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Abstract

Vibrational studies of materials at elevated temperatures are relatively rare, and

most phonon work also has emphasized harmonic behavior. Non-harmonic effects

are often unexplored. These non-harmonic effects can be important for many

properties of the material, such as thermal transport and phase stability.

Phonon theory and computational methods are briefly reviewed, and the exper-

imental techniques for phonon study, such as Raman spectroscopy and inelastic

neutron scattering, are discussed. Several experiments on phonon anharmonicity

were performed, and interpreted with these computational methods.

In Raman spectroscopy studies on the phonon dynamics of hafnia and zirconia,

Raman line positions, and shapes of temperatures to 1000 K were measured and

the types of modes that exhibit the most anharmonicity were characterized and

correlated to the vibrational displacements of individual atoms in the unit cell. It

was found that anharmonicity in these systems is rich in information and strongly

mode dependent.

Using time-of-flight inelastic neutron scattering, we found purely quartic

transverse modes with an anomalous mode stiffening with temperature, and

related these modes to the enormous negative thermal expansion of the DO9

structure of scandium fluoride.

Using second-order perturbation theory, phonon linewidths from the third-

order anharmonicity were calculated from first-principles density functional

theory with the supercell finite-displacement method. For face-centered cubic

aluminum, the good agreement between calculations and the phonon density of

states up to 750 K indicates that the third-order phonon-phonon interactions
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calculated can account for the lifetime broadenings of phonons in aluminum to

at least 80% of its melting temperature.
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1.1 Motivations

Vibrational studies of materials at elevated temperatures are relatively rare. Most

phonon work also has emphasized harmonic behavior—non-harmonic effects are

often unexplored. However, these non-harmonic effects can be important for

many properties of the material, such as thermal transport, phase stability, and

thermal expansion.

Harmonic and quasiharmonic models are good approximations for many

materials, but anharmonic behaviors are also quite common. Recent work by our

group found that adiabatic electron-phonon interactions can have a considerable

effect on the vibrational entropy of vanadium metal and A15 vanadium compounds,

because of their high electronic density of states near the Fermi level. [1,2] When

electron-phonon interactions are not playing major roles, such as in aluminum

metal, the phonon-phonon interactions are believed to be the dominant component

of the phonon anharmonicity, especially at elevated temperatures. Combined

experimental and computational studies on metals and alloys can give insights

about the anharmonicity and their effects on phonon dynamics.

Ionic compounds such as oxides or fluorides have dramatic differences from

metals and alloys. Firstly, they have much greater variety in structures, many of

which have low symmetry. Secondly, most ionic compounds have low electrical

conductivity. As a result, electrons are more locally confined, and phonon dynam-

ics generally has a larger impact on many properties of these materials. A good

understanding of the high-temperature vibrational behavior of these materials

can have major benefits for their applications in thermoelectrics, fuel cells, and

thermal barrier coating, for example.

1.2 Present Work

Basic concepts in phonon theory and computational methods are briefly reviewed,

and key experimental techniques for phonon study, Raman spectroscopy, and
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inelastic neutron scattering are discussed. Several experiments on phonon an-

harmonicity were performed with these experimental methods, and interpreted

with computational methods. Aside from the phonon frequency shift, which is

typically used to understand vibrational thermodynamics, high-resolution mea-

surements of phonon energy broadening allows for an assessment of the origin

of the anharmonic behavior.

In Raman spectroscopy studies on the phonon dynamics of hafnia and zirconia,

Raman line positions, and shapes of temperatures to 1000 K were measured, and

the temperature-dependent Raman peak shifts and broadenings were reported

and compared with each other. The modes that exhibit the most anharmonicity

were characterized and correlated to the vibrational displacements of individual

atoms in the unit cell using both a shell model and density functional theory.

It was found that anharmonicity in these systems is rich in information and

strongly mode dependent. The discrepancy between the temperature and pressure

Grüneisen parameters is surprisingly large. Previous studies have largely neglected

these effects and further exploration will definitely advance the understanding of

phonons and vibrational entropy.

Cubic scandium fluoride (ScF3) has an enormous negative thermal expansion

over a wide range of temperature. Using time-of-flight inelastic neutron scattering,

we found purely quartic transverse modes with an anomalous mode stiffening with

temperature, and related these modes to the negative thermal expansion of the

DO9 structure using phonon and frozen phonon calculations with first-principles

methods. The vibrational entropy contribution from these soft phonon modes

may help to stabilize the cubic phase over a wide range of temperature.

The thermal phonon broadening in aluminum was studied by theoretical and ex-

perimental methods. Using second-order perturbation theory, phonon linewidths

from the third-order anharmonicity were calculated from first-principles density

functional theory with the supercell finite-displacement method. The importance

of all three-phonon processes were assessed, and individual phonon broadenings

are presented. For face-centered cubic aluminum, the good agreement between
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calculations and prior measurements of phonon linewidths at 300 K, and new

measurements of the phonon density of states from 7 to 750 K, indicates that

the third-order phonon-phonon interactions calculated from DFT can account for

the lifetime broadenings of phonons in aluminum to at least 80% of its melting

temperature.

For reference, the publications related to the current work are listed in Ap-

pendix A.
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Even though the theory part of the current work is divided into separate

chapters on on theory and computational techniques, in reality, it becomes more

and more difficult to draw a clear line between those two. Benefiting from the

ever-growing power of computers and improved computational methods, modern

physical science heavily relies on computational science for both experimental

and theoretical studies. It is relatively easy to determine the computational

part of the the experimental work because it will involve either experimental

design/simulation or data acquisition and post-processing. Theoretical work,

however, sometimes becomes so convolved with computational techniques that

the two are inseparable. Here we put the part of the theory that is directly

associated with the materials simulations in the calculation chapter, and the rest

in the phonon theory chapter.
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Chapter 2

Phonon Theory
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2.1 Introduction

In physical science, a phonon is a collective excitation of atoms or molecules in

condensed matter phases such as solids and liquids. The name “phonon” comes

from the Greek word “ϕωνή”, which translates as “sound” or “voice” because

sound is just long-wavelength accoustic phonons. First introduced in 1932 by

Russian physicist Igor Tamm, a phonon is referred to as a “quasiparticle”, which

represents an excited state in the quantization of the modes of vibrations of

elastic structures of interacting particles. [3,4]

Phonons play major roles in solid state physics. They often determine the

thermal and electrical conductivities of materials, and sometime have a large

impact on a material’s crystal structure as well. A phonon is a quantum mechanical

description of a special type of vibrational motion, in which a lattice uniformly

oscillates at the same frequency. In classical mechanics this is commonly known

as a normal mode, but in quantum mechanical treatments phonons are considered

nearly-free particles.

This work will mostly be focused on the dynamics of nuclei in crystals because

for phonon dynamics, most of the moving mass is in the nuclei. Theoretical and

computational principles of phonons have been elaborated extensively elsewhere.

[4–9] This chapter will only briefly restate the basic questions regarding the theory

of phonon lattice dynamics, and the following chapter will discuss in more detail

the techniques for phonon-related calculations.

2.2 Crystal Lattice

The formalism for phonons is usually developed for solids with long-range peri-

odicity: crystal lattices. A perfect crystal lattice can be generated by the infinite

repetition in 3-dimensional space of a unit cell defined by three noncoplanar

vectors: a1, a2, and a3, which are called the primitive lattice vectors of the crys-

tal. [8, 10, 11] Labeling each unit cell by a triplet of integers l = (l1, l2, l3), the
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equilibrium position of the origin of the unit cell l is

rl = l1a1 + l2a2 + l3a3. (2.1)

The number of possible arrangements of the lattice vectors are limited, and

they are called Bravais lattices. There are 5 Bravais lattices in 2 dimensions (Fig.

2.1) and 14 Bravais lattices in 3 dimensions. A Braivais lattice looks exactly the

same from any of the lattice points rl.

Figure 2.1: The five two-dimensional Bravais lattices: oblique, rectangular, rhom-
bic, hexagonal, and square [12]

Each of the R atoms in one unit cell is assigned an index κ = 1,2...R. The

equilibrium positions of the atoms with respect to the origin of a unit cell are

defined as the site vectors rκ , κ = 1,2...R, and the equilibrium position of atom κ

in cell l is a combination of the two vectors

rlκ = rl + rκ . (2.2)
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At finite temperatures the atoms vibrate around their equilibrium positions,

adding another time-dependent vector to the instantaneous position of the atoms.

Sometimes it is convenient to study Bravais lattices by their reciprocal lattices,

which are the Fourier transform of the spatial function of the original lattice, now in

k-space (momentum space). Detailed mathematical and physical descriptions can

be found in any solid state physics textbook. [9,10,13] Because of the periodicity

of the reciprocal lattice, it is sufficient to study only one primitive cell (Brillouin

zone) of reciprocal space. Defined similar to the Wigner-Seitz cell in real space, the

volume included by surfaces at the same distance from one site of the reciprocal

lattice and its neighbors is the first Brillouin zone. Higher-order Brillouin zones

with the same volumes could also be defined. Using the symmetry in the point

group of the lattice, the first Brillouin zone can be further reduced to the irreducible

Brillouin zone, which is commonly used in computations to reduce to the amount

of work.

2.3 Normal Modes

Before discussing normal modes in periodic lattices, first we have a look at

vibrations in systems of just a few particles (for example, a CO2 molecule). Suppose

the system is made of n point-mass-like particles interconnected by harmonic

springs. There will be 3n equations of motions and 3n degrees of freedom,

including 3 translational and 3n−3 vibrational degrees of freedom. The system is

completely solvable, albeit extremely difficult to tackle directly when the number

of particles becomes large.

However, through a coordinate transformation, it is possible to transform the

single problem with many coupled variables into many problems, each with a

single, uncoupled variable. This transformation is well known for mechanical

systems and commonly done through diagonalizing the dynamical matrix from

the equations of motions. [14,15] For a system with n particles, there are generally

3n− 3 normal modes (with the exception of some geometric arrangements) and
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the general motions of the system are a superpositions of these normal modes.

The modes are "normal" in the sense that they are uncoupled. That is to say, in a

perfectly harmonic system, an excitation of one mode will never cause motion of

a different mode, i.e, there is no energy transfer between these (harmonic) normal

modes.

The same idea applies to solids with periodic lattices as detailed in Section

2.6.3. The evenly spaced energy levels of these harmonic normal modes are

exactly how phonons are defined. Solids with more than one type of atom in

the unit cell have two types of phonons: acoustic phonons and optical phonons.

Acoustic phonons are long-wavelength, coherent movements of atoms out of their

equilibrium positions and are named after their close relation to sound waves.

They can be both longitudinal (LA, in the direction of propagation) or transverse

(TA, perpendicular to the propagation direction). Acoustic phonons mostly have

a linear dispersion relationship between frequency and phonon wavevector, in

which the frequency goes to zero in the limit of long wavelength. On the contrary,

optical phonons are short-wavelength, out-of-phase movements of the atoms in

the lattice and only occur if the lattice is made of atoms of different charge or

mass. [5] They are named optical because in some ionic crystals, they can be

excited by electromagnetic radiation (light) through infrared absorption or Raman

scattering. Optical phonons have a nonzero frequency at the Brillouin zone center

and because of the symmetry, they show no dispersion near that long-wavelength

limit. Similar to acoustic phonons, longitudinal and transverse optical phonons

are often abbreviated as LO and TO phonons, respectively.

2.4 Phonon Thermodynamics

Phonons are defined to facilitate the understanding of the collective motions of

atoms in crystals as normal modes of a solid. They are treated independently,

giving independent contributions to thermodynamic functions, simplifying analy-

ses of the vibrational partition function and vibrational entropy. Here we use the
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notations of Fultz. [16].

Phonons are bosons, so there is no limit to how many phonons can be present

in each normal mode. Consider a set of N coupled modes with the same energy ε

and suppose m phonons are free to distribute between these modes. Using the

entropy equation of Boltzmann, the phonon entropy can be written as:

S = kB lnΩ, (2.3)

whereΩ is the number of ways to place them phonons in theN modes. Notice that

the phonons are indistinguishable. Using the binomial result of the combinatorial

rule, Ω can be written as:

Ω = (N − 1+m)!
(N − 1)! m!

. (2.4)

In macroscopic systems where the numbers of modes N are large, N − 1 can be

replaced by N:

Ω = (N +m)!
N! m!

. (2.5)

Substituting (2.5) into (2.3), and expanding the factorial using the Stirling

approximation of lnx! ' x lnx − x:

S = kB

[
(N +m) ln(N +m)−N lnN −m lnm

]
. (2.6)

Assuming the occupancy of each mode is n ≡m/N, the entropy per mode can be

written as:

S
N
= kB

[
(1+n) ln(1+n)−n lnn

]
. (2.7)
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As a comparison, the entropy per site for fermions is

Sfermi

N
= −kB

[
(1− c) ln(1− c)+ c ln c

]
, (2.8)

where c is the occupancy of each site. This happens to be the same as the entropy

of mixing (where c is the site occupancy) due to the nature of the Pauli exclusion

principle.

With the vibrational entropy per mode (Eq. 2.7), the Helmholtz free energy per

mode for a system of oscillators is

F
N
= E
N
− T S

N
= nε − T kB

[
(1+n) ln(1+n)−n lnn

]
, (2.9)

where E = nε is the total phonon energy in the mode.

The equilibrium phonon occupancy n at temperature T can be calculated by

minimizing the free energy F with respect to n. The result:

n(T) = 1

e
ε
kBT − 1

, (2.10)

is the Planck distribution for phonons, or the Bose-Einstein distribution. It is

common practice to simplify the expression using β = (kB T)−1.

In a crystalline system, there are a variety of phonon modes with different

energies. Using the results above, the phonon entropy of the system can be

calculated with the partition function.

For a harmonic crystal, the total vibrational energy capacity is calculated as

contributions from a system of independent oscillators. The partition function

for a single quantum harmonic oscillator (mode) i at energy εi = ~ωi, where ωi

is the vibrational frequency, is:

Zi =
∞∑
n

e−β(n+1/2)εi = e−βεi/2

1− e−βεi
. (2.11)

For a harmonic solid with N atoms, there are 3N independent oscillators. The
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total partition function is the product of these single oscillator partition functions,

ZN =
3N∏
i

e−βεi/2

1− e−βεi
. (2.12)

Using the thermodynamics relation of the partition function, the phonon free

energy and entropy can be calculated as:

Fph =
1
2

3N∑
i

εi + kBT
3N∑
i

ln
(
1− e−βεi

)
, (2.13)

Sph = kB

3N∑
i

[
− ln

(
1− e−βεi

)
+ βεi

eβεi − 1

]
. (2.14)

It is often useful to work with a phonon density of states (DOS), g(ε), where

3Ng(ε)dε phonon modes are in an energy interval dε. Note that the phonon DOS

g(ε) here is assumed to be normalized to unity. For a discrete phonon DOS in m

intervals of bin width ∆ε each, the partition function can be computed numerically

as:

ZN =
m∏
j=1

(
e−βεj/2

1− e−βεj

)3Ng(εj)∆ε

. (2.15)

It is interesting that the only material parameter relevant to the thermodynamic

partition function is the phonon DOS, g(ε).

Using a measured or calculated phonon DOS, the phonon entropy of a harmonic

crystal at temperature T can be written as

Sph = 3kB

∞∫
0

g(ε)
[(
n(ε)+ 1

)
ln
(
n(ε)+ 1

)
−n(ε) ln

(
n(ε)

)]
dε, (2.16)

where n(ε) is the Planck distribution for phonon occupancy of Eq. 2.10. In the

high-temperature limit, the difference in phonon entropy between two harmonic
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phases, α and β becomes independent of temperature and can be written as

∆Sβ−αph = 3kB

∞∫
0

(gα(ε)− gβ(ε)) ln(ε) dε. (2.17)

It has been known for a while that phonon entropy is important for crystal

stability [17,18] but obtaining an accurate phonon DOS to calculate differences

in vibration entropy like ∆Sβ−αph turns out to be difficult and became possible

only recently. [19,20] More details will be discussed in later chapters on these

computational and experimental techniques. Although the temperature effects on

phonon thermodynamics are also important and will be discussed in subsequent

sections, the phonon spectra of solids are mostly determined by phases and

compositions. The dominant factors for phonon entropy are the atomic masses

M , and the spring constants k from the interatomic force constants, as in a classic

harmonic oscillator:

ω =
√
k
M
, (2.18)

whereω is the vibrational frequency. For atoms of similar size, it is found that in a

solid solution of atoms A and B, with their atomic massesMA andMB , respectively,

the phonon entropy upon alloying tends to scale with ln(MA/MB), [16,21] although

there is a large scatter in this correlation especially for some of the alloys. This is

possibly a consequence of the difference in atom sizes, which cause local stress

and as a result, drastically alter the interatomic force constants.

Phonon entropy trends due to the changes of interatomic force constants

may be robust for transition metal alloys. As shown in the study of vanadium

alloys [22], there is a linear relation between the phonon entropy and the difference

in electronegativity, in spite of large differences in atomic mass and atomic size.

Increased charge transfers between the first-near-neighbor atoms caused by a

larger difference in electronegativity reduce the charge screening by reducing the

metallic-like states near the Fermi level, and in turn, stiffen the interatomic force
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constants.

2.5 Temperature Effects

2.5.1 Harmonic Phonons

In the simplest approximation, where all the oscillators in a solid are harmonic

and have fixed frequencies (Einstein model [7]), the heat capacity could be derived

from Planck distribution (Eq. 2.10). The heat capacity at constant volume CV,i for

the mode i is

CV,i(T) = kB

(
εi
kBT

)2 exp(εi/kBT)
(exp(εi/kBT)− 1)2

, (2.19)

where the temperature derivative of the occupancy distribution is weighted by the

energy of the phonon mode. In the high-temperature limit, the result becomes

the classic one: one kB per mode.

A Debye model, [7] which treats the vibrations as phonons in a box, assumes a

phonon DOS that is a quadratic function of energy, and increases monotonically

up to a cutoff energy. (The actual DOS often has a more abrupt rise at low energies

that comes from the lower sound velocity of the low transverse modes and a

complex structure at higher energies.) The Debye model does predict some general

features of the heat capacity a little better, especially in the low-temperature limit.

A useful result from this model is the Debye temperature

θD =
hνm

k
, (2.20)

where νm is the vibrational frequency at the cutoff energy. Above this temperature,

the vibrations in the solid are approaching the classical limit and quantum effects

become less important. For pure elements, θD varies from less than 100 K (soft

metals) to over 2000 K (carbon).

The ideal harmonic crystal model is nice and simple. However, it cannot
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account for even some of the most basic behaviors of solids. Typically, materials

expand when heated, their elastic constants change with temperature and pressure,

their specific heats at constant volume or pressure are not equal, and their thermal

conductivity is not infinite. We have to go beyond the harmonic approximation to

understand these properties. [5,20,23]

2.5.2 Quasiharmonic Thermodynamics

Experimentally, the heat capacity at constant pressure Cp is most useful because

it can be measured directly by calorimetry:

Cp(T) = T
dS
dT

∣∣∣∣
p
. (2.21)

The difference between Cp and CV is a classical thermodynamic relationship [10]

Cp − CV = 9Bvα2T , (2.22)

where B is bulk modulus, α is the linear coefficient of thermal expansion, and v

is specific volume.

Eq. 2.22 can be derived by assuming that the free energy of a crystal comes

only from phonons and thermal expansion. The total free energy can be written

as

F(T) = Eelas(T)+ Eph(T)− TSph. (2.23)

Phonon energies fall significantly, but thermal occupancy compensates, leading

to small net changes in Eph.

The elastic energy of thermal expansion is

Eelas =
1
2
B
(δV)2

V0
= 9

2
BV0α2T 2, (2.24)
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and the phonon energy and entropy in the classical limit are

Eph(T) = 3NkBT , (2.25)

Sph(T) = kB

3N∑
j

ln

(
kBT
~ωj

)
. (2.26)

Assume a linear phonon frequency shift with respect to the change of volume:

ωj =ω0
j(1− 3αTγ), (2.27)

ln(ωj) ' ln(ω0
j)− 3αTγ, (2.28)

where γ is the Grüneisen parameter. The phonon entropy can be written as

Sph(T) =
kB

3N∑
j

ln

(
kBT
~ω0

j

)+ 9NγαkBT (2.29)

= S0
ph + Sq, (2.30)

where the first term, S0
ph, is the harmonic phonon entropy at T = 0, and the second

term, Sq, is the quasiharmonic part:

Sq = 9BV0α2T . (2.31)

Typical quasiharmonic effects on the heat capacity are shown in Fig. 2.2.

Using these results, the total free energy in a quasiharmonic crystal is

F(T) = 9
2
BV0α2T 2 + 3NkBT − TS0

ph(T)− 9NαγkBT 2. (2.32)

The equilibrium thermal expansion coefficient, α, can be calculated by minimizing

the free energy with respect to α, giving

α = CVγ
3BV0

. (2.33)

This quasiharmonic phonon entropy, Sq, should always be considered when
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Figure 2.2: Heat capacity versus temperature for a simple harmonic model with
a phonon DOS unchanged with temperature, and a typical case where the solid
expands against its bulk modulus. Inset is the phonon DOS at 0 K. From [16]

comparing the vibrational thermodynamics of different materials at elevated

temperatures because it often gives a good accounting of the phonons and thermal

expansion, but many exceptions are known. This quasiharmonic approximation

assumes that the oscillations in the system are harmonic-like and they change

only modestly and predictably with changes in temperature and pressure. Also

the phonon lifetimes are long enough so that their frequencies are well defined.

2.5.3 Anharmonic Thermodynamics

Typically, the word “anharmonic” describes any oscillator with generalized forces

that deviate from linearity with respect to generalized coordinates. This definition

includes the quasiharmonic effects from the thermal expansion. However, we will

follow the more restrictive usage in modern thermodynamics, where “anharmonic”

effects only account for the behavior beyond the harmonic and quasiharmonic

theory of Eq. 2.30.
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It is possible to experimentally determine if a solid is “quasiharmonic” or

“anharmonic”. The thermal softening of the phonon modes can give a mode-

averaged Grüneisen parameter γ. The phonon DOS can be used to calculate CV,

and conventional measurements can provide B, V0, and α, accounting for all

unknowns in Eq. 2.30. If the γ from Eq. 2.30 matches the γ from phonon shifts,

the solid is “quasiharmonic”.

When phonon softening or stiffening is inconsistent with the Grüneisen param-

eter γ needed for equality in Eq. 2.30, the solid is anharmonic. The anharmonicity

may be a result of electron-phonon interactions, changes in electronic structure

with temperature, or higher-order phonon-phonon interactions. It is generally diffi-

cult to determine the sources of non-harmonic behavior and their contributions to

the entropy. [7] Usually the effects of electron-phonon interactions are important

only at low temperatures and are often ignored as a source of anharmonicity when

the temperature is higher. Substantial deviations from quasiharmonic behavior

are known for many metal [16] and non-metal systems.

2.5.4 Phonon Entropy

The logarithm definition of the entropy makes it easy to split the total entropy

into uncorrelated subsystems

S = kB lnΩ = kB ln

∏
i

Ωi

 = kB

∑
i

lnΩi =
∑
i

Si, (2.34)

where i denotes the index of subsystems. It may be necessary to correct for

the interactions between these subsystems (cross terms) but they are usually

small enough to be treated as perturbations. The total entropy of a crystal then

can be written as the sum of configurational, phonon, electron, electron-phonon

interaction, magnetic, and nuclear contributions

S = Scf + Sph + Sel + Sel−ph + Sm + Sn. (2.35)
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We will ignore other effects, such as electronic, magnetic, and nuclear ones, and

only consider phonon harmonic, quasiharmonic, and anharmonic contributions

Sph = S0
ph ++Sq + Sanh (2.36)

for now. The temperature dependence of the entropy can be written as:

dS(T , V)
dT

= ∂S
∂T

∣∣∣∣
V
+ ∂S
∂V

∣∣∣∣
T

dV
dT
. (2.37)

The harmonic part of the vibrational entropy can be calculated with a phonon

DOS from low temperature measurement or calculation. The harmonic phonons

undergo no change with respect to the temperature or volume, and as a result the

temperature dependence of harmonic entropy only occurs because of the change

in the Planck occupancy with temperature.

For quasiharmonic phonons, their frequencies depend on volume only and

they make a contribution only through the second term on the right-hand side of

Eq. 2.37.

∆Sq =
∂S
∂V

∣∣∣∣
T

dV
dT
∆T (2.38)

Using the Grüneisen parameter to describe the frequency change with temperature,

the quasiharmonic contribution is

∆Sq = 9Bvα2∆T . (2.39)

The problem is more difficult for anharmonic entropy because it may contribute

through either of the two terms on the right-hand side of Eq. 2.37. The first term,

the temperature-dependence of the vibrational entropy at fixed volume, is caused

by changes in the interatomic force constants with temperature. For example in

an interatomic potential with a quartic term, the force constants change with the

amplitude of thermal displacements. This quartic term happens to have no effect
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on the thermal expansion, but it does change the phonon frequencies by 4-phonon

process. The second term is associated with changes of the interatomic force

constants with volume. Although the quasiharmonic contribution is expected to

account for most of this effect, it is only correct to first order [20]. For example,

the phonon linewidth broadening from the cubic term in the interatomic potential

alters the vibrational entropy. The quasiharmonic contribution accounts for

shifting of the phonon frequencies but misses those higher-order terms.

2.5.5 Electronic Entropy

Unlike phonons, which are bosons, electrons fill the states up to the Fermi level,

even at absolute zero temperature. The electronic entropy arises from the thermal

excitation of electrons around the Fermi level and can be written as:

Sel = −kB

∞∫
−∞

[(1− f) ln(1− f)+ f lnf]n(ε)dε, (2.40)

where f(ε, T) is the Fermi distribution function and n(ε) is the electronic density

of states. Similar to the phonon entropy, the total electronic entropy can be

split into contributions from the ground state and the thermal expansion (lattice

dilation):

Sel = SGel + SDel . (2.41)

Sel can be as large as 1 kB/atom at elevated temperatures but SDel is usually an

order of magnitude smaller, so the major of the electronic entropy comes from

the thermal excitations of electrons near the Fermi surface.
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2.6 Lattice Dynamics

2.6.1 Interatomic Force-Constants

For atom vibrations in crystals, only the motions of the nucleus are relevant

because the mass of the electron is negligible in comparison. Ignoring the detailed

mechanism of these interactions [8,20], the Hamiltonian for nuclear motions can

be written as [24,25]

Hn =
∑
l,κ

p2
lκ

2mκ
+ Φ, (2.42)

where Φ is the potential energy, p is the momentum vector, and l and κ are the

labels of atom and unit cell, respectively. The instantaneous position Rlκ(t) of

atom lκ at time t is

Rlκ(t) = rl + rκ + ulκ(t), (2.43)

where the atom κ in the unit cell l vibrates about its equilibrium with the displace-

ment ulκ(t).

We expand the total potential energy Φ in a Taylor series about these equilib-

rium positions

Φ = Φ0 +
∑
αlκ

Φαlκ uαlκ

+1
2

∑
αlκ

∑
α′l′κ′

Φαα′lκl′κ′ uαlκ uα′l′κ′ + ..., (2.44)

where α = {x,y, z} are the Cartesian components, the coefficients of the Taylor

series are the derivatives of the potential with respect to the displacements

Φαlκ = ∂Φ
∂uαlκ

∣∣∣∣
0
, (2.45)

Φαα′lκl′κ′ =
∂2Φ

∂uαlκ ∂uα′l′κ′

∣∣∣∣∣
0

, (2.46)
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and Φ0 is the static potential energy of the crystal. Because the force on any atom

must vanish in the equilibrium configuration,

Φαlκ = 0. (2.47)

As an approximation that we will revisit in the next section, we neglect terms

of order three and higher in the displacements in Eq. 2.44. The Hamiltonian can

be written as

Hn =
∑
lκ

p2
lκ

2mκ
+ Φ0 +

1
2

∑
αlκ

∑
α′l′κ′

Φαα′lκl′κ′ uαlκ uα′l′κ′ . (2.48)

This is the harmonic approximation of lattice dynamics.

It is possbile to rewrite the Hamiltonian in matrix form

Hn =
∑
lκ

p2
lκ

2mκ
+ Φ0 +

1
2

∑
lκ

∑
l′κ′

uTlκ Φlκl′κ′ ul′κ′ , (2.49)

where Φlκl′κ′ is a 3×3 force-constant matrix defined for each atom pair lκ and

l′κ′ ((l, κ) ≠ (l′, κ′)):

Φlκl′κ′ = [Φαα′lκl′κ′] . (2.50)

This is the famous Born-von Kármán model. [8,26] If (l, κ) = (l′, κ′), Φαα′lκlκ is a

“self-force constant”, determined by the requirement of no overall translation of

the crystal

Φlκlκ = −
∑

(l′,κ′)≠(l,κ)

Φlκl′κ′ . (2.51)

Because equal and opposite forces act between each atom of a pair, the matrix
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Φlκl′κ′ must be real and symetric.

Φlκl′κ′ =


a b c

b d e

c e f

 (2.52)

To satisfy the translational symmetry, the force constant matrices must also have

the following property

Φlκl′κ′ = Φ0κ(l′−l)κ′ = Φ(l−l′)κ0κ′ . (2.53)

It should be noted that the interatomic force constants, such as Φαα′lκl′κ′ , are in

fact not constant but functions of temperature and lattice parameters.

2.6.2 Equations of Motion

Using the the harmonic approximation and the potential above, the equations of

motion for nuclei are

mκulκ(t) = −
∑
l′,κ′

Φlκl′κ′ ul′κ′(t). (2.54)

There are 3×R×Ncell equations of motion for a finite crystal containing Ncell

unit cells, each containing R atoms. [8]

It is easily calculated that for any crystal of reasonable size (on the order of

1023 atoms) the atoms on the surface account for only a very small fraction of

all atoms. Typical atom in that crystal has many, many atoms in any direction

extending beyond the distance that interatomic forces can reach. As a result, it is

convenient to apply the approximation that displacements separated by a certain

number of cells are equal. Imposing these periodic boundary conditions on the

crystal, the solutions to the equation of motions can be written in the form of
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plane waves of wavevector k, angular frequency ωkj , and “polarization” eκj(k)

ulκkj(t) =
√

2~
Nmκωkj

eκj(k) ei(k·rl−ωkjt), (2.55)

= ~
√√√2n(εkj, T )+ 1

Nmκ εkj
eκj(k) ei(k·rl−ωkjt), (2.56)

where we take the real part to obtain physical displacements. The phase factor,

eik·rl , provides all the long-range spatial modulation, while the dependence on κ,

a short-range basis vector index, is placed in the complex constant eκj(k). It is

convenient for this constant and the exponential to have modulus unity. j is the

“branch index” discussed below and there are 3R different such branches from

symmetry.

2.6.3 The Eigenvalue Problem of the Phonon Modes

The polarization vectors, eκj(k), contain all information on the excursion of each

atom κ in the unit cell for the phonon mode k, j, including the displacement

direction of the atom and its relative phase with respect to the other atoms. These

“polarization” vectors and their associated angular frequenciesωkj (normal modes)

can be calculated by diagonalizing the “dynamical matrix” D(k). The detailed

descriptions can be found elsewhere. [8,23–25]

The dynamical matrix can be obtained by substituting Eq. 2.56 into 2.54. It

has the dimensions 3N × 3N and is constructed from 3× 3 submatrices Dκκ′(k)

D(k) =


D11(k) . . . D1N(k)

...
. . .

...

DN1(k) · · · DNN(k)

 , (2.57)

where each sub-matrix Dκκ′(k) is the Fourier transform of the force-constant
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matrix Φlκl′κ′

Dκκ′(k) =
1√

mκmκ′

∑
l′
Φ0κl′κ′ e

ik·(rl′−r0). (2.58)

To simplify, the equations of motions (Eq. 2.54) with the plane wave solutions

(Eq. 2.56) can be represented as an eigenvalue problem:

D(k)ej(k) =ω2
kj ej(k), (2.59)

where

ej(k) =



ex1j(k)

ey1j(k)

ez1j(k)

ex2j(k)
...

ezNj(k)


(2.60)

is the eigenvector(s).

