
A FAULT TOLERANT INTEGRATED Cl RCUIT MEMORY

Thesis by

Anthony Francis Barton

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1980

(Submitted April 14, 1980)

- i i -

ACKNOWLEDGEMENTS

First would like to thank my parents whose support and

encouragement have been unfailing over the past 26 years. Their

early teaching and later guidance have been the most important

influences in my life.

At Caltech my chief mentor was Chuck Seitz, my advisor; I am

grateful to him for suggesting the topic for this research and

for his help with and interest in the project. Useful contribu

tions were also made by Lennart Johnsson, Jim Kajiya, Carver Mead

and I van Sutherland. have a lso benefited from working, talking

and relaxing with other members of the Caltech community too

numerous to mention individually.

Acknowledgements for financial support go to the North Atlantic

Treaty Organisation (studentship 8/76/ 3003) and the Defence

Advanced Research Projects Agency (contracts N00123-78-C-0806 and

N00014-79-C-0597).

- iii -

ABSTRACT

Most commercially produced integrated circuits are incapable of

tolerating manufacturing defects. The area and function of the

circuits is thus limited by the probability of faults occurring

within the circuit. This thesis examines techniques for using

redundancy in memory circuits to provide fault tolerance and to

increase storage capacity.

A hierarchical memory architecture using multiple Hamming codes

is introduced and analysed to determine its resistance to

manufacturing defects. The results of the analysis indicate that

substantial yield improvement is possible with relatively modest

increases in circuit area. Also, the architecture makes it pos

sible to build larger memory circuits than is economically feasi

ble without redundancy .

- iv -

CONTENTS

Chapter 1. Introduction

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5 .

Chapter 6.

Chapter 7.

Appendix A .

Appendix B.

Appendix C.

Discussion of possible approaches

The hierarchical redundant memory

Statistical yield modeling

Results of the statistical experiment

Design and analysis of the HRM

Conclusions

Tables of resu Its

Derivation of equation 4.1

An optimistic model for the single level HRM

11

19

29

36

44

56

62

66

67

IC fabrication and yield

- 1 -

Chapter 1

INTRODUCTION

In a typical manufacturing process an array of half centimeter

chips is fabr· icated on a 10 centimeter diameter wafer. The proc

ess is subject to inconsistencies resulting from impurities in

the chemicals used, imperfections in the silicon crystal struc

ture and the presence of dust. Circuits which fail to work

correctly due to such inconsistencies are normally discarded.

The number of working chips divided by the total number built is

called the yield. It depends upon the defect density of the

process and the area of the circuit . For fault-sensitive

circuits it is equivalent to the probability that a chip will

have no defects.

The Poisson distribution can be used as an approximate model for

relating defect density, area and yield. The basic distribution

is :

x -u
f(x) = u e / x!

where u is the mean and f(x) is the probability of there being x

events . For integrated circuits the mean is Na where N is the

defect density and a is the area of the circuit. The yield of a

fault-sensitive circuit is then the probability of no defects:

-Na
f(O) = e

In this thesis the defect density will be expressed in terms of

defects per million square lambda . Lambda is the term introduced

- 2 -

by Mead and Conway (1) for making design rules independent of

feature size and, for nMOS , is equal to half the minimum line

width in diffusion or polysilicon .

Economics of circuit size

The size of commercial integrated circuit chips is dictated by a

tradeoff between the cost of the chip and the cost of using that

chip in a system. The cost of the chip (Cc) is determined by

adding the processing cost (Cp) of a silicon wafer to the cost of

determining which chips on the wafer are working (Cw) then divid

ing the result by the average number of working chips per wafer

(w):

Cc = (Cp + Cw) I w

The cost of using a chip in a system is the sum of the packaging

cost and the cost of providing interconnection to other parts of

the system. The latter includes part of the cost of printed

circuit boards, power supplies, cabinets and wiring harness.

The cost of the chips increases with increasing circuit area.

The number of chips on a wafer is inversely proportional to the

area of the chip but, because the yield of a circuit decreases

with increasing area, the number of good chips on a wafer

decreases faster than the inverse of the area. Thus the cost of

the chip increases by a larger proportion than the function.

The cost of building a system from unpackaged chips decreases

with increasing chip area . Increasing the chip area, and func

tion, results in a smaller number of chips necessary for the sys

tem . The building cost per chip is lower for larger systems

- 3 -

because the packaging and interconnection costs increase more

slowly than the number of circuits due to economies of scale.

Chip area a 2a 4a
Chips per wafer 200 100 50
Percentage yield 50 25 6.25
Chip cost $0 .25 $1 $8
System cost per chip $1.25 $2 $9
Chips per system 1000 500 250
System cost $1250 $1000 $2250

Table 1. 1

The tradeoff between parts cost a nd assembly cost can be illus-

trated by the following simplified example. An electronics com-

pany builds a system using 1000 integrated circuits. Each pro-

cessed wafer costs $25 and contains 200 circuits with a yield of

50%: a per circuit cost of $.25. The building cost is $1 per

circuit for a total of $1.25 per circuit and $1250 for the whole

system . In an attempt to cut costs, an analysis is performed to

determine the system cost if the circuit function and area are

doubled. This change reduces the number of circuits per wafer to

100 and the yield to 25% giving a new circuit cost of $1 . The

system cost is now $2 per circuit for 500 circuits or $1000. A

further analysis is performed to determine the total cost if the

circuit function is quadrupled. Now there are 50 circuits per

wafer and a yield of 6.2596 for a circuit cost of $8 . The total

system cost is $9 per circuit for 250 circuits or $2250. This

example is summarised in table 1.1.

