance, this amount is subtracted from the 

terminal value of his portfolio. The large cash endowment, together with the constraint that 

subjects can hold at most one unit of each stock at any moment, was sufficient to guarantee that 

no one ended the experiment with a negative portfolio value, or was unable to buy a stock 

because of a shortage of cash during the experiment. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 In other words, we average X and Y to get (X+Y)/2, convert the experimental currency to actual dollars 
using a 12:1 exchange rate, and add a $15 show-up fee. 
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N=28 Caltech subjects participated in the experiment (22 male, age range 18 – 60).12 All 

subjects were right-handed and had no history of psychiatric illness, and none were taking 

medications that interfere with fMRI. The exact instructions given to subjects at the beginning of 

the experiment are included in the Appendix. The instructions carefully describe the stochastic 

structure of the price process, as well as all other details of the experiment. Before entering the 

scanner, the subjects underwent a practice session of 25 trials to ensure familiarity with the 

market software. 

Finally, note that, in our experiment, there is a straightforward way to measure the extent 

to which a subject exhibits a disposition effect in his trading. We simply adapt Odean’s (1998) 

methodology, described in Section I, in the following way. Every time a subject faces a decision 

about selling a stock, we classify his eventual action as a paper gain (loss) if the stock’s current 

price is above (below) the purchase price and he chooses not to sell; and as a realized gain (loss) 

if the stock’s current price is above (below) the purchase price and he chooses to sell. We then 

count up the number of paper gains, paper losses, realized gains, and realized losses over all 

selling decisions faced by the subject and compute the PGR and PLR measures described earlier. 

We assign the subject a disposition effect measure of PGR-PLR. When this measure is positive 

(negative), the subject exhibits (the opposite of) a disposition effect. 

 

B. Optimal trading strategy 

 We now characterize the optimal trading strategy for a risk-neutral Bayesian investor 

who is maximizing the expected value of his take-home earnings – from now on, we refer to such 

an investor as an “expected value” investor.  The optimal strategy of such an investor is to sell (or 

not buy) a stock when he believes that it is more likely to be in the bad state than in the good 

state; and to buy (or hold) the stock when he believes that it is more likely to be in the good state.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 One additional subject participated in the experiment but was excluded from further analyses because his 
head motion during the scanning exceeded a pre-specified threshold, thereby interfering with the reliability 
of the neural measurements.	  
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Formally, let  be the price of stock i in trial t, after any price update about the stock, and let 

 be the probability that a Bayesian investor, after seeing the 

price update in trial t, would assign to stock i being in the good state in trial t. Also, let zt take the 

value 1 if the price update in trial t indicates a price increase for the stock in question; and -1 if 

the price update indicates a price decrease. Then  if the price update in trial t was not 

about stock i; but if the price update in trial t was about stock i, then: 

(1) 

 

 

 

The optimal strategy for an expected value investor is to sell (if holding) or not buy (if not 

holding) stock i in trial t when ; and to hold or buy it otherwise. 

 Note that a trader who follows the optimal strategy described above will exhibit the 

opposite of the disposition effect. If a stock performed well on the last price update, it was 

probably in a good state for that price update. Since it is very likely to remain in the same state 

for its next price update, its next price change is likely to also be positive. The optimal strategy 

therefore involves selling winner stocks relatively rarely, and losing stocks more often, thereby 

generating the reverse of the disposition effect. 

 Of course, it is difficult for subjects to do the exact calculation in equation (1) in real time 

during the experiment. However, it is relatively straightforward for subjects to approximate the 

optimal strategy: they need simply keep track of each stock’s most recent price changes, and then 

hold on to stocks that have recently performed well while selling stocks that have recently 

performed poorly. The fact that a stock’s purchase price is reported on the trading screen makes it 

particularly easy to follow an approximate strategy of this kind: subjects can simply use the 

pi,t

qi,t = Pr(si,t = good | pi,t, pi,t!1,..., pi,1)

qi,t = qi,t!1

qi,t < 0.5

qi,t (qi,t!1, zt ) =
Pr(zt | si,t = good)*Pr(si,t = good | qi,t!1)

qi,t!1 Pr(zt | si,t!1 = good)+ (1! qi,t!1)Pr(zt | si,t!1 = bad)

=
(0.5+ 0.05zt )*[0.8*qi,t!1 + 0.2*(1! qi,t!1)]

qi,t!1[0.8*(0.5+ 0.05zt )+ 0.2*(0.5! 0.05zt )]+ (1! qi,t!1)[0.2*(0.5+ 0.05zt )+ 0.8*(0.5! 0.05zt )]
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difference between the current market price and the purchase price as a proxy for the stock’s 

recent performance.13 

  

C. Behavioral and neural predictions of the realization utility model 

 We now lay out the behavioral and neural predictions of the realization utility model, and 

contrast them with the predictions made by the expected value agent model. 

 Consider the behavioral predictions first. Since the experimental stock prices exhibit 

short-term momentum, an expected value investor will exhibit the opposite of the disposition 

effect: for the actual price process that our subjects see, the value of the PGR-PLR measure of the 

disposition effect under the optimal trading strategy for an expected value investor is -0.76. In 

other words, such an investor will have a much greater propensity to realize losses than to realize 

gains. By contrast, a trader who experiences bursts of realization utility and who discounts future 

utility at a high rate will sell winner stocks more often than the expected value trader and loser 

stocks less often. After all, he is keen to realize capital gains as soon as possible and to postpone 

realizing capital losses as long as possible. This leads to our first prediction. 

 

Prediction 1 (Behavioral): For an expected value investor, the value of the PGR-PLR measure is 

given by -0.76. On the other hand, for a subject who experiences bursts of realization utility, the 

value of PGR-PLR is greater than -0.76. 

 

 We now turn to the neural predictions made by the two models. As noted earlier, a 

maintained assumption here is that the theories are not only making predictions about behavior, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 Our rational benchmark assumes risk-neutrality because the monetary risk in our experiment is small. We 
have also considered the case of risk aversion, however, and have concluded that its predictions do not 
differ significantly from those of risk neutrality. In some frameworks, risk aversion can generate a 
disposition effect through rebalancing motives. This is not the case in our experiment, however, because 
the volatility of stock price changes is independent of the level of the stock price. Furthermore, any 
rebalancing motives would be of second-order importance relative to time variation in the mean stock 
return. 
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but are also describing the key computations that subjects have to undertake in order to make 

decisions.  

 The first two neural predictions build on a basic finding from the field of decision 

neuroscience. A sizable number of studies have found evidence consistent with the idea that in 

simple choice situations the brain makes decisions by assigning values (often called “decision 

values”) to the options under consideration, and then comparing them to make a choice14.  These 

value signals are thought to reflect the relative value of taking the action or option under 

consideration (e.g., sell a stock) versus staying with the status quo (e.g., don’t sell it) (De Martino 

et al. (2006); Hutcherson et al. (2011)). A significant body of work, using various neural 

measurement techniques, has shown that activity in regions of the ventromedial prefrontal cortex 

(vmPFC), and often also the ventral striatum (vSt), correlates with the decision values of options 

across a range of choices. For example, a recent study shows that, when subjects have to make 

purchasing decisions for goods such as monetary lotteries, foods, or DVDs, activity in the vmPFC 

correlates with behavioral measures of their willingness to pay (their “decision value”) taken 

prior to the choice task (Chib et al. (2009)). See Rangel and Hare (2010) for an up-to-date review 

of the evidence. 

 Now consider the decision value signals that would be computed at the time of making a 

selling decision by an individual who makes choices according to the expected value model. In 

the context of our experiment, the decision value of selling a stock is given by the value of selling 

the stock minus the value of holding it. For the expected value investor, the value of selling the 

stock is zero: if he sells it, he will no longer own any shares of it, and so it can no longer generate 

any value for him. In contrast, the value of holding the stock can be approximated by the stock’s 

expected price change on its next price update: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14	  See, for example, Hsu et al. (2005), Padoa-Schioppa and Assad (2006), Kable and Glimcher (2007), 
Knutson et al. (2007), Tom et al. (2007), Hare et al. (2008), Kennerley et al. (2008), Chib et al. (2009), 
Hare et al. (2009), Hsu et al. (2009), Hare et al. (2010), Levy et al. (2010), Litt et al. (2010), Rangel and 
Hare (2010).	  
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Et[!pi,t+1 | qi,t,  !pi,t+1 " 0]= 0.6(2qi,t #1).  

        

It follows that the decision value signal at the time of making a selling decision is given by 

0-0.6(2qi,t-1), or 0.6(1-2qi,t); we will refer to this quantity throughout the paper as the net expected 

value of selling, or NEV.  Note that this is only an approximation because the exact value of 

holding a stock is the stock’s expected cumulative price change until the subject decides to sell it. 

However, this approximation has little effect on our later results because the value of holding a 

stock until its next price change is highly correlated with the value of holding the stock until it is 

actually optimal to sell it (the latter quantity can be computed by simulation). 

 Now consider the decision value signal that would be computed at the time of making a 

selling decision by an individual who makes choices according to the realization utility model. In 

particular, consider a simple form of the model in which subjects maximize the sum of expected 

discounted realized capital gains and losses. For such a trader, the value of selling is linearly 

proportional to the capital gain or loss, given by , where c is the purchase price, or cost 

basis. However, the expected impact of holding the stock on realization utility is approximately 

zero, as long as the discount rate is sufficiently high. Thus, for such an investor, the decision 

value of selling should be linearly related to .15   This, together with the fact that decision 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15	  We say that the value of holding a stock is “approximately” zero for a realization utility investor 
because, in principle, there is some value to holding, namely expected future realization utility flows. 
However, under the realization utility hypothesis, the trader is essentially myopic – he discounts future 
utility flows at a high rate. To a first approximation, then, the value of holding is zero. It may initially seem 
surprising that a subject would discount future utility at a high rate in the context of a 30-minute 
experiment. However, the literature on hyperbolic discounting suggests that discounting can be steep even 
over short intervals, perhaps because people distinguish sharply between rewards available right now, and 
rewards available at all future times. Furthermore, what may be important in our experiment is not so much 
calendar time, as transaction time. A subject who can trade stock B now may view the opportunity to trade 
it in the future as a very distant event -- one that is potentially dozens of screens away – and hence one that 
he discounts heavily. Finally, we note that discounting is not a critical part of our hypothesis. The 
disposition effect also follows from a model that combines realization utility with an S-shaped utility 
function, as in prospect theory. To a first approximation, this model would produce the same decision value 
as the discounting-based model. The reason is that, under an S-shaped utility function, the utility of selling 
a stock at a gain (loss) immediately is significantly higher (lower) than the expected utility of holding on to 
it. 

pi,t ! c

pi,t ! c
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value signals have been found to be reliably encoded in the vmPFC and the vSt, leads to the next 

prediction.  

 

Prediction 2 (Neural): For expected value traders, activity in the regions of the vmPFC and the 

vSt associated with the computation of decision values should be linearly proportional to the 

NEV, 0.6(1-2qi,t), at the time of making selling decisions, and thus independent of the cost basis. 

In contrast, for subjects who experience realization utility proportional to realized capital gains 

and losses, activity in these areas of the vmPFC and the vSt should be linearly related to the 

realizable gain or loss, . 

 

The previous arguments predict that traders who place a large weight on realization utility when 

making decisions should exhibit neural activity in the vmPFC and the vSt that is more strongly 

correlated with the realizable capital gains or losses.  At the same time, subjects with a larger 

weight on realization utility when making decisions should exhibit a stronger disposition effect. It 

follows that the degree to which vmPFC and vSt activity correlates with the realizable capital 

gain should be correlated, across subjects, with the strength of the disposition effect in their 

trading.   

 

Prediction 3 (Neural): The degree to which vmPFC and vSt activity correlates with the realizable 

capital gain should be correlated, across subjects, with the strength of the disposition effect in 

their trading.  

 

The final neural prediction is qualitatively different, in that it seeks to test directly if the 

subject experiences a burst of realization utility at the time of selling a stock that is proportional 

to the realized capital gain. As before, we can test this prediction using fMRI by building on 

pi,t ! c
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previous work in neuroscience which has shown that activity in regions of the vSt and the vmPFC 

correlates reliably with reports of subjective pleasure generated by a wide variety of stimuli – 

including music, paintings, attractive faces, food, and wine.16   It follows that, if realizing a 

capital gain generates a positive burst of experienced utility for the investor, it should increase 

neural activity in these areas precisely at the moment that the decision is made. 

 

Prediction 4 (Neural): Under the realization utility hypothesis, neural activity in areas known to 

encode instantaneous experienced utility, such as the vSt or the vmPFC, should increase at the 

precise moment that individuals decide to realize a capital gain, and decrease at the moment they 

decide to realize a capital loss.  

 

III. fMRI data collection and analysis  

 

In this section, we provide a primer on how fMRI measures of neural activity are 

collected and analyzed. For more details, see Huettel et al. (2004), Ashby (2011), and Poldrack et 

al. (2011). 

 

A. fMRI data collection and measurement 

We collected measures of neural activity over the entire brain using BOLD-fMRI, which 

stands for blood-oxygenated level dependent functional magnetic resonance imaging. BOLD-

fMRI measures changes in local magnetic fields that result from local inflows of oxygenated 

hemoglobin and outflows of de-oxygenated hemoglobin that occur when neurons fire. fMRI 

provides measures of the BOLD response of relatively small “neighborhoods” of brain tissue 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 See, for example, Blood and Zatorre (2001), De Araujo et al. (2003), Kringelbach et al. (2003), Rolls et 
al. (2003), Small et al. (2003), McClure et al. (2004), Plassmann et al. (2008) 
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known as voxels, and is thought to measure the sum of the total amount of neural firing into that 

voxel as well as the amount of neuronal firing within the voxel. 17 

One important complication is that the hemoglobin responses measured by BOLD-fMRI 

are slower than the associated neuronal responses. Specifically, although the bulk of the neuronal 

response takes place quickly, subsequent BOLD measurements are affected for up to 24 seconds.  

Figure 2A provides a more detailed illustration of the nature of the BOLD response. In particular, 

it shows the path of the BOLD signal in response to 1 arbitrary unit of neural activity of 

infinitesimal duration at time zero. The function plotted here is called the canonical hemodynamic 

response function (HRF). It is denoted by h(τ), where τ is the amount of elapsed time since the 

neural activity impulse, and has been shown to approximate well the pattern of BOLD responses 

for most subjects, brain areas, and tasks. 

Fortunately, the BOLD response has been shown to combine linearly across multiple 

sources of neural activity (Boynton et al. (1996)).  This property, along with a specific functional 

form of the HRF, allows us to construct a mapping from neural activity to BOLD response so that 

we can control for BOLD responses that are generated by neural activity over the previous 24 

seconds.  In particular, if the level of neural activity at any particular time is given by a(t), then 

the level of BOLD activity at any instant t is well approximated by  

 

   ! ! = ℎ ! ! ! − ! !"!
! , 

 

which is the convolution between the HRF and the neural inputs. The integral can be interpreted 

in a straightforward way:  it is simply a lagged sum of all the BOLD responses triggered by 

previous neural activity. This is illustrated in Fig. 2B, which depicts a hypothetical path of neural 

activity, together with the associated BOLD response. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 Note that the neural activity measured by fMRI in a 1-mm3 cube (about the size of a grain of salt) 
represents the joint activity of between 5,000 to 40,000 neurons, depending on the area of the brain. 
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 We acquire two types of MRI data during the experiment in a 3.0 Siemens Tesla Trio 

MRI scanner with an eight-channel phased array coil. First, we acquire BOLD-fMRI data while 

the subjects perform the experimental task with a voxel size of 3 mm3.  We acquire data for the 

entire brain (~ 100,000 voxels) every 2.75 seconds.18 We also acquire high-resolution anatomical 

scans that we use mainly for realigning the brains across subjects and for localizing the brain 

activity identified by our analyses.19 

 

B. fMRI data pre-processing 

 

Before the BOLD data can be analyzed to test our hypotheses, it has to be converted into 

a usable format. This requires the following steps, which are fairly standard – see Huettel et al. 

(2004), Ashby (2011), & Poldrack et al. (2011)  – and were implemented using a specialized but 

commonly used software package called SPM5 (Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, London, UK). 

First, images are corrected for slice acquisition time within each voxel. This is necessary 

because the scanner does not collect data on all brain voxels simultaneously. This simple step, 

which involves a non-linear interpolation, temporally realigns the data across all voxels.  

Second, we correct for head motion to ensure that the time series of BOLD measurements 

recorded at a specific spatial location within the scanner was always associated with the same 

brain location throughout the experiment.20   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 More precisely, we acquired gradient echo T2*-weighted echoplanar (EPI) images with BOLD contrast. 
To optimize functional sensitivity in the orbitofrontal cortex (OFC), a key region of interest, we acquired 
the images in an oblique orientation of 30° to the anterior commissure–posterior commissure line 
(Deichmann et al. (2003)).  Each volume of images had 45 axial slices.  A total of 692 volumes were 
collected over two sessions. The imaging parameters were as follows: echo time, 30 ms; field of view, 192 
mm; in-plane resolution and slice thickness, 3mm; repetition time, 2.75 s. 
19 More precisely, we acquired high-resolution T1-weighted structural scans (1 x 1 x 1 mm) for each 
subject, which were coregistered with their mean EPI images and averaged across subjects to permit 
anatomical localization of the functional activations at the group level. 
 
20 BOLD measurements were corrected for head motion by aligning them to the first full brain scan  and 
normalizing to the Montreal Neurological Institute’s EPI template.  This entails estimating a six-parameter 
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 Third, we realign the BOLD responses for each individual into a common 

neuroanatomical frame (the standard Montreal Neurological Institute EPI template). This step, 

called spatial normalization, is necessary because brains come in different shapes and sizes and, 

as a result, a given spatial location maps to different brain regions in different subjects. Spatial 

normalization involves a non-linear re-shaping of the brain to maximize the match with a target 

template.  Although the transformed data are not perfectly aligned across subjects due to 

remaining neuroanatomical heterogeneity, the process suffices for the purposes of this study. 

Furthermore, any imperfections in the re-alignment process introduce noise that reduces our 

ability to detect neural activity of interest. 

 Fourth, we also spatially smooth the BOLD data for each subject by making BOLD 

responses for each voxel a weighted sum of the responses in neighboring voxels, with the weights 

decreasing with distance.21 This step is necessary to make sure that the error structure of the data 

conforms to the normality assumptions about the error structure of the regression models, 

described below, that we use to test our hypotheses. 

 Finally, we remove low-frequency signals that are unlikely to be associated with neuronal 

responses to individual trials.22   

	  
	  
C. fMRI main data analyses 

 

The key goal of our exercise is to identify regions of the brain, given by collections of 

spatially contiguous voxels, called clusters, where the BOLD response reflects neural activity that 

implements the computations of interest (e.g., realization utility computations). This is 

complicated by the fact that, since every voxel contains thousands of neurons, the BOLD 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
model of the head motion (3 parameters for center movement, and 3 parameters for rotation) for each 
volume, and then removing the motion using these parameters.  For details, see Friston et al. (1996).	  
21 Smoothing was performed using an 8 mm full-width half-maximum Gaussian kernel. 
22 Specifically, we applied a high-pass temporal filter to the BOLD data with a cut-off of 128 seconds.	  
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responses can be driven by multiple signals. Fortunately, the linear properties of the BOLD signal 

allow for the identification of the neural signals of interest using standard linear regression 

methods. 

 The general procedure is straightforward, and will be familiar to most economists. The 

analysis begins by specifying two types of variables that might affect the BOLD response: target 

computations and additional controls. The target computations reflect the signals that we are 

looking for (e.g., a realization utility signal at the time of selling a stock). They are specified by a 

time series si(t) describing each signal of interest. For each of these signals, let Si(t) denote the 

time series that results from convolving the signal si(t) with the HRF, as described above. The 

additional controls, denoted by cj(t), are other variables that might affect the BOLD time series 

(e.g., residual head movement or time trends). These are introduced to further clean up the noise 

inherent in the BOLD signal, but are not explicitly used in any of our tests. The control variables 

are not convolved with the HRF because they reflect parameters that affect the measured BOLD 

responses, and not neural activity that triggers a hemodynamic response.23 

 The linearity of the BOLD signal implies that the level of BOLD activity in any voxel v 

should be given by 

!! ! = constant + !!!!!(!)! + !!!!! ! + !(!)! , 

 

where !(!) denotes AR(1) noise. This model is estimated independently in each of the brain’s 

voxels using standard regression methods.  

 Our hypotheses can then be restated as tests about the coefficients of this regression 

model: signal i is said to be associated with activity in voxel v only if !!! is significantly different 

from zero. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
23 For example, linear trends are often included because the scanner heats up with continuous operation and 
this induces a linear change in the measured BOLD responses. 
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 Two additional considerations apply to most fMRI studies, including the present one.  

First, we are interested in testing hypotheses about the distribution of the signal coefficients in the 

population, and not about individual coefficients. This requires estimating a random effects 

version of the linear model specified above which, given the size of a typical fMRI dataset, is 

computationally intensive. Fortunately, it has been shown that there is a straightforward shortcut 

that provides a good approximation to the full mixed effects analysis (Penny et al. (2006)).  It 

involves estimating the parameters separately for each individual subject, averaging them across 

subjects, and then performing t-tests. This is the approach we follow here. 

 Second, given that these tests are carried out in each of the ~100,000 voxels in the brain, 

there is a serious concern about false-positives, and multiple comparison corrections are 

necessary. Several approaches have been proposed in the fMRI literature to address this problem, 

many of which rely on the idea that purely random activations are unlikely to come in sizable 

clusters.24 Here, we follow a common approach in the literature, which consists of combining a 

sizable statistical threshold for the test in each voxel, given by p<0.001 uncorrected, together with 

a minimal cluster size of 15 voxels.  These two criteria, taken together, severely reduce the 

likelihood of false positives. 

 The analyses described so far involve searching for neural correlates of signals of interest 

across the entire brain and are therefore known as whole brain analyses. Another popular and 

very useful type of exercise, which we use here, is a “region of interest” (ROI) analysis.   Put 

simply, this analysis differs from a whole-brain analysis because it first restricts the set of voxels 

that is being analyzed. The most common types of ROI analyses involve 1) the measurement of 

signal strength in a pre-specified ROI (in other words, in a pre-specified subset of voxels), 2) 

computing the correlation across subjects between measures of signal strength in a particular ROI 

and behavioral or psychological measures, and 3) characterizing the time course of BOLD 

responses in an ROI for a particular event (e.g, selling a stock.)  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
24 As noted earlier, a cluster is a set of spatially contiguous voxels. 
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 The measurement of signal strength in pre-specified ROIs is a straightforward extension 

of the whole brain analysis. In this case, a general linear model is estimated only for the voxels in 

the ROI, and then a response estimate for the signal of interest is computed for every subject by 

averaging over the estimated coefficients over all of the voxels in the ROI. The distribution of 

average estimates for the group can then be compared across signals of interest using t-tests.  

 The characterization of the time course of BOLD responses in specific ROIs and around 

particular events is a little more complicated, but is needed in order to conduct a test of Prediction 

4. It requires the specification of a version of the GLM described above that uses a series of 

“event-locked” dummy variables. The nature of this model is most easily explained with a 

concrete example. Suppose that we are interested in characterizing the time course of changes in 

BOLD activity that follows the rapid presentation of two types of images to subjects, type A and 

B. We then define a series of dummy variables 

 

! !|!, ! = 1 if  stimulus  x  was  presented  at  ! − !
0 otherwise

 

 

for x=A,B, n=1,…., T. The general model is then specified as 

 

!! ! = constant + !!,!!(!|!, !)!,! + ! ! . 

 

The estimate of the change in the BOLD response n seconds after the presentation of stimulus x is 

then given by !!,!. 

 

IV. Results 

 

A. Behavioral predictions 
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 We begin our test of Prediction 1 by computing the strength of the disposition effect for 

each subject using the PGR-PLR measure described at the end of Section IIA. We find that the 

average PGR and PLR across subjects are .412 and .187, respectively. This implies an average 

PGR-PLR value of 0.225, which is significantly greater than 0 (p<0.001). In other words, not 

only is the average value of PGR-PLR significantly greater than the expected value benchmark of 

-0.76, but it is actually significantly positive. These results reject the hypothesis that our subjects 

are all expected value investors and are consistent with the idea that some of our subjects are 

affected by realization utility. 