It can be shown that the dynamical matrix D(k) is hermitian for any value of

k. As a result it is thus fully diagonalizable and the eigenvalues ω2
kj are real. The

eigenvectors and eigenvalues of the dynamical matrix evaluated at a particular

wavevector k correspond to the 3R eigenmodes of vibration of the crystal for

that wavevector. It should be noted that the angular frequency (ωkj) dependence

on the wavevector (k), called a dispersion relation, can be quite complicated. The

speed of propagation of phonons in solids (speed of sound) is given by the group

velocity as the slope of this relation

vsound = vg =
∂ωkj

∂k
, (2.61)
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instead of the phase velocity

vp =
ωkj

k
. (2.62)

2.6.4 The Phonon Density of States

With the phonon vibrations calculated above, it is straightforward to calculate

the phonon density of states (DOS) of a crystal. This is done by diagonalizing the

dynamic matrix D(k) at a large number of k points in the first Brillouin zone, and

then binning them into the DOS histogram.

Similarly, a phonon partial DOS gd(ε), which gives the spectral distribution of

motions by one atom species d in the unit cell, can be obtained through weighting

the vibrational contribution

gd(ε) =
∑
k|

∑
ακj

δdκ|eακj(k)|2g(ε). (2.63)

Because the eigenvalues of the dynamical matrix are normalized for each k as

∑
ακj

|eακj(k)|2 = 1, (2.64)

the total DOS is the sum of the partial DOSs of all atoms in the unit cell,

g(ε) =
∑
d

gd(ε). (2.65)

This seems simple but some software for phonon calculations does not implement

it correctly. As a result, the partial DOSs do not add up to the total DOS, and the

total DOS may also have an incorrect weighting on the different atom species.
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2.6.5 Group Theory

With group theory, it is possible to find eigenvectors and eigenvalues without

diagonalizing the dynamical matrix. [8] Maradudin and Vosko’s review showed

how group theory can be used to understand the normal modes of crystal vi-

brations and classify them. [27] In their work, the degeneracies of the different

normal modes were addressed rigorously, and their association with the symmetry

elements of the crystal were used to label them. In the same issue of the journal,

Warren discussed the point group of the bond, [28] which refers to the real space

symmetries of the interatomic interactions, i.e., how the force constants transform

under the point group operations at a central atom.

2.7 Phonon-Phonon Interactions

Due to the huge mass ratio (1 : 105), it is often reasonable to assume that the

nuclear motions are slow enough so that the electron levels adapt continuously

to the evolving structure (Born–Oppenheimer approximation or adiabatic approxi-

mation). [4,8,10] This assumes that the electronic and nuclear systems are well

separated and any interactions can be accounted for as perturbations. The full

Hamiltonian of the crystal can be written as

H = Hn +He +Hep, (2.66)

where He and Hep are the contributions from the electron, including electron-

electron interactions and thermal electronic excitations, and from electron-phonon

interactions (EPI), respectively.

Phonon-phonon interactions originate from the third- and higher-order terms
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in the Taylor series of Eq. 2.44:

Hn = Φ0 +
∑
κ

p2
κ

2m
+ 1

2!

∑
κα

∑
κ′α′

Φαα′κκ′ uακ uα′κ′

+ 1
3!

∑
κα

∑
κ′α′

∑
κ′′α′′

Φαα′α′′κκ′κ′′ uακ uα′κ′ uα′′κ′′

+ 1
4!

∑
κα

∑
κ′α′

∑
κ′′α′′

∑
κ′′′α′′′

Φαα′α′′α′′′κκ′κ′′κ′′′ uακ uα′κ′ uα′′κ′′ uα′′′κ′′′ + ...,(2.67)

where we assume one atom per unit cell.

The transformation to normal coordinates for an infinite periodic crystal is

Uki =
1√
Nm

∑
rκ

urκe
−iki·rκ , (2.68)

and by Fourier inversion

u~rκ =
1√
Nm

∑
ki

Ukie
+iki·rκ . (2.69)

Substituting this into Eq. 2.67, we identify the Fourier transform of Φαα′κκ′ , and

use it to define the dynamical matrix.

It is usually easier to work with the quantized phonon field using the second

quantization formalism. The phonon field operator is

Aki = aki + a
†
−ki
= A†−ki

. (2.70)

Constructed from the momentum and position operators of the Hamiltonian,

the raising and lowering operators a†ki and aki create and annihilate the phonon

ki, respectively, similar to raising and lowering operators for a simple quantum

harmonic oscillator. [29]

This is the occupation number representation, where n phonons of wavevec-

tor ki are created with n raising operations as
(
a†k
)n
|0〉k = (n!)−1/2|n〉k. The
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displacement operators in this representation are

u(rκ) =
∑
ki

√
~

2Nmωki

e(ki) eiki·rκ Aki . (2.71)

By substituting this into Eq. 2.67, we have

Ĥn = Φ0 +
∑
ki

~ωki

(
a†ki aki +

1
2

)
+

∑
ki

∑
kj

∑
kk

V(ki,kj,kk) Aki Akj Akk

+
∑
ki

∑
kj

∑
kk

∑
kl

V(ki,kj,kk,kl) Aki Akj Akk Akl + ..., (2.72)

where the first sum on the right-hand side includes both the kinetic energy and

the harmonic part of the potential energy, and the V are related to the Fourier

transforms of Φ. For example, the cubic term is

V(ki,kj,kk) =
1
3!

√√√√ 1
Nm3

(~
2

)3 1
ωkiωkjωkk

δ(ki + kj + kk − g)

×
∑
~rκ

e(ki)e(kj)e(kk)e+i(ki+kj+kk)·rκΦα,α′,α′′κ,κ′,κ′′ , (2.73)

where the factor δ signifies that the conservation of lattice momentum ki+kj+kk =

g, where g is a reciprocal lattice vector. [9] The cubic (V(ki,kj,kk)) and quartic

(V(ki,kj,kk,kl)) terms give the energies of “phonon-phonon interactions” because

they alter the phonon energies when larger vibrational displacements are present

in the crystal.

Although not obvious at first sight, details of the phonon dispersions are crucial

for an attempt to calculate anharmonic behavior because of the conservation of

energy and momentum. For example, for three phonon process, k+ k′ = k′′ + g

and ε + ε′ = ε′′ must be satisfied simultaneously. Most phonon dispersions are

curved and phonon processes that satisfy momentum and energy conservation

depend on the symmetry of the dispersion relations, and on the crystal structure.
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For larger phonon wavevectors k, momentum conservation is possible by adding

a reciprocal lattice vector g, and the idea is that the momentum transferred to the

entire crystal occurs with zero energy because of the large mass of the crystal.

Such “umklapp” processes allow many more three-phonon interactions, but the

phonon wavevectors must be of length comparable to the reciprocal lattice vector

for this to be possible.

It is important to determine how many terms are needed in Eq. 2.72 to account

accurately for anharmonic behavior. The higher-order terms become progressively

smaller, but the requirement of energy and momentum conservation restricts

the allowable three-phonon processes, so fourth-order anharmonicity can be as

significant as the third. Also, four-phonon processes can be generated from two

three-phonon processes.

For systems where the electron-phonon interaction (EPI) has little role, such as

ionic isolators, the anharmonic phonon effects are solely from phonon-phonon

interactions. These cause the energies of phonons to be shifted and broadened.

Treating all the components as perturbations, the energy shifts can be written as

∆ω(q) = ∆ωq(q)+∆ω3(q)+∆ω4(q), (2.74)

where the terms on the right-hand side are quasiharmonic, third-, and fourth-order

contributions, respectively. On the other hand, the energy broadening is believed

to be usually dominated by the third-order contribution. The related theory has

been discussed in detail. [4,15,23,30–33]

2.8 Electron-Phonon Interactions

There are large energy differences between the phonon and electron systems in

the crystal. As a result, the Hamiltonian of the solid is commonly separated into

phonon and electron contributions. The energy of the crystal deformation caused

by a phonon originates with the electrons, of course, but although this potential
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energy of deformation is electronic in origin, it transfers to kinetic energy in

the motion of the nuclei. In a perfectly harmonic system, the electron-phonon

interaction affects equally the energies of the electrons and the phonons. If the

electrons were always in their ground states, all this energy of deformation would

be associated with phonons only. Treating the electron system and the phonon

system as two independent thermodynamic systems becomes inconsistent at

finite temperature, however, because the presence of phonons alters the thermal

excitations of electrons. [4]

Classically, the electron-phonon interaction (EPI) requires the coordinates of

the electrons {rel
λ }, and the coordinates of the nuclei {rn

j} [22]

Hep =
∑
λ,j

v(rel
λ , r

n
j ). (2.75)

The EPI in the “adiabatic approximation” does not allow the nuclear kinetic energy

to alter the electron states. The “non-adiabatic” electron-phonon interaction

accounts for how the electronic states are altered by the nuclear kinetic energy,

not the potential energy of displaced nuclei, as for the adiabatic case. The

non-adiabatic EPI requires no thermal activation, and can be responsible for

superconductivity.

In the adiabatic picture, unique electron eigenstates exist for a snapshot of

the nuclear thermal displacements, which evolve continuously as the nuclei move.

For a given electronic structure, the adiabatic electron-phonon interaction is

proportional to the number of phonons, n(ε, T) + 1/2, times the difference of

electron occupancy with respect to the ground state, f(T)− f(0), where f(T) is

the Fermi-Dirac distribution. When there are sharp features in the electronic DOS

near the Fermi level, there will be other temperature dependences associated with

the thermal sampling of the excited electron states.

To illustrate how the electron eigenstates change with nuclear displacements,

a simple approach is to consider an electronic band formed from isotropic s-

electrons, and a uniform dilation, as may be associated with longitudinal phonons
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of long wavelength,

HD
ep = −

∑
λ

D∆(rel
λ ) (2.76)

where ∆(rel
λ ) is the fractional change in volume at rel

λ , and D is a “deformation

potential”, typically a few eV. This simple approach is convenient because ∆(rel
λ )

is related to the displacement u as through its divergence: ∆(rel
λ ) = ∇ · u, so

HD
ep = −D

∑
λ

∇ · u(rel
λ ). (2.77)

For longitudinal phonons

~e(ki) =
ki
ki
, (2.78)

and Eq. 2.76 can be written as

ĤD
ep = −iD

∑
rel
λ

∑
ki

√
~

2Nmωki

|ki| eiki·rel
λ Aki . (2.79)

Similar to the second quantization of phonons, fermion field operators for the

electron are

Ψ†(rel
λ ) =

∑
kλ

C†kλe
−ikλ·rel

λ , (2.80)

which when applied to a multi-electron state, places an electron in the state

kλ. When small, ĤD
ep is a perturbation that mixes electronic states and can be

evaluated by using the fermion field operators C and C†, where the exponential

phase factors cancel the k-space integration unless there is a conservation of

wavevector. This forces the same total kλ + ki for the creation operators as for
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the annihilation operators

ĤD
ep = −iD

√
~

2Nm

electron∑
kλ

phonon∑
ki

√
ki
cL
AkiC

†
kλ+ki

Ckλ , (2.81)

plus an analogous term with A†kiCkλ+kiC
†
kλ

for phonon creation. Here we used

a linear dispersion relationship ωL = cLki for long-wavelength, longitudinal

acoustic phonons.

In general, there are two lower-order terms that are used to describe the

electron-phonon interaction. The first is a generalization of the previous result for

the deformation potential with long-wavelength, longitudinal acoustic phonons

Ĥ1
ep =

∑
ki

∑
kλ

V ep(ki,kλ)AkiC
†
kλ+ki

Ckλ , (2.82)

which accounts for the processes where an electron is excited from state kλ

to kλ + ki, simultaneously with the annihilation of a phonon in state ki, or

creation of a phonon in state −ki. The second low-order term for electron-

phonon coupling (Ĥ2
ep) includes a factor from second-order perturbation theory,∑

k′〈k|Ω|k′〉〈k′|Ω|k〉. There is no change of electron state by this process, never-

theless, the scattering into the virtual states alters the self-energy of the electron.

Calculating the thermodynamic effects of electron-phonon coupling requires

averaging over all electron states near the Fermi surface separated by kj and

differing in energy by a selected ~ω. Most work on electron-phonon coupling has

focused on superconductivity, where ~ω is rather small, and the electron states

are close enough to the Fermi surface that it is reasonable to use ground-state

Fermi surface properties. The Éliashberg coupling function α2g(ω), where g(ω)

is the phonon DOS, accounts for all scattering between electron states on the Fermi

surface. The “electron-phonon coupling parameter” λ is calculated by weighting

by ω−1

2
∫ωmax

0

α2g(ω)
ω

dω = λ, (2.83)
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which describes the overall strength of the electron-phonon coupling.



38

Chapter 3

Computational Techniques
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3.1 Introduction

While the advances in computational tools and techniques made possible many,

things believed impractical only a couple of decades ago, one still has to make

many approximations when doing most computational work. For computational

solid state physics, it is the task of theoretical studies to decide on the best

approximations to reduce the computational difficulties while preserving as much

information as possible about the objects of study. Improvements in the power

of computers rarely make sudden breakthroughs, so simulations often need

breakthroughs in theory.

Computational science on atomic and subatomic scales benefits all disciplines

of science, such as chemistry and bio sciences, but it is especially important for

physical sciences. In materials science, we are mostly interested in the simulations

on the level of the electronic structure and the levels of crystals or molecules.

Predicting the properties of known materials, especially under extreme condi-

tions such as high temperatures, high pressure, or high radiation, and designing

materials with desired properties under these conditions, are the ultimate goals

of computational materials science. We will only briefly review the computational

techniques used for phonon studies in this chapter. More detailed discussion can

be found in many books. [5,34–38]

As for all computational problems, there is always a compromise between

accuracy and speed or time. It is important to select the right tools for the problem

at hand, often depending on the size of the systems.

3.2 First-Principle Methods

3.2.1 Many-Body Problem

All the interatomic forces in solid state materials are intrinsically electromagnetic

interactions—the other three fundamental forces are irrelevant at this scale. The
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exact Hamiltonian of such as a system can be written precisely as:

H = −
∑
i

~2

2me
∇2
i +

1
2

∑
i6=j

e2∣∣ri − rj
∣∣ −∑

I,i

ZIe2

|ri − RI|
−
∑
I

~2

2MI
∇2
I +

1
2

∑
I 6=J

ZIZJe2∣∣RI − RJ
∣∣ ,

(3.1)

where the terms on the right-hand side correspond to the kinetic energy of elec-

trons, potential energy between electrons, potential energy between electrons and

nuclei, kinetic energy of nuclei, and potential energy between nuclei, respectively.

All the potential energies are from Coulumbic interactions. The uppercase and

lowercase subscripts label the nuclei and electrons, respectively. M is the nuclear

mass, me is the electronic mass, Z is the atomic number of nuclei, and R and r

donate positions of nuclei and electrons, respectively.

Because electrons have to be considered as quantum particles, the problem

comes down to solving the many-body wave functions from the Schrödinger

equation. This problem is extremely difficult to tackle directly, even with a

system made of only a couple of particles. It is even difficult numerically. The

computational cost scales as O(eN), where N is the size of the system. For any

other system of practical size, it is necessary to resort to a few approximations.

3.2.2 Hartree-Fock Method

Using the Born-Oppenheimer approximation as discussed in last chapter, it is pos-

sible to solve problems at the electronic structure level by isolating the electronic

degrees of freedom and placing the nuclei in fixed configurations. In 1928, Hartree

suggested an approximation in which the system is reduced to one-electron model

where the interactions from other electrons are treated as a mean field. As a

result, the total wave function is just the product of the many one-electron wave

functions. This is a good starting point, however, it missed some important

effects, such as the Pauli exclusion principle and the exchange and correlation

energies from the many-body nature of the system.

Fock improved Hartree’s work by approximating the wave functions as linear
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combinations of non-interacting one-electron wave functions in the form of a

Slater determinant

Ψ(ri) =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ1(r1) Ψ2(r1) . . . Ψn(r1)

Ψ1(r2) Ψ2(r2) . . . Ψn(r2)
...

...
. . .

...

Ψ1(rn) Ψ2(rn) · · · Ψn(rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.2)

where n is the number of electrons in the system. It solves the problem of

antisymmetry, ensuring that the sign of the total wave function will change when

two electrons are switched, and no electrons will share a same state.

Under the Hartree-Fock approximation, the total energy can be written as a

sum of kinetic, electron-nuclear, Hartree, and exchange energies

E = Ek + Ee−n + EH + Ex, (3.3)

where the Hartree energy EH is determined by the mean-field Hartree treatment

and the exchange energy Ex corrects for the energy difference as a result of the

antisymmetry. Note that we are still missing the correlation energies from the

interactions of the spins between electrons, but they can be treated similarly. The

computational cost of Hartree-Fock model scales as O(N4), where N is the size

of the system.

3.2.3 Variational Principle and Self-Consistent Field Method

Because electrons are indeed not independent but correlated, their wave functions

need to be optimized to obtain exact solutions. One of the basic foundations of the

first principle theory is the variational principle, which states that in a quantum

system without degeneracy, there is only one ground-state. So by minimizing the

total energy with respect to the wave function, it is possible to achieve a unique

ground state.



42

In practice, the wave functions are usually optimized iteratively using a self-

consistent field (SCF) method. A random or a typical wave function is used as the

starting point. The electron densities are calculated with these wave functions

and then used to obtain the total energy. Using these results, it is possible to

solve the equations to have a new set of energies and wave functions for each

electron. This process is done iteratively until the changes to wave functions are

below a certain threshold.

3.3 Density Functional Theory

3.3.1 Hohenberg-Kohn Theorems

It was not until the 1960s when Hohenberg and Kohn showed by their two theorems

that it is possible to solve the problem using only the electronic density ρ(r),

that first principles calculations on systems larger than a couple of dozen atoms

were made possible. This electron density of states is defined as the sum of all

occupied orbitals (i)

ρ(r) =
∑
i

∣∣φi(r)∣∣2, (3.4)

which is normalized to the total number of electrons, n,

∫
ρ(r)dr = n. (3.5)

The first HK theorem states that the external (electron-nuclear) potential Ve−n

is uniquely determined by the ground state electron density ρ0(r). Because Ve−n

determines the Hamiltonian, and thus the ground state and its density ρ0(r), the

conclusion is that there is a one-to-one relationship between the ground-state

density ρ0(r) and the external potential Ve−n for the electrons. As a consequence,

the Hamiltonian and every property of the system is determined from ρ0(r).

The second HK theorem addresses the problem of finding such a ground state.

It states that given the external potential Ve−n there exists a uniquely defined
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functional for the energy E[ρ(r)]. The density that minimizes this functional

is the ground-state density and the energy at the minimum is the ground-state

energy

E[ρ(r)] = F[ρ(r)]+ Eext[ρ(r)] ≥ Egs. (3.6)

This is also the variational principle. It is still, however, necessary to know the

functional F[ρ(r)]. This difficulty was overcome by Kohn and Sham.

3.3.2 Kohn-Sham Theory

To solve the problem mentioned above, Kohn and Sham introduced the exchange-

correlation energy EXC, defined as the difference in energy between the indepen-

dent electron system and the true system. As a result, the functional can be

written as:

F = T + EHF + EXC, (3.7)

where T and EHF are kinetic and Hartree-Fock Coulomb interaction energies,

respectively.

This exchange-correlation energy EXC contains all the difficult parts about the

interactions between electrons in the real system, and its exact form is unknown.

Nevertheless, several approximations for exchange and correlation functionals

have been developed, and among them are the local density approximation (LDA)

and several generalized gradient approximations (GGA). Using these approxi-

mations, it is possible to obtain the variational minimization as an eigenvalue

problem using the Rayleigh-Ritz method.

The single-particle Kohn-Sham (KS) Hamiltonian can be written as

H = Tni +VHF +VXC +Vext, (3.8)

in which ni means “non-interacting”. For an N-particle system, the problem is

solved as a one-particle system in its N lowest eigenstates, also called Kohn-

Sham orbitals. These N equations of the eigenvalue problem are the celebrated
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Kohn-Sham equations and can be solved by expanding the single electron wave

functions in a basis, and diagonalizing the related KS Hamiltonian matrix. This

needs to be done iteratively using a self-consistency method, similar to the one

discussed in last section. Alternatively, the problem can also be solved using

a variational approach by minimizing with, for example, a conjugate gradient

method, thanks to the orthonormalization of the Kohn-Sham orbitals. [39]

3.3.3 Exchange and Correlation

In detail, the exchange-correlation energy can be written as the sum of the exchange

energy, interacting kinetic energy, and the interacting correlation energy

EXC = EX + Tint + Eint,C = EX + EC, (3.9)

where the later two add up to the correlation energy EC, which accounts for the

correlating part of the kinetic and electron-electron interaction terms. EX comes

from the electrons with the same spin, while EC comes form the electrons with a

different spin. Both are Coulumbic in origin.

It is informative to check the relative magnitude of the these energies in a

real system to understand their contributions. For a helium atom, whose exact

solution is available, Eext, Tni, EH, and EXC account for about 53%, 23%, 16%, and 8%

of the total energy, respectively. [34] The contribution from exchange-correlation

energy may seem small, but it is actively involved in the chemical changes in

the system and a accurate description of it is crucial to the success of density

functional theory (DFT). Further details on DFT theory can be found in many

books. [40–42]

The first question when performing a density functional calculation is probably

the choice of exchange and correlation functionals. One of the first and still

widely used approximations is the so-called local density approximation (LDA).

The LDA’s exchange and correlation energy is a function only of the homogeneous

electron density. The exchange and correlation energy of a non-uniform system
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is simply a sum over small finite volumes in which the electronic density is

approximately constant. As a result, the functional depends only on the local

information on the electronic density of states, and it works well for systems with

small or smooth variations of the electronic density over distance (read: covalent

materials and simple metals). LDA usually overestimates the exchange energy,

while underestimating the correlation energy. The calculated lattice parameters

are generally smaller and the approximation does not work well for strongly

correlated systems, transition metals, van der Waals interactions, and hydrogen

bonds. LDA can be extended to include spin-polarized calculations, called the

local spin-polarized density approximation (LSDA).

Most of the other approximations fall into the category of generalized gradient

approximations (GGA), which work better for systems with stronger gradients in

electronic density of states because, as its name suggests, it not only takes into

account the local electron density but also its gradient (and maybe higher-order

terms). Unlike LDA, there is no one general form for the exchange-correlation

function, but some forms are well accepted, including PW91 and PBE. Some hybrid

functionals, such as B3LYP, include either a higher-order density gradient or a

certain amount of nonlocal HF exchange energy. They seem to work better for

systems with large oscillations of electron density and long-range interactions,

but not without an increase in computational cost. GGA usually overestimates

the lattice parameters, although it generally yields better results than LDA. While

better, GGA still may not work well with strongly correlated systems, and a +U

method was proposed to compensate for the localized electron states by adding

a repulsive energy term U . It should be noted that both LDA and GGA tend

to severely underestimate the band gap because of the noninteracting nature

and the partial removal of self-interaction in DFT. Some remedies include: using

hybrid functionals mentioned above, using Green function techniques (e.g., GW

approximation), and using some self-interaction correction methods.
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3.3.4 Choice of Basis Sets and Pseudopotentials

To solve the Kohn-Sham equations numerically, it is necessary to select a basis

set to decompose the wave functions. In practice, a finite set must be used, so

the basis must be truncated somehow. The best choice of basis sets demands

that a minimal number of basis vectors should be used (fast convergence), and

projections can be calculated efficiently while the representation is as accurate as

possible. The choice is always a compromise between speed and accuracy.

One common approach is using a plane wave basis set, such as the ones in

Bloch’s theorem. The problem is solved on the k-grid mesh in the irreducible

Brillouin zone, which helps to cut down the number of points. For larger systems,

the irreducible Brillouin zones are smaller, and a couple of k-points may give

a very good description. In some massive calculations, calculations only at the

center of the Brillouin zone (Γ point) may even be sufficient.

A cutoff energy must also be selected to limit the number of reciprocal lattice

vectors in the series. This seems straightforward, but one has to realize that

the electron wave functions oscillate wildly near the nuclei, so the required

cutoff energy can be quite large. However, because the wave functions near the

nuclei are mostly irrelevant to the bonding, it is possible to modify the external

potential so that the wave functions only vary smoothly inside some core radius.

These modified potentials are called pseudopotentials. When well executed, this

approach can achieve very good accuracy with a much smaller cutoff energy and,

as a result, a much smaller matrix to diagonalize.

There are three common types of pseudopotentials. In a norm-conserving

pseudopotential, the electron charge within the core part is equal to that of the

actual atom. Ultrasoft pseudopotentials do not conserve the charge but instead

reduce the peak height of the potentials to reduce the number of plane waves

needed to represent the wave functions. It is also possible to keep the core part

of the wave functions as a frozen atomic configuration, and these potentials are

called projector-augmented wave (PAW) potentials.
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The so-called augmented plane wave method (APW) is a step further. The wave

functions take a hybrid form with the core part using a basis of atomic orbitals

and the valence part using standard plane waves basis. While more complicated,

the APW method can describe the wave functions in the core part better. It is also

an all-electron method, so information about the core electrons is accessible.

3.3.5 More on DFT

The success of DFT is partially attributable to its computational cost of O(N) ∼

O(N3), where N is the size of the system. Although the low O(N) cost is only

possible for systems without much long range interaction, such as wide-gap

insulators, it is a remarkable achievement considering the complexity of a n-

electron interacting system. It is possible to extend the DFT calculations to study

the excited-states, using Green’s function or time-dependent DFT (TDDFT). [43]

The success of DFT is also attributable to its ability to reliably calculate the

electronic energy from a set configuration of the atoms, no matter if they are

at equilibrium positions or not. This makes it possible to minimize the energy

and solve the ground state with good accuracy. Frozen phonon calculations, in

which atoms are displaced in certain phonon modes, can provide details about the

anharmonicity of the phonons. Using supercell displacement or density functional

perturbation theory (DFPT) methods, it is possible to calculate the phonon DOS

and dispersion relations using lattice dynamics analysis as discussed in last

chapter.

Unlike insulators or semiconductors, whose charge densities have a smooth

decaying edge at the gap, metals have sharp edges of charge densities at their

Fermi levels at 0 K. These edges create problems for the plane wave expansion, and

usually a smearing near the Fermi surface is necessary. A few smearing schemes

are commonly used: Gaussian smearing, Fermi smearing, and Methfessel-Paxton

smearing. The smearing may seem like an analog to electronic excitations at

a finite temperature, but it is introduced for computational reasons instead of
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physical reasons. The amount of smearing needs to be selected carefully to reduce

the computational cost while retaining a reasonable accuracy. Sometimes, the

results are obtained by extrapolating to the zero smearing limit.

DFT may look like a “do-everything” tool, but one still needs to understand its

limitations to avoid possible mistakes. A large number of both theoretical and

numerical approximations are used in any DFT calculations, and it is important

to understand that all the results are based on those approximations. It is also

easy to make mistakes when executing the method. One of the common mistakes

is the failure to perform a careful convergence test on the parameters used

in the calculation. Care must be taken and it is almost always the case that

the convergence tests cost as much computational time, if not more than, the

production runs.

3.4 Molecular Dynamics (MD)

Contrary to what its name may suggest, the molecular dynamics method uses

classical mechanics (including a classical approach for quantum mechanics) to

simulate atomic movements and predict both static and dynamic properties of

not only molecules but also solid materials. Because the motions of atoms at an

atomic scale are still well within the classical mechanics limit, there is no problem

using Newton’s equations to describe the trajectories of atoms. Even in the case

of first-principle MD, in which the inter-atomic forces are calculated by quantum

mechanical approaches, the motions of the nuclei can still be safely considered

as classical.

3.4.1 Principles

As the Born-Oppenheimer approximation suggests, the electrons’ response to

the motions of nuclei is so fast that their rearrangement can be considered as

instantaneous. Newton’s equations of the system have nothing to do with the
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electrons. It should be noted that, in a Newtonion view of the world, everything

is deterministic: with the exact knowledge of the positions and velocities of the

atoms inside the system plus the exact interatomic forces, the future and past

trajectories can be calculated precisely. This is not true, however, in the real

quantum world, where the time-reversal symmetry is broken.

In the molecular dynamics method, the classical equations of motion are solved

as according to the time evolution:

(1) Assume the initial positions and velocities of every atom in the system

are known, using the interatomic potentials, the forces on each atom can be

calculated;

(2) Under these forces, the positions and velocities of the atoms are updated

toward a time step (∆t);

(3) Repeat the steps above.

It is immediately obvious there are many problems regarding the choices

of initial conditions, approximations of using finite time steps, adding up of

truncation and round-up errors. We will discuss them briefly in the following

sections. More detailed explanation can be found in many textbook and review

articles. [44–52]

What can we learn from molecular dynamics? The most important information

obtained directly are the positions and the velocities (which can be calculated

from the former) of all the atoms in the system. All the other raw data, such

as energies and forces, may be saved during the calculation, but they are easily

calculated from the positions.

In principle, the trajectories contain all the information about the phonons

in the system (within the sampling and numerical resolution). Thermodynamic

properties that can be calculated directly or by analysis are basic energy, structure,

mechanical properties, thermal expansion, phase diagram, defect, grain, thermal

conductivity, radial distribution functions, diffusion, and many others. With

enough resolution, phonon DOS and phonon dispersions can be calculated with

MD, too.
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3.4.2 Potentials

Molecular dynamics simulations can be only as good as the potentials used.

Interatomic potentials can be attractive or repulsive. Molecular dynamics are

commonly classified according to the potentials used or, more generally, how

the interatomic forces are calculated. Classical MD uses simple pair or multiple-

particle potentials in analytical forms. First-principles MD, on the other hand,

uses DFT methods to obtain the interatomic forces. [44]

First-principles MD include two common categories: Born-Oppenheimer MD

(BOMD) or Car-Parrinello MD (CPMD). BOMD uses the same minimization method

with standard DFT calculations. For every MD time step, the electronic states are

relaxed to the ground states and the interatomic forces are calculated from there.

CPMD couples the electronic degrees of freedom into the classical coordinate

system and a set of coefficients of the plane wave basis set is treated classically as

an additional set of coordinates. To do this, these orbitals are assigned a fictitious

mass. The main benefit of a CPMD approach is the reduction in computational

expense but at a cost that electronic states are not relaxed to ground states.

This approach may work well for some systems, in which interatomic forces

can be estimated with approximate electronic structure, such as insulators and

semiconductors, but less so for other systems such as metals. The convergence of

CPMD is also poorer compared to BOMD, so a smaller time step is often required,

and this partially undermines the cost benefit.

The first way to generate classical potentials is by fitting certain functions to

the structural and/or thermodynamical properties of the system, such as lattice

parameters, bulk modulus, elastic modulus, thermal expansion, and vibrational

spectrum, among many others. Classical potentials can also be calculated from

first principles methods, and there are some good codes to do that. One thing

that needs to be noticed about these potentials is their transferability: how well

the potentials can be used for other systems or systems under other conditions.

Classical potentials tend not to be easily transferable, and it is necessary to find
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or generate the right potentials for the systems of interest.

Consider a system of N particles. The potential energy can be expanded into

two-particle, three-particle, ..., and n-particle terms:

U(r1, r2, . . . rn) =
N∑
i<j

U(ri, rj)+
N∑

i<j<k

U(ri, rj, rk)+ . . . . (3.10)

In systems where near-range interactions dominate, it is possible to ignore all

higher-order potentials and only consider pair potential U(ri, rj).

Tens of pair potentials are well known, and many of them are widely used. As

a typical example, the Lennard-Jones (LJ) potential is:

ULJ(r) = 4ε
[(
σ
r

)12

−
(
σ
r

)6
]
, (3.11)

where r is the interatomic distance and ε and σ are parameters. LJ potentials

are commonly used for free noble gas atoms. For solid state materials, the

Buckingham potential is often used. It is

UBuck(r) = A exp(−Br)− C
r 6
, (3.12)

where r is the interatomic distance and A, B, and C are parameters. These

two potential models are isotropic, and the energy only depends on interatomic

distance. In general, however, potentials can be directional. When describing

some covalent solids, such as diamond, the highly directional bonds require a

directional potential model, such as Tersoff potential.