The above example assumes a high degree of regularity in the

overall system. For less regular structures the cost changes

could be different depending on the ease with which system parti-

- 4 -

tion ing can be achieved at different integration levels.

In addition to the reduction in yield as circuits become larger,

there is an increase in testing cost . It is necessary to test

more circuits to find enough good ones and each test takes longer

because the circuits are more complex. At current levels of

integration the time required to test a circuit is approaching

the level at which it will have a significant impact on circuit

cost . It is therefore important to consider testing cost in any

look at future economic trends.

Fault tolerant design

The equivalence between yield and the probability of no defects

in today's designs occurs because correct operation of the

circuit depends on the correct operation of every circuit ele

ment. This thesis is concerned with examining design strategies

under which it is possible for some circuit elements to fail

without causing failure of the overall circuit . Such designs

will be referred to as fault tolerant and conventional ones as

fault sensitive.

The term redundant will be used as a synonym for fault tolerant .

A design which uses more components than necessary yet requires

them all to work is considered to be non-minimal rather than

redundant.

The ratio of the extra area of a redundant circuit to the area of

the equivalent irredundant circuit is called the overhead .

During the 1950s a lot of work was done on trying to improve the

- 5 -

reliability of computers by adding redundancy to the designs.

This work was inspired by the low reliability of the individual

components. Von Neumann (2) showed that networks of high relia

bility could be built from components of low reliability . This

result was not very useful in practice because the overhead was

very large; for example von Neumann calculated that to build a

system with 97.3% reliability from components with 99.5% relia

bility would require an overhead of 1000.

A similar result including protection against interconnection

Their work con

information theory

errors was achieved by Winograd and Cowan (3).

sisted of an extension of Shannon's work on

(4) .

The advent of transistors resulted in several orders of magnitude

improvement in component reliability and a corresponding decrease

in interest in redundant design. Now the number of components on

a chip has risen to the point where redundancy within the

circuits would make possible a much higher level of integration.

The difference from the previous situation is that the redundancy

is necessary to protect against fabrication errors rather than

just lifetime failure.

In the case of integrated circuits the rei iabi I ity of the i ndivi

dual devices is very high but the large numbers of devices

comprising circuits leads to a low yield. Similarly the

occurrence of interconnection errors due to fabrication flaws is

very low . Thus the overhead required to provide high reliability

in integrated circuits can be expected to be much lower than

that for the unreliabl e components of the 1950s .

- 6 -

The major difference between the reliability of discrete com

ponents and the devices on an integrated circuit is that the

probability of failure of discrete devices is independent whereas

neighboring devices on an integrated circuit are often affected

by a single defect . This difference suggests that the overhead

will be different for integrated circuits than for discrete com

ponents with equivalent failure rates and that different redun

dancy techniques should be used.

The parallel result to von Neumann ' s is that arbitrarily high

yield can be achieved by using sufficient redundancy. However

the theoretical results are not always applicable to the real

world. An early result in this research was the demonstration

that, with sufficient redundancy, one could build a one megabit

memory chip with a yield within a very small fraction of 100%.

The problem was that the circuit would be three meters square.

Expected benefits from fault tolerant circuit design

Fault tolerant design will increase yield at the expense of chip

area. For today's industrial chip sizes, where the area cost of

processed silicon is the dominant cost, this increase in yield

brings a reduction in cost provided that the average number of

working chips per wafer is increased. Thus the yield of the chip

must increase by a larger proportion than the area .

For larger chip sizes, where the testing cost becomes important,

increased yield can be valuable even if the number of good chips

per wafer does not increase. Here the number of chips which are

discarded after testing is reduced, thereby reducing the average

- 7 -

number of chips to be tested in order to find one which works.

Provided that the redundancy is added in a manner which does not

increase the time required to test one chip, the average testing

time per working chip is reduced.

In addition to tolerating fabrication defects , some types of

redundancy can also protect against failures which occur while a

circuit is in use. Transient or "soft" failures, such as those

due to alpha particles , can be tolerated as well as permanent

ones. Protection against "soft" failures increases the reliabil

ity of the system . Reduction of " hard" failures increases

hardware reliability and reduces maintenance costs.

The absence of a direct connection between function and yield of

a redundant circuit means that more function can be put on a

chip. Designers will then have greater flexibility in partition

ing a system between chips. This flexibility will result in fas

ter systems because it will be possible to reduce chip-to-chip

communication, the most common performance bottleneck in elec

tronic systems .

Scope of the project

Fault tolerance for integrated circuits is a very large subject

because different error correction techniques are indicated for

different applications. The choice of memory design for this

project was because of the regularity of the structures involved.

It was hoped that this regularity would permit mathematical

analysis for providing some basic rules for fault tolerant

design. The work does not assume the use of any special

- 8 -

processes such as PROM fuses or MNOS switches . This decision was

made so that any designs examined could later be built to verify

that the analysis was correct.

The published work on memory redundancy was found not to be

closely applicable to the internal design of integrated circuit

memories . It was based on existing types of core and integrated

circuit memory and so was not useful in the search for new archi

tectures for higher yield. The main differences were due to the

fact that in design for high yield the redundancy has to protect

against both fabrication defects and lifetime degradation whereas

the previous work considered redundancy only for protection

against lifetime degradation. In addition, the error correction

circuitry is implemented within the same chip resulting in a

tradeoff between the yield and correction capabilities of those

circuits .

