EXACT TRANSIENT SOLUTION OF SOME

PROBLEMS OF ELASTIC WAVE PROPAGATION

Thesis by

Edward Ambrose Flinn, III

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1960



TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Introduction. « « . . . vae e e B |
1.2 SH wave propagation in a horizontal free plate. . o o« . . . .1
1.3 Wave propagation in a plate with mixed boundary
conditions. « o v o e o 0 v 0 00 s 0 e a O |
1.4 Torsional waves in a solid cylinder. . v v v v ¢ ¢ 0 o s o » » .3

CHAPTER 2: SH WAVE PROPAGATION IN A HORIZONTAL FREE

PLATE

2.1 INtroduction. ¢ « o o v ¢ o o o o o o s 00 s o oo oo s oencooesse 6
2. 2 Equations of motion and boundary conditions . « « v v v . . . .0
2.3 The SOUrCE. o v o v o0 v ot s v o s oo oecocessocsecoosd
2. 4 Laplace transform of the problem. « ¢ « v ¢ v e v 0 ¢ 0 v o0« Jll
2.5 Formal solution. . « « ¢« o s ¢« ¢ s s 0 0 0o s B
2.6 Evaluation of the integrals A (T, Z,P)e s o e o 0o o v v o o v« . ol4
2.7 Inverse Laplace transformation of A(r,Z,P)e v e e oo .. .26
2.8 Solution for a step-function input. ... .. B 1Y
2.9 Expansion of A(r, z,t) in an infinite series of ‘

multiple reflections. « v o v v o ¢ ¢ ¢ o 6 0 60 c 00 o0eeaosa3b
2.10 Relation between the multiple reflection expansion

and the normal mode representation of the solution .. 36
2,11 Approximation of the solution at large distances
from the source. « v o ¢ ¢ o 0 v 0 0 s« e e s e e s e 42

CHAPTER 3: NORMAL MODE THEORY FOR SH WAVES IN A PLATE

3.1 Introduction. « ¢ v v v v e et o v e vt 0000w an e e e e 4b
3.2 Constructive interference of multiply-reflected

SHwavesinaplate., . v v v o v v o oo oo oosoesoeasasedl
3.3 Approximate solution of the problem of SH waves in

a plate by normal mode theory. . « v e « v ¢ o e ¢ o o o « » 50

CHAPTER 4: WAVE PROPAGATION IN A PLATE WITH MIXED
BOUNDARY CONDITIONS

4,1 INtroduction « « o « o o o s o 6 6 6 o s o 0 o o e s seeossaecsesodb
4.2 The compressional Wave SOUTCE. « v o s ¢ ¢ a0 s o o s s o o o 5O
4,3 The shear wave SOUTCE. o v « & » o e 5 s e s s s e e s e ooe o DI
4,4 DisSCUSSION . o 2 ¢ o s 0 o 0 a5 5.6 6 0000 0ccececeossassdb

CHAPTER 5: TORSIONAL WAVES IN A SOLID CYLINDER

Introduction. v« o « v o o s o v oo v s o s s o s s o eacoscessab?
Statement of the problem. . v o o ¢ o v 0 0 0 e s s 0 0caeosos 68
The source function f{r,t)e « ¢ o o o o o v o0 o 0 a6 060 0oes (1
Inverse Laplace transform of the solution. « v o o « ¢ v o o « 73
Discussion. o c o e o v o s 0066 o s oot oo sooeeoe old
Response to a step~function input . « ¢ ¢ ¢ 2 o e e 6 6 000 o s I8
The cylinder of finite length. . v + « ¢ e v 6 6 ¢ 0 06 6000000 80

s &

.

U'IU'IU'iSJ'lU'lU'lU‘I
-3 O~ Ut i W oo



APPENDIX A:

APPENDIX B:

APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:

APPENDIX G:
APPENDIX H:

APPENDIX I:

Derivation of elastic equation of motion for
SH WaVes ¢ v s v vt o s s o o e s s ecsooeoceseoes 85

The roots of dsinh H =0, ...0000ee....089

Symmetry of I—I(l)(f‘:r), H(Z)('g’r), and G(¥¢)
inthe ¢=plane ...l it i e een... 92

Paths of steepest descent for approximate
integration of equation 2.80. .. ... .0 0¢....94

Expansion of f{r,p) in a series of.eigen-
functions of the torsional wave problem...... 96

Calculation of torque exerted on the cylinder
by the source. . « o o ¢ o o e s s 6 v0o0ooososasod9

Derivation of the constant in equation 2.9. ... .100
Method of numerical integration . « v o « o o o« « « 103

Additional references. « « « v« ¢ ¢ s ¢ o o e e o e e e 112

REFERENCES CITED. o ¢ ¢ v ¢ ¢ e e o s 0 cooeosecsooasesss 116



ABSTRACT

Exact solutions are obtained for three problems of progressive
elastic wave propagation in bounded media: (1) SH wave propagation
from an impulsive point source in an infinite plate; (2) torsional waves
in a solid cylinder; (3) radiation from an impulsive source of compres-
sional and of shear waves in an infinite solid plate held between smooth
rigid surfaces. The Laplace transform method is used.

Problems (1) and (3) are shown to be closely related. For these
problems the solution is expressed both as an infinite series of normal
modes and an infinite series of multiple reflections, and it is shown
that the two representations of the solution are related by Poisson's
summation formula. Solutions are obtained for both a delta-function
and a unit function input.

Problem (2) is solved as an infinite series of nOI;mal modes for
an impulsive shear stress source distributed over a normal section of
the cylinde.r. The case of a point source on the axis of the cylinder is
examined in detail.

Problem (3) involves mixed boundary conditions. A relation
between the solution of this problem and wave propagation in a free

4 i

plate is discussed.
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CHAPTER I
INTRODUCTION

1.1, Introduction. - Thig work deals with the exact solution of several

problems of progressive elastic wave propagation in bounded media:
impulsive radiation from a point source of 1) SH waves in a horizontal
plate; 2) torsional waves in a circular cylinder; ar;d 3) compressional
and shear v;/aves in a plate held between smooth frictionless rigid
surfaces.

The common characteristic of these problems is that only one
type of wave - compressional or shear - is present in each problem.
This circumstance obviates the complexities encountered in problems
in which conversion of wave type takes place at the boundaries. In this
simpler type of problem, the double integral in terms of which the solu-
tion is expressed is simple enough that it can be evaluated exactly for
any range of distance from the source. Sato (1954) demonstrated the
equivalence of SH waves in the solid medium and sound waves in fluids,
so the solutions of the first two problems ment‘ioned‘ above are also

solutions of the equivalent fluid problems.

1. 2. SH wave propagation in a free plate. - The problem of the vibration

of a solid plate was first considered in detail by Poisson in 1828 (see,
for example, Love, 1892, p. 496), and various special aspects of the
general problem have been treated by many WOljkérs since that time.
Because of the complexity of the phenomena of wave propagation in a
medium with more than one plane boundary, these studies have been made

using one of two approximation techniques: The "normal mode" method
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has been to use a steady-state harmonic source to derive a formal solu-
tion in terms of an integral over the wave number. The wave number
is then regarded as a complex variable, and the integral is expressed
in terms of integrals around the branch cuts of the integrand and a
series of residues. For large distances from the source, the branch
line integrals decay with distance more rapidly thalq the residues,
so the solution is given approximately by the residues alone. The
equation giving the location of the poles of the integrand furnishes a
relation between the phase velocity of the harmonic solution and its wave
length, and provides information about the form of the solution at large
distances. The response to an impulsive source is written as a Fburier
integral involving the residues; this integral can be evaluated approxi-
mately for large distances by the stationary phase method (see, for
example, Ewing, Jardetzky, and Press, 1957; and Folk, Fox, Shook,
and Curtis, 1958). |

The "ray-theory" method, which is typified by the work of
Mencher (1953) and Spencer (1956), involves setting up the problem of
an impulsive source in a plate or series of layers by means of the
Laplace transform, and then to expand the integrand in an infinite series.
The solution is desired only on the epicentral line, so that the series is
quite easily inverted term by term, and each term of the series may be
identified with a different multiple reflection of the incident spherical
wave.

’fhis method gives no information about the distortion at a distant
receiver of the incident wave as a result of its propagation in a bounded

‘ medium, unless the response is approximated by summing a finite
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number of the multiple reflections. This work has been carried out
for one case, that of a layered liquid half-space, by Pekeris and
Longman (1958).

The case of SH waves from a point source in a solid free plate
is simple enough that an exact solution, in the form of an infinite series
of normal modes, caﬁ be found without making any approximations. The
normal mode solution is valid close to the source as well as far away.

The multiple reflection expansion of the solution is also easily
obtained. It is found that close to the source a few terms of the multiple
reflection representation of the solution are adequaté to describe the
motion at the receiver, but many terms of the normal mode series
must be added to arrive at the same result. The opposite is the case
far away from the source, where the multiple reflection representation
becomes only slowly convergent.

A simple ’analytical relationship between the two exact repre-
sentations of the solution exists: Poisson's sAummation formula trans-
forms the multiple reflection series into the: normal mode series.

In Chapter 3 we use the saddle-point fnethod to carry out an
approximation to the solution for large distances from the source, and
show that the higher modes behave exactly the same near the source
as far away from it. The approximation shows that the exact solution
satisfies the classical group velocity dispersion equation for this prob-

lem.

1.3. Wave propagation in a plate with mixed boundary condition. - By

mixed boundary conditions we mean that instead of requiring stress or
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displacement to vanish, we seek a solution in which one component of
stress and one component of displacement vanish at the faces of the
2

plate. A point source of compressional and of shear waves is con-
sidered in turn. Since the particular set of mixed boundary conditions
used here ensures that no conversion of wave type takes place at the
faces of the plate, the form of the solution for both problems is the
same as that of the SH wave problem. For the shear wave source,

however, the plate vibrates antisymmetrically, so that the zero order

term present in the other problems is missing;

1.4. Torsional waves in a solid cylinder. - The problem of deter-

mining the natural pkeriods of torsional vibration of a solid homogeneous
isotropic circular cylinder seems first to have been studied by
Pochhammer (1876) and independently by Chree (1889). In both these
classic papers, the authors were interested in the much more difficult
problems of flexural and longitudinal Vibrati?ns of cylinders, and neither
author carried the torsional vibration prdblem farther than deriving
equation 5. 8 of this work; neither author presented a thorough discus-
sion of that equation. Pochhammer did point out that the zero'th eigen-
value, ko = 0, corresponds to a mode of vibration in which each
transverse section of the cylinder rotates as a whole about its center,
Without_angular distortion.

Interest in torsional vibrations then turned to a great number
of engineering problems. For over fifty years after Pochhammer's
paper was published, almost the only references totorsional Waffes in

the literature are graphical or numerical solution of the lowest eigen-
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frequency of composite cylinders, etc. Rayleigh, in his Theory of
Sound (1877) only shows that the lowest mode torsional wave travels
with the shear wave veloéity. Love (1892) simply recapitulates

Pochhammer on the subject, as does the Handbuch der Physik (1928).

In 1935 B. Sen and Y. Nomura independently considered the
vibrations of an infinitely long cylinder driven by a sinusoidally vary-
ing torque applied to the radial surface of the cylinder. The main
interest of both authors was in the resonances between the harmonic
driving force and the modes of vibration of the cylinder, rather than
in torsional wave propagation.

More recently, Morse and Feshbach (1953, p. 1844) considered
the same problem in more general terms, and discussed the torsional
impedance seen by the driving mechanism. Kolsky (1953, p. 65)
derived the phase and group velocity eqﬁations for free torsional
waves. Torsional waves are only mentioned by Ewiﬁg, Jardetzky, and
Press (1957, p. 311).

In Chapter 5 we derive the response to an impulsive shear stress
distributed ove.r a'cross section of the cylinder instead of on the radial
surface. The general solution found here holds for an arbitrary distri-
bution of stress but only one particular stres‘s distribution is discussed

in detail,
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CHAPTER 2
SH WAVE PROPAGATION IN A HORIZONTAL FREE PLATE

2.1, Introduction. - We consider a solid, homogeneous, is:otro'pié,;;

perfectly elastic plate of infinite extent, of thickness H, bounded on

P

both sides by vacuum.

Cylindrical coordinates

(fig. 1) r,6,z will be

one face and the z-axis

normal to the faces of
the plate, so that the Figure 1: Point source
in solid plate.

plate lies between the
planes z = 0 and z = H.

A point source of horizontally polarized shear waves is located-
on the z-axis a distance h < H from the origin. The excitation by
the source being given, we will find the displacement at any point in

the plate.  The pa’rticular excitation function we use will be described

in section 2. 3.

2.2 Equations of motion and boundary conditions. - In order to deal

only with SH waves, we consider only the case in which the displace-
ment is axially symmetric and contains no radial or vertical com-

ponents. This requires that the displacement u(r, 0, z) satisfy

(2.1) u= oY%

where SG ig the unit vector in the 6-direction and Uy is the



f-component of u .
In Appendix A we show that in this special case, the displacement

. . . 2,
is given by a single equation

2 2 2
2.2) P 0.2, 1% P8 Mo 1 P
A 5l T 0T 5.2 L2 f’z 5c2

where B = (H/p)l/z is the shear wave velocity, mu the modulus of rigidity
and p the density of the solid.
Equation 2. 2 is not the wave equation, but if we derive u from

~a vector potential A,

4
(2. 3) Ug = - 57

i

then AZ satisfies the wave equation

(2.4) VA -—LaAZ
Z FS2. 8t2

(see Appendix A).

From now on we drop the subscripts on Uy and AZ, since all
other components qf A and u vanish.

The boundary conditions are that the surfaces z =0 and z=H
be free from stress. In Appendix A we show that T and T,, 2T€
identically zero, and

2
- 9°A _  9du
(2. 5) T20 = H3raz - Foz

Thus the boundary conditions are

, 2
(2.6) T,0 = ~M gr?z =0 at z=0 and z = H.for all r and t.
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2.3. The source. - We consider the source to be a spherical cavity of

small radius Ro’ containing some apparatus which exerts on the face.
of the cavity shear stress® T.0° displacement Ugs torque Nz’ or any
other physical quantity which will serve to radiate SH waves into the
plate. In what follows we will always consider -Ro to be so small
compared to the distance between the source and the observation point
that the transient wave from the near sidve of the cavity arrives at
sensibly the same time as that from the far side.

Although the solution we derive is strictly valid only up to the
time the first reflected wave reaches the gource -- all the reflected
waves will be diffracted by the source -- we congider Ro to be go
small that the diffraction effects may be ignored.