In systems such as metals and their alloys, where electrons are delocalized and

long-range interactions are more important, pair potentials usually cannot give a

good description of the system. Other classical potentials using the mean-field

concept, such as the embedded atom method (EAM), work better.

The field of classical interatomic potentials is still making active progress.

Many new ideas are being developed.
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3.4.3 Solving Equations of Motion

As we mentioned earlier in this chapter, solving the Newton’s equation of motions

involves the finite-difference method in time step (∆t). Assuming we have a

complete knowledge of the system at time t, the position at time t +∆t can be

calculated from the Taylor expansion as

r(t +∆t) = r(t)+ v(t)∆t + 1
2!

a(t)∆t2 + 1
3!

d3r(t)
dt3

∆t3 + . . . . (3.13)

Note that everything up to the second order on the right-hand side is either known,

or can be calculated directly. This may seem enough but it turns out that it is not,

and the system is unstable. Fortunately, it is possible to achieve resolution on the

order of O(∆t4) using some simple algorithms, and more importantly, achieve

good stability.

We will not go in to details about the problem of stability, as it has been well

described elsewhere. The basic idea, however, is quite simple. In a stable system,

these equations capture the trajectories of the atoms "well enough" (although

with errors) when compared to a real system (or a system simulated with much

better resolution and finer time step). On the contrary, a system is unstable when

a change in these parameters lead to a catastrophic different in the trajectories

after only a few time steps.

The first trick is called the Verlet algorithm. Writing Eq. 3.13 for a step forward

and backward

r(t +∆t) = r(t)+ v(t)∆t + 1
2!

a(t)∆t2 + 1
3!

d3r(t)
dt3

∆t3, (3.14)

r(t −∆t) = r(t)− v(t)∆t + 1
2!

a(t)∆t2 − 1
3!

d3r(t)
dt3

∆t3, (3.15)

and adding them up

r(t +∆t) = 2r(t)− r(t −∆t)+ a(t)∆t2. (3.16)
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We have eliminated the first-order (velocity) and third-order terms. Other slightly

more complex algorithms, such as velocity-verlet and predictor-corrector algo-

rithms are more frequently used because of their increased accuracy, stability,

and energy conservation.

Directly solving these equations of motion requires a computation time scale

of O(N2). To achieve the desired performance of O(N), the number of interacting

neighbors must be limited. This is commonly implemented by choosing a cutoff

radius rcut, beyond which the interatomic forces are ignored. (Note that this

approach does not work for systems with long-range Coulumbic interactions.)

During the calculation, a list of neighbors is often maintained for each atom. By

doing so, the calculation of interatomic forces is only necessary when the changes

in the interatomic distances are larger than a preset tolerance.

To simulate the bulk properties of materials, it is also necessary to use periodic

boundary conditions with the supercell. The same principle also applies to

simulations of surfaces and thin films.

Last but not the least, the size of time steps has to be determined. A time step

that is too small unnecessarily wastes computational time without improving the

resolution, while a time-step that is too large will render a system unstable. The

choice of time steps is also sensitive to the system and its environment, such as

temperature and pressure. There has been much theoretical work on the balance

of the time step sizes, but "trial-and-error" is still the most trouble-free method.

Convergence testing with different time-step sizes is necessary to determine the

ideal choice. The actual resolution of the simulations is determined mostly by

the size of the system and the number of time steps, although the size of time

steps is also relevant.

3.4.4 Initial Conditions

The initial positions of the atoms are usually taken from a cryptography database

or a DFT calculation. The initial velocities are often set randomly using a Maxwell-
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Boltzmann distribution at the temperature of the set point, while keeping the

total translational momentum as zero.

Sometimes, the experimental lattice parameters are not well reproduced by

the potentials used by the MD simulations. In those cases, the MD can go unstable

if it starts with these initial conditions, so it is preferable to do an optimization

first using either a steepest-descent or some conjugate-gradient methods. Unlike

MD, the optimization is performed in a static "frozen" state, and the excessive

kinetic energies are "damped" to help the system relax to its lowest energy state,

using a method such as simulated annealing. This is by no means as simple a task

as it may sound, but fortunately the starting point (experimental lattice structure

and lattice parameters) is usually very close to this lowest energy state, and the

optimization can be straightforward (at least when the potentials are of good

quality).

3.4.5 Ensembles and Thermostats

In statistical physics and thermodynamics, an ensemble is an idealization consist-

ing of a large (or infinite) number of copies of a system, considered all at once,

each of which represents a possible state that the real system might be in. [13] A

MD simulation creates a large number of such copies and thus an ensemble.

Defined with different fixed variables, there are a number of different types

of ensembles. Some of the most commonly used ones are microcanonical (NVE)

ensemble, canonical (NVT) ensemble, and grand canonical (VTµ) ensemble. The

first two are commonly used for molecular dynamics, and NVE ensemble is the

simplest to implement. The NVT ensemble is probably the ideal ensemble because

it reproduces the system in a more realistic way, but it is also more complex

because the energy of the system has to be modulated by a thermostat. The use

of isothermal-isobaric (NPT) ensembles is on the rise, thanks to the variable cell

method which is implemented in more and more first-principles codes.

A few thermostats are commonly used for MD in a NVT ensemble and a
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thermostat also helps to correct for energy drifting from the accumulation of

numerical errors. The difficulty is how to maintain the correct ensemble while

doing energy exchange. Simple velocity scaling is the most intuitive way, but it

breaks the ensemble. A Berendsen thermostat, which weakly couples the system

with a heat bath, is a better choice, but it still disturb the ensemble. The Andersen

thermostat uses a stochastic approach to couple the particle in the system to

a heat beat. While it reproduces the canonical ensemble, it is believed that the

dynamic quantities, such as diffusion properties, are disturbed and not usable.

The current state-of-the-art technique for temperature control is the Nosé-

Hoover thermostat. In this method, a fictitious mass Q and its related degree

of freedom is added to the system to simulate the coupling with the heat bath

by scaling the timescale and adding a potential term. It can be proved that this

thermostat will reproduce a canonical ensemble in the real system, but the choice

of Q is essential. Small Q will cause high-frequency oscillations and large Q

makes the system approach a microcanonical ensemble.

Sometimes it is beneficial to use multiple thermostats. It may first be advanta-

geous to use a thermostat that achieves the equilibrium faster, and then switch

back to the thermostat with the correct ensemble for the production run.

3.4.6 Data Analysis

As we mentioned earlier, all the information that a molecular dynamics simulation

gives is contained in the trajectories of the particles. A fair number of time steps

need to be discarded before the system is in an equilibrium state and all the

information from the initial condition is lost by that point, due to the numerical

errors.

To determine when the system reaches equilibrium, it is often useful to look at

the changes of total energy (potential plus kinetic) versus time. For a system in an

NVE ensemble, it is often necessary to achieve an energy fluctuation less than 0.1%.

For a system in an NVT ensemble, it is common to have a temperature fluctuation
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of a large amplitude, but one must ensure that the frequency of fluctuation agrees

well with the one predicted by the size and components of the system. A velocity

distribution function is also helpful to determine if the system is in equilibrium

(the distribution should be close to the Maxwell-Boltzmann distribution at the

corresponding temperature).

While the phase of the system can be found from the instantaneous positions of

the atoms in an equilibrium state, one has to remember that the atoms are vibrating

around their equilibrium positions, so to get accurate lattice parameters, time

averages of the positions must be calculated. Some thermodynamic properties

of the system can be obtained by taking derivatives of the results from a set

of different environments. For example, the bulk modulus can be obtained by

running an NVE MD under a few different volumes, and comparing the calculated

pressures. The same method also applies to the thermal expansion coefficient.

A radial distribution function (RDF), calculated by binning the distances be-

tween atom-atom pairs, gives useful information about the distribution of atoms

around each other. A RDF is particularly useful for amorphous or other disordered

materials. Pair distribution functions (PDF) measured from X-ray scattering can be

converted to RDFs, and directly compared to the ones from molecular dynamics,

sometimes with very good agreement. The mean square displacement (MSD) over

time t tells how far atoms travel from their original positions. It is useful to

check for solid-liquid phase changes because in liquid systems, the MSD tends to

increase linearly with time.

We are mostly interested in obtaining phonon dynamics information from

these trajectories. In principle, with a system of sufficient size, small enough

time step, and long enough run-time, it is possible to reproduce all the phonon

properties to good resolution within the limit of the interatomic potentials. To

calculate the vibrational spectrum from the trajectories, we need to define a

velocity autocorrelation function (VAF) first:

C(t) = 〈v(0) · v(t)〉
〈v(0) · v(0)〉 , (3.17)
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where v(t) is the velocity of atoms and 〈〉 denotes the average over all atoms,

and is normalized to the velocities at t = 0. Partial VAFs for certain atoms

(for example, one species in a multi-element compound), or velocities at certain

symmetry directions can also be defined accordingly.

The VAF gives the information on the dynamics of an "average" atom. It always

starts at unity and usually decays to zero in the long-time limit because eventually

all the information about the initial state is lost and so is the "correlation".

In a solid material, the VAF contains all information on the vibrational spectrum.

[53] The square of the Fourier transform of a VAF yields the phonon density of

states

g(ω) = 1
2π

 ∞∫
−∞

C(t) exp(iωt)dt

2

. (3.18)

Because of the discrete nature of the MD simulations, it is convenient to

calculate discrete VAFs

Cm =
〈vm · v0〉
〈v0 · v0〉

, (3.19)

and use a fast Fourier transform to obtain the phonon DOS. One problem remains:

the VAF often goes to zero eventually and as a result, when using Eq. 3.17, late

time steps in longer MD simulations will not contribute to the statistical quality

of the result because the VAF has decayed to zero there. One way to solve this

problem is breaking up long MD runs into shorter ones, and using an averaged

VAF. A smarter way to do it is using an average of all possible VAFs that can be

constructed from the trajectories [53]

Cm =
1

M −m

M−m−1∑
n=0

〈vn+m · vn〉
〈v0 · v0〉

. (3.20)

For a MD simulation with m steps, there are m− 1 different VAFs with different

ranges. The smaller t parts always have better statistical quality and they happen

to be the parts that contain the most information. It is important to have the

correct weighting factor here.

The resolution of the phonon DOS is mostly determined by the size and the
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number of time steps, but the sizes of the system also matters. There are some

rules on the choice of the size and the number of time steps for achieving a

desired resolution. Using a partial VAF, partial phonon DOS functions for specific

atoms and phonon dispersion relations can also be calculated similarly. Although

the vibrational information at the Γ point is always missing because it corresponds

to the correlations with atoms at infinite distances, it is possible to approximate

it with a q point that is close enough to the center of the Brillouin zone.

In practice, any direct Fourier transform of the VAF gives noisy results. It is

best to append the VAF with a trailing series of zeros several times larger in size.

Because a steep step function causes oscillations after Fourier transformation, it

is also necessary to smooth the interface between the VAF and the zeros in case

the VAF does not drop very close to zero there (as is usually the case).

An integration of the VAF over time gives the diffusion coefficient D

D = 1
3

∞∫
0

〈v(0) · v(t)〉dt, (3.21)

which is related to the MSD.

3.4.7 More on MD

Molecular dynamics, especially when performed using first-principles DFT meth-

ods, is very capable of reproducing the vibrational properties of materials. It can

account for many of the effects that will be neglected when using other methods.

For a example, anharmonic effects in crystal lattices have contributions from

intrinsic and extrinsic terms. The first one comes from the shapes of the inter-

atomic potentials and the second one comes from the thermally induced lattice

distortion. While frozen phonon calculations using the DFT method can address

the first one correctly, they totally miss the extrinsic contribution.

With that said, one must always be cautious when using classical MD. As

we mentioned before, these potentials are fitted to the properties of materials.
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Sometimes they are directly generated from the vibrational properties, such as a

measured phonon dispersion. So it is not surprising if it happens to give ideal

results for some of the properties while it completely fails for others. It cannot be

emphasized more that any calculation, molecular dynamics or lattice dynamics,

is only as good as the potentials it uses, at best.

It is possible to use molecular dynamics to simulate systems in nonequilibrium

states, such as for thermal transport and radiation damage, but these simulations

usually require larger system sizes, and so in most cases only classical MD is

practical.

3.5 Packages

There are a good number of open-source and commercial packages for performing

computational simulations. The choice of package sometimes depends on the

available functionality that is necessary for the work, but most of the time it is a

personal preference. Here is an incomplete list of the packages that may be most

widely used for solid state studies, although some other packages that orient

toward chemistry and bio sciences may also work for solid state materials.

3.5.1 DFT Codes

Vienna Ab initio Simulation Package (VASP), [54,55] commercial

DFT, HF, hybrid, Green’s function methods, BOMD

It has a reliable set of potentials (density functionals).

Quantum Espresso, [56] open source

DFT, HF, DFPT, Wannier, CPMD, BOMD, phonon DOS/dispersion

It has a fast k-point parallelization and broad selection of potentials (density

functionals).

ABINIT, [57] open source

DFT, DFPT, TDDFT, BOMD
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WIEN2k, [58] commercial

DFT

It is an all-electron (L)APW+lo code.

3.5.2 Classical Lattice Dynamics Codes

General Utility Lattice Program (GULP), [59] open source

Lattice dynamics, MD

Gulp has a broad selection of pair and multi-particle potential functions.

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), [60]

open source

MD

It handles large systems well and also has a lot of potential functions.

3.5.3 Phonon Lattice Dynamics Codes

Many DFT codes do not have the capacity of performing phonon lattice dynamics

calculation to obtain phonon DOS and dispersion relations. Some external codes

can perform phonon calculations by supercell or DFPT methods using one of the

DFT codes to calculated the interatomic forces.

PHONON, [61] commercial

It works with VASP, WIEN2k, and many other DFT codes.

Phonopy, [62] open source

It is python based and works with VASP (super lattice and DFPT modes),

WIEN2k.

PHON, [63] open source

It works with VASP.
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Part III

Scattering Experiment



62

There are a wide range of different types of scattering techniques, among which

the most used are IR and Raman spectroscopy, x-ray diffraction, inelastic x-ray

scattering, nuclear resonant inelastic scattering, neutron diffraction, and inelastic

neutron scattering. There are similarities and differences between the techniques.

Most of the diffraction techniques are primarily used for studying static structures,

although it is possible to extend them into the dynamics domain by the so-called

“total scattering”. Phonon dynamics studies generally need inelastic scattering

techniques.

Thermal neutrons have wavelengths close to the lattice parameters of crystals,

and thus their wave vectors have about the same size as the width of the Brillouin

zone. Their energy scale also corresponds well to phonon energies in many

materials.

In infrared and Raman spectroscopy, photons also match excitation energies

in molecules or crystals but, due to their small wave vector, they can only sample

vibration modes very close to the Γ point at the center of the Brillouin zone.

Besides, the modes accessible by IR and Raman spectroscopy are limited by

respective selection rules, which sometimes are complementary between the two

techniques.

In nuclear resonant inelastic scattering and conventional X-ray photon inelastic

x-ray scattering, the photons have much higher energies and wave vector, and

thus are able to probe the whole Brillouin zone, making the measurements of

phonon dispersions and densities of states possible.

In this part of the thesis, the experimental techniques and data reduction

processes on neutron scattering and Raman scattering are discussed.
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Chapter 4

Neutron Scattering
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4.1 Introduction

The neutron is a hadron and an essential part of the nuclei of all atoms except

hydrogen. Neutrons help to bind protons together with strong force, and as a

result, neutrons and protons are called nucleons. Together, they make up the

majority of the mass in the universe we can see. The neutron has a unique

combination of properties, as listed in Table 4.1.

Table 4.1: Properties of the neutrons [64]

Property Value
Mass 1.674927351(74)× 10−27 kg

Electric charge 0
Spin −~/2

Magnetic moment 9.6623647(23)× 10−27 J/T
Lifetime 881.5± 1.5 s

Composition udd

The mass of neutrons make their energies and momenta match those of

phonons and magnons in crystals, and their Broglie wavelength close to inter-

atomic distances in solids. Charge neutrality gives neutrons great penetrating

power and makes them interact directly with nuclei, thus the lattices, via strong

force. In addition, the spin and magnetic moment of neutrons makes them useful

for studying magnetic behavior of the matter by magnetic scattering. All these

make free neutrons a valuable probe for structural and dynamical studies of

condensed matter.

For their pioneering work in neutron scattering, Brockhouse and Shull shared

the 1994 Nobel Prize in physics for their contributions to neutron spectroscopy

and neutron diffraction, respectively. Nowadays, neutron scattering techniques

are flourishing and provide indispensable tools for research topics ranging from

biology and medicine to renewable energy and electronics. Neutron scattering is

still one of the best experimental techniques to study dynamics, such as phonon

and magnons in condensed matter.
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For scattering research, free neutrons are usually generated by nuclear fission

in reactors or by spallation processes, in which high-energy protons bombard

a heavy metal target. Fission provides a constant flow of neutrons, while the

spallation produces high-intensity, albeit short, neutron pulses. The neutrons

are then thermalized by a moderator, which can be water, heavy water (D2O), or

liquid hydrogen depending on the desired range of neutron energy. A neutron

guide and maybe some neutron optics then direct the neutrons to the samples in

each individual instrument, where the actual scattering takes place.

The neutron scattering may involve both magnetic and nuclear (strong) in-

teractions. For phonon studies in this thesis, only the latter will be considered.

Nuclear scattering can be "elastic" or "inelastic". Diffraction studies of the struc-

ture usually use only the "elastic" part of the scattering, in principle similar to

x-ray diffraction. If there is a change in energy after the scattering, the process is

"inelastic". Furthermore, the scattering can be classified as "coherent" or "inco-

herent", depending on whether the scattering preserves the relative phase of the

wavelets scattered from different locations. In the end, scattering will fall into

one of the four types: "coherent elastic", "coherent inelastic", "incoherent elastic",

or "incoherent inelastic". More detailed explanation of the concepts can be found

in the book by Fultz [16].

General experimental setups for inelastic neutron scattering can be illustrated

as shown in Fig. 4.1. Incident neutrons with energy Ei and momentum Qi will

be scattered by the sample, and the final energies Ef and momenta Qf of the

neutrons are picked up by detectors. With the knowledge of the energies and

momenta before and after the scattering, the energy transfer and momentum

transfer can be calculated: ∆E = Ef − Ei and ∆Q = Qf −Qi. As a side note, the

energy and momentum of neutrons are related by the relation: E = ~2Q2/2m,

in which m is the mass of the neutron. This leads to the kinematic limits of

scattering. Usually the incident energy and direction are known, to figure out the

energy and momentum transfer, all one needs to measure are the scattering angle

(θ) and energy. There are many approaches to making these measurements but
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i
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 θ
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Ei,Qi

Ef,Qf
∆E,∆Q

Figure 4.1: The geometry of inelastic neutron scattering. Blue: incident beam;
Red: scattered beam; Green: energy and momentum transfer

the most common are those of time-of-flight and triple-axis spectrometers.

4.2 Scattering Theory

4.2.1 Scattering Cross Section

Detailed accounts of the theory and experiments of neutron scattering can be

found in the books by Squires [65], Lovesey [66], and Fultz [16]. Here is a brief

summary. The cross section is the key concept of any scattering experiment. For

neutrons and photons, which are quantized particles, scattering happens with

certain probabilities. The cross section (σ ) essentially defines the "area" "seen"

by the particles at each scattering center. Knowing the cross section and density

of these scatterers, one can calculate the scattering probability of the particles

passing through the sample of a certain size. This overall probability does not

depend on the structure of the sample, which will only redistribute the intensity

of the scattering through interference.

The total, coherent, and incoherent scattering cross section and absorption
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cross section of all the elements, including their isotopes, are found in publications

or databases, such as the one at the NIST Center for Neutron Research (NCNR)

[67]. These data are handy information for planning experiments, especially for

determining appropriate quantities of samples.

To describe anisotropic scattering, the differential scattering cross section

(dσ/dΩ) is defined as the piece of the area (dσ ) for scattering the particles into a

particular increments in solid angle (dΩ), as shown in Fig. 4.2,

dσ
dΩ

=

number of neutrons scatterred per second into

a small solid angle dΩ in specific direction

ΦdΩ
, (4.1)

in whichΦ is the neutron flux. When integrated over all solid angles, the differential

cross section adds up to the total cross section,

σ =
∫

4π

dσ
dΩ
dΩ. (4.2)

The differential scattering cross section can be further defined with respect to

final energy if needed.

4.2.2 Fermi’s Golden Rule

In a scattering process, the state of the neutron changes from Qi to Qf, and the

state of the sample changes from λi to λf. The differential scattering cross section

can be written as (
dσ
dΩ

)
λi→λf

= 1
ΦdΩ

∑
Qf in dΩ

WQi,λi→Qf ,λf (4.3)

in which WQi,λi→Qf ,λf is the number of transitions from the initial to final state per

second. According to Fermi’s golden rule,

∑
Qf in dΩ

WQi,λi→Qf ,λf =
2π
~ ρQf |〈Qi, λi |V |Qf, λf〉|2 (4.4)
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Figure 4.2: The differential scattering cross sections for three paths past a
scatterer. From [16]

in which V is the scattering potential, and ρQf is the density of final states in dΩ

per unit energy. Assuming one neutron in volume Y,

ρQf =
Y

(2π)3
Qf
m
~2
dΩ (4.5)

Φ = 1
Y

~
m

Qi. (4.6)

After substituting, Eq. 4.3 can be written as

(
dσ
dΩ

)
λi→λf

= Qf

Qi

(
m

2π~2

)2

|〈Qi, λi |V |Qf, λf〉|2. (4.7)

Adding the dependence on the final energy and considering energy conservation,

the double differential cross section can be written as

(
d2σ

dΩdEf

)
λi→λf

= Qf

Qi

(
m

2π~2

)2

|〈Qi, λi |V |Qf, λf〉|2δ(Eλi − Eλf + Ei − Ef). (4.8)
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4.2.3 Scattering by Crystal

In a crystal, the scattering potential (V ) is the sum of the potentials (Vj) from

nuclei at locations (Rj)

V =
∑
j

Vj(r− Rj). (4.9)

The difficulty is in finding a suitable function form for these potentials. Since the

strong force is short-ranged, an isotropic three-dimensional Dirac delta function

called Fermi pseudopotential

V(r) = aδ(r) (4.10)

is probably the simplest but still realistic model. The constant a could be cal-

culated from the scattering length b by integrating the delta functions for the

differential cross section. The result is

V(r) = 2π~2

m
bδ(r). (4.11)

By Fourier transforming the scattering potentials (Vj) to reciprocal space, the

matrix elements in Eq. 4.8 can be written as
∑
j
bj
〈
λi

∣∣exp
(
i(Qi −Qf) · Rj

)∣∣λf
〉
.

Then we sum over λf, average over λi, and rewrite the positions Rj as Heisenberg

operators. This result is

d2σ
dΩdEf

= Qf

Qi

1
2π~

∑
jj′
bjbj′

×
∞∫
−∞

〈
exp

(
i(Qf −Qi) · Rj′(0)

)
exp

(
i(Qi −Qf) · Rj(t)

)〉
exp(−iωt)dt, (4.12)

in which ω = (Ei − Ef)/~ is determined by the energy transferred to the sample.
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The scattering cross section can be divided into coherent and incoherent parts

(
d2σ

dΩdEf

)
coherent

= σcoh
4π

Qf

Qi

1
2π~

∑
jj′

×
∞∫
−∞

〈
exp

(
i(Qf −Qi) · Rj′(0)

)
exp

(
i(Qi −Qf) · Rj(t)

)〉
exp(−iωt)dt (4.13)

and

(
d2σ

dΩdEf

)
incoherent

= σinc
4π

Qf

Qi

1
2π~

∑
j

×
∞∫
−∞

〈
exp

(
i(Qf −Qi) · Rj(0)

)
exp

(
i(Qi −Qf) · Rj(t)

)〉
exp(−iωt)dt, (4.14)

in which, σcoh = 4π(b̄)2, σinc = 4π
(
b2 − (b̄)2

)
. It is obvious from these expres-

sions that coherent scattering depends on the correlations between different

scatterers and the same scatterer at different times, while the incoherent scatter-

ing involves only the latter. In practice, the coherent and incoherent scattering

for different elements can be quite different, as determined by the disorder of dif-

ferent spin states and isotopes. For example, the scattering is mostly coherent for

vanadium-50 and incoherent for vanadium-51. It is the abundance of the isotopes

(V50 : 0.25%; V51 : 99.75%) that makes the regular vanadium largely incoherent.

4.2.4 Scattering by Phonons

In a crystal at finite temperature, atoms are not static. Instead, they are vibrating

in phonon modes, as described in Chapter 2. The instantaneous positions of

atoms can be written as Rj(t) = xj + uj(t), in which xj is the time-independent

equilibrium position and uj(t) is the deviation from the equilibrium position for

atom j.
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For simplification, it is traditional to define two operators:

U = − (i(Qi −Qf) · u0(t)) , (4.15)

V = i(Qi −Qf) · uj(t). (4.16)

As a result, the cross sections of both Eqs. 4.13 and 4.14 can be expressed by

the correlation function 〈expU expV〉. For a Bravais lattice in which all atoms

are equivalent, and harmonic oscillators in which the probability functions are

Gaussian

〈expU expV〉 = exp
〈
U2
〉

exp 〈UV〉 , (4.17)

in which, by Taylor expansion,

exp 〈UV〉 = 1+ 〈UV〉 + 1
2
〈UV〉2 + ... . (4.18)

Here on the right side the first term corresponds to elastic scattering, the second

term corresponds to the one-phonon process, and so on. For a p-phonon process,

this term can be written as (1/p!)〈UV〉p, which can be justified by analyzing the

expressions for each term in the Taylor expansion of both sides of Eq. 4.17.

The factor exp 〈−2W〉 = exp
〈
U2
〉

is the well-known Debye-Waller factor,

named after Peter Debye and Ivar Waller. It quantifies the attenuation of elastic

scattering caused by thermal motion.

By expressing the displacement operator (uj) in terms of the phonon creation

and annihilation operators (b̂†q,j, b̂q,j)

uj =
( ~

2MN

)1/2∑
q,j

eq,j√ωq,j

(
b̂Q ,j exp

(
iq · Rj

)
+ b̂†Q ,j exp

(
−iq · Rj

))
, (4.19)
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the one-phonon scattering term in Eq. 4.18 can be written as

(
d2σ

dΩdE

)
inc,1

= σinc
4π

Qf

Qi

1
2M

exp
〈
U2
〉∑

q,j

(
(Qi −Qf) · eq,j

)2

ωq,j

×
(〈
nq,j + 1

〉
δ
〈
ω−ωq,j

〉
+
〈
nq,j

〉
δ
〈
ω+ωq,j

〉)
, (4.20)

in which the two terms correspond to phonon creation and annihilation and
〈
nq,j

〉
is the Planck distribution. It can also be written in the form of the phonon density

of states (g(~ω)), as first derived by Placzek and van Hove [68]

(
d2σ

dΩdE

)
inc,1

= σinc
4π

Qf

Qi

3N
2M

exp
〈
U2
〉 Q2

3ω
g(~ω) 〈n(ω)+ 1〉 . (4.21)

In a more general form, the scattering can also be described by the van Hove

correlation function G(r, t), [69] which is the space-time correlation function for

the scattering centers. The scattering function S(Q , E) is the Fourier transform

in time and space

S(Q , E) = 1
2π~

∫
G(r, t) exp(i((Qi −Qf) · r− E~ t))drdt. (4.22)

The cross sections for coherent and incoherent scattering can then be written as

(
d2σ

dΩdE

)
= σcoh

4π
Qf

Qi
Scoh(Q , E), (4.23)

(
d2σ

dΩdE

)
incoherent

= σinc

4π
Qf

Qi
Sinc(Q , E) (4.24)

in which Sinc(Q , E) is the incoherent scattering function with only self intermediate

terms. [65]
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4.3 Time-of-Flight Neutron Chopper Spectrometer

4.3.1 Concept and Setup

For a complete study of phonon density of states for materials, time-of-flight (TOF)

instruments are usually the best choice. TOF instruments are installed at both

reactor sources (e.g., NG-6 at the NIST Center for Neutron Research) and spallation

sources (e.g., ARCS, SEQUOIA, and CNCS at the Spallation Neutron Source). But

because of the intrinsic character of pulsed operation, the latter are better suited

for this type of instrument and generally able to achieve higher effective neutron

fluxes.

As an example of a spallation source, a schematic illustration of the Spallation

Neutron Source (SNS) at the Oak Ridge National Laboratory is shown in Fig. 4.3.

Firstly, negatively charged hydrogen ions (H−) are produced by an ion source,

formed into a pulsed beam, and accelerated to an energy of 2.5 MeV by the front-

end systems. The beam is then accelerated by the linear accelerator (linac) to 1

GeV. After passing through a stripper foil, which removes the electrons from ions

to produce protons, the beam is bunched and intensified by the accumulator ring

to produce short and sharp (1 µs) pulses at 60 Hz. These proton pulses bombard

a liquid mercury target to produce neutrons, which are then modulated with water

or liquid hydrogen to produce thermal or cold neutrons for use with different

instruments.

In a direct-geometry, time-of-flight chopper spectrometer, as shown in Fig.

4.4, each neutron pulse leaves the moderator at a known time. Then neutrons

pass through T0 and Fermi choppers, which are fast-rotating cylinders with slits

designed for letting through neutrons at desired timings. The T0 chopper is aimed

to stop very fast neutrons leaked from moderators and the γ-rays. The Fermi

chopper, on the other hand, provides the chromatization. The two-chopper design

cuts down the slow or fast neutrons from the preceding or subsequent proton

pulses, which otherwise would pass through the chopper (Fig. 4.5). With proper
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Figure 4.3: Spallation Neutron Source is a collaborative effort of six national
laboratories

settings, the initial energy (Ei) and wavevector (Qi) are known.

In an desired experimental configuration, most of the neutrons selected by

the choppers will pass through the sample unscattered and be absorbed by the

beam stop. For the ones that do get scattered and arrive at the detectors, their

arrival times and locations will be recorded. Detectors are usually 3He-filled long

tubes, bundled as packs. By measuring the intensity of the signals on the two

ends of the tubes, the location of the event within the tube can be calculated.

Until recently, the raw data were binned to histograms of detector pack, detector,

pixel, and time channel. With more modern data acquisition and storage, the raw

data are stored in event mode, in which each neutron registered by the detectors

is identified by its detector pack, detector, pixel, and arrival time (τ).

With the above information we can determine the final energies and wavevec-

tors of the neutrons

Ef =
mn

2

(
L
τ

)2

, (4.25)

Qf =
mnL
~τ , (4.26)

in which L is the distance from the sample to the detector pixel. The direction

of Qf is unit vector from the sample to the pixel. The energy and wavevector
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Figure 4.4: Schematic of a direct geometry a time-of-flight neutron chopper
spectrometer.

transferred to the sample are

E = Ei − Ef, (4.27)

and

Q = Qi −Qf. (4.28)

The direction of Q is only relevant for single crystal samples. For polycrystalline

samples the neutron scattering is averaged over all directions that have the same

Q = |Q |.

4.3.2 Kinematic Limit

One of the major advantages of time-of-flight techniques is the simultaneous

coverage of large regions of reciprocal space (q-space). For a particular scattering

angleΦ and incident energy Ei, the relation between maximum momentum transfer
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Figure 4.5: Distance-time diagram of the chopper timing of a direct-geometry
time-of-flight neutron chopper spectrometer. From [16]

Qmax and energy transfer is

Qmax =
(

1
2.072

(
2Ei(1− cosΦ

√
1− E

Ei
)− E

)) 1
2

, (4.29)

in which Q is in Å−1 and the energies are in meV. This is called the kinematic

limit, as shown in Fig. 4.6.