 Figure 3 tests the prediction at the individual level. Each bar shows the value of PGR-

PLR for a particular subject. The horizontal dashed line near the bottom of the figure marks the -

0.76 value of PGR-PLR that an expected value investor would exhibit. The figure shows that 

every subject exhibits a disposition effect greater than -0.76. The hypothesis that the average 

disposition effect is not different from -0.76 is rejected with a t-statistic of 16.52. 

The figure also shows that there is significant heterogeneity in the strength of the 

disposition effect across subjects: the value of PGR-PLR ranges from -0.41 to 0.83 and has a 

standard deviation of 0.32. This cross-individual variation is consistent with Dhar and Zhu (2006) 

who, using data on actual trading decisions, also find significant variation in the strength of the 

disposition effect across investors. Interestingly, we find that, while each of PGR and PLR varies 

a good deal across subjects, the two variables have a correlation of only 0.03: subjects who are 

slow to sell losing stocks are not necessarily also quick to sell winning stocks25. This 

independence between selling behavior in the gain domain and in the loss domain is also 

consistent with the empirical findings of Dhar and Zhu (2006). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
25	  The low correlation between PGR and PLR is not inconsistent with realization utility; it simply suggests 
that realization utility is not the only factor driving subjects' trading. For example, if our subjects care to 
varying extents about realization utility but also differ in how much they enjoy trading in general, they may 
exhibit a near-zero correlation between PGR and PLR: the negative correlation between the two variables 
induced by realization utility will be offset by the positive correlation induced by the taste for trading. 
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 Figure 4 provides additional insight into subjects’ selling behavior by showing, for each 

of the four types of decisions that a subject could make – decisions to realize a gain, decisions to 

realize a loss, decisions not to realize a gain, and decisions not to realize a loss -- the fraction of 

the decisions that are optimal, where “optimal” is defined by the expected value benchmark. For 

example, the figure shows that there were a total of 495 occasions in which our subjects realized 

gains, and that most of these decisions were suboptimal. Given that stocks exhibit short-term 

price momentum in the experiment, it is generally better to hold on to a stock that has been 

performing well. This explains why most (77.9%) of subjects’ decisions to hold on to winning 

stocks were optimal, and why most (67.5%) of subjects’ decisions to sell winning stocks were 

suboptimal. Similarly, in the experiment, it is generally better to sell a stock that has been 

performing poorly. This explains why most (79.2%) of subjects’ decisions to sell losing stocks 

were optimal, while most (80.3%) of their decisions to hold these stocks were suboptimal. 

The disposition effect exhibited by our subjects is stronger than that found in empirical 

studies (Odean (1998); Frazzini (2006)). One possible reason for this is that the current price and 

the cost basis of a stock are both prominently displayed on the trading screen.26 If, because of 

realization utility, a subject has a preference for realizing gains and for not realizing losses, the 

fact that we report the purchase price might make it particularly easy for him to cater to this 

preference, and hence to exhibit a disposition effect.27  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
26	  One natural question about our experiment is how much of the realization utility effect that we have 
found depends on the fact that we display the original purchase price on the trading screen in a highly 
salient way. It is important to emphasize that it is unlikely that the presence of a realization utility effect 
depends critically on this aspect of the design.  In follow-up work we have carried out behavioral 
experiments to investigate the impact of the saliency with which the stock purchase price information is 
displayed (Frydman and Rangel (2011)). We find that eliminating the purchase price from the trading 
screen diminishes the size of the disposition effect, but that it is still well above the optimal level that an 
expected value investor would exhibit. This suggests that reporting the purchase price on the trading screen 
is not a critical aspect of our current design.  Moreover, given that most investors in naturally occurring 
financial markets have at least a rough sense of the price at which they purchased a stock, displaying the 
cost basis on the trading screen is likely a better approximation of reality.   
	  
27	  At the same time, because our experimental design induces a negative correlation between the capital 
gain and the NEV of selling (r= - 0.55), the fact that we report the purchase price also makes it easy for an 



	  

	  
	  

38	  

In summary, the behavioral results indicate that all of our subjects exhibit a strong 

disposition effect, which is inconsistent with the expected value model, but is consistent with the 

realization utility model.  

 

B. Neural Prediction 2 

We now turn to Prediction 2, which states that, for individuals who experience realization 

utility at the time of selling assets, activity in areas of the brain associated with the computation 

of decision values, such as the vmPFC and the vSt, should be correlated with the capital gain 

variable (pt - ct). By contrast, it states that, for expected value subjects, activity in these areas 

should correlate with the NEV variable, but not with the capital gain.  

 We test this hypothesis in two stages. First, we estimate the following general linear 

model (GLM) of BOLD activity for each individual:  

 

!! ! = constant +   !!!!!"# ! !! − !! + !!!!!"# ! !"#! + !!!controls + ε(t). 

 

Here, bv (t) denotes BOLD signal at time t in voxel v. Idec,t is an indicator function that equals one 

at the time when the subject is presented with the opportunity to sell a stock at time t. NEVt 

denotes the net expected value from selling the stock being considered at time t, namely 0.6(1-

2qi,t), and (pt - ct) is the realizable capital gain.  Finally, the controls vector includes regressors 

that control for physical movement inside the scanner, session-specific effects, and any changes 

in neural activity that might be due to information processing during the price update screens, 

which is not an activation of interest for the hypothesis being tested. As described in Section III, 

the regressors involving computations of interest (here, the non-constant regressors NEV and p-c) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
expected value subject to trade in a way that is close to his optimal strategy, namely to hold a stock when it 
has a capital gain and to sell it when it has a capital loss. If a subject is an expected value investor, then, we 
do not think that presenting the purchase price on the trading screen should bias him towards exhibiting a 
disposition effect. 	  
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are convolved with the HRF28. Finally, inferences about the extent to which the signals of interest 

are encoded in a given voxel are made by carrying out a one-sided t-test of the individually 

estimated coefficients (i.e., !!!   and !!!) against zero.  

 Although we can carry out these tests in all of the brain’s voxels, here we limit our search 

to voxels that belong to pre-specified anatomical areas of the vmPFC and the vSt. These areas 

were identified using the AAL digital atlas of the human brain (Tzourio-Mazoyer et al. (2002)). 

Note that these restrictions make our significance threshold of p<.001 uncorrected, together with 

a minimum cluster size of 15 voxels, even less likely to generate false positives than in the 

standard whole brain analyses to which it is typically applied. 

 The results from these tests are consistent with the implications of realization utility 

noted in Prediction 2: we find a cluster of 67 voxels in the vmPFC where !!! > 0.  However, no 

voxels within the vSt exhibit a correlation with the capital gain at our statistical threshold.   The 

location of the vmPFC voxels is depicted in Figure 5. In contrast, there are no clusters that 

significantly relate to the NEV variable at our statistical threshold. In short, the neural data is 

consistent with subjects computing the decision value predicted by realization utility, rather than 

the decision value predicted by the expected value agent model. 

 Because of the high correlation between the NEV variable and the capital gain variable 

(r= -0.55), we run a robustness check to make sure that the above results are not driven by 

spurious collinearity issues. This is done by introducing a single change to the GLM: the capital 

gain variable is orthogonalized (prior to convolution) to the NEV variable, using a standard 

Gram-Schmidt algorithm (Strang (1988)).  Note that this provides an even more stringent test of 

the realization utility hypothesis because any shared variance between the two variables is now 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
28	  The amount of the price change during the price update screen, which represents our control for 
information processing, is convolved with the HRF because this will generate a BOLD response.  Controls 
for physical movement inside the scanner and session-specific effects are not convolved because they do 
not elicit a BOLD response. 	  
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allocated to the NEV. As before, we find a cluster of 67 voxels in vmPFC that satisfies the 

significance criterion described above.  

We also carry out an ROI analysis designed to test the properties of the vmPFC 

realization utility signals further. The relevant ROI (i.e., the relevant subset of voxels within the 

vmPFC) is defined by estimating the simpler GLM, 

!! ! = constant +   !!!!!"# ! !! − !! + !!!controls + ε(t), 

and identifying clusters in the vmPFC that are significantly responsive to the capital gain 

regressor. For the rest of the paper we refer to the resulting ROI, which contains 154 voxels, as 

the vmPFCROI. Note that we define this ROI using this additional regression to side-step the 

estimation noise introduced by the high correlation between the capital gain and the NEV 

regressors. 

 We then carry out the ROI analysis by estimating the following GLM for each voxel in 

the newly defined ROI: 

 

!! ! = constant +   !!!!!"#(!)!! + !!!!!"# ! !! + !!!controls + ε(t). 

 

This model is interesting because it allows us to compare the strength of the average beta value in 

the ROI separately for the price and cost basis components of the capital gain. Within vmPFCROI, 

β1=0.025 (p<0.001) and β2=-0.023 (p<0.01) and the absolute values of the two coefficients are not 

significantly different (p=0.79). These results demonstrate that the correlation with capital gains 

that we found above is affected by both the price and cost basis components of the capital gain.  

 Finally, we carry out a similar ROI analysis to test if the strength of the capital gain 

signal in vmPFCROI is of similar magnitude in capital gain and capital loss trials. The associated 

GLM is: 

 



	  

	  
	  

41	  

!! ! =

constant +   !!!!!"# !   !!"#.!"#$  (!! − !!) + !!!!!"# !   !!"#.!"##  (!! − !!) + !!!controls + ε(t), 

 

where Icap.gain and Icap.loss are indicator variables for trials involving capital gains and capital losses, 

respectively.  The average values of !!   and  !!  are not significantly different (p=0.69). 

 

C. Neural Prediction 3 

 We now test Prediction 3. Specifically, we check whether, as predicted by the realization 

utility hypothesis, subjects whose neural activity in the vmPFC at the time of a sell decision is 

particularly sensitive to the realizable capital gain exhibit a stronger disposition effect. 

 For every subject, we compute the maximum beta value within the vmPFCROI for the 

capital gain and capital loss regressors29. Consistent with Prediction 3, we find that the correlation 

between !! and PGR is 0.78 (p<0.001), indicating that subjects who exhibit stronger vmPFC 

activation in response to a capital gain do have a greater propensity to realize gains.  Figure 6, 

which is a scatterplot of PGR against !! , illustrates this graphically.  

 In contrast, we do not find a significant correlation between β2 and PLR (p=0.18).  One 

potential post-hoc explanation is that there may be different physiological systems involved in 

making decisions that involve capital gains and capital losses.  Consistent with this hypothesis, 

the cross-subject correlation between the vmPFC (maximum) sensitivities to capital gains and 

losses, β1 and β2, is only -0.01.   

 

D. Neural Prediction 4 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
29 We use a maximum statistic instead of the average statistic because vmPFCROI is relatively large (154 
voxels) and because of the heterogeneity in anatomical and functional structure of vmPFC across subjects.  
Since we are using this beta value to test for a correlation (instead of testing for a particular value of the 
mean), using the max statistic will not bias our results. 
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 We now test Prediction 4, which constitutes the most direct test of the realization utility 

hypothesis, and the one that, in our view, showcases the value of the neural data most clearly. The 

realization utility hypothesis posits that people experience a positive (negative) hedonic impact 

when they sell a stock at a gain (loss). Since earlier research in neuroscience suggests that activity 

in the areas of the vSt and the vmPFC correlate with such measures of experienced utility, or 

hedonics, we can test the hypothesis by looking at changes in the activity in these two areas at the 

moment that a subject decides to sell a stock, and compare it to changes in the activity in these 

areas at the moment that a subject issues a command to hold a stock.   

 More concretely, we test the hypothesis by carrying out the following ROI analysis in 

specific sub-areas of the vSt and vmPFC that have been shown, in previous studies, to correlate 

with experienced utility.  In particular, we define vmPFCEU-ROI as the set of voxels that are within 

5mm of the voxel whose activity exhibited the highest correlation with experienced utility during 

consumption of wine in Plassman et al. (2008).  Similarly, we define vStEU-ROI as the set of voxels 

that are within 6mm of the two voxels (bilateral) that exhibited the highest correlation with 

stimulus salience in Zink et al. (2003).  Note that the EU subscript in vmPFCEU-ROI emphasizes 

that this is a different ROI from the one described above in the analysis of decision values, as it 

involves a different area of the vmPFC, one that has been previously shown to correlate with 

hedonics. 

 The ROI analysis involves estimating the time course of responses in these two ROIs 

during sell trials involving a capital gain, as a function of whether or not the subject chooses to 

sell. Figure 7A depicts the results of the analysis for the vStEU-ROI. The red line indicates changes 

in the vSt BOLD response for trials in which subjects choose to sell; the blue line shows activity 

in trials in which subjects choose not to sell. Note that t=0 corresponds to the time at which 

subjects indicate their decision by pressing a button on a hand-held button box-- it is not the time 

at which the trading screen becomes visible. Interestingly, the figure shows there is no significant 

difference between the two time series until a decision is made. Afterwards, and consistent with 
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the realization utility hypothesis, activity in the vSt is significantly larger for the next six seconds. 

The average capital gain for stocks that are held is not significantly different from the average 

capital gain for stocks that are sold ($15.77 vs. $18.35). The effect in Figure 7A is therefore not 

due to the fact that the stocks subjects sell have larger capital gains than the stocks they hold 

(p=0.09). 

 Contrary to our expectations, we did not find a similar result in the vmPFCEU-ROI  (Figure 

7B).  One possible explanation is that there might be more heterogeneity across subjects in the 

anatomical and functional structure of the vmPFC, than in the organization of the vSt, which 

would perhaps mean that the region identified as vmPFCEU-ROI  does not really reflect the areas 

where experienced utility is computed in our sample. We emphasize, however, that this is pure 

speculation. 

 

 

E. Tests of the mean-reversion theory of the disposition effect 

As discussed in Section I, one prominent alternative behavioral theory of the disposition 

effect is that investors believe that stock prices mean-revert (Odean (1998); Weber and Camerer 

(1998); Kaustia (2010)). In our setting, such a belief would be irrational: stock prices in our 

experiment exhibit short-term positive autocorrelation.  Nonetheless, if our subjects, for some 

reason, think that the stock prices in our experiment are mean-reverting, this could potentially 

explain why they tend to sell stocks that have recently gone up while holding stocks that have 

recently gone down.   

 To investigate whether a belief in mean-reversion could be driving our subjects’ 

behavior, we estimate the following mixed effects logistic model to test whether recent price 

changes can significantly predict subjects’ decisions to sell or hold a stock:  
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selli,t,s = (! + ai )+"1NEVt,s +"2 (pt,s ! ct,s )+"3"
1pt,s +"4"

2pt,s +#t       (6) 

 

where selli,t,s =1 if subject i sold stock s at time t and 0 if he held it, ai  denotes a subject-level 

fixed effect, and  denotes the mth most recent price change for stock s (these price changes 

may not have occurred in consecutive trials because price updates in the experiment take place at 

random times).  We find that the capital gain is a significant predictor of the propensity to sell, (t-

stat=10.04), but that none of the other variables are.  In particular, neither β3 nor β4 is 

significantly different from zero (p=.164 and p=0.160, respectively). In other words, contrary to 

the mean-reversion hypothesis, recent price changes do not significantly predict the decision to 

sell.   

 The neural data can also be used to test some aspects of the mean-reversion hypothesis. 

In particular, we test if neural activity in either the vmPFC or the vSt is correlated with recent 

price changes.  This is done by estimating the following GLM: 

 

!! ! = constant +    !!"# ! [!!! !! − !! + !!!∆!!!,! + !!!∆!!!,!] + !!!controls + ε(t) 

 

Under the mean reversion hypothesis, the decision value of selling should be positively correlated 

with recent price changes because a recent price increase indicates a lower expected future return, 

leading to a higher decision value of selling. Neural activity in the vmPFC and vSt should 

therefore correlate positively with past price changes. Contrary to this hypothesis, we do not find 

any activity in the vmPFC that is significantly associated with these regressors.  

In summary, then, both the behavioral and the neural analyses cast doubt on the mean-

reversion hypothesis.      
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V. Final Remarks 

 In this paper, we show that neural data obtained through fMRI techniques can be useful 

in testing theories of investor behavior. Specifically, we use neural data gathered from subjects 

trading stocks in an experimental market to test a “realization utility” theory of investor trading. 

While this theory can potentially explain the disposition effect as well as several other financial 

phenomena, it relies on an unusual assumption: that people derive utility directly from realizing 

gains. We identify the neural predictions of realization utility and find broad support for them in 

our data. Perhaps most striking of all, we find that, at the moment a subject issues a command to 

sell a stock at a gain, there is a sharp rise in activity in the ventral striatum, an area of the brain 

that, based on recent research in cognitive neuroscience, is known to encode feelings of 

subjective pleasure. 

We emphasize that the methods we present in this paper are hardly a substitute for 

traditional empirical methods in finance.  On the contrary, brain imaging techniques are simply  

complementary tools that can be used to test assumptions about investor behavior that are 

difficult to evaluate using field data or experimental data alone. In particular, we see neural data 

as a valuable resource when studying the more psychological dimensions of individual investor 

behavior, precisely because these may derive from variables that are only observable at the neural 

level.  
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Figure	  1.	  	  Sample	  screens	  from	  a	  typical	  trial	  in	  the	  fMRI	  experiment.	  	  Subjects	  saw	  the	  
price	  update	  screen	  for	  two	  seconds,	  followed	  by	  the	  trading	  screen	  for	  which	  they	  had	  up	  
to	  three	  seconds	  to	  enter	  a	  decision	  (a	  blank	  screen	  was	  displayed	  in	  between	  in	  order	  to	  
temporally	  separate	  neural	  activity	  associated	  with	  decision-‐making.)	  The	  screens	  shown	  
below	  are	  for	  a	  trial	  in	  which	  the	  subject	  owns	  a	  unit	  of	  both	  stocks	  A	  and	  B.	  	  The	  screens	  
were	  displayed	  while	  subjects	  were	  inside	  the	  fMRI	  scanner,	  and	  decisions	  were	  entered	  
with	  a	  handheld	  device.	  
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Figure	  2.	  	  BOLD	  measurements	  of	  neural	  activity.	  	  (A)	  Canonical	  hemodynamic	  response	  
function	  that	  approximates	  the	  BOLD	  response	  that	  follows	  one	  arbitrary	  unit	  of	  
instantaneous	  neural	  activity	  at	  time	  0.	  (B)	  Example	  of	  a	  path	  of	  neural	  activity	  together	  
with	  the	  associated	  BOLD	  response.	   	  
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Figure	  3.	  	  Measures	  	  of	  the	  disposition	  effect	  (PGR-‐PLR)	  for	  each	  subject.	  	  Standard	  
error	  bars	  are	  computed	  as	  in	  Odean	  (1998)	  and	  the	  dotted	  line	  indicates	  the	  optimal	  level	  
of	  the	  disposition	  effect,	  namely	  -‐0.76.	  All	  subjects	  exhibit	  a	  disposition	  effect	  greater	  than	  
the	  optimal	  level	  and	  a	  majority	  of	  subjects	  have	  a	  disposition	  effect	  that	  is	  significantly	  
positive.	  	  The	  figure	  indicates	  that	  there	  is	  significant	  heterogeneity	  in	  the	  size	  of	  the	  
disposition	  effect	  across	  subjects	  (SD:	  0.32).	  	  
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Figure	  4.	  	  Total	  number	  of	  sell	  decisions	  by	  decision	  type	  and	  optimality.	  	  Realized	  
gains	  and	  losses	  refer	  to	  decisions	  where	  subjects	  sold	  a	  stock	  trading	  at	  a	  gain	  (loss.)	  	  
Paper	  gains	  (losses)	  refer	  to	  decisions	  where	  subjects	  decided	  to	  hold	  a	  stock	  trading	  at	  a	  
gain	  (loss).	  	  The	  optimality	  measures	  show	  an	  important	  aspect	  of	  our	  design:	  selling	  
winners	  and	  holding	  losers,	  which	  leads	  to	  a	  disposition	  effect,	  are	  typically	  suboptimal	  
decisions.	  	  Decisions	  are	  pooled	  across	  all	  subjects.	  
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Figure	  5.	  	  vmPFC	  activity	  reflects	  realization	  utility.	  Voxels	  that	  are	  shown	  in	  yellow	  all	  
have	  a	  p-‐value	  less	  than	  0.001,	  and	  only	  clusters	  of	  at	  least	  15	  significant	  voxels	  are	  shown.	  	  
Color	  bar	  denotes	  t-‐statistics.	  
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Figure	  6.	  Correlation	  between	  brain	  activity	  and	  measures	  of	  the	  disposition	  effect.	  
Each	  data	  point	  in	  the	  figure	  represents	  a	  single	  subject.	  	  We	  find	  that	  activity	  in	  the	  vmPFC	  
at	  the	  time	  subjects	  are	  offered	  the	  opportunity	  to	  sell	  a	  capital	  gain	  is	  highly	  correlated	  
with	  their	  propensity	  to	  realize	  gains.	  	  We	  do	  not	  find	  a	  similar	  correlation	  between	  vmPFC	  
activity	  and	  the	  propensity	  to	  realize	  losses.	  
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Figure	  7.	  Direct	  tests	  of	  the	  realization	  utility	  hypothesis.	  Average	  activity	  in	  the	  vSt	  
(Panel	  A)	  and	  vmPFC	  (Panel	  B)	  during	  trials	  when	  subjects	  were	  offered	  the	  opportunity	  to	  
sell	  capital	  gains.	  The	  blue	  time	  series	  plots	  the	  average	  activity	  in	  trials	  where	  subjects	  
realized	  capital	  gains,	  while	  the	  red	  time	  series	  plots	  the	  average	  activity	  in	  trials	  where	  
subjects	  decided	  to	  hold	  capital	  gains.	  ***	  denotes	  p<0.001,	  **	  denotes	  p<0.01,	  *	  denotes	  
p<0.05	  (paired	  t-‐test).	  	  	  t=0	  corresponds	  to	  the	  instant	  at	  which	  the	  subject	  enters	  his	  
trading	  decision	  on	  a	  hand-‐held	  device.	  	  	  
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Chapter 2 

Neural Measures of Regret and Repurchase Behavior 

	  
Economists have learned a great deal about the trading patterns of individual investors 

over the last two decades.  While standard models of trading behavior have had some success in 

explaining the decision making of individual investors, there remains a set of stylized facts that 

are hard to reconcile with a standard rational model of trading.  In this paper, we examine one of 

the most recently documented stylized facts about investor behavior, the repurchase effect, which 

belongs to this set of investor behaviors that are robust, yet difficult to understand using standard 

preferences and beliefs.  

We propose that the repurchase effect, which is the empirical fact that investors tend to 

repurchase stocks that have gone down in value since last sold more often that stocks that have 

gone up in value since last sold, is driven by a negative affective state of regret (Barber et al. 

(2011)).  .  In particular, we present a model of a regret-devaluation mechanism that provides a 

link between the affective state induced by prior stock returns and the subjective valuation that 

the investor applies to subsequent investment opportunities.  The main contribution of this paper 

is to test the regret-devaluation mechanism as the driver of the repurchase effect.  However, it is 

difficult to directly measure regret using a standard empirical data set, and this presents an 

obstacle for constructing empirical tests of any regret theory.  To circumvent this issue, we collect 

neural data that allows us to obtain measurements of regret, so that we can construct several 

empirical tests of our proposed regret-devaluation mechanism.  

We are able to construct sharp empirical tests of this mechanism by relying on two key 

characteristics of our experimental design.  First, we specify a price process in our experimental 

stock market that induces the optimal trading strategy to be the “opposite” of the repurchase 

effect, so that stronger repurchase effects lead to lower final earnings.  Under this design, if 

subjects exhibit a repurchase effect, then we can be confident that behavior is due to some 
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alternative belief or preference specification.  The second key characteristic of our design is that 

we temporally separate the events where subjects see news about stock returns from the events 

where subjects have the ability to trade.  This is critical because it allows us to isolate a potential 

regret signal in the brain, which we use to help predict the trading decision in the subsequent 

screen.   

We find that subjects do exhibit repurchase effects that are higher than an agent who 

trades to maximize expected final wealth.  We also find neural data that is consistent with the 

regret-devaluation mechanism.  In particular, we find that subjects encode a regret signal at the 

time when they see positive stock returns for assets they positively elected not to purchase in the 

past.  Stronger regret signals at this event predict a higher probability of a repurchase “mistake” 

during the next opportunity to buy the stock.  Finally, we are able to explain a portion of the 

cross-subject variation of the repurchase effect using the average neural regret signal for each 

subject.  Taken together, our behavioral and neural results provide strong evidence that the 

repurchase effect is driven by our proposed regret-devaluation mechanism.   

