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ABSTRACT 

QUANTITATIVE PERFORMANCE AND TRADEOFFS IN THE  

MAP KINASE SIGNALING MODULE 

January, 2009 

 

Stephen Chapman, B.S. University of California, Berkeley 

M.S., Chemical Engineering, California Institute of Technology 

Ph.D., Chemical Engineering, California Institute of Technology 

 

 Intracellular signal transduction networks propagate and integrate the information 

that cells sense from environmental stimuli. The quantitative performance of signaling 

networks regulates cell decisions, and aberrations in network performance lead to 

pathologies such as cancer. The mitogen-activated protein (MAP) kinase cascade is a 

highly-conserved signaling module that regulates diverse cellular processes, such as 

proliferation, differentiation, and apoptosis in eukaryotic species ranging from yeast to 

human. While the principal components and mechanisms that define the MAP kinase 

module are well established, our understanding of and ability to tune its quantitative 

performance is limited. Here, we probe more deeply how the quantitative properties of 

the MAP kinase module may be affected by variations in the expression levels of the key 

constituents of the cascade—kinases, phosphatases and scaffolds. 

 

Using a computational approach, we delineate how four quantitative properties—

responsiveness to input, dynamic range of output, signal amplification, and signal 



vi 

lifetime—depend on the relative abundances of the two core components of the MAPK 

module, kinases and phosphatases. We identify a reduced metric termed the ‘resistance to 

activation’ that predicts the quantitative properties of the module across a wide range of 

parameter values. Its predictive utility extends to dynamic properties such as signal 

lifetime, which often dictates the MAP kinase’s effect on cell function. Our analysis 

highlights tradeoffs in design, as not all quantitative attributes of the module can be 

simultaneously optimized. Thus, the resistance to activation captures the fundamental 

principles that determine cascade behavior and can be exploited to guide quantitative 

redesign of the MAP kinase module. 

 

In addition to the expression levels of kinases and phosphatases, scaffolds play a 

key role in signal propagation through the MAP kinase module. Protein scaffolds bring 

together multiple components of a signaling pathway, thereby promoting signal flux 

along a common physical “backbone.” Scaffolds figure prominently in natural signaling 

pathways and are emerging as a promising platform for synthetic circuits. To better 

understand how scaffolding quantitatively affects signal transmission, we conducted an in 

vivo experimental sensitivity analysis of MAP kinase response to broad perturbations in 

the expression level of Ste5, an exemplar scaffold of the yeast mating pathway. Our 

results demonstrate that the expression level of Ste5 significantly affects several 

quantitative aspects of signal propagation, including signal throughput, pathway 

ultrasensitivity, and baseline leakage. These new insights into the quantitative role of 

scaffolding in MAP kinase signaling suggest advantages and limitations in designing 

synthetic scaffold-based regulatory networks. 
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