The wave radiated by the source must satisfy the equations of
motion for an' axially-symmetric point source in an infinite medium,
equation 2.4. We select the following solution of 2.4 to be the repre-

sentation of the source:
(2.7) As =

where
(2.8) R=[(z - 0%+ 2] /2
R

§

distribution of potential A over the face of the source cavity.

and f(t - =) is a function of R and t which for R = Ro gives the

We now tentatively choose the source function



0 t<R°
(2.9) A(R,t):——é—ol(ét——R—Q): "
s'0 Ro ¢ p __;:9 R,
o p
R

where AO is independent of R and t, and It - -FTO) is the unit function.
Ao is shown in Appendix G to be related to the total torque T

exerted by the source on the surrounding medium by
v _ T
Ao = 8wy
Blake (1952) showed that for a g ource of radial stress the constant

(rad)
o

A

3
o

(rad) _ - 2

Ao = R Po/pa »

where Po is the amplitude of the radial stress and a is the compres-
sional wave velocity of the solid medium.

The wave radiated from the source is, from 2.9,
A
- o) R
(2.10) AS(R, t) = - = 1t ~ 6—).

But at least the first two derivatives of AS(R, t) must exist for it to
satisfy the equation of motion, and this unit function has no derivative
at t= R/B.

T‘his difficulty may be circﬁmvented in several ways. One can
regard the differential equations as the limiting case of the corresponding
difference equations for infinitely small mesh size. There are no con-

tinuity restrictions on the solutions of the difference equation, so we may
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use the unit function as an input. The solution of the difference equations
approaches the solution of the differential equations as the mesh size
approaches zero (Evans, ‘1918), and because there is no trouble at any
state of the limiting process, there is no trouble in approaching the
mathematically discontinuous step-function as closely as we please.

This is tantamount to regarding the unit fun;:tion as the limit of
a sequence of functions which are each continuous and infinitely differen-
tiable. Lighthill (1958) calls the limit of such a sequence a "generalised
function, " and shows (p. 18-20) that, subject only to some restrictions
on how the sequence of regular functions is to be defined (which are
discussed below), the limiting process can be interchanged with the
processes (among others) of differentiation, Fourier transformation,
and inverse Fourier transformation,

Therefore, using a properly defined sequence of regular functions
(which we may suppose to be zero with at least two of its derivatives
at t = 0) to represent the unit function, we may carry through solution of
the problem for the unit function itself, knowing that the sequence of
solutions approaches that solution as the sequence of regular source
functions approaches the unit function. There are some mathematical
details involved in this approach, which will not concern us here,

We stipulate, then, that the response to the step input will always
eventually be used in a convolution integral to obtain the response to a
source function F(t - %) which really is twice differentiable (see, for

example,‘ Cagniard, 1939, pages 11-15):

t
(2.11) Ac(r, z,t) = § FY1)A(r, z, t-7)dT .
0
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It is this response, Ac(r, z, t), which must be regarded a&;, the solution
to the real ‘physical probiem. The response to the unit step-function
source is interesting becduse it is mathematically tractable, and because
it can be used as a building block to synthesize the solution to the re-
sponse of any real physical source.

Regarding the step function as a generalised function in Lighthill's
sense makes it possible to write 2.1l as

[.t

(2.12) A (r,z,t) = j F(r)A'(r, z, t-7)dT ,
C 0 ‘

where A'(r,z,t) is now the response to a 6-function input, an input

which is the time derivative of 2.9. It will be seen later that the solu-

tions to all the problems considered in this thesis are very much simpler

for a 6-function input than for a step-function input. The response to

both a step-function and a 6-function will be given in each case,
Limitations on the available computer time made it impossible

to include numerical examples of the response to a continuous source

function.

2.4. Laplace transform of the problem. - We now make a Laplace

transform of the whole problem. We define A(r, z,p) as the Laplace

transform of A(r,z,t) by

— (P ot
(2.13) Alr.zp)= ) e PtA(r, 2, t)dt = L{A(r, z, 1)}

We will use
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SnK(r, z, p)

Brkazn_k

c 7 A(x, z, t)
_Brkazn—k
(2.14)

[ BZA(r, z, t)
B

i

p?Al(r, z,p) - PA(r, 2,0) - {?_é%:{.é_ﬂ]
t

ot =0

L

(Hildebrand, 1948, Chapter 2). The last two terms on the right side of
the second of equations 2.14 may be set equal to zero, because of the way
we  defined the sequence of functions leading to the unit function. Thus

2.4 transforms to

N ,
(2.15) VA=-137K,
B

and the boundary conditions 2. 6 transform to

— N

(2.16) - Tz@ = M5Toz

=0 at z=0 and =z = H.

The step-function source term 2.10 becomes

‘ A A
) - o Ry o) _ PR
(2.17) -C{As(r, Z,t)} = 'Ci v e ‘B')} = ‘p—ReXP( —B—),
while the delta-function source term is

A R o R

c{As(r,z,t)} = o 2ot "B‘)} =% exp(¥%>.

2.5, Formal solution. - A formal solution of 2.15 which is finite at

r = 0 is easily found to be

(o0}
(219 Kr,zp) = §O 3 Ger) By(kje 5P 4 B (P
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where
2 1/2

(2. 20) ﬁ=(2+£z)%

ge

The §-function source term may be written in its integral repre-
sentation
A 0o
- _ o, PR, _ k -2 ]z-h]

(2.21) As(r, Z,p) = = exp( B ) = Aogo T Jo(kr)e dk

(Ewing, Jardetzky, and Press, 1957, p. 13), so that the complete solution

is
— _(® -#(z-h) £(z-h)
(2. 22) A(r,z,p) = . Jo(kr)[ Bl(k)e + Bz(k)e
+ A % et ‘IZ'hI] dk,

where Bl(k) and Bz(k) are to be determined from the boundary con-
ditions 2.16..
Substituting 2. 22 into 2.16, we obtain two simultaneous integral

equations for Bl(k) and Bz(k)':

' poo
r' |.L§ J (kr)[ A ke_ﬁh—B (k)e‘@h+B (k)e—ﬁh] dk =0
0 o o} ‘ 1 2

(2.23) ¥

Oo |
" go I (k)] -Aoke‘ﬁ (H‘h)-Bl(k)efﬁ (H"h)ﬂssz(k)e’z (F-h)y gi=0 .

A sufficient condition for equations 2. 23 to be satisfied is:



£h -fh _ ~-fh
Ble - Bze = Ao 7Te
(2. 26)
B e—ﬂ (H—h)_B g;eﬁ(H’h) = _A _lie-ﬂ(H-h)’
1 2 of
from which Bl and B, are given by
_ k -fh cosh £(H-h)
Bi=A ¢ sinh £H

(2. 27)
k -£h cosh fh
B,=4A 7€ SInh IO

We could substitute 2.27 back into 2. 23, but some simplification
can be made. Because of the absolute value sign in 2,22, A(r, z,p)
has different expressions for =z 2 h. We can use the first of equations
2. 26 to eliminate B, in the expression for A(r, z,p) iﬁ the range
0 < z < h, and the second of equations 2. 26 to eliminate B1 in the/range

h < z < H. The formal solution is finally

— ‘ - kcoshfzcosh£(H-h)
A(r, z, p) I z<h~ 2403; Jo(kr) £ sinh £H dk
(2. 28) '
(o

— : _ kcoshfhcoshf(H-z)
A(I’, Zs P)I z=>h" ZAOJO Jo(kr) £ sinh £H dk

We notice as a check that the first and second equations 2. 28 are ob-
tainable from each other by interchanging z. and h.
We must eventually show that neither integrand in equations 2, 28

becomes infinite on the path of integration.

2. 6. Evaluation of the integrals A(r, z,p). - The integrals 2. 28 are
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both of the form

o'}
- _ kcoshaf coshbf
(2. 29) A(r,z,p) = Z?O‘g‘o IRV Jo(kr)dk
if we define
a b
(2.30) 0<z<h z H-h
h<z<H h H- 2z

Therefore we will evaluate 2. 29 and then substitute for a and b

. >
according as z < h.

In order to carry out the integration in 2. 29, it is convenient to
consider k as a complex variable and the integral as a contour integral
in the complex k-plane.

We define a complex variable
- (2.31) {=k+in
where k and mn are real, and we choose the sign of

2 1/2
£=[t +l°—]t/

to be positive when { and p are real and positive.
Jo(ér) is not finite for large { unless m = 0. In order to close

the path (0, 00) we substitute for Jo(ér)

(2.32) 23_(tx) = HO(gr) + 5 (1)

(Watson, 1952, p. 74), so that 2. 29 splits into two integrals which we
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can treat separately:

. (o o] (e 0]
(2.33) Alr,z,p) = AOQ‘SO L(¢)dg +5 I,(£)dg

0
where g
1(t) = GLHE (L)
(2.34) I,(5) = G(@)Héz)(ér)

_ ¢ coshaf coshbf _ N({)
G(t) = *——omnim " D)

We can now close the contour for I1 around the lower half-plane and

that for IZ around the upper half-plane, since

lim Hg)’(z)(g): 0 if Im (L) 2 0
[¢]=e

(Watson, 1952, p. 198).

We define the following contours in the {-plane:

For Il:
1. (Cl): € to R along the real axis;
2. (R,): Rto -R +ie along an arc of radius R in the upper
half-plane;
3. (D ): -R +ie to -«+i€ - along the negative real axis and
slightly above it;
4, (El): +i€ © to € along an arc of radius € in the upper
half-plane.
For IZ:

1. (CZ): € to R along the real axis;

2. (R,): Rto ~R -ie along an arc of radius R in the lower
half-plane;
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3. (D,): - R -ie to . -~ ie along the negative real axis and
slightly below it;

4. (EZ): R 1 rto € ‘along an arc of radius € in the lower
half-plané.

The care in keéping away from the negative real axis and the

-origin is made necessary by the fact that the Hankel functions have
logarithmic singularities at the origin, and the negative real axis is a
convenient place to put the requisite branch cut.

Thesé paths are shown in fig. 2 (next page). We will eventually
take the limit of these integrals as € =~ 0 and R — oo.

We see immediately that the contributions of (El) and (EZ)
must cancel each other out, for integrating Jo(ii_,r) around the origin
in a circle of vanishing radius contributes nothing.

It is also clearﬁ that no branch cuts in the {-plane, other than
the one down the negative real axis, are necessary to keep Il and IZ
single valued, for G({) is an evén function of £, and although the

’points ¢ = _-_I-_}ﬁg are branch points of £, they are not branch points of
G(L).

By Cauchys theorem,

( r
+ + + = ZviS\ Res (I,)
g(cl) X(Rl) §(D1> :)(El) ~o
(2.35) ]

| S‘(C.Z) +§(R2) +S‘(D2) +§(E2)= zmz Res (I,)

~ where >‘ Res (Il) denotes the sum of all the residues of I1 in the upper
ed

half-plane, and Z Res (IZ) denotes the sum of all the residues of I2 in
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(D|) _ (EI)\ (C,)

7

a. Path of integration for L.

b. Path of integration for L.

L

0 () (C)

Figure 2. Paths of integration for Il and IZ.
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the lower half-plane.

We will show first that the integrals over (Rl) and (RZ) vanish
as R — o; then that the sum of the integrals over (El) and (EZ) vanish
as € = 0; and last that the sum of the integrals over (Dl) and (DZ) is
equal to the sum of the integrals over (Cl) and (CZ)' This last step

leaves us with nothing but the residues, since from 2,33,
A(r, z,p) = S‘ +§ .
(c) “(C,)

The integrals over R1 and RZ: we assume that R is very large. When

cosh af — cosh al{ — -1-2- ea‘u’
cosh bf — lz-ebt"

1/2 .
a) (gr) ~ (5] T/

1/2
H((:)Z)(Cr)@['{r—i‘g‘] e—l(él‘-w/‘]:)

(Watson, 1952, p. 198). On (R)), Im(t) > 0, and

1/2
C(a+tb-H); 2 4 -nr
e [Trf,r ] e

I,(8) <

Reference to 2, 30 shows that

"z - hwhenh > z
a+b-H=

h ~z when z>h

'so that the coefficient of { in the exponential is always negative. Thus
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on (Rl)’ I1 is always less than

[g-l/ze-Mgf .

where M is real and positive, and as IQ[ = R~ 0, Il vanishes and
the integral over (R;) is zero.

For (RZ), exactly the same reasoning shows that since Im({)<0
on (RZ)’ the in’Fegral over (Rz) vanishes as R;-> 0. We notice, how-
“ever, that if there are poles of the integrands all the way out to infinity,
the limit must be taken in such a way that (Rl) and (RZ) never pass

directly through one of the poles.

The integrals over (El) and (EZ): when IC[ is small,

Hgl)(ér) -1 4+ iYO(C,r) -] +-2?ri-—log (¢r)

(2.36)
(@) = 1 - 1 ey 2
Ho (¢r) 1~ 1Y0(§r) 1- — log (¢(r) .
(Hildebrand, 1948, p. 161). We may conveniently take

¢ - ei@

since on (El) and (EZ) only the phase of ¢ 1is changing.

For small e,

GL) < e .

From (2.36), and using the definition of the logarithm of a com-

" plex variable,
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HO((2) ~ + Zlog (ex) - 22 41

(2.37) |
H®(¢r) — - Ziog (ex) +22 41

Integrating the first term on the right of both of equations 2. 37
around the appropriate small arc and adding, we find that the contribu-
tions of these two terms cancel each other out iden:cica,lly, as we ex-
pected. Integrafing the last two terms on the right around the proper
small arcs and adding, we find that this contribution to the whole

solution vanishes as € — 0.

The integrals on (Dl) and (DZ): we had

-e+ie
g =§ aouW(enar .
()

. o)
~00tie

Now let

-im
E =e L,

rotating the path through the upper half p].ane’:ﬁ to a position just below the

real axis:

o-i€

g(Dl)' . —516_16 G(e! ) H (re M)t .
But’ -

H (e er) = 1P ()
(Magnus and Oberhettinger, 1954, p. 17), and

(2.38) Gle!™e) = -G(£) .
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So

€-1€ =

-ig
g - Soo a(eya! B er)at .
2 (D)) °

Similarly,

-€~ie
- (77 comPena

-00-i€

to rotate the path through the lower half plane to a position just above the

real axis, we have

€tie . .
%.(D ) g : Gle Te)H (eI MxE)at
< 2 OO T1E

Using 2.38 and

H (e er) = -n ()

(Magnus and Oberhettinger, 1954, p. 17), we have

.
§ - SOO Gy (e
(D,) °

e tie

and looking back at the definition of our contours, we have, as €0,

. o
3<D1)+§<D2.)= 3ﬂ(c ! j(cz)'

1)

Then by Cauchy's theorem, we have finally
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—_ C
(2.39) A(r,z,p) = Aog(c )Il(C,)dC, +Aoj(c ) IZ(Q)dC,
17 2

= "TiAi[ ‘ZReS(Il) + Z Res (IZ)] .

The residues of I1 and I,: Il(é) was

Poles in the upper half-plane are located where
(2. 41) D(C) = £ sinh HE = O,

since neither Hgl)(ér) nor N({) has poles for finite { in the upper
half-plane.