A simple model of yield

The yield of a fault tolerant circuit is hard to calculate

because of the effect of partial damage. If a circuit is assem

bled from several components, each of which is partially working,

the chance of the overall circuit working depends on the posi

tions of the defects in the components . To simplify this prob

lem , the early work on this project was performed using a model

under which components were assumed to fail completely if they

contained any defects. Redundancy was introduced by specifying

that, out of a group of components, some given number have to

work . The yield of a component is determined using the Poisson

model and the area of the component . A example of input to the

- 9 -

program is given in table 1. 1. All the cell definitions are in

terms of cell size (in lambda) or sub-cells except for the last

one, where redundancy is introduced by the clause "b64 6 of 7"

meaning that one of the "b64" cells can fail without causing the

"b256" cell to fail.

Program input Meaning

b1 sides 36 31 single bit store
rdec sides 63 31 row decoder
cdec sides 36 120 column decoder
corner sides 63 120 corner element
b64 b1 64 rdec 8 cdec 8 corner 1 64 bit storage array
eccnode area 58800 Hamming encoder/ decoder
b256 b64 6 of 7 eccnode 1 256 bit redundant store

Table 1. 1

This model will be known as the naive, or pessimistic, model.

The inherent pessimism in this model derives from the treatment

of redundancy. The model is based on the assumption that if a

sub-cell is not 100% working then it is totally unreliable. This

assumption can easily be shown to be false by the example that a

memory array can contain a single bad bit but be otherwise per

fect . This model was chosen despite its pessimism because of the

difficulties in exact calculation of yield.

- 10 -

References

(1) C. A. Mead and L. A . Conway, Introduction to VLSI Systems,

Addison-Wesley, 1980 .

(2) J . von Neumann, Lectures delivered at Caltech, 1952.

(3) S. Winogr·ad and J. D . Cowan, Reliable computation in the

presence of noise, MIT Press, 1963

(4) C . E. Shannon, Bell System Technical Journal, No. 27, pp

379-423 , 623-658, 1948

- 11 -

Chapter 2

DISCUSSION OF POSSIBLE APPROACHES

Static and dynamic redundancy

Static redundancy is the technique of providing extra parts of a

system which can be used as spares in the event of component

failure. An example of static redundancy is the spare wheel in

an automobile. When on.e of the tires in use fails, it can be

replaced by the spare. The car will be inoperative while the

replacement is being made but, provided no further punctures

occur, will then continue to function normally .

An example of static redundancy in integrated circuit design is

the IBM 64k RAM (1) which incorporates extra I i nes of bit stores

which can be used to replace lines containing bad bits. During

initial testing such lines are identified and, if there are

enough spare lines, the addressing mechanism is set up to access

only correctly functioning lines. If there are more faulty lines

than extra lines the chip is unable to function as a 64k RAM. If

there are fewer faulty lines than spare lines then the unused

spare lines are reserved for later reconfiguration in the event

of component failure during use .

Dynamic redundancy is the technique of building a system using

more than the minimum possible number of components in such a way

that some can fail without causing the complete system to fail

even temporarily . An example would be the jet engines in a large

aeroplane. The aeroplane is designed to survive the loss of

power from at least one of the engines, even at critical times

- 12 -

such as takeoff.

There would appear to be no current examples of dynamic redun

dancy in commercial integrated circuit design, but it is often

used at higher levels in computer design .

For integrated circuit design both approaches to redundancy have

appealing features. Static redundancy is relatively cheap to

implement because the number of extra components required rs

equal to the number of faults to be tolerated. It is highly

effective against fabrication flaws because configuration can be

done during initial testing, but it is less satisfactory for com

ponent failure because external err·or checking is necessary to

detect such failure and the circuit must be removed from service

for reconfigu ration . A major problem with static redundancy is

how to distinguish between transient errors and component

failures and hence how to decide when reconfiguration is neces

sary.

Dynamic redundancy is relatively expensive to implement because

it is based upon the encoding of information, and the number of

extra components required is larger than the number of faults to

be tolerated. A single- bit error corrector which provides k

corrected output bits from n input bits requires that n-k be

greater than or equal to the logarithm to the base 2 of n . For a

full discussion of error correcting codes see Peterson and Weldon

(2) . Dynamic redundancy is equally effective against fabrication

flaws, component failures and transient errors. Using the prop

erties of error correcting codes it is also possible to design

the circuits in such a way that they are partially self-

- 13 -

diagnostic.

Methods of implementing redundancy

In addition to the choice between static and dynamic redundancy,

it is also necessary to choose the level at which the redundancy

is to be implemented. Level here refers to the size of the unit

which is to be replicated; the unit could be a transistor or wire

at the lowest level or a complete circuit at the highest level.

In general, static redundancy techniques are applicable at any

level whereas different dynamic redundancy techniques are better

for different levels.

Quadded logic (3) is a low-level dynamic redundancy scheme under

which the basic gates are replicated four times and intercon

nected in such a manner that errors are corrected close to their

point of origin. This technique was developed for circuits built

from discrete components and depends for its effectiveness on the

probability of failure of neighboring elements being statisti

cally independent. Because integrated circuit failures often

result in the failure of a group of devices this technique does

not lend itself very well to integrated circuit technology .

Error correcting codes can be used to provide dynamic redundancy .

In the case of integrated circuits it is necessary to take into

consideration the chip area required for the encoder and decoder.

The complexity of these circuits is such that the codes are not

practicable for low- level redundancy.

A hybrid form of redundancy can be achi e ved by providing circuits

which monitor irredundant circuits and select the ones which

- 14 -

appear to be the most reliable. This approach could be regarded

as static redundancy with continuous reconfiguration or as

dynamic redundancy . Since the external effect of such circuits

is the same as for dynamic redundancy they will be considered to

perform dynamic redundancy. As in the case of error correcting

codes, this technique requires complex circuits for implementa

tion and is not suitable for low-level redundancy.

