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Abstract 

This thesis is concerned with aspects of quantum effective field theories, effective 

actions, and their applications. New spin-flavor symmetries of the strong interactions, 

which arise in the limit of very large quark masses, can be incorporated into a heavy 

quark effective field theory (HQEFT). A general method for deriving the effective 

Lagrangian of this theory to any order in 1/mq (where mq is the heavy quark mass) 

is developed; it is used to calculate terms up to order 1/m~. The renormalization of 

terms in the Lagrangian to order 1/m~ is p erformed. Such operators break these new 

symmetries and consequent ly are important corrections to the leading-order predic­

tions. HQEFT can be combined with chiral perturbation theory into a heavy meson 

chiral perturbation theory (HMChPT) which describes the low-momentum interac­

t ions of hadrons containing a heavy quark with pseudo-Goldstone bosons. HMChPT 

is used to investigate the semi-leptonic four-body decay of B and D mesons into final 

states with at least one Goldstone boson. Such processes may be ut ilized to test 

the above heavy quark symmetries. The remainder of this dissertation deals with the 

evaluation of effective actions and their implications. A method to efficiently compute 

the one-loop effective action at zero and finite t emperatures is elucidated. In a first 

order cosmological phase transition, the decay rate and the temperature at which it 

occurs depends on the free energy of a critical bubble configuration. Since this free 

energy is related to the effective action but is usually approximated with an effective 

potential, the calculational method developed above is used to study the validity of 

of this approximation. The corrections are found to be important for quantitative 

work. 
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1. INTRODUCTION 

The formulation of the theory of relativity and quantum theory has revolution­

ized theoretical physics in the twentieth century. The theory of general relativity has 

been an amazingly successful description of gravitation and astrophysical processes 

that take place over large scales. On the other hand, the synthesis of the principles of 

special relativity and quantum theory gave rise to relativistic quantum field theories. 

Subsequent investigations of quantum field theories have led to a much more profound 

understanding of microscopic processes and has culminated in a theory known as the 

standard model of elementary particle physics. The standard model encompasses all 

known non-gravitational interactions in a quantum field theoretic framework which 

incorporates gauge symmetry: the strong interactions are described by the theory of 

quantum chromodynamics (QCD) based on the SU(3)c gauge group, and the weak 

and electromagnetic interactions are unified into an electroweak theory which respects 

the gauge group SU(2)L x U(l)y. This theory has provided a strikingly accurate 

description of sub-atomic phenomena over the large range of energies explored by 

experiments. Hence, relativity theory and quantum theory which describe processes 

ranging from those in the astoundingly large cosmos of the galaxies to the vanishingly 

small world inside the atom, can be considered a triumph in the human endeavor to 

understand the Universe. 

Although the standard model has been tremendously successful in accounting 

for an impressively broad variety of phenomena, it is still not wholly satisfactory, 

nevertheless, because a number of open questions remain. For instance, the genera­

tion of quark masses requires a fundamental scalar Higgs particle which has serious 

theoretical deficiencies. Perhaps more importantly from a pragmatic point of view, 

there are a large number of undetermined parameters in the theory: the masses of the 

fundamental particles, the angles in the Cabibbo-Kobayashi-Maskawa (CKM) matrix 

which determine the mixing of the mass eigenstates of quarks in the weak interactions, 

as well as the gauge couplings. These problems may be an indication that there exists 

a more fundamental and complete theory. A better understanding of the underlying 

physics would clearly require a determination of such quantities. In particular, an 

obvious way to investigate the quark mixing matrix elements is to study the weak 
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decays of hadrons. Such processes would not only shed light on the nature of quark 

mixing but also on a poorly understood aspect of the strong interactions - namely 

the non-perturbative long-distance forces at low energies which confine quarks and 

gluons into bound states of hadrons. Indeed, complementary information of this form 

would be needed to determine the unknown parameters. 

There is another reason for studying the weak decays of hadrons. Charge con­

jugation and parity (CP) violation has been observed only in the !{0
- -k.0 system 

although it also expected to occur elsewhere. The only source of C P violation in the 

minimal standard model is from a complex phase in the CKM matrix. Extensions 

of this model typically have additional C P violating complex couplings between the 

Higgs sector, fermions, and possibly other particles in the theory. Therefore the search 

for and measurement of C P-asymmetries in weak decays would allow the possibility 

of distinguishing between standard and non-standard model physics when the CKM 

matrix elements have been determined with sufficient accuracy. It would also con­

strain extensions of the standard model which address the family problem. Finally, 

the investigation of rare weak processes are also good probes of departures from the 

standard model because they start at one-loop order. 

In order to proceed with this program, it is thus necessary to determine the 

standard model predictions of weak hadronic processes in terms of standard model 

parameters. Unfortunately, such an enterprise necessarily entails an evaluation of 

hadronic matrix elements at low energies where the strong interactions invalidate a 

perturbative treatment, and thus depriving us of the only analytical tool available for 

such investigations. While it is possible to calculate hadronic properties using bound 

state models, such models are based in part on unjustified, often naive, assumptions 

and consequently are unconnected to the underlying theory of QCD. 

There is actually a non-perturbative method available, namely lattice QCD. 

However, this approach suffers from two major problems: firstly, it does not convey 

much physical insight, and secondly, current limitations on computing power prevent 

it from being used in realistic systems involving dynamical fermions. Nonetheless, it 

provides complementary information unobtainable from perturbative methods which 

may contribute to a more comprehensive understanding of hadronic systems. 

A lack of understanding of the strong interactions dynamics in the low energy 
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regime makes an analytical approach so intractable that reliable predictions are often 

only possible through the use of symmetries of the theory. A well-known example 

is the SU(3)L x SU(3)R chiral symmetry which arises when the light current quark 

masses are considerably smaller than the intrinsic mass scale of the strong interactions. 

By exploiting this symmetry, a significant number of predictions relating processes 

involving light hadrons have been derived. 

A few years ago, analogous symmetries which arise in the opposite limit of large 

quark masses were discovered.[l] The incorporation of these heavy quark symmetries 

into an heavy quark effective field theory (HQEFT) has allowed model-independent 

predictions for processes involving hadrons containing a single heavy quark to be 

made. This formalism may ultimately provide a means of comparing experimental 

results directly with rigorous QCD-based calculations without recourse to ad hoc 

models. 

In the following chapter, the physical basis of these new heavy quark symmetries 

and how they are formulated in HQEFT from QCD as a systematic perturbative 

expansion are elucidated. HQEFT is a valid description of heavy quarks in a low­

energy kinematic region. Chapters 3 and 4 extend this formalism to include the low­

momentum interactions of hadrons containing a heavy quark with pseudo-Goldstone 

bosons. 

In addition to the inadequacies pointed out above in our understanding of the 

microworld, another mystifying puzzle is how the great predominance of matter over 

anti-matter was generated. With the advent of grand unified theories (GUT), baryon 

number is no longer conserved, which opens up the possibility of generating this 

asymmetry dynamically. Baryon number violating processes are certainly expected to 

have been prolific in the early universe. However, such processes could have have taken 

place all the way from the time of the Big Bang, through the GUT era down to the 

electroweak scale. So a primordial baryon asymmetry created at the GUT scale could 

have been drastically altered by the subsequent electroweak phase transition. There 

are also a number of problems associated with GUTs; for instance, while proton decay 

is predicted by such theories, no positive evidence for this process has been found thus 

far in spite of extensive efforts. It is then natural to consider the electroweak phase 

transition and investigate the role it may have played in determining the observed 
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asymmetry. 

There are several conditions which must be satisfied in order for baryogenesis to 

take place: 

( 1) There are baryon-number non-conserving processes. 

(2) C (charge conjugation symmetry) and C P (product of charge conjugat ion sym­

metry and parity) are violated. 

(3) There must be a departure from thermal equilibrium in the universe, because at 

thermal equilibrium, the numbers of baryons and anti-baryons are equal. 

Since the electroweak interaction within the context of the standard model is rel­

atively well understood (which is not true of physics at the GUT scale), it is important 

to investigate the prospects of the electroweak phase transition for baryogenesis. The 

standard model already meets some of the conditions given above. Firstly, there is a 

known source of baryon number violation in the standard model: baryon number is 

only a classical symmetry of the Lagrangian; the quantum theory develops an axial 

vector anomaly which violates baryon number through purely quantum mechanical, 

non-perturbative effects. Today, at zero temperature, such processes can only occur 

via instanton-induced barrier tunnelling which suppresses it to such an extent that 

it essentially never happens. However, the phase transition took place at finite tem­

perature where thermal fluctuations over the barrier could have occurred. Secondly, 

both C and C P non-conservation have been observed to occur. Note that the mea­

surement of C P violation described above aids in this study as well. (Although the 

amount of C P violation expected in the minimal standard model is not expected to 

be sufficient, additional contributions arise in extended models which can be con­

strained, conversely, by baryogenesis.) Finally, the standard electroweak theory will 

involve out-of-equilibrium behavior if the phase transition is first order. In such a 

transition, the field is trapped in a meta-stable vacuum which is separated from the 

true vacuum by an energy barrier. The transition proceeds through barrier pene­

tration at zero temperature while thermal fluctuations that carry the field over the 

barrier are also possible at finite temperature. This mechanism corresponds to the 

nucleation of true vacuum bubbles in the surrounding false vacuum sea. Some of these 

bubbles subsequently expand and coalesce, thereby completing the transition. The 

time scale of the non-equilibrium processes in such a transition is characterized by the 
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bubble nucleation rate or the decay rate of the meta-stable vacuum. Thus, to better 

understand this phase transition, it is clear that an accurate determination of this 

nucleation rate and the temperature at which the transition took place is necessary. 

Chapters 5 and 6 of this thesis are devoted to a study of this process. The 

accurate determination of both the decay rate and the transition temperature involves 

the calculation of the free energy of an extremal bubble configuration. This procedure 

requires not just an evaluation of the effective potential for the theory, but rather 

the effective action which includes derivative corrections as well. In Chapter 5, a 

general method for evaluating the one-loop effective action of a (scalar) field theory, 

which may have a non-convex classical potential, at zero and finite temperature is 

presented. This method involves a one-loop computation about a non-perturbatively 

determined classical solution. In Chapter 6, this method is utilized in the analysis 

of the nucleation rate in a generic first-order phase transition. While the motivation 

for this investigation originates from the electroweak phase transition, this formalism 

is valid for any first-order transition. In particular, it is applicable to another phase 

transition of great cosmological interest - the inflationary transition which is thought 

to be (weakly) first order. 
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2. THE HEAVY QUARK EFFECTIVE FIELD THEORY 

2.1. NEW SYMMETRIES IN THE STRONG INTERACTIONS 

OF HEAVY QUARKS 

The physical basis for why the strong interactions of systems containing heavy 

quarks is simpler can be easily understood. QCD, the theory of the strong inter­

actions, is a non-Abelian gauge theory which is asymptotically free. The strong 

interactions are characterized by a scale Aqco which has a value of approximately a 

few hundred MeV. This scale divides the strong and weak coupling regimes: at short 

distances, or equivalently, momenta much greater than Aqco' the effective strong 

coupling g. is small, and the force is weak so that a perturbative analysis is valid; 

at long distances, or momenta much less than AQco, the effective coupling becomes 

strong and is responsible for the confinement of quarks and gluons into hadronic 

bound states. Hence, it is natural to define a heavy quark to be one with mass 

mQ :?> AQco · In a hadron containing a single heavy quark, its size is determined by 

the confinement scaleR"' 1/ AQcD' and the typical momenta exchanged by the light 

degrees of freedom (light quarks, anti-quarks or gluons) is of order Aqco . The inter­

action scale of the heavy quark is given by its Compton wavelength which is much 

less than the confinement scale: ,\Q "' 1/ mQ ~ 1/ A QeD. This relation means that in 

the heavy quark limit where its mass becomes infinite, the light degrees of freedom 

cannot resolve the structure of t he heavy quark so that their interactions are inde­

pendent of the heavy mass and consequently flavor. To the light degrees of freedom, 

the heavy quark will only appear as a static color source which manifests itself as a 

long-distance confining color force (independent of the mass) . Furthermore, the color 

magnetic force, which arises from relativistic effects, vanishes when the heavy quark 

mass approaches infinity. Since it is only through the color magnetic field that the 

spin of the light degrees of freedom couple to the heavy quark spin, this indicates that 

the heavy spin decouples in the infinite mass limit. As a result, the low-momentum 

strong interactions of hadrons containing a heavy quark have a spin-flavor symmetry. 

It is important to note, however, that this heavy quark symmetry (HQS) is not 

a symmetry (or even an approximate one) of the QCD Lagrangian, but rather a 

symmetry of the effective field theory HQEFT which is a very good approximation of 
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QCD in a certain kinematic region. It is realized when the heavy quark interacts with 

light degrees of freedom that have momenta less than or on the order of Aqco. (The 

interaction of heavy quarks with hard gluons can be treated using perturbative QCD, 

of course.) In this regime, the heavy quark is almost on-shell, and its momentum can 

be written as PQ = mqvi-L + k~-L, where vi-L is the velocity of the heavy quark and kJJ- is 

a "residual" momentum that is of order Aqco and represents the amount by which 

the quark is off-shell. Changes in vll are suppressed by ki-L /mq "" AQco/mq which 

vanishes as mq goes to infinity. Hence the velocity is no longer a dynamical quantity 

but satisfies a super-selection rule: in the infinite quark mass limit, the velocity of the 

heavy quark is conserved in low-momentum strong interactions. In hadrons consisting 

of more than one heavy quark, the heavy particles can exchange momenta of order 

the heavy mass and consequently the velocity super-selection rule no longer holds. 

It is this limitation which restricts most applications of heavy quark symmetry to 

systems containing a single quark. Indeed, in the remainder of this thesis, the term 

"heavy hadron" will be restricted to mean a hadron containing a single heavy quark, 

unless stated otherwise. 

For large but finite quark masses, these heavy quark symmetries are approximate, 

and corrections of order Aqco/mq arise. However, the condition mq ~ AQCD is 

both necessary and sufficient for systems containing such a quark to be close to the 

symmetry limit. 

The HQEFT embodies these observations into a field theoretic framework which 

is especially useful for performing calculations. In particular, it quantifies the large 

quark mass limit into a systematic perturbative expansion in powers of Aqco/mq. 

At each order in this expansion, QCD is included as an expansion to all orders in 

the effective strong coupling. Thus, results derived from HQEFT are based on a 

well-defined limit of QCD and are also model-independent. Furthermore, symmetry­

breaking corrections can be investigated systematically. To see how this is done 

requires the HQEFT Lagrangian which will be derived in the next section. 

The six quarks u, d, s, c, b, t in the standard model can be divided naturally into 

two triplets based on their masses. The light quarks u, d, s with masses much less than 

the QCD scale (mu ~ 0.005GeV,md ~ 0.01GeV,m
5 
~ 0.15GeV) which give rise to 

an approximate SU(3) flavor symmetry, and the heavy quarks c, b, t with masses much 
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greater than Aqco (me~ 1.8 GeV, mb ~ 5.2 GeV, mt ~ 174 GeV) . While in principle 

the applicability of the heavy quark symmetries improve as the quark mass increases 

above the QCD scale, there is actually a limitation on how heavy the quark can be: 

very massive quarks are so short-lived that they will likely decay weakly before they 

can hadronize. So ironically, while the t quark is the heaviest of all quarks , HQS is 

not expected to be very useful for describing its properties. 

2.2. DERIVATION OF THE HEAVY QUARK EFFECTIVE FIELD 

THEORY LAGRANGIAN 

The HQEFT Lagrangian will be derived from the part of the QCD Lagrangian 

involving the heavy quark fields, and for the moment it suffices to consider only one 

heavy flavor: 1 

£H,QCD = 7f;(if/J - m)~, (2.2.1) 

where ~ is the QCD quark field, and flJL is the gauge-covariant derivative is defined 

as 

with 

in which G~v is the gluon field tensor and ya is the color SU(3) generator. Since light 

quark fields do not arise in this chapter, for notational simplicity, the heavy quark 

mass will hereafter be denoted by m. Since the HQEFT velocity superselection rule 

imposes the condition that the velocity of a heavy quark is conserved unless there is a 

non-QCD operator, such as a weak current or other source, that creates or annihilates 

heavy quarks,[z] heavy quark fields at different velocities correspond to distinct fields. 

Hence one introduces the heavy quark field hv at a particular velocity vJL: 

(2.2.2) 

where the fields ht and h;; are defined by 

(2.2.3) 

1 Based in part on C.L.Y. Lee, CALT-68-1663. 



9 

The heavy quark and heavy anti-quark fields in HQEFT are different distinct fields 

which are separated by 2m in momentum space. So to leading order in the heavy 

quark limit ( m -+ oo ), they are separated infinitely far apart and hence are effectively 

decoupled. Thus heavy quark and anti-quark production is suppressed in the low­

energy regime where HQEFT is valid. Hence heavy quark fields are related to only 

the positive component of the QCD quark field 'lj; by 

'lj; = e -imv·X hV (2.2.4) 

while for heavy anti-quark fields the relation is 

(2.2 .. 5) 

with 

(2.2.6) 

and 

(2.2. 7) 

Note that since the negative-energy component of 'lj; which creates or annihilates 

anti-quarks has been projected away in eq. (2.2.4), and similarly the positive-energy 

component has been eliminated in eq. (2.2.5), there is no heavy quark-antiquark­

gluon coupling in HQEFT. Furthermore, since only heavy quarks arise in the following 

discussion, this derivation will be limited to heavy quark fields; however, the extension 

to include heavy anti-quarks is straightforward and would proceed along parallel lines 

with eq. (2.2.5,2.2.6,2.2. 7) replacing eq. (2.2.4,2.2.2,2.2.3), respectively. 