An obvious set of poles is

(2.42) L=+ 1?_1" n=1, 2, 3,
or
o ey 2
. . 2:1/2
(2'4.2&) é = é':_zlzﬁ_z 1[ B-Z+(EI:IT£) ] / R

" B
which are located on the curves Re(f) = 0. We show in Appendix B that
these are the only zeros of D({) in the whole {-plane.
Since Hf)z) has no poles in the lower half-plane, 2.42a gives
the poles of I, as well as those of Il.
At this point we must be careful to remember that we must
eventually integrate over the Bromwich contour in the p-plane, and

consider the possibility of some of the poles of I1 being outside the
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upper half-plane for some unfavorable values of p. To pin down the
poles more precisely, we let p = s +ic be complex, and write the

conditions for Re(f) = 0 and D(£) =

2 2_ 2
!2=§Z+E—=k2—n2+ +21[k~q+ ]__.__.),
2 z
g p
or ' 2 2 2
2 .2
K -n" = S [ 5 +(5p) ]
p g
(2.43)
-1
k‘l’]——-—'z'
B

Thus the poles lie at the intersections of two sets of hyper-
bolae: one set with the axes of the {-plane as asymptotes, the other

with the lines ( = e+1w/

as asymptotes. Close examination of 2.43
shows that (provided only s > 0) although the location of the poles dbes
indeed depend on the position of p in the p-plane, no pole which is in
the upper half of the Q—plané for any one value of p can ever be
found in the lower half of the {-plane for an;; other value of p. Use
of this fact will be necessary later on.

All the poles of I, are simple: all the poles but the one given

1

by n =0 are clearly simple, and for that one, £ =0, so that

3
D) = 4 sinhﬁHzi[ﬁH+(f3I—!I) +.00]

behaves near £ =0 as
2 . .
£7H = (L + P - 2,

and thus this is a simple pole too.
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The residue at £ = 0 is

(2. 44) Res (L)],_. = lim [(-2)I(0)] = -2 D (IRL,
Vimip/p = (et 78 zrto (7p
The residue at { = iZh is
» N(¢)
(2. 45) Res (L)}, _.rp = —=~
ewz =\ pey)
dz £=1iZ;,
_ (-1)n nma nrb . (1),. .
== — COs g cOs —ﬁ—Ho (1an,) .
Using’
Hg)(iu) = }%1—- KO(U.)
(Hildebrand, 1948, p. 161), 2.44 and 2.45 sum to
o0 .
(2. 46) z Res(I)) = w_llﬁ{ K, (55 + ZZ (-1)%cos B2 cos B2k (x7)].

The residues of IZ: The poles in the lower half-plane are clearly one-

by-one the complex conjugates of the poles in the upper half-plane. In
Appendix C we show that this implies that the residues of »IZ are the
complex conjugates of the residues of Il' Using the fact that poles of

I1 never become poles of IZ for any given value of p, we have

-
(2.47) A(r,z,p) = mA [ L Res (I;) + Z Res (I,)]

T

= mA [ ZRes (11) +‘Z‘Res (11)] = ZTriAORe[Z Res 11]
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—_ ZAo pr < n nmwa nwb
(2. 48) A(r,z,p) = =) Rel KO(—B-—) +2 )t)cos—g—cos—y KO(rZﬁ.)]
n=1
where
2
-1 P_ nm,2 1/2 .
2.7. Inverse Laplace transform of A(r,z,p). - From Bateman Manu-
script Project (1954), vol. 1, p. 277 and p. 283,
2 -1/2
-1 { pr }__ 2 _r
L Ko(—g-,). = (t -EZ-) 1(t p)
(2.49)
c 1/2 , -1/4
1 re 2, 2-1/2 T n 2 "
L {K (5P +er] )}-( R
P
21/2
2 r T
where we have put c¢_ = -I-I—EI—B— But
1/2
J_l/Z(X) = (_TFE?) cos x ,
so the second of equations 2.49 is
2 -1/2 2 1/2

C—l{KO(%[pZ-FCi}l/Z)} = (t2- ‘;'Z) * cos(c [ £2- -é-z-] )(t-

Thus the inverse transform of 2.48 is
4A L

- o n nwa nwb nmPy _r
(2.50) | A(r,z,t)——?ﬁz (-1 € COS =7~ COS ——COs—3 1{t g }s

n=0

r

5)-



"2

where € is the Neumann factor (en =1 for n=0, € = 2 for n=1),

2 1/2
2

(2. 51) y = (t7- )

B
and a and b are defined by 2. 30:

a b
(2. 30) 0<z<h Z H~h
h<z<H h H~z

The displacement u(r, z,t) is

(2. 52) u(r,z,t) = - 92 = LA(z, 7, £)6(t - %)

P

The series in 2. 50 does not converge., This might have been antici~
pated in a problem whose input is a function as pathological as the &=
function. However, even before the rigorous justification of the dis-
continuous functions by Schwarz, Temple, and Lighthill, it would have
been possible to make sense of 2.50 by taking the Cesaro sum (C, 1)
of the series inN 2.50. See, for example, Franklin (1940), p. 486, or
Knopp (1951), Chapter 13, The sum (C, 1) of the series in 2. 50 is exactly
the same as the sum found below by a more satisfactory method.

We first condense the three cosine terms in 2. 50 into a single

cosine:



4
nub nmpy _ }_T nrE
(2.53) COS 37— COS—37- = 4Z_,COS"'H'I"I'1"
m=1
where 2
' (By -a - b, m =1
Py +a - b, m =2
(2. 54) T E = ‘
m By - a +b, m= 3
LBy +ta +Db, m =4
2.50 is now
(2 55). A(r, z,t) = —j}—g l(t—i)%‘ § ¢ (-1)" cos nTTEm
) T YH B'L L fn H
m=1p=0

In se‘ction 2.9 the solution is represented as an infinite sequence
of multiple reflections. We postpone further comment on the normal
mode representation of the solution 2. 55 until section 2. 10, where it
will be shown that the multiple reflection expansion and 2. 55 are identi-
cal, and are transformable one into the other by the use of Poisson's
summation formula.

Since we will be able to show that the two representations of the
solution are identical, we return to an examination of the normal mode
solution 2. 50.

To concentrate attention on the radial propagation, we put both
source and receiver on the bottom face of the plate, and examine the

first few terms of 2. 50:
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n A
14, r
0 Tﬁ I(t - B )
4A -
(2. 56) 1 - §E oS (wBy) Lt - 3)
‘ 4AO r
2 JH ©°° (2mBy) 1t - B—)

Defining the dimensionless parameters 7, Kk, and [ as

)
(2.57) Kk =r/H
T = (#2- KZ)l/Z ‘
2.50 becomes
oo
4Aoﬁ N\ n nwa nwb
(2. 58) A(r, z,t) = 5 > en(—l) COS —7—COSs ——COs (nwD) YT-kK),
- H'T ~
n=0
and 2.56 is
n A
4A B
0 —-2-9- T - k)
H T
4Abﬁ
(2.59) 1 ) cos{nl) (T - k)
H T
4A-B
2 20 cos (27T) {7 - k)
H™T
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These three terms are plotted against 7 in fig. 3 (next page) for
K=H=p-= AO = 1. Each term begins withia singularity at 7 = 1, and

-1/2

for a given K, decays with time as T » as we expect for two-di-
mensionally guided waves. From 2.50 we see that for large t at a

given r, the oscillatory terms become damped sinusoids of period

=

_ 2H
(2. 60) To P
The relative amplitude of the modes depends entirely on the

choice of z and h.
The relation between 2. 50 and the normal mode solution for

1argé r is developed in the next chapter.

2. 8. Solution for step-function input. - The solution for the step-

function input is obtained from 2.50 by integrating with respect to time:

t
Al(r, z,t) = g Alr, z,t")dt'
0

or

& Z'Ao -1, tB N n nma
(2. 61) Al(r,z,t) =3 cosh (-—17-) + ZE (-1) Cos —~ -

—

n=

t
mrb:g' cos(nmfy'/H) .., r]
co : dt' 1{t-=)
TTH T Y ¥

ZAo -1,tp OYO\ n nmwa
:——:FI—- cosh (?) +2;£J(—1)_COS—I:I—
n=1
e (Y S )
Ccos 1] - —
H 0 (nZ_{_ :rZ/BZ)l/Z g
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The displacement is

(2. 62 = 2 A b -T) - or [ B2 41
. 62) ul(r,z,t)— B ll‘,Z,t) (t-“g)' > ,—Z' Y)Y

®

nra . nwb |
H H

©
+>“ (-1)1? cos
ed

n=1

Yy cos c_Tn cos c_ vy ‘
e S
[12+ }

I
X

Although Al(r,rz, t) becomes indefinitely large for large t,

ul(r, z,t) remains finite for all t> 0. In fact, as t— o, the residual

deformation in the plate is given by

fos
ZAor [32 n nwa
(2.63) lim u,(r,z,t) = - — | = 2; {(-1)" cos .
t = o L Hp r? —~ H
n=l
~nwb Cat J
cos 3 BcnKl( B )

(Bateman Manuscript Project, 1954, vol. 1, p. 11).

Using the dimensionless numbers, 7, K, and I', 2. 62 is

1 ZKA.o
(2. 64) u.(K,z,7T) = = A (K, 2,7 )6(T-K) - .
1 p 1 I—IZ
[00)
1 1 S‘ n nmwa nwh
{_2.+T(—TY+ +Z‘_J (-1)" cos T T
n=1
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With z = h = 0, the first few terms of 2. 64, excluding the §-function

term, are given by 2. 65:

n ¢ ul
0 -l s y 2o vl R
K .
(2.65) 4KA r

K

1 o [f cos w1 dn + SO8 'rrl"} 17-K)
2 Jo —(nz%'l{'z' 3/2 L
4K A T

5 o {5 cos 2mm dn + <08 2171"} 17-k)
12 0 _( 112-{“_2_)3/2 T

The integrals in 2. 64 are not expressible in terms of finite com-
V’binations of elémentary functions (Ritt, 1948, Chapter 3), so numerical
integration is neces safy. The method of integration used for all the
integrals in this thesis is described in Appeng}ix H. The compilations
were carried out on SILLIAC, the elegtronic computer at the University
of Sydney, Australia.

The first ‘three terms of ul(r, z,t), as given in 2, 65 were com-

puted for k= H= AO = r = 1. The results are shown in fig. 4 (next

page).
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2.9. Expansion of A(r,z,t) in an infinite series of multiple reflections. -

We may write 2. 29

o.0)

-~

(2.66) A (r,z,t)=A ) ze tH -28H -1

e Jo(kr)(l—e )

{. ——

°Jg

[e £{a -P-b -ﬁ{a-l—b ﬁ(a—b) _E_e—ﬁ(a—b)] dk.
We know that
o)
—ZnHﬁ/
(2.67)  (1- e 2tH-! 3‘
. -
n=0
. -28H . . , . . .
provided that e <1, i.e.; if Re(Z) > 0, which is always true in our
case, Substituting 2.67 into 2. 66, we have
(2. 68) Alr,z,t) = A g —5 Jo(kr) exp (-anﬁ)dk,
m-«l n=0
where we have defined
a+b+ (2nt)H, m=1
-a +b +(2ntl)H, m =2
(2.69) Bon™ | a-b+@2nt)H, m=3
~a-b +(2ntl)H, m =4,

The infinite series is uniformly convergent, so we may invert the

order of summation and integration. We know from 2.8 and 2. 21 that

f "o mn R B mn

oo
g EJ (kr) exp (-B___£)dk = 1 exp(_BR )
0 mn

where
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[ +24 B2 ]1/2
mn

mn

provided only that an is positive, as it is in our case. Then 2,68 is

NN p
(2.70) Alr,z,p) = AO ;:: _/_i_, i exp (- B Rmn)
m=1 n=0 mn

and the inverse transform of this is just

- R
(2.7 Alr, z,t) Y \> 1 6(t - —tt
0{./_/ 4, R §
m=1 n=0 T

It is easy to show that the double series gives all possible multiple
reflections of the incident wave from the faces of the plate. We write
out the case 0 <z < h; the case h <z <H may be obtained by inter-
changing z and h wherever they appear in what follows.

For 0<z<h

f B =-z% h + 2nH
n
B = z +h+2nH
4 2n
{2.72)
B, = -z -h+2(nt)H
- B4n$ z - h + 2{nt}H

and the corresponding waves for the first few n are shown in the table

on the following page.

2.10. Relation between the multiple reflection expansion and the normal

mode representation of the solution. - Having solved the problem two

different ways, each of which is exact, we must now show that the two

solutions are in fact identical, as the existence of a uniqueness theorem
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Order Path z-component of Exponent
path length

0'th z\f‘ z - h B,
lst K z +h BZO
M -z - h +2H B,
2d % z - h+2H B,
% -z +h + 2H B
3d % z +h + 2H B,
% ~z - h +4H B31
4th % z - h +4H B,
§ -z +h +4H By,




-38-

for elastic wave problems (Love, 1892, p. 176) demands.

The two representations are:

z . 1 Rmn
2.71 Alr,z,t) = A = 6t -
(2.71) (2 =4, ), ) g ot - 5%
m=1 n=0
where
a+b+(2nt)H, m=1
~a +b +(2nthH, m = 2
(2.69) anx
a-b+2nth)H, m=3
~a-b+(2ntl)H, m=4.
and
AO - %\ & n nTrEm
(2.55) Alr,z,t) = ﬁl(t —-E) /, z en(-—l) COS —7x
m=1 n=0
where
1, n=0 5 L2 1/2
en:: , Y:[t ——] R
2, n=1 B
and
{ By ~a -Db, m =1
py +a - b, m= 2
(2.54) E = {
m
Py - a +b, m = 3
L Py tath, m =4,

We will demonstrate the identity of the two solutions only for the
first term m = I, since the other terms are equivalent by exactly the

same reasoning., For this term, 2.7l 1is



(2.73) Al t) = A Los(t g
° r,z,t) = o/, T -—B—)
n
n=
where
(2.74) Rn:[rz-i-(a-%-b-i-H-i-ZnH)Z]l/Ze

The function A is identically zero except at values of t such
that t = Rn/ﬁ" We therefore rearrange the argument of the delta-
function to make the series into an equally spaced row of delta-functions

as follows: t - Rn/ﬁ = 0 implies

thz—rz—(a-i*b-%H-i—ZnH)Z::O

or

(2.75) By -a -b - H~-2nH = G,

Changing the argument of the delta-function from ¢t - Rn/ﬁ to
f{ty =By -a~-b-H- 2nH

requires multiplication by df/dt = Bt/y (Friedrichs, 1955, p. 29). Hence
2.73 is

A
o)

v/

~}8

8By -a - b - H - 2nH) I{t - &) .