The rest of this paper is organized as follows.  Section II provides background on investor 

repurchase behavior and the psychology of regret and its impact on subsequent decision-making.  

Section III describes our experimental design and outlines the key behavioral and neural 

predictions of the regret-devaluation mechanism.  We give a brief overview of the methods used 

to collect neural data in Section IV, and we continue with presenting our behavioral and neural 

results in Section V.  We conclude in Section VI and discuss potential directions for future 

research.  

 

I. Background: Repurchase Behavior, Regret, and Inaction Inertia 

A. Repurchase behavior  

 One of the most recent empirical findings in the household finance literature is that 

individual investors exhibit a “repurchase effect:” they have a greater propensity to repurchase 
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stocks that have decreased in price since last sale, relative to stocks that have increased in price 

since last sale (Barber et al. (2011); Weber and Welfens (2011)).  This type of behavior is 

puzzling because stocks that have strong recent performance tend to continue performing well 

over the short term (Jegadeesh and Titman (1993)) and individual investors could earn higher 

returns by instead repurchasing stocks that have strong recent performance.  Interestingly, it has 

been found that investors do typically purchase stocks that have strong recent performance, but 

this does not hold for stocks investors currently own (Odean (1998)).  This suggests that past 

ownership of a specific stock may affect subsequent repurchase behavior. 

Because the repurchase effect is not well-explained by a standard rational model of 

informed trading, (Barber et al. (2011)) suggest that regret may play a role in this type of 

behavior, noting however, that their “field data do not enable us to determine definitely the 

psychological mechanisms that drive these trading patterns.”  For example, one potential 

alternative theory that is consistent with this type of repurchase behavior is a belief in mean-

reverting prices: if a stock goes down after an investor sells at a high price, he may want to 

repurchase it because he believes the price will revert back to the high price.  Another theory is 

that the repurchase effect may arise from tax-motivated trading.  In contrast to the field data in 

(Barber et al. (2011)), the combination of neural and trading data that we collect in our 

experiment allow us to test a specific theory of regret and its impact on subsequent behavior that 

can explain the repurchase effect.    

B. Regret and Inaction Inertia 

 Research in psychology has documented an effect called inaction inertia: when 

bypassing an initial action opportunity decreases the likelihood that subsequent similar 

opportunities will be taken (Tykocinski et al. (1995); Tykocinski and Pittman (1998); Arkes et al. 

(2002); Kumar (2004)).  A simple example involving consumer choice is useful in illustrating this 

effect.  Suppose a consumer is faced with the opportunity to buy a pair of shoes on sale at $40 

that are regularly priced at $80.  Now suppose for an exogenous reason that the consumer does 
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not buy the shoes on sale at $40, and the next day is offered the shoes at a smaller discount of 

$50.  The inaction inertia effect occurs when the consumer has a lower propensity to buy the 

shoes at $50 on the 2nd day than he would had he not “missed” the initial, cheaper bargain.  In 

other words, a forgone opportunity has an impact on subsequent behavior30.  

One theory that psychologists have used to explain inaction inertia is based on a regret-

devaluation mechanism (Arkes et al. (2002)).  Using the above example, this theory says that the 

consumer experiences regret when he is confronted the second opportunity to buy the shoes at the 

higher price of $50 because he realizes he has “wasted” a more attractive opportunity in the past.  

This experienced regret then triggers a devaluation of the shoes, and hence results in a lower 

likelihood of purchasing the shoes during the second opportunity to buy.  (Arkes et al. (2002)) 

provide experimental evidence that is consistent with this theory, as they show that both (self-

reported) measures of experienced regret and changes in valuation mediate the link between the 

price change of a good and the likelihood of buying a good.   

We hypothesize that this regret-devaluation mechanism may in part be driving the 

repurchase effect that individual investors exhibit.  To be clear, we now identify the three steps by 

which regret-devaluation could be applied in a financial market setting.  Consider an investor 

who has a valuation v for a stock, and he has the opportunity to buy this stock at price p0 < v on 

day 0, but for an exogenous reason (e.g., liquidity concerns) the investors does not buy the stock.  

Because the investor has passed up this initial buying opportunity, he finds himself in a setting 

where the regret-devaluation mechanism applies as follows: 

1) Experienced regret: Suppose on day 1 the investor sees that the stock price has 

gone up to p1>p0 where p1<v.  The investor will now experience regret in 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
30 The inaction inertia effect may seem similar to the well-known cognitive bias of “anchoring,” 
whereby humans have a tendency to rely too heavily, or “anchor,” on one piece of information 
when making decisions.  In our setting, the piece of information would be the first price offered.  
However, a critical difference between the two effects is that inaction inertia relies on a decision 
of inaction during the first buying opportunity to reduce the probability of buying on the second 
buying opportunity, whereas anchoring relies only on the presentation of the first buying 
opportunity, without any decision being made. 
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proportion to (p1-p0) because he has “missed out” on a profit of (p1-p0)>0 by 

not investing on day 0.  

2) Devaluation:  This experienced regret triggers a change in the investor’s 

valuation of the stock and this change is negatively correlated with (p1-p0).  

Since (p1-p0)>0, the investor’s new valuation of the stock is v*<v. 

3) Inaction: This lower valuation, v*, leads to a lower probability of buying the 

stock on day 1, compared to a scenario in which the investor did not 

experience regret from missing out on a profit.  That is, Pr(buy | value=v*, 

price= p1)< Pr(buy | value=v, price= p1) 

This regret-devaluation theory makes several specific predictions about the neural activity we 

should observe in our experiment.  We will develop these predictions in detail in the main text, 

but we briefly introduce them here.   

 First, an area of the brain called the ventral Striatum (vSt) has been shown to exhibit 

activity that correlates with regret or counterfactual signals (Coricelli et al. (2005); Lohrenz et al. 

(2007); Li and Daw (2011); Nicolle et al. (2011)).   In particular, there is evidence that this brain 

structure computes a signal during a stochastic outcome that is proportional to the difference in 

the outcome that the subject received and the outcome that the subject could have received had he 

acted differently in the past.  In our experiment, the vSt should encode the change in stock price 

when he is presented with this information, and importantly, this signal should be a function of 

the subject’s previous action associated with the stock: if the subject owns the stock, vSt activity 

should positively correlate with the change in price, and if the subject does not own the stock, vSt 

should negatively correlate with the change in price.   

 Our second neural prediction is that the magnitude of regret we measure using vSt 

activity should be proportional to the devaluation the subject applies to the stock.  A greater 

devaluation will lead to a lower probability that the subject buys on the next trading opportunity.  
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Therefore, we should observe, on a trial-by-trial basis, that a stronger regret signal should lead to 

a larger decrease in the probability of buying the stock. 

 Finally, those subjects who exhibit a stronger regret signal for a given price change 

should, on average, decrease their valuation of the stock more than subjects who experience a 

weaker regret signal for the same price change.  Hence, a subject with a stronger average regret 

signal over the course of the experiment should exhibit a lower average probability of 

repurchasing a stock that has recently increased in price, and should therefore exhibit a stronger 

repurchase effect.   

 

   

II. Experimental Design and Predictions 

 

A. Design 

Both the design and the data set used in our analysis were generated in (Frydman et al. 

(2011)).  Subjects are given the opportunity to trade three stocks –- stock A, stock B, and stock C 

-– in an experimental market. The experiment consists of two identical sessions separated by a 

one-minute break. Each session lasts approximately 16 minutes and consists of 108 trials. We use 

t to index the trials within a session.31 

 At the beginning of each session, each subject is given $350 in experimental currency 

and is required to buy one share of each stock so that all subsequent purchase decisions are in fact 

“repurchase” decisions. The initial share price for each stock is $100; after the initial purchase, 

each subject is therefore left with $50. Every trial t > 9 consists of two parts: a price update and a 

trading decision, each of which corresponds to a separate screen that the subject sees (Figure 1). 

In the price update part, one of the three stocks is chosen at random and the subject is shown a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
31	  We split our experiment into two sessions in order to avoid running the fMRI machine for too long 
without a break, as this could lead to potential medical risks for the subjects.	  	  
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price change for this stock. Note that stock prices only evolve during the price update screens; as 

a result, subjects see the entire price path for each stock. In the trading part, one of the three 

stocks is again chosen at random and the subject is asked whether he wants to trade the stock. 

Note that no new information is revealed during this part.  

We split each trial into two parts so as to temporally separate different computations 

associated with decision-making. At the price update screen, subjects are provided with 

information about a change in the price of one of the three stocks, but do not have to compute the 

value of buying or selling the stock, both because they are not allowed to make decisions at this 

stage, and also because they do not know which of the three assets will be selected for trading in 

the next screen. At the trading screen the opposite situation holds: subjects need to compute the 

value of buying or selling a stock, but do not need to update their beliefs about the price process 

since no new information about prices is provided.  

Trials 1 through 9 consist only of a price update stage; i.e., subjects are not given the 

opportunity to buy or sell during these trials. We designed the experiment in this way so that 

subjects can accumulate some information about the three stocks before having to make any 

trading decisions. 

 Each subject is allowed to hold a maximum of one share and a minimum of zero shares 

of each stock at any point in time. In particular, short-selling is not allowed. The trading decision 

is therefore reduced to deciding whether to sell a stock (conditional on holding it), or deciding 

whether to buy it (conditional on not holding it). The price at which a subject can buy or sell a 

stock is given by the current market price of the stock. 

 The price path of each stock is governed by a two-state Markov chain with a good state 

and a bad state. The Markov chain for each stock is independent of the Markov chains for the 

other two stocks. Suppose that, in trial t, there is a price update for stock i. If stock i is in the good 

state at that time, its price increases with probability 0.55 and decreases with probability 0.45. 

Conversely, if it is in the bad state at that time, its price increases with probability 0.45 and 
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decreases with probability 0.55. The magnitude of the price change is drawn uniformly from {$5, 

$10, $15}, independently of the direction of the price change. 

 The state of each stock changes over time in the following way. Before trial 1, we 

randomly assign a state to each stock. If the price update in trial t >1 is not about stock i, then the 

state of stock i in trial t remains the same as its state in the previous trial, t-1. If the price update in 

trial t >1 is about stock i, then the state of stock i in this trial remains the same as in trial t-1 with 

probability 0.8, but switches with probability 0.2. In mathematical terms, if is 

the state of stock i in trial t, then  if the time t price update is not about stock i, whereas 

if the time t price update is about stock i, the state switches as follows: 

 

The states of the stocks are never revealed to the subjects: they have to infer them from the 

observed price paths. To ease comparison of trading performance across subjects, the same set of 

realized prices is used for all subjects. 

A key aspect of our design is that, conditional on the information available to subjects, 

each of the stocks exhibits positive short-term autocorrelation in its price changes. If a stock 

performed well on the last price update, it was probably in a good state for that price update. 

Since it is highly likely (probability 0.8) to remain in the same state for its next price update, its 

next price change is likely to also be positive. 

 At the end of each session, we liquidate subjects’ holdings of the three stocks and record 

the cash value of their position. We give subjects a financial incentive to maximize the final value 

of their portfolio at the end of each session. Specifically, if the total value of a subject’s cash and 

risky asset holdings at the end of session 1 is $X, in experimental currency, and the total value of 

his cash and risky asset holdings at the end of session 2 is $Y, again in experimental currency, 

si,t ! {good, bad}

si,t = si,t!1

! si,t+1=good! si,t+1=bad!
si,t=good! "#$! "#%!
si,t=bad! "#%! "#$!
!
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then his take-home pay in actual dollars is 15 + (X+Y)/24.32 Subjects’ earnings ranged from 

$43.05 to $57.33 with a mean of $52.57 and a standard deviation of $3.35. 

 In order to avoid liquidity constraints, we allow subjects to carry a negative cash balance 

in order to purchase a stock if they do not have sufficient cash to do so at the time of a decision. If 

a subject ends the experiment with a negative cash balance, this amount is subtracted from the 

terminal value of his portfolio. The large cash endowment, together with the constraint that 

subjects can hold at most one unit of each stock at any moment, was sufficient to guarantee that 

no one ended the experiment with a negative portfolio value, or was unable to buy a stock 

because of a shortage of cash during the experiment. 

N=28 Caltech subjects participated in the experiment (22 male, age range 18 – 60).33 All 

subjects were right-handed and had no history of psychiatric illness, and none were taking 

medications that interfere with fMRI. The exact instructions given to subjects at the beginning of 

the experiment are included in the Appendix. The instructions carefully describe the stochastic 

structure of the price process, as well as all other details of the experiment. Before entering the 

scanner, the subjects underwent a practice session of 25 trials to ensure familiarity with the 

market software. 

 

B. Optimal trading strategy 

 We now characterize the optimal trading strategy for a risk-neutral Bayesian investor 

who is maximizing the expected value of his take-home earnings – from now on, we refer to such 

an investor as an “expected value” investor.  The optimal strategy of such an investor is to sell (or 

not buy) a stock when he believes that it is more likely to be in the bad state than in the good 

state; and to buy (or hold) the stock when he believes that it is more likely to be in the good state.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
32 In other words, we average X and Y to get (X+Y)/2, convert the experimental currency to actual dollars 
using a 12:1 exchange rate, and add a $15 show-up fee. 
33 One additional subject participated in the experiment but was excluded from further analyses because his 
head motion during the scanning exceeded a prespecified threshold, thereby interfering with the reliability 
of the neural measurements.	  
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Formally, let  be the price of stock i in trial t, after any price update about the stock, and let 

 be the probability that a Bayesian investor, after seeing the 

price update in trial t, would assign to stock i being in the good state in trial t. Also, let zt take the 

value 1 if the price update in trial t indicates a price increase for the stock in question; and -1 if 

the price update indicates a price decrease. Then  if the price update in trial t was not 

about stock i; but if the price update in trial t was about stock i, then: 

 

 

 

 

The optimal strategy for an expected value investor is to sell (if holding) or not buy (if not 

holding) stock i in trial t when ; and to hold or buy it otherwise.  This is because the 

expected price change on the next price update is given by  

Et[!pi,t+1 | qi,t,  !pi,t+1 " 0]= 0.6(2qi,t #1).  

We refer to this quantity as the net expected value (NEV) of buying.  Hence, a risk neutral subject 

will buy whenever NEV is positive (qi,t >0.5) and he will not buy whenever NEV is negative (qi,t 

<0.5). 

 Note that a trader who follows the optimal strategy described above will exhibit the 

opposite of the repurchase effect. If a stock performed well on the last price update, it was 

probably in a good state for that price update. Since it is very likely to remain in the same state 

for its next price update, its next price change is likely to also be positive. The optimal strategy 

therefore involves buying stocks that have recently increased in price, and not buying stocks that 

have recently decreased in price, hence generating the opposite of a repurchase effect.   

   

  

pi,t

qi,t = Pr(si,t = good | pi,t, pi,t!1,..., pi,1)

qi,t = qi,t!1

qi,t < 0.5

qi,t (qi,t!1, zt ) =
Pr(zt | si,t = good)*Pr(si,t = good | qi,t!1)

qi,t!1 Pr(zt | si,t!1 = good)+ (1! qi,t!1)Pr(zt | si,t!1 = bad)

=
(0.5+ 0.05zt )*[0.8*qi,t!1 + 0.2*(1! qi,t!1)]

qi,t!1[0.8*(0.5+ 0.05zt )+ 0.2*(0.5! 0.05zt )]+ (1! qi,t!1)[0.2*(0.5+ 0.05zt )+ 0.8*(0.5! 0.05zt )]
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C. Behavioral and neural predictions of regret-devaluation 

 We now lay out the predictions of the model whereby trading decisions are directly 

affected by the regret-devaluation mechanism. A useful variable we will use in this analysis and 

in our subsequent behavioral analyses is that of the foregone capital gain.  This is defined as the 

difference between the current price of the stock and the price at which the subject last sold the 

stock.  For example, if a subject sold Stock A in trial 19 at a price of $125, and now has the 

opportunity to repurchase the stock in trial 25 at a price of $105, the foregone capital gain is -$20. 

By design, this variable is always well defined (when the subject does not hold the stock) because 

we force subjects to buy all three stocks at the beginning of the experiment.   The repurchase 

effect in our experiment is therefore the tendency of subjects to buy stocks with negative 

foregone capital gains more often than stocks with positive foregone capital gains.  In order to 

quantify this effect, we use a methodology very similar to that of (Barber et al. (2011)).  Each 

time a subject has an opportunity to repurchase a stock, we place this opportunity into one of four 

mutually exclusive categories based on the purchase decision (buy or no buy) and the sign of the 

foregone capital gain (positive or negative).  We then compute the relative frequencies that a 

subject repurchases a stock based on the sign of the foregone capital gain.   

 In particular, we define two variables: the proportion of stocks that have increased in 

price since being sold that were repurchased (PDR) and the proportion of stocks that have 

decreased in price since being sold that were repurchased (PUR).  We compute a measure of each 

of these two variables at the subject level by calculating the following ratios:  

 

PDR = # of stocks down since being sold repurchased
# of opportunities to repurchase stocks down since being sold  
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PUR = # of stocks up since being sold repurchased
# of opportunities to repurchase stocks up since being sold

 

 

	   A repurchase effect arises when PDR-PUR>0.  In our experiment, the momentum that we 

build into the stock prices makes the repurchase effect a costly mistake.  To see why, consider a 

subject who sells a stock in period t at a price of s.  Now suppose the subject is offered the 

opportunity to repurchase the stock several periods later, at a price p<s.  The fact that the stock 

price has recently decreased over the last several period is likely because it is in the bad state, and 

since there is a high probability of the stock remaining in the bad state in the next period, the 

investor should not invest in this stock.  Hence, the optimal strategy dictates buying stocks with 

strong recent performance, and not buying stocks with poor recent performance.  This trading 

strategy will then result in the opposite of a repurchase effect.  With the specific price path that is 

used in our experiment, the optimal strategy will result in a PDR-PUR measure of -0.75.   

In contrast, if the regret-devaluation mechanism impacts a subject’s decision-making 

circuitry, then a subject who sees a price increase for a stock he does not own (and therefore one 

that he either sold recently or chose not to buy) will experience regret.  This regret will trigger a 

devaluation of the stock, leading to a lower propensity to buy the stock.   Because this stock has 

just gone up and because of the positive autocorrelation in price changes, this stock has likely 

also risen in price since the subject last sold.  Hence, the subjects will repurchase fewer stocks 

that have gone up since last sale than an expected value trader would.  This leads to our first 

prediction. 

 

Prediction 1 (Behavioral): For an expected value investor, the value of the PDR-PUR measure is 

given by -0.75. On the other hand, for a subject whose decision-making is affect by the regret-

devaluation mechanism, the value of PUR-PDR>-0.75.   
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 We now turn to the neural predictions made by the inaction inertia model.  As described 

in section II, an area of the brain called the ventral Striatum (vSt) has been associated with 

computing counterfactual or regret signals.  In particular, during the outcome of a stochastic 

event, the vSt has been shown to compute a signal that encodes the difference between what was 

received and what could have been received had the subject acted differently (Coricelli et al. 

(2005); Lohrenz et al. (2007); Li and Daw (2011); Nicolle et al. (2011)).  During the price update 

screen in our experiment, we therefore expect to see a neural signal in the vSt which satisfies two 

key properties: 1) the magnitude of the signal should be proportional to the size of the change in 

price and 2) the sign of the signal should be a function of asset ownership.  Formally, define an 

ownership function, O(t), which takes on the value of 1 if the subject owns the stock being 

updated in trial t, and -1 if the subject does not own the stock in trial t.  We then expect activity in 

the vSt to positively correlate with .	  	    

 

Prediction 2 (Neural): Activity in the vSt during a price update screen should positively correlate 

with the price change if a subject owns the stock.  Activity in the vSt during a price update should 

negatively correlate with the price change if the subject does not own the stock.  

 

In the rest of the analysis to follow, it will be useful to distinguish between the 

counterfactual or regret signals that occur at the price update screen, based on whether the subject 

owned the stock or not.  As the focus of this paper is on testing the regret-devaluation model, we 

will mainly be concerned with the counterfactual signal computed at the price update screen when 

the subject does not own the stock.  For the rest of the paper, we will refer to this signal as the 

inaction regret signal.   

Recall from Section II that under the regret-devaluation hypothesis, the amount of regret 

a subject experiences during a price update screen should be negatively correlated with the price 

O(t)!"p
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change.  Moreover, this experienced regret should be proportional to the devaluation the subject 

applies to the next trading opportunity.  A key implication of this model is that a stronger 

experienced regret signal during the price update screen on trial t should induce a stronger 

devaluation of the stock on the subsequent trading screen.   It follows that a stronger inaction 

regret signal should induce a lower probability of investing in the stock on the next screen.     

Additionally, the link between the experienced regret and the devaluation of the 

subsequent repurchase opportunity should be asset specific; that is, experienced regret about a 

rising price in Stock X should affect the probability of repurchasing only Stock X on the 

following trading screen.  In contrast, the regret-devaluation hypothesis makes no predictions 

about how experienced regret from Stock X should impact decision-making regarding 

repurchasing stock Y.  In particular, the regret-devaluation hypothesis does not stipulate that 

experienced regret for one stock will lead to a devaluation for all stocks.  We therefore formulate 

Prediction 3 as follows: 

 

Prediction 3 (Neural): Under the regret-devaluation mechanism, stronger inaction regret signals 

generated by a price increase about Stock X should lead to a lower probability of repurchasing 

Stock X on the following trading screen.  In contrast, stronger inaction regret signals generated by 

a price increase about Stock X should not affect the probability of repurchasing stock Y on the 

following trading screen. 

 

 The final prediction of the regret-devaluation hypothesis is aimed at explaining part of 

the cross-subject variation in the size of the repurchase effect.  Recall that the impetus of the 

regret-devalution mechanism is the experienced regret that is generated when a subject is 

confronted with news about a price increase for a stock he does not own.  If there is any cross-

sectional variation in the amount of experienced regret that is generated from a given price 
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increase, then this should help explain some of the cross-sectional variation we see in the size of 

the repurchase effect.  This leads us to prediction 4:   

 

Prediction 4 (Neural): Under the regret-devaluation hypothesis, a stronger inaction regret signal 

in the vSt should lead to a stronger repurchase effect, across subjects. 

 

 

III. fMRI data collection and analysis  

 

In this section, we provide a primer on how fMRI measures of neural activity are 

collected and analyzed. For more details, see Huettel et al. (2004), Ashby (2011), and Poldrack et 

al. (2011)  . 

 

A. fMRI data collection and measurement 

We collected measures of neural activity over the entire brain using BOLD-fMRI, which 

stands for blood-oxygenated level dependent functional magnetic resonance imaging. BOLD-

fMRI measures changes in local magnetic fields that result from local inflows of oxygenated 

hemoglobin and outflows of de-oxygenated hemoglobin that occur when neurons fire. fMRI 

provides measures of the BOLD response of relatively small “neighborhoods” of brain tissue 

known as voxels, and is thought to measure the sum of the total amount of neural firing into that 

voxel as well as the amount of neuronal firing within the voxel. 34 

One important complication is that the hemoglobin responses measured by BOLD-fMRI 

are slower than the associated neuronal responses. Specifically, although the bulk of the neuronal 

response takes place quickly, subsequent BOLD measurements are affected for up to 24 seconds.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
34 Note that the neural activity measured by fMRI in a 1-mm3 cube (about the size of a grain of salt) 
represents the joint activity of between 5,000 to 40,000 neurons, depending on the area of the brain. 
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Figure 2 provides a more detailed illustration of the nature of the BOLD response. In particular, it 

shows the path of the BOLD signal in response to 1 arbitrary unit of neural activity of 

infinitesimal duration at time zero. The function plotted here is called the canonical hemodynamic 

response function (HRF). It is denoted by h(τ), where τ is the amount of elapsed time since the 

neural activity impulse, and has been shown to approximate well the pattern of BOLD responses 

for most subjects, brain areas, and tasks. 