The QCD equation of motion for the :field 'lj; is 

(iljJ- m)'lj; = 0. (2.2.8) 

Substituting eqs. (2.2.4) and (2.2.2) for 'lj; gives 

h- = (1- iljJ)-1 iljJ h+. 
v 2m 2m v 

(2.2.9) 

Here the ~ term is small compared to 1 when m » AQCD because IjJ acts on ht to 

give a "residual" momentum of O(AQco)· So expanding the factor (1 - ~!r1 
yields 

- - 00 ( iljJ) j+l + 
hv - L 2 hv. . m 

J=O 

(2.2.10) 
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This shows that h;; is suppressed by Aqco/m relative to ht. Hence h~ is called 

the small component and can be regarded as the approximate amount by which the 

heavy quark field is off-shell, while ht is known as the large component. 

Expanding eq. (2.2.10), and substituting this into eqs . (2.2.2) and (2.2.4) gives 

~ = e -imv·x [1 + ;! + (~!) 
2 

+ (~!) 
3 

+ (;!) 4 

+ a(~s )] ht . (2.2.11) 

For convenience, set 

then substituting eq. (2 .2.11) for~ yields the HQEFT Lagrangian 
00 

£HQEFT ,v = L £~~EFT ,v 1 (2.2.12) 
n=O 

where the superscript n denotes the nth order term in the 1/m expansion of .CHQEFT ,v ; 

the first four terms are 

(2.2.13) 

(2.2.14) 

(2.2.15) 

(2.2.16) 

This procedure can be continued to obtain higher order terms in 1/m. Note t hat 

the different terms have been rearranged so that they have definite transformation 

properties under t he heavy quark spin. In anticipation of the recurrence of some of 

the above operators in subsequent discussions, we make the following definitions: 

the kinetic energy operator 

A 1 - 2 
Qkin =-

2
m QvD Qv, 

the chromomagnetic moment operator 

A - g - /1-1/ 
ornag- 4m QlJ u GIJ.VQlJ, 

and the operators occurring at 0(1/m2
), 

(2.2. 17) 

(2.2.18) 

(2.2.19) 

(2.2.20) 
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The equation of motion for the field Q is 

(v · D)Qv = 0(1/m). (2.2.21) 

In the above expression for £~6EFT,v• terms that vanish by the equations of motion 

have been omitted from t he sub-leading order t erms. 

Heavy Quark Spin-Flavor Symmetry 

In a theory with N 1 flavors of heavy quarks, each moving at velocity v, the 

above expression for ,CHQEFT,v applies to each of these individual flavors, and hence 

the Lagrangian density generalizes to 

Nf 

,eHavor '\""' £ 
HQEFT,v = ~ HQEFT,v,(j)• 

j=l 

where ,CHQEFT,v,(j) is the Lagrangian density of the Ph flavor which is given by 

eq. (2.2.12) with Qv replaced by QV) - the heavy quark field of flavor j at ve­

locity v. Note that at leading order, the Lagrangian ,C~QEFT,v neither depends on the 

heavy quark masses nor does the heavy quark spin couple to the gluon; hence it has 

a SU(2N1) spin-flavor symmetry which was first observed by Isgur and Wise.l1l A 

curious feature of this property is that it relates heavy quarks of one mass to heavy 

quarks of another mass with the same velocity, and since the heavy masses can be 

very different , it relates heavy quarks of possibly very different momenta. Lorentz 

in variance of the Lagrangian ,C~QEFT,v can be recovered by summing over all velocities 

of the heavy quark fields: 

Nf 

,CHQEFT = L L ,CHQEFT ,v,(j) · 
u j =l 

Here, heavy degrees of freedom have been integrated m to incorporate the heavy 

quark field at each of the infinitely many velocities. 

The No-Go theoreml3l which forbids the mixing of space-time and internal sym­

metries is evaded here by using an infinite number of fields, one for each four-velocity. 

This derivation of ,CHQEFT illustrates how the full HQEFT Lagrangian is con­

structed; however, since subsequent discussions in this chapter only consider heavy 
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quarks of a given flavor at a particular velocity, it suffices to work with the Lagrangian 

LHQEFT,v rather than LHQEFT· 

If one were to determine all of the linearly independent operators that can be 

constructed at each order in 1/m in this theory subject to the usual contraints of 

Lorentz invariance, gauge invariance, parity conservation, time reversal invariance, 

locality and hermiticity, one finds that at each respective order, they can all be 

expressed in terms of the existing operators in £~~EFT ,v as given in eqs. (2.2.13 -

2.2.16), with operators that vanish by the equation of motion excluded.f4l So it 

is gratifying to verify that this method of derivation does yield the most general 

expression for the Lagrangian subject to the constraints imposed on the theory. 

The above derivation of £HQEFT,v at tree level utilized the QCD equation of 

motion for the field '1/J, eq. (2.2.8). This approach is equivalent to writing down 

the action functional for the Lagrangian in eq. (2.2.1), expressing 'ljJ in terms of ht 

and h;; as in eqs. (2.2.2 - 2.2.4) and then performing the functional integral over 

the small component field h;;; this would give the h;; field in terms of the ht as in 

eq. (2.2.9) above.l4
•
5l Note that the expression for h;; in eq. (2.2.9) involves non-local 

operators, which corresponds to the non-local expression that results when t he heavy 

degrees of freedom are integrated out in the functional integral. Expanding out this 

expression in an operator product expansion as in eq. (2.2.10) yields a series of local 

operators in which each higher order term is suppressed by more powers of the heavy 

mass. Proceeding in this way using the functional integral verifies the above results 

in eqs. (2.2.12 - 2.2.16). The expansion in eq. (2.2.10) shows how the short distance 

physics, which can be incorporated into coefficients that match the effective theory 

to the full theory, is disentangled from the long distance physics which remains in 

the HQEFT and is manifest in matrix elements of the effective t heory operators. Yet 

another equivalent method is to determine the most general operators that are allowed 

in HQEFT at each order in 1/m (up to the order of interest) with arbitrary coupling 

constants which are then evaluated by matching amplitudes of these operators with 

the corresponding ones in QCD. 



13 

2.3. DERIVATION OF THE HQEFT FEYNMAN RULES 

In HQEFT, calculations are performed using the Lagrangian .CHQEFT,v as given 

by eqs. (2.2.12 - 2.2.16) in the following manner. The propagation of the heavy quark 

is determined by the leading order Lagrangian .C~bEFT,v' eq. (2.2.13). All of the 

non-leading terms, .C~~EFT,v for n ~ 1, are treated perturbatively as new interaction 

vertices- each of these remaining higher order terms is a non-renormalizable operator 

which is suppressed by powers of AqcD/m, where AqcD/m is the new perturbative 

small expansion parameter. 

The leading piece of the HQEFT Lagrangian .C~bEFT,v determines the Feynman 

rules at leading order. Inverting the Qvi(v · fJ)Qv part of .C~bEFT,v gives t he heavy 

quark propagator: 
~ 

(2.3.1) 
V · k + iE 

Here, k is a residual momentum that does not include the effect of the heavy mass. 

The remaining piece yields the heavy quark-gluon interaction vertex: 

(2.3.2) 

These HQEFT Feynman rules reproduce the leading order terms of the corresponding 

QCD rules in the heavy quark limit; the remaining terms are suppressed by powers 

of m, and are accounted for by the non-leading operators in .CHQEFT,v which generate 

new interaction vertices. 

2.4. APPLICATIONS OF THE HQEFT 

The new spin-flavor symmetries of the HQEFT endow it with considerable predic­

tive power. In addition, now having determined the Feynman rules including the new 

interaction vertices which break these symmetries, the effective Lagrangian .CHQEFT,v 

can be used to calculate perturbative as corrections to the leading-order symmetry 

predictions; such effects contribute, for example, to matching relations between the 

HQEFT and QCD as well as to the renormalization of operators in the effective the­

ory. This effective Lagrangian can also be to determine the effect of the sub-leading 

(suppressed by powers of 1/m) symmetry-breaking operators on the predictive power 

of the HQEFT. Some of the significant applications of the HQEFT are reviewed next. 
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A large number of predictions can be made based on the SU(2N1) heavy quark 

symmetry manifest in the leading order Lagrangian £~6EFT,v given by eq. (2.2.13). 

These applications can be divided into two broad categories: predictions for the weak 

decays, and spectroscopic applications.l6l Of the many weak processes involving heavy 

hadrons that have been investigated using HQEFT, some of the most important are 

semi-leptonic decays of B mesons into D and D* mesons. As an illustration of the 

power of HQS, an analysis of these decays is presented in what follows. Later in this 

chapter , an example of the predictions of HQS for the spectroscopy of heavy hadron 

is considered. 

Perhaps the most well known application of HQS is to the exclusive semileptonic 

meson decays B --+ Dfiie and B --+ D* fiieYl For the purpose of this analysis, it is 

convenient to use a mass-independent normalization of meson states 

(AII(p')IM(p)) = 2po (27r)383(.P - i'), 
mM 

(2.4.1) 

rather than the more conventional relavistic normalization 

(2.4.2) 

However, since p0 f mM = v 0, eq. (2.4.1) depends only on the velocity and in the heavy 

quark limit, it is more appropriate to label heavy hadron states by their velocity so 

that IM(v)) = IM(p)) = IM(p))/yrn;:[. The invariance of QCD under Lorentz 

and parity transformations allows the hadronic amplitudes of t hese decays under the 

vector current V"' = C{"'b and the axial current A~'- = C{~'-15 b to be written as 

(D(v')IV~'-IB(v)) = J+(v + v')~'- + J_(v - v')~'- , (2.4.3a) 

(D*(v',E) IV"'J.B(v)) = igEJ.Laf3-yvav 1f3E*\ (2.4.3b) 

(D*(v' , E) IAJ.LIB(v)) = JE: + a+(c*. v)(v + v')J.L + a_(E*. v)(v - v') J.L, (2.4.3c) 

where a±, J,J±, and g are Lorentz invariant form factors which are functions of the 

velocity transfer v · v' and the heavy quark masses . Heavy quark spin symmetry 

indicates that all of these functions can be expressed in terms of a single universal 

form factor e( v · v') which depend only on v · v' and is known as the Isgur-Wise 

function: 

!- = - = as mb t( . ') 
[ 

( ) 

] 

-6/25 

+ g () <,VV, 
as me 

J_ = 0, (2.4.4a) 
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(2.4.4b) 

(2.4.4c) 

Furthermore, heavy quark flavor symmetry determines the normalization of ~ at the 

zero recoil point, v = v': 

~(v·v'=l)=l. (2.4.5) 

Predictive power is retained when order a
8
(mc,b) and corrections are calculated. How­

ever, when order Aqco/mc,b contributions are included, considerable predictive power 

is lost because new universal functions arise in the form factors. In spite of t his, t hese 

semi-leptonic decays will likely still be a very accurate means for determining !Vcb l 

because there are no Aqcofmc,b corrections at zero recoil v · v' = 1.[7) 

Another particularly elegant application of HQEFT is to t he semi-leptonic decays 

of spin-~ baryons in which the light degrees of freedom have spin se = 0 so that all of 

the spin is carried by the heavy quark Q. These are the AQ and :=:Q states which decay 

as Ab --+ AcfiJe and :=:b --+ :=:cfvg, respectively. Consider Ab decay for concreteness, and 

adopt the conventional normalization for the baryon states: 

0 

(B(v',s') IB(v,s)) = !!_(21r)3 8ss'8(p - p). (2.4.6) 
mB 

These heavy baryon states have been labeled by their velocity rather than their mo­

m enta because heavy quark flavor symmetry relates states of equal velocity but differ­

ent momenta. ( sJ.L is the spin-polarization four-vector.) The hadronic m atrix element 

for the above Ab decay can be expressed in its most general form in terms of six 

functions (with the spinor normalization uu = 1 ): 

(Ac(v', s') IVJ.LIAb(v,s)) = u(s'l(v')(F1 !J.L + F2 vJ.L + F3v~)u(sl(v), 

(Ac(v',s')IAJ.L IAb(v,s)) = u<s'l(v')(G1!J.Lis + F2 vJ.L1s + F3v~l5 )u<sl(v). 

(2.4. 7) 

(2.4.8) 

Heavy quark spin transformations relate the spin up and spin down states of a baryon 

and hence these baryon form factors amongst themselves. At leading-order , t he HQS 

imply that all six form factors are determined by a single universal (baryon Isgur­

Wise) function, ((v · v' ):l8l 
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where, once again, the normalization of this universal function is fixed at zero recoil by 

HQS: ((v·v' = 1) = 1. Unlike the meson case, however, no new unknown functions of 

v ·v' appear when Aqco/m corrections are included and five relations remain amongst 

the six form factors to all orders in the strong coupling, so that most of the predictive 

power in the HQEFT is retained. 

There are a myriad of other applications of the HQEFT besides those giYen 

above, so only some of t he more important ones which relate to the work presented 

in this thesis are described. 

In the next section, one of the corrections to the leading order predictions is 

analyzed in detail: the renormalization of the new sub-leading order operators that 

appear in .CHQEFT,v is examined, and new features that arise in the effective theory 

calculation are explored. 

2.5. RENORMALIZATION IN THE HQEFT 

The renormalization of an operator in HQEFT I S different from that of the 

corresponding operator in QCD (that is, the analogous operator with the heavy quark 

fields replaced by conventional QCD quark fields having an arbitrary but finite mass) 

because matrix elements, or equivalently, their corresponding Green functions, of the 

operators in QCD can, in general, have terms of the form ln(m/ f.l) in their finite parts; 

here, f-l is the subtraction point introduced by renormalization. In processes involving 

heavy quarks, matrix elements are typically formed from a QCD operator sandwiched 

between hadronic states which have characteristic momenta of O(Aqco), so that it is 

appropriate to take f-l "'O(AQco) ~ m, which gives rise to large logarithms that must 

be taken into account. Since the heavy mass m is taken to infinity in HQEFT such 

logarithms become ultra-violet divergences which contribute to the renormalization of 

the HQEFT operator. Thus, the new divergences in HQEFT mean that the operator 

in HQEFT, O~~~FT, requires renormalization even when the analogous operator in 

QCD, 6~~~, is not renormalized. 

Now consider a generic operator 6QCD in QCD which may be renormalized: 

OQCD(,) = zS1CD( )OQCD 
r- 0 f-l bare (2.5.1) 
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The renormalized operator evaluated at scale m is related to the operator in HQEFT 

through 

(2.5.2) 

where f1 is the subtraction point in the renormalization of the effective theory (which 

is generally different from the one in eq. (2.5.1) ): 

QHQEFT( ) = zi:_IQEFT( )OHQEFT 
f1 0 f1 bare · (2.5.3) 

Combining eqs. (2.5.2) and (2.5.3) relates the operator in the full theory to the bare 

one in the effective theory: 

OQCD(m) = zi:_IQEFT( )C( )OHQEFT. 
0 f1 f1 bare (2.5.4) 

C(f.l) is the factor that will account for the large logarithms that arise in the QCD 

Green functions or matrix elements. 

Since the operators OQCD(m) and O~~:FT are independent of f1, they give rise 

to a renormalization group equation for C: 

(2.5.5) 

where /6, the anomalous dimension of the operator QHQEFT, is defined as 

(2.5.6) 

Generally the ~L-independence of physical quantities such as S-matrix elements or 

scattering amplitudes will yield similar renormalization group equations. Once the 

renormalization constant and thence the anomalous dimension of the operator have 

been calculated, the solution of this renormalization group equation determines the 

scaling behavior of C: 

[ l g(m) ,. (g) ] 
C(f.l) = C(m) exp - g(JL) P(g) dg , (2.5.7) 

where (3(g) is the {3-function that describes the running of the coupling. The initial 

condition required to complete the solution of the running of the coefficient function 
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C is determined by noting that there are no large logarithms in the QCD matrix 

elements at 11 = m so that matching the full and effective theories at this point gives 

(2.5.8) 

Thus by introducing the matching coefficient C and solving its renormalization group 

equation, we have summed to all orders the leading logarithms that arise in pertur­

bation theory, which are of the form [as(f.l) ln(m/ f.l)]n at order n. This illustrates 

how the effects of excitations due to the heavy degrees of freedom are included in the 

low energy effective theory through the running coefficient C. The operator 6 (!1) no 

longer depends on the heavy mass m; the full mass dependence is now contained in 

C. 

2.6. RENORMALIZATION OF THE OPERATORS IN THE 

SUB-LEADING TERMS OF THE HQEFT LAGRANGIAN 

The renormalization of the operators in .CHQEFT,v in eqs. (2.2.14 - 2.2.16) can 

be conveniently achieved by calculating Green functions of each individual operator 

with the external states consisting of an incoming and an outgoing heavy quark and 

a gluon. For example, the bare one-particle irreducible (1PI) Green function of an 

operator 6HQEFT with these external states 

h h AHQEFT -r <>/3( ,bareC w, X' y' z) = (OIT { Q a,bareC X )A(,bareC w )Ohare (y )Q /3,bareCz)} IO), 

is renormalized as 

where 

(2.6.1) 

and 
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The renormalization of the Okin operator in eq. (2.2.14) can be performed more simply 

by considering a Green function whose external states are only an incoming and an 

outgoing heavy quark. 

Note that if v and v' are the velocities of heavy quark fields Q and Q, and 

only HQEFT operators are involved in the process, as is the case here , then v' = v 

at leading order so that the velocity is conserved as required by the super-selection 

rule. Corrections to this rule can be taken into account by including higher order 

operators which are suppressed by powers of the heavy mass m . Such operators 

change the momentum of a heavy quark by an amount of order Aqco, and as a result 

the velocity of the quark changes by approximately Aqco/m. 