What others have done or plan to do

While the industry standard dynamic RAM was still 16k, IBM intro

duced a new computer system, the 8100, which uses 64k dynamic

RAMs (1). They achieved this capacity by using a large die size

and incorporating static redundancy into the design. The chip

features spare bit lines which can be used in place of lines

which are wholly or partially defective. Such defective lines

must be detected during initial testing and disconnected by means

of fusible links in the metal layer. A replacement line is con

nected by similar means. This technique is not sufficient to

correct major faults but does offer relatively cheap protection

against fabrication flaws affecting small numbers of bits. In

addition , a circuit in which a similar fault occurs during ser

vrce can be reconfigured provided that sufficient spare parts

remain unused.

In the middle sixties, researchers at Texas Instruments intro

duced a discretionary wiring system for connecting working

circuits on a wafer (4) . Circuits were built in the normal way,

then the working ones were identified on each wafer . A number of

masks, corresponding to extra layers of metalization, were then

- 15 -

designed to combine the working circuits into the required

tem. This technique can protect against fabrication errors

and so is an example of static redundancy.

sys

only

Discretionary wiring has not been a

expense of designing special masks for

success because of the

each wafer. A modified

scheme was proposed at Hughes Aircraft Company under which an

extra metal mask was introduced (5). This mask was used to map

the actual positions of good circuits into a predetermined pat

tern. This scheme required only one specially designed mask for

each wafer but was still not cost-effective. There was also too

high a loss of wafers due to defects in the metal layers used to

interconnect the working circuits.

Researchers at Honeywell introduced a technique called superchip

which was designed to avoid the problems encountered with discre

tionary wiring (6). Cells containing memory arrays and a bus are

built simultaneously on a wafer. The ce lls are tested individu

ally and those that work are connected to the bus using PROM

switches. Bus addresses are also assigned to the cells by means

of PROM devices. This scheme does not seem to have been very

successful, probably due to low yield of the bus . Superchip,

like discretionary wiring, is an example of static redundancy,

offering protection against fabrication flaws only.

A further development called adaptive wafer scale integration

(AWSI) was proposed at Actron, a division of McDonnell Douglas

Corporation (7) . Where superchips use PROM fuses , AWSI uses MNOS

non-volatile, electrically alterable switches. This approach

allows reconfigu ration during use . If such reconfigu ration is

- 16 -

provided internally by

dynamic redundancy can

uses a large bus and is

bus.

the use of special monitoring circuits

be impiemented. AWS I, like superchip,

likely to suffer from low yield of that

J . I. Raffel of MIT Lincoln Labs has been investigating a tech

nique using MNOS switches but a different bus structure (8) . He

proposes the use of wafers containing circuits of MSI to LSI com

plexity with a number of horizontal and vertical bus wires

between each row and column of circuits. Some of these wires

would run the entire length of the wafer to provide long distance

communication . Others would be divided into sections to provide

more local signals . Every intersection of two bus wires would be

provided with an MNOS switch to per·mit electrical interconnection

for routing of signals.

Raffel's structure is a very general one. It could be used to

implement static redundancy by putting irredundant circuits on

the wafer and doing all testing and configuration from outside .

By making some of the circuits redundant it would be possible to

use a mixture of static and dynamic redundancy .

form of dynamic redundancy could be provided

circuits on the wafer to perform reconfiguration.

Alternatively, a

by incorporating

A major omission fr·om Raffel's proposal is that, so far at

least, he has failed to address the problem of defects in the

configuration circuitry and the bus structure . The failure rate

of the programmable links and the wires in the bus structure

should be investigated . Then an analysis should be performed to

determine whether the number of such failures would be within

- 17 -

acceptable limits.

Of the techniques described above , only the relatively modest one

used by IBM has been a commercial success. A common trait in the

others which might indicate the reason for their failure is the

reliance on a complicated bus structure. In the case of the Tl

and Hughes systems, the buses are added after· testing the indivi

dual circuits. Therefore it is possible to introduce new defects

at this stage. The other techniques all rely on large bus struc

tures, occupying large areas of silicon, to be defect free and,

moreover, require all defective circuits to fail in such a manner

that they do not affect the bus .

- 18 -

References

(1) E. F . Pierce, Memory, Think, pp 4 -8, November 1978.

(2) W. W. Peterson and E. J . Weldon, Error Correcting Codes , MIT

Press, 1972 .

(3) J . G. Tryon, Quadded Logic, Redundancy Techniques for Comput

ing Systems, pp 205-228, Spartan Books, 1962.

(4) J. W. Lathrop et al, Proceedings of the IEEE, Vol. 55, No .

11, pp 1988-1997, 1967.

(5) D. F . Calhoun, AFIPS, Vol 35, pp 99-109 .

(6) J. C. Hunter, pp V450-469, Proceedings of the Symposium on

Advanced Memory Concepts, Stanford Research Institute, June 1976.

(7) W. A. Geideman and A. L. Solomon, Wafer Integrated Semicon

ductor Mass Memory, presented at the International Telemetering

Conference, 1978.

(8) J. I. Raffel, On the Use of Nonvolatile Programmable Links

for Restructu rable VLS I, Proceedings of the Cal tech Conference on

VLSI, pp 95-104, 1979.

- 19 -

Chapter 3

THE HIERARCHICAL REDUNDANT MEMORY (HRM)

Derivation of the H RM

The first approach taken was to consider a design where the

circuit was composed of two parts: one which implemented the

redundancy and one which performed the primary function of the

circuit. It seemed that, since the redundancy would correct

errors due to faults in the main section, the yield of the total

circuit would be more closely related to the size of the error

correcting portion than to the size of the whole circuit.