Fortunately, the BOLD response has been shown to combine linearly across multiple 

sources of neural activity (Boynton et al. (1996)).  This property, along with a specific functional 

form of the HRF, allows us to construct a mapping from neural activity to BOLD response so that 

we can control for BOLD responses that are generated by neural activity over the previous 24 

seconds.  In particular, if the level of neural activity at any particular time is given by a(t), then 

the level of BOLD activity at any instant t is well approximated by  

 

   ! ! = ℎ ! ! ! − ! !"!
! , 

 

which is the convolution between the HRF and the neural inputs. The integral can be interpreted 

in a straightforward way:  it is simply a lagged sum of all the BOLD responses triggered by 

previous neural activity. This is illustrated in Figure 2B, which depicts a hypothetical path of 

neural activity, together with the associated BOLD response. 

 We acquire two types of MRI data during the experiment in a 3.0 Siemens Tesla Trio 

MRI scanner with an eight-channel phased array coil. First, we acquire BOLD-fMRI data while 

the subjects perform the experimental task with a voxel size of 3 mm3.  We acquire data for the 

entire brain (~ 100,000 voxels) every 2.75 seconds.35 We also acquire high-resolution anatomical 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
35 More precisely, we acquired gradient echo T2*-weighted echoplanar (EPI) images with BOLD contrast. 
To optimize functional sensitivity in the orbitofrontal cortex (OFC), a key region of interest, we acquired 
the images in an oblique orientation of 30° to the anterior commissure–posterior commissure line 
((Deichmann et al. (2003))).  Each volume of images had 45 axial slices.  A total of 692 volumes were 
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scans that we use mainly for realigning the brains across subjects and for localizing the brain 

activity identified by our analyses.36 

 

B. fMRI data preprocessing 

 

Before the BOLD data can be analyzed to test our hypotheses, it has to be converted into 

a usable format. This requires the following steps, which are fairly standard – see Huettel et al. 

(2004), Ashby (2011), & Poldrack et al. (2011)  – and were implemented using a specialized but 

commonly used software package called SPM5 (Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, London, UK). 

First, images are corrected for slice acquisition time within each voxel. This is necessary 

because the scanner does not collect data on all brain voxels simultaneously. This simple step, 

which involves a nonlinear interpolation, temporally realigns the data across all voxels.  

Second, we correct for head motion to ensure that the time series of BOLD measurements 

recorded at a specific spatial location within the scanner was always associated with the same 

brain location throughout the experiment.37   

 Third, we realign the BOLD responses for each individual into a common 

neuroanatomical frame (the standard Montreal Neurological Institute EPI template). This step, 

called spatial normalization, is necessary because brains come in different shapes and sizes and, 

as a result, a given spatial location maps to different brain regions in different subjects. Spatial 

normalization involves a nonlinear reshaping of the brain to maximize the match with a target 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
collected over two sessions. The imaging parameters were as follows: echo time, 30 ms; field of view, 192 
mm; in-plane resolution and slice thickness, 3 mm; repetition time, 2.75 s. 
36 More precisely, we acquired high-resolution T1-weighted structural scans (1 x 1 x 1 mm) for each 
subject, which were coregistered with their mean EPI images and averaged across subjects to permit 
anatomical localization of the functional activations at the group level. 
 
37 BOLD measurements were corrected for head motion by aligning them to the first full brain scan  and 
normalizing to the Montreal Neurological Institute’s EPI template.  This entails estimating a six-parameter 
model of the head motion (3 parameters for center movement, and 3 parameters for rotation) for each 
volume, and then removing the motion using these parameters.  For details, see Friston et al. (1996).	  
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template.  Although the transformed data are not perfectly aligned across subjects due to 

remaining neuroanatomical heterogeneity, the process suffices for the purposes of this study. 

Furthermore, any imperfections in the realignment process introduce noise that reduces our 

ability to detect neural activity of interest. 

 Fourth, we also spatially smooth the BOLD data for each subject by making BOLD 

responses for each voxel a weighted sum of the responses in neighboring voxels, with the weights 

decreasing with distance.38 This step is necessary to make sure that the error structure of the data 

conforms to the normality assumptions about the error structure of the regression models, 

described below, that we use to test our hypotheses. 

 Finally, we remove low-frequency signals that are unlikely to be associated with neuronal 

responses to individual trials.39   

	  
	  
C. fMRI main data analyses 

 

The key goal of our exercise is to identify regions of the brain, given by collections of 

spatially contiguous voxels, called clusters, where the BOLD response reflects neural activity that 

implements the computations of interest. This is complicated by the fact that, since every voxel 

contains thousands of neurons, the BOLD responses can be driven by multiple signals. 

Fortunately, the linear properties of the BOLD signal allow for the identification of the neural 

signals of interest using standard linear regression methods. 

 The general procedure is straightforward, and will be familiar to most economists. The 

analysis begins by specifying two types of variables that might affect the BOLD response: target 

computations and additional controls. The target computations reflect the signals that we are 

looking for (e.g., an inaction regret signal). They are specified by a time series si(t) describing 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
38 Smoothing was performed using an 8 mm full-width half-maximum Gaussian kernel. 
39 Specifically, we applied a high-pass temporal filter to the BOLD data with a cutoff of 128 seconds.	  
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each signal of interest. For each of these signals, let Si(t) denote the time series that results from 

convolving the signal si(t) with the HRF, as described above. The additional controls, denoted by 

cj(t), are other variables that might affect the BOLD time series (e.g., residual head movement or 

time trends). These are introduced to further clean up the noise inherent in the BOLD signal, but 

are not explicitly used in any of our tests. The control variables are not convolved with the HRF 

because they reflect parameters that affect the measured BOLD responses, and not neural activity 

that triggers a hemodynamic response.40 

 The linearity of the BOLD signal implies that the level of BOLD activity in any voxel v 

should be given by 

!! ! = constant + !!!!!(!)! + !!!!! ! + !(!)! , 

 

where !(!) denotes AR(1) noise. This model is estimated independently in each of the brain’s 

voxels using standard regression methods.  

 Our hypotheses can then be restated as tests about the coefficients of this regression 

model: signal i is said to be associated with activity in voxel v only if !!! is significantly different 

from zero. 

 Two additional considerations apply to most fMRI studies, including the present one.  

First, we are interested in testing hypotheses about the distribution of the signal coefficients in the 

population, and not about individual coefficients. This requires estimating a random effects 

version of the linear model specified above which, given the size of a typical fMRI dataset, is 

computationally intensive. Fortunately, it has been shown that there is a straightforward shortcut 

that provides a good approximation to the full mixed effects analysis (Penny et al. (2006)).  It 

involves estimating the parameters separately for each individual subject, averaging them across 

subjects, and then performing t-tests. This is the approach we follow here. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
40 For example, linear trends are often included because the scanner heats up with continuous operation and 
this induces a linear change in the measured BOLD responses. 
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 Second, given that these tests are carried out in each of the ~100,000 voxels in the brain, 

there is a serious concern about false-positives, and multiple comparison corrections are 

necessary. Several approaches have been proposed in the fMRI literature to address this problem, 

many of which rely on the idea that purely random activations are unlikely to come in sizable 

clusters.41 Here, we follow a common approach in the literature, which consists of combining a 

sizable statistical threshold for the test in each voxel, given by p<0.001 uncorrected, together with 

a minimal cluster size of 15 voxels.  These two criteria, taken together, severely reduce the 

likelihood of false positives. 

 The analyses described so far involve searching for neural correlates of signals of interest 

across the entire brain and are therefore known as whole brain analyses. Another popular and 

very useful type of exercise, which we use here, is a “region of interest” (ROI) analysis.   Put 

simply, this analysis differs from a whole-brain analysis because it first restricts the set of voxels 

that is being analyzed. The most common types of ROI analyses involve 1) the measurement of 

signal strength in a prespecified ROI (in other words, in a prespecified subset of voxels), 2) 

computing the correlation across subjects between measures of signal strength in a particular ROI 

and behavioral or psychological measures, and 3) characterizing the time course of BOLD 

responses in an ROI for a particular event (e.g, seeing a price update screen.)  

 The measurement of signal strength in prespecified ROIs is a straightforward extension 

of the whole brain analysis. In this case, a general linear model is estimated only for the voxels in 

the ROI, and then a response estimate for the signal of interest is computed for every subject by 

averaging over the estimated coefficients over all of the voxels in the ROI. The distribution of 

average estimates for the group can then be compared across signals of interest using t-tests.  

  

 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
41 As noted earlier, a cluster is a set of spatially contiguous voxels. 



	  

	  
	  

78	  

IV. Results 

A. Behavioral predictions 

 We begin our test of Prediction 1 by computing the strength of the repurchase effect for 

each subject using the PDR-PUR measure described earlier.   We find that the average PDR and 

PUR across subjects are .301 and .337, respectively. This implies an average PDR-PUR value of  

-0.029, which is significantly higher than the optimal level of PDR-PUR=-0.75 (p<0.001).  At the 

individual subject level, all but 2 of 28 subjects in our experiment exhibit a repurchase effect that 

is greater than the optimal level, which is consistent with some of our subjects being affected by 

the regret-devaluation mechanism.  Moreover, Figure 3 shows there is significant variation in the 

size of the repurchase effect across subjects and suggests there are different types of traders.  6 

traders exhibit a significantly positive repurchase effect, 6 traders exhibit a significantly negative 

repurchase effect, while the remaining 16 subjects exhibit a repurchase effect which is not 

significantly different form zero. 

 One potential reason that we do not see more subjects exhibiting a measure of PDR-PUR 

above zero is because it may be difficult for subjects to recall the price at which they last sold a 

stock that they are considering repurchasing.  If this is the case, we may still see a preference for 

smaller forgone capital gains (the accumulation of price changes since last sale), without seeing a 

sharp discontinuity in preferences for foregone capital gains at 0.  We can test this by running a 

logistic regression of the buy decision on the foregone capital and the NEV of buying.   

Table 1 shows these regression results, and model 1 indicates that subjects do exhibit a 

preference for buying stocks with smaller foregone capital gains (p=0.002).  However, when we 

run another logistic regression decomposing the foregone capital gain into its two components 

(model 2), the current price and the price at which the subject last sold, we find that only the 

current price is a significant predictor of the purchase decision  (p<0.001).  The coefficient on the 

price at which the subject last sold the stock is positive, but not significantly greater than 0 

(p=0.24).  This suggests that since only the current price is displayed on the trading screen, 
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subjects may have a difficult time calculating the sign of the foregone capital without perfect 

recall of the price at which they last sold the stock.  Note also that the coefficient on NEV is 

positive in both regression specifications, suggesting that subjects are also (partially) tracking the 

optimal strategy.   

While the focus of this paper is on buying behavior, it is interesting to examine whether 

there is any relationship to the sell-side behavior of this same set of subjects.  In previous work 

with the same data set (Frydman et al. (2011)), we find that subjects exhibit significant 

disposition effects, which is the tendency of an investor to sell a stock with a capital gain more 

often than she sells a stock with a capital loss.  This effect is suboptimal in our experiment for the 

same reason that the repurchase effect is suboptimal in our experiment, namely, because of the 

short-term positive autocorrelation in price changes.  Figure 4 shows that there is indeed a 

correlation between buy-side and sell-side behavior, as subjects who have stronger repurchase 

effects tend to have stronger disposition effects.  In other words, subjects who have a high 

propensity to sell stocks with capital gains tend to have a low propensity to repurchase stocks 

with strong recent performance.  Such a subject in our experiment is therefore selling stocks with 

high expected returns and buying stocks with low expected returns.     

          

 

B. Neural Predictions 

We now turn to Prediction 2 which states that under the regret-devaluation mechanism, 

we should observe a neural signal in the vSt at the price update screen which correlates with the 

size of the price change.  Moreover, this signal should positively correlate with the price change 

when the subject owns the stock, and it should negatively correlate with the price change when 

the subject does not own the stock.  In other words, the vSt should encode a counterfactual signal 

representing the difference between what the subjects earned and what he could have earned had 

he acted differently on the previous asset-specific trading screen.   
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 We test this hypothesis by first estimating a general linear model of BOLD activity for 

each subject: 

 

1               !! ! = constant + !!"!#$%& ! ∆!! [  !!!!!"# ! + !!!!!"  !"# ! ] + !!!controls + ε(t). 

 

Here, bv (t) denotes BOLD signal at time t in voxel v. Ipupdate(t) is an indicator function that equals 

one at the time when the subject is presented with a price update screen at time t.  ∆!!  denotes the 

price change at time t, and Iown(t) and Ino own(t) are indicator functions that equal one if the subject 

owns or doesn’t own the stock at the price update screen at time t, respectively.  Finally, the 

controls vector includes regressors that control for physical movement inside the scanner, 

session-specific effects, and any changes in neural activity that might be due to the decision 

processes from previous trading screens, which are not activations of interest for the hypothesis 

being tested.  Finally, inferences about the extent to which the signals of interest are encoded in a 

given voxel are made by carrying out a one-sided t-test of the individually estimated coefficients 

(i.e., !!! and !!!) against zero.  

 Although we can carry out these tests in all of the brain’s voxels, here we limit our search 

to voxels that belong to the prespecified anatomical area of the vSt. This area was identified using 

the AAL digital atlas of the human brain (Tzourio-Mazoyer et al. (2002)). Note that this 

restrictions makes our significance threshold of p<.001 uncorrected, together with a minimum 

cluster size of 15 voxels, even less likely to generate false positives than in the standard whole 

brain analyses to which it is typically applied. 

 Consistent with our hypothesis, we find that the vSt exhibits activity at the time of a price 

update screen which correlates with the size of the price change.  In particular, Figure 5a shows 

areas of the brain where  !!! > 0  and Figure 5b shows areas of the brain were !!! < 0.  We find a 

cluster of 36 voxels in the left vSt and a cluster of 41 voxels in the right vSt where both !!! >
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0  !"#    !!! < 0.  Within this set of 77 voxels, the average  !!! =0.090 and the average !!! =-

0.058, and the magnitude of the counterfactual signal during the price update screen is 

significantly higher when subjects own the stock as compared to when they don’t own the stock 

(p=0.02).  The fact that !!! < 0 implies that when subjects are presented with a price update for a 

stock they do not own, the vSt encodes a signal which negatively correlates with the size of the 

price change.    

 We now turn to Prediction 3, which examines the key implication of the regret-

devaluation mechanism: experienced regret causes a devaluation of the subsequent repurchase 

opportunity, which then leads to a lower probability of repurchase.  Until now, this mechanism 

has only been tested using self-reported measures of experienced regret (Arkes et al. (2002)); 

here, we introduce a method which highlights the value of the neural data in directly measuring 

experienced regret so that we can assess its impact on subsequent trading decisions.   

Our design allows us to construct a novel test of this mechanism by exploiting exogenous 

variation in the ordering of specific stocks in the price update and trading screens.  Recall from 

the experimental design that there is a 1/3 probability that each stock is displayed on the price 

update screen, and there is a 1/3 probability each stock is displayed on the trading screen.  This 

allows us to perform tests about whether experienced regret from stock X (generated during the 

price update screen) affects the repurchase decision of stock X and only stock X.   We construct 

this test in two steps.  First, we partition trials where the subject sees a price update for stock X 

(an asset she doesn’t own) into three categories based on the trading opportunity in the 

subsequent trading screen: 1) trading screens where the subject has an opportunity to buy Stock 

X, 2) trading screens where the subject has an opportunity to buy stock Y≠X, and 3) trading 

screens where the subject does not have the opportunity to buy any stock (i.e., only has the 

opportunity to sell).  The second step is to estimate a GLM containing regressors that model these 

three types of trials:  
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(2) 

!! ! = constant + !!"_!"#_!"!#$%& ! ∆!!   !!!!!"#$ ! + !!!!!"##$%$&' ! + !!!!!"_!"" ! +

!!"_!"#_!"#$%& ! !!"# !   !!!!!"#$ ! + !!!!!"##$%$&' ! + !!!controls + ε(t). 

 

With the above GLM, we are able to test the precise implications of prediction 3, by 

examining whether inaction regret signals in the vSt predict the stock-specific repurchase 

decision.  We perform an ROI analysis in the vSt42 to test whether activity in this area of the brain 

can predict the stock-specific repurchase decision.  Consistent with both parts of prediction 3, we 

find that the left vSt does indeed predict the subsequent repurchase decision, only when the 

trading screen asset is the same as the price update screen asset43.  Specifically, Figure 6 shows 

that within our left vSt ROI, !!! = 2.21   ! = 0.003  and !!! = 0.11   ! = 0.83  and that 

!!!>!!!   ! < 0.003 .  We do not find a similar effect in the right vSt, but the signal in the left vSt 

passes a Bonferroni test with two comparisons.   

It is important to note that GLM (2) above includes a control for the change in price, ∆!! , 

and we are still able to predict the stock-specific repurchase decision from the inaction regret 

signal.  This is important because it shows that there is additional predictive information in this 

signal beyond the price change itself, and hence provides evidence of the marginal value of the 

neural data.  It is also consistent with previous work in psychology (Arkes et al. (2002)) that 

experienced regret is a mediating factor of the inaction inertia effect.   

 Our final neural prediction is aimed at using the inaction regret signal to explain a portion 

of the cross-subject variation in the repurchase effect (Figure 3).  Building on our result from 

prediction 3 that activity in the left vSt is a significant predictor of the repurchase decision, we 

expect to see a correlation between the strength of the inaction regret signal in the left vSt and the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
42 We define the vSt ROI as the set of voxels that are within 6 mm of the two voxels (bilateral) 
that exhibit the highest correlation with stimulus salience in (Zink et al. (2003)). 
43	  One subject was excluded from this analysis because there were no trials where the subject had 
an opportunity to buy stock Y≠X, after seeing a price update for stock X.	  
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size of the repurchase effect across subjects.  Because the association between left vSt activity 

and the repurchase decision is present only for trials in which the price update asset was the same 

as the trading screen asset, we first compute a “restricted” measure of (PDR-PUR) for each 

subject i using only those trials where the price update screen asset is the same as the trading 

screen asset44.  We then run a regression of this restricted measure of (PDR-PUR) on the inaction 

regret signal, which is defined as the estimated !!  coefficient from GLM (1): 

(!"# − !"#)! = ! + !!!! + ! 

 After weighting each observation inversely proportional to the standard error of 

(!"# − !"#)!, we find that !=-1.81 (t-stat: -2.09, p=0.047) which is consistent with prediction 

4 that subjects with stronger inaction regret signals exhibit a stronger repurchase bias.  Figure 7 

displays a scatterplot of the inaction regret signal vs. (PDR-PUR).  It is interesting to note that the 

two subjects who are nearly tracking the optimal level of (PDR-PUR)=-0.75 have an inaction 

regret signal of almost 0 or slightly positive.  This suggests that the few subjects who are 

repurchasing optimally have very little sensitivity to news about returns on foregone investments.   

 

 

 

V. Final Remarks 

 In this paper we provide a model of investor behavior that yields a repurchase effect, 

which is a systematic trading pattern that has recently been documented in the class of individual 

investors {Barber, 2011 #130}.  Our model is based on a regret-devaluation mechanism, which is 

difficult to test using standard empirical data sets because regret is not directly observable.  We 

sidestep this issue by collecting neural data that allows us to directly measure regret and test for 

its effect on subsequent decision-making. The neural data strongly supports the regret-devaluation 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
44	  The	  unrestricted	  and	  restricted	  measures	  of	  (PDR-‐PUR)	  have	  a	  correlation	  of	  0.46.	  
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mechanism as the driver of the repurchase effect.  While our concern in this paper is with a very 

specific behavioral implication of regret, the repurchase effect, there is a vast literature on models 

of regret in economics which may benefit from a similar style of empirical testing by using neural 

data to directly observe regret signals. 
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Table	  1.	  	  Determinants	  of	  Propensity	  to	  Buy.	  	  Logistic	  regression	  where	  dependent	  
variable	  equals	  1	  if	  the	  subject	  bought	  on	  the	  trial	  and	  0	  if	  the	  subject	  did	  not	  buy	  
(conditional	  on	  the	  opportunity	  to	  buy).	  	  Forgone	  Capital	  Gain	  is	  the	  difference	  between	  
current	  price	  and	  last	  sale	  price.	  	  NEV	  is	  the	  expected	  future	  price	  change	  of	  the	  stock	  
conditional	  on	  all	  previous	  information.	  	  Standard	  errors	  are	  clustered	  at	  the	  subject	  level.	  	  
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Figure	  1.	  	  Sample	  screens	  from	  a	  typical	  trial	  in	  the	  fMRI	  experiment.	  	  Subjects	  saw	  the	  
price	  update	  screen	  for	  two	  seconds,	  followed	  by	  the	  trading	  screen	  for	  which	  they	  had	  up	  
to	  three	  seconds	  to	  enter	  a	  decision	  (a	  blank	  screen	  was	  displayed	  in	  between	  in	  order	  to	  
temporally	  separate	  neural	  activity	  associated	  with	  decision-‐making.)	  The	  screens	  shown	  
below	  are	  for	  a	  trial	  in	  which	  the	  subject	  owns	  a	  unit	  of	  both	  stocks	  A	  and	  B.	  	  The	  screens	  
were	  displayed	  while	  subjects	  were	  inside	  the	  fMRI	  scanner,	  and	  decisions	  were	  entered	  
with	  a	  handheld	  device.	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	   	  



	  

	  
	  

89	  

Figure	  2.	  	  BOLD	  measurements	  of	  neural	  activity.	  	  (A)	  Canonical	  hemodynamic	  response	  
function	  that	  approximates	  the	  BOLD	  response	  that	  follows	  one	  arbitrary	  unit	  of	  
instantaneous	  neural	  activity	  at	  time	  0.	  (B)	  Example	  of	  a	  path	  of	  neural	  activity	  together	  
with	  the	  associated	  BOLD	  response.	   	  
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Figure	  3.	  	  Measure	  of	  (PDR-‐PUR)	  for	  each	  of	  the	  28	  subjects.	  	  Each	  black	  line	  represents	  
2	  standard	  errors.	  	  All	  but	  2	  subjects	  exhibit	  a	  measure	  of	  (PDR-‐PUR)	  that	  is	  significantly	  
greater	  than	  the	  optimal	  level	  of	  -‐0.75	  (denoted	  by	  the	  dashed	  horizontal	  line.)	  	  The	  figure	  
indicates	  that	  there	  is	  significant	  heterogeneity	  in	  the	  size	  of	  the	  repurchase	  effect	  across	  
subjects	  (SD:	  0.30).	  	  
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Figure	  4.	  	  Relationship	  between	  buying	  and	  selling	  behavior.	  	  Each	  blue	  point	  represents	  
a	  subject.	  	  The	  horizontal	  axis	  measures	  the	  repurchase	  effect	  and	  the	  vertical	  axis	  measures	  
the	  disposition	  effect.	  	  Similar	  to	  the	  repurchase	  effect,	  a	  positive	  disposition	  effect	  is	  also	  
suboptimal	  in	  our	  experiment,	  where	  the	  optimal	  level	  of	  the	  disposition	  effect	  is	  -‐0.76.	  
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Figure	  5.	  	  vSt	  encodes	  a	  counterfactual	  signal.	  	  	  A)	  Voxels	  in	  the	  brain	  which	  exhibit	  
activity	  that	  positive	  correlates	  with	  the	  price	  change	  at	  the	  time	  when	  subjects	  receive	  
news	  about	  an	  asset	  they	  own.	  	  B)	  Voxels	  in	  the	  brain	  which	  exhibit	  activity	  that	  negatively	  
correlates	  with	  the	  price	  change	  at	  the	  time	  when	  subjects	  receive	  news	  about	  an	  asset	  they	  
do	  not	  own.	  	  	  
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Figure	  6.	  	  Activity	  in	  vSt	  predicts	  trial-‐by-‐trial	  repurchase	  decision.	  	  	  Average	  activity	  in	  
the	  left	  vSt	  during	  price	  update	  screen	  when	  asset	  is	  not	  owned.	  	  Stronger	  inaction	  regret	  
signals	  are	  seen	  preceding	  failure	  to	  repurchase	  relative	  to	  repurchase,	  on	  those	  trials	  
where	  price	  update	  asset	  is	  the	  same	  as	  the	  trading	  screen	  asset	  (RIGHT).	  	  There	  is	  no	  
difference	  in	  inaction	  regret	  signals	  when	  assets	  are	  different	  on	  price	  update	  and	  trading	  
screen	  (LEFT).	  	  
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Figure	  7.	  	  	  Inaction	  regret	  signal	  in	  vSt	  correlates	  with	  repurchase	  effect	  across	  
subjects.	  	  	  The	  sensitivity	  of	  the	  left	  ventral	  Striatum	  to	  price	  changes	  when	  a	  subjects	  does	  
not	  own	  an	  asset	  (inaction	  regret	  signal)	  is	  negatively	  correlated	  with	  the	  size	  of	  the	  
repurchase	  effect.	  	  Inaction	  regret	  signals	  are	  defined	  as	  the	  estimate	  of	  the	  !! 	  coefficient	  
from	  GLM	  (1)	  in	  the	  text.	  	  Stronger	  inaction	  regret	  signals	  (more	  negative	  vSt	  sensitivity	  to	  
price	  update)	  are	  therefore	  associated	  with	  stronger	  repurchase	  effects.	  	  
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Chapter 3 

Attention to Realization Utility Modulates the Disposition Effect 

	  
Individual investors face a daunting task when constructing a portfolio of stocks because 

of the vast amount of information available to them.  Attention is a scarce resource, and it is 

inevitable that investors will eventually deplete their stock of attention and disregard valuable 

information when trading.  A growing body of literature in finance suggests that these constraints 

on attention can have a systematic effect on investor behavior and asset prices (Hong and Stein 

(1999); Hirshleifer and Teoh (2003); Peng and Xiong (2006); Barber and Odean (2008); Cohen 

and Frazzini (2008); Dellavigna and Pollet (2009); Duffie (2010); Da et al. (2011)).  While much 

of this literature focuses on underreaction to firm news or strategic disclosure of information to 

investors, another implication of inattention is the manner in which an investor perceives the 

“attributes” of his own portfolio.  For example, in the case that an investor experiences a liquidity 

shock and is forced to sell a position in his portfolio, what attributes does the investor attend to 

when formulating the decision of which security to sell?    