Usually dozens or hundreds of Brillouin zones are covered by the Q range,

but it is always wise to calculate the volume of the covered reciprocal space and

compare it to that of the Brillouin to ensure a good average is achieved, which is

essential for a good phonon density of states study. Large momentum transfer

(Q) can be achieved by using higher incident energies or measuring phonons at

larger scattering angles, but the former will degrade the energy resolution and the

latter is limited by the instrument. Also, at high Q, the multiphonon and multiple

scatterings are stronger, and the signal-to-noise ratio can be substantially lower

after correction.
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Figure 4.6: Kinematic limit for a time-of-fight chopper spectrometer, calculated
using 4.29 for five values of scattering angle Φ. Incident energy was Einc = 100
meV. Positive E corresponds to phonon creation, negative to phonon annihilation.
From [16]

4.3.3 Time-of-Flight Chopper Spectrometers at the SNS

Time-of-flight chopper spectrometers are useful for a variety of measurements,

and instruments are designed with different purposes in mind. Four inelas-

tic spectrometers at the Spallation Neutron Source (SNS), Oak Ridge National

Laboratory, use time-of-flight in design: ARCS (Wide Angular-Range Chopper

Spectrometer), SEQUOIA (Fine-Resolution Fermi Chopper Spectrometer), CNCS

(Cold Neutron Chopper Spectrometer), and HYSPEC (Hybrid Spectrometer). Their

major specifications are listed in Table 4.2.

Using ambient water moderators, ARCS and SEQUOIA are better suited for

studying phonon dynamics and magnetic dynamics. CNCS and HYSPEC, on the

other hand, are engineered toward studies of molecules, nanostructure, super-

conductivity, and magnetism, which benefit from long-wavelength cold neutrons

from coupled cryogenic hydrogen moderators.

Most of the time-of-flight neutron scattering work in this thesis was performed

on ARCS. A schematic sketch of the ARCS instrument is shown in Fig. 4.7.
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Figure 4.7: Schematic of the Wide Angular-Range Chopper Spectrometer (ARCS)
at Spallation Neutron Source (SNS)

4.3.4 Data Reduction to S(Q,E)

Data from a time-of-flight chopper spectrometer must be “reduced” to an intensity

as a function of momentum and energy transfers S(Q,E). This is always a daunting

task, not only due to the difficulty of binning a large amount of data, but also due to

the complexity of multiphonon and multiple scattering corrections. The principles

and procedures are detailed elsewhere. [15,16] For the ARCS instrument, most of

the data reduction functions are provided by the software package DrChops. [70]

3He detectors are the most commonly used type of detectors for neutron

instruments. In practice, some of the detectors may not working properly all the

time; some may become "noisy", and some may go "silent" completely. These bad

detectors need to be identified and masked. This is usually done by setting a

threshold of maximum and minimum neutron counts for each pixel, and those

pixels receiving extremely high or low counts are discredited and removed by the

mask. This is a trial-and-error approach. The maximum and minimum counts

must be chosen carefully to throw out the bad detectors without losing any useful

ones.
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The efficiency γdpt varies from detector to detector, and also depends on the

incident energy (d, p, and t denote detector, pixel, and time-of-flight.). Usually the

data were corrected for detector efficiency using a measurement from vanadium,

which is a highly incoherent neutron scatterer with coherent and incoherent

neutron scattering cross sections of σ coh = 0.0184 and σ inc = 5.08, respectively.

The incident neutron beam can be monochromatic or "white". The latter can be

achieved by de-phasing the Fermi chopper. This provides a larger flux for better

counting statistics in a given time of measurement. Lately, the calibrations are

done at the pixel level to compensate for variations of efficiency within each

detector, but this requires a much longer exposure time to ensure statistical

quality. It is possible only recently due to the high flux from the recent generation

of spallation neutron sources. The calibrated intensity is

Idpt =
I0dpt
γdpt

, (4.30)

where I0dpt is the measured intensity.

For ARCS, the detectors are straight tubes, arranged in multiple banks to

cover a large solid angle of approximately π steradian. ARCS has three detector

banks, as shown in Fig. 4.8. As a result, pixels at different detectors and different

locations within each detector cover different amounts of solid angle, which must

be calculated and corrected for analytically. This correction is more important for

instruments with multiple detector banks such as ARCS, where the differences in

solid angles are significant.

The incident energy of the neutrons is known from the setting of the T0 and

Fermi chopper, but it is always more accurate to calculate this Ei from the data.

This can be done using the timings of neutrons arriving at the two monitors

located before and after the sample. At ARCS it is more commonly performed

using the scattering data by fitting the elastic peak to a Gaussian or other function.

The difference from the nominal incident energy can be as large as 5% in some

cases.
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Figure 4.8: Detector banks at ARCS and the signal from a polycrystalline sample.
The detector tubes are grouped into different banks and packs.

For the polycrystalline samples, the raw event data of individual neutron

detections were first binned to get I(E,2θ), where 2θ is the scattering angle and E

is the energy transfer, and normalized by either the monitor counts or the proton

current on target. The I(E,2θ) was then rebinned into intensity, I(Q, E), where

~Q is the momentum transfer to the sample.

Before further processing, the background intensity IB measured from the

sample container, the sample environment (if applicable), and the instrument

itself must be removed from I(Q, E). The intensity after background correction

is

I = IS − f IB, (4.31)
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in which

f = 1− p (4.32)

is a correction factor for the background that is shadowed by the sample. p is

less than the percentage of the neutrons scattered by the sample, and is usually

less than 20%.

4.3.5 Reduction to Phonon DOS

Polycrystalline samples are well suited for direct measurements of the phonon

density of states (DOS). First, the elastic peak is removed below a certain energy

transfer and replaced by a function of energy determined from the inelastic

scattering just past the elastic peak. [15]

The one-phonon DOS we seek must be obtained after corrections for multi-

phonon and multiple scattering. The former involves in the simultaneous creation

or annihilation of multiple phonons by one neutron, whereas the latter means that

one neutron is scattering multiple times by the sample, the instrument, the sample

container, or the sample environment. To minimize the multiphonon and multiple

scattering while making good use of available neutrons, the sample thickness

is usually chosen so that about 5% ∼ 10% of the neutrons that hit the sample

are scattered. The formula to calculate the sample thickness is documented in

Appendix B.

A common way to correct for multiphonon scattering is the Fourier-log method.

Although it does not correct for the multiple scattering, it is a direct method

and works well when a simple resolution function exists, as for nuclear resonant

inelastic x-ray scattering. [71] For time-of-flight chopper neutron spectrometers,

an iterative method is necessary. For both multiple scattering and multiphonon

scattering, a two-scattering profile involves a convolution of two single-scattering

profiles. An n-phonon-scattering profile Pn(E), is related to the one-phonon-
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scattering profile P1(E) through a recursion relation

Pn(E) =
∞∫
−∞

Pn−1(E′)P1(E − E′)dE′. (4.33)

It is believed that the multiple scattering is related to the multiphonon scat-

tering through slowly varying functions of Q and E. [72] If these functions are

assumed to be constants an, the total scattering is given by

I(Q, E) = N′
 ∞∑
n=1

(1+ an)Sn(Q,E)
 , (4.34)

in which Sn(Q,E) is the n-phonon-scattering and the N′ is a normalization con-

stant. An example using nickel is shown in Fig. 4.9.

Assuming ans are the same for all n > 2 and the incoherent approximation is

valid,

I(Q, E) = N
(
S1

inc(Q,E)+ (1+ Cms)S2+
inc(Q,E)

)
, (4.35)

where

Sj+(Q,E) =
∞∑
n=j
Sn(Q,E), (4.36)

Cms = (1+ a2)/(1+ a1)− 1, (4.37)

N = N′(1+ a1)(1+ σcoh/σinc). (4.38)

This Cms value could be selected by judging the reduced phonon DOS through

some conditions, although, in theory, the scattering thickness of the sample

should give an good estimation. [16] The algorithm is implemented in the getdos

software package. [73]
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Figure 4.9: Best fit to multiphonon and multiple scattering for nickel at 300 K.
From [16]

4.3.6 Other Considerations

Detailed balance determines the differences in the measured spectra between

positive energy transfers (phonon creation) and negative energy transfers (phonon

annihilation). The ratio of the cross section for the two scattering events will be

proportional to the initial density of states

S(Q,−E)
S(Q,E)

= exp(− E
kBT

). (4.39)

A complication in using Eq. 4.39 is that the data on the negative energy transfer

side have lower energy resolution because neutrons gain energy in these processes,

fly faster, and their energy is measured less accurately.

It is very important to understand how the energy resolution function for a

time-of-flight chopper neutron spectrometer depends on incident energy and
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energy transfer. It can be calculated with Monte Carlo instrument simulation using

packages such as McVine and McStas. In Fig. 4.10, resolution functions for four

incident energies—30, 80, 120, and 165 meV—are shown. The resolution function

varies with energy transfer, but also with incident energy. Often an instrument

performance is parameterized by the fraction ∆E/Ei, where the energy spread is

∆E at the elastic line, and Ei is the incident energy. For the Fermi chopper used

for Fig. 4.10, ∆E/Ei ∼ 4.5%.

Figure 4.10: Resolution functions for ARCS at four incident energies, Ei, for a
typical configuration

For study of samples made of multiple elements, neutron weighting is a

problem. Because neutron cross sections are different for different isotopes, the

modes corresponding to the large vibrational amplitude of some of the elements

are overemphasized, while the others are underemphasized. In this sense, the

measured phonon density of states should be called a “neutron-weighted phonon

density of states”

gNW(E)∝
∑
j

gj(E) exp(−2Wj) exp(2W)
σj
Mj
, (4.40)
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where gj(E), exp(−2Wj), exp(−2W), σj , and Mj are the partial phonon DOS,

Debye-Waller factors for the jth species and overall lattice, total cross sections

and atomic mass for for the jth specie. Usually the major contribution is from

the last term σj/Mj , in which lighter atoms with larger scattering cross sections

dominate.

Correcting for the neutron weighting to obtain the true phonon DOS requires

knowledge of phonon partial DOS curves obtained by computation or other

experimental technique. For example, in the case of Fe-based compounds, nuclear

resonant inelastic x-ray scattering (NRIXS) could provide Fe partial DOS, and

together with TOF neutron technique, the true phonon DOS can be obtained.

4.4 Triple-Axis Neutron Spectrometer

4.4.1 Concept and Setup

TOF is quite good at exploring large regions of the Q, E phase space, but at the price

of resolution. On the other hand, the triple-axis neutron spectrometer, pioneered

by Brockhouse, is the technique of choice for studying excitations in oriented

single crystals at specific points in the reciprocal space. Before the development of

the modern TOF instruments, which rely on the high peak intensity of spallation

neutron sources, triple-axis techniques were used to optimize models of lattice

dynamics, from which the phonon density of states could be calculated. This

differs from the case for TOF instruments, which can measure the phonon DOS

directly in favorable cases. Still, for studying the dispersion relations of phonon

and magnons, or studying the properties of specific excitations, the triple-axis

spectrometer is usually the best tool.

The technical details of the triple-axis spectrometer are explained in the book

by Shirane, Shapiro, and Tranquada, [74] and are only briefly discussed here. In a

typical triple-axis neutron spectrometer setup, as shown in Fig. 4.11, neutrons of

a defined wavelength are selected by Bragg diffraction at angle 2θM (first axis).



87

The neutrons scattered by the sample are selected at the angle 2θS (second axis).

The scattered neutrons are analyzed for final energy by the analyzer via further

diffraction process by an angle 2θA (third axis), and finally counted by the detector.

The scattering vector Q and the energy transfer E are uniquely determined by the

angles 2θS and 2θA:
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Figure 4.11: Schematic of a triple-axis spectrometer

Q = Qi −Qf, (4.41)

Q =
√
Q2

i +Q2
f − 2QiQfcos2θS, (4.42)

E = ~2(Qi
2 −Qf

2)
2m

. (4.43)

Usually triple-axis neutron spectrometers are operated in constant-Q or constant-E

modes by scanning the other parameter under computer control.

A variety of triple-axis neutron spectrometers are designed with different

applications in mind. Currently there are four triple-axis spectrometers (HB-1,

HB-1A, HB-3, and CG-4C) at the High Flux Isotope Reactor (HFIR), ORNL, and three
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at the NIST Center for Neutron Research (NCNR). They use either thermal or cold

neutrons for measuring excitations in different energy ranges. Some of them were

designed to work with spin-polarized neutrons, invaluable for studying magnetic

dynamics. A schematic setup of HB-3 is shown in Fig. 4.12.

4.4.2 Resolution and Data Reduction

Perhaps the most important aspect of analyzing inelastic neutron scattering

data measured using a triple-axis spectrometer is properly taking into account

the experimental resolution. The problem is non-trivial. In general, to properly

analyze experimental scans using a parameterized model cross section S(Q , E,p)

(p is the polarization), one needs to calculate the resolution function at each data

point for the spectrometer configuration and sample parameters, then numerically

convolute the theoretical cross section with this resolution function, and fit the

convoluted cross section to the data. [74] Understanding the resolution function

is also crucial for experiment planning.

In the Cooper-Nathans approximation [75,76], it is assumed that the beam

divergences on each arm of the triple-axis spectrometer are determined by the

Soller collimators and the mosaic spread of monochromator and analyzer crystals.

The resolution matrix is

M̃−1 = BA(G + CTFC)−1ATBT , (4.44)

where G is an 8× 8 matrix defining the collimators, F is an 4× 4 matrix defining

the mosaic spread, and A, C , B are 6× 8, 6× 8, 4× 6 matrices defining the angles

and momenta.

In a more accurate approximation, the Popovici resolution matrix is influenced

not only by Soller collimators, but also by the shapes and dimensions of the source,

monochromator, sample, analyzer, and detector. These shapes are described by
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Figure 4.12: Schematic of HB-3 triple-axis spectrometer at HFIR
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the 13× 13 covariance matrix S−1, and the resolution matrix is

M̃−1 = BA
(
G +D

(
(S + T TFT)DT

)−1
)−1

ATBT . (4.45)

The measured intensity should be normalized. In the Popovici approximation,

the normalization factors are

R0 =
Qf

Qi

Qi
3 cotθMQf

3 cotθA
64 sinθM sinθA

√√√√ det(F)
det

(
G +D((S + T TFT)DT )−1

)×√det(M), (4.46)

when normalized to the source flux, and

Rmon =
1
Qi

πQi
3 cotθM

2 sinθM

√√√√ det(f )
det

(
g + d((s + tTft)dT )−1

) , (4.47)

when normalized to monitor counts. Note that f , g, c, s, and t are defined

differently. [74]

The de facto standard for calculating the resolution of triple-axis neutron

spectrometers is the Reslib package [77], which has engines using both of the

approximations mentioned above.

The calculated resolution function in the 4-dimensional phase space (Q , E)

can be visualized in 3-dimensional (Qi,Qj, E) as ellipsoids. An example of the

ellipsoids for four different energy transfers at one Q -point is shown in Fig. 4.13,

together with the phonon dispersion surfaces for Al. How these ellipsoids cut

through dispersion surface as they move up and down in energy determines the

resolution for the measurement.

By convoluting the 4-dimensional resolution function and the scattering cross

section function (dispersion function), the triple-axis spectra can be calculated.

This 4-dimensional convolution can be computationally expensive because a

high sampling density is necessary for correct results. Usually a single-mode

approximation and/or a Monte Carlo sampling can be used to save computing

time. In the single-mode approximation, dimensions are reduced by assuming the
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Figure 4.13: Resolution ellipsoids at (0,0,2.6) (for a typical setup) and the phonon
dispersion surface of Al near the location

dispersion functions have Lorentzian broadening, and the convolution for those

dimensions is done analytically.

Usually we have only the measured spectra, so to calculate the dispersion,

parameterized scattering cross section functions are used to fit the experiment

by convolution with the resolution function. These functions are then optimized

iteratively for the solution.
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4.4.3 Other Considerations

There are a few other considerations intrinsic to the triple-axis neutron spectrom-

eter and they need to be noted throughout the planning and execution of the

experiment. With many axes moving in the spectrometer, there are limitations on

the possible combinations of angles, giving kinematic constraints for Q and E.

This is commonly called “closing the triangle”.

It is a constant struggle to balance between resolution and intensity. Any

improvement in resolution is paid for by a loss in count rate. A wise of choice of

beam slits and collimator sizes usually involves a compromise between resolution

and intensity, and this compromise varies with the phenomenon under study.

The axes of the resolution ellipsoids have different lengths, and the directions

of these axes change with both Q and E. When the longer axis is parallel to the

dispersion surface, the effective resolution function is sharper, and otherwise it is

broader, resulting in the so-called focusing problem. Usually this can be solved by

carefully planning the incident energy and energy gain or loss side of the inelastic

measurement.

Although many Q -points in reciprocal space may be equivalent in group theory,

they do not give the same or similar triple-axis spectra due to different resolution

functions, and, more importantly for phonons, the direction of the eigenvectors of

the phonon modes. At certain high-symmetry directions, some phonon modes can

become invisible to the neutrons. Such effects can be used to help differentiate

between longitudinal and transverse modes, but this does increase the number of

Q -points to be measured.

Finally, spurious peaks can occur through a few different mechanisms, but

they can usually also be avoided by the choice of incident energy.
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4.5 Sample Environments

In neutron scattering, sample environments are not the most difficult or expensive

part of the instruments, but they certainly have a large impact on the science that

can be done and the quality of the results. Actually, our experience suggests that

the sample environments are often the deciding factor for success or failure of

an experiment.

It is common practice to design standardized sample environments that fit

multiple instruments. However, different scattering methods often dictate differ-

ent requirements. For example, the ILL furnaces have been the workhorses for

neutron diffraction, for which they work very well up to 1800 K. They are almost

automatic, fairly efficient, and quite reliable, but they have a huge background.

This is not a problem for neutron diffraction, which usually works with intense

elastic scatterings. Similarly, triple-axis spectrometers also have less strict re-

quirements for the background because they work in single-channel mode and

collimation into the analyzer crystal is very effective in rejecting background

scatterings. For inelastic neutron scattering on TOF chopper spectrometers, the

background from ILL furnaces is not acceptable, and there have been constant

efforts to design and build better furnaces.

At ARCS, the low temperatures (5 K ∼ ambient) and moderately high tempera-

tures (ambient ∼ 750 K) are covered by displex refrigerators and resistive “stick”

furnaces. Their parts (mostly the thermal radiation shielding) in the neutron beam

are either made of thin aluminum or well-shielded with BN (for furnaces) or Cd

(for refrigerators), and their small contribution to the background can be easily

corrected. When the aluminum parts, including the thermal radiation shielding in

the “stick” furnace, are replaced by vanadium components, the operation tem-

perature can reach 800 to 850 K. A recent revision of the MICAS furnace uses a

configuration similar to the ILL furnace (see Fig. 4.14), but with more aggressive

designs to reduce the amount of materials in the beam. It can reach 1500 K, and

its background is still large but workable for most purposes.
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Figure 4.14: The MICAS furnace. The sample is enclosed at the lower part by a
heating element and radiation shielding. Courtesy of Doug Abernathy, ORNL
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While many metals or alloys can be shaped to plates with desired thickness,

containers are necessary for other samples, especially powders. The container

needs to maintain an even distribution of the sample across the beam, a good

thermal contact with the sample, and a decent coverage of the neutron beam.

Aluminum or vanadium sample cans with different diameters (an example is

shown in Fig. 4.15) are useful for small amounts of samples or samples with

large scattering cross sections. Inserts are available for some of the sizes and

they are very helpful in keeping the powders in place rather than falling to the

bottom of the cans. It is important to vent the can, otherwise it may expand at

high temperatures under the internal pressure when the can material becomes

softer.

Figure 4.15: A sample can of 5/8 inch ID and its insert for a 1 mm gap. Courtesy
of Doug Abernathy, ORNL

Sachets are another way to hold the samples. Aluminum, niobium, and vana-

dium are the common metals of choice for different temperatures. Sachets are

effective in covering the whole neutron beam but the problem is keeping the sam-
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ple evenly distributed. This may be possible by using multiple smaller, horizontal

sachets sewn in parallel or making some rigid “bridges” that keep the shape of

these sachets. One major drawback of sachets is the possibility of sample leakage,

especially for very fine or nano powders. E-beam welding can provide an ideal

seal, but it is expensive and time consuming. We designed a way to fold a single

piece of foil into a sachet that is sealed on three sides (see Appendix C). The

thicker folded parts are shielded by a BN frame. This design turns out to be very

effective, as long as the thickness is kept even.
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Chapter 5

Raman Spectroscopy
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5.1 Introduction

Light can be scattered easily by particles much smaller than the the wavelength

(λ) of the light. The majority of the scattering is elastic, also called Rayleigh

scattering, in which the wavelength and energy of the scattered photons remain

unchanged. The cross section of Rayleigh scattering goes as λ−4, so the shorter

wavelength photons are scattered much more strongly. This is the reason for the

blue color of the blue sky and the yellow tone of the sun itself. [78]

Although the inelastic scattering of light was predicted by Adolf Smekal in 1921,

Raman effects were first discovered in 1928 by Indian physicist Sir Chandrasekhara

Venkata Raman, who was later awarded the Nobel Prize for Physics in 1930 for

his work on the scattering of light. [79]

Unlike the process used in the IR spectroscopy, where photons are absorbed by

materials and their energies are transferred to the material, Raman scattering is

the inelastic scattering of a photon which creates transitions between vibrational,

rotational, and translational states of materials, as illustrated in Fig. 5.5. This

includes higher-order transitions, for example, multiphonon processes. The (pho-

ton) energy-loss process is called Stokes scattering and the energy-gain process

anti-Stokes scattering. By subtracting the energies of the scattered photons from

those of the incident photons, energy spectra are measured. The Raman spectra

are symmetric on two sides of the Rayleigh light, although the Stokes scattering is

usually stronger than its anti-Stokes counterpart, with the difference determined

by the principle of detail balance.

Since its discovery, Raman spectroscopy has seen widespread usage in physics,

chemistry, geology, and many other science and engineering fields. It has been

used to study both organic and inorganic materials ranging from gases, vapors,

and aerosols to solids and liquids. Its versatility makes it possible to perform

in situ measurements under extreme environments, such as high temperature,

low temperature, and/or high pressure. Raman spectroscopy can also be done

remotely through optical fibers, and micro-Raman methods can analyze samples
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Figure 5.1: Principles of Raman scattering: elastic (Rayleigh) and inelastic (Stokes
and anti-Stokes) scattering processes

of submicron sizes. For chemists and geologists, Raman spectroscopy is mostly

used for material identification, including structure and phase analysis. For

physicists and materials scientists, it is an excellent tool for studying excitations

such as phonons and magnons in solids.

The success of Raman spectroscopy is largely the result of successive im-

provements in the techniques related to Raman instrumentation, especially the

invention and minimization of the laser, which helps in measuring the weak

scattering process (usually 10−7 of the incident beam). It is no surprise that a

Raman spectrometer will be on the ExoMars Mars rover to help identify mineral

phases, especially those produced by water processes. [80]

Many variations of Raman spectroscopy have been developed to (a) enhance the

sensitivity (surface-enhanced Raman), (b) improve the spatial resolution (Raman

microscopy), or (c) acquire very specific information (resonance Raman, angle-

resolved Raman, hyper Raman). A stimulated or time-resolved excited-state Raman

spectroscopy is also possible and can provide valuable information about the

dynamics of the system. [81]

The theory and techniques of Raman spectroscopy have been well documented,
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[79, 81–93] but the reader will find that most of the books emphasize Raman

scattering from molecules. In this chapter, we will review the principles that are

related to the study of phonons in crystals, and briefly discuss the techniques

used for the current work.

5.2 Principles

5.2.1 Classical Model

A classical model is able to provide an intuitive view of the scattering process,

although its limitations will be discussed later with the quantum model. In

the classical view of light scattering, the oscillating electrical field generates an

oscillating dipole in the material. This dipole, in turn, emits radiation. Treating

the incident light as an electromagnetic radiation within the linear responsive

range, the dipole moment (µj) of jth frequency component can be written as:

µj(t) = αEin,j(t), (5.1)

in whichα is the polarizability and Ein,j is the corresponding frequency component

of the driving electric field. For the following discussion, we will focus on one

frequency component, so the subscript j will be omitted.

Consider an isotropically polarizable material, where µ is always parallel to,

and depends only on, Ein. The scattered electric field at distance r � λ can be

calculated from Maxwell’s equations as: [85,86,92]

Eout(t) =
π
ε0

(
µ(t)
rλ2

)
sinφ, (5.2)

where Φ is the angle of scattering with respect to the dipole axis, λ is the scattered

wavelength, and ε0 is the vacuum permittivity. Note that the irradiance E is

proportional to E2, and the intensity is I = Er 2. The scattered intensity of a
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polarized light then can be written as:

I(φ) =
(
π
ε0

)2
(
α2

λ4

)
Einsin2φ. (5.3)

This is similar to a dipole antenna, as shown in Fig. 5.2:

φ 

Figure 5.2: Scattered radiation of a polarized incident light

When the incident light is unpolarized, the scattering can be calculated by

decomposing the two polarization components and calculating the intensity of

scattering from each of them separately from Eq. 5.2:

I‖(θ) =
(
π
ε0

)2
(
α2

2λ4

)
Eincos2θ, (5.4)
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I⊥(θ) =
(
π
ε0

)2
(
α2

2λ4

)
Ein, (5.5)

where θ is the scattering angle between the incident and scattered beams. They

add up to the total scattering intensity in Fig .5.3:

I(θ) =
(
π
ε0

)2
(
α2

2λ4

)
Ein(1+ cos2θ). (5.6)

This is the Rayleigh scattering and its negative fourth-order dependence on

wavelength. Raman scattering is forbidden in isotropically polarized materials.

Notice that even with an unpolarized light, the scattered light become polarized,

and the polarization is angular dependent.

In an anisotropic material, the problem is more complicated. A more general-

ized version of Eq. 5.1 is:

µ = αEin, (5.7)

where the polarizability tensor is defined as:

α =


αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 . (5.8)

The tensor is symmetric and can be illustrated by a polarizability ellipsoid. By

rotating the coordinate axes, the tensor can be diagonalized as:

α′ =


α1 0 0

0 α2 0

0 0 α3

 . (5.9)

In this coordinate system (shown in Fig. 5.4), the incident light with polarization

on only one axis will induce a dipole only on that axis. In the special case where

α = α1 = α2 = α3, the material has isotropic polarizability.
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Figure 5.3: Scattered radiation of an unpolarized incident light

It is conventional to define the mean polarizability 〈α〉 and anisotropy γ:

〈α〉 = 1
3
(α1 +α2 +α3), (5.10)

γ2 = 1
2
[(α1 −α2)2 + (α2 −α3)2 + (α3 −α1)2). (5.11)

For gaseous or liquid materials, the orientations of the molecules are both random

and evenly distributed. The average tensor ᾱ can be conveniently represented by

the two above values. [92]

Both vibrational and rotational motions in the material can give rise to a
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Figure 5.4: Coordinate systems for a polarizability ellipsoid

Raman effect, but for studying phonons in solid state materials, we consider only

vibrational degrees of freedom. The thermal vibrations in materials can change

the polarizability tensor. The time-dependent tensor element αij can be written

by Taylor expansion about the atomic displacements ∆R from the equilibrium

positions (expressed in normal coordinates) as:

αij(t) = αij +
J∑
k=1

(
∂αij
∂∆Rk

)
∆Rk=0

∆Rk(t)+
1
2

J∑
k=1

(
∂2αij
∂2∆Rk

)
∆Rk=0

(∆Rk(t))2 + ... ,

(5.12)

where the sums are over J normal phonon modes. In the harmonic approximation:

∆Rk(t) = ∆Rk
0 cos 2πνkt, (5.13)

where ∆Rk
0 is the amplitude and νk is the vibrational frequency for the kth normal

mode.

Making an approximation by assuming that ∆Rk
0 is small and ignoring the

second- and higher-order terms, the induced dipole moment can be written as:

µ(t) = αE0 cos 2πνint + E0 cos 2πνint
J∑
k=1

α′k cos 2πνkt, (5.14)
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where

α′k =
(
∂α
∂∆Rk

)
∆Rk=0

. (5.15)

Using the trigonometric relation: cosa cosb = 1/2 cos(a+b)+1/2 cos(a−b),

we can easily see there are two additional frequencies for each the normal mode

and 2J + 1 in total, including the Rayleigh term:

µ(t) =
J∑

k=−J
µ0
k cos2πvkt, (5.16)

where µ0
k is the maximum dipole moment for the kth frequency component and

v±j = νin ± νj. (5.17)

This is the origin of energy gain or loss in Raman scattering, shown in Fig. 5.5. It

is a tradition to use wavenumbers (cm−1) as the unit for these frequencies in both

Raman and IR spectroscopy.
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Figure 5.5: A typical Raman spectrum

One would expect the polarizability tensor to be much larger than its first
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derivative, and thus the Rayleigh scattering is much stronger than the Raman scat-

tering. Experiment confirms this prediction, and actually the Rayleigh scattering

is about three orders of magnitude stronger. However another prediction about a

slightly stronger anti-Stokes than Stokes scattering, due to shorter wavelengths,

fails. The classical model cannot explain the stronger Stokes lines in experiments.

5.2.2 Quantum Mechanical Model

Treating the light scattering process in full quantum theory is possible, but quite

complicated, because it involves describing both the incident radiation and the

scattered radiation as quantum particles, while taking into account the relativistic

effects. A less-rigorous but more convenient way is to use the perturbation theory

and the time-dependent Schrödinger equation, treating the incident radiation as a

perturbation to the eigenstates of a molecule. [85,86,92]

Assuming that the perturbation generates a time-dependent virtual state,

which does not lie close to any of the stationary states, and the scatterer is in one

stationary state |m〉, the eigenvalues of the polarizability tensor of this state can

be written as:

αmi =
2
~
∑
r

νrm(Mrm)2i
ν2
rm − ν2

in

, (5.18)

where the summation is over all the unperturbed states |r〉 and i is the axis

index. Mrm is the transition dipole moment for |m〉 → |r〉, and νrm is the related

frequency. Similarly, the maximum dipole moment for transition |m〉 → |n〉 can

also be calculated from perturbation theory as:

µ0 = − 1
2~

∑
r

(
EMmrMrn
νnr − νin

− EMrnMmr
νmr + νin

)
(5.19)

for anti-Stokes scatterings and

µ0 = − 1
2~

∑
r

(
EMmrMrn
νnr + νin

+ EMrnMmr
νmr − νin

)
(5.20)
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for Stokes scatterings. These are the quantum equivalent to the results from

the classical model. Note that the virtual state cannot be very close to any other

stationary states for the denominator to be nonzero.

An important result from the quantum theory corrects the detailed balance

between Stokes and anti-Stokes scatterings. The Raman scattering of a photon of

the scatterer results from a transition between two different quantum states and

because the vibrational, rotational, or translational energies are quantized, the

energy loss or gain is carried away by the scattered photon, whose frequency shifts.

At finite temperatures, vibrational phonon states are always better occupied at

lower energy than higher energy, following the Bose-Einstein distribution. It is

easy to show that at ambient temperature most of the phonons are packed in the

ground state and even the first excited state is sparsely populated. As a result, the

probability of having a Stokes transition is higher than of having an anti-Stokes

one.

Combining the classical and quantum results, it is possible to calculate the

Raman scattering in certain experiment configurations. For example, for a setup

of 90◦ detection angle and linearly-polarized incident light, the intensity of the

Stokes scattering from a scatterer in the ground state can be written as:

Ipr =
(

h
360ε0

2µrνk

)(
1− exp

(
−hνk
kBT

))(
45
〈
α′k
〉2 + 7

〈
γ′k
〉2

λ4
k

)
Ein, (5.21)

where µr is the effective mass for the r th normal mode. The results for different

configurations will be different, but some of the qualitative results are universal. (a)

The intensity has a strong dependence on the vibrational frequency as λ4
k, similar

to the Rayleigh process. (b) The lighter the effective mass νk, the stronger the

Raman scattering. (c) The Raman intensity is proportional to a linear combination

of the squares of the first derivatives of the mean polarizability
〈
α′k
〉

and the

anisotropy
〈
γ′k
〉
. That is, the stronger the changes in the polarizability and its

isotropy, the stronger the Raman scattering.
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5.2.3 Selection Rules

The derivation of the selection rules of Raman scattering, and the methods to

determine whether a certain vibration mode is Raman active, needs a rigorous

analysis using group theory and is beyond the scope this work. [85,86] However,

the basic idea of the selection rules is simple and is described here.