It was found that adding error correction circuitry to a standar·d

memory array was not cost effective. The length of the data and

select wires meant that defects had a high probability of affect

ing large numbers of bits. Multiple error correction schemes

were necessary to protect against these failures. The number of

extra bits necessary for storing the encoded bits and the low

yield of the multiple error cor· rection circuits resulted in high

overheads with little or no yield improvement.

In an effort to reduce the effect of defects the stor·age arrays

were divided into sections to reduce the number of bits affected

by row and column failures. The resulting memories had good

yields only when the arr·ays were small enough that single bit

error correction could be used. This limit to the size of the

arrays set a limit on the capacity of the whole cir·cuit; the

limit was removed by combining several such circuits into a

larger circuit and using another stage of error correction. That

- 20 -

architecture was named the hierarchical redundant memory.

Description

The HRM datapath is in the form of a tree. Each node and its

descendants form a sub-memory (figure 3 . 1) . Each arc of the tree

represents a one-bit wide bi-directional data path. Each leaf

node consists of an irredundant memory array with address

decoders. The remaining nodes each contain an encoder/decoder

for an error correcting code (ECC) and an address multiplexor .

Figure 3.2 shows a non-leaf node for the Hamming (7,4) code. The

HRM as described stores one bit at each address; by omitting the

multiplexor fr-om the root node the HRM can be used to store the

same number of bits organised as k bit words.

This thesis assumes the use of quasi-perfect codes, such as Ham

ming codes, because they lend themselves to relatively easy

analysis. Other, less efficient, codes might turn out to be more

suitable for the HRM if they have very simple encoder/decoders.

The branching ratio of the tree depends on the particular ECC

used in the nodes. All the nodes at one level would normally use

the same ECC and, in the following, it will be assumed that the

same one is used at all levels of the tree. Where the code is an

(n, k) code, ie. it produces k corrected bits from n input bits

when decoding, the tree has a branching ratio of n. The number

of bit stores in a sub-memory is thus n times the number at the

next lower level, while the number of addressable bits is only k

times the number of addressable bits at the next lower level .

In a read access of the memory one bit is read out from each leaf

- 21 -

Figure 3.1

node and passed up to the parent node. Each non-leaf node

receives n such bits passed up from its children, passes them

through its ECC decoder, and obtains k II corrected" bits. Whether

these bits are in fact correct depends upon how many of the

incoming ones were correct. One of the corrected bits is

selected by the multiplexor, according to the given address, and

passed up to the next level.

wire to parent node

address wires

encoder/decoder

wires to descendents

Figure 3. 2

A write access can be performed only after a read access on the

- 22 -

same address . Thus every write access is really a read-modify

write cycle and the HRM is either implemented as such internally

or always used this way. After the read has been performed, the

new datum is presented at the root node. The multiplexor then

overwrites one of the k corrected bits with this new value. The

k bits are passed through the encoder, giving n encoded bits.

These bits are passed to the n children and the process is

repeated down through the tree.

Rationale

The HRM was chosen as an example of a fault tolerant memory

because it achieves multiple et·ror correction with simple

decoders, has small critical areas and conforms with memory

architectures suggested by an examination of the physics of com

putation.

The use of the tree structur·e means that, even if the individual

error correctors can correct only single bit errors, certain

types of multiple bit errors on a single access can be tolerated.

At any node in the tree it is necessary for at least two errors

to occur in order for an error to be passed up to the next level.

For example in a memory with two levels of redundancy using the

Hamming (12,8) code, each access involves 144 bits. The worst

case under which a given bit address can operate correctly is

when at the higher level decoder one bit is unreliable due to all

12 bits which contribute to it being unreliable and in the other

11 cases one bit is bad in each group. Thus in this hypothetical

example the use of multiple single bit error correctors would

give the correct answer despite the presence of 23 bad bits. At

-"

- 23 -

the opposite extreme is the case where two errors in each of two

groups of bits causes an uncorrectable error. These examples

assume that the error correctors are functioning perfectly but,

since error corrector failure is equivalent to, and indistin

guishable from , failure of all the bits in the associated leaves,

this assumption is not unreasonable.

Because the error correctors are simple they are relatively

small. Furthermore the only part of the memory that is abso

lutely crucial is the root node. This node represents a very

small proportion of the whole circuit and can be built with con

servative design rules, or replicated and coded, without · signifi

cantly increasing the size of the overall chip. Similarly the

lower level decoders must be working if the sub-trees of which

they are r·oots are to be useable. A good design approach would

therefore be one where the leaf memory arrays are built to the

minimum tolerances recommended for the fabrication process and

the higher nodes in the tree are built with successively more

conservative rules or increased replication.

It has been demonstrated by Mead and Rem (1) that, for many

relevant cost functions, the optimum memory designs use a

hierarchical structure with a relatively low branching ratio.

Apart from the absence of redundancy this structure is essen

tially the same as that of the HRM. The basic tree structure is

thus indicated both for redundancy and for a low speed -power

product.

- 24 -

Layout for the H RM

Although no HRM has been built, considerable thought has been

given to how one would be laid out on silicon; pa r·tly with the

intention of estimating the size of the necessary circuits and

partly to provide actual circuits for the experiment described in

chapter 4. The circuit designs presented here use nMOS depletion

load technology and the design rules described in Mead and Conway

(2). Where circuit layouts are given in figures the colors are

according to the Caltech convention of green for diffusion, red

for polysilicon, blue for metal, black for contact cuts and yel

low (or sometimes black to improve visibility) for implant.

The first design produced was that for the leaf arrays. A layout

was made for a rectangular array of static memory cells with the

number of cells in each direction being a power of two . Two

sides of the array had conventional row and column address

decoders, with the column decoder also providing the data input

and output.