Method of Calculating the Green Functions 

The Green functions that arise in the renormalization of the operators 6mag' 61 , 

and 02 are calculated using the background field method,l9l with dimensional regu­

larization applied to the ultraviolet divergences, and the MS subtraction scheme. The 

background field method has the desirable feature of maintaining explicit gauge in vari­

ance in calculations of quantum effects so that there is no mixing of gauge-invariant 

operators considered here with gauge non-invariant ones. It is also an efficient way of 

performing the calculation because the gluon field is not renormalized. The method 

used to treat the loop momentum integrals that arise in these Green functions is 

described in Appendix A.[10l 

Mixing of HQEFT operators under Renormalization 

When one calculates the Green functions at one-loop to renormalize the operators 

0 1 and 62 , one finds that they mix with operators that vanish by the equations 

of motion. Since matrix elements of the latter operators vanish, such contributions 

should be isolated from the other terms and then eliminated. There are also additional 

contributions to the renormalization of these operators coming from double insertions 

of Okin and Omas in one-loop graphs. These effects will be analyzed as they arise in 

the following discussion. 
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For operators which mix under renormalization as 

(2.6.2) 

eqs. (2.5.5) and (2.5.6) are generalized to 

(2.6.3) 

and 

(2.6.4) 

respectively. 

Renormalization of the Operator akin 

The renormalization of the operator akin at one-loop is determined by the dia­

grams shown in Fig. 1. Using the background field method and dimensional regular­

ization, one finds that t he first two graphs do not contribute to the renormalization 

of Okin' but rather to that of (1/m)Q (v · D)2Q, an operator which vanishes by the 

.equations of motion. The last graph contributes a divergence of -16g2 /3(47r) 2 c to the 

renormalization of Okin· However, since the field renormalization of the heavy quark 

141 is 
~ 8g2 

V LJQ = 1 + 3(47r)2c' (2.6.5) 

the renormalization of the external heavy quark fields cancels t his divergence so that 

akin is not renormalized:l11l 

z . = 1. 
akin 

(2.6.6) 

Thus 

(2.6.7) 

and the matching coefficient does not run: 

(2.6.8) 
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Fig. 1: One-particle irreducible (lPI) diagrams contributing to the one-loop renor­

malization of the operator Okin. Here and in all subsequent diagrams within this 
chapter, double lines and curly lines denote heavy quarks and gluons, respectively, 

while a circle with an enclosed cross denotes an insertion of akin. 

Renormalization of the Operator Omag 

The diagrams which are relevant to the one-loop renormalization of the operator 

Omag are shown in Fig. 2. Figures 2(a) and 2(d) contribute divergences of J(~!~2c and 

- <!!}~c, respectively, to the renormalization of Omag· The remaining diagrams do not 

renormalize Omag· Using this result and eq. (2.6.5) in eq. (2.6.1) gives 

and an anomalous dimension of 

6g2 z . = 1 + ...,---..,...--
omag ( 47r )2c' (2.6.9) 

(2.6.10) 

which is in agreement with previous results [11•12•101. This gives a running coefficient 

of 

(2.6.11) 
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(a) (d) 

(b) (c) 

Fig. 2 (Part 1 of 2): lPI diagrams contributing to the one-loop renormalization of 

the operator omag · A triangle indicates the insertion of Omag in these and in all 

following figures in this chapter. 

Renormalization of the Operator 01 

The diagrams involving 61 that contribute to the renormalization of 61 at one­

loop are shown in Fig. 3. As alluded to above, there are two additional sources of 

contributions that mix into this: 

(1) There is a 0(1/m2
) effective theory operator, that transforms as a scalar under 

spin like 0 1 , which arises at one-loop from double insertions of the kinetic energy 

operator akin: 

(2.6.12) 

Such contributions are not included in the graphs in Fig. 3. They must be taken 

into account by calculating the diagrams in Fig. 4. 

Another such operator which could mix with 6 1 is 6rnag-mag defined in the next 

section which has a piece that transforms as a scalar. However, on renormalizing 

it as described in the following section, one finds that it does not mix with 01 . 
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Fig. 2 (Part 2 of 2) 

(2) Effective 0(1/m2
) operators with the same symmetry which vanish by the equa­

tions of motion can mix into the calculation of any of the amplitudes in Figs . 

1 and 3. Hence such contributions must be isolated and removed . Operators 

that generate such terms are (1/m2)QD2 (v · D)Q, (1/m2 )Q(v · D)D2 Q, and 

(1 /m2 )Q(v · D)3 Q. 

Evaluating the diagrams in Fig. 3, removing the contributions coming from 

operators that vanish by the equations of motion as outlined above and removing the 

field renormalization factors for the external lines leaves a divergence of 

4g2 

( 47!')2€. 

Similarly, calculating and summing the graphs in Fig. 4 by the same method yields 

a divergence of 

If one defines 

(2.6.13) 
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then the mixing of these two operators under renormalization is given by 

where 

()(1) == ~(1)()(1) 
bare' 

~(1) == ( 1 + (44_;)22< 
220g2 

- 9(411")2< 

The anomalous dimension matrix is then 

(1) - ____i!_ ( 4 
I - (41r)2 -220/9 

(2.6.14) 

(2.6.15) 

(2.6.16) 

Fig. 3 (Part 1 of 2): One-loop lPI graphs which renormalize the operators 6 1 or 

62 when the square box denotes an insertion of 6 1 or 6 2 , respectively. 

Having calculated the anomalous dimension of the operators that mix under 

renormalization, eq. (2.6.3) then determines the complete scaling behavior of the 

matching coefficients 01 and ckin-kin associated with these effective theory operators 
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Fig. 3 (Part 2 of 2) 

once the initial conditions are specified. Solving eq. (2.6.3), with the anomalous 

dimension matrix 1<1 ) given by eq. (2.6.16), and C1{m) = Ckin-kin(m) = 1, yields 

(2.6 .1 7) 

where n 1 is the number of light quark flavors appropriate to the moment um interval 

between f.1 and m, and 

(2.6.18) 

R enormalization of the Operator 02 

This analysis proceeds along similar lines as that for 61 . In Fig. 3 diagrams 

involving 62 which can contribute to the one-loop renormalization of 62 are shown. 

Also as above, there are two similar additional sources of contributions: 

(1) Diagrams involving the operator formed from double insertions of Ornag defined 

as 

(2.6.19 ) 
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F ig. 4 (Part 1 of 4): One-loop lPI graphs which renormalize 0 1 and involve double 

insertions of akin. 

and ones involving the operator consisting of a Okin and a Omag operator defined 

by 

(2.6.20) 

also contribute to the renormalization of 02 ; such diagrams are displayed in 

Figs. 5 and 6, respectively. 

(2) Terms coming from operators which vanish by the equations of motion must be 

identified and removed. These operators are (Ijm2 )QaJ.L11 GJ.L11 (v · D )Q, and 

(1/m2 )Q(v · D)aJ.L 11 GJ.L11Q. 
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Fig. 4 (Part 2 of 4) 

If we write the operators that mix as 

( 

i02 ) 
' (2) - ' 

Q - ~mag-mag 1 

akin- mag 

(2.6.21) 

and their renormalization as 

{)(2) == ~(2)()(2) 
bare' (2.6.22) 

then calculating the graphs in Figs. 3, 5, and 6 yields 

0 

(2.6.23) 



28 

Fig. 4 (Part 3 of 4) 

with t he corresponding anomalous dimension matrix 

( 

0 0 0) 
')'(

2
) = d;)2 0 12 0 . 

-20/3 0 6 

(2.6.24) 

The running of the coefficients C2 , Cmag-mag' Ckin-mag with the matching conditions 

C2 (m) = Cmag-mag(m) = Ckin-mag(m) = 1 is given by 

(2.6.25) 

(2.6.26) 
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Fig. 4 (Part 4 of 4) 

and 

(2.6.27) 

2.7. A SPECTROSCOPIC APPLICATION 

An important spectroscopic application of these results is to the mass splitting 

observed in hadrons containing a quark of a particular flavor . In the infinite mass 

limit of a heavy quark with spin SQ in a hadron with total angular momentumS, the 

angular momentum of the light degrees of freedom 

commutes with the Hamiltonian. Hence Se. the eigenvalue sf_, is a conserved quantity 

in the rest frame of the hadron. As a result, such hadrons will occur in degenerate 

doublets of total spin 
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Fig. 5: lPI graphs with an insertion of the time-ordered operator Omag-mag which 

can effect a renormalization of 61 or 6 2 at one-loop. 

provided that St =/= 0. For instance, the low-lying heavy mesons will consist of a 

pseudoscalar state P and vector state PJ..I., such as the B and B *. Since these states 

are related by the heavy quark spin which commutes with the Hamiltonian, they are 

degenerate at leading order in the HQEFT. Furthermore, because Omag and 02 are the 

only operators that transform non-trivially under heavy quark spin transformations 

to 0(1/m2
), they are the leading and next-to-leading order operators, respectively, 

in the effective theory responsible for the mass splitting. For definiteness, consider 

again the B - B* system; the mass difference is 

flmB = mB. - mB 

= (BIB} { (B*I[Cmag(JL)Ornag(JL) + C2(JL)Q2(JL)- iCrnag-mag(fL)Omag-mag(JL) 

- iCkin- rnag(JL )Okin- mag(JL )JIB*) 

- (BI[Cmag(JL)Omag(JL) + C2(JL)Q2(JL) - iCmag-mag(/i)Omag-mag(JL) 

- iCkin-rnag(fi)Qkin-mag(JL)]IB) } · 
(2.7.1) 

Note that the full mass dependence has been extracted from the operators and now 

resides in the coefficient functions; the above matrix elements, which do not involve 
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Fig. 6 (Part 1 of 4): lPI diagrams with an insertion of the time-ordered operator 

akin-mag which give a one-loop contribution to the renormalization of 62 . 

the heavy mass, are non-perturbative in nature and cannot be evaluated using the 

effective theory method presented here. However, they could be tractable using lattice 

gauge theory, and steps in this direction have already been taken.l13l 

Since the HQEFT flavor symmetry relates different flavors of heavy quarks, a 

comparison of these results with experimental values can still be achieved at leading 

order: eq. (2.7.1) is valid for flmn when B and B* are replaced by D and D* 

respectively, so neglecting the effects at 0(1/mQ 2
), one can form a ratio of the mass 

differences which is independent of the unknown matrix elements: (lO) 

9 

flmD = mB [ a 5 (mB) ] -33-2n1 . 

flmB mD as(mn) 
(2.7.2) 

The measured experimental values are mno = 1864.5 MeV, mn.o = 2007.1 MeV, and 
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m 8 o = 5279.4 MeV. 1141 Using these values in eq. (2.7.2) and evaluating the anomalous 

scaling factor with i\~~ = 230 MeV 1141 and n 1 = 4 predicts ~m8 = 46.0 MeV. This 

mass-splitting was recently measured to be ~m8 = 46.4 ± 0.3 ± 0.8 MeV. [ls) 

The good agreement between the result of the 0(1/mQ) correction and the ex­

perimental data indicates that 0(1/mQ2
) effects are small. It would be interesting 

to see whether this arises from a cancellation between terms or from all of the matrix 

elements being small. It may be possible to address this issue using lattice QCD.116l 

Fig. 6 (Part 2 of 4) 
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Fig. 6 (Part 3 of 4) 
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Fig. 6 (Part 4 of 4) 
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3. HEAVY QUARK SYMMETRY 
AND CHIRAL PERTURBATION THEORY 

3.1. CHIRAL PERTURBATION THEORY 

In the last chapter, it was observed that the six quarks in the standard model 

fall naturally into two groups: light quarks and heavy quarks, relative to the scale 

of the strong interactions. For hadrons containing a heavy quark, the HQEFT was 

developed. For hadrons consisting of light quarks, chiral perturbation theory plays 

an analogous role. 

The strong interactions have an approximate SU(3)L x SU(3)R chiral symmetry 

because the masses of the light u, d and s quarks are small compared to Aqco. This 

global symmetry is spontaneously broken to the vector subgroup SU(3)v by chiral 

condensates. Associated with this spontaneous symmetry breaking is the octet of 

pseudo-Goldstone bosons consisting of the light mesons 1r, J{ and ry. The interactions 

of these particles can be described in terms of a chiral perturbation theory in which the 

effective Lagrangian contains the most general couplings that respect chiral symmetry. 

This effective field theory possesses considerable predictive power at low momenta 

because terms in the Lagrangian with the least numbers of derivatives and insertions 

of the (3£, 3R) + (3L, 3R) symmetry-breaking light quark mass matrix dominate. 

The pseudo-Goldstone bosons appear in the Lagrangian density through 

e = exp(iM/ f) , (3.1.1a) 

and 

e = :E = exp(2iM/ f) (3. 1.1b) 

In eqs. (3.1.1), M is the matrix of fields 

( 

)2-71'0 + )6rt 
M = 11'-

J{-

71'+ 

1 0 + 1 - ,;271' -.j6'rl 

[(0 

(3.1.2) 

and f is the pseudoscalar decay constant . At leading order in chiral perturbation 

theory, f is the pion decay constant: f1r ~ 132 MeV. 
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Under SV(3)L x SU(3)R chiral symmetry, 

I;~ LI;Rt (3.1.3a) 

(3.1.3b) 

where L E SU(3)L, R E SU(3)R and U is a function of L, R and the meson fields. 

Typically U is space-time dependent. However, for SU(3)v transformations, V = L = 

R, and U is equal to V . 

3.2. HEAVY MESON CHIRAL PERTURBATION THEORY 

In this chapter, the low-momentum interactions of the pseudo-Goldstone bosons 

with the ground-state heavy mesons with flavor quantum numbers Q<t (where a = 

1, 2, 3, and q1 = u, q2 = d, q3 = s) are studied. 2 For such heavy mesons, the spin­

parity of the light degrees of freedom is s;t = ~-. It was noted previously that 

when this spin is combined with that of the heavy quark, the result is pseudoscalar 

and vector mesons which are degenerate in the limit mQ ~ oo. With three light 

flavors, there will be a SU(3)v anti-triplet of spin-zero mesons denoted by Pa and a 

SU(3)v anti-triplet of spin-one mesons denoted by P; from which three degenerate 

doublets can be formed. For Q = c, (P1 ,P2 ,P3 ) = (D0 ,D+,Ds) and (Pt,P;,P3) = 

(D*0 ,D*+,D;) while for Q = b, (P1 ,P2,P3 ) = (B- ,B0 ,Bs) and (Pt,P2,P3) = 
(B*-, B*0

, IJ;). Factors of ,jffiP and .jffip. have been absorbed into the P and P* 

fields. Consequently they have dimension 3/2. 

It is important for the effective Lagrangian which describes the interactions of 

heavy hadrons with the pseudo-Goldstone bosons to be invariant under heavy quark 

symmetry. Consider, for instance, a process involving only a real B meson. But then 

the B * meson will contribute as a virtual particle in pole-type Feynman diagrams, 

and the couplings of the B to the B* are related by heavy quark spin symmetry. 

The pseudoscalar and vector meson fields Pa and P;J.L can be conveniently com­

bined in a 4 x 4 matrix Ha given by 

H - 1 + P (P* iJ. P ) a- -2- aJ).l - al5 · (3 .2.1) 

2 Based on C.L.Y. Lee, M. Lu, and M.B. Wise, Phys. Rev. D46, 5040 (1992) 
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This is a "shorthand notation." In cases where the type of heavy quark Q and its 

four-velocity v are important, the 4 x 4 matrix is denoted by H£Q) ( v ). The field 

operators Pa and P;JJ. destroy mesons Pa and P;JJ., respectively. Since pair creation 

does not occur in the effective field theory, the corresponding anti-particles are not 

created. Note that the vector meson field is subject to the constraint v,.. P;,.. = 0. 

The field Ha is a doublet under heavy quark spin symmetry SU(2)v and a 3 under 

the unbroken SU(3)v light quark flavor symmetry. Under SU(2)v and SU(3)£ xSU(3)R 

it transforms as 

(3.2.2a) 

where S E SU(2)v and U is the usual space-time dependent 3 x 3 unit ary matrix 

that is introduced to transform matter fields in a chiral Lagrangian. Under Lorentz 

transformations 

(3.2 .2b) 

where D(A) is an element of the 4 x 4 matrix representation of the Lorentz group. 

It is also useful to introduce the matrix 

(3.2.3) 

The transformations corresponding to eq.(3.2.2a-3.2.2b) for f.Ia are fla -+ Ua6H6S - 1 , 

and fla -+ D(A)flaD(A)-1
. 

Then the strong interactions of the lowest-lying mesons containing a heavy quark 

Q with the pseudo-Goldstone bosons 1r, I<, 7J are determined by the heavy meson chiral 

Lagrangian density[17l 

J2 -
£ = sTr(o,..I:o,..I:t) + .\0 Tr(mqi: + mqL:t)- iTrHa v,..o,.. Ha 

. . 

+ ~TrfiaHbv,..(eto,..~ + ~o,..etha + zfTrflaHbl,..ls(eo,..~- ~o,..e)ba 
- t t - t + .\1 TrHaHb(emqe + ~ mqe )6a + ).~ TrHaHa(mqL: + mqE h6 

).2 T ·H- H IJ.V + - 1 a(]" IJ.V a(]" + · · · ' 
mQ 

(3.2.4) 

where the ellipsis denotes terms with additional derivatives, factors of the light quark 

mass matrix 

(3.2.5) 
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associated with explicit violation of SU(3)L x SU(3)R chiral symmetry, or factors 

of 1/mQ associated with violation of heavy quark spin-flavor symmetry. In the La­

grangian density (3.2.4) the light quark flavor indices a, b run over 1, 2, 3 and repeated 

indices are summed. 

Heavy quark symmetry and chiral symmetry put constraints on BRA and DfA 

semileptonic weak decay amplitudes [17•18•191. In this chapter we investigate the impli­

cations of these symmetries for D ~ I< 1rfve, D ~ 1r1rfve, B ---? 1r1rlve and B ~ D1rlve 

decays. The decay B ~ D"'1rfve is studied in the next chapter. 