When discussing the selection rules, Raman and IR spectroscopy are usually

compared because both methods are dealing with vibrations in materials. With

molecules, it is straightforward to calculate the number of the vibrational degrees

of freedom. For a molecule with N atoms, there are 3N degrees of freedom in

total, 3 of which are translational. If the molecule is linear, there are 2 rotational

degrees of freedom; otherwise there are 3. So a molecule will have 3N − 5 or

3N − 6 normal modes depending on whether it is linear or not.

For a periodic system such as a lattice, where the vibrations have dispersion

and depend on momentum Q, the problem is different. Because the momentum

transfer allowed by the scattering of photons in the visible range is small, only

scattering from the modes that are very close to the Brillouin zone center are

allowed. The number of normal modes at the zone center is 3N, and N here

is the number of atoms in one unit cell. However, it is possible that some of

the normal modes may not allow Raman scattering due to symmetry reasons,

or two vibrational modes may be degenerate with the same energy. As a result,

the observed Raman spectra may have fewer peaks than the number of normal

modes.

The selection rules for Raman and IR are: A vibration is IR active if the

dipole moment is changed during the vibration, and is Raman active if the

polarizability is changed during the vibration.

To check if a normal mode is IR active, one inspects the motions of atoms

in the normal mode to see if they change the dipole moment. For example, the

vibration of a homopolar diatomic molecule is not IR active, whereas that of a

heteropolar diatomic molecule is IR active.
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To check if a normal mode is Raman active, one needs to find out if the polar-

izability tensor α is changed. One useful method is to visualize the polarizability

ellipsoid and find out if its size, shape, or orientation change during the normal

vibration. This turns out to be quite straightforward for small molecules and

simple crystals. A more general method is determining the symmetry class of the

normal vibration and checking if it falls into one of the symmetry classes of the

six unique components of α. [82,94,95]

While the Raman effect is a scattering process, IR spectroscopy involves an

absorption process. Because of their different mechanism, the cross sections of

Raman and IR processes are usually quite different. One vibrational normal mode

can be Raman active only, IR active only, both Raman and IR active, or nonactive

for both processes. For the special case when there is a center of symmetry for

the molecule or unit cell, the Raman and IR processes are mutually exclusive:

each vibrational normal mode has be to Raman or IR active, but not both. To

determine if a certain normal mode is Raman active, it is helpful to measure the

depolarization ratio of Rayleigh scattering and compare this ratio to theory. [92]

5.2.4 Enhanced Raman

One intrinsic experimental obstacle of Raman spectroscopy is its small cross

section and thus its low observed intensity, as detailed in 5.2.1. In the quantum

mechanical model, this can be explained by the small cross section of exciting the

material into a virtual state. The typical total cross sections of common photon

processes are listed in Table 5.1. As a comparison, the Raman process typically

has a scattering cross section that is 9 orders of magnitude lower than the IR

process, and is therefore difficult to detect. The interference from Rayleigh and

fluorescence processes, both of which are much stronger, adds to the difficulty.

Fortunately, there are a few techniques which can increase the Raman scattering

cross sections, and we will discuss them briefly.

When we used quantum perturbation theory on Raman process in Section
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Table 5.1: Typical cross sections of common photon proceeses

Process Cross section (σ/barn)
UV Absorption 106

IR Absorption 104

Fluorescence 105

Rayleigh 10−2

Raman 10−5

5.2.2, it was assumed that the virtual state is sufficiently far away in energy from

any of the stationary states. However, if we choose an incident light with an

energy that matches an electronic transition in the material, this electronic state

will strongly contribute to the virtual state and enhance the probability and cross

section of Raman scattering. This is called the resonance Raman effect, and can

increase the Raman scattering cross section by as much as 6 orders of magnitude

for those vibrational normal modes coupled to the electronic excited state. This

coupling actually will help in the spectrum interpretation and will not change the

selection rules. A possible drawback may be the increase in fluorescence, but this

can be (partially) solved by temporal discrimination and environmental quenching.

A preresonance Raman spectroscopy using an incident light with slightly lower

frequency may able to enhance the Raman scattering by one or two orders of

magnitude without significant increase in the intensity of fluorescence.

Raman scattering can also be enhanced by surface effects. This phenomenon is

useful for studies of molecules and less so for studies of phonons in solid. Surface-

enhanced Raman scattering was first reported by Fleishmann et al. in 1974 for

pyridine molecules adsorbed on a roughened sliver surface. The surface effects can

enhance the Raman scattering cross section up to 6 orders of magnitude compared

to the free molecules in gas phase. There are at least two major types of mechanism

for the surface enhancement. The one attributed to the electromagnetic effects

associated with the large local field caused by electromagnetic resonance near

the metal surface is well understood. Other aspects, including the contribution
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of chemical effects from the chemical interactions between the molecules and the

metal surface, are less well understood.

5.3 Experimental Techniques

5.3.1 Basic Setup

In the previous section, we discussed the concepts and cross section of Raman

scattering. Experimentally, many techniques are necessary to maximize the signal-

to-noise ratio and they are the topics of this section. Two common types of Raman

spectroscopy are dispersive (grating-spectrograph-based) and interference-based

Fourier-transform (FT) Raman spectroscopy, but dispersive spectroscopy is the

simplest and most general technique. Only incoherent Raman scattering will be

discussed here.

A basic dispersive Raman system setup is illustrated in Fig. 5.6, where the

light from a laser is Raman-scattered by the sample and then filtered, collected,

and characterized by frequency to produce the Raman spectra. The choice of

each component and their detailed parameters depends on the applications and

often need to be compromised.

5.3.1.1 Lasers

The choice of lasers for Raman spectroscopy is usually determined by the sensi-

tivity and fluorescent reduction. Usually visible light provides good sensitivity

with the convenience of the easier alignment without IR detection cards. How-

ever, some samples will fluorescent violently at these wavelengths, so near-IR

wavelengths, which induce much less fluorescence, may be required. Lasers with

wavelengths longer than 1000 nm are used almost exclusively for FT Raman

spectrometry. The limitation is comes from the silicon-based CCD detector (even

when back-thinned for better red response), which has a sensitivity range from

about 400 to 1000 nm.
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Figure 5.6: A schematic Raman system using 90◦ geometry

Many types of lasers are suitable for Raman systems. Some of the most widely

used are gas lasers such as Ar+ and Kr+ ion lasers, which provide a set of high

intensity lines (e.g., 457, 488, 514.5, and 406, 647, 752 nm, respectively) up to

2000 mW (combined) at reasonable costs. They are not efficient and usually

require big power supplies and water cooling. A cheap alternative is a He-Ne laser

(632.8 nm), which has relatively low power up to 50 mW.

Laser diodes (up to 500 mW, 650–800 nm) are becoming popular, owing to their

compact design and low cost. There are some fundamental drawbacks though:

(a) only a single-mode diode will work because of its broad gain curve; (b) the

temperature of the diodes must be regulated to eliminate mode hopping; (c) the

long-term wavelength stability is not easy to achieve; (d) optical feedbacks, which

may cause frequency instability, must be minimized; (e) a good bandpass filter is

necessary due to the spontaneous emission tails; and (f) an optical design that



113

takes into account beam divergence is necessary. Even with these drawbacks,

diode laser systems have been quite successful. Some of the problems, such as

stability, can also be alleviated by using an external cavity with the diodes.

All the lasers mentioned above are continuous (CW) ones. For non-dynamics

studies, there is no advantage to using pulsed lasers, which cause sample damage

or nonlinear effects. But some lasers, such as Nd:YAG lasers are able to produce

high-frequency (MHz) low-peak power pulses, which could be considered as quasi-

continuous. The neodymium ions in a YAG laser are pumped by flashtube to a

short-lived excited-state, which quickly decays to to a relatively long-lived state.

The decay from this state will produce the well-known 1064 nm laser (shown in

Fig. 5.7. The output from a Nd:YAG laser can also be frequency doubled through

nonlinear process to produce a 532 nm laser. The Nd:YAG lasers can also operate

in the so called “Q-switched mode”, in which they can produce intense (250 MW)

10–25 nanosecond pulses. Although not useful for normal dispersive Raman

spectroscopy, the pulsed lasers can be quite useful for time-resolved dynamics

studies, as discussed later. Dye lasers pumped by YAG lasers can provide a wide

tunable range, and this is also important to dynamics studies. This is the one of

the laser systems that was used for the Raman studies in this work.

The Ti:sapphire (650–1100 nm) CW laser is probably the most versatile laser

for use with Raman systems, due to its tunability, and it can have an output up to

2000 mW. It has a quasi-continuum background that needs to be filtered. It is

probably the laser of choice when cost is not considered. Ultrafast Ti:sapphire

lasers in femtosecond or picosecond pulsed modes are also used for time-resolved

dynamics studies.

Last, but not least, the diode-pumped solid-state (DPSS) laser is a recent entry

to Raman spectroscopy. It usually uses Nd:YAG crystal pumped by diodes and can

produce up to 15 W at 532 nm. DPSS lasers generally have a higher beam quality

and can reach very high powers while maintaining a relatively good beam quality

in single mode. As a drawback, DPSS lasers are also more sensitive to temperature

and can only operate optimally within a small range, so an environment control
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Figure 5.7: A schematic energy levels for Nd ions in a Nd:YAG laser

system is necessary. Some DPSS lasers only cost as much as diode lasers and

significantly less than other lasers with the same output performance and quality.

High quality DPSS lasers at $1–2K are available through many manufactures. One

additional benefit of DPSS lasers pumped by Nd:YAG is that they can share the

same set of notch or edge filters as the Nd:YAG laser. A DPSS laser of this type is

also used for the the Raman studies in this work.

5.3.1.2 Spectrometers and Filters

To separate the frequency components of the scattered light, spectrometer(s) or a

combination of spectrometer(s) and filter(s) are used. The first consideration of a

spectrometer for Raman scattering is the low stray light. Because the intensity of

the laser can be very strong and a significant percentage of the light is scattered

elastically, the spectrometers and filters must be very effective at rejecting the

laser line, otherwise the background from stray light will overwhelm the Raman

signal. Secondly, to maximize the signal, a low f number, and thus larger light

collection solid angle, is preferred. Thirdly, the grating line density must be chosen
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depending on the detector system and the wavelength range of the application.

There is always a balance between spectral coverage and spectral resolution. Many

modern spectrometers have multiple gratings mounted on a turret, which can

precisely change gratings remotely.

Double monochromators were standard in past. They are very effective at

rejecting the stray light because the two monochromators are in series. They do

suffer from some drawbacks, including a high f number, a narrow focal plane,

and a very high dispersion, which is good for photomultiplier tubes (PMT), but

not very useful for array detectors. Triple monochromators solve the problem

of high dispersion by using a pair of the three monochromators in a subtractive

configuration as a bandpass filter. They are similar to double monochromators

in high stray light rejection (good) and a high f number (bad). But with so many

gratings and mirrors, they suffer significantly in the signal intensity.

Use of single spectrometer is becoming more popular because of advances in

filter making and spectrometer design. Single spectrometers have the obvious

advantage of high throughput and low f number, but the stray light is usually a

big challenge. Modern holographic notch filters or edge filters (Semrock Ultrasteep

is one type of filter used for this work) are able to achieve optical density (OD)

> 6 rejection at laser lines and the transition can be less than 90 cm−1. The

actual performance of the filters depends on the choice of wavelength and it can

become quite expensive (at over one thousand dollars a piece) if it is necessary to

work at several different wavelengths. There are always variations of the filter

transmission near the transition edges and they need to be corrected, especially

for broad and slow-varying signals very close to the edge. Some spectrometers are

specially designed for Raman spectroscopy to address the conflicting challenges

of low f numbers, low stray light, and flat focal plane. In an imaging spectrometer,

the aberration is corrected by nonspherical mirrors or special grating designs. In

a holographic spectrometer, diffraction gratings are made by the same technique

as holographic filters, which allows more radical designs.
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5.3.1.3 Detectors

Photomultiplier tubes (PMT) and intensified photodiode arrays (IPDA) were stan-

dard equipment for Raman spectroscopy applications, but charge-coupled device

(CCD) detectors are quickly replacing them everywhere except in special cases.

A PMT is usually much less expensive, and has the advantage of a wide opera-

tion range at the UV end, but it can operate only in a single-channel (frequency)

mode. An IPDA has the same advantage for UV operation and is easily gated down

to 5 ns, which can effectively reject most fluorescence, which is a slow process

compared to Raman scattering.

Nowadays CCDs are the de facto standard for Raman detectors. They have

high yield, two-dimension capacity, and very low dark current. (They can be quite

expensive, however.) To reduce the dark current, they need to operate at low

temperature (e.g., < 70◦C). This was previously achieved by liquid nitrogen cooling,

but lately it has become possible to use thermoelectric devices to achieve similar

performance. This is the detector that was used for this work. New coatings and

designs help extend the effective range well into the IR and UV. CCDs can also be

gated for time-resolved- or fluorescence-related applications. The signals from

2D CCD detectors are usually binned along one dimension for Raman spectra.

When taking long exposures, the spectra are collected either through hardware

binning or software binning. The first has limitations on the maximum intensity

but generates less readout error, while the latter gives more error and is much

slower.

5.3.2 Signal-to-Noise Ratio

5.3.2.1 Signal

As we mentioned before, the most important consideration of a Raman system is

its signal-to-noise ratio (S/N). For a dispersive Raman system, it can be separated

into two questions: (1) How much light is scattered? (2) How much of the scattered
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light is collected and detected?

The radiance of scattered light can be written as:

L = P
(

dσ
dΩ

)
DK, (5.22)

where P is the laser power density, dσ/dΩ is the scattering cross section, D is the

number density of molecules, and K is a geometric factor. K is used to describe

the relation between scattering volume and the scattering area. K is 1 for a surface

scatterer when D is the 2D density, and r/2 for 90◦ geometry (discussed later),

where r is the beam radius. For the 180◦ geometry and a liquid sample, K is the

shorter of the spectrometer depth of field or the sample path length. P is usually

chosen to be the maximum allowed by the sample damage threshold.

The Raman signal from the detected scattered light is:

S = LAΩTQt, (5.23)

where A is the area of sample monitored, Ω is the collection angle (shown in Fig.

5.6), T is the spectrometer and optics transmission, Q is the quantum efficiency

of the detector per photon, and t is the measurement time.

Considering a multichannel detector system such as a CCD with N channels,

the Raman signal can be written as:

S =
[
P
(

dσ
dΩ

)
DK

]
[AΩTQNt] , (5.24)

where the left part is how much light is scattered and the right part determines the

collection and detection efficiency. It should be noted that we made quite a few

approximations here by assuming that the scattering is homogenous throughout

the effective sample area, the power density is uniform across the beam, the

sample is not absorbing, and spectrometer efficiency does not depend on angle,

the cross section is isotropic, and the scattering light overfills the slit and collection

angle. A modern single-pass spectrometer with a CCD detector can achieve an
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AΩTQN value about 4 orders of magnitude larger than the first-generation double

spectrometers coupled with a PMT, an enormous improvement.

5.3.2.2 Noise

Modern CCD detectors can reduce the dark current by 4 orders of magnitude

compared to PMTs. Considering all the noise sources, the total noise can be

written as:

N = (S + SB +φt + σ 2
R)

1
2 , (5.25)

where SB is the background signal, φ is the dark current, and σR is the readout

noise, which is independent of measurement time.

Assuming the sample has very low background and there is no readout noise,

the signal-to-noise ratio is:

S/N = S√
S +φt . (5.26)

When the dark current is very low compared to the signal, the S/N reaches the

detector noise limit:

S/N = S 1
2 . (5.27)

For a high throughput single-pass spectrometer with a CCD detector system, the

large number of channels (1000s) and the reduced dark current can significantly

increase the S/N ratio by up to 3 orders of magnitude.

5.3.3 Geometry

There are quite a few common geometries for collecting Raman scattering. The

main considerations when deciding on the geometry are the following: (1) Increas-

ing the AΩ product by overfilling the slit and collection angles, (2) balancing the

sample volume and laser power intensity, and (3) the ability to obtain polarization

information when applicable.

The 90◦ collection geometry (θ = 90◦) is one of the most common (see Fig. 5.6).

It can increase the collection angle at the sample while decreasing the effective
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area, but that in turn requires a tighter focus of the laser beam and is also more

difficult to align. This is the geometry used for this work, but instead of using a

single lens to focus the laser beam onto the sample, as in Fig. 5.6, two cylindrical

lenses are used in series to match the illuminated area to the aperture of the

spectrometer. One of the benefits is a reduced power intensity, thus less sample

damage.

The 180◦ collection geometry, also called backscattering geometry, is shown

in Fig. 5.8. It is possible to overlap the axes of the laser and collection optics.

It greatly simplifies the alignment and also makes it possible to use aspheric

lenses with very low f numbers and short focal lengths. This is also the common

geometry for a microscopic Raman spectrometer.

Laser

Spectrometer

Detector

Sample

Ω 

Figure 5.8: A schematic of the Raman system using 180◦ geometry

Other than the Raman systems using traditional optics, designs using optical

fibers also have some advantages, mostly from the flexibility of the geometry

setup and remote measurement ability. The drawback, however, is the background
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Raman signal from the materials of the fibres (mostly silica), which can be partially

overcome by using filters.

5.3.4 Calibration

Raman spectroscopy, like any other spectroscopy technique, requires careful

calibration for accuracy. It is well known that the agreements between literature

values can be poor, and the differences are often several wavenumbers, which

corresponds to a couple of Å near a 500 nm wavelength.

To calibrate Raman spectrometers, the common approach is to use standard

spectra lights, such as Ar, Kr, or He-Ne. They offer spectral lines throughout the

wavelength range used by Raman scattering. The spectra from these standard

lights can be used to fit the polynomial that gives the relation between pixel

number and the wavelength. For 2D detectors such as CCDs, there are many

degrees of freedom for the alignment, such as the tilting angle of the detector

surface. The manufacturer of the spectrometer usually provides the procedure

to measure and calculate these parameters, which are later used in the fitting

algorithm. It should be noted that the 2D detectors must be carefully aligned to

the direction of the spectral line. This can be a tedious process involving trial and

error by rotating the detector while measuring a peak spectrum. It is advisable to

redo the calibration every time when the operating wavelength or grating of the

spectrometer are changed, because of the offsets introduced by stepper motors.

It is also possible to use Raman shift standards for calibration. The advantage

is that the laser wavelength need not be known accurately. Because there are

usually fewer spectral lines and less intensity, this procedure can be more difficult

in practice.

Without a convenient standard intensity like IR spectroscopy, accurate absolute

intensities for Raman scattering are almost impossible. Raman spectrometry is not

good as a quantitative method, and even measurements of relative intensities can

be difficult owing to distortions introduced by the optics and spectrometers. The



121

reproducibility of the measurement is very difficult, and depends on the detailed

alignment of the optics. The most common approach for intensity calibration is

to use a standard white-light source with a known output in the wavelength range

of interest.

5.3.5 Sample Environments

Sample environments are important parts of a Raman system for studies of the

temperature- or pressure-induced effects. Unlike the environments for neutron

spectroscopy, an optical window is often necessary for the incident and scattered

beams. This creates multiple difficulties, including the background from the

window material and the ineffectiveness of heat shielding. Quartz glass is usually

the material of choice for the optical window and sample holder, due to its

relatively low background, high thermal conductivity, good thermal stability, and

high mechanical strength.

The simplest method for high-temperature measurements uses a hot plate. It

may even be used in the air without a window for air-inert samples, but due to its

open design, ours works only as high as 300 K above ambient temperature.

For most of the measurements at elevated temperatures in this work, the

samples were either loaded in a quartz optical cell or pressed into a pellet (under

about 50 MPa pressure). The quartz cell or the pellet is then mounted inside a

large quartz tube by tethering it to two ceramic rods using niobium foil. Sample

heating was provided by three electrical resistive heating elements, which are

also supported by ceramic rods. These rods are held in place by stainless steel

flanges, which fit tightly inside the quartz tube, as shown in Fig. 5.9. As heat

shielding, several pieces of stainless steel plate shaped similar to the flanges are

placed between the parts of the tube that have heating elements and the flanges.

Additionally, several layers of niobium and aluminum foil cover the interior and

exterior of the quartz tube, respectively, as radiation shielding. The quartz tube

is sealed by two Swagelok fittings with high-temperature o-rings and the whole
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system is evacuated by a turbomolecular pump to a pressure below 10−6 Pa. A

programmable temperature controller was used to drive a 1 kW DC power supply

through a solid state relay. Uniformity of sample temperature was confirmed by

placing multiple ultra-fine thermocouples at different positions inside the quartz

sample cell or on the sample pellet.

Figure 5.9: The structure of a Raman furnace, including ceramic rods, stainless
flanges, and quartz tube

Low-temperature measurements are possible by mounting samples on cold

fingers cooled by either displex refrigerators or liquid nitrogen or helium. The

base temperature is usually limited by radiation heating through the optical

window from the environment. Our configuration using liquid nitrogen can reach

about 90 K.

In high-pressure Raman spectroscopy, diamond anvil cells (DAC) and micro

Raman systems are used together. A long-distance objective lens is necessary

due to the large size of the cell. The DAC is quite similar to those used for

synchrotron experiments, but the diamonds need to have good optical quality

because impurities may cause an overwhelming amount of fluorescence.



123

5.4 Data Analysis

Compared to neutron scattering, analyzing Raman spectra is more straightforward,

although it does have some of its own tricks. Spectra from 2D detectors such as

CCDs are firstly binned into one dimension, but it is always a good idea to check

the 2D spectra for possible alignment issues. If multiple spectra were collected

during the same measurement series, they are combined. CCDs are sensitive to

high-energy particles from cosmic rays or background radiation, so there are

always sporadic peaks. It is easy to determine them by comparing spectra from

the same measurements, and they must be removed carefully before processing.

The backgrounds then need to be removed. For spectra with small wavelength

ranges, linear functions are usually sufficient, but otherwise the background is

more complex and should be fitted with polynomials and then removed. The

curvature of the background could come from stray light, black-body radiation,

the dependency of scattering efficiency (ν−4), detector efficiency, and many other

factors.

After background substraction, the spectra are fitted by multiple-peak fitting

routines using Gaussian or Lorentzian functions. For a structural study, only the

peak centers are of interest, but the linewidths are just as important for studies

of phonon lifetime.

5.5 Time-Resolved Raman Spectroscopy

The development of nanosecond, picosecond, and femtosecond lasers have made

it possible to use time-resolved spectroscopies for characterizing the dynamics

of chemical and biological systems. Detailed explanations of the principles are

clearly beyond the scope of this work, so only some concepts are presented here.

Time-resolved Raman (TRR) spectroscopy can be divided roughly into two

different categories: transient resonance Raman spectroscopy and the more

general time-resolved Raman spectroscopy. The former involves only one laser
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pulse and studies the process within the time scale of the pulse length, while the

later uses two pulses and the “ump-probe” method. These two pulses are split

from a single laser output and spatially delayed to arrive at the sample at different

times. However, this allows at most tens of nanoseconds in delay time. For longer

time delays, two sets of electronically synchronized lasers are necessary. Our

system is designed to work in both modes.

To be able to gate the Raman spectra for time-dependent measurement, a

few different techniques are possible. For laser pulses at picosecond scales or

shorter, it is possible to optically gate the signal using a Kerr gate, which utilizes

the Kerr effect to turn the media into a waveplate. It is also possible to use an

electronically synchronized Pockels cell for gating, as shown in Fig. 5.10 for our

setup in single laser mode. Gating at the detectors is another approach, and

benefits from advances in detector techniques. Beside studying dynamics, time-

resolved techniques can also help in the fluorescence suppression in conventional

Raman spectroscopy.

5.6 Other Raman Techniques

There is a quite large family of spectroscopy techniques using Raman effects.

Each of them has unique advantages and also some drawbacks. Here is a brief

summary of the concepts.

Second-order Raman scattering is much weaker ( 1/100) than its first-order

counterpart, but it is not governed by the same selection rules so it is able to

measure the whole Brillouin zone. Second-order Raman spectroscopy can be

reasonably approximated by a phonon DOS with the frequency axis multiplied by

two. Its shape may be quite similar to a 2-phonon DOS in many cases.

Fourier-transform (FT) Raman uses a near-IR laser and the collection of the scat-

tered light is performed using Michelson interferometers and Fourier-transform

processors. The spectra usually have modest quality and limited range, but the

method can be made suitable for routine analysis. Hadamard-transform spec-
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troscopy is a third alternative to dispersive and FT Raman. It has some of the

desired features of both.

Micro-Raman spectroscopy uses the backscattering geometry mentioned above,

and can study a small sample volume thanks to its use of a microscope objective

lens. It is quite useful for polarization studies on small single crystals and samples

under high pressure in diamond anvil cells.

Coherent Raman spectroscopy goes beyond the linear response approximation

with stronger amplitude. Among many coherent Raman techniques, two are most

popular: coherent anti-Stokes Raman spectroscopy (CARS) and stimulated Raman

spectroscopy (SRS).

5.7 Other Considerations

During the Raman scattering process, incident photons interact with the dipole

moments in the material through polarizability. It is very important to note that,

in general, molecule sizes are negligible compared to the photon wavelength. As

a result, the molecules are treated as a whole, and the polarizability is in terms of

the molecule instead of the underlying bonds. [96] However, this approximation

is not always valid, and the scattering process is much more complicated if the

local polarizability is taken into account.
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Part IV

Ionic Compounds
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Chapter 6

Hafnium(IV) Oxide (Hafnia, HfO2)
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Raman spectra of monoclinic hafnium(IV) oxide (HfO2) were measured at

temperatures up to 1100 K. Raman peak shifts and broadenings are reported.

Phonon dynamics calculations were performed with the shell model to obtain the

total and partial phonon density of states (DOS), and to identify the individual

motions of hafnium and oxygen atoms in the Raman modes. Correlating these

motions to the thermal peak shifts and broadenings, it was found that modes

involving changes in oxygen-oxygen bond length were the most anharmonic.

The hafnium-dominated modes were more harmonic, and showed relatively less

broadening with temperature. Comparatively, the oxygen-dominated modes were

more influenced by the cubic term in the interatomic potential than the hafnium-

dominated modes. An approximately quadratic correlation was found between

phonon-line broadening and softening.

6.1 Introduction

Hafnium(IV) oxide (HfO2), also known as hafnia, is one of the most common and

stable compounds of hafnium. Hafnium-based oxides are leading candidates to

replace silicon oxide as gate insulators in field-effect transistors, largely because

the high dielectric constant of hafnia allows greater miniaturization of micro-

electronic components without increased leakage current. [97,98] Owing to its

chemical stability, physical hardness, high refractive index, and high threshold

for laser damage, hafnia has been widely used in coatings on optical components

for laser applications in the near-UV-to-IR spectral regions. Hafnia is also an

important material for applications at high temperatures, owing to its high bulk

modulus and high melting temperature. [99]

Hafnia, like zirconia (ZrO2), is monoclinic (P21c) at ambient pressure and

temperature (see Fig. 6.1). Both hafnia and zirconia transform to a tetragonal

phase (P42nmc) at approximately 2000 K [100,101], and to a cubic phase (Fm3m)

at higher temperatures and pressures. [100] Many other similarities between

hafnia and zirconia are sometimes attributed to the lanthanide contraction [101],
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and these include a nearly one-to-one correspondence of their Raman spectra.

[101,102] The room-temperature monoclinic crystal structure of hafnia has four

formula units (i.e., 12 atoms) per unit cell, and hence 36 normal modes at the

Γ point. The group theoretical analysis of mode symmetry by Anastassakis et

al., [103] predicts 18 Raman active modes (Ag and Bg), 15 infrared active modes,

and 3 acoustic modes. The Raman-active and infrared-active modes of hafnia

prove mutually exclusive (a mode can be Raman-active only or IR-active only).

Prior experimental and theoretical Raman spectroscopy analysis of hafnia has

been hindered by the complexity of the vibrational symmetry. Anastassakis et

al. [103] were able to identify 17 modes of vibration, but assignment of the peaks

proved difficult, especially for modes at higher energies. Other studies have

focused on the phase transition under pressure [104,105], while first-principles

calculations were performed to obtain a better understanding of the vibration

modes. [106,107] To date the assignment of Raman peaks of hafnia has not been

fully convincing.

The focus of the present work is on the non-harmonic vibrational dynamics

of hafnia. High-temperature vibrational studies of metal oxides are relatively

rare. Several metal oxides, such as beryllia (BeO) and lithia (Li2O), have been

shown to exhibit anharmonic behavior at elevated temperatures, primarily due to

a change of phonon lifetime resulting from phonon-phonon interactions. [108]

Although there has been no previous reports of phonon anharmonicity in hafnia,

its unusually high specific heat at temperatures above 800 K [109], which is well

below the temperature of any phase transition, suggests interesting anharmonic

behavior. Similar behavior has been reported in a thermodynamic assessment of

zirconia. [110]

A contribution to the heat capacity at constant pressure is expected as a crystal

expands against its bulk modulus. “Quasiharmonic” shifts of phonon frequencies

arise because these frequencies are reduced in an expanded crystal, thus yielding

a larger vibrational entropy that favors some thermal expansion. The reported

increase in heat capacity [109] of around 2− 3× 10−2 [J/(mol K)]/K is much larger
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Figure 6.1: Two views of the crystal structure of monoclinic hafnia. Red and
blue spheres denote oxygen and hafnium atoms, respectively. a: skeletal; b:
space-filled model, scaled for ionic radii. Note that the majority of the volume is
composed of oxygen, while hafnium fits loosely between oxygen planes. (Zirconia
has the same structure with a small difference in lattice parameters.)

than expected from this quasiharmonic phonon mechanism, however. Anhar-

monic effects from phonon-phonon interactions are therefore of interest. Inelastic

neutron scattering studies of hafnia are impractical, owing to the large neutron ab-

sorption cross section of hafnium. [111] Previous temperature-dependent Raman

spectroscopy studies of hafnia were limited to 800 K , [105] and were performed

with relatively low resolution. Besides the phonon frequency shift information

that is typically used to understand vibrational thermodynamics, line broaden-

ing information from high-resolution measurements allows an assessment of

how anharmonic effects originate from the third- or fourth-order terms of the

interatomic potential. In the present work on hafnia, we report measurements

of Raman line positions and shapes to temperatures of 1100 K, characterize the

types of modes that are most anharmonic, and correlate anharmonic effects to

the vibrational displacements of individual atoms in the unit cell.
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6.2 Experiment

Samples were prepared from commercial hafnia powder1 having a grain size

around 40µm. Two methods of preparation were used: 1) Hafnia powder was

loosely packed inside a quartz cell, or 2) the powder was compressed into pellets

at ambient temperature and under a pressure of 30 MPa. Both samples were

characterized by X-ray diffractometry and both types exhibited a pure monoclinic

phase (with phase fraction of at least 99%). It was found that samples prepared

as pellets gave spectra identical to those prepared as a loose powder.

Many details of the experiment can be found in Chapter 5. The samples were

mounted in a quartz optical cell of 1 mm thickness, evacuated by a turbomolecular

pump to a pressure below 10−8 Pa. Sample heating was provided by electrical-

resistance heating elements in the vacuum space. The furnace was composed of

ceramic rods for insulation, stainless steel flanges as structure support, several

layers of niobium foil as heat shields, stainless steel plates, and aluminum foil

covering the interior and exterior of the quartz tube as radiation shielding. A

temperature controller was used to drive a 1 kW DC power supply through a solid

state relay. Uniformity of sample temperature was confirmed by placing multiple

ultra-fine thermocouples at different positions inside the quartz sample cell.

The excitation source for the Raman spectrometer was the 532 nm line of a

Nd:YAG laser2 at power levels of 200 mW or lower. A high-efficiency edge filter3

(OD = 6) was used to block the laser line. A single-pass spectrometer4 was

used for the spectral imaging on a 2D CCD camera with thermoelectric cooling5.