(2.76) Alr,z,t) = B

gL

This transformation has been carried out on the understanding that
y = {tz - 1'2/52)1/2 is real: since we know that A(r,z,t} is identically

zero until at least t = r/B, we have inserted the unit function 1(t—r/ﬁ)
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in 2,76. This also allows us to extend the lower limit summation from

0 to -co. But by Lighthill (1958), p. 67,

. 0o o0 %
1 ; innx/H 1 nwx
(Ze 77) Zﬁx ZnH —n'mhm/ e —I:I—Z/ €nCOS =i
-0 ~00 n=0
Thus 2.76 is
A >
(2.78) Alr,z,t) = — ) €_cos 57 (by -~a-b-H)
CYH Loon
n=0
0
AN .
= .\(_H/Z/ €. ) cos —ﬁ—(ﬁy-a-— Vo,
nes

which is the first term of 2. 55, since from 2. 54,
=Py - a - b,

Equation 2.77 is the Poisson summation formula for the delta-
function. For functions which Lighthill (1958) calls %good® (F(x) is good
if it is infinitely differentiable for all x and is O x —M) for all numbers

M as x — ) the Poisson formula is

QO QO

N N =
(2.79) ¢ ) Finc)= ) TF(m/e)

Lk Leicd

~QO0=1 m=-0c

(Lighthill, 1958, p. 69) where F is the Fourier transform of F,
Since the convolution of a delta-function {(such as one term of the
multiple reflection representation of the solution of this problem for a

delta-function source) with a good function is a good function, we may
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expect that for a physically realizable source the normal mode repre-
senting the solution will still be obtainable from the multiple reflection
representation by the use of 2. 79,

It is interesting to conjecture whether this relationship holds in
more complex problems, such as a compressional wave source in a
plate or cylinder. It would not be true in a problem of wave propagation
in a system including one or\two semi~infinite layers, because in this
case the solution consists of more than just the residues of an integral:
the normal mode representation is defined as just the sum of the resi-
dues. The normal mode representation is important even in such prob-
lems because the contributions of the residues fall off with distance less
rapidly than the branch line integrals, and thus become predominant for
a receiver far away from the source.

If relation 2.79 were found to hold for the simpler case of prob-
lems in which no semi-infinite layer is involved, this relation might
weli provide information about the minimum source-receiver distance
at which a few terms of the normal mode series may be expected to
represent the solution, to a given accuracy.

In the presenf problevm, fig. 3 shows that the first mode alone,
or even the first few modes, are not sufficient to give a fair representa-
tion of the solution as close as r = H. Looking at the phase relation-
ship between the first two modes, we see that the negative half-cycles
of the quasi-sinusoidal first mode will tend to be cancelled out, and the
positive half-cycles reinforced, by the addition of the higher modevs. By

adding more and more modes we eventually get large narrow spikes
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located approximately at the maxima of the first mode -- which is what
the multiple reflection expansion predicts. The exact position of the
spikes depends directly on h and z in the multiple reflection repre-

sentation, and in the normal mode representation this dependence is in

nrwa nwb
the factors cos 0 cos 5

We must go to a physically realizable source function in order to

in equation 2. 50.

investigate the question of the minimum radial source-receiver distance
at which the first few terms of the normal mode expansion is an adequate
representation of the solution. Clearly the first few normal modes will
be a very poor representation at any distance for a delt(a—function input.

The procedure would be to pass both representations of the solution
thréugh a low-pass filter whose cutoff frequency was low enough to isolate
effectively, say, the lowest mode. This would amoﬁnt to convoluting the
solutions for a delta-function source, witﬁ a physically realizable source
function whose Fourier transform is v‘erry small above a certain (suffici-
ently low) frequency.

Unfortunately, it does not appear to be possible to carry this
integration out, even for an ideal low-pass filter., It is clear, however,
thaf here too the general principle holds true that for a receiver close
to the source, in a given time interval, far fewer terms of the multiple
reflection representation than of the normal mode representation are
needed to give a good picture of the soiution (and vice versa for a far-

away receiver).

2.11, Approximation of the solution at large distances from the source. -

We derive in this section an approximate solution which is valid when
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r >> H. We had in 2.48

—_ 2Ao \n nmwa nwb .., r
2. = - . —
(2. 80) A(r, z, p) = Re{Ko(pr) + 2 ; (-1)"cos T COS T K(ﬁ Zn)} ,
n=1

where

2 2:1/2
z_=[pt+ 22,

_nmp
n T "H

n
For large values of the argument, the modified Bessel function is
1/2

Ko(g)z ["217;;] e ™

(Hildebrand, 1948, p. 162), so that for large r, 2.80 is approximately

, R 1/2 rZ
(2.8) Bz, 7,p) = Re{EO(%>1/Z exp (-BE) 4 ) B (8 exp(- 7,;94}
‘ n=1 o

where we have defined

5 - ZAO B
o H ™
(2..82) 4A
E = 22 (-1)™ cos 212 cos nrb
n H ™ H H °

The inverse Laplace transform of 2, 81 is

~ ] ’ ct+oo 5
— e - P N - r
(2. 83) Alr,z,t) = EORe > S‘ _ \/ D exp [p(t E)] dp
c-ioco
oo
+ioo Z
1 e B pt n
tReox _Z EnS : iz explrlEe - 5 )] dp,
ool c-ico n

where the order of summation and integration can be inverted, since both

the integral and the series are uniformly convergent.
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The first integral is

(2.84)  (ut) /2y - )
(Magnus and Oberhettinger, [954, p. 127). Since we have already taken

r to be large, the second integral is in a form suitable for a saddle-

point approximation.

Z
. d  pt n, _
A saddle point occurs where ) (—r— - —F) =0, or

t _pr.2, 2+4-1/2
(2. 85) == -B—[p +,cn] i
2. 85 implies that the maximum contribution appears to have travelled
with a velocity
2 1/2

- I _ P
(2. 86) U_-t-_ﬁ[1+—7] ,

C
n

which is the group velocity in problems in which the solution is formed
from the harmonic steady state by Fourier synthesis, We postpone
further discussion of 2. 86 until the next chapter.

The saddle point is located at P, in the complex p-plane. Solving

2. 85 for p_,
2 -1/2

r 2 < T

tcn[-gz - t7] t B

(Z. 87) pO: 2 rZ _1/2 N

-ite [t - E’? ] t > 5

As t increases from zero, the saddle point thus moves out from
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the origin of the p-plane along the real axis, approaching infinity as

t— % . Just after t = % » the saddle point is at -ico. It moves up the

negative imagiriary axis, approaching —icn as t — oo.
To find the path of steepest descent through the saddle point, we

expand f{(p) = —ri - —‘3-13 in a Taylor series around P, and require that

—

(2.88)  £(p) - £(p) = (p - p)°E%p ) +...

be real and negative. In Appendix D we show that the path is along the

real axis when t <% , and makes an angle ¢ 2% with the real axis when

t >-g— . Then using the formula for the saddle point approximation,
i \/21r
f ié f
| [ =" ) ] |

(Ewing, Jardetzky, and Press, 1957, p. 367), the seriés in 2.83 is

| = 2 -1/2 2 1/2 ,,

(2. 89) E Enm [-r—z - tz] exp| —cn(% - tz) ] t <-é—'
n=l g \ g

and
= 2 -1/2 271)2

(2.90) 2/ Enm[tz—éz] cos (cn[tz—éz-] ) 1:>-é;.
n=l

Eéluatiqn 2.90 is identical to tile higher order terms in the exact
solution 2.50. The apparent forerunner 2. 89 has been intfoduced by the
approximation method and has no physical reality: the greater r is, fhe
more closely 2. 86 approximates the solutioh before t ='r/B. But it is
clear that as r becomes large, 2.86 is very small except at t = r/{3‘,

" and in the limit as r — oo, it is zero even at t = r/p.
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CHAPTER 3

NORMAL MODE THEORY FOR SH WAVES IN A PLATE

3.1, Introduction. - In the general problem of wave propagation in wave

guides the residues at the poles of the integrands in terms of which the

solution is expressed are called narmal modes (Pekeris, 1948, p. 12).
These residues decay with distance from the sourcé less rapidly than

the branch line integrals, so that far away from the source the normal
modes are the predominant part of the solution.

The normal mode solutions are characterised by a standing-wave
distribution of amplitude in the direction normal to the guide boundaries,
in which the number of nodes is given by the mode number. It has been
shown that in layered media the normal mode solutions arise physically
from constructively-interfering multiple reflections from the guide
boundaries (see Ewing, Jardetzky, and Press, 1957, pp. 140 and 156, and
references). The period equation for the wave guide, which relates the
frequency or waveleﬂgth of the harmonic wave to its phase velocity in the
guide direction, may thus be Wriften dir;:ctly from the physical condition
of constructive interference of multiply-reflected waves.

Mathematically, the period equation is identical to the equation
which locates the poles of the integrand: D = 0, where D is the deno-
minator of the integrand in the formal solution.

In this chapter we sef up the problem of SH wave propagation in a
plate with a harmonic source, and solve the problem approximately for
large distances from the source. We will show first that the period equa-

tion can be simply derived from the principle of constructive interference.
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3. 2. Constructive interference of multiply-reflected SH waves in a_

plate. - Consider one crest of a

C

harmonic shear wave train far

enough away from the source

gt L

>r

that the wave surface may be
considered plane. The condition ,
Figure 5: Constructive inter-
for constructive interference at ference of successive
multiple reflections
a point A (fig. 5) is for the wave

crest just arriving at A to be in phase with the wave crest which has

travelled the additional distance ABC. This condition may be written

(3.1) ABC = n)\'

where n is an integer and \' is the wavelength along the ray ABC.
There is no phase shift at the boundaries of the plate for SH waves.
The wave phase velocity along the ray is P, the shear wave velo-

city. The wavelength and phase velocity in the horizontal direction are

given by
t
= 2
sin
(3. 2)
co_P
" sin 0

where 6 is the angle between the wave normal and the normal to the

faces of the plate. We can show that

(3.3) ABC = 2H cos 6 .

Using 3.3 and 3. 2, 3.1 becomes
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2 1/2
(3.4) 2H cot 6 = ZH(——z -1 = n\ .
p
In terms of the wave number k = E)\_'rr_ = -c-;- , 3.4 1is.
CZ ‘ 1/2
(3.5) kH(? - ]_) = nmw.

Solving for the phase velocity, 3.5 becomes

2 :
ct -1/2 2 -1/2
7
(.6) 5 =0--5)  =[-(5p £,
W
where c, = n?nﬁ and f = “2% , the freciuency.

.The group velocity U = gj(i- ‘is

2
c”1/2
(3.7) g-f(l-;—%) - 5 -

(See, for example, Ewing, Jardetzky, and Press, 1957, pp. 293-295).
3.6 and 3.7 are shown in fig. 6 plotted agai,nst.the dimensionless para-

meter £ = HE . The integer n is the mode number. We see that each

P

mode has a cutoff frequency
(3. 8) f = =

at which the group velocity is zero and the phase velocity infinite. In-
finite phase velocity implies normal incidence at the faces of the plate,
and we see that the cutoff period T is the time required for n round
trips acfoss the plate at normal incidence.

Equation 3. 7 describes the variation of period of the signal with

time, but contains no information about how the amplitude varies. 3.7
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Figure 6: Phase and group velocity curves for the first seven modes
of SH wave propagation in a solid plate.
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implies that very far away from a source which radiates all frequencies,
the front of the received signal will appear to have travelled with the
shear wave velocity P. The signal will begin with an infinitely high
frequency component, and the frequency of the signal will decrease,
rapidly at first and then more and more slowly, until after a long time
the signal is approximately a sinusoid of frequencyv fo. |

This is exactly how the exact solution of Chapter 2 behaves, not
only far away from the source, but near the source as well. The saddle
point approximation of section 2.1l established 3.7 analytically as the
velocity with which the maximum contribution to the solution travels,
far away from the source. It has been shown (Broer, 1951), that in
all wave propagation problems in which no energy is dissipated in heat,
the group velocity is the velocity of energy propagation. However, the
whole concept of group and phase velocity is based on plane harmonic
waves., Close té the source, where the wave frontsarenot even approxi-

mately plane, we cannot expect even to be able to define a group velocity.

3.3. Approximate solution of the problem of SH waves in a plate by

normal mode theory. - We start With equations 2.3-2, 6:
(2.3) u = - -gé

(2. 4) VA = E%S%

{2.5) ‘ T,9 = "M gzzﬁr at z =0 gnd z = H,

but instead of making a Laplace transform of the problem, we assume that
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the source emits a steady cosine wave of period —-20-)1 » and has been doing
so for an infinite time, so that all transients have died out and we are
dealing with a steady state problem.

We use the exponential notation for the harmonic wave emitted by
the source, with the agreement that only the real part of the final solution

is to be used. Writing

(3.9) A = Reg(r, z)eiwt,

we have to solve

8¢ , 1080 ,070  w _

subject to the boundary conditions

2
0 ¢ _ - -
(3.11) M 3755 =0 at z=0and z=H.

Using the notation

o 2 L 21/2
kg = 7, v=(k"-ky

2

a solution to 3.10 which is finite at r = 0 is

*® (
(3.12) olr, z) =§ Jo(kr)[f(k)ev‘
0

z—h)+ -v{z~h)

glk)e ]dk .

Taking a point sourcecft A at z=h, r =0,

| (o) _ iwt 1 ¥
A = Rere " exp( 1kBR)
. (0 8]
= ReA el“’tg 7 (ke V2Bl K g
O Jo [e} v
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where
R = [(z-h)2+ rz] 1/2,

we have the formal solution

(3.13)  A(r,z.t) = ReA eF {1 (k[ za9e” (D)
(o] _) [e)

“0

+g(k)eqv(z—h) + %e_v [Z_hl] dk .

Substituting 3.13 into 3.1l, solving for f(k) and g(k), and

simplifying exactly as in section 2.5, we find

o
_ Pwt k cosh va cosh vb
(3.14) Alr,z,t) = ReZAOe §0 Jo(kr) S Sinh vE dk
where a and b are as defined in 2. 30.
Following the development of section 2. 6 exactly, we split the
Bessel function into two Hankel functions, and integrate the two separate
integrands around contours in the upper and lower. halves of the {-plane.