Heavy quark flavor symmetry implies that, to leading order in A.Qc DfmQ, the 

unknown coupling g is independent of heavy quark flavor. For Q = c, t he D* ~ D1r 

decay width is determined by g 

rcn·+ ~ D 0 1r+) = ( 
6

17r) ~: I.P?r 13 
. (3.2.6) 

The present experimentallimitl201 on this width (f(D*+ ~ D 0 1r+) < 72 KeY) implies 

that g 2 < 0.4. Applying the Noether procedure, the Lagrangian density (3.2.4) gives 

the following expression for the axial current, 

(3.2.7) 

In eq. (3.2.7) the ellipsis represents terms containing the pseudo-Goldstone boson 

fields and T is a flavor SU(3) generator. Treating the quark fields in eq. (3.2.7) as 

constituent quarks and using the non-relativistic quark model (i.e., static SU(6) ) to 

estimate the D* matrix element of the l.h.s. of eq. (3.2. 7) givesl191 g = 1. (A similar 

estimate for the pion-nucleon coupling gives gA = 5/3.) In the chiral quark modell211 

there is a constituent-quark pion coupling. Using the measured pion nucleon coupling 

to determine the constituent-quark pion coupling gives that g ~ 0. 75. The decay 

B* ~ B1r is kinematically forbidden and so it will not be possible to use it to test 

the heavy quark flavor independence of g. The amplitude for the semileptonic decay 

B ~ D1rfiie, in the kinematic region where the pion has low momentum (and the . 

D1r mass is greater than that of the D*), can be predicted using chiral perturbation 

theory. In principle, experimental study of this decay can give information on the 

flavor dependence of g. 

In the next section we discuss the kinematics of weak semileptonic D l4 and 

BRA decay. The fully differential decay rates are expressed in terms of form factors. 
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The results of section 3.2 are a slight modification of the kinematics of Ke4 decay 

to the situation where the two hadrons in the final state have different masses. The 

generalization of J(N decay kinematics to D ----* J( 1rlv,_ decay was previously discussed 

by Kane et al.l22l We have included a short review of the kinematics for completeness. 

Section 3.3 gives the predictions of chiral perturbation theory for D ----* ]{ 1r f ve, D ----* 

1r1rlv,_ and B ----* ?r?rl!i/e decay form factors. In Section 3.4 the predictions of chiral 

perturbation theory for B ----* D1rl!ve are given. Section 3.5 contains a brief discussion 

of the expected kinematic range where chiral perturbation theory for B ----* D1rfi/e is 

applicable. Concluding remarks are made in Section 3.6. 

For Be4 and De4 decay the kinematic region where chiral perturbation theory 

is applicable is small. In the kinematic region where chiral perturbation theory is 

applicable Br(B----* D1rfve) "'(ljl61r2 ) Br(B----* Dfve)"' 10-4 . The situation is worse 

for the modes with two pseudo-Goldstone bosons in the final state. For example, we 

expect that Br(D ----* 1r1r fve) "' (ljl61r2
) sin2 ()c(!DfmD)2 Br(D ----* X/ve) , where fD 

is the decay constant for the D-meson. For JD "' 200 MeV this crude order of 

magnitude estimate gives Br(D ----* 1r1rfve) "' 10-6 . The factor of sin2 
()c is absent for 

the Cabibbo allowed decay D ----* ]{ 1rfve, but the fact that the kaon mass is not very 

small makes the validity of lowest order chiral perturbation theory dubious. It will 

be very difficult, in the kinematic region where chiral perturbation theory applies, to 

observe Be4 and De4 decay to two pseudo-Goldstone bosons. However, the results of 

this chapter may still prove useful for these decays. Phenomenological models that 

predict the form factors over the whole phase space should be constrained to agree 

with chiral perturbation theory in the kinematic region where it applies. 

3.3. REVIEW OF THE KINEMATICS 

Consider for definiteness the decay D ----* J( 1rfve. At the end of this section we 

show how to modify the formulae so they apply to the other decays we are considering. 

It is convenient, following the analysis of ](,_4 decay by Pais and Treimanl23l, to form 

the following combinations of four-momenta 

(3.3.1) 

Like Ke4 decay, De4 decay is kinematically parametrized by five variables . For two of 
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these we take the f( 1r and lve squared masses: 

(3.3.2) 

For the remaining three variables we choose: () H, the angle formed by the kaon three­

momentum in the ]{ 1r rest frame and the line of flight of the ]{ 1r in the D rest frame; 

()L, the angle formed by the l three-momentum in the lve rest frame and the line of 

flight of the lve in the D rest frame; ¢, the angle b etween the normals to the planes 

defined in the D rest frame by the I< 1r pair and the lve pair. (The sense of the angle 

is from the normal to the I< 1r plane to the normal to the lve plane.) 

Over most of the available phase space (including the kinematic regime where 

chiral perturbation theory can be applied) the mass of the lepton can be neglected 

(i.e., mifsL « 1) and we find that with me = 0; 

2 
p. L = mD - sH - sL 

2 

L · N = 0, P · Q = mi<- m! , 

Q2 = 2(m7< + m!)- sH, N 2 = -sL , 

L . Q = ( m k 
8 
~ m!) P · L + (3 X cos () H , 

P · N =X cosOL 

Q. N = (mi<- m;) X cosOL + (3P · Lcos8Hcos8L 
SK1r 

- (3(sLsH) 112 sin8H sin8L cos¢, 

E!J.vpuQ~-'PvNpLu = -(3X(sLsH) 112 sin()Hsin()Lsin</J . 

In eqs . (3 .3.3) 

(3.3.3a) 

(3.3.3b) 

(3.3.3c) 

(3.3.3d) 

(3.3.3e) 

(3.3.3£) 

(3 .3.3g) 

(3.3.4) 

and (3 is (2/ -JSii) times the magnitude of the kaon three-momentum in the J{ 1r rest 

frame, 

(3.3.5) 

Taking the limit, mK = m'lr, eqs. (3.3.3) agree with the results of Pais and Treiman 

for I<e4 decay. 
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The invariant matrix element for D ---+ J{ 1rfve semileptonic decay is 

where \~5 is the c ---+ s element of the Cabibbo-Kobayashi-Maskawa matrix and Gp 

is the Fermi constant. The hadronic matrix element can be written in terms of four 

form factors w±, r and h that are defined by 

(1r(p1r ), K(pi< )isl~-'( 1 - ls )ciD(pn)) = iw+P~-' +iw_ Q ~-' +ir(pn- P)~-' + hc?Lo:f3-yPDpf3 Q7 
. 

(3.3.7) 

The form factors w±, rand h are funct ions of sL, sH and cos ()H· Summing over the 

lepton polarizations the absolute value of the square of t he matrix element is 

where 

L IM Jil2 
= 4 G} 1Vcs l2 HJLVL~-'" , 

spins 

H~-'" = (1r(p1r), K(pK )isl~-'(1 - ! 5 )ciD(pv)) 

· (1r(p1r), K(pK )islv(l- ls)ciD(pn))* , 

L~-'" = ~[L~-' L" - N~-' N"- s g~-'"- ico:~-'7" L N] 2 L a 'Y ' 

with the convention c0123 = +1. The differential decay rate takes the form 

d5f = ~}~:s~ Xf3I(sH,sL,()H,()L ,¢>)dsLdsHdcos()Hdcos()Ld¢> . 
47r mD 

The dependence of I on ()L and ¢> is given by 

where 11 , . . . , 19 depend on sH , sL and ()H· 

(3.3.8) 

(3.3.9a) 

(3.3.9b) 

(3.3.10) 

(3.3.11) 

To display 11 , ... , 19 is as compact form as possible it is convenient to introduce 

the following combinations of kinematic factors and form factors 

(m2 m2 ) 
F1 = X w + + [,8 P · L cos () H + I< 

8
: 7r X] w _ 

F2 = ,B(sLsH )lf2w_ 

F3 = {3X(sLsH) 112 h . 

(3.3.12a) 

(3.3 .12b) 

(3 .3.12c) 
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Observe that r does not appear in eqs. (3.3. 12) because its contributions vanish for 

me= 0. In terms of these combinations of form factors 

II=~ { IF1I
2 + ~ sin

2 
BH(IF2I

2 + IF31
2
)} 

I2 = -~ { IF1I2 - ~ sin2 BH(IF2 I2 + IF31
2
)} 

!3 = - ~[IF212 - IF31 2
] sin2 eH 

I 4 = ~Re(FtF2)sinBH 
I 5 = Re(F1* F3 ) sin BH 

I 6 = Re(F; F3) sin2 BH 

I7 = Im(F1 F;) sin BH 

I 8 = ~Im(F1F;) sinBH 

I 9 = -~Im(F2F;) sin2 BH. 

(3.3.13a) 

(3.3.13b) 

(3.3.13c) 

(3 .3.13d) 

(3.3.13e) 

(3.3.13f) 

(3.3.13g) 

(3 .3.13h) 

(3.3.13i) 

Eqs. (3.3.11) and (3.3.13) are the same as eqs. (11) of Pais and Treiman. However, 

the definitions of F 1 , F2 and F3 are slightly different because mg =/= m'lr . 

It is evident from eqs. (3.3.13) that the partial wave expansions for the form 

factors F1, F2 and F3 are 

00 

Fl (sH, sL, cos eH) = L Fl,e(sH, sL)Pi cos eH ), (3 .3.14a) 
l=O 

00 
1 - d 

F2( sH, sL, cos eH) = ~ [e(.e + 1 )P/2 F2,e( sH, sL) d cos eH Pe( cos eH), (3.3.14b) 

00 
1 - d 

F3(sH, sL , cos eH) = ~ [£(£ + 1)jl/2 F3,e(sH, sL) dcos eH Pe( cos eH ). (3.3.14c) 

Integrating over the angles gives 

(3.3.15) 

and the total decay rate is 

(3.3 .16) 
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{m2 [1(mn-s1

/

2

)

2 

( d2f ) ] 
r = J(mJ:+m.,.Y 0 H dsLdsH dsL dsH . (3 .3.17) 

One advantage of the variables ()H, ()L, c/>, sL and sH is that in terms of these variables 

the region of phase space integration is quite simple. The angles are unrestricted and 

eq . (3 .3.17) gives the region for sH and sL. 

Although we have focused on D --+ I< 1rfve decay t he results presented above can 

be straightforwardly altered to apply to the other decays we discuss in this chapter. 

For D --+ 1r1r fve decay one simply changes ~s --+ ~d and mK --+ m,.. For B--+ 1r1r£ve 

decay one changes Vcs --+ V,.*b , mv --+ m 8 and mK --+ m ?r. Also, in eq. (3.3.6) Pe 

and p., are switched. Consequently the term proportional to t he alternating tensor 

in eq. (3.3.9b ) and the expressions for !5 ,16 and ! 7 in eqs. (3.3.13e), (3.3.13f) and 

(3.3 .13g) change sign. Finally, for B --+ D1rffie decay the changes ~s --+ Vc'b, mD --+ 

m 8 , m g --+ mD and t he same sign changes as for B--+ rrrrfi/R. decay are made. 

3.4. DECAYS TO TWO PSEUDO-GOLDSTONE BOSONS 

The semileptonic decays D --+ I< rrlv£, D --+ 1r1rfve and B --+ 1r1rf fie are deter­

mined by matrix elements of the left-handed current 

(3 .4.1 ) 

This operator transforms under chiral SU(3)L x SU(3)n as (3£, 1n) · In chiral 

perturbation theory its matrix elements are given by those of 

(3.4.2) 

where the ellipsis denotes terms with derivatives, factors of the light quark mass 

matrix mq or factors of 1/mQ. The constant a is related to the decay const ant of the 

heavy meson, 

(3.4.3) 

Taking the p JQl to vacuum matrix element of eq. (3.4.2) (for this matrix element ~t 
can be replaced by unity) gives 

(3.4.4) 
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The parameter a has a calculable logarithmic dependence on the heavy quark[1 •24l 

mass from perturbative QCD. 

For DRA and BRA decay to two pseudo-Goldstone bosons the Feynman diagrams 

in Fig. 7 determine the required matrix element. In Fig. 7 a solid line represents a 

heavy meson and a dashed line represents a pseudo-Goldstone boson. The shaded 

square denotes an insertion of the left handed current. The form factors w±, r and h 

that follow from calculation of these Feynman diagrams are given below. 
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Fig. 7: Feynman diagrams forD--. I<71, D-+ 7171 and B--. 7171 matrix elements of 

the current Lva. The shaded square denotes an insertion of the current in eq. (3.4.2). 

Dashed lines denote pseudo-Goldstone bosons. 

VI 
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(i) D---+ f( 1rfve 

D ---+ I< 1rf ve decays are determined by Q = c matrix elements of L .,3 . For the 

decay n+ ---+ J<-7r+fTJe, computation of the Feynman diagrams in Fig. 7 gives 

In eqs. (3.4.5) 

(3.4.5a) 

(3.4.5b) 

(3.4.5c) 

(3.4.6 ) 

(3.4.7) 

and vM is the four velocity of the D-meson , i.e., p'!J = mDvM . Isospin symm etry 

implies that the form factors for fl 0 ---+ J< - 7rOf Ve are 1/Vi times those above, the 

form factors for n+ ---+ K 0 7r0lve are -1/Vi times those above, and the form factors 

for D0 ---+ K 0 7r-lve are equal to those above. It is straightforward using eqs. (3.3.2) 

and (3.3.3) to express these form factors in terms of OH, SH and SL. 

(ii) n + ---+ 'If+ 7r-lve 

For this decay a Q = c matrix element of L.,2 is needed. It is straightforward to 

see that the form factors in this case are given by those in eqs. (3.4 .5) if the changes 

PK ---+ P-c and P1r ---+ P1r+ are made and f1 is set to zero. Again using eqs. (3.3.2) and 

(3.3.3) these form factors can be expressed in terms of OH, SH and SL. 

(iii) B- ---+ 1r+1r- file 

In this case a Q = b matrix element of L.,1 is required. The form factors are given 

by those in eqs. (3.4.5) if the changes fD ---+ j 8 , mD ---+ m 8 , .6..c ---+ .6..b, PI< ---+ Pr.+ 

and p7r ---+ P7r- are made and f.i is set to zero. Using eqs. (3.3.2) and (3.3.3) these 

form factors can be expressed in terms of OH, SHand SL. 
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(iv) fl 0 
--t 7r-7rOlve 

In this case the Q = c matrix element of Lv2 is required. Computation of the 

Feynman diagrams in Fig. 7 gives that the form factors are 

(3.4.8a) 

(3.4.8b) 

(3.4.8c) 

(3.4.8d) 

t erms of ()H,sH and sL. (Here the difference of four-momenta is Q~-' = P~-- P~o) 

(v) Eo --t 7r+7rOfilt 

In this case the Q = b matrix element of Lv1 is needed. The form factors are 

given by those in eqs. (3.4.8) if the following changes are made: fv --t j 8 , mv --+ 

ms, b.c --t b.b, and P1r- --t P1r+ . Using eqs. (3.3 .2) and (3.3.3) the form factors can be 

expressed in terms of ()H, sH and sL. 

3.5. B --t D7rfilt DECAY 

In this case matrix elements of the operator C/p.(l - 15 )b are needed . This 

operator is a singlet under chiral SU(3)L x SU(3)R and in chiral perturbation theory 

its matrix elements are equal to those of 

(3.5.1) 

The ellipsis in eq. (3.5.1 ) denotes terms with derivatives, insertions of the light quark 

mass matrix or factors of 1/ mQ. Here the universal form factor is denoted by TJ ( v · v') 
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rather than (( v · v') as in the last chapter to avoid confusion with the use of ~ in eqs. 

(3.1.1) which is the conventional notation in chiral perturbation theory. The B ---+ D 

and B ---+ D* matrix elements of this current are[l] 

(3.5.2a) 

(3 .5.2b) 

The normalization of ry at zero recoil, i.e., v·v' = 1, is determined by heavy quark flavor 

symmetry and by high momentum strong interaction effects that are computable using 

perturbative QCD methods,[1 ,24- 27l 

Since the operator in eq. (3.5 .1) does not involve the pseudo-Goldstone boson 

fields, in the leading order of chiral perturbation theory B ---+ D1r matrix elements of 

the current are determined by the pole-type Feynman diagrams in Fig. 8. They give 

for a charged pion 

In eqs. (3.5.3), 

~b = ms•- m 8 ~50 MeV. 

(3.5.3a) 

(3 .5.3b) 

(3.5.3c) 

(3.5.3d) 

(3.5.4) 

(3.5.5) 

The form factors for a neutral pion are obtained from the above by multiplying by 

±1/-/2. 
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Fig. 8: Feynman diagrams forB-+ D1r matrix element of C/11 (1 - 15 )b. The shaded 

square denotes an insertion of the current in eq. (3.5.1). 

We have assumed in writing eqs. (3.5.3) that the kinematic region is chosen so 

that v' · P1r is not too close to .6.c. For use of the effective theory propagator to be 

appropriate it is necessary that 

(3.5.6) 

This also ensures that the D* width can be neglected in the propagator (because it 

is expected to be only about a hundred KeV) . 