Raman spectra were acquired at temperatures from 300 K to 1100 K in increments

of approximately 25 K, with a temperature resolution of ±1 K. Spectra at the

higher temperatures had a sloping background from black-body radiation that

was subtracted before fitting. Measurements at 300 K, repeated after the heating

1Alfa Aesar, Ward Hill, MA 01835
2Quanta-Ray Lab Series
3Semrock Stopline E-grade single-notch filter
4Princeton Instruments Acton Series 500 mm
5Princeton Instruments PIXIS 400B
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Figure 6.2: (Upper) Raman spectra of hafnia at temperatures from 300 to 1106
K, with laser power at 200 mW, exposure time of 30 seconds, and at least 10
accumulations of the spectra. Peaks are numbered for reference. The features
between peaks 5 and 6 are artifacts.
(Lower) Partial and total phonon density of states of hafnia at room temperature,
calculated using GULP. Hafnium contributes much more strongly to the lower-
energy modes, while oxygen contributes to the higher-energy modes.
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sequence, confirmed that the samples underwent no changes that affected their

Raman spectra.

6.3 Results

The Raman spectrum at room temperature and ambient pressure appears to

consist of 17 peaks, but the second peak consists of two overlapping modes

(labeled 2 and 3 in Fig. 6.2). Spectra measured at temperatures above 600 K

show the separation of a shoulder from the second peak, evidence of a two-peak

structure. At higher temperatures, several of the weaker modes either could not be

resolved from the background or their position could not be determined reliably.

Nevertheless, several strong peaks remained distinct to the highest temperature

attained. The spectra acquired at all 33 temperatures (many not shown in Fig.

6.2) were used to obtain the effects of temperature on line position and linewidth.

A curved background, believed intrinsic to each sample, was first subtracted from

each spectrum. Each measured spectrum was then fit with multiple Lorentzian

functions to extract the centroid and the full-width at half-maximum (FWHM) for

each peak. The linewidth of the spectrometer resolution was negligible when

compared to the error in the fitted linewidth.

The results, presented in Figs. 6.3 and 6.4, show that with increasing tem-

perature, the Raman peaks generally shift to lower frequencies, and generally

broaden in width. (Owing to the larger uncertainty for the linewidths of weak

peaks, results from only the stronger peaks are presented in Fig. 6.4.) There are

substantial differences in the amount of shift and amount of broadening for the

different Raman peaks, with some peaks showing minimal effects of temperature.

Interpreting the different non-harmonic behaviors of the different Raman peaks

requires a detailed understanding of the atom motions in the different Raman

modes.
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6.4 Calculations

To assign vibration modes to spectral peaks, Raman mode frequency calculations

were performed with the GULP package, [59] using the force-field constants from

Lewis, [112] and the Buckingham two-body shell model potential. Results are listed

in Table 6.1. Good agreement was found between the calculations and Raman

spectroscopic data from the present and previous experiments, and reasonable

agreement with previous ab initio calculations, especially with the GGA method.

Calculations of the phonon density of states (DOS) were also performed with

the GULP software package by sampling over points in k-space. The resulting

total and partial DOS are shown in Fig. 6.2. Many of the phonon branches had low

dispersion, giving a number of sharp peaks in the DOS. The maximum phonon

energy was about 90 meV. Calculations with GULP of the heat capacity at constant

volume gave results as expected for harmonic oscillators, approaching 25 J/(mol

K) at temperatures above 1000 K. The eigenvectors of phonons at the Γ point
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Table 6.1: Raman mode frequencies, fractional atomic contribution for each mode,
and mode Grüneisen parameters of hafnia

Mode Exp GULP Lit-11 Lit-22 Lit-33 Hf% O% γj4 γk5

1 106.8 120.9 128 125 113 0.30 0.70 4.83 10.6
2 129.1 162.5 142 132 133 0.95 0.05 3.45 2.7
3 129.1 172.8 131 120 133 0.74 0.26 2.35 2.7
4 142.9 181.0 152 171 149 0.99 0.01 1.40 2.2
5 159.6 185.8 175 152 164 0.99 0.01 2.89 1.8
6 236.8 228.2 250 223 242 0.05 0.95 1.75 0.4
7 251.3 268.4 261 248 256 0.03 0.97 2.00 0.8
8 301.5 291.8 326 339 323 0.97 0.03 0.17 -
9 329.9 308.3 380 318 336 0.81 0.19 0.86 1.5

10 375.0 341.2 423 382 382 0.10 0.90 2.35 1.8
11 391.1 357.2 424 385 398 0.13 0.87 1.69 1.8
12 489.3 448.1 514 440 498 0.00 1.00 1.10 -0.4
13 513.3 518.0 533 466 520 0.01 0.99 1.05 -0.4
14 541.3 537.0 570 529 551 0.02 0.98 1.58 1.5
15 570.3 552.9 608 557 577 0.01 0.99 1.32 1.2
16 631.1 628.8 667 627 640 0.00 1.00 1.57 1.5
17 662.5 662.0 738 640 672 0.02 0.98 0.81 0.9
18 769.8 727.1 821 716 773 0.01 0.99 -0.016 -

1LDA calculation by Zhao and Vanderbilt [106]
2GGA calculation by Zhao and Vanderbilt [106]

3Experimental measurement by Arashi [113]
4Calculated from present experimental data

5Room-temperature pressure data by Jayaraman et al. [104]



138

were used to estimate the participation of Hf or O in each Raman-active mode,

with results listed in Table 6.1. Consistent with Fig. 6.2, the heavier metal atoms

dominate the low-energy modes, whereas the lighter oxygen atoms have most of

the energy of the high-energy modes. Most of the Raman modes are either metal

dominated (2, 4, 5, and 8), or oxygen dominated (6, 7, 10, and 12–18). The few

mixed modes (1, 3, 9, and 11) are still heavily biased. This approximate separation

of modes into Hf-modes and O-modes is consistent with the large difference in

mass of oxygen and hafnium atoms.

6.5 Discussion

The quasiharmonic softening of a normal mode is related to thermal expansion

ωj(T) =ωj(0) exp

−γj T∫
0

β(T)dT

 , (6.1)

where ωj(T) is a temperature-dependent vibrational frequency, β is the volume

thermal expansivity, and γj is the mode Grüneisen parameter, which relates the

fractional change in vibrational frequency to the fractional change in volume

∆ωj
ωj

= −γj
∆V
V
. (6.2)

The thermodynamic Grüneisen parameter, γ, for a quasiharmonic solid is

γ = βBV
CV

, (6.3)

where B is bulk modulus and and CV is the specific heat at constant volume. This

γ is an average of all mode Grüneisen parameters {γj}, weighted by the modal

Einstein specific heats Cj

γ =

∑
j
γjCj∑
j
Cj

. (6.4)
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From Table 6.1, however, we see that an average Grüneisen parameter misses the

rich variation of the mode Grüneisen parameters. Such a wide variation of mode

Grüneisen parameters might be expected from the highly anisotropic thermal

expansion of hafnia. From 300 K to 500 K, its linear thermal expansion is 0.23%,

0.15%, and 0.0% for the c, a, and b axes, respectively. At higher temperatures, the

a and c axes still expand much faster than the b axis. [114]

The remainder of this chapter focuses on the non-harmonicity of individual

modes. Figure 6.3 and Table 6.1 show that temperature-dependent frequency

shifts do not depend on the energy of each normal mode, as might be expected if

all γj of Eq. 6.2 were similar. There is, instead, a tendency of the mode Grüneisen

parameters to decrease with mode frequency, related to the atom displacements

in each mode. We divide the normal modes into two groups: oxygen-dominated

modes and metal-dominated modes. From Fig. 6.3 it is apparent that the oxygen

modes undergo more thermal softening than the metal modes. An especially

interesting comparison is the softening of the number 2 and 3 modes. At 700 K

the two modes are resolved, and the absolute mode spacing increases at higher

temperatures. The number 2 mode is composed of 95% oxygen, whereas the

number 3 mode is 75% oxygen.

The temperature dependence of the Raman peak widths provide further infor-

mation about anharmonicity. [115,116] The observed Lorentzian peak shapes are

consistent with the expected energy broadening from shortened phonon lifetimes.

In Fig. 6.4, a plot of the absolute broadening of normal modes demonstrates

that the oxygen modes (with reasonable resolution across the measured range of

temperatures) broaden faster than the metal modes, qualitatively consistent with

the trend found for mode softening. (Note that in calculation of the linewidth, the

number 2 and 3 peaks must be treated independently—as the two peaks begin

to soften at different rates, fitting both peaks with a single Lorentzian function

would result in widening, even if the individual peak widths remain unchanged.)

A useful perspective on the hafnia structure (Fig. 6.1) is that oxygen anions

make up the structural framework of the crystal, and the hafnium ions are located
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in the gaps between the oxygen ions. A more detailed view shows that the

structure of hafnia contains layers of oxygen anions, with the remaining oxygen

and hafnium ions inserted loosely between these layers. The oxygen layers lie

approximately in the plane of the b and c axes, with the b direction closer packed

than the c direction. Figure 6.1 depicts the ionic radius of oxygen (1.40 Å) as

almost twice as big as that of hafnium (0.78 Å). Based on structure data from x-ray

diffractometry, [117] the oxygen-oxygen bonds have lengths of 2.51 or 2.64 Å, and

hafnium-oxygen bonds have lengths of 1.98, 2.22, 2.17, 2.23, and 2.26 Å. As the

lattice expands with temperature, the largest changes in atomic overlap occur

for oxygen anions. Changes in this overlap are expected to affect the vibrational

frequencies, especially those for oxygen modes.

The analysis of individual normal modes, including the four shown in Fig.

6.5, offers more detailed information on the origin of non-harmonic behavior.

The number 4 mode, representative of a hafnium-dominated mode, has hafnium

cations moving into the cavity between three adjacent oxygen anions, in nearly

parallel motion. The large size of the anions allow the cavity to impose few

restrictions on the cations moving into it. Mode 4 is one of the most harmonic of

all the Raman modes. For a comparison, mode number 3 also is a metal-dominated

mode where the metal cations move into cavities between the oxygen anions;

however, half the oxygen anions in mode 3 are also moving, and they are moving

in different planes with respect to each other. The larger contribution from oxygen

to mode number 3 (the partial DOS for mode 3 is 26% O, 74% Hf) makes it less

harmonic than mode number 4 (the partial DOS is 99% Hf).

The behavior of oxygen-dominated modes is substantially different from that

of the hafnium-dominated modes just considered. In mode number 6, half of

the anions (the outer oxygen planes) are stationary, while the remaining anions

(the inner oxygen plane) are moving parallel to the c axis—the non-stationary

oxygen anions simply move into the space left by preceding ones. The result is

that the oxygen-oxygen bond is largely unchanged during vibration. This mode

is one of the most harmonic of all the oxygen-dominated modes. Mode number
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Figure 6.5: Representative Raman active normal modes in one hafnia or zirconia
unit cell. Number 3 and 4 modes are hafnium(or zirconium) dominated. Number 6
and 12 are oxygen dominated. These modes were well resolved through the whole
range of temperatures. Lengths of arrows are proportional to the contribution of
vibration from each atom.
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12 is less harmonic. It involves relatively large changes in oxygen-oxygen bond

lengths, and the bending of oxygen-oxygen bonds. These four modes were chosen

for their relatively simple pattern of vibration. Other normal modes not shown

in Fig. 6.5 provide similar correlations between oxygen-oxygen bond distortions

and non-harmonic behavior. We find that the oxygen-dominated modes in hafnia

are less harmonic than the metal-dominated modes. Furthermore, the modes

involving a change in oxygen-oxygen bonding exhibit the most non-harmonic

behavior.

Figure 6.6 shows a parametric relationship between the the peak broadening

and the peak softening. A boundary exists between oxygen modes and metal

modes, and all modes with non-negligible contributions from both elements fall

close to the boundary. The larger non-harmonic effects are found for oxygen-

dominated modes.

Phonon frequency shifts and broadenings have been analyzed by treating

phonon-phonon interactions with perturbation theory [30]. The analysis of Raman

spectra is practical with the Klemens model [118], which considers how one optical

phonon decays into two acoustical phonons. Analysis of this three-phonon process

for decay of an optical phonon at the Γ -point is simplified because the two acoustic

phonons must be of opposite wavevectors, and matched in energy if they are on the

same branch. (Equilibrium phonon populations are also assumed.) This approach

has been extended to four-phonon processes [119], but these simplifications are

now less appropriate for describing the full physical picture. They do show that

the temperature dependence becomes more complex [119], and the temperature-

dependent phonon linewidth broadening Γj of mode j can be expected as

Γj(T) = Γj(0)+Aj
[

1+ 2

e~ωj(0)
/

2kBT−1

]
+ Bj

1+ 3

e~ωj(0)
/

3kBT−1
+ 3(

e~ωj(0)
/

3kBT−1
)2


(6.5)

where Γj(0) is a constant; A and B are parameters for three-phonon and four-

phonon processes, respectively. At ambient or higher temperatures, the contribu-
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tions from the two terms vary as T and T 2, respectively. In the experimental data

of Fig. 6.4, linewidth broadenings of the hafnia spectra are found to be linear with

temperature, so there is little contribution from the four-phonon process of Eq.

6.5 (B = 0). For different modes, the parameter A ranged from 0.02 to 0.77 cm−1.

An analogous expression to Eq. 6.5 for the frequency shift at elevated tempera-

ture has been proposed [119], but from experimental data at elevated temperature

it is not practical to separate the anharmonic frequency shift from the shift from

quasiharmonic lattice dilation. Fortunately, pressure-induced shifts of Raman

peaks were reported by Jayaraman et al. [104], and these can be used to identify

the quasiharmonic contribution. Their results are listed as Grüneisen parameters

in Table 6.1. By comparing the pressure Grüneisen parameters to the thermal

Grüneisen parameters, we find general agreement for all modes dominated by

hafnium motions. On the other hand, there are major discrepancies for at least

half of the oxygen modes, and some have opposite signs. The deviation of our

elevated temperature results from those of prior high-pressure work again sug-

gests that the oxygen-dominated modes are more anharmonic than the metal

modes. Another result from perturbation theory is that the leading term for

phonon broadening is the cubic term, whereas the peak shift originates from

the quartic term in first order, and the cubic term in second order. [32] With

temperature, the metal-dominated modes shift in frequency with comparatively

little broadening. This could be primarily quasiharmonic behavior consistent with

the high-pressure results. In contrast, for the oxygen-dominated modes, which

show more broadening, the non-harmonic effects likely originate from the cubic

term in the interatomic potential, consistent with the linearity with T of the shifts

and broadenings over the range of temperature in this study.

Nevertheless, the non-harmonic effects in hafnia at temperatures to 1100 K

are relatively small, and hafnia is generally quasiharmonic. The non-harmonic

contribution is estimated to be about only 2 × 10−3 [J/(mol K)]/K, which is not

large enough to explain the anomalously large slope of the heat capacity vs.

temperature curve for hafnia at these temperatures. [109] Perhaps degrees of
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Figure 6.6: Broadening vs. softening of Raman modes. Blue and red squares are
metal and oxygen modes, respectively. The dashed line is the boundary separating
metal-dominated modes and oxygen-dominated modes. The solid line is a fitting
to the points, showing that the relation between absolute linewidth broadening
and absolute peak softening is of power 2.1, close to quadratic.

freedom other than phonons account for the excess heat capacity above 800 K, or

perhaps the heat capacity results need to be checked.

6.6 Conclusion

Raman spectra were measured on monoclinic hafnia at elevated temperatures up

to 1100 K. The peaks in the spectra were assigned to vibrational modes obtained

by shell-model calculations, which provided the individual atom polarizations

in each mode. The thermal softening and broadening of the Raman peaks were

obtained from the measured spectra, and correlated to the individual atom dis-
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placements in each mode. The oxygen-dominated modes were found to be more

anharmonic than the hafnium-dominated modes. The least harmonic modes were

found to involve the largest distortions of oxygen-oxygen bond distances (as

opposed to oxygen-hafnium or hafnium-hafnium). Hafnium-dominated modes

showed relatively little peak broadening for the peak shift, consistent with an

approximately quasiharmonic behavior, having thermal Grüneisen parameters

that were more consistent with previous high-pressure results than those for

oxygen-dominated modes. The oxygen-dominated modes showed more peak

broadening with peak shift, indicating a relatively large role for the first-order

cubic term in the anharmonic behavior. Very little contribution from four-phonon

processes is found through fitting perturbation theory results. Peak shifts and

peak broadening, two strong indicators of the non-harmonicity of Raman modes,

were quadratically correlated within the measured range of temperatures. The

non-harmonic peak shifts in this temperature range are not large enough to

account for the large previously reported heat capacity of hafnia above 800 K.
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Chapter 7

Zirconium(IV) Oxide (Zirconia, ZrO2)
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Raman spectra of monoclinic zirconia (ZrO2) were measured at temperatures

up to 950 K. Temperature-dependent Raman peak shifts and broadenings were

reported and compared to the results on hafnia (HfO2). Lattice dynamics cal-

culations were performed with both shell model and density functional theory

methods to obtain Raman frequencies and the total and partial phonon density of

states (DOS). These calculations were also used to identify the individual motions

of metal and oxygen atoms in the different Raman modes. By correlating these

motions to the thermal peak shifts and broadenings, it was confirmed that modes

involving changes in oxygen-oxygen bond length were the most anharmonic, sim-

ilar to the case of hafnia. The metal-dominated modes were found to be more

quasiharmonic, and thus showed less broadening with temperature. Mass effects

were evident by comparing the mode softening and shifting between zirconia and

hafnia.

7.1 Introduction

Zirconium oxide (ZrO2), also known as zirconia or baddeleyite, and hafnium

oxide (hafnia, HfO2), are structural twins. They are two of the most studied

ceramic materials. They share many properties and applications. Oxides based

on zirconium and hafnium are leading candidates to replace silicon oxide as gate

insulators in field-effect transistors, largely because their high dielectric constant

allows greater miniaturization of nanoelectronic components without increased

leakage current. [97,98] Their chemical stability and physical hardness also make

them useful as optical coatings. Both zirconia and hafnia are important materials

for service at high temperatures, owing to their high bulk moduli and high melting

temperatures. [99]

Both zirconia and hafnia are monoclinic (P21c) at ambient pressure and tem-

perature, while transforming to a tetragonal phase (P42nmc) at approximately

2000 K [100, 101], and to a cubic phase (Fm3m) at higher temperatures and

pressures. [100] Other similarities between hafnia and zirconia, such as ionic
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Figure 7.1: A comparison of the Raman spectra of hafnia and zirconia. Most
modes are easily matched with one-to-one correlation.

radii, chemical properties, and a nearly one-to-one correspondence (Fig. 7.1)

of their Raman spectra [101, 102], are sometimes attributed to the lanthanide

contraction. [101] These two oxides have room-temperature monoclinic crystal

structures with four formula units (i.e., 12 atoms) per unit cell, and hence 36

normal modes at the Γ point. The group theoretical analysis of mode symmetry,

performed by Anastassakis et al. [103] predicts 18 Raman active modes (Ag and

Bg), 15 infrared active modes, and 3 acoustic modes. The Raman active and

infrared active modes of zirconia and hafnia are mutually exclusive (a mode can

be Raman active only or IR active only). Prior experimental and theoretical Raman

spectroscopy analysis of the two oxides have been hindered by the complexity

in the vibrational symmetry of these compounds, especially for the modes at

higher energies. [100] First-principles calculations have been performed to obtain

a better understanding of these vibrational modes. [106,107] Other studies have

focused on phase transitions under pressure [104,105,120].

While the anharmonic behavior in hafnia and zirconia are not well understood,
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these two oxides have a high specific heat per atom at temperatures well below the

point of any phase transition [121] [109], suggesting that these materials should

have interesting anharmonic behavior. In metal oxides, a contribution to the

heat capacity at constant pressure is expected as the crystal expands against its

bulk modulus. “Quasiharmonic" shifts of phonon frequencies may arise because

phonon frequencies are reduced in an expanded crystal, thus yielding an increased

vibrational entropy.

Studies of non-harmonic effects are important for understanding the thermo-

dynamic stability and the thermal transport properties at elevated temperature.

Aside from the phonon frequency shift information that is typically used to un-

derstand vibrational thermodynamics, phonon energy broadening measured with

high resolution allows an assessment of how anharmonic effects originate from

the third- or fourth-order terms of the interatomic potential. Unfortunately, prior

Raman spectroscopy studies on zirconia have been limited in temperature, and

have been performed with relatively low resolution. Further, inelastic neutron

scattering studies of zirconia are also few and incomplete. [122]

In the previous chapter on the phonon dynamics of hafnia, as measured by

Raman spectroscopy, we reported measurements of Raman line positions and

shapes to temperatures of 1100 K, characterized the types of modes that are most

anharmonic, and correlated anharmonic effects to the vibrational displacements

of individual atoms in the unit cell. [123] It was found that although anharmonicity

in hafnia is relatively small on average, it is quite large from the perspective of the

individual mode. Similar behavior had been reported in an earlier thermodynamic

assessment of zirconia. [110] The present work reports temperature-dependent

Raman spectrometry on monoclinic zirconia. A comparison of zirconia and hafnia

aids in interpreting the phonon dynamics in these two systems.
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7.2 Experiment

The Raman measurements utilized commercial zirconia powder (Alfa Aesar) with

a grain size of around 100 microns, tightly packed inside a spectrum-grade quartz

cell. Additionally, pellets compressed from powders under a pressure of 30

MPa were also used, and gave spectra identical to the packed powder. Samples

were characterized by X-ray diffractometry and were found to have a monoclinic

phase with a phase fraction of at least 99.9%. Temperature-dependent Raman

measurements were performed using the same electrical resistance furnace as

for the hafnia study. [123]

The excitation source for the Raman spectrometer was the 532 nm line of a

Nd:YAG laser (Quanta-Ray Lab Series) set at power levels of 200 mW or lower to

minimize sample damage. A high-efficiency edge filter (Semrock Stopline E-grade

single-notch filter, OD= 6) was used to block the laser line, and a single-pass

spectrometer (PI Acton Series 500 mm) was used for the spectral imaging on a

thermoelectrically cooled 2D CCD camera (Princeton Instruments PIXIS 400B).

Raman spectra were acquired at temperatures from 295 K to 950 K, in increments

of approximately 50 K. Further measurements were taken as the samples cooled to

ambient temperature, confirming sample integrity against changes due to heating,

such as the loss of oxygen.

7.3 Results

Fourteen of the eighteen Raman-active normal modes could be easily identified

in the Raman spectrum measured at ambient temperature and pressure. These

modes are labeled in Fig. 7.2, and vertical lines are aligned to the peak centers at

295 K. Previous studies suggest that modes 2 and 3 are likely overlapped, as was

found for hafnia. [104] Experimental results and peak assignments to date have

been inconsistent in regard to the missing modes.

With our improved furnace and optical system design, even at the highest
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Figure 7.2: (Upper) Raman spectra of monoclinic zirconia at temperatures from
295 to 950 K, with laser power at 50 mW, exposure time of 60 seconds, and at least
20 accumulations of the spectra. Peaks are numbered as proposed assignments.
The sharp features near peak 7 are artifacts. (Lower) Partial and total phonon
density of states of zirconia at room temperature, calculated using the lattice
dynamics feature in GULP.
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temperatures, all 14 modes could be easily resolved. All of the acquired spectra

were used to obtain the effects of temperature on line position and linewidth. The

background from thermal radiation, and a slightly nonlinear background believed

to be intrinsic to the sample, were first subtracted from each spectrum. Each

measured spectrum was then fit with multiple Lorentzian functions to extract the

centroid and the full-width at half-maximum (FWHM) for each peak. The linewidth

of the spectrometer resolution was negligible compared to the resolution of the

fitted linewidth.

The results, presented in Figs. 7.3 and 7.4, show that, with increasing tempera-

ture, the Raman peaks generally shift to lower frequencies, and generally broaden

in linewidth. Similar to our previous results on hafnia [123], there are substantial

differences in the amount of peak shifting and peak broadening for the different

Raman modes. The differences in atomic motions for each Raman mode will be

used to interpret the different non-harmonic behaviors of each mode.

7.4 Calculations

Results from Raman-mode frequency calculations performed with GULP [59]

were used to assign vibrational modes to Raman spectral peaks. We used the

Buckingham two-body shell model

U = A exp(−r
ρ
)− c

r 6
, (7.1)

in which A, ρ, and c are constants from Lewis [112] for the zirconium-oxygen and

oxygen-oxygen potentials, and used a harmonic spring for the oxygen shell-core

potential. First principles DFT calculations using Quantum Espresso (QE) [56]

also produced similar results. All results are listed in Table 7.1. Good agreement

was found between our calculations and the Raman spectroscopic data from the

present and previous experiments. [100,105] There is also reasonable agreement

with previous lattice dynamical calculations of Quintard et al. [100] Using atomic
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Figure 7.3: Temperature-dependent Raman mode softening in zirconia. In the
figure, all modes are evenly spaced at 295 K, to facilitate comparison of resulting
thermal shift. Blue (darker) and red (lighter) lines represent metal-dominated and
oxygen-dominated modes, respectively, and are linear fits to the data. Notably,
mode number 7 had a faint signal, and thus the data quality is lower.
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Figure 7.4: Temperature-dependent peak broadening in zirconia. Blue (darker)
and red (lighter) lines represent metal-dominated and oxygen-dominated modes,
respectively, and are linear fits to the data.
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Table 7.1: Raman mode frequencies, fractional atomic participation of each mode,
and mode Grüneisen parameters of zirconia

Mode Exp GULP1 QE2 Lt13 Lt24 Zr% O% γj5 γk6 γl7

1 100 137 108 102 97 0.10 0.90 3.2 13.4 1.6
2 179 213 159 179 177 0.89 0.11 1.9 2.3 2.0
3 - 228 164 179 - 0.89 0.11 - - -
4 190 245 175 190 190 0.98 0.02 1.7 2.9 -
5 223 254 213 224 222 0.94 0.06 2.2 1.1 1.2
6 - 254 288 270 - 0.06 0.94 - - -
7 306 342 311 305 306 0.05 0.95 3.0 4.2 0.8
8 335 346 317 334 335 0.05 0.95 1.1 -0.1 0.9
9 348 417 324 348 347 0.82 0.18 1.5 2.8 -

10 382 429 366 381 383 0.03 0.97 1.7 -0.1 -
11 - 430 366 385 383 0.81 0.19 - 2.0 -
12 476 509 447 476 477 0.14 0.86 1.2 -0.5 1.1
13 503 538 477 505 503 0.01 0.99 0.7 -0.4 0.5
14 538 549 516 536 538 0.14 0.86 1.2 1.6 -
15 559 616 522 556 558 0.01 0.99 0.9 1.4 0.3
16 616 622 578 616 615 0.01 0.99 0.9 2.1 -
17 638 662 600 637 638 0.04 0.96 0.8 0.9 0.6
18 - 766 724 756 - 0.02 0.98 - - -

1Classical lattice dynamics calculation 2PBE calculation
3Experimental measurement by Quintard [100]

4Experimental measurement by Kourouklis [105]
5Calculated from present experimental data

6Room-temperature pressure data by Kourouklis, et al. [105]
7Calculated from MD

motions calculated by lattice dynamics, a comparison of results for zirconia and

hafnia spectra showed the Raman peaks have the same ordering in energy, and

similar relative intensities. The measured pattern of the peaks, especially their

relative intensities, were in good agreement with the calculations.

Calculations of the phonon density of states (DOS) were also performed with

GULP [59] using the same shell model and potentials that were used for the Raman

calculations. The resulting total and partial DOS are shown in Fig. 7.2. It was

found that many of the phonon branches had low dispersion, thus yielding a

number of sharp peaks in the DOS. The maximum phonon energy was determined



156

to be about 700 wavenumbers, quite similar to that of hafnia. The square of the

eigenvectors of phonons at the Γ point gave the participation of Zr and O in each

Raman-active mode, with the results listed in Table 7.1. As can be seen in Fig. 7.2,

the heavier metal-dominated modes bunch together on the low-energy end of the

DOS at around 200 wavenumbers, and also around 400 wavenumbers. The lighter

oxygen atoms tend to dominate the high-energy modes, and also contribute to

some of the low-energy modes. There are relatively few mixed modes—the Raman

modes are either strongly metal dominated or strongly oxygen dominated. This

approximate separation into Zr modes and O modes is expected from the large

difference in the mass of oxygen and zirconium atoms. The present results are

similar to those found for hafnia, [123] but zirconia shows more mixing in the

modes because zirconium atoms are only about half the mass of hafnium atoms.

Molecular dynamics calculations were performed with GULP at temperatures

from 300 to 1000 K. The same two-body potential model and force-field constants

were used as in the lattice dynamics frequency calculations. Velocity correlation

functions were generated from equilibrium atomic trajectories, and these func-

tions were used to calculate the temperature-dependent phonon DOS, as shown

in Fig. 7.5. Owing to the relatively flat phonon dispersions of the system, the

sharp features in the spectrum can be largely associated with particular optical

phonon modes. The thermal mode softening agrees qualitatively with the Raman

results, as shown by the calculated Grüneisen parameters in Table 7.1.

7.5 Discussion

The quasiharmonic softening of a normal mode is related to thermal expansion

as

ωj(T) =ωj(0) exp

−γj T∫
0

β(T)dT

 , (7.2)

where ωj(T) is the jth temperature-dependent vibrational frequency, β is the

volume thermal expansivity, and γj is the mode Grüneisen parameter. The
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Figure 7.5: Phonon DOS calculated by molecular dynamics for zirconia at different
temperatures using GULP. Note the phonon softening at elevated temperatures.

fractional change in vibrational frequency is related to the fractional change in

volume by
∆ωj
ωj

= −γj
∆V
V
. (7.3)

The thermodynamic Grüneisen parameter, γ, for a quasiharmonic solid is

γ = βBV
CV

, (7.4)

where B is bulk modulus, and CV is the specific heat at constant volume. This

γ is an average of all mode Grüneisen parameters {γj}, weighted by the modal

specific heats Cj

γ =

∑
j
γjCj∑
j
Cj

. (7.5)

From Table 7.1, however, we see that in zirconia an average Grüneisen parameter

misses the rich variation of the mode Grüneisen parameters. Although zirconia is
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slightly more anisotropic than hafnia, such a wide variation of mode Grüneisen

parameters might be expected from the highly anisotropic thermal expansion of

either oxide. In both zirconia and hafnia, at all temperatures, the a and c axes

expand much faster than the b axis. [114] Figure 7.3 and Table 7.1 show that

temperature-dependent frequency shifts do not depend on the energy of each

normal mode, as might be expected if all γj in Eq. 7.3 were similar. There is,

instead, a tendency of the mode Grüneisen parameters to decrease with mode

frequency, as in hafnia. [123] From Fig. 7.3 it is apparent that some oxygen modes

undergo more thermal softening than the metal modes.

The temperature dependence of the Raman peak widths provide further infor-

mation about anharmonicity. [115,116] The observed Lorentzian peak shapes are

consistent with the expected energy broadening from shortened phonon lifetimes.

In Fig. 7.4, a plot of the absolute broadening of normal modes demonstrates

that the oxygen modes (with reasonable resolution across the measured range of

temperatures) broaden faster than the metal modes, qualitatively consistent with

the trend found for mode softening.

To better understand the phonon dynamics, the parameters of the GULP shell

model were subjected to an optimization study against the experimental data.

The eight experimental Raman peaks with the best resolution were chosen, and

their centroid frequencies were chosen as the target for the optimization. The

force-field parameters in the GULP model were fit to the target frequencies using

a genetic algorithm implemented in the Mystic software package. [124,125] The

optimized force-field parameters were found to generate Raman frequencies very

close to frequencies calculated using the parameters from Lewis. [112] Using

parameter sensitivity tools available in Mystic, the impact of each force field

parameter on the phonon energy was assessed. [125–127]

The McDiarmid diameter of a function D(f,E) for a real function f over a set E

is defined by: [126]

D(f , E) =
 n∑
i=1

osc2
i (f , E)

1/2

(7.6)
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where:

osci(f , E) = sup{|f(x)− f(y)| : x,y εE,xj = yj for j 6= i}. (7.7)

The McDiarmid diameter provides a rigorous but very conservative upper bound

on the impact of a parameter on a given model. The relative contribution from

each force-field parameter to the McDiarmid diameter for the GULP model was

calculated for the region of parameter space defined by the Lewis constants ±30%.

Different parameter spaces were also tested with similar results. The −r−6 terms

in Eq. 7.1 proved far less sensitive in the fit, thus a larger range was used for these

parameters. The phonon energy was two orders of magnitude more sensitive to

the constants involving oxygen-zirconium interactions than the oxygen-oxygen

force constants, but the sensitivities to the A, ρ, and c parameters of Eq. 7.1 were

comparable. These results indicate that the lattice forces are much more sensitive

to Coulomb interactions between ions of opposite charges.