  In this paper, we assume the investor allocates his attention to two general attributes of 

each security that he holds in his portfolio: the expected return and the past performance.  We 

focus on these two general attributes because standard theory predicts that investors should trade 

based on expected returns, but there is substantial evidence that investors also trade based on a 

stock’s past performance (Grinblatt and Keloharju (2001); Kaustia (2010)).  Our main question in 

this paper is whether an investor’s allocation of attention to each of these two attributes is fixed, 

or whether it can be modulated by the saliency of expected returns or past performance.  In 

essence, are investor preferences malleable to be more or less “forward-looking?” 

This question is important because if investors allocate attention to the most salient items 

on financial statements (Libby et al. (2002); Hirshleifer and Teoh (2003)), then the design of 

financial statements can have a direct impact on investor behavior.  To study this attention 
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allocation procedure, we have subjects trade in an experimental stock market and we manipulate 

the saliency of the expected return and the past performance of a stock.  We use the capital gain 

on the stock as the measure of the stock’s past performance, and as we describe in the main text, 

we use an optimal (Bayesian) prediction of the stock’s next period price change as a measure of 

expected return.   

We use a stock’s capital gain as its measure of past performance because there is a large 

empirical literature documenting that individual investors trade based on how well the stock has 

done since the investor purchased it (Grinblatt and Keloharju (2001); Kaustia (2010)).  While this 

trading behavior does not typically arise from a standard model (eg, power utility with i.i.d. 

returns), a recently developed preference specification, called realization utility, provides a 

theoretical foundation for the empirical link between the capital gain and propensity to sell 

(Shefrin and Statman (1985); Barberis and Xiong (2012)).  Realization utility is based on the 

assumption that investors derive positive (negative) utility directly from the act of selling capital 

gains (capital losses) on risky assets that they own. Contemporaneous experimental and 

neurobiological research provides evidence that is consistent with the idea that investors do have 

a direct preference for selling stocks with capital gains (Frydman et al. (2011)).  If investors have 

realization utility preferences in addition to standard preferences over consumption, it seems 

plausible that trading behavior should be driven by an investor’s attention to both capital gains 

and expected returns; that is, trading behavior should be affected by the saliency of the past and 

future.  

One particular implication of realization utility that we will focus on in this paper is the 

disposition effect, which is the empirical fact that investors have a greater propensity to sell stocks 

that have gone up in price since purchase, relative to stocks that have gone down in price since 

purchase45.  We focus on this effect for two reasons: 1) it provides a measure of the strength of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
45	  See for example (Shefrin and Statman (1985); Odean (1998); Genesove and Mayer (2001); Feng and 
Seasholes (2005); Frazzini (2006); Jin and Scherbina (2011)). 
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realization utility preferences (Frydman et al. (2011)) and 2) it is a robust behavior that has been 

found to lower overall trading performance (Odean (1998); Weber and Camerer (1998)).  In 

particular, (Odean (1998)) finds that, on average, the winning stocks investors sell tend to 

outperform the losing stocks they hold by 3.4%.  This is consistent with the momentum found in 

equity returns, because winning stocks will on average continue to have higher returns than losing 

stocks over the short-term (Jegadeesh and Titman (1993)).   It follows that if attention to 

realization utility can be manipulated, then we should be able to affect the size of the disposition 

effect and therefore the trading performance of the investor.     

Indeed, we are able to establish a causal link between attention to realization utility and 

the size of the disposition effect.  Our results can be useful for the optimal design of financial 

statements.  For example, brokerage houses can design regular financial statements that highlight 

expected returns, or they can decrease the salience of past trading performance.  One particular 

method of implementing the latter would be to decrease the saliency of the cost basis, so that less 

relative attention is focused on the capital gain of the stock.  In our experimental stock market, we 

implement this treatment and find that the disposition effect is significantly attenuated, and 

overall earnings are increased.  This is interesting because recent legislation enacted by the US 

government has mandated that the cost basis should effectively become more salient when 

investors are in the decision phase of selling an asset46.  Congress passed this cost basis 

legislation in order to increase tax compliance with capital gain laws, but a potential unintended 

consequence of such a law could be that investors now focus more on the cost basis when 

deciding whether to sell.  According to our experimental results, this will induce a higher 

disposition effect, and will lower overall average trading performance.  Interestingly, this should 

work to increase government tax revenue even more, since an investor’s optimal tax policy is to 

realize losses immediately and defer realizing gains far into the future in order to minimize the 

present value of the capital gains tax burden (Constantinides (1983)).                  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
46 See Emergency Economic Stabilization Act of 2008	  
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Our results can also inform specific channels through which effective financial education 

can be implemented.  Many current forms of financial education, for example, disclaimers on 

mutual fund investments, stress that past performance should not be used to form beliefs about 

future returns.  However, our results show that besides this information channel, there is another 

potential mechanism through which past performance may influence trading decisions, namely, 

via a direct preference for realizing capital gains.  This additional preference-based mechanism 

should therefore also be taken into consideration when educating investors about the potential 

disadvantages of using past performance when trading.    

 

 

 

I. Theory and Experimental Design 

A. Design 

 

We now describe an experiment that we use to examine the attention that subjects pay to 

past performance and future returns, which is based on a design used in (Frydman et al. (2011)).  

All subjects are given the opportunity to trade three stocks – stock A, stock B, and stock C – in an 

experimental stock market. The experiment consists of two sessions separated by a two-minute 

break. Each session lasts approximately 16 minutes and consists of 108 trials. In this section, we 

use t to index the trials. The first session consists of trials t=1 through t=108, and the second, of 

trials t=109 through 216. We now describe the structure of the first session; the structure of the 

second session is identical to that of the first. 

 Before trial 1, each subject is given $350, in experimental currency, and is required to 

buy one share of each stock. The initial share price for each stock is $100; after this transaction, 

each subject is therefore left with $50. The majority of the trials – specifically, trials 10 through 
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108 – consist of two parts: a price update and a trading decision, each of which corresponds to a 

separate screen that the subject sees (see Figure 1). In the price update part, one of the three 

stocks is chosen at random and the subject is shown a price change for this stock. Note that stock 

prices only evolve during the price update screens; as a result subjects see the entire price path for 

each stock. In the trading decision part, one of the three stocks is again chosen at random and the 

subject is asked whether he wants to trade the stock. Note that no new information is revealed 

during the trading decision part.  

Trials 1 through 9 consist only of a price update part; subjects are not given the 

opportunity to buy or sell during these trials. The idea behind this is to let subjects accumulate 

some information about the three stocks before having to make any trading decisions. 

 Each subject is allowed to hold a maximum of one share and a minimum of zero shares 

of each stock at any point in time. In particular, short-selling is not allowed. The trading decision 

is therefore reduced to deciding whether to sell a stock (conditional on holding it) or deciding 

whether to buy a stock (conditional on not holding it). The price at which a subject can buy or sell 

a stock is given by the current market price of the stock. We now explain how this price is 

determined. 

 The price path of each stock is governed by a two-state Markov chain with a good state 

and a bad state. The Markov chain for each stock is independent of the Markov chains for the 

other two stocks. Suppose that, in trial t, there is a price update about stock i. If stock i is in the 

good state at that time, its price increases with probability 0.7 and decreases with probability 0.3. 

Conversely, if it is in the bad state at that time, its price increases with probability 0.3 and 

decreases with probability 0.7. The magnitude of the price change is drawn uniformly from {$5, 

$10, $15}, independently of the direction of the price change. 

 The state of each stock changes over time in the following way. Before trial 1, we 

randomly assign a state to each stock. If the price update in trial t >1 is not about stock i, then the 

state of stock i in trial t remains the same as its state in the previous trial, t-1. If the price update in 
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trial t >1 is about stock i, then the state of stock i in the trial remains the same as in trial t-1 with 

probability 0.8, but switches with probability 0.2. In mathematical terms, if is 

the state of stock i in trial t, then  if the time t price update is not about stock i, whereas 

if the time t price update is about stock i, the state switches as follows: 

 

The states of the three stocks are not revealed to the subjects: they have to infer them from the 

observed price paths. To ease comparison of trading performance across subjects, the same set of 

realized prices was used for all subjects. 

A key aspect of our design is that, conditional on the information available to subjects, 

each of the stocks exhibits short-term price continuation. If a stock performed well on the last 

price update, it was probably in a good state for that price update. Since it is highly likely 

(probability 0.8) to remain in the same state for its next price update, its next price change is 

likely to also be positive. 

 At the end of the first session, we liquidate subjects’ holdings of the three stocks and 

record the cash value of their position. As noted above, the second session is identical in structure 

to the first. Before the start of the second session – in other words, just before trial 109 – we again 

randomly assign a state to each of the three stocks, reset each share price to $100, give each 

subject a fresh $350 and require them to immediately buy a share of each of the three stocks. The 

first nine trials of the second session consist only of a price update, while the remaining trials 

have both a price update part and a trading decision part. At the end of the second session, we 

again liquidate subjects’ asset holdings and record the value of the cash proceeds. 

 We give subjects a financial incentive to maximize the final value of their portfolio at the 

end of each session   Specifically, if the total value of a subject’s cash and risky asset holdings at 

si,t ! {good, bad}

si,t = si,t!1

! si,t+1=good! si,t+1=bad!
si,t=good! "#$! "#%!
si,t=bad! "#%! "#$!
!
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the end of session 1 is $X, in experimental currency, and the total value of his cash and risky 

asset holdings at the end of session 2 is $Y, again in experimental currency, then his take-home 

pay in actual dollars is 15 + (X+Y)/24. In other words, we average X and Y to get (X+Y)/2, 

convert the experimental currency to actual dollars using a 12:1 exchange rate, and add a $5 

show-up fee. Average total earnings were $30.20. Earnings (not including the show-up fee) 

ranged from $19.14 to $29.14 and the standard deviation of earnings was $2.58. 

 In order to avoid liquidity constraints, we allow subjects to carry a negative cash balance 

in order to purchase a stock if they do not have sufficient cash to do so at the time of a decision. If 

a subject ends the experiment with a negative cash balance, this amount is subtracted from the 

terminal value of his portfolio. The large cash endowment, together with the constraint that 

subjects can hold at most one unit of each stock at any moment, was sufficient to guarantee that 

no-one ended the experiment with a negative portfolio value, or was unable to buy a stock 

because of a shortage of cash during the experiment. 

Fifty-eight Caltech subjects participated in the experiment, and each subject was 

randomly assigned to one of three different experimental conditions.  Twenty subjects were 

assigned to the control condition where the price and cost basis (if the asset was owned) was 

displayed on both the price update and trading screens.  Eighteen subjects were assigned to the 

cost basis treatment, which was identical to the control condition, except that the cost basis was 

removed from the price update and trading screens.  Finally, twenty subjects were assigned to the 

forecast treatment, which was identical to the control condition, except that the expected next 

period price change, (as computed by a Bayesian agent) was displayed on both the price update 

and trading screens.  We refer to this variable as the optimal forecast, and the derivation of this 

variable is given in the next section.  Figure 1 depicts each of the two screens for the control 

condition and the two treatment conditions.   

The exact instructions given to subjects at the beginning of the experiment are included in 

the Appendix. The instructions carefully describe the stochastic structure of the price process, as 
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well as all other details of the experiment. Before beginning the first sessions, subjects engaged in 

a practice session of 25 trials to familiarize themselves with the market software. 

 

B. Expected Value Investors 

 

 In the environment we have just described, the optimal strategy for a risk-neutral 

Bayesian investor who is maximizing the expected value of his take-home earnings – from now 

on, we refer to such an investor as an “expected value” investor --  is to sell (or not buy) a stock 

when he believes that it is more likely to be in the bad state than in the good state; and to buy (or 

hold) the stock when he believes that it is more likely to be in the good state.  An expected value 

investor will therefore only be concerned with the expected return on a stock, and will not pay 

attention to previous performance.     

Formally, let pi,t be the price of stock i in trial t, after any price update about the stock, 

and let qi,t =Pr(si,t =good | pi,t, pi,t-1, pi,t,…, pi,1) be the probability that a Bayesian investor, after 

seeing the price update in trial t, would assign to stock i being in the good state in trial t. Also, let 

zt take the value 1 if the price update in trial t indicated a price increase for the stock in question; 

and -1 if the price update indicated a price decrease. Then qi,t = qi,t-1 if the price update in trial t 

was not about stock i; but if the price update in trial t was about stock i, then: 

 

 

 

  

As noted above, the optimal strategy for an expected value investor is to sell (if holding) 

or not buy (if not holding) stock i in trial t when qi,t <0.5; and to hold or buy it otherwise.  We can 

also compute the expected next period price change as a function of qi,t, which is given by 

 

qi,t (qi,t!1, zt ) =
Pr(zt | si,t = good)*Pr(si,t = good | qi,t!1)

qi,t!1 Pr(zt | si,t!1 = good)+ (1! qi,t!1)Pr(zt | si,t!1 = bad)

=
(0.5+ 0.2zt )*[0.8*qi,t!1 + 0.2*(1! qi,t!1)]

qi,t!1[0.8*(0.5+ 0.2zt )+ 0.2*(0.5! 0.2zt )]+ (1! qi,t!1)[0.2*(0.5+ 0.2zt )+ 0.8*(0.5! 0.2zt )]
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!! ∆!!,!!! !!,! ,∆!!,!!! ≠ 0 = 0.6 2!!,! − 1  

 

This variable is the optimal forecast.  For an expected value investor, the expected utility of 

selling stock i is then 0-0.6(2qi,t-1)= 0.6(1-2qi,t).  We refer to this quantity as the net present value 

of selling stock i in trial t, NEVi,t. 

 

C. Realization Utility Investors 

 

As described in the introduction, several studies haves documented the empirical 

regularity that investors have a greater propensity to sell stocks that have risen in price since 

purchase, relative to those that have fallen in price since purchase; in other words, investors 

exhibit a disposition effect (Shefrin and Statman (1985); Odean (1998); Frazzini (2006)).  While 

this type of behavior is hard to reconcile with a rational model of informed trading, a recent 

theoretical model based on the assumption that investors derive utility directly from the act of 

selling stocks, in addition to standard sources of utility based on consumption, can help explain 

the disposition effect.  This theory, called realization utility, assumes that investors derive a 

positive flow of utility precisely at the moment when selling a stock that has increased in value 

since purchase, and this utility is proportional to the capital gain on the stock (Barberis and Xiong 

(2009); Barberis and Xiong (2012)).  The psychological intuition behind this theory is that 

investors may think about investing in stocks as a series of episodes characterized by the name of 

the stock, the purchase price, and the sale price.  When investors sell a stock at a gain, they are 

creating a positive memory of their investment experience, and they feel good about this.  

Conversely, selling a stock at a loss creates a negative episode, one which may conjure negative 

emotions of regret and low self-esteem.  Because the variable that generates realization utility is 

the capital gain, investors who trade to maximize realization utility will pay attention to past 

performance via the capital gain.    
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Recent experimental work using brain imaging has confirmed the presence of such 

realization utility signals (Frydman et al. (2011)).  In particular, these authors allowed subjects to 

trade in an experimental stock market while their brain activity was monitored.  Subjects were 

found to have a strong disposition effect, and an area of the brain known to hedonic impact 

exhibited a spike in neural activity precisely at the moment when they realized a stock with a 

capital gain.  

If subjects in our experiment have realization utility preferences and they discount the 

future at a high rate, then we expect them to sell stocks with capital gains, and hold stocks with 

capital losses, more often than an expected value investor will.  In essence, subjects with “pure” 

realization utility preferences will only focus attention on past performance through the capital 

gain, and they will not pay attention to expected returns at the time of the sell/hold decisions.  In 

contrast, an expected value investor will only focus on expected returns, and will not pay any 

attention to his capital gains.  

 

D. Hypotheses 

 

Our first hypothesis is that investors are not simply one type or the other, but in fact have 

a hybrid preference structure over both realization utility and expected utility of future returns.  

That is, investors have preferences over realizing capital gains and they also have standard 

preferences over final consumption.  Such an investor will compute the sell/hold decision as a 

function of both the capital gain and the NEV.  One way to model the probability of selling is to 

assume it is a logistic function of both variables: 

 

Pr !"##!,! = ! + !!!"#!,! + !! !!,! − ! + ! 
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Our hypothesis is that investors pay attention to both past performance and expected returns when 

computing the sell/hold decision, which we formulate as follows: 

 

Hypothesis 1: Investors use both past performance and expected future returns when deciding 

whether to sell, which leads to: !! > 0 and !! > 0. 

 

 

The purpose of our experiment is not only to test this hypothesis, but moreover, to test whether !! 

and !! can be manipulated by introducing cues which trigger the desire to experience realization 

utility.  In particular, we run two treatments in which we test whether  !!
!!

 increases relative to the 

control condition.  In the cost basis treatment we remove the cost basis from the decision screen, 

which decreases the salience of the net capital gain, thus shifting attention away from realization 

utility, and thus inducing a higher !!
!!

.  In the forecast treatment, we prominently display the 

optimal forecast of the price change, which should shift attention towards expected returns, and 

thus induces a higher !!
!!

.  

 

Hypothesis 2a: Removing the cost basis from the trading screen will increase the relative weight 

that subjects attach to expected returns:  !!
!!!"#$%"&

< !!
!!!"#$  !"#$#  !"#$!%#&!

. 

 

Hypothesis 2b: Displaying the optimal forecast on the trading screen will increase the relative 

weight that subjects attach to expected returns:  !!
!!!"#$%"&

<  !!
!!!"#$%&'(  !"#$!%#&!

 

 

 

 



	  

	  
	  

106	  

II. Results 

 

A. Treatment effects on disposition effect size  

 

We now describe our method for calculating the disposition effect for each subject and 

then test for differences in this statistic across conditions. We follow a similar methodology to 

that of (Odean (1998)), where every time a subject is offered the opportunity to sell a stock, we 

classify this decision into one of four mutually exclusive categories: “realized gains”, “realized 

losses”, “paper gains” or “paper losses”. A decision classified as a realized gain (realized loss) if 

the market price of the stock is above (below) the purchase price, and the subject decides to sell 

the stock. A decision is classified as a paper gain (paper loss) if the market price of the stock is 

above (below) the purchase price, and the subject decides not to sell the stock. For each subject, 

we count the number of realized gains, realized losses, paper gains, and paper losses over the 

course of both experimental sessions and compute the Proportion of Gains Realized (PGR) and 

the Proportion of Losses Realized (PLR): 

PGR = # of realized gains
# of realized gains + # of paper gains

PLR = # of realized losses
# of realized losses + # of paper losses

 

For each subject, we measure the disposition effect using the difference between PGR and PLR.  

When the difference is positive (negative), the subject exhibits (the opposite of) a disposition 

effect. 

Figure 2 shows that subjects exhibit an average disposition effect that is significantly greater 

than the optimal level of -55% in all three conditions (p<0.001 for each condition.)   Both the 

forecast treatment and cost basis treatment significantly reduce the disposition effect relative to 

the control condition.  By removing the cost basis from the price update screen and the decision 
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screen (cost basis treatment), the average disposition effect decreases from 11.9% to -8.7% 

(p=0.01).  By displaying the optimal forecast on both screens (forecast treatment), the average 

disposition effect decreases from 11.9% to -16.9% (p=0.014).  While both treatment conditions 

reduce the severity of the disposition effect, the disposition effect is still significantly greater than 

the optimal level of -55% in both treatments.   

Figure 3 shows the number of decisions aggregated across conditions when the subject either 

sells a stock at a gain, or holds a stock at loss.  A realized gain is optimal when the NEV is 

negative, as the expected return is negative and so the investor should sell.  A paper loss is 

optimal when the NEV is positive, as the expected return is positive and so the investor should 

hold on to the stock.  The blue bars denote those decisions where the subject behaves according to 

the optimal strategy, and the red bars show those decisions where the subject fails to follow the 

optimal strategy.    It is clear that both the forecast treatment and cost basis treatment substantially 

reduce the number of paper losses, suggesting that subjects may be paying less attention to the 

capital loss they have accrued, and instead paying more attention to the negative expected return 

from holding a stock with a capital loss.  It is also interesting to note that in the forecast 

treatment, over half of all decisions to sell capital gains or hold capital losses are suboptimal, 

despite the optimal forecast being expliclty displayed on the trading screen.   

Figure 4 shows the disaggregated subject data by condition.  In the control condition, 45% of 

subjects (9 of 20) exhibited a disposition effect significantly above 0%.  In contrast, only 11% of 

subjects in the cost basis treatment (2 of 18) exhibited a disposition effect significantly above 0%.  

Similarly, only 10% of subjects in the forecast treatment (2 of 20) exhibited a disposition effect 

significantly above 0%47.  Figure 4 also highlights an important aspect of the experimental 

design: the disposition effect is a suboptimal behavior, indicated by the negative correlation 

between earnings and the disposition effect (p<0.001).  

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
47 Within subject standard errors of the disposition effect are computed as in (Odean (1998)).  
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B. Effect of cost basis treatment on sell decision 

 

Our goal in this section is to investigate the mechanism through which the absence of the cost 

basis leads to a smaller disposition effect, and hence, a higher rate of optimal behavior.  Our 

model says that when subjects are offered the opportunity to sell a stock, the decision is computed 

by assessing the tradeoff between the accrued capital gain that generates realization utility 

(backwards looking) and the NPV of selling (forward looking).  It follows that if this causes 

subjects to place a higher relative weight on the NPV of selling, which we manipulate by 

decreasing the saliency of the cost basis, then the disposition effect should decrease. We test this 

by estimating a logistic regression of the sell decision on the capital gain and the NPV of selling, 

allowing for different sensitivities to each of these variables in the cost basis condition.   

 Panel A of table 1 indicates that the effect of the capital gain in the control condition is 

significantly positive (p=0.049), but the effect of the NPV is not significantly different from zero 

(p=0.32).  There is also no significant marginal effect of the cost basis treatment on the capital 

gain in computing the sell decision (p=0.54).  Critically, we find that the NPV is significantly 

more predictive of the sell decision in the cost basis treatment than in the control condition 

(p=0.05).  This suggests that subjects pay more relative attention to expected returns, not because 

they pay less attention to the capital gain, but instead because they pay more attention to the NPV 

of selling.  

This is important because it rules out the following alternative hypothesis:  subjects would 

like to cater to their realization utility preferences, but are unable to do so because of imperfect 

recall of the cost basis.  If this alternative theory held, then the effect of the treatment on the 

disposition effect would occur only through a diminished weight on the cost basis.  Panel B of 

table 1 provides an alternative specification of the model that splits the capital gain into its price 
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and cost components, and indicates that there is no differential effect of the cost basis in the 

treatment condition.  Instead, our main results are robust to this specification, and the key 

interaction effect is stronger (p=0.035). 