The other circuit layouts produced were for the various parts of

the non-leaf nodes. The design for a Hamming code decoder

involved only exclusive NOR gates and AND gates in a rectangular

grid and could easily be parameterised for the family of codes

although the one actually designed was for the (7,4) code. The

encoder was made by just taking the appropriate part of the

decoder. It would have been possible to combine the two parts

into a single circuit by sharing the common section but the extra

circuitry to accomplish the sharing would have offset most, if

not all, of the saving. Moreover, by keeping the two parts

- 25 -

separate it was possible to improve the fault tolerance slightly

because certain types of errors in the encoder resulting in sin-

gle bit errors are still corrected by the decoder . The third

part of the non-leaf node, the multiplexor, was adapted from a

memory cell and the column address decoder.

'------ - - -

,.---- ,.---- ,.----

Leaf HRM with one level of redundancy

Figure 3.3

An overall layout was considered for a complete HRM design using

the (7 ,4) code. This code is attractive because it means that

seven leaf arrays and one non - leaf node can be grouped in a rec

tangular array provided that the non - leaf node is no larger than

each leaf node. Such an arrangement is shown in figure 3.3. It

turns out that, for this code, the non-leaf node can be made sig-

nificantly smaller than a 64 bit leaf array . At the next level

up, seven of these groups and a non - leaf node are to be laid out.

This time, if the rectangular grid is repeated, there is eight

times as much area available as at the previous level . Ample

space is now available for using conservative design rules, as

desc ribed above, or for redundancy through replication and vot

ing.

- 26 -

Testing the HRM

At first glance it would appear that the HRM, being more complex

than traditional memories, would require more time to test. If

so it might no longer be true that increasing the yield would

decrease the cost of testing . In fact the H RM can be tested more

quickly than conventional memories due to the properties of its

architecture.

One property of the HRM which reduces testing time is that it can

never have only one bad bit . The method by which the redundancy

is implemented is such that, if any bit is bad, at least elm bits

will be bad where c is the number of bits in the memory and m is

the number of bits in each leaf node. The presence of bad bits

can therefore be detected in time proportional to the size of the

leaf arrays rather than the size of the whole memory.

Testing time for misaddressing and pattern sensitivity is less

for the HRM than for conventional designs because of the

hierarchical structure. The testing strategy is to start by

testing the root node by changing only the address bits used in

the root multiplexor. Once the root has been fully tested the

next level down can be tested in a similar way until the whole

tree has been tested . This strategy, made possible by the archi

tecture, is much better than is possible with conventional

designs where this sort of partitioning is not possible.

Yield crossover point

The most important result from the use of the naive model was the

notion of the yield crossover point (YCP). Where a non - leaf node

- 27 -

uses an (n , k) error correcting code (ECC), an upper bo und on its

yield (Y) can be given, as follows, in terms of the yield of its

n children (y) and the maximum number (t) of errors which can be

corrected by the code:

t n n-i i
Y = L C y (1-y)

i=O

a
where C is the number of combinations

b
of a objects taken b at a time

The YCP is that value of y for which Y = y, ie the yield of a

node such that its parent shall have the same yield. Y is an

upper bound on the composite yield, because the above calculation

should really include a factor representing the yield of the con

tents of the parent node. Thus the above definition of the YCP

results in a value lower than is required for practical applica

tions . Some values of the YCP for Hamming codes are given in

table 3. 1.

Code YCP

(3 1 1) 50%
(5 , 2) 86.9%
(7 ,4) 94.2%
(12 ,8) 98.3%
(21,16) 99.5%

Table 3.1

For values of y less than the YCP, Y falls off very quickly; it

is therefore impractical to bui ld leaf nodes with yield much

- 28 -

lower than the YCP. Given the number of faults per unit area for

a process and an ECC, it is thus possible to ca lc ulate the max

imum area, and hence the ma x imum number of bits, for useable leaf

nodes for that process and ECC . The size of the leaf node indi

cates the number of levels required in the tree to provide a

memory of the desired size . The approximate area of the overall

circuit can then be calculated.

References

(1) C . A. Mead and M. Rem , Cost and Performance of VLS I Computing

Structures , Proceedings of the 3rd USA-Japan Computer Conference,

pp 462 -467, 1978 .

(2) C. A. Mead and L. A . Conway, Introduction to VLS I Systems,

Addison -Wesley, 1980.

- 29 -

Chapter 4

STATISTICAL YIELD MODELING

Limitations of the naive model

The naive yield model could not be used for a detailed study of

the HRM unless it could be shown to be sufficiently accu rate. An

experiment was performed to calculate the probability of a

circuit working while having a pattern of faults which the naive

model treated as fatal. For this pur·pose a one level HRM using

the Hamming (7 , 4) code was examined . Each of the leaf arrays

contained 64 bits , resulting in a 256 bit memory. Under the

naive model the root and at least six of the leaves had to be

fully functional. The only other way in which the memory could

work was if up to 64 individual bit stores failed such that they

were not all in the same array and that no two were in

corresponding positions of different arrays.

expression for this probability was

64 7 448- i
P = r a b

i=2

i 64 i
(1 - b) c (7 - 7)

The calculated

where a is the yield of the address decoder in a leaf node and b

the yield of the individual bit stores. For a derivation of this

expression see appendix B . The naive model indicated that 0. 56%

of circuits would fail. The value of P obtained after taking the

values of a and b from the naive model was 0.28%. So, for this

example, half of the failures found by the naive model were

directly attributable to the pessimism of the model.

It 1s inte resting to n'ote that thi s limitation does not a p ply if

the leaf arrays are replaced by shift registers . A sh ift

- 30 -

register has the property that, if one bit store is bad, it cor

rupts all data as they pass through. A HRM built from shift

registers could thus be evaluated using the naive model.