The poles of the integrands lie on curves Re(v) =0 at

inw

(315) V:i‘?"

which is identical to 3.5, as we expect.
The analysis of the integrals is the same as in the last chapter,
except that we have replaced p by iw. Evaluating the residues of the

integrands, we find

2A w
(3.16) . Alr,z,t) =




where

We now suppose that r is very large, so that we can replace the

Hankel functions by their asymptotic approximations
2 1/2 .
Hﬁ) )(X) = (2/wx) / exp [-i(x - zllr' )]

(Hildebrand, 1948, p. 162). Then 3.16 is

ZA10(2‘"-5)1/2 3im T
(3.17) Alr,z,t) z——WZ— Re {exp (T ) [ 1/Zexp [iw(t - B )]
H

+ ZY; Diog BT2 . o BT 1 exp [i{wt-rY )]]}

nl n

This is the steady state response. We can generalize this result for an
'arbitrary time variation at the source, S(t). If the Fourier transform

g(w) of S(t) exists, the response to S(t) is given by

A (r,7,) =— §m<)A< ) d
r,z,t) =—— glw r,Z, t)w) dw .
S (Zn_)l/z
In our case, then,
1/2
2A (B) 3 o 1/2
(3.18) A (r,z,t) = ° Re {exp [EALE) Sﬂ (W) 7 “expliw(t - £)] .
s H(r)172 { 4 co p
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(see, for example, Ewing, Jardetzky, and Press, 1957, p. 143). The
first integral in 3.18 is clearly zero for t <% . For t> % , it repro-
duces the source function with distortion introduced by the factor I,/(w)l/z.
It is not useful to carry out thé integration for individual g(w), but for
g(w) =1, this integral may be shown to be equal to 2. 74. See Lapwood
(1949, p. 66) for a discussion of similar integrals.

We may make a stationary phase approximation to the second
integral in 3.18. Rewriting the integral in the common notation for this

approximation (see Ewing, Jardetzky, and Press, 1957, Appendix A),

we have

I =§ F(w)eirf(w)dw

where r is large, and

F(w) = Y;ll/zg(w)

or
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The velocity with which the maximum contribution to the integrand appears

to travel is therefore

(3.20)  Z=q- crzl/@‘z)l/2

But this velocity is just the group velocity U (Jeffreys and Jeffreys,
1950, p. 512), so that 3. 20 is identical to 3. 7.

The harmonic steady state and the Laplace transform methods are
closely related to one another: it can be shown that a solution in terms
of the harmonic steady state may be obtained from the Laplace transform
formulation simply by letting the positive real variable p move along a
path in the first or fourth quadrants of the p-plane to a point iw on the
imaginary axis (Cagniard, 1939, p. 140).7 Substitut‘iﬁg iw for p in
equation 2. 83 makes it identical to equation 3.19.

An approximate evaluation of the higher mode solutions has already
been carried out in section 2.10, so we need not carry through the station-
ary-phase approximation of the series term in 3.18. We notice, however,
that this term decays with r as 1/(r)1/2 before integration, and (since
/2,

the integration brings down another 1/(1')1 1/r after integration.

This is what we expect of two-dimensionally guided waves.
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CHAPTER 4

WAVE PROPAGATION IN A PLATE WITH
MIXED BOUNDARY CONDITIONS

4.1. Introduction - In this chapter we consider separately compressional

and shear wave propagation in a solid plate held between smooth friction-

less rigid walls. The boundary conditions corresponding to this physical

1

condition are

T =0
rz
(4. 1) at z =0, and z = H, for all r and t.
u =0
z
4.2. The compressional wave source. - The plate is as shown in fig. 1.

We now have to deal with the components of displacement u_, u, which
have been zero in the previous problem. We use the notation of Ewing,
Jardetzky, and Press (1957, Chapter 1). The displacement components

are derived from potentials ¢, W defined by

_ Q¢ oW
Y T8 T 9z
(4. 2) u6=0
u:éﬂ-l-a__w--}-\_y

and ¢ and W satisfy

2
V2<p=—-1—2 azgo
(4. 3) a ot
2 W 1
VEW - -
2 g2 et

T
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where a and P are the compressional and shear wave velocities,
respectively.

We éssume as before that a point source is located at (0, h<H),
but the source now radiates compressional waves. For simplicity, we
assume that the source emits a 6-function of pptential ¢. The generali-
zation to a source of pressufe or volume may be carried out straight-
forwardly (Dix, 1954), but it is not useful for our purpose here to carry
out the generalization.

The source function, then, is

®

(4. 4) 0, = —ﬁ?c‘}(t—?)

where

R = [ (z-h)2+ 2] 12

and i)o is a constant whose dimensions are (1ength)3.
As in Chapter 2, we make a Laplace transform of the entire prob-

lem. Drawing on the relations of Chapter 2, we find that solutions of 4.3

are
(0 0]
7= go T (kr) Alkje’ “+ Bkje ™ 7+ & e~ tz-hl} g
(4.5)
e
W = g 3, (kr) [ cl)e’” + D(k)e™ "] dk
o 1
where
2 2
(4. 6) ’ =(k2+_P_Z_)1/2, v:(k2+2.2.)1/2
a g
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The boundary conditions are

ST b aZva+Zaz‘a_Zaz‘v‘v co
rz M E;Z 8‘52 9roz aZZ -
atz = 0and z = H,
(4.7 1 for all-r and some
.\ U = Eg'ﬁ__ + ___8-W— + __“—L =0 real positive p.
z 0z T T
Substituting 4. 5 into 4. 7, we find that A, B, C, D are determined
by
( 20A - 2B - 2k°C - 2k°D = -2<I>Oke’“1
208t - 2Be ™ | 21%CeVH - 2k%peVH - 2<I>oke'“H"h)
(4. 8) ‘ 2 2
20A - 2B - (2k° +E5)c - (.Zk2 +2.)D = -2 ket H
2 2 6}
p )
IH {H 2 2 H 2 2 -yH
20Ae” " - 20Be T - (2k° + 2 yceVT - (2k° + B )De 7Y
\ 27 2
B g
- 20k -4(H-h) .

Solving 4.8, we find that C = D = 0, and

k ~fH cosh lh
A= (I)o T sinh ITH
(4. 9)
B k cosh £(H-h)
B=® 7 —mrim -

Substituting 4. 9 into 4.5 and using 4.

find

8 to simplify the result, we
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=
1

(4.10)

o)
- k cosh fa cosh b
¢ = Z(I)ogn

Jo I sinh L H J (kr) dk

where a and b are defined in 2.30. Thus ¢ has exactly the same

form as A has in the SH wave problem, and we have irrimediately from
2.50:

©
rz)"l/ZS‘ e (-1)™ cos nra cos B2
;Z /, Tn H H

y H H
n=0

L W(r,z,t) =0

nmwa

T
where we have put T

4.3. The shear wave source. - Now we consider the same problem as

was treated in the last section, except that the source radiates shear
waves instead of compressional waves.

We define a potential ¢, /

(4.12) w=-2%,
; or
so that
o] 82
_9% , 2y

(4.13)

=
I}
|
!




~60-

and now ¢ and { satisfy
2

21
Vi = 2%
(4.14) a” 9t
2 1 az¢
V b=
8% at?

T =pu2829”+283“’J _1__7834’ ]:o
rz 018z "5.5,° EZ 9rdt
at z =0 and
(4.15) > > : z = H, for all
u_3¢+8¢_18¢:0 r and t.
z 0z 5—2_ 2 .2
z BT ot

Now we take the source function to be

) .

¥
(4.16) 4, = o ot - %

The solutions of the Laplace-transformed equations 4.14 may be written

Lz

?5:( I (kr)[ A(k)e” “ + B(k)e” 1 dk

eJO
(4.17)

QO
= go 3 (kx)[ C(k)e’? + D(k)e Y% + v -IVS et IZ‘h[] dk

where { and v are as defined in 4.6, and A, B, C, D must be deter-
mined from the boundary conditions 4.15. Substituting 4.17 into 4. 15,

we find that A = B = 0, and

(4.18) C=-¢ k-vHsinhvh D= -

k sinh v(H-h)
oV sinh vH ’ oV

sinh vH
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Substituting 4.18 into 4.17 and simplifying as we have done before,

we find

)
"
o

(4.19)

oo
_ k sinhva sinh vb
N S v v sinh vH I olkr) dk .

where a and b are as defined in 2.30. U has exactly the same form

as ¢ had in the last section, except that there are hyperbolic sines
instead of hyperbolic cosines in the numerator

The evaluation of the integral in 4.19 is similar to that carried
We start

out in section 2. 6, except for the expression for the residues
with the evaluation of the residues.

0: As v — 0, the integrand approaches

kab (1) (2),ipr

so that v = 0 is not a pole.

=+ 11;117 : At these points, { = L, = ‘in1 =i lg—z-
. nw . .
Cn = 7 The residue of I1 is
(4.20)  Res(r)], ., =]|-W&)
Pz, 1S by
dl t=1Z
n
1 ntl . nma ., nwb_ ({l),.
= ﬁ('l) sin —gsin —— H (1.an) .

We have, then,



(o 0]
- k 4\Ifo n+l nwa b
(4. 21) U(r, z, p) = Z (-1)" " sin 212 sin E-"—Ko(rzn) ,

4% 2 -1/28
R e I e Y
P n=1
2 1/2
(4.22) { sin2sin rgb cos (e _[t% - -73_2.] )1t - %.)
\ ¢ =0

U thus has the same form as ¢ had in the last section, except
that 1) there is no zero-order term; and 2) the displacement is anti-
symmetric in z about the middle surface of the plate, instead of sym-

metric.

4.4. Discussion. - It is important to remember that although there
is a remarkable unity in these problems of wave propagation, the dis-
placement vector u is considerably different in each case. Itis a
straightforward but algebraically complicated process to compute the
response to a source of radial pressure, say, instead of the potential
¢, used in 4.4, or to a torque source instead of the potential qu in
4.16.

The mixed boundary condition problem has a physical signifi-
cance which was discussed by Mindlin (1955). The very much more
difficult problem of the plate in a vacuum may be approached by re-
laxation of the boundary condition that the normal displacement vanish

at the faces of the plate: assume that linearly elastic springs are
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uniformly inserted between the plate and the rigid bodies on either side

of the plate. Then the boundary conditions are:

T =0 at z = 0 and z = H
rz
(4. 23) —{uz at z = H
T =
zZz
ﬁu at z = 0.
z

when the springs are rigid ( + infinitely large), 4. 23 is the same as
4.1. When the spring constant approaches zero, the problem becomes
that of a plate in a vacuum.

Mindlin (1955) first established two sets of dispersion curves
for shear and compressional wave propagation in the rigidly held plate.
These may be derived from the equations locating the poles of the inte-

grands of the last two sections:

in CZ ”‘/Z
L=+ 1HTT or kH(——Z - 1" = nw
a
. , 2
y = + 22T op kH(-C— - 1)1/2 = mm
- H 52

(it is now necessary to distinguish between the integers n and m).
Mindlin then showed that the network’ of curves (n, m even) govern modes
in which the plate vibrates symmetrically about its middle surface,
while the netwoi'k (n, m odd) governs the antisymmetric modes.

The problem of the free plate may also be discussed in terms of
symmetric and antisymmetric modes, so it is to be expected that in the

relaxation process the curves (n, m even) will be closely connected with
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the symmetrical free plate dispersion curves, and the (n, m odd) curves
with the antisymmetrical free plate dispersion curves.

Considering only the antisymmetric modes for the moment,
Mindlin showed that as & is decreased from infinity, the dispersion
curves for the higher modes of the relaxed problem still pass through
the lattice of points of intersection of the curves (n,m odd), but move

away from the lattice of points of intersection of the curves (n, m even).

In the limit as & — 0, the dispersion curves for the higher antisym-
metric modes still pass through the lattice of points of intersection of

(n, m odd) and have moved down to pass through the points of intersection
of the curves (n, m even) as shown in fig. 7 (Mindlin's fig. 2,101, 1955)
on the next page.

An exactly similar result holds for the symmetric modes, the
dispersion curves always pascing through the points of intersection of
{(n, m even} as 4 decreases, and approaching the points of intersection
of (n,m odd) as &~ 0.

For the lower modes, certain other complications arise.

This "terrace-like structure" of the higher modes of vibration
of the free plate is shown in fig. 8. page 66 (Mindlin's fig. 2.112, 1955),
The relaxation of equations 4. 24 fo the free plate problem has also been
further developed by Mindlin (1957) and Tolstoy and Usdin (1957).

It may prove that knowledge of the exact solution of the two mixed
boundary condition problems can be used to approximate the solution to

the free plate problem.
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Figure 7

>< % infinite

ffect on the dispersion curves of the higher symmetric
modes, of relaxing the spring constant (after Mindlin).



— symmetric modes

——— antisymmeiric modes
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Figure 8:

w= kH

Terrace-like structure of the dispersion curves for a free
plate (after Mindlin).
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CHAPTER 5

TORSIONAL WAVES IN A SOLID CYLINDER

5.1. Introduction. - We consider an infinitely long, solid, homo-

geneous, isotropic, perfectly elastic cylinder of finite radius a, sur-
rounded by a vacuum. It is convenient to take the axis of the cylinder
along the z-axis of a system of cylindrical coordinates =z, 9, z.

The problem is: given a function of time and the radial distance
which is integl;abfie with respect to r and is twice differentiable with
respect to both r and t, but is otherwise arbitrary; let this function
f{r,t) describe the distribution of shear stress TZQ across a plane
normal section of the cylinder. We choose f(r,t) such that it is identi-
cally zero before t = 0. so that the problem is one of progressive wave
propagation. We will then determine the displacement u, at any
point in the cylinder at any time t.

For brevity we will consider the cylinder to be semi-infinite,
i.e., to extend from the source plane (for which we choose the plane
z = 0) to infinity only in the positive =z direction. The end of the
cylinder is not stress-free, since the stress is defined to be f(r,t)
there. In the more general case of a doubly-infinite cylinder, the
waves would spread in both directions from the source plane. However,
there would be no interaction between the two halves of the cylinder,
and the solution in one half of the cylinder would be obtainable from
that in the other half merely by changing the sign of the coordinate z,

wherever it appeared.
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5. 2. Statement of the problem. - We will solve the equation of motion

for the 6-component of displacement (see Appendix A),
2 2 2

5.1 8u9+£8u9+8u9_i1ﬁ:~1_8u9
81‘2 r Oor 8z2 rZ B2 azt

subject to the boundary conditions that the stress vanishes at the radial

surface and that the shear stress at z = 0 is given by £(r,t):

Bue
T M = {(r, t) at z =0
(5. 2)
_.0 Y )
TP lg)=0 at r = a,

where f(r,t) is subject to the restrictions mentioned in the last section.
As in the previous chapters, we make a Laplace transform of

the whole problem, obtaining

(5.3) 0% , L ou , 8% _p°c .3 _,
: ~ 2 T Or T2 T %"z <
0 8z B r
- 9 ,u, _ _
'Tre—- '5—1':(?) =0 at r = a
(5.4)
T = Hia :.f(r p) at z =0
rb 0z ’

where the bar denotes the Laplace-transformed function, and we have
dropped the subscript on EG"

A solution of 5.3 which remains finite as z — o and r — 0 is

0
(5.5) u(r, z,p) = Aor exp(- PBZ_) + Z An exp(—ﬂnz)Jl(knr),

n=1
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where

We must determine the kn and An from the boundary conditions 5. 4.
We have at r = a,

_ N K,
{5.7) T /) Anexp (-1 nz) - JZ(kna) =0

since

2 + T () = 23

{Hildebrand, 1948, p. 163). One way for 5.7 to be satisfied for all =z

is for all the kn to be solutions of
(5.8) Jz(kna) = 0,

We take this as the det‘ermining condition for the kn, so that
k a from now on designates the nth solution of 5.8 .