It is convenient to reexpress some of t he formulae of section 3.2 in a way that 

makes the dependence on the heavy meson masses explicit and neglects terms sup­

pressed by m'lrfmD or m'lrfm8 . Introducing the pions four-velocity v!; = p~fm'lr we 

change integration variables from s H and s L to v ' · v'lr and v · v ' using 

(3 .5.7) 

The form factors Fj are conveniently writ ten in terms of dimensionless quantit ies Fj, 

3/2 1/2 
m 8 mv ( ') A Fj = f g TJ v · v Fj . (3 .5.8) 
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Using (3 ~ (2m1r/mD)[( v' · v7r) 2 -1]112 and X ~ m8mD[( v · v') 2
- 1]112 the differential 

rate (after integrating over () L and <P) becomes 

(3.5.9) 

Combining eqs. (3.5 .8), (3.5.3) and (3.3.12) the dimensionless form factors Fj are 

found to be: 

v' · v 

1

- 6.] 7r c 

v' · v 

1

- 6. ) 7r c 

v' · v,

1-AJ 
(3.5.10a) 

F2 = [(v' · v7r) 2
- 1] 112[v · v' + 1][1 + (mDim8)2

- 2(mDim8)v · v']1
/

2 

• ( 
1 

A 

1 
A ) (3.5.10b) 

v · v?r + ~b v' · v'lr - ~c 

In eqs. (3.5.10) 

(3.5.11) 

and 

(3.5.12) 

Chiral perturbation theory should be valid for v · v'lr and v' · v'lr not too much 

greater than unity. From eq. (3.5.11) it is clear that the kinematic region where 

cos ()H is positive yields (for given v' · v'lr and v · v') a smaller value for v · v'lr. Note 

that because m?r and f are comparable, the rate for B -+ D1r£De is not suppressed 

by factors of m'lf I m D or m'lf I m B. In fact the above formulas indicate that there is 
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a significant rate for B -+ D1rfDf. in the kinematic region where chiral perturbation 

theory is expected to be applicable (and the D1r mass is large enough to neglect the 

width in the virtual D" propagator). To illustrate this we write, 

(3.5.13) 

In Table 1 we give d2f / d( v · v')d( v' · v1r) for various values of v · v' and v' · v1r. Provided 

TJ does not fall off very rapidly as v' · v increases, the rate for B -+ D1rfD£, in the 

region where chiral perturbation theory is expected to be applicable (i.e., v · v1r and 

v' · v1r around unity) is comparable with what was estimated in the introduction. In 

Table 1 we used lie = 1. The rate in the kinematic region where v1r · v' is near one 

is quite sensitive to the value of lie. ForB+ -+ n+7r-£vt decay lie= 1 is consistent 

with the measured masses, but for B 0 -+ D 0 7r+fve decay lie = 1 is slightly less than 

the experimental value. 

TABLE 1. Scaled Decay Rate for B-+ D1rfDe 

d2f / d( v · v')d( v' · v1r) for various values of v · v' and v' · v1r 

d2 f/d(v · v')d(v' · v7[) v · v' v' · v 
1r 

0.030 1.2 1.2 

0.042 1.4 1.2 

0.024 1.2 1.3 

0.034 1.4 1.3 

0.021 1.2 1.4 

0.030 1.4 1.4 

0.018 1.2 1.5 

0.027 1.4 1.5 
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3.6. VALIDITY OF CHIRAL PERTURBATION THEORY 

Chiral perturbation theory is an expansion in momenta so our results are ex­

pected to be valid for only a limited kinematic range. For B --+ D1rfvc naiYe dimen­

sional analysis suggests that the expansion parameters are ( v · p7f) I A and ( v' · p7f) I A, 

where A is a nonperturbative strong interaction scale around 1 GeV. However, it 

is far from clear precisely how small these quantities must be for the B --+ D1r£iJe 

differential decay rate given in eqs. (3.5.9) - (3.5.12) be a good approximat ion. \Ve 

do have some experience from comparisons of the predictions of chiral perturbation 

theory for 1r1r scattering, weak kaon decays etc., with experiment. As we shall see 

shortly, the situation in B --+ D1r£iJc decay is somewhat different. 

For B --+ D1rf.iJe the leading contribution is of order unity. One factor of p7f 

from the D* D1r(or B* B1r) vertex is canceled by a factor of 1/p7f from the D~(or B~) 

propagator. At the next order of chiral perturbation theory, corrections come from 

two sources: (i) operators in the chiral Lagrangian for strong D* and D (or B* and 

B) interactions with pions containing two derivatives or one factor of the light quark 

mass matrix; ( ii) operators representing the weak current c11-' ( 1 - Is )b that contain 

one derivative. 

For example, one term in the ellipsis of eq. (3.5.1) is 

(3.6.1) 

where ij( v · v') is a new universal function of v · v'. This "higher order" contribution to 

the current C/1-'(1- 15 )b gives rise to the following changes in the form factors w±, r 

and h 

8(w+- w_) = :f~m8mn ij [v · v' + 1] + r 

8( w+ + w_) = 
2

1 
f!f!i. ij [p7f · v] + r 

A V mn 

8r = 2_ {!jiQ ij [p7f · v'] 
AJV mB 

8h = _2._ ij 
Af ~mBmD 

(3.6.2a) 

(3.6.2b) 

(3.6.2c) 

(3.6.2d) 

For the 7f7f phase shifts, the first corrections to the leading predictions of chiral 

perturbation theory are suppressed by sf A2 and come from operators in the chiral 
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Lagrangian with four derivatives and from one-loop diagrams. However , for B --t 

D1rfve, loops do not contribute to the leading correction which is only suppressed by 

v · P1r/A or v'· P1r/A. 

There are too many higher dimension operators with unknown coefficients to 

make any predictions for the next order contribution to the form factors for B --t 

D1rRlie. However, it is certainly possible that our leading prediction for the B --t DrrRDc 

differential decay rate is valid at the 30% level over the kinematic range displayed in 

Table 1. Eventually the range of validity of lowest order chiral perturbation theory 

for B --t Drrflie may be determined by experiment. 

3.7. CONCLUDING REMARKS 

In this chapter the semileptonic B and D meson decays, D --t I< rrlvll D --t 

1rrrlve, B --t 1rrr-fDe and B --t Drrfve were considered. Chiral symmetry and heavy 

quark symmetry were combined to deduce the decay amplitudes in the kinematic 

region where the pseudo-Goldstone bosons are soft. There was earlier work on these 

decays that considered the implications of chiral symmetry but it did not implement 

heavy quark symmetry in a model independent fashion.l28l 

For B --t D1rf!De decay the rate is large enough that detailed experimental study 

of the decay (in the kinematic regime where chiral perturbation theory is expected to 

be applicable) may be possible at a B factory. Table 1 gives d2f/d(v · v')d(v'· v1f) for 

various values of v · v' and v' · v1f (see eq. (3.5.13)). These indicate that the branching 

ratio for semileptonic Be4 decay to nonresonant Drr (in the kinematic regime where 

the pion is soft, i.e., v · v1f and v' · v1f around unity), is about 10-4 . 

The results of this chapter rely on heavy quark spin and flavor symmetry. There 

is experimental evidence from semileptonic B decay[29l and from the decays of excited 

charm mesons[3o] that (at least in some cases) the charm quark is heavy enough for 

heavy quark symmetry to be applicable. However, several theoretical analyses suggest 

that there are large AQcn/mc corrections to the prediction of heavy quark symmetry 

for the relation between B and D meson decay constants.l31- 33l If this is an isolated 

case, where the AQcn/mc corrections that break the flavor symmetry are anomalously 

large, then the results of this chapter can still be used (with fB and fn in Section 3.3 

treated as independent constants). 
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Semileptonic B -----t Df.vt and B -----t D* f.vt decay can be utilized to check that there 

are not large AQcvfmc corrections to the expression for the b -----t c transition current 

in eq. (3.5.1). However, our predictions for B -----t D1rfiie decay still depend on the 

validity of heavy quark spin-flavor symmetry for the chiral Lagrangian in eq. (3.2.4). 

The dependence on the flavor symmetry arises from the equality of the B* B1r and 

D* D1r couplings. If heavy quark flavor symmetry is not used then the form factors 

for B -----t D1rf.iie decay given in eqs. (3.5.3) of Section 3.4 become 

(3.7.1a) 

(3.7.1b) 

(3.7.1c) 

(3.7.ld) 

It would be interesting to use B -----t D1rf.iie decay to test the heavy quark flavor 

symmetry prediction, 9b = 9c· 

It is not known precisely for what range of v · P1r and v' · P1r chiral perturbation 

theory will be valid. Our experience with light hadrons suggests that the relevant 

expansion paraments are roughly v · p'Tf/1 GeV and v' · p'Tf/1 GeV. It may be possible 

in B ---+ D1rfiie to study the range of validity of chiral perturbation theory for heavy­

meson pion interactions. 

A number of extensions and improvements on this work are possible. The decay 

B -----t D*1rfiie is considered in the following chapter where we will explore to what 

extent it can also be used to fix g and to test the heavy quark flavor symmetry 

prediction g = gb = g)34
J There are computable a

5
(mb) and a 5 (mJ corrections to 

the form factors for the decays discussed in this chapter[35-
37l and it is worth examining 

their influence on the rates for B£4 and De4 decays. 
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4. HEAVY MESON CHIRAL PERTURBATION THEORY 
and B -+ D*X£v£ DECAY 

4.1. INTRODUCTION 

This chapter investigates the implications of the heavy quark and chiral symme­

tries for the semi-leptonic decay B --+ D* XfJie.3 The general kinematic analysis for 

decays of the form 

pseudoscalar meson--+ vector meson+ pseudoscalar meson + lepton + anti-lepton 

(4.1.1) 

IS given m Section 4.2. While the formalism developed here is similar to that in 

Chapter 3, the presentation here allows for vector mesons in the final state and the 

notation is also somewhat different. This kinematical framework is applied to the 

above exclusive decay which allows the differential decay rate to be expressed in a 

form that is ideally suited for the experimental determination of the different form 

factors for the process through angular distribution measurements. In Section 4.3, 

heavy quark and chiral symmetry predictions for the form factors are determined, 

and the differential decay rate is calculated in the kinematic region where chiral 

perturbation theory is valid. It is remarkable that these symmetries combine to 

constrain the Lagrangian so that at leading order there is only one unknown coupling 

g independent of the heavy quark flavor and spin. This decay could be used to probe 

the heavy flavor dependence of g. Concluding remarks are made in Section 4.4. 

4.2. KINEMATICAL ANALYSIS 

In this section, the kinematical framework for decays of the form glVen by 

eq. ( 4.1.1) is presented. For definiteness, we consider the decay B --+ D* X file where X 

is a pseudo-Goldstone boson; however, this formalism is more generally applicable to 

any decay of the form given by eq. (4.1.1). If PB,PD•,Px,Pe,P;; are the four-momenta 

of the B,D*(which also has a polarization vector c;),X,f,ve, respectively, then the 

3 Based on C.L.Y. Lee, Phys. Rev. D48, 2121 (1993).l381 
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kinematics of the decay can be more conveniently expressed in terms of quantities 

involving the following combinations of these four-momenta. 

P = Po• + Px 

Q =Po· - Px 

L =Pi! + Pv 

N = Pe- Pv 

(4.2.la) 

(4.2.1b) 

( 4.2. l c) 

( 4.2.1d) 

Apart from spin, four-body decay is kinematically parameterized by five variables . 

By choosing these variables appropriately, one can express the distribution for the 

decay in a form where the dep~ndence of the angular distribution on the hadronic 

and leptonic currents factorizes. This can be achieved by the· choice(23l 

1. sH = P 2
, the effective mass of the hadron pair, D* and X; 

11. sL = L2
, the effective mass of the lepton pair, f and ill!; 

m. BH, the angle between the D* three-momentum in the D* X rest frame and the 

line of flight of t he D* X in the rest frame of the B; 

IV. BL, the angle between the f three-momentum in the file rest frame and the line 

of flight of the fil1 in the rest frame of the B; 

v. ¢, the angle from the normal of the plane formed by the hadron pair to t he 

normal of the plane formed by the lepton pair. 

In the following analysis, one finds that over much of t he available phase space 

including the region where chiral perturbation theory is valid, terms that depend on 

the mass of the lepton are suppressed by me/ s L ~ 1, so that the lepton mass may 

be neglected. With me = 0, 

N2 = -sL, 
2 

P. L = V = mB - sH - sL 
2 

p. Q = mo• 2- mx2 = XSH, 

p 0 N = w cos () L, 

L-N=O, 

Q · L = xV + UW cos()H, 

( 4.2.2a) 

( 4.2.2b) 

(4.2.2c) 

( 4.2.2d) 

(4.2.2e) 

( 4.2.2f) 

( 4.2.2g) 
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Q. N = (xW + uv cos eH) cos eL- u JsHsL sin eH sin eL cos¢, ( 4.2.2h) 

(4.2.2i) 

(where the convention for the anti-symmetric tensor is <::
0123 = +1.) In eqs. (4.2.2) 

2 2 mv• - mx 
x= ( 4.2.3a) 

U is the magnitude of the D* three-momentum in the D* X rest frame, 

( 4.2.3b) 

and 

( 4.2.3c) 

The invariant transition amplitude for the decay B --+ D* XR.De is given by 

where GF is the Fermi constant and ~6 is the Cabibbo-Kobayashi-Maskawa matrix 

element forb --+ c transitions. The hadronic matrix element can be expressed in terms 

of fifteen form factors: 

(X(Px ), D*(pv.,t:)JciiL(l -15 )bJB(pB)) 

= [i(a+ t:* · P + b+ t:* · p8 ) + ~+ E01f3-rliL 01 p t3Q-rt:*5] PJL 

+ [i(a_ t:* · P + b_ t:* · p8 ) + w
2
_ f.01(3-yliL 01 p f3 Q-rt:*5

] Q,_. 

+ [i(c c* · P + d t:* · p8 ) + ~ E01 f3-rliL01 pf3Q'Yt:*5
] L~-' 

+itt:* JL 

+ L OI p fJ *-r + LOI Q/3 *'Y + p o Qf3 *' 9+ E!L et/3-y E 9- c.,_.o(J-y E rc.JL01{3-y E 

+ ( ul t:" · P + U2 t:* · PB )<::1-LOifJ-rL o pf3 Q', (4.2.5) 

where the form factors a±,b±,c,d,g±,f, t,u11 u2,w, and w± are functions of sH,sL, 

and eH. The absolute value of the transition amplitude squared when summed over 

the vector meson and lepton polarizations is then 

~~Mfi l 2 = G;
2

l~b i 2H~-'vL~-'v , 
spins 

( 4.2.6) 
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where 

H~-<v = (X(Px ), D*(p0., c) lc1~-<(1 - ! 5 )biB(pB)) 

x (X(Px ), D*(p0 . ,E) Iclv(l - ! 5 )biB(pB))*, ( 4.2.7a) 

(4.2.7b) 

Using eqs. (4.2.2a- i), the differential decay rate can then be written in the form 

(4.2.8) 

with 

I= I 1 + I 2 cos 2aL + I3 sin2 aL cos 2¢ + I 4 sin 2aL cos¢ + I 5 sinaL cos <P 

+ I 6 cos aL + I 7 sinaL sin ¢+ I 8 sin 2aL sin¢ + I 9 sin2 aL sin 2¢ ( 4.2 .9) 

where Ij, 1 :::; j :::; 9, are functions of sH, sL, aH only. As we alluded to earlier, the 

separation of the variables S H, S L, a H from a L, cp in eq. ( 3. 3.11) is a direct consequence 

of this particular choice for the five variables parameterizing four-body decay. The 

distribution functions Ij can be written in a compact form by introducing the following 

combinations of kinematic factors and form factors. 

G1 =-
2 

1 
{AsH[Wa+ + (xH! + UVcosaH)a_] 

mD. 

+ ( mB

2 

+ ;H- sL A+ UW cos ()H) [Wb+ + (xW + UV cos ()H )b_] 

+ (AW + UV cosaH)t} (4.2.10a) 

G2 = u::::;: [ (AsH)a _ + (mB2 
+ ;H- SL A+ uw cosaH )b- + t] (4.2.10b) 

G3 =FH{ [Wa+ + (xW + UV cosBH)a_] 

m 
2 + SH- S W } + B 

2 
L [Wb+ + (xliV + UV cos ()H )b_] + -t 

SH SH 
( 4.2.10c) 

( 
mB2 + SH- SL ) 

G4 =UswJs[, a_+ 
23

H b_ ( 4.2.10d) 

1 
G 5 =--[M12 b+ + W(xW + UV cos ()H )b_ + Vt] 

VSii 
(4.2.10e) 

G6 =UW ylsLb_ ( 4.2.10f) 
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G7 = ylsLt 

UW JsHsL [ 
Gs = 2 g+ - g_ + (>.sH )ul 

mv· 

+ ( m B 
2 

+; H - s L ). + U W cos 0 H ) u2] 

G9 = ylsL[liVg+ + (xW + UV cosOH)g_ + (UsH cosOH )r] 

G10 =U JSH(sLg- + Vr) 

[ ( 
mB

2
+ s H- SL ) ] G11 =UW JsL g_ - sHu1 + 

2 
u 2 

G12 = UV JsL(g_ - Vu2 ) 

G13 = U JSHsL(g_ - Vu 2 ) 

G14 = UV JSH(r + sLu2 ) 

G15 = U sHJsL(r + sLu2 ) 

G16 = UliV JSH[Ww+ + (xW + UV cos OH)w_] 

G17 = U 2 W sHJsLw_ 

In these equations, >. = 1 +X· 

Then 

I1 =~(\G1 \ 2 - \G3\2 + \Gs\2) + ~\G7 \ 2 + %\G9 \
2 

+ %( \G2\2 - \G412 + \G6 \2 + \G8 \
2 + \G10 \

2 

- \Gn\2 + \G12 \2 - \G13\2 - \G14\2 + \Gls\2) sin2 eH 

+ ~ \GIO + Gls \2 sin2 
eH + % \Gg - G17 sin2 

BH \
2 

I2 =- ~( I G1 \ 2 -IG3 \
2 + \Gs\

2
) + l \G7 \

2 + ~ \G9 \2 

+ ~( IG2 \ 2 - \G4\2 + \G6 \
2 + \G8 \

2 + \G10 \
2 

- \G11 \
2 + \G12 \2 - \Gd2 - \G14 \

2 + \G15\2) sin2 BH 

-l \GIO + G16 \2 sin2 
e H + ~ \Gg- G17 sin2 BH\

2 

13 =l( - \G2 \2 + \G4 \2 - \Gs \2 + \Gs \2 + IG10\2 

- \Gn \2 + \G12\2 - \Gd2 - \G14\2 + \Gls \2) sin2 BH 

- ~ \Gn\2 sin4 
{)H 

14 =~Re(G1 a;- G3G: + G5G~- G9G~0) sin {)H 

( 4.2.10g) 

( 4.2 .10h) 

( 4.2.10i) 

( 4.2.10j ) 

( 4.2.10k) 

( 4.2.101) 

( 4.2.10m) 

( 4.2.10n) 

( 4.2.10o) 

( 4.2.10p) 

(4.2.10q) 

(4.2.1la) 

(4.2.11b) 

(4.2.11c) 
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(4.2.11d) 

! 5 =Re[G1 G~ + G3G~1 - G5(G12 + G15)*- G7(G10 + G16)*] sinBH (4.2.1le) 

16 =Re{[G2G~ + G4G~1 - G6( G12 + G15 )*] sin2 BH + 2G7G~ 

(4.2.11£) 

17 =lm(G1G;- G3G: + G5G~ + G9G~0)sinBH (4.2.11g) 

Is =~lm[Gl c; + G3G~l- Gs(Gl2 +GIS)*+ G7(Gl3 + G14)*] sin B.J4.2.11h) 

19 =- ~Im[G2G~ + G4G~1 -G6(G12 + G15)*] sin2 BH (4.2.11i) 

Eqs.(4.2.11) indicates that the partial wave expansions for the G; in eqs.(4.2.10) 

are of the form 
(X) 

Gi(sH, SL, cos ()H) = L G;,e( s H' s L)Pe( cos eH), ( 4.2.12a) 
(=0 

fori= 1,3,5, 7,9, 

~ G; e(sH, sL) d 
G;(sH, sL, cos ()H) = L..t j d e Pe( cos eH ), 

(=l /!.(£ + 1) cos H 
( 4.2.12b) 

for i = 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, and 

G ( e ) ~ 611 ,e ( s H, s L) d
2 

P ( a ) 
17 sH,sL,cos H = {;;: J(1!.-l)l!.(£+ 1)(£+ 2)d2 cosaH e cosH. (4.2.12c) 

The form of the distribution given by eq.(4.2.8-4.2.12), where the dependence on 

the lepton angles (a L• ¢) is explicit, is ideally suited for the determination of the I/s 

and hence the form factors from angular distribution measurements. 