Purpose of statistical modeling

The excessive pessimism of the naive yield model is due to the

fact that it is based on the incorrect assumption that a sub-tree

containing a fault is completely unreliable. It had been hoped

that it would prove sufficiently accurate because, as described

above, it was the best approximation to the real situation that

lent itself to an exact calculation. Since it did not prove

accurate enough, it became necessary to use a model which was an

accurate representation of how the HRM was affected by faults but

was applied only to a number of random fault patterns.

The statistical experiment was composed of two parts. The first

part was used to gather statistics on the relative frequency of

faults affecting various numbers and groupings of bits of memory

in leaf nodes of the HRM. In the second part HRMs were "built"

using leaves with faults assigned according to these statistics.

The statistics gathering program

The program was written so as to draw a given number of random

circles with an appropriate distribution on a circuit design.

The circles were then interpreted as manufacturing defects.

Visual inspection of the drawings was used to determine how much

of the circuit was affected by each "defect". In addition this

experiment gave a measure of what proportion of defects materi-

- 31 -

ally affect the performance of the circuit.

The model for distribution and inter·pretation of the circles was

made to be as simple as possible without departing too far from

reality. It was important to concentrate on those factors which

are likely to persist in the future rather than those exhibited

today. The available data seemed to indicate that the biggest

problem was dust, both on the wafer during manufacturing and on

masks while making copies. By assuming the use of direct elec

tron beam writing the problem could then be reduced to one of

failure to expose the photoresist wherever there was dust on the

wafer. Thus from the nature of the process it is possible to

deduce whether a given layer is susceptible to opens or shorts .

The circles were drawn with a uniform distribution of position

and layer and a distribution of size such that the average number

of circles of a given area was inversely proportional to that

area.

The process used for the experiment was nMOS with depletion

loads. This process uses five masks. It was assumed that the

probability of defects in the implant layer causing faults was

low enough to be ignored and that double masking would be used

for contact cuts, again making the probability of faults insigni

ficant when compared with the other layers. Of the remaining

layers metal and polysilicon were susceptible to opens and diffu

sion to shorts.

Figure 4.1 shows an example of a circuit consisting

static RAM cells with two errors on it. The error in

(green) causes two cells to be linked together in such

of four

diffusion

a manner

- 32 -

II '-

Figure 4 . 1

that each cell always stores the complement of the other.

Depending upon the addressing scheme used th is error causes the

loss of either one or two bits. The error in metal (blue) causes

a cut in a data line . This defect will result in the loss of all

bits in the column which are on the far side of the fault from

the data line driver .

Results from the circles program

The circles program was run several times using a 64 bit leaf

array. In all 800 circles were drawn and examined and , of these,

556 had no effect, 9 caused power-to- ground sho rts and the

- 33 -

remaining 225 caused varying numbers of bits to be inaccessible

or unr·eliable. These were divided into a number of modes of

failure and, in particular, a distinction was made between

failures due to faults within the storage array and those in the

address decoders .

Failure mode % for array % for decoder

Single cell 43% -
Pair of cells 7% -
Part row 119<, -
Part column 2896 -
Single column 3% 37%
Single row - 7%
Multiple columns - 23%
Multiple rows - 12%
Whole array 8% 21%

Table 4.1

There were six failure modes due to defects occurring within the

memory cells. These were single bit failure , double bit, part

row, part column, whole column and power-to-g round short. Single

bit failure occurs when a d efect causes damage only to logic

within the cell and is usually a defect in the diffusion or

polysilicon layer. Double bit failure results from a diffusion

bridge between two neighboring cells, causing them always to

store complementary values. Part row failures occur when the

select line is cut in side a cell . Then the cell itself and all

cells beyond it are affected. Such a f a ilure, if it occurs in

the cell nearest to the row decoder, can affect a whole r·ow but

this case cannot be identified without knowing which ce ll is

involved and so is not considered a separate mode . Part co lumn

- 34 -

failure is the equivalent failure in a vertical wire; data, data

bar, ground or power . In the case of the first three the cells

above the one in which the error occurred are affected but the

power line is driven from above and so, if it is cut, the cells

below are affected. Whole column failure .is the case when both

the power line and one of the other three are cut.

It is hard to assess the effect of power-to-ground shorts and

they are arbitrarily assumed to affect the whole leaf array but

not the rest of the circuit. This assumption is on the basis

that if they are not bad enough to burn themselves out they will

not consume enough power to affect more than the local circuitry

and that if they do burn out only a relatively small area will be

affected by the heat and debris .

For the decoders there were five failure modes: single column,

single row, multiple row, multiple column and whole array. The

reasons for the different modes were less distinctive than for

the memory cells but, in general, they resulted from cut wires.

The most serious er·rors resulted from cuts in the power, ground

or global data wires and the moderately serious ones from cuts in

address lines.

"Tree" program

With this program a user can "design" a HRM by supplying the

dimensions of the leaf arrays, the error correction code to be

used in the non-leaf nodes and the number of levels in the tree.

The user requests the program to "build" some number· of them and

the program does so using leaves with errors randomly assigned

- 35 -

accor·ding to the results collected from the first experiment.

The program indicates how many of the memories had errors and how

many bits wer·e defective in each case. Unlike the circle drawing

prog ra m which was not at all specialised and could be used for

investigating the failure modes of any circuit, this program is

specific to the HRM and would not be applicable to any other

architectures.