It can be shown tvhat 5.8 is just the period equation for Love waves
propagating circumferentially around a cylinder (Sezawa, 1927).

In order to find the An’ we must expand f(r, p) in a series of
eigenfunctions of the problem and match coefficients term by term. In

Appendix E we show that

oo
N
)

{5.10) f(r,p) = rbo(p) + bn(p)Jl(knr) .

lomted

4
n=1
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where
(%< 2

bO(P) = a—430 flr,p) r"dr
(5.11)

bn(P) = aZJ;(k X g:;a f(r, p)Jl(knr)r dr

n
At 7 =0,
_ 0

(5.12) T oo ham= - ua, BE - “E ¢ A J(k r) =Kz, p) .

n=1

Equating coefficients in 5.10 and 5.12, we find

A Pb_(p)
o Mp
(5.13) |
A b _(p)
n pin

so that the transformed solution may be written

—_ B 1 Pr Pz
(5.14) u(r,z,p) = - -ﬁ{bo(p)?exp ( —B—)
Q0
< b_(p)
+ Z/ 1’; exp (-4 nZ)Jl(knr)]
n=1 n
or using 5.11,
oy 1 4: T Pz ﬂa_
(5-15) u(rszsp) = _E['a'-z 5 exp ("‘B_) 430 f(g’p)gdg

Oi 2 (-t >J1(k“r)' T e, )7 e a]
+ — exp (-4 z)—5—— \ ,pyJ (k d .
azﬂn 3%k a) Y0 I'n
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In order to carry out the inwerse transformation we must be more

specific about the function f#(r, t).

5.3. The source function f(r,t). - We consider only functions which are

separable in their r and t dependence:
f(r,t) = g(r)h(t) .

We now take the time variation h(t) to be the &-functiocn. Then

we have
(5.16) u(r,z,p) = - =N B = exp (-£Z) (m g(€)g d&
wa* | P B Jg
x 2 J (k_r) a
+ 2 exp (- z) 22 { gl&) T, (k aﬂ;dr::]e
er 2r, le(kna) Jo I

The integral in the series is difficult to evaluate except for a few special
distributions g(r). One simple distribution for which the integral is

known is

2Q

——Zr I'<b
Th
(5.17) g(r) =
0 a<r<b

where the coefficient of r is chosen so that the total toerque exerted on
the cylinder is Q (see Appendix F).

Using 5.17 the integrals in 5.16 become



a ~b
[ g g(r)rzdr = 2—Q4 % r3dr = ?}—Q
0 b 0 ™
(5.18) 7
a b
§ g(r)Jl(k r)jrdr = 2 Jl(k r)rzdr
L 0 n b 0 no
20
= J,(k_b)
Tl'bzk 2.

(Watson, 1952, p. 132). We can also represent a point source of torque

on the axis of the cylinder by taking the limit of 5.18 as b — 0:

a 1
lim glr)r dr = — Q
b—0 0 2w
{5.19)
a an
lim g{r)J(k_r)rdr = ——
b—0 Y0 1Y 47

For simplicity we will use the point source 5.17 and 5.19, but it
should be remerﬁbered that nothing in the following analysis depends
on the source diétribution function g(r), and the factors in 5.19 may
be replaced by the more general case, 5116.

With 5.17 and 5.19, 5.16 becomes

(5.20) ul(r,z,p) = - —E—%— B-{exp(—ﬁ)
p p
Hra
oo
a2 < kn . Jl(knr)
+A-—4-— /T e%p (—ﬁnz) ——
=~ “n J. (k_a)
n=1 1Y n
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5.4. Inverse Laplace transform of the solution. - We notice first that

for the term linear in r, we have a very simple solution even for an

arbitrary time function h(t):

_— ’ ~t
(5.21) L'l{hép) exp (- } 50}1 )T 1‘ 5

5.21 is exéctly. the solution we expect from elementary reasoning if the
normal sectioﬁs of the cylinder are constrained to rotate as a whole.
The series in 5. 20 therefore describes that part of the solution which the
elementary approach to the torsional wave problem ignores.

The inverse Laplace transforms of the functions of p in 5. 20

are known:

(5.22)

' z
= BI, (e PYILE - 2)

(Magnus and Oberhettinger, 1954, p. 133), with the notation

y = 2 _Z,z/52)1/2_

Thus the inverse transform of 5. 20 is
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(e.9]

22 K I (k1)
(5.28)  ulr,z,t) = - 28 &r + %32 olm T U By) | Ut - 7).

wra a1 Jl (kna)

The inverse transform of the more general 5.16 is

4 & 2
(5.24) wr,z,t) = - — | gl&)6~ag
o/
pa 0
> X knJl(knr) iqa -
a —— J (k By) } g(€)J(k _£)EdE | 1(t- =)
T le(k a) ° ® 7 Jo ' b
n
n=1
5.5. Discussion. - The solution 5.23 or 5. 24 consists of two parts:

one non-dispersive term (the elementary torsional wave) which is the
time integral of the input stress and which depends linearly on the
radius; and the series of higher modes of dispersed waves. The relative
amplitude of the different modes depends entirely on the initial stress
distribution. 5. 24 shows that any given mode may be excited to the
exclusion of all others by selecting g(r) = Jl(kjr), and similarly any
given mode may be rejected by proper selection of g(r).

We may rewrite 5. 23 in terms of the dimensionless parameters

_ Pt =z 2 21/2
(5.25) T —‘-é— , K= 'é- 5 I= ('T -K )
23 kI (k 1)
_ _ 20 a n'l'n
(5:26) u(r,K 3 'T) =- [I’ j’ ZB— 2‘/ s Jo(knaf)} I(T—K) .
Lra g} Jl (kna)
Jo(kna]f") is plotted against 7T 1in fig. 9 (next page) for k = n = 1.

We see that the higher modes have the same general time variation as

the higher modes of SH waves in the plate. In fact, if we make a saddle-
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point approximation to 5. 20 for large =z, we find that the saddle-point is
located where

n
2

ZzZ
(5.27) Z=U-=

{ - k252]1/2

w

where we have substituted iw for p. This is the same dispersion curve
as we found in Chapters 2 and 3, equations 2. 86 and 3. 20. See also
Kolsky (1953) for an elementary derivation of 5. 27.

Notice that 5. 26 shows that at z = 0, at the source plane, the
response begins at t = 0 and continues for all time with a time dependence
given by Jo(knat). It is not clear whether this infinitely long transient
response is a result of the multiple reflections from the surface of the
cylinder at the plane z = 0, or of backward propagation of energy from
the complex of multiply-reflected waves as it propagates down the
cylinder. We expect such backward transmission to take place, and
also that the input signal will be distorted upon reflection.

This is a completely different situation from that considered
in Chapter 2. There the boundaries were normal to the axis of torque
of the source, and there can never be any motion at the line r = 0 in
that case. Here the boundary is parallel to the axis of torque of the
source, yet curved so that the displacement on the boundary is always
tangential to the boundary. It does not seem possible to predict whether
the interaction of a spherical wave front with such a boundary will
produce a surface wave (for the case of such a torque source below a
plane boundary, a sﬁ.rface wave is produced: Pinney, 1954).

Solution of this problem. in the usual way, starting with a point
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source on the axis of the cylinder and evaluating an integral in terms
of residues and branch line integrals is extremely difficult, as the
attempt to solve almost the same problem by T. W. Spencer {un-
published portion of Ph. D. thesis, California Institute of Technology,
1956) showed. This difficulty is what forced us to assume a solution
in the form of a series of eigenvalues in the first place. This series
has turne‘d out to be the normal mode representation of the solution
(standing waves in the r direction, propagation in the =z direction)
and hence is presumably a series of residues of the integral repre-
sentation for the solution.

The attempt has not been made to invert 5. 26 by Poisson's
summation férm‘ula. and study the result to determine whether the in-
verted series represents a sum of multiple reflections,

The function Jo(ﬁcy) is well-known as the Green's function for
the one~dimensional Klein-Gordon equation {Morse and Feshbach, 1953,
p. 1343; van der Pol, 1950, p. 331) |

2 2
9%y 2, _ 1 8%y

uCLlJ,__‘Z____.._
dz B 8t2

(5. 28)

which governs problems such as the vibrating string with additional
stiffness force‘s along the string, or constant-temperature wave motion
in deep water (Carslaw and Jaeger, 1948, p. 183). The Green?s function
for the telegraph equation is very similar (Morse and Feshbach, 1953,
p. 867). So far as the author is aware, however, the function has not

been obtained as the solution of an elastic wave problem, nor has the
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relation between the dispersion curve and the transient solution been

discussed.

5.6. Response to a step-function input. - Integration of 5. 23 with

respect to time gives the step-function response

20 2 2 k_Jy(k_)
(5.29) ul(r,z,t) = - ——Z}:—[rU(t —%) +-2—-Z .....2_....3_._.

MnTa

(1 (k py)d ] -5)
JZ
P
where U(t - z/B) is the unit ramp-function. The oscillatory part of

ul(r, z,t) is now given by the integral in 5. 29. With the dimensionless

parameters T, K, and I the integral is

a (- Ir XJ (k ax)
K +K

This integral was evaluated for n =1 (kla = 5,1356223), a=P=k=1,
on SILLIAC, using the numerical method described in Appendix H. The
result is shown in fig. 10 (next page).

We see that for large 7 at a given Kk, 5.30 as well as 5. 26 be-

comes a damped sinusoid of period

2w

T:ka
n

As T — 0o, the residual displacement in the rod increases without

limit as a result of the ramp-function in 5. 29. The contribution of the
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higher order modes to the residual displacement is

2 § 7, (k_r)

Z Z
4% 2 37k a)

exp ( -Kkna)

—

(Watson, 1952, p. 434).

5.7. The cylinder of finite length. - In this section we examine the

response of a cylinder of finite length to an impulsive torsional source
at one end, and consider the question whether reflection of the torsional
wave at the free end may cause distortion of the pulse shape.

4

We add to 5. 4 the boundary condition that

(5.31) T, 9= 0 at z=H,

taking H to be the length of the cylinder. The solution 5.5 becomes

(5.32) ulr,z,p) = Aor exp (- %Z-) + Bor exp (%Z-)

foe)
+Z [Anexp(-lnz) + Bnexp(ﬂ.nz)] Jl(knr) .

n=1
Inserting 5. 32 into the boundary conditions 5.4 and 5. 25 and

using 5.10, we find that the A's and B's satisfy

A - B S
o o Hp
b

A - B = —H‘E
n n n

(5.33) )

>
=
o
X
=
i
P
&
t
o
(o]
o
A
=
)
=
&
]
o
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from which

. Bb exp(EﬁE) . ﬁboexp(-%g)

© m) % 2w sinh(%I-{)
(5. 34)

. b _exp(£ H) . b_exp (- H)

n Zpﬂ 51nh £ H) St —Zpln sinh (!ZnH)

Thus 5.32 is, after some rearrangement,

b cosh[ —1:-)- (H-2)]

T

(5-35) E(Y:Z:P) = -

|

p sinh (—B—)

99« b cosh [f (H-z)]
) 2B Ik 1) |
. R sinh ( nH) n

For convenience, we specialize to the point source described by equations

5.17 and 5.19, so that 5.35 becomes

cosh| g» (H-z)]

(5.36) u(r,z,p) = - 2Q4 5 i T
pra, B sinh (%_)
2 $ . cosh[ﬁn(H—z)] Jl(knr)
Bré,l n ﬂn sinh (ﬁnH) le(kna)

In order to carry out the inversion of 5.36 we expand the functions

of p in 5.36 in an infinite series: substituting

o0
1 N .
smE (e -/, exp [-(2) + DHx]
=0
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(where x = p

5 in the first term of 5.37, and x = ﬂn in the remaining

terms), which is valid since Hx >0 (cf. 2.67), we have

00
cosh[ x(H-z)] \? . _ —
{5.37) TRTEVR eI /,1exP [ -x(2jH+z)] + exp[ -x(2{j+1{H-z) ]
j=0
so if we define
Lj = 2iH + =z
(5.38)
Mj = 2(j+ VH - z, )
5.36 becomes
= L
— pL.
(539 Wr.zp) = - =) ) ED exp (- )
pma |5
j=0
2 M
Pr P
+ . -k
E p PP )
j=0
w
‘. knaz %’\ 1
+ = 1 L
Z 4 -~ ﬂneXp( ny
n=1 j=0
T } 3, (k)
+ ~— exp (-4 M.)
£ n 2
Lod J
§=0 n Jl (kna)

But 5.39 is identical to 5. 20 if we identify L. and M. in turn

with z in 5.20. We can write down the inverse Laplace transform of

5.39 immediately from 5. 23:



T L, M,
(5.40) w(r, z,t) = - —2—9%— {r[l(t-.B-l)H(t-_E_J)]
pra A
j=0
2 K,k ) L 12 L
12y mlnm [J (k S[tz- L1 - )
40 2 2 B
n-;l J1 (kna) o B

The physical meaning of 5.40 is clear. Each j-term corres-

ponds to a different multiple reflection of the incident set of waves from

the ends of the cylinder. The table on the next page gives the first few

multiple reflections and the associated coefficients. There is no dis-
tortion of the incident waves by the reflection at the ends of the cylinder,

and each multiple reflection has exactly the same form as the incident

waves 5. 23.
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- Order Path z-component of Coefficient
path length
O \\: Z LO
1 = 2H - z M
O
4 § 4H + z L,
5 Eiiii%é;gg; o h
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APPENDIX A

DERIVATION OF ELASTIC EQUATION OF MOTION FOR SH WAVES

In cylindrical coordinates, r, 6, z , the general elastic

equations of motion are

‘ 2
aTrr + 1 aTrG 4 arrz : Trr” Too r = 0 Yy
or T 06 0z T +p’r~pat2
2
)
A1) o, 1°%%00 %Te 2% P
. 8r ' ¥ 06 " oz T Pre” Pz
2
97y 1 9%, BT, JTea oo Yy,
or r 06 oz T Pegy =P 81:2

(Love, 1892, p. 90}, where {urg Ug s uz) is the vector displacement,
«(Fr, Fg, FZ) is the body force, and the Tij are the components of

stress. Hooke's law in cylindrical coordinates is

f T = 1 = :
i )\A+2,u€ii i r, 8, z

(a.2) 1

{ Tij: /U.GIJ i,i = r, 8, z

£

where eij are the components of strain, A is the dilatation, and A and
M are Lame's constants. Equation A. 2 follows from Hooke's law in
rectangular coordinates {Love, 1892, p. 102) and the relations between
strain and displacement {(Love, 1892, p. 101), by transforming to cy-

lindrical coordinates.
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The components of strain are

- _aur . _8u@_u6+18ur
rr or ¥8~ "8r ¥ T 9§65
€ - ili;e_; + jj_l; € 1 auz + aug
(A. 3) 1 66 06 T z8 T T 58 oz
Buz 8ur 811Z
6zz = oz erz = oz * ar

(A. 4) A = r+%__ﬁ+_._§+,ﬁ

(Love, 1892, p. 56},

We seek solutions to equation A. 1l which have the following

properties:
oy
1. 56 0 (independence of © )
{A. 5)
Ze u_ = u_ = 0.
r z

= - € = — =
Err €zz 88 €I“Z A 0
ou u
A6 - 6 __%
( ) Ere or T
e - %
6z~ Oz
so that equation A. 2 becomes
i . . o o
Trr = T@@ T Tup T Ty T 0
) 811@ . u@
(A7) Tee = MliwE T F
B 81.19
. T28 = M oz
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We assume that body forces are absent. Equation A. 1 reduces

to the single equation

(4. 8) aTre . aTeZ N ZTI‘Q ) 5} Ug
’ or oz T - P 8‘1:2
Substituting equation A. 7 into A. 8, and putting 52 = ulp, we find
2 2 2
3]
A 9) u9+}_au9+8u9mu9_ vz wu@_ 181}.6
. ; 2 ¥ or z -z ° Yo T Tz T Tz
or oz T T B ot
It is more convenient to work with the wave equation than with
an equation like A. 9. We now find a potential from which ug may be

derived, which satisfies the wave equation.

