QUANTITATIVE PERFORMANCE AND TRADEOFFS

IN THE MAP KINASE SIGNALING MODULE

Thesis by

Stephen Chapman

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2009

(Defended January 23, 2009)

© 2009

Stephen Chapman

All rights reserved

ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge my advisor, Anand Asthagiri. His most inspirational qualities (in the scientific sense) are his deep curiosity, insightful guidance, and his conscientious scientific analysis. Navigating the everyday life of research, which can be characterized by extended bouts of frustration tied together by brief periods of euphoric success, requires diligence and focus. Anand's tireless patience, steady encouragement, and positive motivation were vital to my development and accomplishments here at Caltech.

To the members of the Asthagiri group, Nicholas Graham, Claudiu Giurumescu, Niki Galownia, Melissa Pope, Keiichiro Kushiro, Jin-Hong Kim, Paul Minor, and Ehsan Jabbarzadeh, I thank you for providing assistance, advice, and a welcoming work environment. I am particularly grateful to Claudiu for readily lending a helping hand with all things math, coding, and computers. And to Nick, thank you for helpful discussions, elder guidance, and weekly tacos from Ernie's.

I would also like to thank my thesis committee, Mark Davis, Christina Smolke, and Paul Sternberg, for their comments and advice. Caltech is a wonderful community in which to pursue science, encouraging seamless collaboration between labs and departments, in large part due to the generosity of the faculty that work here.

I am very grateful for the generosity of Ray Deshaies, who allowed me to pursue experiments in his lab, taking advantage of their expertise in yeast. Many Deshaies lab members readily shared their time and knowledge to my benefit. I would like to thank Rusty Lipford for getting me started with yeast, Dane Mohl for tirelessly answering my many questions and supplementing my reagent stock, and Nathan Pierce for helpful discussions about my project. I would especially like to thank Geoff Smith and Heenam Park, who in addition to their assistance with experiments, gave me a home in the Deshaies lab by generously sharing their bench space with me.

Finally, I would like to thank my wife, Lizette Loya, for always encouraging me throughout my time at Caltech, and my daughter, Alexandra, for her energy, joy, and curiosity.

ABSTRACT

QUANTITATIVE PERFORMANCE AND TRADEOFFS IN THE MAP KINASE SIGNALING MODULE

January, 2009

Stephen Chapman, B.S. University of California, Berkeley

M.S., Chemical Engineering, California Institute of Technology

Ph.D., Chemical Engineering, California Institute of Technology

Intracellular signal transduction networks propagate and integrate the information that cells sense from environmental stimuli. The quantitative performance of signaling networks regulates cell decisions, and aberrations in network performance lead to pathologies such as cancer. The mitogen-activated protein (MAP) kinase cascade is a highly-conserved signaling module that regulates diverse cellular processes, such as proliferation, differentiation, and apoptosis in eukaryotic species ranging from yeast to human. While the principal components and mechanisms that define the MAP kinase module are well established, our understanding of and ability to tune its quantitative performance is limited. Here, we probe more deeply how the quantitative properties of the MAP kinase module may be affected by variations in the expression levels of the key constituents of the cascade—kinases, phosphatases and scaffolds.

Using a computational approach, we delineate how four quantitative properties responsiveness to input, dynamic range of output, signal amplification, and signal lifetime—depend on the relative abundances of the two core components of the MAPK module, kinases and phosphatases. We identify a reduced metric termed the 'resistance to activation' that predicts the quantitative properties of the module across a wide range of parameter values. Its predictive utility extends to dynamic properties such as signal lifetime, which often dictates the MAP kinase's effect on cell function. Our analysis highlights tradeoffs in design, as not all quantitative attributes of the module can be simultaneously optimized. Thus, the resistance to activation captures the fundamental principles that determine cascade behavior and can be exploited to guide quantitative redesign of the MAP kinase module.

In addition to the expression levels of kinases and phosphatases, scaffolds play a key role in signal propagation through the MAP kinase module. Protein scaffolds bring together multiple components of a signaling pathway, thereby promoting signal flux along a common physical "backbone." Scaffolds figure prominently in natural signaling pathways and are emerging as a promising platform for synthetic circuits. To better understand how scaffolding quantitatively affects signal transmission, we conducted an *in vivo* experimental sensitivity analysis of MAP kinase response to broad perturbations in the expression level of Ste5, an exemplar scaffold of the yeast mating pathway. Our results demonstrate that the expression level of Ste5 significantly affects several quantitative aspects of signal propagation, including signal throughput, pathway ultrasensitivity, and baseline leakage. These new insights into the quantitative role of scaffolding in MAP kinase signaling suggest advantages and limitations in designing synthetic scaffold-based regulatory networks.

TABLE OF CONTENTS

Acknowledgements	iii
Abstract	V
Table of Contents	vii
List of Figures	x
List of Tables	xii
CHAPTER I. Introduction	1
1. The canonical MAP kinase cascade	1
2. Quantitative attributes of MAP kinase pathways	5
 2.1 Ultrasensitivity: The MAP kinase module as a biochemical switch 2.2 Bistability: Discrete transitions and biochemical 'memory' 2.3 Signal dynamics: Transient versus sustained MAP Kinase response distinct callular fates 	
2 4 Protein scaffolds quantitatively affect MAP kinase output	
 Current results: The effect of varying the expression levels of module co on the quantitative performance of the MAP kinase cascade 	omponents
4. References	16
CHAPTER II. Resistance to signal activation governs design fea the MAP Kinase signaling module	atures of 20
1. Abstract	20
2. Introduction	21
3. Model Development - Schematic and Equations	
4. Results	
4.1 Model construction identifies most tangible design opportunities	
4.2 Sustained input and steady-state features	
4.2-1 Potency	
4.2-2 Range of output	
4.2-5 Signal amplification	
4.3 Resistance to activation	