We also find that the cost basis does not significantly predict the sell decision in the control 

condition, although the effect is in the right direction.  This is likely attributed to a noisier 

estimate of this coefficient because of small variation in the cost basis over time.  For a given 

holding period, the price will, on average, change every third trial, but the cost basis will remain 

the same.  Therefore, we have variation in the cost basis only across different holding periods, 

whereas we have variation in the price also across trials.   

 

C. Effect of forecast treatment on sell decision 

 

We now report results from an analysis designed to understand the mechanism through which 

the forecast treatment lowers the magnitude of the disposition effect.  In essence, we replicate the 

regression in the above section, but use data only from the control group and from those 

participants in the forecast treatment.  We hypothesize that displaying the optimal forecast should 

shift attention away from realization utility preferences and towards the forward-looking expected 

returns.  Panel A of table 2 confirms that in the control condition, the capital gain has a significant 

effect on the propensity to sell (p=0.049), but the NPV of selling does not (p=0.32).  As 

hypothesized, we find that displaying the optimal forecast on the trading screen significantly 

increases the weight of the NPV (p=0.002), but there is no significant marginal effect on the 

capital gain (p=0.50).  Panel B of table 2 displays an alternative specification where we split the 

capital gain into its price and cost components, and we find that the price is a significant predictor 

of the propensity to sell (p=0.03), but the cost basis is not (p=0.30).   
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III. Discussion 

 

We find that subjects exhibit a preference for realizing capital gains and losses on risky assets 

they own and they also exhibit a preference for final consumption.  Additionally, the weights on 

these two components of a subject’s hybrid preference structure can be manipulated by the 

saliency of the capital gain and expected return.  This is exhibited most starkly in Figure 2, which 

shows that the disposition effect is much weaker when subjects are exposed to trading screens 

where the capital gain has a low degree of saliency.  This manipulation of behavior is likely due 

to a shift of attention away from realization utility and towards expected returns, and it is unlikely 

because subjects cannot readily compute the capital gain due to lack of information about the cost 

basis.  In other words, the effect on investor behavior we see is due to the manner in which 

information is displayed, and not due to the information that is known to the subject. 

       Our ability to change the size of the disposition effect through two simple manipulations 

of the display of information is interesting because the disposition effect has been found to 

decrease average trading performance (Odean (1998)).  In order to model this empirical fact, we 

design our experiment so that stronger disposition effects explicitly lead to lower overall earnings 

(Figure 4).  Together, this shows that we are able to systematically manipulate the trading 

performance of a subject through different types of portfolio displays. 

To conclude, we highlight two main implications of our results, one is theoretical, and the 

other is practical.  A theoretical implication of our results concerns the malleability of 

preferences.  We show that saliency and attention to specific objects in a portfolio has the 

potential to change the relative weighting of preferences and therefore impact investor behavior 

(Libby et al. (2002); Hirshleifer and Teoh (2003)).  In particular, we show that realization utility 

preferences may not be fixed and “hard-wired” but are subject to environmental cues that can 
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trigger a desire to realize stocks with capital gains.  Hence, a richer theoretical analysis of 

investor behavior incorporating attention as a state variable may prove useful in future research.    

On the practical side, regulators may use our results as a policy tool in order to influence 

investor behavior.  For example, investors with realization utility preferences will trade to realize 

capital gains and hold stocks with capital losses, which leads to a disposition effect that can lower 

overall trading performance.  If regulators stipulate that brokerage houses decrease the saliency of 

the capital gain by removing the cost basis from the regular financial statements (as in our cost 

basis treatment), this would likely attenuate the disposition effect, and could increase individual 

investor trading performance.      

Interestingly, the US government recently enacted a new cost basis legislation in January 

2011 which effectively makes the cost basis more salient and may have the unintended effect of 

shifting investors’ attention towards realization utility.  Specifically, this legislation mandates that 

investors must decide, at the time of trading, which cost basis method they will use when 

reporting capital gains for tax purposes.  Previously, investors decided this method after the 

trading decision, and so this legislation effectively increases the saliency of the cost basis during 

the decision phase.  Our experimental results suggest that this may have a systematic and 

detrimental effect on the trading behavior of some individual investors.   

This legislation introduces a natural experiment to test the effect of modulating attention to 

past performance on trading behavior.  In particular, a testable implication of our theory of 

attention modulation is that the new cost basis legislation should induce investors to pay more 

attention to past performance, and it should lead to a higher average disposition effect among 

individual investors starting in January 2011.  We leave this to future empirical research of the 

effect of government policy on individual investor behavior.   

 

     

 



	  

	  
	  

112	  

References 

 
 

Barber,	  Brad	  M.,	  and	  Terrance	  Odean,	  2008,	  All	  that	  glitters:	  The	  effect	  of	  attention	  
and	  news	  on	  the	  buying	  behavior	  of	  individual	  and	  institutional	  investors,	  
Review	  of	  Financial	  Studies	  21,	  785-‐818.	  

Barberis,	  Nicholas,	  and	  Wei	  Xiong,	  2009,	  What	  drives	  the	  disposition	  effect?	  An	  
analysis	  of	  a	  long-‐standing	  preference-‐based	  explanation,	  Journal	  of	  Finance	  
64,	  751-‐784.	  

Barberis,	  Nicholas,	  and	  Wei	  Xiong,	  2012,	  Realization	  utility,	  Journal	  of	  Financial	  
Economics	  104.	  

Cohen,	  Lauren,	  and	  Andrea	  Frazzini,	  2008,	  Economic	  links	  and	  predictable	  returns,	  
The	  Journal	  of	  Finance	  63,	  1977-‐2011.	  

Constantinides,	  George	  M.,	  1983,	  Capital	  market	  equilibrium	  with	  personal	  tax,	  
Econometrica	  51.	  

Da,	  Z.,	  J.	  Engelberg,	  and	  P.	  Gao,	  2011,	  In	  search	  of	  attention,	  Journal	  of	  Finance	  66.	  
Dellavigna,	  Stefano,	  and	  Joshua	  M.	  Pollet,	  2009,	  Investor	  inattention	  and	  friday	  

earnings	  announcements,	  The	  Journal	  of	  Finance	  64,	  709-‐749.	  
Duffie,	  Darrell,	  2010,	  Presidential	  address:	  Asset	  price	  dynamics	  with	  slow-‐moving	  

capital,	  The	  Journal	  of	  Finance	  65,	  1237-‐1267.	  
Feng,	  Lei,	  and	  Mark	  S.	  Seasholes,	  2005,	  Do	  investor	  sophistication	  and	  trading	  

experience	  eliminate	  behavioral	  biases	  in	  financial	  markets?,	  Review	  of	  
Finance	  9,	  305-‐351.	  

Frazzini,	  Andrea,	  2006,	  The	  disposition	  effect	  and	  underreaction	  to	  news,	  Journal	  of	  
Finance	  61,	  2017-‐2046.	  

Frydman,	  Cary,	  Nicholas	  Barberis,	  Colin	  Camerer,	  Peter	  Bossaerts,	  and	  Antonio	  
Rangel,	  2011,	  Testing	  theories	  of	  investor	  behavior	  using	  neural	  data,	  Caltech	  
Working	  Paper.	  

Genesove,	  David,	  and	  Christopher	  Mayer,	  2001,	  Loss	  aversion	  and	  seller	  behavior:	  
Evidence	  from	  the	  housing	  market,	  Quarterly	  Journal	  of	  Economics	  116,	  1233-‐
1260.	  

Grinblatt,	  Mark,	  and	  Matti	  Keloharju,	  2001,	  What	  makes	  investors	  trade?,	  Journal	  of	  
Finance	  56,	  589-‐616.	  

Hirshleifer,	  David,	  and	  Siew	  Hong	  Teoh,	  2003,	  Limited	  attention,	  information	  
disclosure,	  and	  financial	  reporting,	  Journal	  of	  Accounting	  and	  Economics	  36,	  
337-‐386.	  

Hong,	  Harrison,	  and	  Jeremy	  C.	  Stein,	  1999,	  A	  unified	  theory	  of	  underreaction,	  
momentum	  trading,	  and	  overreaction	  in	  asset	  markets,	  The	  Journal	  of	  
Finance	  54,	  2143-‐2184.	  

Jegadeesh,	  Narasimhan,	  and	  Sheridan	  Titman,	  1993,	  Returns	  to	  buying	  winners	  and	  
selling	  losers:	  Implications	  for	  stock	  market	  efficiency,	  The	  Journal	  of	  Finance	  
48,	  65-‐91.	  

Jin,	  Li,	  and	  Anna	  Scherbina,	  2011,	  Inheriting	  losers,	  Review	  of	  Financial	  Studies	  24.	  
Kaustia,	  Markku,	  2010,	  Prospect	  theory	  and	  the	  disposition	  effect,	  Journal	  of	  

Financial	  and	  Quantitative	  Analysis	  45,	  1-‐36.	  



	  

	  
	  

113	  

Libby,	  Robert,	  Robert	  Bloomfield,	  and	  Mark	  W.	  Nelson,	  2002,	  Experimental	  research	  
in	  financial	  accounting,	  Accounting,	  Organizations	  and	  Society	  27,	  775-‐810.	  

Odean,	  Terrance,	  1998,	  Are	  investors	  reluctant	  to	  realize	  their	  losses?,	  Journal	  of	  
Finance	  53,	  1775-‐1798.	  

Peng,	  Lin,	  and	  Wei	  Xiong,	  2006,	  Investor	  attention,	  overconfidence	  and	  category	  
learning,	  Journal	  of	  Financial	  Economics	  80,	  563-‐602.	  

Shefrin,	  Hersh,	  and	  Meir	  Statman,	  1985,	  The	  disposition	  to	  sell	  winners	  too	  early	  
and	  ride	  losers	  too	  long:	  Theory	  and	  evidence,	  Journal	  of	  Finance	  40,	  777-‐
790.	  

Weber,	  Martin,	  and	  Colin	  F.	  Camerer,	  1998,	  The	  disposition	  effect	  in	  securities	  
trading:	  An	  experimental	  analysis,	  Journal	  of	  Economic	  Behavior	  &	  
Organization	  33,	  167-‐184.	  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  

	  
	  

114	  

Table 1.  Panel A shows results from a logistic regression of the sell decision on the capital gain 
and NPV of selling.  C2 denotes a dummy variable indicating that the subject was a participant in 
the cost basis treatment.  Only subjects from the control condition and cost basis treatment are 
included in the model, and all standard errors are clustered at the subject level.  Panel B provides 
another specification of the model that splits the capital gain into its price and cost components. 
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Table 2.  Panel A shows results from a logistic regression of the sell decision on the capital gain 
and NPV of selling.  C3 denotes a dummy variable indicating that the subject was a participant in 
the forecast treatment.  Panel B provides another specification of the model which splits the 
capital gain into its price and cost components. 
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Figure 1.  Sample screens from control condition and treatments.  Each trial in every 
condition consisted of a “price update” screen (2 seconds), followed by a 1 second ITI, then 
followed by a “trading” screen (3 seconds).    A) Control condition.  Price and cost displayed on 
both screens.  B) Cost basis treatment.  Cost is removed on both screens.  C) Forecast treatment.  
The optimal forecast of the asset-specific next period price change is displayed on both screens.   
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Figure 2.  Average Disposition Effects (PGR-PLR).  Average disposition effects are displayed 
for the control condition and the two treatment conditions.  Both of the treatments significantly 
reduce the size of the disposition effect relative to the control condition.  The optimal level of the 
disposition effect for an expected value maximizing agent is given in red is -55%, which is 
significantly lower than the average in any of the three conditions. 
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Figure 3.  Decisions to Realize Gains and Hold Losses.  The figure displays the total number of 
trials, across treatments, where subjects sold a capital gain or held a capital loss.  Data are color-
coded by whether the decision was optimal or sub-optimal.  Realized gains are optimal when the 
NPV is negative, and paper losses are optimal when the NPV is positive.  In each condition, 
including the forecast treatment where the NPV is displayed on the screen, over half the decisions 
to realize gains and hold losses are suboptimal.       
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Figure 4.  Disposition effect and earnings.  Each point represents a single subject, and data are 
presented by condition.  The negative relationship between the disposition effect and earnings 
highlights an important aspect of our experimental design, which is that the disposition effect is a 
suboptimal behavior.  This relationship arises because of the momentum, or positive short-term 
autocorrelation, in the stock price changes.   
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Chapter 4 

MAOA-L Carriers are better at making optimal financial decisions under risk 

 

I. INTRODUCTION 

Recent research using twin-genetic studies has shown that some of the variation across 

people in their willingness to take risks can be attributed to heritability [1-3].  Additional 

work has begun to show associations between specific genes and financial risk-taking 

behavior [4-7]. Although these studies have been very valuable in identifying particular 

genes that might be associated with risk-taking behavior, they have not been able to 

identify the neurocomputational mechanisms that mediate the impact of genes on 

behavior.  This is an important shortcoming since a growing body of work in behavioral 

neuroscience and neuroeconomics has shown that there might be multiple mechanisms 

through which genes could affect risk-taking behavior. In particular, genes may affect 

behavior by changing the value assigned to different risky options [8, 9], or they may 

affect behavior by changing the way in which the brain adjudicates between the options 

based on their values [10].  

 

In this paper we shed some light on how genes affect the psychological processes 

associated with risk-taking behavior by combining tools from behavioral genetics, 

neuroeconomics, and experimental economics. In particular, we use experimental choice 

data to estimate well parameterized computational models of financial behavior under 

risk that allow us to test for the impact of the genes encoding for monoamine oxidase-A 

(MAOA), the serotonin transporter (5-HTTLPR), and the dopamine D4 receptor (DRD4) 

have on the two computations described above.  Employing a computational model 

allows us to isolate the underlying psychological mechanisms that contribute to choice 

heterogeneity across these genes.  Consistent with previous results, we find that a specific 

polymorphism of the MAOA gene is associated with an increased propensity to take 

financial risk. Our computational modeling approach also allowed us to identify the 

specific mechanism responsible for this increased appetite for risk, which allows for an 
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improved interpretation of previous behavioral genetic results.  

 

We focus on these three genes because they have been the subject of various previous 

behavioral genetic studies, and because much of the behavioral neuroscience literature 

points to an important role of the serotonergic, dopaminergic and noradrenergic systems 

in decision-making [11-15]. 

 

Monoamine oxidase-A is an enzyme that regulates the catabolism of monoamines 

including serotonin, dopamine, norepinphrine, and epinephrine.  These monoamines 

function as neurotransmitters in the central nervous system.  Expression of monoamine 

oxidase-A in the brain has been shown to be influenced by the variable number of tandem 

repeats (VNTR) in the MAOA gene [16].  In particular, carriers of the 3.5 or 4 repeats 

(MAOA-H) allele exhibit higher expression of the enzyme, whereas carriers of the 2, 3, 

or 5 repeats (MAOA-L) allele are associated with lower enzymatic expression.  The low-

activity variant of the MAOA gene has been shown to contribute to aggressive and 

impulsive behavior in mice and humans [17, 18].  At the neuroanatomical level, MAOA-

L carriers show lower activity in regulatory prefrontal areas and increased functional 

connectivity between vmPFC and amygdala regions [19, 20].  In addition, genetic 

variation in the MAOA gene has also been linked to a susceptibility to psychiatric 

diseases including pathological gambling [21].   

 

The serotonin transporter (5-HTTLPR) encodes a protein responsible for the reuptake of 

serotonin at the synaptic cleft. A short variant has been associated with lower 

transcriptional efficiency of the gene promoter and higher levels of anxiety, harm-

avoidance, and financial risk-aversion [5, 22, 23].  A long variant of the gene is 

associated with higher transcriptional efficiency and thus higher reuptake of serotonin 

into the presynaptic neuron.  The serotonin transporter is also the target of many anti-

depressant drugs that act to inhibit the reuptake of 5HT in order to prolong neuronal 
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firing and serotonin transmission.   

 

The DRD4 gene influences the function of dopamine D4 receptors, for which a particular 

repeat sequence leads to functional differences in ligand binding.  This gene contains a 

48-bp VNTR in exon III which contains 2-11 repeats; carriers of the 7-repeat allele have 

been shown to require higher levels of dopamine to produce a response of similar 

magnitude to those without the 7-repeat allele [24].  Behaviorally, carriers of the 7-repeat 

allele score higher on novelty-seeking personality tests and also exhibit higher rates of 

pathological gambling [25, 26].  A recent study of an all-male population has also shown 

that carriers of the 7-repeat allele are willing to take more financial risk in an investment 

experiment [4], and a similar mixed-gender experiment confirms these results [5].  

 

II. RESULTS 

 

90 male subjects were asked to make choices between 140 different pairs of monetary 

gambles. Each pair contained a certain option (CO) involving a payout of $c with 100% 

probability, and a risky option (RO) involving a gain $g and a loss $l with equal 

probability (see methods for details). Subjects cared about their choices because at the 

end of the experiment one trial was selected at random and the payouts associated with 

the selected option were implemented. We failed to obtain successful genotyping on 6 

subjects, and 1 additional subject was excluded because ex-post debriefing showed that 

he did not understand the instructions. As a result, our effective sample size is N=83. 

 

Basic behavioral results. We compared the frequency with which the risky option was 

chosen by the different genetic groups (Fig. 1). MAOA-L carriers accepted the RO in 

41% of trials while MAOA-H carriers accepted 36% of the risky options (n=83, t=1.70, 

p<.046, one-tailed). However, the DRD4 and 5-HTTLPR polymorphisms were not 

associated with differences in the propensity to accept the risky option.  DRD4 7R+ 
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carriers accepted 39% of the risky options, while non-carriers accepted 38% of the time 

(n=83, t=0.60, p=0.27, one-tailed).  Subjects that were homozygous for the short allele of 

the 5-HTTLPR gene accepted 37% of risky options, while carriers of the long variant had 

a 39% acceptance rate (n=83, t=-0.66, p=0.26, one-tailed).  We also examined a different 

categorization of the 5-HTTLPR genotype and found that carriers of the short allele and 

those that were homozygous for the long allele both accepted the risky option 38% of the 

time (n=83, p=0.58, one-tailed).  One-tailed test statistics were used for these basic 

behavioral tests because multiple previous studies have shown that these polymorphisms 

are associated with increased risk-taking. 

 

Basic computational phenotype. In order to investigate the psychological mechanisms 

through which the MAOA gene affects the propensity to take financial risks we estimated 

the parameters of a linear prospect theoretic model for each of the subjects based on their 

choices. The use of this model is justified by the fact that a growing body of behavioral 

and neuroimaging evidence suggests that most individuals make risky choices by first 

assigning a value to the different lotteries according to the rules of Prospect Theory (PT) 

[8, 27-29], and then comparing those values to make a choice.  

 

We assumed that subjects evaluated the gambles using a simple linear version of prospect 

theory in which the utility of taking the RO is given by 

U(RO)=pg - λ(1-p)l, 

and the utility of taking the CO is given by 

U(CO)=CO. 

Here g denotes the gain associated with the risky option, l denotes the loss, p denotes the 

probability of the positive payoff, and  is a parameter measuring the relative value that 

the individual assigns to gains and losses. Note that most PT models also assume that 

probabilities are weighted non-linearly [27, 29]. However, since our study only considers 

50-50 gambles, and previous studies have found that the probability distortion at p =0.5 



	  

	  
	  

124	  

is small [30], we ignore this aspect of the theory.  

 

We assume that the choices are a stochastic function of values that is described by the 

softmax function: 

Pr(accept RO)=(1+exp(-a (U(RO) – U(CO)))-1 , 

where a is the inverse-temperature parameter that controls the quality of the decision-

making process: when a=0 subjects choose both options with equal probability regardless 

of their associated underlying values; as a increases the probability of choosing the 

option associated with the largest value increases.  

 

The model has two free parameters for each subject,  and a, which we estimated using 

maximum likelihood (see methods for details). For technical reasons described in the 

Supplementary Methods, we were able to successfully estimate all of the parameters for 

the two computational models discussed in the paper for 64 of the 83 subjects. For this 

reason all of the computational results here and below are limited to this smaller sample. 

The estimate of λ was 1.520.11 (meanse). The estimate of a was 3.060.60. See Table S2 

for a full list of the individual estimates.  41 subjects were significantly loss averse (λ>1), 

21 subjects were loss neutral, and 2 subjects were significantly loss seeking (λ<1). The 

average level of λ is similar to that found in other behavioral studies of loss aversion [30, 

31].   

 

Note the relationship between the parameters of the model and the psychological 

processes that affect choice. The coefficient of loss aversion  measures the relative value 

placed on potential gains and losses. When  is low, subjects engage in risk-taking 

behavior by overvaluing gains relative to losses. The opposite is true for high . As a 

result, this coefficient is a good indicator of the impact that the valuation process has on 

risk-taking. In contrast, the coefficient a measures the facility with which subjects are 
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able to choose the option with the highest value. Thus, a is a good measure of the 

performance of the comparison or choice processes. 

 

Genetic effects on the valuation process. We first investigated the extent to which the 

impact of the genetic polymorphisms on risk-taking behavior can be explained by 

changes in the valuation process. We did this by first regressing the individually 

estimated loss aversion parameters on each gene polymorphism, including controls for 

ethnicity and school attended.  We found no significant results for MAOA (n=64, t=-1.33, 

p=.19, two-tailed), DRD4 (n=64, t=-.09, p=.93, two-tailed) or 5-HTTLPR (n=64, t=.22 

p=.82, two-tailed). We then ran a multivariate specification by including all three gene 

polymorphisms in the same model (which also included the ethnicity and schooling 

controls) and found no significant effects for MAOA (t=-1.33, p=.19, two-tailed), DRD4 

(t=-.03, p=.98, two-tailed), or 5-HTTLPR (t=.31, p=.76, two-tailed).  Finally, because the 

multiplicative nature of the loss aversion parameter may bias the estimate of the mean, as 

a robustness check we also ran a version of the multivariate specification using log(λ) as 

the independent variable. Again, we found no significant effects for MAOA (t=-.92, 

p=.36, two-tailed), DRD4 (t=-.06, p=.95, two-tailed), or 5-HTTLPR (t=.43, p=.67, two-

tailed). 

 

Genetic effects on the choice process. We then investigated the extent to which the 

impact of the genetic polymorphisms on risk-taking behavior can be explained by 

changes in the comparison process. We did this by regressing the individual-fit of the 

inverse temperature parameters on each gene polymorphism controlling for ethnicity and 

school population. We found no significant effects for MAOA (n=64, t=-.47, p=.64, two-

tailed), DRD4 (n=64, t=.66, p=.51, two-tailed), or 5-HTTLPR (n=64, t=-.84, p=.40, two-

tailed).  The multivariate specification including all three polymorphisms and controls 

also failed to find significant effects for MAOA (t=-.40, p=.69, two-tailed), DRD4 (t=.44, 

p=.66, two-tailed), and 5-HTTLPR (t=-.64, p=.53, two-tailed).  
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Advanced computational phenotype. Since our basic behavioral results show a 

statistically significant difference in risk-taking behavior for MAOA that could not be 

explained by the simple computational model described above, we decided to complicate 

the model slightly by allowing for the inverse-temperature parameter to differ for choices 

in which the gamble had positive net expected utility and those that had negative net 

expected utility.  In particular, we used the same equations to model the valuation of the 

RO and CO, but we allowed for an asymmetric stochastic choice function: 

Pr(accept RO)=(1+exp(-a+(U(RO) – U(CO)))-1 ,      if   U(RO)-U(CO)0  

Pr(accept RO)=(1+exp(-a-(U(RO) – U(CO))) -1,     if   U(RO)-U(CO)< 0  

The selection of this specification was motivated by the fact that, under the estimates of 

the basic model, on average subjects rejected a higher percentage (93.3%) of gambles 

among those with negative expected utility than they accepted (85.4%) with positive 

expected utility (n=64, t=-4.43, p<0.001, two-tailed).  This suggested that subjects might 

be using a different comparison process when making choices between these two types of 

risks.   