Implementing eqs. ( 4.2.9,4.2.11,4.2.12) in eq. ( 4.2.8) and integrating over the 

angles yields 

d2r = GF21V:,bl2 uw 
3( 47r )5m}, 

L 2e ~ 1 [1Gt,el
2

- IG3,el
2 

+ IGs,el
2 

+ 2IG7,el
2 

+ IGg,el
2 

+ IG9,e- G17,el
2 

e 
-2-2-2-2-2-2-2 

+ IG2,el - IG4,el + IG6,el + IGs,el + IG10,el - IGu,el + IG12,el 

- IG13.ef- IG14,el
2 

+ IG1s,el
2 

+ IG10,e + 616,el
2 J; ( 4.2.13) 

and the total decay rate is 

( 4.2.14) 
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The simplicity of the limits in the integration over phase space in eq. (4.2.14) IS 

another advantage of our choice of the five variables describing four body decay. 

4.3. B ---+ D* X iDe DECAY 

All weak b ---+ c transitions like the decay B ---+ D* X iDe are effected by the 

current operator c~rll(l - 1 5 )b. The form of this current in the heavy meson chiral 

perturbation theory is given by eq. (3.3.1) of the previous chapter. At leading order in 

this effective theory, 1r,I<,T] fields are absent in the operator of eq. (3.5.1), and hence 

the matrix element for B ---+ D* XfDe decay is dominated by the tree-level pole-type 

Feynman graphs in Fig. 9. The Feynman rules for these diagrams are obtained by 

expanding out eq. (3.2.4) and (3 .5.1) in powers of the pseudo-Goldstone boson fields 

and the heavy meson fields Pa and P;J.L. 

Calculating the Feynman diagrams for the case X 

predictions for the form factors. 

1r± gives the following 

( 4.3.la) 

(4.3.lb) 

( 4.3.1c) 

( 4.3.ld) 

(4.3.le) 

( 4.3.1f) 

( 4.3.1g) 

( 4.3.lh) 

(4.3.li) 

( 4.3.1j) 
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Fig. 9: Leading order Feynman diagrams forB--+ D* XR.vl decay. The shaded circle 
represents an interaction term coming from the heavy meson chiral Lagrangian of 

eq. (3.2.4), and the shaded box denotes a n insertion of the weak current given by 

eq. (3.5.1). 

w =0 
A 

( 4.3. l k) 

(4.3.11) 

( 4.3. l m) 

(4.3. l n) 
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A= .Jmv• mB g ry(v · v')/ f 

6.v = mv•- mn ~ 142 MeV, 

6.B = mB•- mB ~ 46 MeV. 

(4.3.2a) 

( 4.3.2b) 

(4.3.2c) 

Multiplying the above expressions by the factor ±1/.J2 gives the corresponding form 

factors for a neutral pion. 

The above results are generally applicable when X is any of the pseudo-Goldstone 

bosons with appropriate modifications to take into account isospin factors. However, 

the large masses of the kaon and eta compared to the chiral symmetry breaking scale 

(Ax r-v 1 GeV) may render leading order chiral perturbation theory inadequate, so in 

the remainder of this analysis we will continue to take X to be a pion. 

Since the masses of the heavy mesons are so much greater than that of the 

pseudo-Goldstone bosons, it is appropriate to make the dependence on the heavy 

masses manifest and to neglect terms that are suppressed by factors of m 1r!mB and 

m1f/mv· · The pertinent formulae in Section 4.2 can be written in this form by 

expressing the pion's four-momentum in terms of its four-velocity v~ = p~jm1f and 

by changing variables from s H and s L to v · v' and v' · v1f so that the integration 

measure in eq. ( 4.2.8) becomes 

(4.3.3) 

Now we introduce the dimensionless quantities Gj which are defined in terms of the 

Gj by 
3/2 1/2 ( ') 

Q. = mB mn• gry v·v Q. 
J f J 

(4.3.4) 

into eq. ( 4.2.8). Substituting 

and performing the integrations over e L and ¢> in the differential decay rate m 

eq. ( 4.2.8) yields 

d3r = 8G}m1m1.JV.:b 12 (m1f ) 
2 

2 ( . ')2[( . ')2 _ 11112[( , . )2 _ 1]112 
3( 47r ) 5 f g ry v v v v v vn 
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[ ()G1 )
2 -IG3 j2 + )G5I2 + 2jG7 I2 + IG9 j

2 + IG9 - G17 sin2 OH\2
) 

+ (IG2I2
- 1641 2 + IG61 2 + 1Gsl2 + IG10I2 

-1Gnl 2 + IG12I2 -1613!2 -161412 

' 2 ' ' 2) 2 ] +IG15 I +IG10 +G16 j sin OH d(v · v')d(v'·v"')dcosOH , 

v · v"' = (v · v')(v' · v"')- [(v · v')2 -1]112 [(v' · v"') 2 -1]112 cosBH. 

( 4.3.5) 

( 4.3.6) 

A source of uncertainty in eq. (4.3.5) is the Isgur-Wise function ry (v · v') since 

its value is only known at t he zero recoil point given by T/ ( v · v' = 1) = 1. However, 

the quantity v · v' is unconstrained, so this dependence on T/ can be removed by 

normalizing this decay rate to that for t he corresponding semi-leptonic transition 

without the emission of pseudo-Goldstone bosons: 

(4.3.7) 

This transition was considered in Section 2.4 and is mediated by the current in 

eq . (3.5.1).d The hadronic matrix element was determined to be 

(D*(v', c)IC,,..(1 -15 )bjB(v)) 

=Jm8 mD. ry(v · v') (-(1 + v · v') C: + (c* · v)v: + ic,..af3-yc*av'f3v-r ]. ( 4.3.8) 

Then the rate could be studied away from the zero recoil point. 

Since the above rate involves the ratio m"'/ f which is close to unity; and is not 

suppressed by heavy quark masses, the rate for the decay as given by eq. (4.3.5) is 

appreciable in the region of phase space where chiral perturbation theory is valid. To 

show this, we introduce a scaled decay rate d3 f defined by 

(4.3.9) 

where ~~2:f I V:,6 j
2 is the usual factor which appears in three-body decays. The differ­

ential rate d2 f / d( v · v') d( v' · v"' ) is calculated for various values of v · v' and v' · v"' in 

Table 2. 
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Table 2 . Scaled Decay Rate for B --+ D *1rfve 

d2 fjd(v · v')d(v' · v1r) at different values of v · v' and v' · v1r. 

v · v' v' · v1r d2 fjd( v · v')d(v' · v1r) 

1.2 1.1 0.0022 

1.4 1.1 0.0037 

1.2 1.2 0.0033 

1.4 1.2 0.0057 

1.2 1.3 0.0043 

1.4 1.3 0.0074 

1.1 1.4 0.0022 

1.2 1.4 0.0052 

1.4 1.4 0.0090 

1.2 1.5 0.0061 

1.4 1.5 0.011 

Table 2 shows that the differential rate for B --+ D*1rfve decay is smaller than 

the corresponding rate for B --+ D1rfve decay given in Table 1 of t he previous chapter. 

This enhancement for B --+ D1rfve can be attributed in part to t he D* propagator in 

Fig. 8 which becomes on-shell as its pole is approached. However, the presence of 

the D* in the decay B --+ D*1rfve allows this process to be selected experimentally 

with much better signal to background (because of the small amount of phase space 

available forD* --+ D1r decay) as compared to the decay mode B--+ D1rfi/e. Moreover, 

the decay rate for the former channel increases much more rapidly with v · v' than in 

the latter channel. So an experimental study of B --+ D•1rfve decay would complem ent 

a similar study of B --+ D1rfi/e. A measurement of this decay rate could be used to 

test heavy quark flavor symmetry: if this symmetry were violated, there would be 

different couplings gc and gb for the n• D1r and B• B1r vertices in Fig. 9 which would 

result in different expressions for the form factors in eqs. (4.3 .1) and hence in a 

different decay rate. 

The value that the differential decay rate takes is determined by the contributions 
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coming from the pole-type graphs in Fig. 9. In order for these pole diagrams to be 

the dominant contribution to the perturbative chiral expansion, the pseudo-Goldstone 

boson must be emitted with low momentum. Or equivalently, the chiral expansion 

parameters v · P1r I Ax and v' · P1r I Ax should be small - with v · P-rr and v' · P1r on the order 

of a few hundred MeV. An attempt to estimate the regime where chiral perturbation 

theory is valid for the decay B --t D1rfiie was made in the last chapter where it was 

found that predictions of next-to-leading order effects in chiral perturbation theory 

could not be made because there were too many new higher dimension operators with 

unknown coefficients. A similar study here yields the same result, but the predictions 

made in this chapter on the basis of leading order chiral perturbation theory may 

well be valid over a kinematic range much larger than that exhibited in Table 2. An 

experiment would ultimately establish the region of phase space where our results are 

valid. 

4.4. CONCLUDING REMARKS 

In this chapter, a complete kinematical analysis for B --t D* X file decay is pre­

sented. The constraints that the heavy quark and chiral symmetries impose on this 

decay are found to considerably simplify the dynamics and are used to determine the 

decay rate for this process. A number of extensions to this work can be pursued. 

For instance, it is interesting to determine how large symmetry-breaking effects are 

by calculating sub-leading AQcolmc corrections. Decays in which more than one 

pseudo-Goldstone boson is emitted can also be considered. 
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5. ONE-LOOP EFFECTIVE ACTION 
AT ZERO AND FINITE TEMPERATURE 

5.1. INTRODUCTION 

The evaluation of quantum corrections to classical solutions is an important prob­

lem which pervades much of modern theoretical physics.4 However, while effective 

potentials have been studied extensively, methods for determining the effective action 

are less well-developed. Moreover, the actual evaluation of such effects for realistic 

systems has often been hampered by their general intractability to analytical solution 

and the lack of efficient computational methods, although there have been efforts to 

address this problem.[39- 431 

In the effective potential approximation to the effective action, quantum fluctu­

ations are integrated out about a constant classical field - but this is not expected 

to be adequate because the classical field is generally an inhomogeneous configura­

tion. The derivative expansion[441 improves on this by accounting for spatially varying 

background fields; its leading term is the effective potential. T he expansion is a per­

turbative approximation which extracts the dominant contribution of short-distance 

quantum effects on long-distance physics. When it converges, it provides an effi­

cient means for performing calculations. However, when it diverges, one must often 

resort to brute-force techniques which entail an explicit, computationally-intensive 

evaluation. Furthermore, the derivative expansion fails whenever the potential ll is 

non-convex (V" < 0) in some region of space, which includes an important class 

of perturbatively calculated potentials which includes those considered in the next 

chapter.(4s] It is clear that a general method, which is also applicable to such cases, 

is needed. 

In this chapter, a method for calculating the quantum effects arising from the 

effective action is presented. The next section contains the general formalism for 

evaluating the effective action. Section 5.3 discusses the exact formulation of the 

computational method as well as extrapolat ion techniques which improve its conver­

gence properties. This formalism is applied to the analysis of phase transitions in 

Section 5.4 and the next chapter. [45l 

4 This chapter is based on C.L.Y. Lee, Phys. Rev. D49 , 4101 (1994). 
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Consider a scalar field theory with the Lagrangian density 

(5.1.1) 

where V is the tree-level potential which has a (classical) vacuum at <Pv. In 1 + 1 dimen­

sions, the one-loop effective action for a <P4 potential is given by an exact analytical 

expression presented in the next chapter.f39l In general, exact analytical solutions ex­

ist whenever the potential is reflectionless. So this chapter considers 3+ 1 dimensions 

exclusively, and renormalizability constrains V to have no polynomials in <P of higher 

power than a quartic. The classical field J is determined by the equation 

(5.1.2) 

The contribution of one-loop quantum effects to the effective action can be written 

as 

T £ (1) = !._T I EP + V"( J) 
r 2 r n az + f.L 2 ' 

where J.L 2 = V"( <Pv) and the trace runs over space-time coordinates. 5 Part of this trace 

can be evaluated as Tr£(1) = Tr' J (tl£(l) lt)dt, where Tr' runs over the remaining 

spatial degrees of freedom. Since this chapter deals only with time-independent J 
fields, specializing to this case means that states in the energy basis lw) are eigenstates 

of the operator in £(1). So inserting a complete set of such states and performing a 

partial integration yields 

Tr£(1
) = -i J Tr' J [ 1 

_ 
- w2 - V72 + V"( <P) 

w-t 1 ] 2 dwd 
-w2 - vz + f.L2 27r . 

Observe the non-locality of this expression; this generic feature of loop corrections 

makes exact analytical treatments difficult. The remaining trace can be conveniently 

performed over the eigenstates of the operators in £(1): if '1/JJ and 'lj;j are chosen such 

that 

[-'\72 + J.L2]'1/JJ = (wJ)z'l/JJ, 

[-'\72 + V"(J)]'l/;j = (wj?'l/Jj, 

(5.1.3) 

(5.1.4) 

5The trace excludes possible negative and zero modes of the operator 82 + V"(¢). When such 

modes arise, they must be explicitly removed and treated differently as shown in the following 

chapter J45l 
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where the subscript j indexes the eigenstates, then 

Tr£(1
) = -~ j L)wj - wJ)dt. 

J 

Hence the one-loop effective action can be written as 

s •• ((i>) = 1 [.C(J;)- .C(¢.)] d'x + 1 [ -~ w~A (w;- w~) + 1 .Co<(¢, A)d
3x] dt 

(5.1.5) 

The bare sum in Tr£(1) is divergent; it is regulated in eq. (5.1.5) by a momentum 

cut-off A, and a counterterm £ct(~, A) has been added to render it finite. 

For time-independent fields ~, it is more convenient to focus on the energy E of 

the system which is related to seff through 

Then 

where Eel is the energy of the classical field configuration 

£(1) is the one-loop contribution 

E(1)(~,A) = ~ ~ (wi -wJ), 
w~<A 

and Ect is the energy due to the one-loop counterterms 

At finite temperature T, the free energy F replaces E:l46l 

pet-+ E . 
ctl 

(5.1.6) 

(5.1.7) 

(5.1.8) 

(5.1.9) 

(5.1.10) 

for bosons, ~( x, T) is periodic in Euclidean time T with period r-1
, and there is an 

additional contribution due to one-loop effects:l45l 

(
1 -w /T) 

6.FT = T~ln - e-w~/T . 
. 1 - e 1 

J 

(5 .1.11) 
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Observe that no additional counterterms need to be added to pet because finite 

temperatures do not change the short-distance behavior of the theory. 

In the following section, we describe the method developed to evaluate the quan­

tum corrections, D.F1 and D..FT, formally given by eq. (5.1.8) and (5.1.11). While for 

some special situations, the wi can be obtained analytically, this is unfortunately not 

possible for a general potential V"( J). Instead the eigenvalues must be found numer­

ically, then for D.Fu the bare sum 'L:wC!<A (wj - wJ) is computed explicitly, and finally 
) 

the counterterm subtracted; for D.FT, the sum in eq. (5.1.11) must be performed 

term-by-term. To attain reasonable accuracy this subtraction has to be done at a 

large cut-off A (to achieve convergence) when both the bare sum and the counterterm 

(which individually div~rge as a function of the cut-off) are numerically very large. 

Since the final result is much smaller, each term has to be determined very precisely, 

resulting in a heavy computational burden. Furthermore, the straight-forward ap­

proach of evaluating the free energy by a "brute-force" term-by-term summation of 

the expressions in eq. (5.1.8) and (5.1.11) until convergence is reached is also compu­

tationally inefficient. 

5.2. METHOD OF COMPUTATION 

To circumvent the above-described problem of having to compute both the reg­

ulated bare sum and its counterterm to very high numerical accuracy, the three­

dimensional problem is first decomposed into channels of definite angular momentum. 