By Helmholtz' theorem, any vector field which is finite, con-
tinuous, and which vanishes at infinity can be represented as the sum of
the gradient of a scalar and the curl of a vector whose divergence is

zero {Morse and Feshbach, 19533 p- 52}):

u o= V¢+ VA, V-ézo

oo

In ¢cylindrical coordinates

9¢
( = 9¢
¢ g §rt e

LA D
(A.10) 1 gea - . [_1_ 2 Ae} ' [aAr 8AZ}

~ r 06 Z <@ |9z 9T
. _1“ 8(1:‘A@§ ) 1 SAT}
- <z |r or T 86

{(Magnus and Oberhettinger, 1954, p. 145). By the two conditions {(equa-

tion A. 5, ¢ and the components of A must satisfy the following equations:



)
a¢+18AzmaA9_ -
Br * 06 BFz T Y T
8 , 1 8hg 1 %A
52 Tl t sy - 790 T2 T
{A.11) oz r B or T
18¢+8Ar_aAzm
T 96 Bz B+ - e

¢ = A = Ay =0
(A.12) A
- z
Y T 57

1
A.13) - VrVrA = o e
( B° ot

(Morse and Feshbach, 1953, p. 143}, so that the equation of motion

for A is
“ 2
2 p 9A

A. 14 VSA_ = z
& 13 e

Equation A. 9 is obtained by differentiating equation A. 14 with respect

to r.
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APPENDIX B

THE ROOTS CF 4sinhf{H=0

We write
¥
. > 2 4
(B. 1) 4 = e +_13_Z = x+iy .
g
Then D{(%) becomes
(B.2) {sinh 4H = %—{X-{-i‘y} [efX Iy o~ Hx - iHy ]

1 . .
—Z(x—l-ly) [cos(hy) sinh{Hx)
+ 1 sin{Hy) cosh(Hx)]

[ % cos(Hy) sinh(Hx) - v sin(Hy) cosh{hx}}

+ i [y cos{Hy} sinh{Hx)} + x sin{Hy) cosh(Hx)] .

For D(€) to vanish, the real and imaginary partsof equation B.2

must vanish separately:

(B. 3) Re[ #sinh(£H)] = x cos(Hy) sinh(Hx) - vy sin(Hy) cosh(Hx)
= L,-L, =0
(B. 4) Im[ 4sinh(£H)] =y cos(Hy) sinh(Hx) + x sin(Hy) cosh(Hx)
S L,+L, = 0

where we have put
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L1 = x cos{Hy) sinh{Hx)

LZ = v sin{Hy) cosh(Hx)

(B.5) 1 Ly =y cos{Hy) sinh{Hx)
L L4 = x sin{Hy} cosh{Hx)

There are only three possible ways for equation B. 3 to be
satisfied:

3. L1:L2:0

(B. 6) b. L1>O and LZ< 0

c. L1 < 0 and L2 >0.
Similarly, for equation B. 4 to be satisfied,
= L3 =0 and L, =0

4

(B.7) b, L, >0 and L4<0

3

C. L3<0 and L4>O

Denote v in the nth quadrant by V., and v in the nth or mth quadrant
by Vo me Then from the table on the next page, we see that the conditions
&

for B.6 and B.7 to be satisfied simultaneously are

niw

. Ifx=0, y=+ T

2, If x <0, then equation B. 6 is satisfied only for Vy,3 " but
equation B. 7 can be satisfied only for Yo, 4

3. If x >0, then equation B.6 is satisfied only for V1,3 " but
again equation B. 7 can be satisfied only for 372’ 4°

Therefore, the only roots of D(¥} are

Ref{ =0; Imf{ :i%t.
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€2y

0 <X .
0> LAV 0> X vieg 0> = vilg
— . . |
0<x % o<x ¢l 0< 7’ o<xpuR o> L | o >
0 >x ¢¥% 0>x ¢ g 0> €2y
- ¢ 11
o<x 7Y% 0<x 7 & 0> 7T o<x Vs | g <t
H_ T
= A =X X AU®R i 4= A
0 L(Z4u)
H 7o =
EH+|> ALue g =X
Afue g =x A fdue g =X onvd x Aue g = A onmd
PoIysTI®S °q 03 (/1 °d)
101 £ pue x jo s3uwvy ﬁd mA
— ¢ ¢
x fue 74 x fkue 7V €4 0 de x fue € ¢4 0 > H_.H
x Aue o > A
x fue 174 x Aue NJ% 0 ANA A Aue ¥ ‘A 0 AHA
H 7o = H T -
._.5+sm.@ﬁmouw M%Qm,bg+|,\m M%Qmﬁfﬁ.vl;\m
0 =L =x X Aue ( = A QHNA A fue g =X ou,HJ
peyysiEs oq 01 (9 °q)
101 A pue X Jo a8uey NA H_‘H
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APPENDIX C

SYMMETRY OF Hél)(‘gr), Hiz)('{r), AND G(¥)IN THE {-PLANE

We investigate here the changes in G(%€) and the Hankel functions

when € is changed to its complex conjugate € .

First, define x and y as the real and imaginary parts of {

214
2 P
.e_ C —}-—___,Z}: X"%‘iy':
P
Thus,
2 2 p° 2 2 - 2 2
2% - ¢ +§7: kK -+ 2ik + B = x% 4 2ixy -y,

e

since we defined € =k + iy

Now, if we change € to & =k - in,

2% = * oy s zixy = kP omP. Zik,+E§
~ p
This corresponds to a change of sign of vy, so
(C. 1} Lle) = Ile)
Next,
cosh{f) = coshi{xtiy) = cosh(x) cos{y) + i(sinh{x) sin(y)
cosh{(f) = cosh{x-iy}) = cosh(x) cos{y) - i sinh(x)} sin{y)
so
cosh{(f ) = cosh(f¢) and sinh{Z)

= sinh{{ ]} .
Finally, I’éz){?ﬂ = HOZ :(gr}
{(Watson, 1952, p. 108, equations (5} and {6) ).

We had
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cosh({fa) cosh{4b)
G(g) = £ sinh{{H)

so that

G(E) _ ¥ cosh{/fa) éoshé{lb) - e
Fsinh({H]
From equation 2. 29,
1,0¢) = ooy al (gr)
L) = ale) 5% (gr)

(C.2)  1,%) = G(¥) HANEr) = TE) & her) = LTET

Thus changing ¢ to its complex conjugate changes IZ to the
complex conjugate of ]'.1 .

It also follows from the above that

sy (N@EPED| I Neon e
< D(E) - D(€)
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APPENDIX D

PATHS OF STEEPEST DESCENT FOR APPROXIMATE
INTEGRATION OF (2.80)

On a path of steepest descent of a function f{p), Im{(f) = 0. At
the saddle point P, of f(p), Re(f} is a maximum. Then the equation

determining the path in the neighborhood of the saddle point is

(D. 1) flp) - f(PO) = %(p-po)2f"§po} + ... = real, negative,

Defining p = P, + 8 +i0 , equation DI becomes for t< -E

- (sz - cr2 + 2is¢ )} = real,negative

or

soc =0
{D. 2)

2
s ~a >0
&X

Hence the path is as shown 0‘\\0
in Figure 11, and the angle
between the s-axis and the Figure 11: Path of steepest

path is zero descent for t< r/B .

For t > —g , equation DIl is
i§52 ot + 2is¢g )} = real, negative
or
2
s -o = {(s+ogls-c) =0
{D. 3)
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Hence the path is as shown in Figure 12, and the angle ¢ between

the s-axis and the path is % .

. . 2id .
As a check, we notice that in both cases f”(po)e ¢ is real and

. negative (Jeffreys and Jeffreys, 1950, p. 504).

Figure 12: Path of steepest

descent for t > /B .
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APPENDIX E

EXPANSION OF f{r,p) IN A SERIES OF EIGENFUNCTIONS
OF THE TORSIONAL WAVE PROBLEM

The eigenfunctions ‘Nj are

{(E. 1}
w., = cj Jlékjr) i = 1,2,3,..
where the ¢, are normalization factors to be determined so that the Wj
are an orthonormal set. (The set of eigenfunctions is generally given as
the Jl(kjr)‘ alone, but this is not a complete set. See Courant and Hil-
bert, 1953, p. 424.)

We can easily show that the Wj are orthogonal with respect to

the weighting function r : if W is involved,

a a
2
2 . a
A . = . . = . .
(E. 2) g WOWJ T d? g cocJ T Jlikjr) dr‘ cocJ F Jzékja>
0 o) i

(Watson, 1952, p. 132). But Jzikja) vanishes by the boundary condition

(2.8). If W is not involved, for two eigenfunctions such that i # j,

a a
{F. 3) g 'Winl" dr =S cicjrjlakir)Jl(kjr) dr
(o) O
= &2 - k%) [ka T, a) T, (k2) - kaT,(k.a) T, (k)]
=W i 12 Jplkal Jy ;292020 7y (k2)

. . . 2 2 ; 3 3
which vanishes since kj # ki and JZ{Kia) = Jz(kja) = 0.

We determine the c. by the normality condition
J
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For j=0, we find

2
(E. 4) ‘CO = Ty
a

and Cj is found from

a

2 _ 2 1 2 2.2 )
S ;"7 r)rar = 5¢a (7, (k) - 3 (k;a) J‘Z(kja}] =1
O

(Margenau and Murphy, 1943, p. 117) to be

V2
QE‘D 5) Cj = mlz?y

We try to represent a function f{r,p) as a series of eigen-

functions (E. 1}):

o oo
(E. 6) f(r,p) = Z B_ Wn(r,p} = Boco r + Z Bncn Eiéknr}
n=0 n=1

™

where cq and c  are given by equations E. 4 and E. 5, and the B must
be determined for each particular f(r,p) in the usual way: if equation

E. 6 is multiplied by = Jliknr} and integrated with respect to r from 0
t0 a , the term in BO vanishes - the integral is the same as in equation

E. 2 - and we find

(E. 7) B = ET&;E— X Iz, p) Jliknr) rdr .



-98-
| . : . 2 :
If we multiply equation E. 6 by r dr and integrate over r from 0
to a , every term of the series vanishes - the integral in each term is

the same as the integral (E. 2) - and we find

a
2 2
(E.8) BO = —-—Zeg fr,p) " dr .
a : .
o
Thus, equation E. 6 is
a Q0
- Jy{k 7}
(E. 9) T(r,p) = 3 = g T(r,p) r dr + Z A
a a Jl {k_a}
e} n=1
a
g T(r,p) Jl{knr) r dr
o}
or, for brevity,
o
(E. 10) f(r,p) = ’bor-!— Z o Jl(knr)
n=1
where
a
4 - Z
bo = ?g f(r,p) r dr
(E. 11} o
a
; 2
b = g Hr,p) J,(k_x) rdr .
n 2 1Y n
a J’l {knaE

O
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APPENDIX F

CALCULATION OF TORQUE EXERTED ON THE CYLINDER
BY THE SOURCE

We take
.
0 b<r<a
{F. 1) Tz@ = flr,t) = a(t) g{r) = <
2r
- Q &8(t) C<r<b
Th

where &{(t) is the Dirac §-function, and Q is to be shown to be equal
to the total torque exerted by the source.

The force exerted by the source is
dF = f{r,t})dA = 2w f{r,t) rdr.

The torque due to the couple consisting of this force and the

force complementary to it is

2

dN = rdF = 2wr f{r,t)dr,
so that the total torque is
a b

‘ 2 4 3
(F.2}) N = 2w r- f(r,t)dr = TQ r dr §{(t) = Q 6(t)
b
o

0

which was to be shown.
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APPENDIX G
DERIVATION OF THE CONSTANT IN EQUATION 2.9

In this Appendix we determine the relation between the total
torque injected into the solid medium by the point source and the dis-
placement field in the solid. |

We assume that the point source is equivalent to a small cylinder
of radius a and height 2b (fig. 13) over the surface of which we may
prescribe time-varying torques which will produce the same effect in
the solid as the actual point source, provided that the distance of
observation is sufficiently large.

The torque exerted by the
cylinder on the surrounding medium
is the sum of the torque exerted by

the two ends and the torque exerted

by the curved face of the cylinder

(Pinney, 1954). With obvious nota-

tion, the total torque is . Figure 13: The source cylinder
~a b
i} 2 2 (
(G.1) T = -4 50 rT,000 | - 4T ) Tip2 )y

From A.7 and A.12,

i

726 % "M Brez

(G. 2)

Tro © -1 2
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If f(t) denotes the time variation at the source, we may take

(G. 3) A = £{t) /R
(G. 4) R = (22 + 22)}/2

so that G.2 is approximately, as R becomes small,

-3Hrzf(t)R’5 + o(R'4)

707
(G. 5)
7 = -3urCfH)R7° + o(RY).
rH
Substituting G.5 into G.1, we have
~a b
(G. 6) T = 12muf(t) b) el )5 24y 4 a4§‘ (224 a2)"5/24,
4 O ‘\JO
Changing the variables of integration in G. 6, we have
I /2 3 ptan—lb/a 3
T = 12mpi(t) 5 1 cos™ 0 do + cos” 6 db
ctn a/b <0
or
~/2 3 :
T = Iprf(t)j cos™ 6 dB = 8wui(t) .
0
Thus
(G. 8) f(t) = T/8mpu

and we may take the constant AO in 2.9 as

(G. 9) Ao = T/8mu .