 

As before, we estimated the individual model parameters using maximum likelihood (see 

Table S3 and Fig. S3 for a description of the individual fits). The estimate of λ was 

1.49.10.  The median estimates of a+ and a-  were 1.97 and 2.25, respectively (see the 

Supplementary Materials for discussion on technical issues related to the estimation of 

these two inverse-temperature parameters and a justification for the use of the median 

statistic to describe the population.)  The Bayesian Information Criterion (BIC) value for 

the unconstrained and constrained (a-=a+) models were 5022 and 5058, respectively, 

indicating a better fit when allowing for asymmetric temperature parameters.  

 

Genetic effects on the comparator process of advantageous and disadvantageous risks. 

Fig. 2 displays logistic fits to the average group choices for each MAOA group, allowing 

for different slopes in the positive and negative EU domains. The net utility for each 
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gamble was computed using the model fits from the advanced computational model. Note 

that the logit curve summarizes the performance of the comparator process by relating the 

net utility of the risky option to the probability that it is chosen as steeper slopes of the 

logistic curve correspond to higher rates of optimal decision making. The figure shows 

that there were no differences when the RO had a lower value than the CO, but that there 

was a systematic difference when this was not the case:  MAOA-L carriers chose the 

optimal action more often than MAOA-H carriers when faced with advantageous risk. A 

formal statistical test confirmed the difference between the two groups (Fig. 3): MAOA-

L carriers accepted the risky option 6.4% more often than MAOA-H carriers (n=64, 

t=2.49 p=0.015, two-tailed) when the risky option had a positive net expected utility, but 

there was no significant difference in acceptance rates over the negative EU domain 

(n=64, t=.51, p=0.62, two tailed), in both cases controlling for ethnicity. Because the 

latter conclusion was justified by rejection of the null, we subsequently ran a more 

conservative statistical test by estimating the interaction effect between the MAOA 

genotype and a dummy for positive EU gambles; we found a positive coefficient on the 

interaction term, consistent with our previous test, although the result was slightly weaker 

(n=64, t=1.95, p=0.056, two tailed).  Note that our statistical test was constructed by 

integrating under each of the choice curves in the positive and negative EU domains, and 

thus acts as a non-parametric test of group differences between the a+ and a- parameters. 

Similar analyses for DRD4 and 5-HTT did not reveal any significant differences in choice 

behavior.    

 

III. DISCUSSION 

 

The computational approach used in the paper allowed us to conclude that MAOA-L 

carriers are more likely to take a financial risk than their MAOA-H counterparts, but only 

when it is advantageous to do so given their preferences over risk. For disadvantageous 

gambles there was no difference between the two groups. This suggests that MAOA-L 

carriers perform better in the case of risky financial decision making since they exhibit an 

improved ability to select the optimal response when it is advantageous. Contrary to 
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previous findings in the literature [4, 5], we found no significant differences in either 

gambling tendencies or the computations associated with valuation or choice for the 5-

HTTLPR and DRD4 genes. 

 

Our results for MAOA are consistent with previous related behavioral genetic studies, 

although our computational approach provides novel insights about the mechanism 

through which this gene influences risky financial choice. Previous studies have found 

that MAOA-L carriers are more likely to exhibit aggressive and risky behavior [6, 18, 19, 

21].  Contrary to previous discussion in the literature [6, 19, 21], our results show that 

these behavioral patterns are not necessarily counterproductive [19, 21], since in the case 

of financial choice these subjects engage in more risky behavior only when it is 

advantageous to do so. This provides a cautionary tale on the interpretation of previous 

behavioral results related to MAOA, and on the common practice in the literature of 

relating genes to behavior without specifying and estimating a computational phenotype.   

 

The fact that the MAOA gene influences the catabolism of monoamines (such as 

serotonin, dopamine, norepinphrine, and epinephrine) also allow us to connect our 

findings with various other strands of the literature. Previous neuroscience studies have 

shown that humans with higher levels of norepinephrine typically choose the action 

carrying the highest immediate reward [11, 15].  Our results are consistent with this claim 

as monoamine oxidase is responsible for the catabolism of norepinephrine, and low 

activity carriers of MAOA will tend to have lower enzymatic activity and thus increased 

levels of norepinephrine.  A recent study which examined the cognitive effects of 

norepinephrine in mice found that pharmacologically manipulating norepineprhine levels 

downward resulted in decreased “immediate performance accuracy” [32], which is also 

consistent with our finding that MAOA affects the temperature parameters that control the 

accuracy of choices. 
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Monoamine oxidase also plays a role in breaking down dopamine. Therefore, 

dopaminergic transmission might also play a role in the computational phenotype 

identified here.   Consistent with our findings, a recent study in which in vitro 

dopaminergic levels were experimentally manipulated through L-DOPA and the impact 

on optimal choice behavior was measured [33] found that increased dopamine levels lead 

to more optimal choices in a simple learning task. 

  

The fact that we failed to find behavioral or computational differences between the 5-

HTTLPR and DRD4 genotypes is also consistent with the previous literature. Some recent 

studies have found significant effects of both of these genes on financial risk-taking 

behavior [4, 5], but other studies have failed to replicate these results. For example, a 

recent fMRI study found a significant effect of 5-HTTLPR on the framing induced choice 

biases, but it failed to find a link between the 5-HTTLPR polymorphism and financial risk 

taking [34].  Another study also failed to find any 5-HTTLPR associations between risk 

attitudes over the gain and loss domains [35].  The DRD4 gene has also been implicated 

in impulsive behavior and novelty-seeking in a variety of studies [25, 26], but these 

results have also not been consistently replicated [36, 37].  In particular, a larger meta-

analysis also does not find a significant association between the DRD4 polymorphism 

and impulsive or risky behavior [38].  One potential reason for our failure to identify a 

significant effect of 5-HTTLPR on financial risk taking is limited statistical power for this 

gene: the distribution of the key polymorphism was unbalanced in our subject population, 

with only 27% being homozygous for the short allele. 

As with any behavioral genetic study, it is also important to pay close attention to the 

behavioral specificity of the phenotype we define.  It is possible that the phenotypic 

difference we find for the MAOA-L polymorphism may arise from a more general 

cognitive effect, such as intelligence or numerical ability.  We do not have a sufficient 

battery of controls that can definitively rule out these broader psychological mechanisms 

nor do we have controls for potential environmental variables (eg, income) that could 

interact with the MAOA gene to produce the effect.  However, one advantage of 

estimating a computational phenotype is that it allows us to precisely identify the 
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parameter that is driving the heterogeneity in choice within the model.  If this 

heterogeneity were driven by a more general cognitive or environmental variable, then 

this mechanism should also mediate choice behavior in a manner consistent with our 

asymmetric result on optimal action selection.      

 

Our results suggest several natural directions for further research. First, future studies 

should investigate the neurochemical basis of decision-making to understand the 

quantitative relationship between norepineprhine, dopamine, monoamine oxidase, and 

optimal choice.  Our results provide support for the hypothesis that higher levels of 

norepinephrine and dopamine correspond to a greater level of action selection optimality, 

but further research must be conducted to fully understand this relationship [11].  Second, 

our results indicate the need for future genetic studies to specify a computational 

phenotype that separates the valuation and choice processes, as subjects with similar 

preferences might still make very different choices. 

 

IV. MATERIALS AND METHODS 

 

Subjects. 90 male subjects, ages 19-27, participated in the study. Subjects were students 

at Caltech (59) or at a nearby community college. We restricted our population to males 

to avoid gender as a confounding factor and to avoid difficulties in the analysis of the 

MAOA gene (males carry only one allele while females carry two). Subjects self-

reported ethnicity was as follows: 53 Caucasian, 13 Latin/Hispanic, 9 Indian, 3 African-

American, 3 Asian, and 9 other. However, we failed to obtain successful genotyping on 6 

subjects, and 1 additional subject was excluded because ex-post debriefing showed that 

he did understand the instructions. As a result, our effective sample size is N=83. The 

study was approved by Caltech’s Human Subjects Committee.  

 

Behavioral task. Subjects received twenty-five dollars for participating in the study. They 

were allowed to risk part of these funds during the following decision-making task. In 
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each trial they were shown a pair of gambles and had to choose one of them. One option 

involved certain nonnegative payoffs (e.g., gain $0 with probability 100%). We refer to it 

as the certain option (CO).  The other option involved a 50%-50% gamble between a gain 

and a loss (e.g., winning $7 and losing $4 with equal probability). We refer to it as the 

risky option (RO). Subjects made decisions in 140 different trials without feedback on a 

private computer. The order of the choices was randomized within subjects.  Table S1 

lists the entire set of payoffs used. 

 

Both options were displayed simultaneously on the screen until the subject made a 

decision. Subjects made a decision using a five point scale: 1=strongly reject the risk 

option, 2=weakly reject the risky option, 3=indifferent between both options, 4=accept 

the risky option, 5=strongly accept the risky option. For the purpose of the computational 

analysis, the responses were collapsed into a binary response (with 5 & 4 coded as 

accept, 1 and 2 coded as reject, and 3’s allocated randomly to the two conditions).  To 

make sure that we did not lose information when collapsing the choice data into binary 

responses, we estimated an ordered logistic regression and found that 95% confidence 

intervals for the interior cutpoints (responses 2, 3 and 4) overlapped.  This suggests that 

using the 5-point scale would not add significant information to the behavioral and 

genetic analyses performed in the paper.  Subjects failed to enter a response in 4% of the 

trials, which were excluded from further analyses. Subjects cared about the choices 

because one trial was selected at random at the end of the experiment and his choice for 

that trial was implemented. Average earnings were $28.    

 

Genotyping. Genetic data was collected from each subject using an Oragene DNA OG-

500 saliva collection kit. Six subjects were unsuccessfully genotyped for one or more 

genes and were dropped from all genetic analyses. 

5-HTTLPR was identified as follows.  The forward primer was labeled with 6FAM-5’-

GGC GTTGCC GCT CTG AAT GC-3’, the reverse primer was unlabelled 5’-GAG GGA 

CTGAGC TGG ACA ACC AC-3’, which yielded 484-bp (short) and 527-bp (long) 

fragments. Polymerase chain reaction (PCR) was performed in a total volume of 25 µL, 

containing 50 ng of DNA; 1µl of each primer(10µM stock); 1.5µl of (25mM)MgCl2; 2% 
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DMSO (v/v); 2.5 U Amplitaq Gold DNA polymerase (Applied Biosystems, Foster City, 

California); 2ul of Deaza dNTP (2mM each dATP,dCTP,dTTP,1mMdGTP,1mM deaza 

dGTP). Cycling conditions consisted of (1) an initial 12 min denaturation at 94°C; (2) 8 

cycles with denaturation for 30 sec at 94°C, varied annealing temperatures consisting of 

30 sec at 66°C (2 cycles), then 65°C (3 cycles), then 64°C (3 cycles), followed by 

hybridization for 1 min at 72°C; (3) 35 cycles with an annealing temperature of 63°C and 

the same denaturation and hybridization parameters; and (4) a final extension for 20 min 

at 72°C.  

 

MAOA was identified as follows.  The forward primer was labeled with VIC-5’-

ACAGCCTGACCGTGGAGAAG -3’, the reverse primer was unlabelled 5’-

GAACGGACGCTCCATTCGGA -3’. Polymerase chain reaction (PCR) was performed 

in a total volume of 10 µL, containing 25 ng of DNA; 0.5µl of each primer(10µM 

stock);10x PCR buffer 0.8µl, dNTP 0.8µl,DMSO 0.8 µl,25mM MgCl2 0.8 µl, 0.064 µl of 

Amplitaq Gold ( AppliedBiosystems).  Cycling conditions consisted of (1) an initial 12 

min denaturation at 95°C; (2) 35cycles of 94°C for 30sec, 59°C for 30sec, 72°C for 2min.  

 

DRD4 was identified as follows.  The forward primer was labeled with VIC-5’-AGG 

ACC CTC ATG GCC TTG -3’, the reverse primer was unlabelled 5’-GCG ACT ACG 

TGG TCT ACT CG -3’.  Polymerase chain reaction (PCR) was performed in a total 

volume of 10 µL, containing 25 ng of DNA; 0.5µl of each primer(10µM stock);Takara 

LA Taq 0.1 µl,5µl 2x GC Buffer II ,1.6 µl dNTP. Cycling conditions consisted of (1) an 

initial 1 min denaturation at 95°C; (2) 30 cycles of 94°C for 30sec, 62°C for 30sec, 72°C 

for 2min; (3) 72°C for 5min. In all cases the PCR products were electrophoresed on an 

ABI 3730 DNA analyzer (Applied Biosystems) with a LIZ1200 size standard 

(AppliedBiosystems), and Data collection and analysis used the Genemapper software 

(Applied Biosystems). 
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Genotype equilibrium.  Allele and genotype frequencies are given in Tables S4 – S7.  A 

Pearson-Chi squared test failed to reject the null hypothesis that the 5-HTTLPR gene was 

in Hardy-Weinberg Equilibrium (HWE) in our subject pool (2=0.98, df=1, p>0.32).  

Since males possess only one allele of the MAOA gene, HWE is trivially satisfied.  

Finally, because of its multiple allele structure [39], we used a Markov Chain Monte 

Carlo (MCMC) method to test the null hypothesis that DRD4 was in HWE.  The test 

failed to reject the null hypothesis (p=0.689). 

 

Computational phenotype. The parameters for the two computational models described in 

the results section were estimated by optimizing the non-linear likelihood function using 

the Nelder-Mead Simplex Method [40], as implemented in Matlab 2008b. We computed 

standard errors for the estimated parameters using parametric bootstrapping with a re-

sampling size of 500.  For each subject we estimated individual parameters from the 

choice data and then used the estimates to generate a set of 500 pseudosamples of choice 

data.  We then used the same MLE procedure described above to estimate the parameters 

in each of the pseudosamples. The standard error of the parameter estimate was then 

estimated by the standard deviation of this set of samples.     

 

We assessed the model fit of the unconstrained computational model by computing the 

percent of choices correctly predicted for each subject at individually fitted parameter 

values, which was 88.8% on average.  

 

For technical reasons explained in the Supplementary Materials, we failed to estimate one 

or more model parameters for 19 out of 83 subjects. The computational results described 

in the paper only apply to the 64 subjects for which all parameters were estimated 

successfully. 
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A potentially important simplification used in the computational models is the linearity of 

the value function. We tested the robustness of this assumption by estimating a non-linear 

version of the simple prospect theoretic model given by the following three equations: 

 

1. (1) U(RO)= pg ρ - λ(1-p)lρ 

2. (2) U(CO)=COρ                    

3. (3) Pr(accept RO) =(1+exp(-a (U(RO) – U(CO)))-1 .            

 

This model contains an additional parameter that allows for the possibility that value 

might be a non-linear function of the payoffs. We estimated the model using the same 

MLE procedure described above. However, due to insufficient concavity of the 

likelihood function, we failed to successfully estimate parameters for 5 additional 

subjects that we were able to estimate the model for under the constraint ρ=1.  Of the 

remaining subjects, average estimates of λ, ρ and a were 1.51, 1.03, and 2.95, 

respectively.  We ran a likelihood ratio test for each individual under the null hypothesis 

that ρ=1, and determined that we could reject a linear value function in 46 of 65 subjects 

at the 5% significance level.  Furthermore, a t-test on the distribution of the unconstrained 

estimates of ρ did not reject the null hypothesis that the average value of ρ in the 

population is 1 (p=.29)  Because of the lack of heterogeneity in ρ, and because including 

this extra parameter did not significantly improve the model fit, we focused the analysis 

in the paper on the simple and advanced versions of the linear prospect theory model. 

 
Estimation of advanced computational model. The advanced computational model is described by 

the following four equations: 

1) U(RO)=pg - λ(1-p)l, 

2) U(CO)=CO. 

3) Pr(accept RO)=(1+exp(-a+(U(RO) – U(CO)))-1 ,      if   U(RO)-U(CO)>=0  

4) Pr(accept RO)=(1+exp(-a-(U(RO) – U(CO)))-1,     if   U(RO)-U(CO)< 0  
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The first two equations describe the valuation process and the second pair of equations describes 

the probability with which subjects choose the option with the highest net expected utility. 

We used maximum likelihood to estimate the parameter vector 

! 

"=(λ, a+, a-) for each subject.  

This required maximizing the following likelihood function: 

! 

l(" | y, p) = yi log(F(p," ))+ (1# yi)log(1# F(p,"))
i=1

140

$
 

where 

F(p, 

! 

" )=(1+exp(-a+(U(RO) – U(CO)))-1 ,      if   U(RO)-U(CO)>=0 

F(p, 

! 

" )=(1+exp(-a-(U(RO) – U(CO)))-1,     if   U(RO)-U(CO)<0, 

 i indexes the trial number, y indicates the response, p describes the design matrix of the 

behavioral task, and 

! 

"  indicates the parameter vector to be estimated.  We used the Nelder-Mead 

Simplex Method as implemented in Matlab 2008b to obtain point estimates for each parameter.   

 

As described in the methods section, we failed to successfully estimate at least one parameters for 

19 out of 83 subjects that comprise our effective sample size.  9 subjects were dropped due to 

insufficient variation in responses, which makes estimation impossible.  8 subjects were excluded 

because their behavior was random, in the sense of being unresponsive to the underlying 

valuations options. 2 were excluded for failing to satisfy the basic “rationality” constraint that 

when the expected utility of the risky option is higher than the certain option, the risky option 

should always be accepted. Table S8 describes the sample sizes and explanations for all analyses 

in the main text. 

 

Estimation problems for randomless choice behavior. We failed to estimate parameters of the 

advanced computational phenotype for 9 subjects (6 MAOA-H and 3 MAOA-L) due to lack of 

variation in observed choices.  This type of complication arises when subjects always choose the 

highest value option without any noise, which corresponds to the case a=∞. This makes 

parameter estimation impossible since the resulting choice behavior can be generated using any 

sufficiently large temperature parameter a. This leads to a flat likelihood function in this range of 

the temperature parameters that makes maximization of the likelihood function over this range 

infeasible. This type of complication is more severe for the advanced computational phenotype 

because estimation will fail if subjects respond without noise in either the positive or negative EU 

domain. 
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Estimation problems for random choice behavior. On the other end of the spectrum from 

noiseless choice performance is random behavior.   We failed to estimate the parameters of 8 

subjects (5 MAOA-H and 3 MAOA-L) due to this problem. In particular, for these subjects the 

maximum likelihood procedure generated a nonsensical negative estimate for either a+ or a-. This 

problem can arise when subjects’ parameters induce valuations that lead to a positive net value 

for the risky option in only a small fraction of the 140 choice pairs, for which the subject 

responds sub-optimally within this small set of trials. 

 

About the identification of the temperature parameters: a+ and a- . The introduction of two 

temperature parameters in the advanced model makes the estimation problem more difficult than 

in the basic model. The fundamental problem is illustrated in Fig. S1, which shows that the 

fraction of trials in which the risky option has a positive net utility decreases rapidly with λ, 

which makes it difficult to obtain precise estimates of a+ and a- .  Intuitively, the econometric 

difficulty arises because the sample size of trials in the positive and negative EU domain is 

endogenously determined by λ.  When λ takes on an extremely high (low) value, the sample size 

of the positive (negative) EU domain becomes very small, which induces highly imprecise 

estimates of all computational model parameters.  This estimation problem is intensified when 

subjects respond using either random or purely randomless behavior, as described above.     

 

 

Example of estimation problems. Here we show that the estimation problems described above can 

arise even with simulated data in which we know that the underlying computational model 

applies. Consider a hypothetical subject with λ=2.5, in which case only 23% of trials (33 of 140 

trials) will have a positive net RO, a-=3, and a+ very large, so that she responds with noiseless 

choice performance in the positive EU domain. We simulated choice data from this hypothetical 

subject and attempted to estimate parameters using both the basic and advanced computational 

model.  For the basic computational model, the parameters are estimated correctly and the 

likelihood function is concave in a (Fig S4).  However, when estimating the advanced 

computational phenotype, the maximization algorithm does not converge and terminates the 

search procedure prematurely at: λ=2.38, a+=386, a-=208.  Fig S5 shows that this is because the 

likelihood function is not concave in a+; the likelihood surface is flat in the a+ dimension, and 

there is a continuum of parameter values that fit the data equally well.  This leads to a failed 

maximization procedure, and an inability to estimate the advanced computational model.   
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To compare this function with data generated from a subject who does not respond with noiselss 

choice performance, we generated a data set from another hypothetical subject with λ=2.5 and 

a+=a-=3.  Because this hypothetical subject does not respond with noiseless choice performance 

in the positive EU domain, we are able to successfully estimate the advanced computational 

model.  The likelihood function for this subject is plotted in Fig S6, which shows the function is 

concave in both dimensions, allowing for successful maximization.     
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Fig. 1.  Choice of the risky option by genetic group.  MAOA-L carriers accepted the 

risky optional significantly more often that MAOA-H carriers: 41.2% vs. 36.3% 

(p=0.046).  Differences in the acceptance rates for the 5-HTTLPR and DRD4 

polymorphisms were not significant.    46% of the risky options in our design had a 

positive net expected value. 
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Fig. 2.  Propensity to choose the RO as a function of its net expected utility (using 

individually fitted PT parameters).  The single solid black curve in the negative net EU 

domain indicates there was no difference in acceptance rates across the MAOA 

polymorphism when the net EU was negative. However, the two dashed curves in the 

positive net EU domain show there was a systematic difference in the propensity to 

accept the RO: MAOA-L carriers (black) accepted the risky offer significantly more 

often than MAOA-H carriers (grey).  Net EU is partitioned into bins of length 0.5 and the 

average group acceptance rate within each bin is displayed for MAOA-L and MAOA-H. 
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Fig. 3. Propensity to choose the option with highest expected utility as a function of the 

MAOA polymorphism.  
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Fig. S1.  Number of experimental trials in which the RO had positive and negative net EU as a 

function of the underlying loss aversion parameter. 
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Fig. S2. MLE estimates of the loss aversion parameter under the basic and advanced 
computational models.   
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Fig. S3. Distribution of individual loss aversion estimates under the advanced computational 
phenotype.    
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Fig. S4. Log-likelihood function of basic computational model.   Choice data is simulated from 
hypothetical subject with λ=2.5, a-=3, and noiseless choice performance in positive EU domain.  
The likelihood function is plotted at λ =2.5.  The function is concave, allowing for maximization 
and successful estimation of the basic computational model.    
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Fig. S5. Log-likelihood function of advanced computational model.   Choice data is simulated 
from hypothetical subject with λ=2.5, a-=3, and noiseless choice performance in positive EU 
domain.  The likelihood function is plotted at λ =2.5.  The function is flat in the a+ dimension, 
because of the noiseless choice performance in the positive EU domain.  This causes the 
maximization of the log-likelihood function to fail, and leads to estimation problems for the a- 
parameter as well. 
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Fig. S6. Log-likelihood function of advanced computational model.   Choice data is simulated 
from hypothetical subject with λ=2.5, a+=a-=3.  The likelihood function is plotted at λ =2.5.  The 
function is concave in both the a+and a- dimensions, which allows for successful estimation.  The 
region that maximizes the log-likelihood function is depicted in orange. 
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Table S1.  Binary choices used in the experiment.  CO indicates certain option.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Gain Loss CO   Gain Loss CO   Gain Loss CO 
$12.00 -$24.00 $0.00  $2.00 -$3.50 $0.00  $4.00 -$1.50 $0.00 

$12.00 -$22.50 $0.00  $4.00 -$5.50 $0.00  $5.00 -$2.50 $0.00 
$10.00 -$20.00 $0.00  $6.00 -$7.50 $0.00  $10.00 -$7.50 $0.00 

$9.00 -$18.00 $0.00  $12.00 -$13.50 $0.00  $4.00 -$1.00 $0.00 

$12.00 -$21.00 $0.00  $2.00 -$3.25 $0.00  $6.00 -$3.00 $0.00 

$10.00 -$18.75 $0.00  $5.00 -$6.25 $0.00  $8.00 -$5.00 $0.00 
$8.00 -$16.00 $0.00  $10.00 -$11.25 $0.00  $12.00 -$9.00 $0.00 

$9.00 -$16.88 $0.00  $9.00 -$10.13 $0.00  $5.00 -$1.88 $0.00 

$10.00 -$17.50 $0.00  $2.00 -$3.00 $0.00  $9.00 -$5.63 $0.00 

$12.00 -$19.50 $0.00  $4.00 -$5.00 $0.00  $5.00 -$1.25 $0.00 
$8.00 -$15.00 $0.00  $8.00 -$9.00 $0.00  $6.00 -$2.25 $0.00 