Then for each channel, the divergent part of the bare sum is analytically removed 

through subtraction with the corresponding divergence in the counterterm, leaving 

a much smaller finite piece. Since the contribution of higher part ial-wave channels 

decrease rapidly, this procedure overcomes the problem. 

An improved computational method is then presented. It is based in part on 

the observation that the higher-energy modes in the spectrum of eq. (5.1.4) are less 

perturbed by the potential V"( J) due to the non-uniform background field J than 

the lower-energy ones. This allows us to formulate an approximation method which 

accounts for the contribution of the high-energy modes accurately (where the accuracy 

of the approximation increases with the energy) so that only some of the lower-energy 

modes need to be treated exactly.l401 



70 

Exact Formulation 

The difference in the eigenenergies wj and wJ of the unbound states (w > J.L) can 

be characterized by the phase shift between the (asymptotic forms) of the correspond­

ing continuum state eigenfunctions 1/;j and 1/;J, as was first shown in one dimension.f39l 

Since the phase shift is generally a well-behaved, smoothly-varying function of the 

energy, it is relatively easy to calculate. Hence it is convenient to express the free 

energy in terms of this quantity. To determine the phase shift, we consider eq. (5.1.4) 

which determines the fluctuat ions about the classical field configuration. 

Since most classical solutions ~ exhibit spherical symmetry ( ~ = ~( r) ), we will 

restrict our analysis to such systems. Then the solution to eq. (5.1.4) can be separated 

into radial and angular parts by choosing an eigenfunction of the form 

(5.2. 1) 

where the radial wavefunction is determined by 

(5.2.2) 

with the boundary condition un,z(O) = 0. The Yzm are the spherical harmonics corre­

sponding to a state with total angular momentum l and z-component m. 

The corresponding equation for u~,l where V"( ~) is replaced by f.L 2
, 

(5.2.3) 

has an exact analytical solution: 

(5.2.4) 

where j1 is the l-th order spherical Bessel function of the first kind and k~ = w~- f.L2
• 

These solutions have the asymptotic form 

U~z(r) ~ V2 sin(knr- [; ), r ~ 00. (5.2.5) 

The potentials we consider behave asymptotically as V" ( ~( r)) ~ J12 when r ---+ oo 

(which corresponds to those with finite action). For such potentials, the asymptotic 

behavior of the solution to eq. (5.2.2) will be 

Unz (r) ~ hsin(knr- [; + hikn)), r-+ 00. (5.2.6) 
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These equations serve to define the phase shift 81 for each angular momentum channel 

l. Note also that both un,l and u~,l are (21 +I)-fold degenerate. 

To facilitate the counting of states, it is convenient to discretize the eigenvalue 

spectrum. This procedure can be achieved by enclosing the system in a box of radius 

L (where L is much greater than the range of the potential V") and imposing the 

boundary condition 

(5.2.7) 

which requires that 

(5.2.8) 

Note that such a discretization is implicit in the formal sums m eq. (5.1.8) and 

(5.1.11). The values attained by w0 (before discretization) as defined by the energy 

eigenvalue of eq. (5.2.3) is a continuous spectrum ranging from an energy of f-1 to 

infinity. The corresponding spectrum for w determined by eq. (5.2.2) will generally 

consist of some discrete bound states with energies w] < f-1 2 and a continuous spectrum 

with energies w] > f-1 2
. The difference in structure between the continuum spectra of 

the two systems manifests in a difference in the respective density of states. Hence it 

is appropriate to express the sum over eigenenergies for the states in the continuum 

as an integral over the density of states: 

l:wJ = ~(21 + 1) Joo wnf(w)dw 
j l J1, 

(5.2.9) 

L wj = L (21 + 1)wnl + ~(21 + 1) Joo wn1(w)dw 
j w~l<l-'2 l 1-' 

(5.2.10) 

where (21 + 1)nz(w) is the density of states of angular momentum 1 for the potential 

V"(~) with an analogous definition for n?. On taking the continuum limit (L ~ oo), 

it follows from eq. (5.2.8) that the densities of states are related to the continuum 

phase shift through 
0 1 d81(w) 

n1(w) = n1 (w) +- d . 
7r w 

(5.2.11) 

Now if eq. (5.1.4) has N bound states, then since eq. (5.1.4) and eq. (5.1.3) must have 

the same total number of states , 

N + L(21 + 1) Joo n1(w)dw = ~(21 + 1) Joo n?(w)dw. 
l ~-' I ~-' 

(5.2.12) 
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For a finite potential, this implies N 1r = 8(11-) (by Levinson's theorem). 

It is convenient to define the free energy in each angular momentum channel 

such that 

(5 .2.13) 

.6.Fr = 2:)21 + 1).6.F~, (5.2.14) 
I 

and to similarly partition the counterterm energy as 

(5.2.15) 

then from the above equations 

(.5.2.16) 

and 

(5.2.17) 

In Appendix B the renormalization of the Lagrangian given by eq. (5.1.1) dis­

cussed. It is shown there that the contribution of the counterterms to the energy are 

of the general form 

J [ ( 2 2 2 J 3 ] d
3
p dw 1= 1 dw g w - p -f./, ) h(x)d x --- Tr (gh)-, 

(27r )3 27r _
00 

27r 
(5 .2.18) 

where g is a power of the propagator, h is a function of <P and its derivatives, and Tr' 

is a trace over the spatial variables. The partial wave decomposition of these contri­

butions is achieved by taking the trace with respect to the eigenstates of eq. (5.1.3) 

denoted here by inlm): 

Tr'(gh) = L L (nlmig(w2 + \72
- fJ,

2 )in'l'm')(n'l'm'ih(r)inlm) 
nlm n'l'm' 

(5.2.19) 

From Appendix B, the counterterm contribution to the free energy is 
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where 
1 

.6-o(w,p) = 2 2 2 + · ' w-p-f..L u 

and m 2 (r) = V"(¢(r)). Evaluating the trace using eq. (5.2.19) yields 

Fr(A) =lAP {- 4~ (p2 + 1f..L2)1/21= iu~l(r)l2 (m2(r)- f..L2] dr 

+ l~1r (p2 + 
1

f..L2p;2 1co !u~l(r)l 2 (m2
(r)- f..L

2
]

2 
dr }dp, 

where AP = J A2 - f..L 2 is a three-momentum cut-off. 

(5.2.21) 

This completes the formulation of the method for the exact calculation of the 

free energy. However, as we have remarked above, the convergence of such an exact 

computation can be sufficiently slow so that extrapolation techniques can be useful. 

Amongst the various such procedures, we consider in particular the WKB approxi­

mation, which provides an analytic expression for the phase shift that is valid at high 

energies and hence can significantly reduce the effort required to evaluate the phase 

shift integraU401 

WKB-Improved Method 

A differential equation of the form 

[d~2 + k2
(x)] f(x) = 0 (5.2.22) 

has an approximate WKB solution given by 

f ( ) _ exp [if0x k(w,y)dy] 
WKB X - Jk(w,x) (5.2.23) 

which is valid when the wavelength is much less than the distance scale over which k 

vanes: 
1 dk 

k2 dx <t: 
1 

where k( w, x) is the local wavenumber 

k(w,x) = Jw2 - V"(¢(x)). 

Hence the accuracy of the WKB approximation increases with energy. The phase 

shift for such solutions is given by 

(5.2.24) 
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Explicitly, 

8;-vK8 (w) = 1= jw2 - m2(r)- l(l ~ 1) dr-1= jw2 - p,2 - l(l ~ 1) dr, (5.2.25) 
a(w) y· r a

0
(w) y· r 

where a and a0 denote the classical turning points defined by 

and 

Applying this method to eq. (5.2.2) yields an analytic expression for the energy inte­

gral of the phase shift: 

lA 8JVKB(w)dw = r= [ [A Jw2- m2(r)- l(l ~ 1) B(A- n(r))dw 
~ Jo Jo(r) r 

- {A Jw2- p 2 - l(l ~ 1) ()(A- Q
0
(r))dw] dr 

Jo0 (r) r 

(5.2.26) 

with 

n(r) = m 2 (r) + l(l ~ l)' 
r 

and ()( x) is the unit step-function. Observe that since the high-energy behavior of 

the phase shift is independent of the angular momentum, the energy of each angular 

momentum channel is logarithmically divergent: 

(5.2.27) 

Now the divergent piece in t-.Fi can be analytically combined with the infinite part of 

F1ct in eq. (5.2.21) to leave only finite terms. Performing this subtraction and taking 

the limit A ---7 oo gives the final expression for the WKB-improved, temperature­

independent renormalized free energy: 
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In this equation, Xt is the contribution from the WKB phase shift above AwKB> 

(.5.2.29) 

where 
0( )2 2 l(l+1) 

ml r = f1 + 2 ' 
r 

()2 2() l(l+1) m 1 r = m r + 
2 

, 
r 

and Awi<B denotes the energy above which the phase shift is computed by the WKB 

method. The remaining terms in the last integral come from finite parts of the 

counterterm with 

(5.2.30) 

and 
r21oo s2ljt(s)l2 

p,(r) = -4 o (s2 + (J.Lr)2)3/2ds. (5.2.31 ) 

Equation (5.2.28) indicates that 6Fi,ren can now be computed by first summing over 

the bound state energies, then the continuum state contributions can be evaluated by 

explicitly computing the exact phase shift only up to AwKB' beyond which the WKB 

method provides an analytical expression that accounts for contributions at higher 

energies. Note that while the WKB procedure entails an approximation, its accuracy 

can be made such that the difference between the exact and the WKB results is 

smaller than the desired precision. Finally, summation over l yields 

flFl ,ren = L)2Z + 1)6Fi,ren• (5 .2.32) 
I 

Since 6FT is not divergent, it can be computed exactly using eq. (5 .2.14) and 

(5.2.16), or by replacing the exact phase shift 81 above a certain energy scale by the 

approximate WKB phase shift 8(VKB given by eq. (5 .2.25) . 
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5.3. APPLICATION AND DISCUSSION 

In the next chapter these methods are used to calculate the free energy of an 

instanton configuration which determines the decay rate in a first order phase tran­

sition. The computation of !;y.F1 will be described first. It is found t hat the accuracy 

available on conventional computers prevents a precise determination of this quantity 

when it is straight-forwardly evaluated as in eq. (5.1.8) -that is, by doing the bare 

sum and subtracting the counterterm, without a decomposition into partial waves. 

When /;y.F1 is computed exactly, by utilizing such a decomposition, very high numer­

ical accuracy is still required because for each l the bare sum and F1ct(A) must be 

evaluated at a large value of the cut-off A. But since both quantities diverge as a 

function of A, we find that convergence with reasonable accuracy is still difficult to 

attain. In contrast, evaluation of f;y.Fl ,ren using the WKB-improved method consist­

ing of eq. (5.2.28) and (5.2.32) converges rapidly for much lower values of the cut-off 

AwKB and typically only the first fifty partial waves need to be summed; the param­

eters required for convergence are very much dependent on the nature V" ( ~( r)) and 

the values we have quoted come from the potentials we have examined. 

The exact computation of !;y.pT can be performed by evaluating eq. (5.2.14) and 

(5.2.17) , but at high temperatures it is found that several hundred partial waves 

must be summed to attain convergence. When the exact phase shift is replaced 

by the approximate WKB expression at high energies, there is a reduction in the 

computational burden but the same number of angular momentum channels must be 

summed. The improvement is not marked as it was for /;y.Fl ,ren in part because !;y.pT 

is not renormalized. The results of these computations are summarized in Tables 6 

and 7 of the following chapter. 

In summary, we have elucidated a method for the exact evaluation the effective 

action to one-loop. The WKB extrapolation scheme was devised to reduce the com­

putational effort. These methods enable an efficient calculation of the free energy 

associated with a phase transition, as detailed above. However, the applicability of 

this method is not limited to this example. Rather, it can be utilized in a broader 

variety of problems involving the non-perturbative evaluation of observables in a non­

uniform background in quantum field theory[47l as well as in classical systems.l48l It 

can also be generalized to encompass theories with fermions.l49l 
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6. EFFECTIVE ACTIONS, EFFECTIVE POTENTIALS 

AND FIRST-ORDER PHASE TRANSITIONS 

6.1. INTRODUCTION 

Thermal Tunneling and the Critical Bubble Free Energy 

A scalar field theory whose potential V has two local minima may tunnel out of 

the false vacuum (cjJ1 ) by the nucleation and subsequent growth of bubbles of true 

vacuum (cPt). 6 While we will refer to Vas the "classical" potential, it may arise in 

part from integrating out other particles in the theory, e.g., gauge bosons,[so] so V 

m ay have implicit temperature (T) dependence. The nucleation rate per unit volume 

in the static limit ( RT ~ 1) is calculated in the Gaussian approximation (i.e., to 

1-loop order) to be[sl-s3] 

r = ~ lw-1 2:_ T I det[8
2 + V"( ~)]1-l/2 

e-Ec/T 
V V 1rT 2 det[82 + 112] 

(6.1.1) 

where 112 = V"( c/J 1 ). Ec is the classical energy of the critical bubble, a static and 

spherically symmetric field configuration ~(r ), of radius R, which extremizes the 

classical actionl54l subject to periodic boundary conditions in Euclidean t ime. The 

determinants range over a complete basis of fluctuations about the classical solution 

( ~( r) or cP 1 ), subject to the same boundary conditions. w~ < 0 is the eigenvalue 

of the "breathing" mode about ~(r). The second term on the RHS of Eq. (6.1.1) 

is from Affieck,l52l and the ~ is from analytically continuing the breathing mode 

integration. [sl] 

With the periodic boundary conditions, 

det[82 + V"(q\)[ = exp {.too~ In [(2,-nT) 2 + wJl} , (6.1.2) 

where the wJ are eigenvalues of [-\72 + V"(~)], and the (wJ) 2 are eigenvalues of 

[-\72 + 112
]. We use the identityl55l 

f L ln [(27rnT)2 + w2
] = ~ + T ln(1- e-wfT) + c = T ln [2 sinh u~,)] + c . (6.1.3) 

n 

6 This chapter is based on D.E. Brahm and C.L.Y. Lee, Phys. Rev. D49, 4094 (1994). 
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The constants C cancel out in Eq. (6.1.1). Thew_ contribution is then traditionally 

pulled back into the prefactor. The 3 "translation" modes ( n = 0 and w0 = 0) are not 

treated correctly above; they actually give V(Ec/27rT) 312 in the prefactm)51l and the 

remaining w0 contribution (from n # 0 modes) gives T 3 in the prefactor. This gives 

where the "traditional" bubble free energy 

ptrad = E + t:.,.ptrad = E + t:.,.ptrad + t:.,.p,trad 
c - c l+T - c 1 T ' 

0 
t:.,.ptrad = ,--.JWj - Wj +pet 

1 ~ 2 ' 
j 

' (1 e-w;/T) 
t:.,.p,trad = "'"" T ln - o 

T ~ 1 -w / T 
j - e J 

(6.1.4) 

(6.1..5) 

(6.1.6) 

Primes on the sums in Eq. (6.1.6) indicate omission of the translation and breathing 

modes ( w j, j = 1-4). Counterterms pet are discussed below. 

We now define7 

psub 
c 

Now Eq. (6.1.4) becomes 

(6.1. 7) 

!:-.Ffub - f':..F![ad - 4T ln(T / f.1) . (6.1.8) 

(6.1.9) 

We will find that the effective potential approximation most closely approximates 

Fsub 
c . 

7This is somewhat like removing the lowest 4 wJ's from the sums in Eq. (6.1.6), in addition to the 

lowest 4 w/s, since their contribution to FJrad is -4[~ + T ln(l- e-ll/T)] ~ 4T ln(T /~J). 
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The Effective Potential 

The sums in Eq. (6.1.6) are often approximated by treating the fluctuations 

locally as plane waves to get an effective potential VI+T = ~ + VT, then integrating 

[~+T( ~)- ~+T( ¢1 )] over all space. No attempt is made to remove the 4 translation 

and breathing modes. In Eq. (6.1.6) one substitutes 

(6.1.10) 

and one finds, with m2 _ V"(¢), 

Vl(¢)= 64171'2 {m4ln(::) -~m4+2m21-L2_~1-L4}' (6.1.11) 

(6.1.12) 

The expansion of I(y) for real y < 271' is[55•56l 

I()- -71'
4 

71'
2 2_~ 3 _Y

4 [I 2 _ c ~4(2k)!((2k+l) (-y
2 )k] ( ) 

y - 45 + 12y 6y 32 ny 3 + ~ k!(k+2)! l61r2 6·1.13 
k= l 

where c3 = ~ + 2ln( 47r) - 21 ~ 5.4076. We choose a renormalization scheme in 

which all divergent graphs are precisely cancelled by counterterms so that at zero 

external momenta, ~ ( <P f) = V{ ( ¢1 ) = V{' ( ¢1) = 0 (and there is no wavefunction 

renormalization), [571 specifically: 

Fct ·= ·~ J d3x { [4A4 + ~I-L4] + m2[4A2- 2~-L2] + m4 [2- In (4Y )] } lm2=V" 
6471'2 J1 m2 =112 

(6.1.14) 

In the region m2 < 0, we must modify these results to give a real answer. For 111 

we will always take the real part of Eq. (6.1.11). For VT let us keep the first equation 

of Eq. (6.1.12), but replace I(m/T) by J{neg)([m[/T) where 

-71'4 71'2 y4 
J(neg)(Y) = 45-

12 
Y2 + Y 3 [a+ bln(Y2)] - :32 [ln(Y2)- c3 + c] + · · · . (6.1.15) 

Methods we consider are then parametrized by {a, b, c}. The most common and 

obvious method (A) is to take the real part of Eq. (6.1.13), corresponding to {a= 

b = c = 0}. Another method (B), proposed in ref. [58], replaces the lower limit of 

integration in Eq. (6.1.10) by k = Im{m} (eliminating fluctuations with wavelengths 

longer than the bubble thickness), and corresponds to {a= ~- ~ ln(2), b = ~' c = 0}. 
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The Derivative Expansion 

For configurations ~(x) which vary slowly, the effective potential approximation 

is the leading term in a derivative expansion of the free energy. The next term (at 

high T) isl59•60l 

(6.1.16) 

and again we take the real part (Method A) when necessary. More terms are given 

explicitly in ref. [60]; they become increasingly divergent at m 2 = 0, where the deriva­

tion breaks down (because an integration by parts becomes invalid). Also, no attempt 

is made to omit modes. The usefulness of Eq. (6.1.16) is t hus h ighly suspect, but we 

note that derivative corrections are predicted to be O(T1 
). 