A useful perspective on the structure of zirconia is that oxygen anions make

up the structural framework of the crystal, and the zirconium cations are located

in the gaps between the oxygen ions (Fig. 6.1). A more detailed view shows that

the structure of zirconia contains layers of oxygen anions, with the remaining

oxygen and zirconium ions inserted loosely between these layers. The oxygen

layers lie approximately in the plane of the b and c axes, with the b direction

closer packed than the c direction. Figure 6.1 depicts the ionic radius of oxygen

(1.40 Å) as almost twice that of zirconium (0.72 Å), which is slightly smaller than

that of hafnium (0.78 Å). As the lattice expands with temperature, the a and c

axes expand much faster than the b axis, and thus the largest changes in atomic

overlap occur for oxygen anions. Changes in this overlap are expected to affect

the vibrational frequencies, especially for oxygen modes.

The analysis of individual normal modes, including the two shown in Fig. 6.5,

offers more detailed information on the origin of the non-harmonic behavior

exhibited by zirconia. The number 4 mode, representative of a metal-dominated
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mode, has zirconium cations moving into the cavity between three adjacent

oxygen anions, in nearly parallel motion. The large size of the cavity results in few

restrictions on the cations, and as a result mode 4 is one of the most harmonic of

all the Raman modes.

Comparatively, mode number 12 is one of the least harmonic modes. This

mode involves relatively large changes in oxygen-oxygen bond lengths, and the

bending of oxygen-oxygen bonds. Several other modes that exhibit strong non-

harmonic behavior have a similar correlation to oxygen-oxygen bond distortion.

We find that in zirconia the oxygen-dominated modes are less harmonic than

the metal-dominated modes. Furthermore, the modes involving a change in

oxygen-oxygen bending exhibit the most non-harmonic behavior.

Figure 7.6 presents the parametric relationship between the the peak broaden-

ing and the peak softening rates in zirconia, determined by fitting temperature-

dependent broadening and softening data with linear functions. In contrast, a

plot of previous results on hafnia [123] reveals a clear boundary between oxygen

modes and metal modes. Since zirconium is much lighter than hafnium (atomic

mass of 91 compared to 178 for hafnium) the distinction between oxygen and

metal modes is less significant, even though the oxygen-dominated modes in

zirconium are more non-harmonic, with the exception of mode number 1. Another

interesting comparison is that there are a few modes in hafnia that demonstrate

negligible softening, while in zirconia no such modes exist.

Phonon frequency shifts and broadenings have been analyzed by treating

phonon-phonon interactions by perturbation theory [30, 128]. The analysis of

Raman spectra is performed using the Klemens model [118], which considers how

one optical phonon decays into two acoustical phonons. Analysis of this three-

phonon process for the decay of an optical phonon at the Γ -point is simplified

because the two acoustical phonons must be of opposite wavevectors and matched

in energy if they are on the same branch. This approach has been extended to

four-phonon processes [119], however these simplifications then become less

appropriate for describing the full physical picture. In this case, the temperature
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Figure 7.6: Broadening vs. softening of Raman modes in zirconia. Blue (darker)
and red (lighter) squares are metal and oxygen modes, respectively. The scale is
chosen for easy comparison with hafnia results. [123] Note the absence of modes
with little softening.

dependence becomes more complex [119], as the temperature-dependent phonon

linewidth broadening Γj of mode j can be expressed by

Γj(T) = Γj(0)+Aj
[

1+ 2

e~ωj(0)
/

2kBT−1

]
+ Bj

1+ 3

e~ωj(0)
/

3kBT−1
+ 3(

e~ωj(0)
/

3kBT−1
)2


(7.8)

where Γj(0) is a constant. Here, A and B are parameters for the three-phonon

and four-phonon processes, respectively. At ambient or higher temperatures,

the contributions from the two terms vary as T and T 2, respectively. In the

experimental data of Fig. 7.4, the linewidth broadenings of the zirconia spectra

are found to be linear with temperature, so there is little contribution from the

four-phonon process of Eq. 7.8 (B = 0). For different modes, we found that

parameter A ranges from −0.02 to +0.67 cm−1. Phonon lifetime broadening can

also be calculated using the two-phonon density of states at the Γ point, assuming

that the three-phonon scattering is the dominant process and the kinematical

constraints are dominant.
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An analogous expression to Eq. 7.8 for the frequency shift at elevated tempera-

ture has been proposed [119], however experimental data at elevated temperature

suggests it is not practical to separate the anharmonic frequency shift from

quasiharmonic lattice dilation. Fortunately, pressure-induced shifts in Raman

spectra have been reported by Kourouklis et al. [105], and these can be used to

identify the quasiharmonic contribution. Their results are listed as Grüneisen

parameters in Table 7.1. By comparing the pressure Grüneisen parameters to

the thermal Grüneisen parameters, we find general agreement for all modes in

zirconia dominated by metal ion motions. On the other hand, there are major

discrepancies for at least half of the oxygen modes. The deviation of our elevated-

temperature results from those of prior high-pressure work again suggests that

the oxygen-dominated modes are more anharmonic than the metal modes.

Another result from perturbation theory is that the leading term for phonon

broadening is the cubic term, whereas the peak shift originates from the quartic

term in first order, and the cubic term in second order. [32] With temperature, the

metal-dominated modes shift in frequency with comparatively little broadening.

This could be primarily quasiharmonic behavior, consistent with the high-pressure

results. In contrast, the oxygen-dominated modes tend to show more broadening.

The linearity of the broadening with temperature and the inconsistency with the

pressure Grüneisen parameters suggest that these effects originate from the cubic

term in the interatomic potential. From a macroscopic view, the non-harmonic

effects in zirconia at temperatures up to 950 K are small, and it seems that zirconia

can be considered generally quasiharmonic. However, the opinion will miss the

rich information about individual phonon modes, which have large effect on

phonon behaviors with opposite signs.

7.6 Conclusion

Raman spectra were measured on monoclinic ZrO2 at temperatures up to 950 K.

The peaks in the spectra were assigned to vibrational modes obtained by shell-
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model calculations, and compared with the corresponding modes in hafnia. The

thermal softening and broadening of the Raman peaks were obtained from the

measured spectra, and then were correlated to the individual atomic displacements

in each mode. Metal-dominated modes showed relatively little peak broadening

for the peak shift, consistent with an approximately quasiharmonic behavior, and

had thermal Grüneisen parameters that were more consistent with previous high-

pressure results than those for oxygen-dominated modes. The oxygen-dominated

modes showed more peak broadening with peak shift, indicating a larger role for

the first-order cubic term in the anharmonic behavior. The rich details about the

thermodynamics of individual phonon mode in zirconia and hafnia are astonishing:

some phonon modes are found to be highly anharmonic, while some others are

mostly quasiharmonic. These are completely missed by models that use one single

macroscopic Grüneisen parameter. Very little contribution from four-phonon

processes is found by fitting to perturbation theory results. The differences

between zirconia and hafnia are generally consistent with the mass effects.
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Chapter 8

Phonon Anharmonicity and Negative
Thermal Expansion in Scandium
Fluoride (ScF3)
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Cubic scandium tri-fluoride (ScF3) has a large negative thermal expansion

over a wide range of temperature. Inelastic neutron scattering experiments were

performed to study the temperature dependence of the lattice dynamics of ScF3

from 7 to 750 K. The measured phonon densities of states (DOS) show a large

anharmonic contribution with a thermal stiffening of modes around 25 meV.

Phonon calculations with first-principles methods identified the individual modes

in the DOS, and frozen phonon calculations showed that some of the modes with

motions of F atoms transverse to their bond direction behave as quantum quartic

oscillators. The quartic potential originates from harmonic interatomic forces in

the DO9 structure of ScF3, and accounts for phonon stiffening with temperature

and a significant part of the negative thermal expansion. The vibrational entropy

contribution from these soft phonon modes helps to stabilize the cubic phase

over a wide range of temperature.

8.1 Introduction

Nearly all materials expand when heated, so exceptions are interesting. It is well

known that phase transitions can cause a reduction in volume with temperature,

for example. Negative thermal expansion (NTE) of a pure phase has attracted

much attention over the past twenty years, driven both by curiosity, and by

opportunities to design materials with special thermal properties. For materials

like face-centered cubic plutonium and Invar alloys, NTE involves electronic or

magnetic excitations. Other types of NTE are structure-induced, originating

from atom arrangements in the crystal [129]. Several mechanisms of NTE have

been proposed, such as deformations of polyhedra, one or two-dimensional

NTE caused by normal thermal expansion of anisotropic bonds, NTE induced

by interstitial cations, and NTE associated with transverse motions of linkage

atoms (as in Fig. 8.1) [130]. Often NTE is anisotropic, and it usually occurs only in

a small range of temperature [131]. Zirconium tungstate (ZrW2O8) is a notable

exception [132–137]. The NTE in ZrW2O8 is associated with under-constrained
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atom sites in the crystal structure [138]. Although some of the behavior can be

understood with a “quasiharmonic” model (a harmonic model with interatomic

forces adapted to the bond lengths at a given temperature), anharmonic effects are

expected, but the full connection between anharmonic lattice dynamics and NTE

is obscured by the complexity of the structure [138]. Simplified 2-D models like a

rigid square [139,140], and a 3-atom Bravais lattice [138] have been used to explain

the “soft-phonon" NTE mechanism, but accurate lattice dynamics for materials

such as ZrW2O8 are not easy to obtain from geometrical models. Metal-organic

framework (MOF) materials with linkage such as benzene [141] or –CN– [142] can

have even larger NTE, although they may not be suitable for high temperature

applications.

Very recently, a surprisingly large and isotropic negative thermal expansion

was discovered in cubic scandium tri-fluoride (ScF3) by Greve et al. [143] It occurs

over a wide range of temperature from 10 to about 1100 K, and exceeds−1.0×10−5

K−1. ScF3 is commonly used in producing metallic scandium but it also has been

used in phosphors, light amplifiers, catalysts, and glass modifiers. ScF3 has

several polymorphs, including cubic, rhombohedral, and orthorhombic structures.

This suggests that structural changes involve quite small differences in free

energy [144]. It is also known that the phase diagram of ScF3 is very sensitive to

structural defects and impurities [145]. Under ambient conditions, ScF3 has the

DO9 crystal structure of α-ReO3, a perovskite structure with one vacant cation site,

shown in Fig. 8.1, and is stable from 10 K to over 1600 K. The wide temperature

range of the NTE, up to about 1100 K (about half its melting temperature), does

not involve a phase transition. Although α-ReO3 itself shows modest negative

thermal expansion below 300 K [146,147], the NTE of ScF3 is an order of magnitude

larger. Only a small amount of work has been performed on the lattice dynamics

of ScF3 [144], although materials with similar structure have been studied [148].

ScF3 has no Raman-active modes under ambient pressures owing to its cubic

symmetry. Under pressure, however, its Raman spectra showed some interesting

results. [144]. With external pressure, the octahedra in the structure begin to bend
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and twist with respect to each other, and cubic ScF3 transforms to a rhombohedral

phase at 0.6 GPa and then to another structure at about 3 GPa. Perhaps the most

interesting behavior is found at 0.6 GPa, with the rhombohedral symmetry leading

to Raman active modes. With increasing pressure, the mode at about 480 cm−1

softens, while two other lower energy modes stiffen enormously.

From chemical intuition, and from our electronic structure calculations, cubic

ScF3 is an insulator with a wide band gap, so electronic excitations do not play a role

in the NTE. Changes in the Sc-F bond distances cannot be ruled out, however, as the

negative thermal expansion is so big and strongly temperature dependent while

the Sc-F "bonds" are not expected to be unusually strong. The simplicity of the

ScF3 crystal structure makes it an ideal case for experimental and theoretical study

on a material with isotropic NTE over a wide range of temperature. Here we report

results from inelastic neutron scattering measurements of the lattice dynamics of

ScF3 from 7 to 750 K. First principles lattice dynamics, molecular dynamics, and

frozen phonon calculations were performed to assess the relationship between

NTE and phonon anharmonicity. For some normal modes, the F atoms move in a

potential with a dominant quartic term in their two under-constrained dimensions.

The quartic term is a geometrical consequence of the DO9 structure, even with

harmonic interatomic forces. It accounts for the thermal stiffening of the low-

energy modes of F atoms and for a reduction of lattice parameter with an increase

in temperature. The simplicity of the DO9 structure of cubic ScF3 allows a detailed

analysis of the lattice dynamics, elucidating the connection between NTE and

phonon anharmonicity.

8.2 Experiments

Inelastic neutron scattering measurements were performed with the time-of-flight

Fermi chopper spectrometer ARCS at the Spallation Neutron Source. Powdered

ScF3 is known to absorb water from the atmosphere, but the vacuum and high

temperature in the furnace helped to keep the sample anhydrous during the
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Figure 8.1: (a) DO9 structure of ScF3 (b) Geometry and variables for the mechanical
model of Sc-F bonds

measurements. Coarse powders of cubic ScF3 crystals of 99.99% purity were

ground to powders with particle sizes less than 0.1 mm and loaded into annular

aluminum containers with outer diameters of 30.0 mm and heights of 64.0 mm.

An aluminum insert was used to hold the powder in place and the effective sample

thickness was 2.0 mm, giving a ratio of multiply to singly scattered neutrons of

approximately 5%. For best resolution of the spectrum throughout the energy

range, four incident neutron energies were used, 30.0, 79.5, 118.7, and 163.0

meV. Each measurement included approximately 2×106 neutron counts. For

temperatures of 7, 100, 200, and 300 K, the sample was mounted in a closed-cycle

helium refrigerator. An electrical resistance furnace designed for vacuum service

was used for temperatures of 320, 450, 600, and 750 K. By monitoring with

several thermocouples, we found the temperature be accurate to within 5 K over

the bulk of the sample. Backgrounds with empty sample cans were measured

at each temperature. Scandium is challenging for neutron scattering because

of its absorption cross section of about 27.5 barn. However, the high flux of

ARCS makes the experiment possible within reasonable time. The details of the

experiment were described in Chapter 4

Data reduction and phonon DOS generation were performed with the standard

software package for ARCS as described previously in references [70,149] and

in Chapter 4. The data were corrected for detector efficiency using scattering
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Figure 8.2: Four-energy-overlaped S(Q,E) of ScF3 at 7 K. The arcs of lines through
the data are kinematical limits of 4 incident energies and coherent scattering. The
color scale on the right is linear.

data from vanadium, backgrounds were subtracted, and the intensities were

converted to S(Q,E), where ~Q is the momentum transfer to the sample. The

combined S(Q,E) results at 7 K after background subtraction are shown in

Fig. 8.2. The data were corrected for multiphonon scattering in the incoherent

approximation, and approximately corrected for the small amount of multiple

scattering. The neutron-weighted phonon density of states (DOS) curves for three

incident energies are shown in Fig. 8.3a. Differences among the phonon DOS

curves are expected from differences in instrument resolution, which improves

for lower incident neutron energies. Good agreement is seen for the DOS curves

measured in the refrigerator and furnace at 300 K and 320 K, showing the success

of the background subtraction. Neutron diffraction patterns were obtained from

the elastic scattering and used to verify the structure and lattice parameters.

All major features in the DOS broaden with temperature, indicating a decrease

in phonon lifetime. Phonon modes shift with temperature, but the shifts are

complicated. To quantify thermal shifts, Gaussian functions were fitted to the
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five features in the phonon DOS, and Fig. 8.3b presents the shifts (∆E) of the

peak centers. The high-energy features 4 and 5 soften normally with temperature,

but the low-energy feature 2 stiffens anomalously. Feature 3 may also stiffen,

and feature 1 changes little with temperature. The shifts obtained from different

incident energies agree reasonably well. Some of the features correspond to more

than one phonon branch, so while the fitted shifts give a good indication of the

trend of the phonon energy changes, they usually do not pinpoint a specific mode.

8.3 Calculations

First-principles calculations were performed with the local density approximation

to the density functional theory, implemented in the VASP package [54]. Projector-

augmented wave (PAW) [150] pseudopotentials and a plane-wave basis set with

energy cutoff of 450 eV were used in all calculations. Within the quasiharmonic

approximation (QHA), the free energy is

F(T,V)=Es(V)+
∫
g(ω)

(~ω
2
+ kBT ln(1−e−

~ω
kBT )

)
dω (8.1)

where the static energy, Es , is the total energy of the crystal when all the atoms are

fixed at their equilibrium positions,ω is the (angular) phonon frequency, and g(ω)

is the phonon DOS for the lattice parameter, a, that minimizes F(T , V(a)). Here

Es was calculated self-consistently using a 4-atom primitive cell and a 12×12×12

k-point grid, and phonon energies were calculated using the direct supercell

method with a 108-atom supercell and a 2 × 2 × 2 k-point grid. The LO-TO

correction for the optical phonons was included based on the inter-plane force-

constant model [151]. Given the phonon energies and static energy calculated at

different volumes, Helmholtz free energy as a function of volume and temperature

(F(T , V)) was then obtained within the quasiharmonic approximation. Statistical

thermodynamic relationships were then used to deduce the coefficient of thermal

expansion and Grüneisen parameter, allowing thermodynamic properties to be
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Figure 8.3: (a) Neutron-weighted ScF3 phonon DOS from incident energies of 118.7
meV (black), 79.5 meV (green, dashed), and 30.0 meV (red), scaled to conserve
spectral areas and offset for clarity. Five vertical lines are aligned to peak centers
at 7 K, and labeled by numbers. Errors at top are from counting statistics, and
similar at all temperatures. (b) Shifts of phonon peak centers relative to 7 K
data. The solid lines are linear fits. For each point, the spectrum with the best
resolution was used. Error bars are mean differences between the spectra of
different incident energies at all temperatures.
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obtained from statistical thermodynamic relationships. For example, the thermal

equation of state P(T , V) can be deduced via

P(T , V) = − ∂F(T , V)
∂V

∣∣∣∣
T
, (8.2)

from which the V(T,P) relationship was obtained by interpolation, and the thermal

expansion coefficient was deduced from

α = 1
V
∂V
∂T

∣∣∣∣
P
. (8.3)

To study anharmonic effects with VASP, we performed ab initio Born-Oppenheimer

molecular dynamics (MD) calculations at 7, 100, 200, 300, 450, 600, and 750 K,

and we also performed frozen phonon calculations. The MD simulations used a

108-atom supercell, and temperature was controlled by Nosé thermostats. For

each temperature, the system was first equilibrated and then simulated for 5 ps

with a time step of 5 fs. The QHA and MD simulations were used to identify modes

corresponding to experimental spectral features having anomalous temperature

dependencies. The vibrational potentials of these modes were obtained through

frozen phonon calculations on the minimum supercell determined by symmetry.

8.4 Results

Figure 8.4 shows phonon properties calculated from first principles within the

harmonic approximation. The agreement between the experimental and calculated

phonon DOS curves is good after accounting for instrumental broadening and

neutron weighting (neutrons are scattered about twice as efficiently from motions

of Sc atoms as from F atoms). All major features in the experimental phonon

DOS can be assigned to specific groups of phonon modes. According to phonon

dispersion in Fig. 8.4a, high-energy fluorine modes have relatively flat branches

and the change of the DOS can accurately represent the change in these modes.
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The first Brillouin zone and its high symmetry points are shown in Fig. 8.5. Lower

energy modes have more complex dispersions and result in broader peaks in

phonon DOS. Judging from the mass difference between fluorine and scandium

atoms, the fluorine-dominated phonon modes should be relatively separated from

the scandium modes and this is mostly true. Naturally, one expects the lighter

atoms like fluorine to dominate the high-energy modes while heavier atoms like

scandium dominate the lower-energy modes. However, the motions of F atoms

dominate both the higher- and lower-energy parts of the DOS, and the majority of

Sc-dominated modes are between 40 and 60 meV. This can be explained if the

low-energy “rigid unit modes”, where ScF6 octahedra pivot about corner-shared F

atoms, have much larger effective mass than individual atoms.

As thermal expansion is closely related to Grüneisen parameters, we show in

Fig. 8.4c the mode Grüneisen parameters. Some phonon modes have negative

Grüneisen constants, such as the low-energy modes at R and M with anomalous

Grüneisen constants of –371 and –84. It is likely these are the softest modes that

might contribute to the negative thermal expansion. In what follows we show

that these modes have quartic potentials, so these Grüneisen constants are not

meaningful and the QHA is not reliable. Figure 8.14 shows the thermal expansion

calculated with the QHA equation of state from Eq. 8.1, compared with recent

measurements. [143] Some difference at the highest temperatures could be caused

by the creation of defects. For low temperatures, the QHA underestimates the

NTE.

The ScF6 octahedra are more flexible than their oxide counterparts—our MD

simulations showed that the F atoms in an octahedron executed largely indepen-

dent and uncorrelated motions, as shown in the attached animation, and by the

pair, radial, and angular distribution functions. The pair distribution functions

(PDF) (Fig. 8.6) and radial distribution functions (RDF) (Fig. 8.7) calculated by

first-principles MD show a large broadening of the second peak (nearest F-F dis-

tance) compared to the first peak (nearest Sc-F distance) at higher temperatures.

The calculated RDFs agree surprisingly well with the results from X-ray diffrac-
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Figure 8.5: The first Brillouin zone of ScF3 and its high-symmetry points

tion experiments using synchrotron sources. Similarly, the angular distribution

function for the F-Sc-F bond angle at 300 K (Fig. 8.8) shows a broad distribution

with a FHWM of 10 degrees. Both of these results are consistent with uncorre-

lated motions of fluorine atoms. This is also evident in the animation, in which

relative motions of two nearby F atoms undergo frequent changes in phase and

frequency. The structural geometry of the DO9 structure offers little constraint

on the transverse modes of F atom motion, also suggested by the first-principle

MD calculations.

Figure 8.9 shows the plane-projected atomic trajectories of Sc and F atoms at

300 K. Fluorine atoms execute large excursions in the two directions transverse

to the Sc-F bond. The distributions of atom centers, projected onto one axis and

binned into a histogram, were satisfactorily fit to Gaussian functions. The full-

width-half-maxima (FWHM) were 0.124 Å for Sc (isotropic) and 0.124 Å for F along

the z-axis (longitudinal), and 0.270 Å for F along the x- and y-axes (transverse).

This anisotropy of F-atom motions decreases with temperature, but the average

transverse amplitude of the F-atom motion is more than 10% of the Sc-F bond

length at 300 K.

Although the large-amplitude F atom displacements occur largely indepen-

dently, the rocking modes of ScF6 octahedra are useful for analyzing the dynamics

of a periodic structure. We performed frozen phonon calculations for the five
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modes R1, R3, R4-, R5, and R4+ at the R point with energy decreasing in that order,

as shown in Fig. 8.11. Modes R1 and R3 can be easily classified as “breathing"

modes, which involve the change of bond lengths inside octahedra without a

change of bond angles. For mode R4-, the scandium atoms are displaced while

fluorine atoms are fixed. Mode R5 only involves the change of F-Sc-F angles inside

the octahedra. Most of these modes were fit well to a quadratic potential within

the range of atomic displacements predicted by the MD calculations, but the R4+

mode (the mode of lowest energy calculated with the harmonic approximation),

depicted in detail in Fig. 8.12, was found to have a nearly pure quartic potential.

The R4+ mode, with its quartic potential, is not expected to be modeled well with

a harmonic potential, especially when the amplitudes of displacement are large.

If the NTE depends on the dynamics of this mode, it is not surprising that the

quasiharmonic approximation would fail to account quantitatively for the thermal

expansion. Many other NTE crystals are associated with anharmonicity, but the

relationship has been unclear. Nevertheless, considering the large excursion of F

atoms, anharmonicity seems to be important.
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Figure 8.9: First principles MD trajectories and their projections onto x-y, y-z, and
x-z planes for Sc (top) and F (bottom) at 300 K. Distances are in Å. The direction
of Sc-F bond is x̂.
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Figure 8.10
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Figure 8.11: Phonon modes in ScF3 at R-point (in the order of R1, R3, R4-, R4+, and
R5) and their frozen phonon potentials and quadratic (harmonic) fits to the frozen
phonon potentials. The ranges of the quadratic fits vary, but are comparable.
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Figure 8.12: Phonon mode R4+, its frozen phonon potential, quadratic (harmonic)
and quartic fit to the frozen phonon potential. The range of the quadratic fit is
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The Grüneisen parameter for the ith mode, γi, is

γi = −
V
ωi
∂ωi
∂V

= − V
ωi
∂ωi
∂T

∂T
∂V
= − V

ωi
∂ωi
∂T

1
α
, (8.4)

in which α is the volume expansion coefficient, V is the volume, and ωi is the

frequency of the ith mode. Since α < 0 in this system, Grüneisen parameters

should also be negative in their frequency dependence on temperature, ∂ωi/∂T ,

but experimental results suggest differently. The calculations also predict a lattice

parameter 1% larger than the room-temperature experimental value, at least part

of which could be explained by NTE in the ground state.

The failure of the QHA is a good indicator that the dynamics and anharmonicity,

more than of the static lattice structure, play an important role. Two effects could

account for the “potential-induced" anharmonicity: one is an implicit effect due

to the change in volume with temperature or pressure, and the other one is an

explicit effect from the increase in vibration amplitude with temperature [152].

QHA calculations were performed at zero temperature, and they usually only



183

account for the implicit contribution and totally ignore the explicit one. The

QHA results do predict the NTE, shown in Fig. 8.4c. The explicit contribution of

anharmonicity accounts for the reversed results in Grüneisen parameters and

difference in the calculated NTE. Another interesting observation is that low-energy

fluorine modes are very sensitive to the lattice parameters, and small deviations

from the optimized geometry result in large changes in phonon energies and

sometimes create imaginary modes. Such results usually suggest that the phase

transition is imminent, but that is obviously not the case for the system here.

(The system only becomes unstable under pressure.)

The simplest explanation of normal thermal expansion uses an interatomic

potential that is skewed towards larger interatomic separations. Expanding

the crystal has a cost in elastic energy, but this is offset at finite temperature

because a larger phonon entropy is obtained by lower frequency vibrations. It is

tempting to associate the negative thermal expansion of ScF3 with the opposite

skewness of the interatomic potential, which could be consistent with the thermal

stiffening of the low-frequency modes. In its simple form this explanation is

misleading because the large-amplitude displacements are perpendicular to the

bond direction. Furthermore, skewness is not a property of a quartic potential.

Temperature changes produce (1) changes of volume, an implicit anharmonic

effect, and (2) increased vibrational amplitudes, an explicit anharmonic effect. The

anomalous temperature dependence of the phonon energy can be caused by both.

We examined the implicit anharmonic effect through the quasiharmonic lattice

dynamics simulations and the explicit effect through a combination of molecular

dynamics simulation and frozen phonon calculations. The explicit anharmonic

effect can be either the results of changes in bond length because of anharmonic

interatomic potentials, or it could be “structure-induced", as discussed next.
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8.5 Structural Model

The simple mechanical model of Fig. 8.1b, depicting the transverse motions of the

F atoms, helps to show the important relationship between phonon anharmonicity

and NTE. We first use the model to understand the phonon partial DOS curves

of F atoms in Fig. 8.4b, which show approximately two bands of vibrations at 0

∼ 30 and 60 ∼ 90 meV in the transverse (vertical) and longitudinal (horizontal)

directions of Fig. 8.1b, respectively. First consider the two Sc atoms in Fig. 8.1b

to be positioned in equilibrium so there are no net forces on them when the F

atom is at rest in mid-position (x = 0), as expected for a classical crystal with

lattice parameter 2d at T = 0. For simplicity, first consider the Sc atoms rigidly

positioned, as if they had infinite mass. What is particularly interesting about

the vertical motion of the F atom in Fig. 8.1b is that it moves as a pure quartic

oscillator. The transverse restoring force on the F atom depends on the elongation

of the springs, s, which goes as 1–cosθ times the resolved transverse force, giving

a transverse restoring force going as x3.

Fv = k
x3

d2
(8.5)

The total potential for the transverse displacement of the F atom with two springs

is

Ut =
k
4
x4

d2
, (8.6)

consistent with the quartic potential of the R4+ mode and also the failure of QHA,

because the mode can not be approximated by harmonic potentials, even with

small amplitude at very low temperatures.

We cannot expect a harmonic theory to calculate accurately the energies of

a quantized quartic oscillator, even when the quartic behavior is a geometrical

consequence of harmonic interatomic forces. The phonon energies and the

unusual Grüneisen constants for the quartic modes in Fig. 8.3c are therefore
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not expected to be reliable. The force constant k was obtained from the frozen

phonon calculations by fitting the transverse fluorine mode to a quartic function,

and also by fitting the longitudinal fluorine mode to a quadratic function. The

results, 901 and 744 N/m, respectively, are close. For these force constants the

harmonic longitudinal vibrations of F atoms were 111 or 91.7 meV, reasonably

close to the actual frequencies of these modes in the DOS.

From a numerical analysis of the quartic quantum oscillator [153], the k =

901 N/m gives energies of 7.4, 26.4, 51.9, 81.0, and 113 meV for levels 0, 1, 2,

3, and 4, as shown in Fig. 8.13. The transition to the first excited state requires

19.0 meV, which is in good agreement with peak 2 in the phonon DOS. The spread

between these levels increases with temperature, so excitations to higher levels

absorb increasingly more energy from the neutron, and peak 2 in Fig. 8.3 stiffens

with temperature. This temperature dependence was calculated by assigning

Boltzmann factors to the different oscillator levels, giving a shift of 7 meV over

750 K. This is about three times larger than the shift of peak 2, but peak 2 contains

contributions from other phonon branches that are more harmonic. The flatness

near the bottom of the quartic potential and the relatively larger zero-level energy

cause large zero point displacements of F atoms. As a result, there is substantial

fluorine vibrations at zero temperature, which may be the explanation of non-

vanishing NTE even at 0.3 K. The anharmonicity is primarily a consequence of the

structure which also leads to NTE. Similarly, the NTE has contribution from both

implicit and explicit effects.

The frequency of a quartic oscillator depends on its amplitude. We obtain the

period from integration of the inverse velocity around a full cycle

τ =
∮ √

2md2

k(x4
max − x4)

dx
1
τ
= 4

+xmax∫
0

√
2md2

k(x4
max − x4)

dx (8.7)

Using the force constant k = 901 N/m from the fit to the frozen phonon calculation

(Fig. 8.12), and a maximum displacement xmax = 0.2 Å from MD simulations at

300 K, we find a frequency (τ−1) of 1.1 THz. Note that there is no simple relation
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Figure 8.13: Energy levels of the quartic phonon mode R4+ and its frozen phonon
potential

between vibrational frequency and energy levels similar to that for a harmonic

oscillator. As a comparison, for the same force constant, the harmonic vibrational

frequency of the F atom in the horizontal direction, towards and against the Sc

atoms, is 27 THz (111 meV).

Next we allow for displacements of the Sc atoms and NTE. When the F atom is

displaced transversely, the springs tend to pull the two Sc atoms together. The

average displacements x̄i of the F atoms at each energy level i were calculated

numerically using quantum quartic wavefunctions. The average displacement

x̄ at temperature was then calculated by weighting {x̄i} with level populations

from Boltzmann distributions. Assuming the Sc-F bond length changes little

with temperature, it is possible to calculate the thermal contraction of lattice

parameters. The result in Fig. 8.14 shows many features of the experimental

result of Greve [143], giving better agreement than the QHA. It should be noted

that this approach takes into account only two-thirds of the fluorine modes.

The phonon modes at the M point are similar to those at the R point, differing

only in the relative phase of the neighboring ScF6 octahedra shown in Fig. 8.12.
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Figure 8.14: Experimental [143] and calculated linear thermal expansion coeffi-
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Most of the results for phonons at the R point therefore pertain to phonons at

the M point as well.