$9.00 -$15.75 $0.00  $2.00 -$2.75 $0.00  $10.00 -$6.25 $0.00 

$10.00 -$16.25 $0.00  $6.00 -$6.75 $0.00  $8.00 -$4.00 $0.00 

$6.00 -$12.00 $0.00  $5.00 -$5.63 $0.00  $6.00 -$1.50 $0.00 
$8.00 -$14.00 $0.00  $2.00 -$2.50 $0.00  $9.00 -$4.50 $0.00 

$12.00 -$18.00 $0.00  $4.00 -$4.50 $0.00  $12.00 -$7.50 $0.00 

$9.00 -$14.63 $0.00  $2.00 -$2.25 $0.00  $8.00 -$3.00 $0.00 

$6.00 -$11.25 $0.00  $2.00 -$2.00 $0.00  $10.00 -$5.00 $0.00 
$5.00 -$10.00 $0.00  $4.00 -$4.00 $0.00  $9.00 -$3.38 $0.00 

$8.00 -$13.00 $0.00  $5.00 -$5.00 $0.00  $8.00 -$2.00 $0.00 

$10.00 -$15.00 $0.00  $6.00 -$6.00 $0.00  $12.00 -$6.00 $0.00 

$6.00 -$10.50 $0.00  $8.00 -$8.00 $0.00  $10.00 -$3.75 $0.00 
$9.00 -$13.50 $0.00  $9.00 -$9.00 $0.00  $9.00 -$2.25 $0.00 

$12.00 -$16.50 $0.00  $10.00 -$10.00 $0.00  $10.00 -$2.50 $0.00 

$5.00 -$9.38 $0.00  $12.00 -$12.00 $0.00  $12.00 -$4.50 $0.00 

$4.00 -$8.00 $0.00  $2.00 -$1.75 $0.00  $12.00 -$3.00 $0.00 
$8.00 -$12.00 $0.00  $2.00 -$1.50 $0.00  $2.00 $0.00 $1.00 

$5.00 -$8.75 $0.00  $4.00 -$3.50 $0.00  $3.00 $0.00 $1.00 

$6.00 -$9.75 $0.00  $5.00 -$4.38 $0.00  $4.00 $0.00 $2.00 

$10.00 -$13.75 $0.00  $2.00 -$1.25 $0.00  $5.00 $0.00 $2.00 
$4.00 -$7.50 $0.00  $6.00 -$5.25 $0.00  $7.00 $0.00 $3.00 

$9.00 -$12.38 $0.00  $2.00 -$1.00 $0.00  $8.00 $0.00 $3.00 

$5.00 -$8.13 $0.00  $4.00 -$3.00 $0.00  $12.00 $0.00 $6.00 

$4.00 -$7.00 $0.00  $8.00 -$7.00 $0.00  $12.00 $0.00 $5.00 
$6.00 -$9.00 $0.00  $9.00 -$7.88 $0.00  $12.00 $0.00 $4.00 

$8.00 -$11.00 $0.00  $2.00 -$0.75 $0.00  $13.00 $0.00 $5.00 

$12.00 -$15.00 $0.00  $5.00 -$3.75 $0.00  $13.00 $0.00 $6.00 

$4.00 -$6.50 $0.00  $10.00 -$8.75 $0.00  $19.00 $0.00 $8.00 
$5.00 -$7.50 $0.00  $2.00 -$0.50 $0.00  $22.00 $0.00 $10.00 

$10.00 -$12.50 $0.00  $4.00 -$2.50 $0.00  $23.00 $0.00 $10.00 

$6.00 -$8.25 $0.00  $6.00 -$4.50 $0.00  $25.00 $0.00 $9.00 

$9.00 -$11.25 $0.00  $12.00 -$10.50 $0.00  $25.00 $0.00 $10.00 
$2.00 -$4.00 $0.00  $5.00 -$3.13 $0.00  $26.00 $0.00 $10.00 

$4.00 -$6.00 $0.00  $4.00 -$2.00 $0.00  $26.00 $0.00 $12.00 

$8.00 -$10.00 $0.00  $8.00 -$6.00 $0.00  $28.00 $0.00 $13.00 

$5.00 -$6.88 $0.00  $6.00 -$3.75 $0.00  $30.00 $0.00 $12.00 
$2.00 -$3.75 $0.00  $9.00 -$6.75 $0.00     

!
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Table S2. Individual parameter estimates in the basic computational model. 
 

ID ! a ID ! a
1 2.35 ±0.37 0.72 ±0.23 46 1.97 ±0.18 1.37 ±0.38
2 1.76 ±0.16 1.16 ±0.29 47 1.07 ±0.03 6.7 ±2.49
3 0.99 ±0.04 2.65 ±0.66 48 2.52 ±0.22 1.62 ±0.55
4 4.94 ±1.49 0.72 ±0.44 49 1.21 ±0.05 2.71 ±0.68
5 1 ±0.04 2.77 ±0.72 50 1.05 ±0.05 1.89 ±0.45
6 0.96 ±0.03 6.51 ±2.45 51 1.28 ±0.11 0.94 ±0.21
7 0.93 ±0.05 1.49 ±0.3 52 1.35 ±0.11 1 ±0.23
8 1.08 ±0.03 6.18 ±2.26 53 0.81 ±0.2 0.3 ±0.12
9 1.1 ±0.06 1.67 ±0.39 54 1.38 ±0.15 0.67 ±0.16

10 0.92 ±0.05 1.74 ±0.34 55 1.11 ±0.07 1.48 ±0.32
11 1.04 ±0.06 1.67 ±0.38 56 1.1 ±0.05 0.7 ±0.22
12 1.18 ±0.08 1.2 ±0.25 57 1.95 ±0.36 0.48 ±0.15
13 5.68 ±1.42 1.16 ±3.39 58 0.69 ±0.01 0.86 ±3.69
14 1.24 ±0.11 0.82 ±0.19 59 2.09 ±0.13 0.65 ±0.13
15 1.09 ±0.04 7.58 ±2.96 60 1.02 ±0 4.39 ±0.77
16 1.49 ±0.1 1.5 ±0.37 61 1.88 ±1.44 1.03 ±0.36
17 1.08 ±0.07 1.1 ±0.23 62 1.08 ±0 14.13 ±0
18 1.6 ±0.18 0.7 ±0.17 63 1.25 ±0.15 1.74 ±0.42
19 1.06 ±0.08 1.04 ±0.22 64 0.96 ±0.29 2.53 ±7.34
20 1.02 ±0.06 1.67 ±0.35
21 1.03 ±0.03 10.22 ±3.89
22 1.12 ±0.04 3.01 ±0.83
23 1.28 ±0.07 2.02 ±0.52
24 1.14 ±0.05 2.95 ±0.8
25 1.4 ±0.1 1.18 ±0.28
26 1.45 ±0.07 2.38 ±0.67
27 1.23 ±0.15 0.21 ±0.09
28 0.66 ±0.02 2.49 ±0.52
29 1.3 ±0.06 2.98 ±0.78
30 1.1 ±0.03 6.73 ±2.63
31 1.97 ±0.13 1.98 ±0.62
32 1.19 ±0.06 2.51 ±0.66
33 0.99 ±0.03 5.69 ±2.01
34 2.05 ±0.22 0.97 ±0.24
35 0.97 ±0.04 2.65 ±0.64
36 1.26 ±0.05 3.44 ±1.23
37 1.46 ±0.12 1.09 ±0.24
38 4.18 ±0.62 3.73 ±18.9
39 1.21 ±0.04 3.89 ±1.26
40 1.49 ±0.09 2.07 ±0.54
41 1.85 ±0.16 1.24 ±0.33
42 2.19 ±0.17 1.94 ±0.63
43 1.45 ±0.07 2.77 ±0.89
44 1.09 ±0.06 7.7 ±3.12
45 1.49 ±0.12 1.11 ±0.25
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Table S3. Individual parameter estimates for advanced computational phenotype 
 

 
 

ID ! a+ a- ID ! a+ a-
1 1.6 ±0.2 0.27 ±0.22 >100 ±14.25 46 2.02 ±0.29 1.6 ±2.26 1.19 ±3.79
2 2.63 ±0.37 15.61 ±9.13 0.43 ±0.15 47 1 ±0.07 4.62 ±1.73 >100 ±2.17
3 1 ±0.06 2.92 ±4.17 2.35 ±3.61 48 2.56 ±0.35 1.97 ±1.96 1.39 ±3.65
4 2.72 ±0.35 0.31 ±0.34 13.16 ±10.33 49 1.29 ±0.1 3.81 ±7.11 1.89 ±3.58
5 0.88 ±0.04 1.86 ±0.77 >100 ±2.13 50 1.29 ±0.07 12.41 ±15.4 0.94 ±0.35
6 0.99 ±0.03 >100 ±15.19 4.16 ±6.37 51 1.21 ±0.19 0.69 ±0.33 1.38 ±4.64
7 1.31 ±0.14 5.51 ±10.79 0.47 ±1.1 52 1 ±0.09 0.63 ±0.2 3.16 ±8.03
8 1 ±0.08 3.99 ±2.03 >100 ±0.4 53 0.91 ±0.96 0.37 ±2.7 0.16 ±6.06
9 1.13 ±0.09 2.06 ±3.32 1.35 ±1.6 54 1.36 ±0.34 0.65 ±0.91 0.7 ±2.44

10 0.97 ±0.07 2.38 ±0.98 1.22 ±1.99 55 1.09 ±0.11 1.39 ±0.53 1.64 ±4.11
11 0.88 ±0.04 1.12 ±0.33 >100 ±4.21 56 1.01 ±0.47 0.55 ±1.81 1.04 ±5.21
12 0.88 ±0.05 0.7 ±0.24 >100 ±6.15 57 1 ±0.25 0.14 ±0.16 2.49 ±5.78
13 5.5 ±1.36 1.14 ±0.71 1.26 ±15.26 58 0.54 ±0.4 0.65 ±1.69 9.25 ±8.63
14 1.16 ±0.29 0.63 ±3.41 1.16 ±0.7 59 2.4 ±0.57 0.99 ±0.91 0.47 ±1.63
15 1.13 ±0.03 33.74 ±15.31 5.1 ±4.2 60 1.14 ±0.05 >100 ±3.67 2.16 ±1.3
16 1.15 ±0.07 0.9 ±0.34 36.11 ±13.49 61 2.29 ±0.28 5.55 ±7.16 0.56 ±0.27
17 1.15 ±0.14 1.35 ±1.83 0.84 ±2.23 62 1 ±0.06 7.94 ±3.27 >100 ±0.61
18 1.92 ±0.41 1.25 ±1.58 0.45 ±0.43 63 1.27 ±0.11 1.96 ±1.86 1.53 ±3.34
19 1.49 ±0.21 3.04 ±6.95 0.39 ±1.08 64 0.92 ±0.04 2.93 ±2.73 6.43 ±8.76
20 1.12 ±0.1 2.77 ±4.76 1.02 ±0.74
21 1 ±0.04 8.25 ±4.7 34.44 ±13.85
22 1 ±0.05 2.05 ±0.87 >100 ±2.96
23 1.14 ±0.05 1.38 ±0.49 >100 ±13.24
24 1.14 ±0.07 2.95 ±4.85 2.96 ±5.77
25 1.34 ±0.18 0.95 ±0.49 1.6 ±6.79
26 1.35 ±0.09 1.9 ±1.16 4.71 ±9.33
27 1.92 ±0.11 0.75 ±3.41 0.09 ±0.7
28 0.71 ±0.04 3.58 ±3.22 1.3 ±1.4
29 1.14 ±0.06 1.99 ±0.79 >100 ±4.69
30 1 ±0.05 4.02 ±1.41 >100 ±5.66
31 1.6 ±0.14 1.25 ±0.54 >100 ±5.21
32 1.02 ±0.06 1.62 ±0.57 >100 ±6.48
33 1.03 ±0.05 >100 ±8.21 3.4 ±2.35
34 1.94 ±0.35 0.77 ±0.45 1.24 ±6.18
35 0.88 ±0.04 1.86 ±0.73 >100 ±3.16
36 1.32 ±0.09 5.34 ±8.46 2.36 ±3.67
37 1.69 ±0.27 1.44 ±1.39 0.73 ±2.62
38 4.44 ±1.04 71.41 ±10.07 1.9 ±17.73
39 1.14 ±0.05 2.91 ±1.24 15.11 ±11.66
40 1.91 ±0.13 11.62 ±8.5 0.84 ±1.37
41 1.49 ±0.12 0.74 ±0.3 >100 ±12.6
42 2.66 ±0.19 >100 ±8.19 0.96 ±1.52
43 1.58 ±0.12 6.77 ±10.87 1.63 ±1.44
44 1 ±0.27 4.62 ±1.87 >100 ±0.78
45 1.14 ±0.08 0.64 ±0.25 >100 ±8.72
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Tables S4. Allelic and genotype frequencies for 5HTT and MAOA for sample used in basic 
behavioral results (N=83).  “s” indicates the short allele of the 5HTT gene.  MAOA-L (MAOA-
H) indicates the low (high) variant of the MAOA gene. 
 
A) 
5HTT N % 
Allele    
S 83 50.00% 
L 83 50.00% 
Genotype    
s/s 23 27.38% 
s/l 37 44.05% 
l/l 23 27.38% 

 
B) 
MAOA N % 
Allele (bp-repeats)   
3 35 42.17% 
3.5 1 1.20% 
4 46 55.42% 
5 1 1.20% 
 Genotype    
MAOA-L 36 43.37% 
MAOA-H 47 56.63% 
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Table S5. Allelic and genotype frequencies for DRD4 sample used in basic behavioral results 
(N=83).  7+ denotes a carrier of the 7-repeat allele. 
 
DRD4     
Allele N % 
2 17 10.24% 
3 7 4.22% 
4 97 58.43% 
5 4 2.41% 
7 40 24.10% 
8 1 0.60% 
Genotype    
2/2 1 1.20% 
2/3 1 1.20% 
2/4 8 9.64% 
2/7 6 7.23% 
3/4 3 3.61% 
3/7 3 3.61% 
4/4 30 36.14% 
4/5 4 4.82% 
4/7 21 25.30% 
4/8 1 1.20% 
7/7 5 6.02% 
7+ 35 42.17% 
7- 48 57.83% 
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Tables S6. Allelic and genotype frequencies for 5HTT and MAOA for sample used in basic and 
advanced computational phenotype analyses (N=64).  “s” indicates the short allele of the 5HTT 
gene.  MAOA-L (MAOA-H) indicates the low (high) variant of the MAOA gene. 
 
A) 
5HTT N % 
Allele    
S 66 51.56% 
L 62 48.44% 
Genotype    
s/s 18 28.13% 
s/l 30 46.88% 
l/l 16 25.00% 

 
B) 
MAOA N % 
Allele (bp-repeats)   
3 28 43.75% 
3.5 0 0.00% 
4 35 54.69% 
5 1 1.56% 
 Genotype    
MAOA-L 29 45.31% 
MAOA-H 35 54.69% 
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Table S7. Allelic and genotype frequencies for DRD4 for sample used in basic and advanced 
computational phenotype analyses (N=64).  7+ denotes a carrier of the 7-repeat allele. 
 
DRD4     
Allele N % 
2 14 10.94% 
3 5 3.91% 
4 73 57.03% 
5 3 2.34% 
7 32 25.00% 
8 1 0.78% 
Genotype    
2/2 1 1.56% 
2/3 1 1.56% 
2/4 6 9.38% 
2/7 5 7.81% 
3/4 2 3.13% 
3/7 2 3.13% 
4/4 23 35.94% 
4/5 3 4.69% 
4/7 15 23.44% 
4/8 1 1.56% 
7/7 5 7.81% 
7+ 27 42.19% 
7- 37 57.81% 

 
 
 
 
 
Table S8. Summary of sample sizes.  “Basic behavioral results” refers to results from analysis 
shown in Fig 1.  “Basic & advanced computational phenotype” refers to results from all 
behavioral and genetic analyses using either the basic (2 parameter) or advanced (3 parameter) 
computational phenotype. 
 

 

 

 

 

 

 

 

 

Initial Sample Size 90
Failure to genotype 6
Failure to understand instructions 1

Basic behavioral results sample size 83
Randomless Choice Behavior 9
Random Choice Behavior 8
Violate rationality constraint 2

Failure to estimate basic or advanced computational phenotype 19
Basic & Advanced computational phenotype sample size 64
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Appendix:	  Experimental	  Instructions	  
	  
Buying	  your	  stock	  
	  
In	  this	  experiment	  you	  will	  be	  given	  350	  experimental	  dollars	  to	  invest	  in	  three	  
different	  stocks.	  	  Your	  job	  is	  to	  choose	  when	  to	  buy	  and	  sell	  each	  stock,	  so	  that	  you	  
earn	  the	  most	  money	  by	  the	  end	  of	  the	  experiment.	  	  Throughout	  the	  experiment,	  
you	  will	  see	  the	  price	  of	  each	  stock	  changing	  (more	  detail	  below),	  and	  you	  will	  use	  
this	  information	  to	  decide	  when	  to	  buy	  and	  sell.	  	  When	  you	  sell	  a	  stock,	  you	  receive	  
an	  amount	  of	  cash	  equal	  to	  the	  price	  of	  the	  stock.	  	  When	  you	  buy	  a	  stock,	  you	  receive	  
one	  unit	  of	  the	  stock,	  but	  you	  must	  give	  up	  an	  amount	  of	  cash	  equal	  to	  the	  current	  
price	  of	  the	  stock.	  
	  
The	  three	  stocks	  you	  can	  buy	  or	  sell	  are	  simply	  called	  Stock	  A,	  Stock	  B,	  and	  Stock	  C.	  	  
To	  begin	  the	  experiment	  you	  MUST	  buy	  all	  three	  stocks,	  where	  each	  stock	  costs	  
$100.	  	  Therefore,	  after	  you	  buy	  the	  three	  stocks,	  you	  will	  own	  one	  unit	  of	  each	  stock	  
and	  have	  a	  total	  of	  $50	  remaining.	  	  For	  the	  remainder	  of	  the	  experiment,	  you	  are	  
only	  allowed	  to	  hold	  a	  maximum	  of	  1	  unit	  of	  each	  stock,	  and	  you	  cannot	  hold	  
negative	  units	  (no	  short	  selling.)	  	  However,	  you	  can	  carry	  a	  negative	  cash	  balance	  by	  
buying	  a	  stock	  for	  more	  money	  than	  you	  have,	  but	  any	  negative	  cash	  balances	  will	  
be	  deducted	  from	  your	  final	  earnings.	  	  	  	  	  	  
	  
	  
Structure	  of	  the	  market	  
	  
In	  the	  experiment,	  you	  will	  see	  two	  types	  of	  screens,	  a	  price	  update	  screen	  and	  an	  
action	  screen.	  	  In	  the	  price	  update	  screen,	  one	  stock	  will	  be	  randomly	  selected	  and	  
you	  will	  be	  told	  if	  the	  selected	  stock	  price	  has	  gone	  up	  or	  down,	  and	  by	  how	  much.	  	  
Note	  that	  you	  will	  only	  see	  an	  update	  for	  one	  stock	  at	  a	  time.	  	  You	  will	  not	  be	  asked	  
to	  do	  anything	  during	  this	  screen,	  you	  will	  simply	  see	  information	  about	  the	  change	  
in	  price.	  
	  
Following	  the	  price	  update	  screen,	  another	  stock	  will	  be	  randomly	  chosen	  (it	  may	  be	  
the	  same	  one	  you	  just	  saw)	  and	  you	  will	  be	  asked	  to	  take	  an	  action.	  	  If	  you	  currently	  
hold	  a	  unit	  of	  the	  stock,	  you	  will	  be	  asked	  if	  you	  would	  like	  to	  sell	  the	  stock	  at	  the	  
current	  price.	  	  If	  you	  do	  not	  currently	  own	  a	  unit	  of	  the	  stock,	  you	  will	  be	  asked	  if	  
you	  would	  like	  to	  buy	  a	  unit	  at	  the	  current	  price.	  	  	  
	  
The	  experiment	  will	  start	  out	  with	  9	  consecutive	  price	  update	  screens,	  and	  then	  you	  
will	  have	  the	  opportunity	  to	  buy	  or	  sell	  after	  each	  subsequent	  price	  update	  screen.	  	  
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How	  the	  stock	  prices	  change	  
	  
Each	  stock	  changes	  price	  according	  to	  the	  exact	  same	  rule.	  	  Each	  stock	  is	  either	  in	  a	  
good	  state	  or	  in	  a	  bad	  state.	  	  In	  the	  good	  state,	  the	  stock	  goes	  up	  with	  55%	  chance,	  
and	  it	  goes	  down	  with	  45%	  chance.	  	  In	  the	  bad	  state,	  the	  stock	  goes	  down	  with	  55%	  
chance	  and	  it	  goes	  up	  with	  45%	  chance.	  	  	  
	  
Once	  it	  is	  determined	  whether	  the	  price	  will	  go	  up	  or	  down,	  the	  size	  of	  the	  change	  is	  
always	  random,	  and	  will	  either	  be	  $5,	  $10,	  or	  $15.	  	  For	  example,	  in	  the	  bad	  state,	  the	  
stock	  will	  go	  down	  with	  55%	  chance,	  and	  the	  amount	  it	  goes	  down	  by	  is	  $5,	  $10,	  or	  
$15	  with	  equal	  chance.	  	  Similarly,	  the	  good	  stock	  will	  go	  up	  with	  55%	  chance,	  and	  
the	  amount	  it	  goes	  up	  by	  will	  either	  be	  $5,	  $10,	  or	  $15.	  	  	  
	  
The	  stocks	  will	  all	  randomly	  start	  in	  either	  the	  good	  state	  or	  bad	  state,	  and	  after	  
each	  price	  update,	  there	  is	  a	  20%	  chance	  the	  stock	  switches	  state.	  	  	  	  	  	  
	  
Stock	  price	  changes	  
	   Good	  state	   Bad	  state	  
+	  	   55%	   45%	  
-‐	  	  	   45%	   55%	  
	  
	  
State	  changes	  
	   Good	  state	  today	   Bad	  state	  today	  
Good	  state	  tomorrow	   80%	   20%	  
Bad	  state	  tomorrow	   20%	   80%	  
	  
	  
	  
Earnings	  and	  payout	  
	  
You	  will	  play	  this	  market	  game	  TWO	  SEPARATE	  TIMES	  in	  the	  scanner.	  	  Each	  game	  
will	  last	  approximately	  15	  minutes,	  and	  each	  game	  is	  independent	  from	  the	  previous	  
one.	  	  This	  means	  when	  you	  start	  the	  second	  game,	  you	  will	  have	  to	  buy	  the	  three	  
stocks	  at	  $100	  again,	  and	  the	  stocks	  will	  start	  randomly	  in	  each	  state	  again.	  	  	  
	  
Your	  earnings	  at	  the	  end	  of	  the	  experiment	  will	  be	  equal	  to	  the	  amount	  of	  cash	  you	  
accrued	  over	  the	  two	  scanning	  sessions	  from	  buying	  and	  selling	  stocks,	  plus	  the	  
current	  price	  of	  any	  stocks	  that	  you	  own.	  	  	  
	  
Earnings=cash	  +	  	  	  price	  A*(Hold	  A)	  	  	  	  +	  	  	  	  Price	  	  B*(Hold	  B)	  	  	  	  +	  	  	  	  Price	  C*(Hold	  C)	  
	  
	  
Finally,	  your	  earnings	  will	  be	  converted	  using	  an	  exchange	  rate	  of	  12:1.	  	  That	  means	  
we	  divide	  your	  earnings	  by	  12,	  and	  pay	  you	  this	  amount	  plus	  the	  $15	  show	  up	  fee.	  	  	  
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Button	  presses	  
	  
During	  the	  Action	  screens,	  you	  will	  either	  be	  given	  the	  option	  to	  “Buy?”	  or	  “Sell?”	  
depending	  on	  whether	  you	  hold	  the	  stock	  or	  not.	  	  The	  LEFT	  (blue)	  button	  indicates	  
“YES”.	  	  And	  the	  RIGHT	  (yellow)	  button	  indicates	  “NO.”	  	  You	  have	  three	  seconds	  to	  
enter	  your	  response,	  otherwise	  the	  computer	  will	  randomly	  select	  a	  response	  for	  
you.	  	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
 
	  