Scales, Approximations, and Goals 

Our generic tree-level potential will be quartic in ¢ with ¢1 = 0, V" ( 0) = fL 2 , and 

<Pt = rJ. By rescalingl61l ¢ = rJ¢, x = xj fL, and T = fLT, we can rewrite the 4-action 

S0 as 

"' ?: 1 is a dimensionless parameter; "'-+ 1 (degenerate minima) is the thin-wall limit, 

while larger "' gives thicker bubbles. With tildes indicating dimensionless results, 

(6.1.18) 

The loop expansion l62l is an expansion in (!L / fJ) 2 and T. It is sometimes claimed 

that higher loops should eliminate the complex terms in Frt, but this cannot be 

generally true since the higher-loop contributions are suppressed by these arbitrary 

parameters. Henceforth we will drop the tildes and work in the rescaled theory (i.e., 

set fL = rJ = 1). 

We always use the static approximation[63l (RT » 1) and the 1-loop approxima­

tion. In Section 6.3 we will use the thin-wall approximation, R » 1. At times we will 

make high-temperature expansions, requiring T ?: 1 (note the thin-wall and high­

temperature limits together imply the static limit). We are examining the validity of 

the effective potential approximation. 
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In this chapter we will study several systems: the !-dimensional (1D) kink, the 

thin-wall bubble, and two thick-wall bubbles. We will calculate 6.F1 and 6.FT for 

each system exactly [F;ub in Eq. (6.1.8)], in the effective potential approximation [Frt 

from Eqs. (6.1.11-6.1.12), using different methods to calculate J(neg) in Eq. (6.1.15)], 

and using the next term of the derivative expansion [F:er from Eq. (6.1.16)]. 

6.2. THE ONE-DIMENSIONAL KINK 

Classical Results 

We warm up by calculating the free energy of a kink in 1 spatial dimension:l64l 

~:~ = V'(¢), (6.2.1) 

The potential is that of Eq. (6.1.17) with K = 1. The kink solution is (up to an 

arbitrary shift in coordinate) 

¢(x) = Hl- tanh(~x)], (6.2.2) 

Eq. (6.2.1) allows us to convert integrals over x into integrals over¢: 

1= t d¢ 
-= dx --t Jo ¢(1-¢) . (6.2.3) 

For example, the classical energy is 

lD t df/J 2 2 1 
Ec = Jo ¢(1-¢) ¢ (1-¢) = 6. ( 6.2.4) 

Note that in lD [compare to Eq. (6.1.18)] Ec = JUJ2 Ec and 6..F1,T = f.L 6..F1,T, so with 

scales restored E~D = f.L0" 2 j6. 

Exact Results from the Eigenvalue Sum 

The solutions to the eigenvalue equations (setting f.L = 1) are known:[64- 66l 
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where we have imposed vanishing boundary conditions on a box of length L, so s is 

a positive integer. We drop the translation mode eigenvalue w 1 ; there is no negative 

eigenvalue in 1D. In the continuum limit, 

f:lpt rad = y'3 1A dk d8 Vk2 + 1 _ 2_ pet 
1 4 + 0 7r dk 2 27r + ' 

D..F!fad = T ln ( 1 - e- V3/2T) + 1= ~k 1~ T ln ( 1 - e-vk2+1/T) (6.2.6) 

In our renormalization scheme the 1D counterterms analogous to Eq. (6 .1. 14) are 

pet=~~ j dx{[4A2 +1] +m2 [2+ 2 ln(4i\2
)] - m4 }1:::~" = 8~[3+6ln(4i\2 )). 

(6 .2.7) 

(This differs from ref. [64) by 3/87r due to different renormalization schemes; also note 

their m2 = 112 / 2.) We define D..F:Ub = D..Ftad and D.. Ffub = D..Fj!ad- T ln(T / J.L ), and 

find 

f:lp sub = -
1- - ~ = -.2138 . 1 4v'3 87r 

(6.2.8) 

D..Fr~ = - (ln Vi2) T + 2_ ln(T) + 6c1 -
3 + 3((3) r-2 + . .. 

+ 27r 87r 327r3 
(6.2.9) 

where c1 = 1 + 2ln( 47r) - 21 ~ 4.9076, and ((3) ~ 1.2021. These results are in the 

row marked "sub" of Table 3. 

D..FI D..Fl+T 

Method Tln(T) T ln(T) 1 r- l r-2 
sub -.2138 0 -1.2425 .4775 1.0522 0 .0036 

pot(A) -.0916 0 -2.1145 .4775 1.0522 0 .0036 

der(A) -.0916 0 - 2.1730 .4775 1.0522 0 .0036 

pot(B) -.0916 0.4495 - 1.7222 .4775 1.0522 .0045 .0036 

Table 3: Kink free energy in low- and high-T regimes. 
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lD Effective Potential and Derivative Expansion Results 

The 1D effective potential for real m is[56l 

T2 A 

Vr = -I(m/T) 
7r 

(6.2.10) 

, -7r2 1rY y2 2 ((3)y4 
I(y) = -6- + 2 + 8 [ln(y ) - cl] - 647r2 + ... (6.2.11) 

For m2 < 0 we replace I(m/T) by j(neg)(lmi/T) where 

(6.2.12) 

Method A gives {a= b = c = 0}, and Method B gives {a= 1-ln(2), b = -~, c = 0}. 

We integrate (the real part of) 11;_ from Eq. (6.2.10) over all space, using 

Eq. (6.2.3), to get D.Ftt(A) = -.0916, which differs significantly from D.Ftub = -.2138 

(note each result is renormalization-dependent, but the difference is not). This dif­

ference, which was calculated in ref. [64], dominates the low-T regime. 

A similar integral for the high-T expansion gives 

6Fpot(A) = ln[2( /;:)3- f2)v'6] T + 2_ ln(T) + 6c1 -
3 + 3((3) T-2 + · · · (6 2 13) 

l+T V J V L, 27r 87r 327r3 ' . . 

as shown in the line marked "pot(A)" of Table 3. Note that the difference between 

the true result and the potential approximation no longer lies in the constant term, 

but only (as far as we have taken the expansion) in the T term! It is 

(6.2.14) 

The next term of the derivative expansion [analogous to Eq. (6.1.16)] is 

as incorporated in the third line of Table 3. It is a very poor approximation to 

Eq. (6.2.14)! 

Results from Method B are given in the fourth line of Table 3; these are also 

unsatisfactory. In fact, the choice {a = 1.940, b = c = 0} in Eq. (6.2.12) would give 

the correct ("sub") results, but it is not clear if there is any physics in this choice. 
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6.3. THE THIN-WALL CRITICAL BUBBLE 

Classical Results 

For K- close to (but larger than) unity in Eq. (6.1.17), the solution to 

(6.3.1 ) 

is a thin-wall bubble, given approximately by the kink solution in the radial coordi­

nate, Eq. (6.2.2) with x = r- Rand R ~ 1)511 The tree-level critical bubble energy 

has volume and surface terms: 

(6.3.2) 

where g;D =~was given in Eq. (6.2.4), and IV(1)1 = (K--1)/6. We extremize to find 

the bubble radius Rand energy Ec, 

R--2_ 
-K:-1 ' 9 

( 6.3.:3) 

The wall thickness is 0(1) (i.e. , 11-1 ). It can also be shown[sl] that w~ ~ - 2/R2
, so 

the static and thin-wall limits imply that the third factor of Eq. (6.1.4) is near unity. 

Exact Results for a Domain Wall 

In the thin-wall limit, the surface free-energy density f 1,T = !).F1,Tf( 47r R 2
) of the 

bubble wall equals that of a planar domain waU[671. We can thus solve the eigenvalue 

equation in Cartesian coordinates, using Eq. (6.2.5) for the radial wavenumber kr, 

(6.3.4) 
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We have performed thefT integral numerically, and fit to an expansion in r-1
; the 

results are shown in Table 4 in the row marked "sub" .8 

fl fl+T 

Method T2 T ln(T) T ln(T) 1 y-1 r-2 

sub - .02474 - 1/4 0 .15215 - .01900 -.03712 0 -.00012 

pot(A) - .00661 - 1/4 0 .15452 -.01900 -.05612 0 -.00012 

der(A) -.00661 - 1/4 0 .15187 -.01900 -.05612 0 -.00012 

pot(B) -.00661 -1/4 .00864 .16409 -.01900 - .05612 .00006 - .00012 

Table 4: Thin-wall bubble free energy density for low- and high-T. 

Effective Potential and Derivative Expansion Results 

Results from integrating the effective potential, and the next term of the deriva­

tive expansion, over the bubble [again using Eq. (6.2.3)) are shown in the rest of 

Table 4. Using the general J(neg) of Eq. (6.1.15) gives 

fi:~ =-~T2 - (.0518b)Tln(T) + (.1545 + .0259a- .0242b)T 

- (.0190) ln(T) + ( -.05612 - .000514c) 
(6.3 .. 5) 

Matching this to the true ft~~ gives the coefficients {a , b, c} shown in the first line 

(K = 1) of Table 5.9 

We see "derivative corrections" are O(T) . The derivative expansion prediction, 

ft+'T from Eq. (6.1.16), is a reasonable approximation to them in this case. 

8 These results are also useful for the study of second-order phase transitions, in which the domain 

wall free energy density is set to zero.l67l Restoring units, 

giving, for J.L ~ (]', Tc = .j2f3 (]' + 0.3J.L + · · ·. That is, the critical temperature is a bit higher than 

the leading result which is in the literature. 
9 First subtracting the derivative correction of Eq. (6.1.16) from t,.F{!f-~ would give a values of 

.0109, .3877, and .5128, respectively. For the kink it gives a= 2.070. These results are no more 

enlightening. 
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"' a b c 

1 -.0913 0 -36.974 

1.5 .2834 0 - 1.424 

2.5 .4188 0 - 0.180 

Table 5: J(neg) parameters that make !lF.f~~ = !lF{+~· 

6.4. THICK WALL CRITICAL BUBBLES 

Classical Results 

From Eq. (6.1.17), the (scaled) potential (Fig. 10) is 

V = !q? - 2K + 1 t/J3 + ~tP4 . 
2 3 2 

(6.4.1) 

Larger "' > 1 gives thicker bubbles. The minima are at tjJ = 0 and ¢ = 1, with 

V"(O) = 1 and V"(1) = 2"- 1. The bubble profile is the solution to 

¢/' + 2¢/ /r = ~(1 - ~)(1 - 2K~) . (6.4.2) 

Fig. 11 and 12 plots ~(r) and V"(r) for "' = 1.5 and "' = 2.5. From ref. [61], the 

classical energy is approximately 

E ~ 4.85a [1 ~ ( 1 ~ .26 )] 
c ,. + 4 + 1 - a + (1- a)2 ' (6.4.3) 

v Scaled V(¢) for K = {1, 1.5, 2.5} 

0.05 

0 
0.2 

-0.05 

-0.1 

-0.15 

-0.2 

-0.25 

Fig. 10: The potential V(¢) for several values of K.. 
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Exact, Effective Potential, and Derivative Expansion Results 

Our method of calculating the exact free energy F;ub, formally g1ven by 

Eq. (6.1.7), is described in ref. [57]. The results for K = 1.5 are in Table 6, and 

for K = 2.5 in Table 710
, along with effective potential and derivative expansion ap­

proximations. Thin-wall predictions are also shown for two values of R: one chosen to 

give the correct T 2 coefficient ("thin-1"), and one given by Eq. (6.3.3) ("thin-2"). Fi­

nally, the parameters in J(neg) needed to match the effective potential approximation 

to the exact result are given in Table 5. 

1.5 
~(r} and V"(r}, K=1.5 

1 

0.5 

0 
2 

r 

8 10 

-0.5 

Fig. 11: Thick-wall bubble profiles for rj;(r) and V"(r) when K. = 1.5. 

~(r) and V"(r}, K=2.5 

-1.5 

Fig. 12: Thick-wall bubble profiles for rf;(r) and V"(r) when K. = 2.5. 

10In our fit to the data, we allowed a r- 2 term, not shown, and constrained the T 2 , T!n(T), and 

!n(T) terms. 



88 

.6.Fl .6.Fl+T 

Method T2 Tln(T) T ln(T) 1 

sub -2.13 -78.61 0 49.52 -5.193 -15.64 

pot( A) -2.65 -78.61 0 45.47 - 5.193 - 16.12 

der(A) -2.65 -78.61 0 43.98 -5.193 -16.12 

pot(B) -2.65 -78.61 4.76 49.73 -5.193 -16.12 
thin-1 -1.81 -78.61 0 47.84 -5.974 -17.65 

thin-2 -4.97 -50.27 0 30.59 -3.820 - 7.46 

Table 6: Thick-wall bubble free energy for K = 1.5 . 

.6.Fl .6.Fl+T 

Method T2 T ln(T) T ln(T) 1 

sub -1.34 -24.90 0 17.17 -1.408 -4.60 

pot(A) -1.009 -24.90 0 14.05 -1.408 -4.64 

der(A) -1.009 -24.90 0 13.35 -1.408 -4.64 

pot(B) -1.009 -24.90 2.48 15.60 -1.408 -4.64 

thin-1 -0.572 -24.90 0 15.15 -1.892 -5.59 

thin-2 -0.553 - 5.59 0 3.40 -0.424 -0.83 

Table 7: Thick-wall bubble free energy for K = 2.5. 

6.5. CONCLUSIONS: A New Prefactor, and Derivative Corrections 

We have tested the effective potential approximation to the critical bubble free 

energy. The agreement is best if one pulls a factor of f.L4 JT4 into the decay rate prefac­

tor, Eq. (6.1.9), and takes the real part of the effective potential in the region V" < 0 

(Method A). That is, F!ot(A) closely approximates F;ub = F;rad_4Tln(T/ f.L). Table 5 

shows that no single set of J(neg) parameters {a, b, c} does consistently better than 

Method A. With scales restored, Ec = O(a-2 /f.L) , 6Ft+.~= O(T2 /f.L), and "derivative 

corrections" are 

.6.Fsub _ .6.Fpot(A) _ O(T) 
l+T l+T - · (6.5.1) 
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This difference is numerically fairly small, and very poorly predicted by the derivative 

expansion [Eq. (6.1.16)] . In summary, 

r t-t4 
( Ec )

3
/

2 
lw-I/2T -Fpot(A) /T 

V =X 27r 27rT sin(lw- I/2T) e c ' 
(6.5 .2) 

where X is a dimensionless number representing derivative corrections, typically 10-2 

to 102
. 

In 1D, where fl.Ft!f-~ is only O(T), derivative corrections [still O(T), and numer­

ically larger] are much more significant than in 3D. 
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APPENDIX A: Calculation of Loop Momentum Integrals in HQEFT 

The calculation of the loop momentum integrals arising from the Green functions 

I S complicated by the unusual heavy quark propagators of the form v~q given by 

Eq. (2.3.1) which have the dimensions of inverse mass. This causes the evaluation of 

certain Feynman graphs to become quite involved. The generic met hod developed to 

evaluate such loop integrals will now be outlined. 

(a) Combine the various denominator factors, arising from propagators, of the loop 

integral into one expression using the usual Feynman paramet rization 

or the identity 
1 - f(£ + n) r= An-l dA 

albn - f(£)f(n) Jo (a+ bA)Hn' 

where A is a parameter with the dimensions of mass. 

(b) Regularize the ultraviolet divergences using dimensional regularization and then 

integrate over the internal loop momenta using dimensional regularization for­

mulae. 

(c) Integrate over the dimensional A parameters using the formula 

r(a + 1- b)f( - a- 1 + 2b) a+1-2b 

f(b) c . 

(d) Finally integrate over the usual dimensionless Feynman-type parameters . 
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Appendix B: One-loop Renormalization of the Scalar Field Theory 

This Appendix discusses the one-loop and renormalization of the scalar field 

theory described by Eq. (5 .1. 1). The classical vacuum <Pv satisfies 

(B.1) 

At one-loop the only divergent graphs are those with one and two vertices correspond­

ing to quadratic and logarithmic divergences, respectively. 

It is convenient to adopt a renormalization scheme where the counterterms are 

chosen to exactly cancel the divergent graphs as shown in Figs. 13 and 14. T hese 

conditions are imposed at zero external momenta; this choice has the advantage that 

the one-loop contribution to the effective potential v;_ satisfies 

(B.2) 

so that Eq. (B.1) is unchanged at one-loop. Then the counterterm Lagrangian to be 

added to Eq. (5.1.1) is 

(B.3) 

where 

and 

f3 = ~ J i d
4

k 
2 (P -!-l2 + it)Z (27r)4 . 

The terms in Eq. (B.3) involving a and f3 renormalize the graphs with one and two 

external vertices, respectively. These divergent integrals can be suitably regularized 

by imposing a momentum cut-off A. 
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+ + -----0 

Fig. 13: Renormalization scheme for the divergent one-loop graphs with one vertex. 

A box with a cross denotes a counterterm insertion. 

+ 

+ ----1~1--

Fig. 14: Renormalization scheme for the divergent graphs at one-loop order with 

two vertices. 

0 

0 
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