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ABSTRACT 

MEMS for Glaucoma 

 

Thesis by 

Jeffrey Chun-Hui Lin 

Doctor of Philosophy in Electrical Engineering 

California Institute of Technology 

 

Glaucoma is an eye disease that gradually steals vision.  Open angle glaucoma is 

one of the most common glaucoma forms, in which eye fluid (aqueous humor) produced 

by the ciliary body cannot be drained away normally by patients’ eyes.  The accumulated 

eye fluid inside the anterior chamber causes high intraocular pressure (IOP), which is 

transmitted onto the retina in the back of the eyeball (globe), continuously suppressing 

and damaging the patient’s optic nerves; this may lead to total blindness if not treated 

properly. 

The current most-popular IOP monitoring technique is to use applanation 

tonometry, which applies applanation force onto the cornea and measures the resulting 

deformation in order to calculate the IOP.  Even though applanation tonometry can 

provide quite useful information about patients’ IOP, continuous monitoring of IOP is 

required for ophthalmologists to understand the IOP fluctuation of the patients, 

something which still cannot be achieved via current applanation approach.  In addition, 

applanation tonometry requires skillful operation performed by well-trained 

professionals, such as ophthalmologists, making continuous IOP monitoring impractical.  
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In this work, we have developed a telemetric IOP sensor that is capable of monitoring 

IOP wirelessly and continuously.  As the quality factor drops when a telemetric IOP 

sensor is implanted in the anterior chamber, due to the high loss tangent of the saline-

based aqueous humor (~ 0.2) compared to air (0.0), a modified IOP sensor is developed 

to monitor IOP with sensing coil that is left exposed after implantation in order to avoid 

interruption from the eye fluid.  Another approach is also proposed and tested to 

demonstrate that the quality factor can also be recovered by covering the sensing coil 

with low loss tangent materials. 

Currently glaucoma is treated mostly by taking oral medications or applying eye 

drops.  However, some glaucoma patients do not respond to those medications.  

Therefore, another physical approach, using a glaucoma drainage device (GDD), is 

necessary in order to drain out excessive eye fluid and serve as a long-term way to 

manage the increased IOP.  Current commercially available glaucoma drainage devices 

do not have reliable valve systems to stop the drainage when the IOP falls into the normal 

range.  Therefore, we have developed a dual-valved GDD to fulfill the “band-pass” flow 

regulation which drains out eye fluid only when IOP is higher than 20 mmHg, and stops 

drainage (closes the valve) when IOP is lower than 20 mmHg to prevent hypotony.  The 

key component of GDD is a normally closed (NC) check-valve, which only opens to 

drain away the excess fluid when the pressure is higher than 20 mmHg.  The proposed 

paradigm of our NC check-valve is to have a couple of parylene-C pre-stressed slanted 

tethers to provide the desired cracking pressure.  The slanted tethers are achieved in this 

thesis by: 1) slanted photoresist generated by gray-scale photolithography, 2) pop-up 

mechanism, and 3) self-stiction bonding mechanism.  The built-in residual tensile stress 
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can be controlled by mechanical stretching or thermal annealing.  The protecting 

mechanism preventing the unwanted drainage when the eyes experience sudden 

unpredicted high IOP is achieved by utilizing a normally open (NO) check-valve.  A 

“minimally invasive implantation” procedure is proposed in the thesis to implant the 

GDD subconjunctivally.  The small size of the device allows its insertion using a #19-

gauge needle. 

To accurately design the desired cracking pressure and also predict the lifetime of 

the NC check-valve, parylene-C’s mechanical, thermal, and polymer properties are 

investigated.  The results show that the properties of parylene-C are highly process-

temperature-dependent and therefore can be tailored by adjusting the thermal annealing 

process. 
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