4.4 Relaxation of resistance parameters	47
5. Discussion	53
6. Appendix	59
7. Acknowledgements	62
8. References	63

1. Abstract	67
2. Introduction	68
3. Results and Discussion	71
3.1 Modulation of scaffold expression level	71
3.2 Effect of scaffold on signal throughput and pathway ultrasensitivity	72
3.3 Closer examination of the Ste5 module	75
3.4 Sensitivity of signal quality to scaffold abundance	79
3.5 Potential implications for natural and synthetic scaffold-based modules	80
4. Materials and Methods	82
4.1 Strains	82
4.2 Plasmid constructs	82
4.3 Western blot	83
4.3-1 Cell growth and lysis	83
4.3-2 SDS-PAGE – quantitative Western blots only	84
4.3-3 Immuno-blotting	85
4.3-4 Analysis – quantitative Western blots only	86
4.4 Flow cytometry	86
4.5 Halo assays for α -factor sensitivity	87
5. Acknowledgements	88
6. Supplementary Data	89
6.1 Quantitative Western blot analysis	89
6.2 Dose-response properties as a function of Ste5 abundance	90
6.3 Signal fidelity is robust to perturbation in Ste5 expression	92
7. References	94
CHAPTER IV. Future work	97
1. Experimental sensitivity analysis of scaffold perturbation in the HOG pathway	97

2. The effect of scaffold abundance on signal dynamics in the MAP kinase pathway	mating 99
3. Extension of resistance metric to a scaffold-based MAP kinase cascade	100
4. Investigation of MAP kinase design properties that result from scaffold dime	rization
4.1 Robustness to perturbation in scaffold abundance	102
4.2 Dimerization may augment the scaffold's contribution to signal fidelity	104
5. References	108

LIST OF FIGURES

Figure I-1. MAP kinase model sc	hematic.	2
Figure I-2. MAP kinase scaffolds	direct signal flow	5
Figure I-3. Hill equation characte	rizes MAP kinase ultrasensitivity.	6
Figure I-4. MAP kinase signal du	ration controls cell behavior	.10
Figure I-5. MAP kinase signal pr concentration.	opagation biphasically depends on scaffold	.12
Figure II-1. Model schematic		.22
Figure II-2. Temporal profile of r varying the relative amou	nodule output in response to a step input: the effect of nt of phosphatase versus kinase.	f .31
Figure II-3. Module dose-respons versus kinase	se to changes in the relative amount of phosphatase	.32
Figure II-4. Input potency		.34
Figure II-5. Dynamic range of mo	odule output	.36
Figure II-6. Signal amplification	versus attenuation	.38
Figure II-7. Temporal profile of r	nodule output following instantaneous loss of input	.41
Figure II-8. Output decay in semi	-log format	.42
Figure II-9. Half-life of Erk signa	I in response to an exponential decay in input	.43
Figure II-10. The dependence of wide range of perturbation	half-life of Erk signal on the resistance to activation for π_s and κ_s	or .45
Figure II-11. The dependence of activation for wide range	dynamic range of module output on resistance to of perturbations in π_s and κ_s	.46
Figure II-12. The dependence of of perturbations in π_s and	input potency on resistance to activation for wide range κ_s .	ge .47
Figure II-13. Dynamic range as a	function of single stage resistances.	.51
Figure II-14. Potency as a function	on of single stage resistances.	.52
Figure II-15. Sensitivity analysis due to changes in π_s and	of the ability of module resistance to predict half-life κ_s for perturbations in τ_i	. 59
Figure II-16. Sensitivity analysis due to changes in π_s and	of the ability of module resistance to predict half-life κ_s for perturbations in ε_i	.60

Figure	II-17. Sensitivity analysis of the ability of module resistance to predict half-life due to changes in π_s and κ_s for perturbations in α_i	61
Figure	III-1. The Ste5 scaffold and the pheromone MAP kinase pathway in <i>S. cerevisia</i>	e. 69
Figure	III-2. Modulating the expression level of the scaffold Ste5.	71
Figure	III-3. Sensitivity analysis of mating pathway response to perturbation in scaffold abundance.	l 73
Figure	III-4. Perturbation of scaffold abundance quantitatively alters phenotypic response.	75
Figure	III-5. Phospho-MAPK response to perturbation in Ste5 expression	76
Figure	III-6. Quantitative measurements of phospho-MAP kinase and pFUS1-GFP responses.	76
Figure	III-7. Scaffold-limited and Ste7-limited regimes of signaling	78
Figure	III-8. Quantitative Western blot of Ste5myc abundance	89
Figure	III-9. Dose-response curves of pFUS1-GFP as a function of Ste5 abundance	91
Figure	III-10. Signal fidelity is robust to perturbations in Ste5 abundance	93
Figure	IV-1. Scaffold dimerization permits signal activation for incompletely bound complexes via <i>trans</i> -phosphorylation	03
Figure	IV-2. A shared signaling intermediate can facilitate signal leakage1	05
Figure	IV-3. Model schematic of scaffold dimerization with signal crosstalk1	06

LIST OF TABLES

Table II-1. Five classes of dimensionless parameters specify module attributes	29
Table III–1. Yeast strains used in this study	82
Table III–2. Plasmids used in this study	83
Table III-3. Quantitative characteristics of dose-response profiles.	90