Our frozen phonon calculations of modes with shape distortions of the oc-

tahedral ScF6 units, but with fixed Sc-Fe first-nearest neighbor (1nn) distances,

gave soft quadratic potentials, consistent with the Gaussian spread of F-atom

displacements. The rocking of undistorted ScF6 units about F-atom pivot points

(“rigid unit modes”) occurs without distortion of F-F 2nn distances, but these

modes exist only on lines in the Brillouin zone along the M-R directions (the edges

and corners of the cubic unit cell in reciprocal space). Nevertheless, with weak

quadratic components, there are cylindrical volumes around these lines where

the quartic potential dominates over the quadratic at modest temperatures. A full

frozen phonon calculation for each mode in the Brillouin zone is not practical, but

because these quartic modes caused the quasiharmonic calculations to predict

very large and negative Grüneisen parameters, it is possible to map where this

occurred in the Brillouin zone. We obtained a volume in the Brillouin zone by

setting an isosurface where the QHA Grüneisen parameters (γ) were more negative

than –5 (Fig. 8.15). The phonon modes inside the tubes of spheroids are the



188

Figure 8.15: Isosurface of Grüneisen parameter γ = −5 for phonon dispersion
branch 4+. The Γ point is at the center of the plot and R points are at centers
of the spheroids. Centers of neighboring spheroids are connected along M-R
directions.

ones that have substantial quartic terms in their potentials and contribute most

to the NTE. For example, the frozen phonon calculation for Z point (Fig. 8.5),

which is the midpoint between the M point (purely quartic mode potential) and

the X point (purely quadratic mode potential), is shown in Fig. 8.16. The frozen

phonon potential at the Z point has a substantial quartic term. For the R4+ modes

centered around M-R, approximately two thirds of the Brillouin zone is within this

anharmonic boundary, so there are a substantial number of modes with quartic

behavior in ScF3. The negative thermal expansion of ScF3 should be a weighted

combination of effects such as shown for the curves labeled QHA and quartic in

Fig. 8.14.

Although cubic ScF3 transforms to a rhombohedral phase at a pressure of 0.6

GPa and then to another structure at about 3 GPa [144], the cubic DO9 structure is

robust over a wide range of temperature at ambient pressure. The phase stability

could be explained by the large vibrational entropy from the large-amplitude

fluorine motions responsible for NTE. A full analysis requires information on the
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lattice dynamics of the competing phases, of course.

8.6 Conclusion

In summary, phonon DOS cures of ScF3 with the cubic DO9 structure were obtained

from inelastic neutron scattering experiments, and from first-principles density

functional theory calculations. The overall agreement between experiment and

computation was good, allowing the identification of the atom motions in different

parts of the phonon DOS. The geometry of the DO9 structure offers transverse

modes of F atom motion that are poorly constrained. These modes were found by

frozen phonon calculation to be nearly pure quartic oscillators. Their dynamics

are partly included in a quasiharmonic calculation of thermal expansion, which

predicts the negative thermal expansion (NTE) semi-quantitatively. We understand

the NTE of cubic ScF3 as originating from these large transverse displacements

of F atoms. Although the F atoms are confined to Sc neighbors by harmonic

forces, by geometry the transverse modes are quartic oscillators that stiffen with
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increased thermal vibrational amplitude. Meanwhile, the increased longitudinal

forces on the Sc atoms pull them together, causing NTE, and the increased length

of the Sc-F bonds cause longitudinal vibrations to soften with temperature.
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Chapter 9

Aluminum
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The thermal phonon broadening in aluminum was studied by theoretical and ex-

perimental methods. The majority of the theoretical work in this chapter was per-

formed by Xiaoli Tang. Using second-order perturbation theory, phonon linewidths

from the third-order anharmonicity were calculated from first-principles density

functional theory (DFT) with the supercell finite-displacement method. The im-

portance of all three-phonon processes were assessed, and individual phonon

broadenings are presented. The good agreement between calculations and prior

measurements of phonon linewidths at 300 K and new measurements of the

phonon density of states to 750 K indicates that the third-order phonon-phonon

interactions calculated from DFT can account for the lifetime broadenings of

phonons in aluminum to at least 80% of its melting temperature.

9.1 Introduction

The shortening of phonon lifetimes owing to phonon-phonon interactions is a

measure of lattice anharmonicity [10]. It is also closely related to nonequilibrium

excitations of phonons and their evolution towards the ground state [154]. The

method for calculating phonon lifetimes by perturbation theory has been known

for some time [30], but quantitative evaluations require accurate energies and po-

larizations for all phonons, and accurate anharmonic force constants. Third-order

anharmonic force constants are typically obtained from simple models consistent

with empirical anharmonic elastic constants or thermal expansion [155,156]. First

principles calculations of phonon linewidths have been performed with frozen

phonon methods [157], which also allow a relatively easy calculation of phonon

energy shifts [158,159]. More recent work on phonon lifetime broadening has

been based on density functional perturbation theory (DFPT) [160]. This approach

is often used for optical phonons [161–163], but only a few first-principles calcu-

lations have been performed for phonons outside the center of the Brillouin zone

(BZ) [164,165]. Recently, Tang and Dong [128,166] extended the direct super-cell

finite-displacement (SCFD) method to calculate the third-order anharmonicity
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tensor. While DFPT and frozen phonon methods are efficient for studying the

anharmonicity of a particular phonon, the SCFD method gives a direct evaluation

of force constants, and is more efficient for assessments of all phonons in the BZ.

Nevertheless, although ab-initio methods can often calculate harmonic phonon

dynamics with reasonable accuracy, including the anharmonicity is a greater risk,

and it is even less clear if three-phonon processes are sufficient to account for

phonon lifetime broadenings at elevated temperatures.

Aluminum, a simple metal well-suited for plane wave density functional theory

calculations, is a good test case for calculations of anharmonic effects. Phonon

dispersions and linewidths in aluminum were measured by neutron spectrome-

try [167] at 80 K and 300 K, and a few modes were studied at 800 K [168]. The

phonon density of states (DOS) was measured at temperatures to 775 K, showing a

surprisingly large broadening [149] but small energy shifts that seemed consistent

with conventional quasiharmonic behavior from thermal expansion. Some theoret-

ical studies [33,169,170] assessed the phonon broadening using model potentials.

Effects on phonons from the electron-phonon interaction were calculated within

DFPT [171], but at high temperatures the phonon-phonon interactions are more

important in aluminum [172,173].

Here we report results from an ab-initio study of the effects of three-phonon

processes on the lifetimes of all phonons in aluminum. We find excellent agree-

ment with experimental results on linewidths from triple-axis neutron scattering

measurements along high-symmetry directions [167]. We also performed new

measurements on the phonon DOS of aluminum at higher temperatures, and the

broadening of the neutron spectra are accounted for by the ab-initio calculations.

This demonstrates, first, that ab-initio methods are capable of predicting anhar-

monic effects, and second, that the anharmonic interactions in aluminum are

dominated by third-order phonon-phonon scattering processes to at least 80% of

the melting temperature. The dominant phonon-phonon scattering processes can

then be identified, and detailed variations of phonon linewidths with wavevector

~q and temperature are reported.
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9.2 Methods

9.2.1 Lattice-Dynamical Calculations

The phonon-phonon interaction is treated within second-order perturbation theory.

When only three-phonon scattering processes are considered, the basic scattering

processes are the annihilation of one phonon with the creation of two other

phonons (down-conversion), and the annihilation of two phonons with the creation

of one phonon (up-conversion). Simultaneous annihilations or creations of three

phonons are excluded because they violate energy conservation. The phonon

linewidth contributed from the leading third-order anharmonicity is [30,31]:

2Γ(~q, j) = π}
8N

∑
~q1j1,~q2j2

∆(~q + ~q1 + ~q2)×
|Φ(~qj; ~q1j1; ~q2j2)|2

ω(~q1j1)ω(~q2j2)ω(~qj)

×
[
(n1 +n2 + 1)δ(ω−ω1 −ω2)

+ 2(n1 −n2)δ(ω+ω1 −ω2)
]

(9.1)

where N is the number of unit cells, n is the Planck distribution function, ωi is

the phonon energy with wavevector ~qi and branch index ji, and Φ is the Fourier

transform of the third-order lattice anharmonic tensor. The first term in the

brace corresponds to a down-conversion process where the initial phonon of

frequency ω decays into two lower-energy phonons of ω1 and ω2. The second

term corresponds to a up-conversion process where an initial phonon of ω is

scattered by a thermal phononω1 into a phonon of higher energy (ω2). The ∆ and

δ functions ensure the conservation of crystal momentum and energy, respectively.

The sums extend over the first BZ. Full calculations of phonon widths therefore

require knowledge of harmonic lattice dynamics and all applicable third-order

anharmonicities. Harmonic lattice dynamics gives information of all one-phonon

states that are characterized by energies and polarization vectors, while the

anharmonic lattice tensor couples the one-phonon states and causes transitions

between them.
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The VASP software package [54] was used to calculate total energies and forces

with Blöchl’s projector-augmented wave pseudopotential [150] and planewave

basis set within the local density approximation to density functional theory

(DFT). The equilibrium structure was first determined by fitting energy-volume

relationship to the third-order Birch-Murnaghan equation of state. The computed

equilibrium lattice constants were approximately 1% less than the experimental val-

ues [174]. A Methfessel-Paxton smearing of 0.8 eV and a plane wave energy cutoff

of 380 eV gave well-converged total energies. Both harmonic and anharmonic lat-

tice dynamical properties were then obtained with a supercell finite-displacement

method [166,175]. Independent force constants for a 108-atom periodic supercell

were identified by the crystal symmetry, and the irreducible distorted supercell

configurations for the force calculations were determined. Both harmonic and

third-order anharmonic tensors were constructed based on the atomic forces that

were computed for all these irreducible, distorted, 108-atom supercell configura-

tions within DFT using a ~k-point sampling grid of 2× 2× 2 . Phonon linewidths

were finally calculated based on Eq. 9.1. A 24× 24× 24 ~q-point grid was found to

give well-converged results, and an additional 32× 32× 32 interpolation within

the prism around each ~q-point was used to more accurately account for energy

conservation.

9.2.2 Inelastic Neutron-Scattering Experiments

Aluminum metal of 99.99% purity was formed as cylinders with outer diame-

ter of 1.7 cm and total wall thickness of 0.06 cm, giving a ratio of multiply- to

singly-scattered neutrons of only 2%. Inelastic neutron scattering measurements

were performed with a time-of-flight Fermi chopper spectrometer, ARCS, at the

Spallation Neutron Source at Oak Ridge National Laboratory. The incident neutron

energy was 79.5 meV, and each measurement included a total of approximately

1.4×106 counts. For temperatures of 7, 100, 200, and 300 K, the sample was

mounted in a closed-cycle helium refrigerator. For temperatures of 300, 450, 600,
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Figure 9.1: Neutron scattering S(Q,E) from aluminum at 300 K. The vertical axis
of the color scale is linear in intensity.

and 750 K, the sample was mounted in a low-background, electrical-resistance

furnace designed for vacuum operation. Data reduction was performed with the

standard software package for the ARCS instrument, as described previously. [70]

The S(Q,E) for 300 K is shown in Fig. 9.1. The Q ranged from 0 to 14 Å−1, with a

bin width of 0.1 Å−1, and E ranged from –78.0 to 78.0 meV, with a bin width of

1.0 meV. The elastic peak was removed below 8.0 meV and replaced by a function

of energy determined from the inelastic scattering just past the elastic peak [149].

The phonon DOS curves were obtained after corrections for multiphonon and

multiple scattering, as described previously [149]. The averaging over all Q for a

given E will eliminate effects of coherent interference between single- and two-

phonon scattering. Compared to previous measurements on aluminum [149], the

increased neutron flux of ARCS made it possible to use thinner samples, which

greatly suppressed multiple scattering while achieving better statistics and energy

resolution.
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9.3 Results and Discussion

Figures 9.2a shows the calculated phonon energies along high-symmetry directions

with the phonon DOS at right. Figure 9.2b shows the corresponding phonon

linewidths of these high-symmetry modes. Both phonon energies and linewidths

are compared with results from triple-axis neutron scattering measurements [167].

The ~q-space distribution of phonon linewidths is seen more clearly on four high-

symmetry planes in Figs. 9.3a, 9.3b, and 9.3c. The longitudinal acoustic (LA)

phonons are generally much broader than the transverse acoustic (TA) phonons,

and the breadths of the LA phonons vary more strongly with wavevector. The

greatest broadening is for LA phonons near square surfaces centered at X, and

near hexagonal surfaces centered at L.

The scattering kinematics are given by the two-phonon DOS functions D1 and

D2, which are the BZ sums of second and first products of the δ and ∆ functions

in Eq. 9.1 [176]:

D1(i, q) = 1
N

∑
~q1,~q2,j1,j2

∆(~q − ~q1 − ~q2)δ(ω−ω1 −ω2), (9.2)

D2(i, q) = 1
N

∑
~q1,~q2,j1,j2

∆(~q + ~q1 − ~q2)δ(ω+ω1 −ω2), (9.3)

where D1 and D2 correspond to the down-conversion and up-conversion scatter-

ing processes, respectively. Figure 9.4 shows D1 and D2 along high-symmetry

directions. While TA phonons are mostly scattered by up-conversion processes,

LA phonons, especially short-wavelength ones, are mostly scattered by down-

conversions. The dominant decay channels for LA phonons are LA↔TA+TA (v

85%) and LA↔LA+TA (v 15%). Fewer down-conversion channels become avail-

able towards the zone center, and up-conversion channels start to open for LA

phonons at ~q-vectors where their energies are lower than some TA phonons. The

scattering channels change from LA↔LA–TA dominance to LA↔TA–TA dominance

when the ~q-vector approaches the zone center. Owing to the symmetry of the

scattering channels, the dominant scattering channels for transverse phonons
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are expected to be TA↔LA–TA. Near the zone center, processes like TA↔TA–TA

and TA↔LA–LA start to dominate. Large variations of the two-phonon density of

states, especially those of LA modes, are clearly responsible for the large variation

of phonon linewidth, as one can see by comparing Fig. 9.2b and 9.4.

Figure 9.5 shows the phonon linewidths at 300 K at all irreducible q-vectors

for the different phonon energies. Phonons in the high-energy region have a

much larger broadening than in the low-energy region. There is a splitting of the

linewidth distribution in the high-energy region, associated with LA phonons near

square and hexagonal surfaces of the Brillouin zone (evident from Fig. 9.3a). These

LA phonons are primarily scattered by down-conversion into two TA phonons
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Figure 9.5: Distribution of phonon broadenings versus phonon energy at 300 K
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(Fig. 9.4). The LA phonons with wavevectors near the square surface of the BZ

have shorter lifetimes because there are more TA phonons available kinematically

for their decay (note the similarity of the LA panels in Fig. 9.2b and Fig. 9.4).

The LA phonons with wavevectors near the square surfaces decay into two TA

phonons that are both in the middle-energy range where the DOS is high, but

the LA phonons with wavevectors near hexagonal surfaces can decay into only

one TA phonons in the middle energy range—the other TA phonon falls in the

low-energy range near the zone center where the DOS is much lower.

To obtain the overall effect of phonon broadening on the phonon DOS, the

linewidths of all the phonons at irreducible ~q-points on a 24 × 24 × 24 ~q-grid

were calculated from 0 K to 900 K. Phonon linewidths increase with temperature

owing to phonon occupation numbers in Eq. 9.1, but different phonons broaden

with temperature at different rates. Phonon DOS curves at a given temperature,

g(E, T), were calculated by considering the phonon broadening from third-order

anharmonicity, and the phonon shifts caused by thermal expansion in the quasi-

harmonic approximation. The energy lineshape of each phonon was modeled as
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a damped harmonic oscillator [14]

g(E, T) =
∫
(B(E, E′, T )g(E′ −4E′(T))dE′ , (9.4)

where the damped harmonic oscillator function is

B(E, E′, T ) = 2Γ ′

(πE′E)[( EE′ −
E′
E )2 + (

2Γ ′
E′ )2]

, (9.5)

and the energy shift is

4E′ = E′
[

exp

(
−3γ

∫ T
0
α(T ′)dT ′

)
− 1

]
, (9.6)

where the mode Grüneisen parameter γ was calculated as d lnω/d lnV , and the

coefficient of linear thermal expansion α was evaluated with an empirical relation

between thermal expansion and heat capacity for aluminum. [177]

Figure 9.6 compares the calculated and measured phonon DOS curves. There

is a significant broadening of the phonon DOS at higher temperatures, and the

broader peak around 37 meV indicates that LA phonons decay faster than TA

phonons. The large broadening of these LA phonons gives a prominent tail that

extends to higher energies. The overall trend of a larger broadening of LA than TA

phonons is in good agreement between computation and experiment. The good

agreement between the quasiharmonic phonon shift due to thermal expansion and

experiment suggest that the higher-order anharmonicity corrections to the phonon

shifts are likely to be small. It is unlikely that the shifts from the third-order and

fourth-order anharmonicity are canceling for all phonons in the BZ.

The overall agreement between computation and experiment is good, but there

are discrepancies. Some may be associated with the accuracy of the DFT method

for calculating the anharmonicity tensor, or from the limitations of perturbation

theory when including only third-order phonon-phonon interactions. The lifetime

broadening should, in principle, be calculated with phonons for a crystal volume

corresponding to each temperature of interest. However, using phonons calculated
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for an expanded crystal at 600 K altered the results for most phonon lifetimes by

less than 1%, and 5% for near-zone boundary modes. A major discrepancy comes

from the limitations of the analysis of the experimental broadenings when the

phonon linewidth is comparable to the energy resolution of the instrument. In

principle, the phonon linewidth must approach zero as q goes to zero, and this

trend is not seen in the experimental data of Fig. 9.2b.

9.4 Conclusions

In summary, the linewidths of all phonons in aluminum were obtained from first-

principles density functional theory with methods using interacting phonon theory

in second-order perturbation theory. The good agreement between the calculated

phonon linewidths and previous linewidth measurements at 300 K, and the shapes

of the phonon DOS curves to 750 K, not only demonstrate that our method can

successfully predict the anharmonicity tensor with DFT, but also indicate that
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the third-order phonon-phonon interactions are primarily responsible for the

lifetime broadening of phonons in aluminum to approximately 80% of its melting

temperature. The most anharmonic phonons in aluminum are found to be those

LA phonons near square and hexagonal surfaces of the first Brillouin zone. The

major scattering channels for these LA phonons are their decay into two TA

phonons. At lower ~q, the kinematics favor the up-conversion of both LA phonons

and TA phonons. Because the phonon dispersions of FCC metals tend to be

similar, phonon lifetimes show similar systematics for other FCC metals, such

as the nobel metals, although the ~q of the most anharmonic LA phonons will

differ somewhat. [178] We look forward to more extensive applications of these

computational methods to account for the effects of phonon-phonon interaction in

anharmonic solids, thereby isolating nonharmonic effects from adiabatic electron

phonon interactions, for example.
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Part VI

Future Work
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Chapter 10

Progress in Phonon Anharmonicity
and Future Work

The Raman spectroscopy studies of Γ phonons in hafnia and zirconia left some in-

teresting ideas. Contrary to popular wisdom that a single macroscopic Grüneisen

can approximately describe the phonon energy dependence on lattice volume, the

physical picture proves more complicated. Due to the relatively low symmetry

of these oxides, the microscopic Grüneisen parameters vary widely for different

phonon modes, and change sign. Although averaged effects on macroscopic

properties may seem consistent with quasiharmonic behavior, a significant frac-

tion of the phonon modes are indeed quite anharmonic. Similar behaviors are

expected for the majority of ionic compounds, especially those with low-symmetry

structures. Follow-up studies on titania and cassiterite further confirmed the

importance of mode geometry on the mode anharmonicity. Also, the discrep-

ancy between the temperature and pressure Grüneisen parameters is surprisingly

large, suggesting different mechanism for intrinsic and extrinsic anharmonicity.

Previous studies have largely neglected these effects, and further exploration will

advance the understanding of phonons and vibrational entropy.

Large anharmonicities of some phonon modes may not show up in macroscopic

thermodynamical properties, as has been the case for hafnia and zirconia, but

the case is quite different for other materials. In scandium fluoride, two phonon

modes involving the transverse fluorine motions are purely quartic at some
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high symmetry points in the Brillouin zone (BZ), and in more than two-thirds

of the BZ, they also have large quartic components in their phonon potentials.

These quartic modes result in the thermal stiffening of some low-energy phonons,

and more dramatically an enormous isotropic negative thermal expansion over a

temperature range 1100 K. Additionally, the vibrational entropy contribution from

these phonon modes helps stabilize the delicate (open framework) cubic phase

up to the melting point. Phonon anharmonicities, even from only a few phonon

modes, have the potential in determining some macroscopic thermodynamical

properties, such as negative thermal expansion, phase stability, and thermal

transport. Besides the scientific interest, understanding phonon anharmonicities

can benefit materials engineering and applications.

A wide range of energy-related challenges require materials with thermal

transport properties tailored to specific applications. For energy production,

there is a need to better understand thermal transport in nuclear fuels containing

physical and chemical defects. For energy consumption, better thermal barrier

coatings can improve fuel efficiencies of internal combustion and jet engines. For

waste-heat harvesting, the development of improved thermoelectric compounds

is limited by compromising between electrical and thermal transport properties.

With the development of three-dimension silicon chips and increased leakage

current owing to reduced component size, modern electronics are becoming

progressively more energy intensive, making effective cooling a daunting task. All

these challenges create a continuous pursuit of materials with improved thermal

transport properties.

Most engineering applications require either good thermal conductors or good

thermal insulators. Unlike electrical conductivity, which spans twenty orders of

magnitude, thermal conductivity only ranges from about 0.01 to 1000 W/(m·K).

For “good” metals and many semiconductors, the conduction electrons dominate

thermal transport, but in most other systems, including some of the best thermal

conductors and insulators, thermal transport by phonons is the main mechanism.

Traditionally, phonon-related heat transport problems are solved using the phonon
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mean-free-path approximation, but the phonon Boltzmann transport equation

is becoming more common. This approach requires a detailed understanding

of phonon scattering, including phonon-phonon, phonon-defect, and phonon-

boundary processes. As a result, it is increasingly difficult to model large-scale

systems, in which effects of grain size, interfaces, and disorders cannot be ignored.

Anharmonic phonon-phonon scattering is the key to a better understanding

of thermal transport. While Raman spectroscopy has high energy resolution and

gives insight into the rich variety of the phonon anharmonic effect in complex

structures, it has access to only some of the optical phonon modes at the center

of the Brillouin zone. For a more complete study of anharmonicity, neutron

scattering studies using a time-of-flight or a triple-axis instrument are necessary.

Time-of-flight inelastic neutron scattering is the ideal tool to capture the overall

phonon DOS and its temperature dependence. Aside from the phonon frequency

shift, which is typically used to understand vibrational thermodynamics, high

resolution measurements of phonon energy broadening allow for an assessment

of the origin of the anharmonic behavior. Heat is transported mostly by long-

wavelength longitudinal modes, and thus it is important to examine trends in the

phonons at low energies. The cold neutron spectrometer may be a better tool for

detailed phonon linewidth studies of phonon dispersions at lower energies.

One of the projects in progress is an anharmonicity study of alkaline earth

metal oxides (MgO, CaO, SrO, and BaO). The thermal transport properties of these

materials are very important for geophysics, and theoretical calculations of the

phonon anharmonicities due to phonon-phonon coupling are available. It is also

interesting to study the change of anharmonicity from size effects and differences

in chemical environments. The TOF inelastic neutron scattering measurements

on these materials up to 1300 K were successfully performed with the ARCS

spectrometer, and the initial results have very good quality and show interesting

trends. Large, high-quality single crystals are readily available for many of the

metal oxides, such as MgO and Al2O3. They are ideal subjects for studies of

phonon anharmonicity with triple-axis neutron spectrometers.
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Ongoing studies on transition-metal oxides, such as hafnia, zirconia, and yttria-

stabilized zirconia (YSZ), which play vital roles in batteries and photovoltaics,

will not only improve the understandings of their phonon behavior and thermal

transport but also of other transport properties, such as ionic conductivity. YSZ

is the top candidate for thermal barrier coating applications due to its high bulk

modulus, high melting temperature, and surprisingly low thermal conductivity.

YSZ has a slight increase of thermal conduction at higher temperature where

oxygen vacancies may play the dominant role in transport properties. The phonon

DOS of these materials up to 1300 K were obtained by inelastic neutron scattering,

and the analysis is in progress.

Among other materials of interest, carbon materials include some of the best

thermal conductors and insulators. Although graphite and graphene have metal-

like properties, their heat conduction is generally dominated by phonons and can

be tuned by disorders, defects, and grain size. Phonon anharmonicity also plays

an important role in the negative thermal expansion of graphene. Another subject

of interest are materials with anisotropic thermal properties, such as tungsten

selenide. The highly anisotropic structure in tungsten selenide is believed to

produce flat phonon dispersions along one axis, resulting in a slow sound velocity

and a significant reduction (1/30) in thermal conductivity along this direction.

It is possible that materials with similar structural characteristics will reduce

heat conduction in a desired direction while providing good electric conductivity,

making them ideal thermoelectrics. One example is oxide-based thermoelectric

materials, which have the advantage of superior thermal stability.

With the advent of large computer clusters, first principles density functional

theory is now able to accurately calculate phonon linewidths from phonon-phonon

coupling using interacting phonon theory in second-order perturbation theory.

Our recent calculations in aluminum show good agreement between calculated

phonon linewidth and experimental results. In order to address the discrepancy

between the theory and experiment at low Q values, and to examine the temper-

ature effects, a triple-axis experiment was performed to measure the phonon
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linewidth in an Al single crystal along high symmetry directions at 7, 300, 450,

and 600 K. The data analysis is currently in progress.

The calculation of phonon linewidths also proves helpful for sorting out the

electron-phonon interactions in materials. By subtracting the contribution of

phonon-phonon interactions from the total phonon linewidth, it is possible to

isolate the electron-phonon effects. Pd and Pt metals are similar electronically,

but differ in the strengths of their electron-phonon interactions. Our group has

recently shown large effects of the adiabatic EPI on the temperature dependence

of phonons in V metal [1], which has an EPI not much bigger than that of Pd. Older

work by Brockhouse and colleagues [179] reported the temperature dependence of

Kohn anomalies in Pd and Pt, and these effects on the transverse phonon branches

seem big enough to be important to the thermodynamics of Pd and Pt at elevated

temperatures. To address these questions, the temperature dependence of the

phonon DOS of Pd and Pt to 1600 K were measured with the ARCS spectrometer.

It was a successful experiment, although the requirement for a very high sample

temperature made it difficult. The measured phonon DOS were clean, and the

temperature effects on phonon energy and linewidth were well quantified. Further

computational analysis is still in progress.

First-principles molecular dynamics, also made practical only recently, is an

intrinsically better representation of real materials than traditional phonon cal-

culations at zero temperature. When executed well, this method provides the

most complete and accurate information about the system (within the limit of

density functional theory) including all thermodynamic properties. This is crucial

for anharmonicity studies because extrinsic anharmonic effects will be missed

otherwise. With knowledge of the phonon dynamics, bulk thermal conductivity

can be calculated using the Boltzmann transport equation or Monte Carlo sim-

ulations. A multiple-scale simulation is necessary to address fully the thermal

transport properties in real materials because interfaces must be modeled at a

macro scale with acoustic mismatch or diffusion. Experimentally, the laser flash

and pump-probe reflectivity techniques are mature and reliable to measure the
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thermal conductivity in materials, especially for high-quality samples such as

single crystals. A comparison between simulation and experiment will not only

help to better understand the widely used materials, but may also help to improve

them and develop new ones for various energy applications.

Phonon anharmonicity and the related vibrational entropy are often crucial

for phase stability. For alloys of Cu and Zr, a peculiar B2 phase (CuZr) exists in

equilibrium only at high temperatures, and it undergoes a eutectoid transforma-

tion below 715◦C to two other intermetallic compounds of lower symmetry, so it

must have relatively high entropy. Almost certainly there is some stabilization of

this phase at high temperatures, owing to its vibrational entropy being greater

than the lower-symmetry phases. This is unexpected and of great interest for

study. Meanwhile, 50/50 CuZr easily forms metallic glass, and a dynamical study

of the phonons through the glass transformation could also be interesting.
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Ordered by the year of publication:
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cubic ScF3, Physical Review Letters, 107, 195504 (2011)

J. A. Muñoz, M. S. Lucas, O. Delaire, M. L. Winterrose, L. Mauger, Chen W. Li,

A. O. Sheets, M. B. Stone, D. L. Abernathy, Y. Xiao, P. Chow, and B. Fultz, Positive

vibrational entropy of chemical ordering in FeV, Physical Review Letters, 107,

115501 (2011)

N. D. Markovskiy, J. A. Muoz, M. S. Lucas, Chen W. Li, O. Delaire, M. B. Stone , D. L.
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Physical Review B, 83, 174301, (2011)
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Thickness
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When planning for a TOF inelastic neutron-scattering experiment, one of the

first things to consider is the amount of the sample to use. There are cases in

which one has to use whatever is available. For example, the sample may be

extremely expensive, so only a small amount is available, or the sample may be a

single crystal. But most of the time it is possible choose a good compromise that

minimizes multiple scattering while making good use of the available neutrons.

The neutron-scattering cross sections for coherent scattering, incoherent

scattering, and absorption are available in many databases, such as the website of

NCNR. [67] The common unit for these cross-sections is the barn, which is 10−28m2.

The numbers are usually single- or two-digit, although some isotopes may have

absorption cross sections of thousands of barns. These cross sections are actually

quite small for most elements (different for isotopes) because a neutron has no

charge and can only be scattered by nuclei through the strong force, which has

a very short range. Samples with any element with an absorption cross section

larger than 10 barn may suggest a problem, although sometimes an isotope can

be used instead. For example, natural Boron has two isotopes: 10B (20%) and 11B

(80%), and 10B has a absorption cross section of 3836 barn. Any sample with

a significant B concentration is hopeless for TOF inelastic neutron scattering.

However, 11B has almost no absorption (0.0055 barn), so the sample made with

highly concentrated 11B (modestly expensive) will work.

For a relatively thin sample, it is a good approximation that the scattered

fraction (fscatt) equals the ratio of the sum of all the total scattering (coherent plus

incoherent) cross sections of the atoms in the neutron beam (σi) to the physical

cross section of the sample in the neutron beam (A)

fscatt =

∑
i
σi

A
. (B.1)

Assume the sample has an even thickness of d, a density of ρ, and a molar

mass of M =
∑
j
njMj , where Mj and nj are the molar mass and quantities of the

jth element in the chemical formula, the number of jth atom in the neutron beam
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is

Nj =
dAρnjNA

M
, (B.2)

and where NA is the Avogadro constant. The the scattered fraction is

fscatt =

∑
j
σjNj

A
= dρNA

M

∑
j

σjnj, (B.3)

where σj is the total scattering cross section of the jth element.

The result (Eq. B.3) is intuitive. The scattering fraction is proportional to the

thickness, density, and atom-weighted total cross section of the material. For a

5% ∼ 10% scattering cross section, as discussed in Section 4.3.5, and a neutron

beam size of 5×5 cm2 (the ARCS spectrometer), a typical sample needs and weigh

somewhere between a few grams to a few hundred grams. This is sometimes

one of the major obstacles of TOF inelastic neutron scattering, because a large

amount of sample can be prohibitively expensive or challenging to make.

There are also a few other things to be considered when planning the sample.

Firstly, the sample is usually placed at 45 degrees to the neutron beam to avoid

casting the “dark angle” onto the detectors. This does not alter the required

sample amount but does change the thickness and shape of the sample. Secondly,

the sample environment may need to be taken into account, especially when it

produces a large background. It is not a good idea to have the overall signal

dominated by the neutrons scattered from the sample environment, but it is even

worse if there is double scattering from both sample and sample environment. The

latter will cause significant troubles for the multiphonon and multiple scattering

corrections. Lastly, when a sample can is used, it is hard to estimate an average

sample thickness. In those cases, it is always a good idea to use less sample,

especially if the background is low.
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Folding Sample Sachet
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2 2

1

3 3
4 4

*

Figure C.1: Fold a sample sachet from one piece of foil. Follow the numbers and
fold at the dashed lines, then cut off excessive pieces on the top. The thick side
edges need to be shielded by a neutron-absorbing BN frame. It may be a good
idea to slightly shift the part marked by the red arrow to avoid breaking brittle
metal foil.
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