Jeffreys (1931), in a little-known paper, considered the SH radi-
ation from a spherical source in an infinite medium; the constant in
front of his solution can be shown to be the same as G. 9. Jeffreys also

considered radiation from a spherical pressure source in an infinite



-102~

medium, for the case \ =, arriving at the same result as Blake (1952},
and considerably antedating Blake and the other workers to whom Blake

refers.
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APPENDIX H

METHOD OF NUMERICAL INTEGRATICON

In order to evaluate integrals of the form
B
{H. 1} I= g fix) cos ax dx ,
A
where a may be large, Filon's method {(Tranter, 1951, chapter 5) has
advantages over other methods of numerical integration. This method
enables us to use an interval no smaller than is necessary to integrate

B
f f(x) dx
A

to the required accuracy.
In Filon's method we divide the interval {A, B) into an even num-~

ber of intervals of width h :
{H. 2) x = hs, s = 0,1,2,...2n-1, 20,

A parabola is fitted to the function f{x) cos ax at three consecutive
values of s, and the integration is carried out explicitly from x = (s-1)h

to x = {s+1}h . Summing over all the intervals, the result is
(F.3) I = h {ot [;E{B) sin aB - f(A) sin aA] +BC% + vy CO}

where C° denotes the sum of all the even ordinates of f{x) cos ax , less
half the end ordinates, c® denotes the sum of all the odd ordinates of

f{x}) cos ax, and
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[ & = 67%(8%°+ 6 sin 6 cos 6 - 2 sin” 8)
g = 29'“3{@ l-i-cosZQ - 2 sin @ cos €}
(H. 4) 3
vy = 486 “(sin © - 8 cos 8
e = ah.

When a —= 0 , equation H.3 reduces to Simpson's rule.

In order to reduce the amount of machine time required to carry
out the integrations in Chapters 2 and 5, a modification of Filon's
method was devised: instead of a parabola, a fifth-order curve was
fitted to the three consecutive ordinates, counting the two end points
as double points. The result on summing up the contributions from
each panel is a formula which is considerably more accurate than
equation H. 2.

The fifth-order curve is obtained by truncating the Tavylor

series for f{x} about x = Xy where x, = A + hs:
H. 5) f{x) & A, + A (x-x )+ A {x-x )2 + + A_(x-x }5
e 1 1 8 2 S ©ee 5 S ‘

f

Rk i . . . L ' i %
The A's are determined in terms of f, . fs s fs+l R fs+l NN

d
¢ o — - Cfr
f where :ES = féxs) s fl = = I{xs) . etc.

1
s-1"7 N s
Substituting equation H. 5 into equation H. 1, and integrating

by parts five times, we obtain {with 8 = ah)



z
o _ b, i BT
(H. 6) ES = g sin ax {[(fs_;_l fs»l) 92 (f‘S_H f” l}
h4
* g (g - A ]cose
4
I
B [y - By a2 oo

h hz
— 7 — Tt
+6cos ax { [(fs+1+ fs-l} efg’fs+1+ f's'wl)

4
+§@(fg“1+ f””l}] sin ©
2
h 1 . f1 3 h IS A S S }
g [(fs_” lsml} E;Z{f fs-«l} cos 6 .

The higher derivatives occurring in equation H. 6 can be ex-
ressed in terms of the A's in equation H. 5, and thence in terms of the
q
six numbers which are assumed known: f ff £ i1 £ i,
: s’ g’ "8+l "s+l? T5-1°% Tg.l

Making these substitutions, collecting terms in {s+1l), s, and (s-1), and

writing
cos ax = cos{axs+1 - 8
sin ax = sin{axs_E_I - Q)
and
cos ax = cos(axs_l + 8)
sin ax = sin{axs_l +8) ,

we find an equation for Is . Summing over all the panels leads to the

final form
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B

{(H.7) I = S fix) cos axdx = h { $ [f(B) sin aB - f{A) sin aA}

A
+ E h[f'(B)cos aB - f'(A) cos aA] + ACS
cos
+ h¥c® + 7c® +n® c° }
sin cos sin
where
Cios is the sum of all the even ordinates of
f{x} cos ax, less half the end ordinates;
C‘;n is the sum of all the even ordinates of
f'{x) sin ax, less half the end ordinates;
{H. 8) o
cos is the sum of all the odd ordinates of
f(x} Cos ax;
;?n is the sum of all the odd ordinates of

fY{x) sin ax ;

and the Greek capital letters are parameters depending only on h and

a .
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[ @= 8° [169(15»92) cos® + 48(20°-5) sind |
= 0° [16@(3-92) sing - 48 6% cose]

= o7° [26(0%-24) 5in6 cos6 + 15(8%-4) cos?e

+ 0% - 270%+ 60]

T- 2070 [e<12m592) + 15(8%-4) sind cosd

(E. 9) j + 20(24-6%) cos®e |

A= 29‘“6 [9{156-792) 5inB cosB + 3{60«4792) cosze

- 15(12‘»592}]

- o°° [e(6%+86°-24) + 6(76%-156) cos?e

+3(60-176%) 5inb cos@] .

In exactly the same way, it can be shown that

B

(FH. 10) g f{x) sin ax dx = h{@ [ £(A) cos aA - £(B) cos aB]
A

+h E[f(B) sin aB - f'(A) sin aA] + ACE,
Sin

~-h¥ce® + Tc® -n@c® } ,
. CcCQOSs sin COs

with an obvious change of notation in the C's .
Clearly equations H. 9 are useless for evaluating the parameters

for small® . Upon expanding the parameters in powers of 8 , we find
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[ 16 8 .3 2 5 1 7 1 .9
O= -v55 0+t 525 ° - 10395 ¢ * 205705 @ - 2mpamso0 ©
16 8 2. 2 .4 16 1 8
T= 157059 t925° -371185 9 * 3303220 ©
- 1.2 2 1 .4, 2 6 62 8
2= -1t 9 3159 tems® - TroeTas @
WDl 8 g, 16 3 104 5 256 7 16 .9
= - 10 TI5 51975 2027025 © " 337Iass
14 16 .2 22 .4 608 6 268 .8
A= 15 - 1559 *925 % - 3717850 ° * 2337835 ©
19 2 3 1 .5 2 7 34 .9
$= 1450 -73° * 3750 -grs 0+ 3ggorrs O -

The expansions, H. 11, give better accuracy than equations H. 9 when
6 is less than about 0. 9.

In the limit as a —= 0 , equations H. 11 show that equation H. 7
reduces to the modified Simpson's rule described by Lanczos (1957,

p. 417}):

. _ h e o _
(m12) 1= {1ecs +16C0 - n[fB) fng}]}

It can also be shown that equation H. 10 reduces to equation H. 12 for

™
a—"'_""'zf'e

The ratio of the error of the modified Simpson's rule to the error

of the standard Simpson's rule is

2
. Zh f”””(,‘s}
(H. 13) To5 Ty

(Lanczos, 1957, p. 417), where 4 is some point in the interval (A, B).

We may expect to obtain a similar increase in accuracy over Filon's



~109-
method with the present modification.
To check the accuracy of the modification [and the expansions,

H. 11}, the integral

1.5

g ™ cos{wx) dx

0.5
was evaluated to nine decimal places, using the electronic computer at
the University of Sydney. The correct value of the integral is

~1,7718441, to nine places. The errors, for several different intervals,

were:
Error, Error,
Interval Number of points Filon's method modification
0.1 11 -. 00000141 <10_9
0. 25 5 -. 00070660 -, 00000016

0.5 3 -. 00051522 -, 00008785

This represents a satisfactory increase in accuracy, and enables
us to use a larger value of h in the computations.

The increased accuracy is paid for by the necessity of evaluating
not only the function at each computation point, but its derivative as
well - a heavy price in many cases. However, the f{x} in the integrals
evaluated here has a simple form, the derivative of which is simple to
calculate.

For the integral in Chapter 5, which contains a Bessel function,

an approximation to the Bessel functions was used:
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7
I (x) = Z <X/4)2‘n B_ 0<x< 4
n=oQ
J . 5
1
Joéx) = 2x 2 Z {4/x)2n P cos(x-m/4)
n=0
5
- Z (4/x}2n+l Qn sin(x-w/4) x> 4
n=0
(1. 14)
7
Jy(x) = Z (x/4)20F 1 B! | D<x<4
n=0
5
1
Ji(x) = 2x 2 Z (zL/x;?‘np;1 cos{x-3w/4)

n=0

5
- Z Q;l {4/x)2n+1 sin{x-3w/4) x D4

n=0

{Hitchcock, 1958, ), where the B's , P's , and Q's are numerical
coefficients which decrease in magnitude quite rapidly with increasing
n , so that terminating the series at n =5 or n= 7 results in an error
less than 5e 10“9 in each case. Equations H. 14 were derived by ap-
proximating the Tavylor series and the asymptotic series for J’O§x§ and
Jl{x) by series of Tchebyshev polynomials.

In evaluating the integral of Chapter 5, the range of integration
was split into two parts, corresponding to x 2 4 in equations M. 14, For
x <4 the integration was carried out explicitly by the modified Simpson's

rule, equation H. 12. For x D 4 the numerical method described in this
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appendix was used.
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APPENDIX I

ADDITIONAL REFERENCES

In this appendix are listed references which bear on the problems
treated here, but which are not referred to in the text., Generally, only
references not mentioned in Chap‘ter 6 of Ewing, Jardetzky, and Press
{1957) are given here.

Adem, J., 1954, On the axially symmetric steady wave propagation in
elastic circular rods: Q. App. Math., v. 12, p. 261-275,

Buchwald, V. T., 1958, Transverse waves in elastic plates: Q. J. Mech.
App. Math., v. 11, p. 498-508,

Chakraborty, S.K., 1956, On disturbances produced in an elastic
- medium by twists applied on the inner surface of a spherical
cavity: Geof. Pura et Appl., v. 33, p. 17-22.

Curtis, C. W., 1954, Second mode vibrations of the Pochhammer-Chree
frequency equation: J. App. Phys., v. 25, p. 928,

Davies, R. M., 1938, Frequency of longitudinal and torsional vibrations
of unloaded and loaded bars: Phil. Mag. (7}, v. 25, p. 364-386.

1953, Stress waves in solids: App. Mech. Reviews, v. 6, p. 1-3,
A bibliography only.

Eason, G., Fulton, J. and Sneddon, I.N., 1956, The generation of waves
in an infinite elastic solid by variable body forces: Phil. Trans.
Roy. Soc. Lond. {A), v. 248, p. 575-608.

Field, G.S., 1931, Longitudinal and radial vibrations of liquids in
cylindrical tubes: Canad. J. Res., v. 5, p. 131-148,

Gajewski, R., 1956, On transient radiation of a dipole inside a wave
guide, I: Acta Phys. Polonica, v. 15, p. 25-40,

1958, Influence of wall losses on pulse propagation in wave
guides: J. App. Phys., v. 29, p. 22-30,

Gassman, F., 1951, On damping through radiation of elastic waves and
on damped vibration of rods: Z. angew. Math. uv. Phys., v. 2,
pP. 336-356,

Goodier, J.N. and Jahsman, W.E., 1956, Propagation of a sudden
rotary disturbance in an elastic plate in plane stress: J. App.
Mech. , v. 23, p. 284-286,
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Guth, W., 1955, Die Leitung von Schallimpulsen in Metallstiben:
Acustica, v. 5, p. 35-43,

Higuchi, S., 1932, Forced oscillations in an elastic rod: Tech. Repts.
Tohoku Univ., v. 10, p. 12-37,

Holden, A.N., 1951, Longitudinal modes of elastic waves in isotropic
cylinders and slabs: Bell Syst. Tech. J., v. 30, p. 956-969.

Homma, S., 1951, On the propagation of dispersive seismic waves:
Geoph. Mag., v. 22, p. 209-236,

Hughes, D.S., and Stanbrough, J.H., 1951, Transmission of elastic
pulses in rods: Texas J. Science, v. 3, p. 568-576.

Jacobi, W.J., 1949, Propagation of sound waves along liquid cylinders:
J. Acoust. Amer., v. 21, p. 120-126,

Junger, M. C., 1953, The physical interpretation of the expression for an
outgoing wave in cylindrical coordinates: J. Acoust. Amer.,
v. 25, p. 40-47,

Kolsky, H., 1954, The propagation of longitudinal elastic waves along
cylindrical bars: Phil. Mag., v. 45, p., 712-726.

Lokchine, A., 1931, Torsional oscillations in a body bounded by a sur-
face of revolution: €. R. Acad. Sci., Paris, v. 192, p. 542-543,

ILiyon, R.H., 1955, Response of an elastic plate to localised driving
forces: J. Acoust, Amer., v. 27, p. 259-265,

McMillen, J.H., 1946, The velocity of dilatational and Rayleigh waves
in metal bars: J. Acoust. Amer., v. 18, p. 190-199,

Mintzer, D., 1950, Transient sounds in rooms: J. Acoust. Amer., v. 22,
p. 341-352,

Nomura, Y., 1936, Torsional vibrations of an elastic circular cylinder:
Sci. Repts. Tohoku Univ., v. 25, p. 11-21.

Prescott, J., 1942, Elastic waves and vibrations of thin rods: Phil. Mag. ,
v. 33, p. 703-754. On p. 750, the author states: "The real a
problem  of elastic wave propagation in cylinders has mathe-
matical difficulties which may possibly deter any but a very as-
siduous person from solving exactly any problem of a vibrating
rod. "

Pursey, H., 1957, The launching and propagation of elastic waves in
plates: Q. J. Mech. App. Math., v, 10, p. 45-62.
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v. 232, p. 485-487,

Sakadi, Z., and Takizawa, E., 1948, Mathematical treatment on the de-
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Sakurai, T., 1937, Propagation of waves: Phys. -Math., Soc. Japan,
Proc., v. 19, p. 297-328. Elegant treatment of one-dimensional
waves using Fourier-Mellin transform.

Schoch, A., 1952, Sound transmission through plates: Ac&_s_tica, V. 2,
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Selberg, H. L., ’1952, Transient compression waves from spherical and
cylindrical cavities: Ark. Fys., v. 5, p. 97-108.

Sen, B., 1932, Torsional vibrations of conical rods: Indian Phys.-Math,
Joy v 3, Ppo 97-98.

Shaw, E.A.G., 1950, Attenuation of a (1,0} "transverse' acoustic wave
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1956, On the resonant vibrations of thick BaTlO discs: J,
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Shemyakin, E.I., and Fainschmidt, V.L., 1956, Wave propagation in an
elastic semi-~space influenced by a tangential surface force (in
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v. 28, p. 148-179,

Skalak, R., 1956, Longitudinal impact of a semi-infinite circular elastic
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Skuridin, G. A., 1957, On the theory of the dissipation of elastic waves
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Teisseyre, R., 1957, Ideal seismic wave guides: Acta Geophysica Po-~
lonica, v. 5, p. 95-102,

1958, Seismic waves in an ideal guide with an arbitrary point
source: Acta Geophysica Polonica, v. 6, p. 32-48,
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Vekua, I.N., 1948, On a method for the solution of the boundary prob-
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