The program consists mainly of a leaf generation routine and a

combination routine. The leaf generation routine creates an

array of bits each of which is set to 0 if the corresponding bit

is deemed to be working and if it is deemed to be useless. The

decision on which bits work is reached by means of a random

number generator and a table of failure modes and their frequen-

cies derived from the first part of the experiment. The combina-

tion routine allocates a new array of bits to represent a sub-

tree of the memory and fi II s in the bits according to the leaves

or lower level sub-trees of which it is composed. For an (n, k)

code there will be k times more bits at each level than at the

one beneath and each bit will be set to

n bits from which it is derived are 1 .

if more than one of the

In addition the array is

set to all ones if the non-leaf node is deemed to have any

defects . This treatment is slightly pessimistic because there

are ways in which a non-leaf node can have defects and still be

useful but they are rare enough to be ignored .

- 36 -

Chapter 5

RESULTS OF THE STATISTICAL EXPERIMENT

Caveat

In considering the following results it is important to remember

that no number should be taken in isolation. There is no inten

tion to prove that a memory of a given size could be built with a

given yield. The semiconductor manufacturers are reluctant to

talk about the yields which they achieve for their production

circuits; therefore it is hard to estimate the typical industrial

defect densities which must be known in order to discuss what

yields could be achieved for the HRM . Furthermore no direct com

parison is possible with industrial yields because the design

rules and feature size are different. For these reasons all com

parisons are with irredundant memories built from the same basic

static RAM cell as that used for the H RM.

Yield as a function of defect density

The Poisson model of yield indicates that yield of irredundant

circuits declines exponentially with increasing defect density.

The more complex models, which correct some of the inaccuracies

of the Poisson model , predict higher yields than the Poisson

mod e l but with a similar s haped c urve. For the HRM the shape of

the curve is influenced greatly by the way in which the redun

dancy is implemented . The curve is related to th e result of con

volving an exponential with itself but differs in that the origi

nal curve is more complex than an exponentia l and the combi na -

tiona I operat ion is not a pure convolution. A pure convolution

- 37 -

100

90

80

y 70
I

e 60
I
d 50

(%) 40

30

20

10

0

0 . 1 0.2 0.3 0.4 0.5

Defects per million >.. 2

Figure 5.1

would result if all failures affected only individual bit stores.

Figure 5.1 shows a graph of yield against defect density for

three related circuits. The first circuit is a 1k RAM with no

redundancy. The other two circuits are HRMs using the 1k RAM as

a leaf node. Both HRMs use the Hamming (7,4) code; one with 2

levels of redundancy resulting in a 16k memory, the other with 4

levels for 256k. The graph shows that, as predicted in chapter·

3, the yield increases with increasing number of levels for low

defect density then decreases with increasing number of levels

for higher defect densities . The crossover point is at a lower

yield than the YCP because the derivation of the YCP included an

- 38 -

100
4 levels

90

80

y 70

e 60
I
d 50

(%) 40

30

20

10
0 levels

0

0.1 0.2 0.3 0 . 4 0 . 5

Defects per million >..2

Figure 5. 2

assumption that a defect in a leaf node resulted in total failure

of that node.

The intention in figure 5.1 is to show the way in which the com

posite yield of an HRM is affected by the yield of the parts . A

more spectacular demonstration of the yields which can be

achieved using the HRM is given in figure 5 . 2 by plotting the

yield of three memories of the same size. This graph shows a

direct comparison of the yields possible for a 16k RAM at dif

ferent defect densities using no redundancy, two levels and four

levels . The two level memory is the' same as that used in figure

5 . 1.

- 39 -

100 8 9

X X

90

80

y 70 6 X 7x

e 60 5

I X

d 50 1 0

(%) 40

30
X ..

20 3
')(.

10 ~

0

0 1 2 3 4 5 6 7 8

Overhead

Figure 5.3

Yield as a function of overhead

Figure 5.3 is a scatter plot of yield against overhead for a

selection of 64k RAM designs with a defect density of 0 . 1 per

million square lambda. No attempt has been made to fit any of

the points to a curve because such a curve would have to

represent the maximum possible yield for a given overhead. The

points plotted are simply those which can be obtained using Ham

ming codes and leaf arrays with m times n cells where both m and

n are powers of two . The points with overhead less than two

indi cate that relatively modest amounts of redundancy can be used

- 40 -

to achieve respectable yields for a circuit which would have

essentially zero yield with no redundancy . For higher overhead

the slope is, of necessity, flatter as the yield approaches 100%.

Well balanced designs

In figure 5.3 there is a band of points which represent designs

which are in some way optimal. Other points falling below this

band represent designs which fail to provide a high enough yield

to justify the overhead. An examination of the bad designs shows

that the size, and hence yield, of the leaves is not well suited

to the ECC being used. Table 5.1 lists the ECC, number of lev

els, overhead, leaf array size and calculated leaf yield for each

of the designs in figure 5 .3. ·The design using the (5,2) code

(number 10) can be seen to be very poor from figure 5 .3. Table

5.1 shows that its leaves have a yield of only 14.8%. The

surprise then is not that the yield is so low, but that it is as

high as 54%.

No. Code Levels Overhead Leaf size Leaf yield

1 - - 0 256x256 0
2 (21,16) 1 0.4 64x64 6096
3 (12,8) 1 0 . 6 64x128 37 . 4%
4 (7,4) 1 1 128x128 14.8%
5 (21,16) 2 1 16x16 96%
6 (12,8) 2 1. 6 32x32 87.396
7 (7,4) 2 3 64x64 60%
8 (12,8) 3 3 .3 8x16 97.7%
9 (7,4) 3 7 32x32 87.3%
10 (5,2) 2 8 128x128 14.8%

Table 5.1

- 41 -

In chapter 4 there was a discussion of how the YCP could be used

to determine suitable leaf sizes for a given code and defect den

sity when using the naive model. Unfortunately there is no easy

way of calculating the YCP for the statistical model. Its value

varies according to the defect density and the leaf array size in

addition to the ECC. An approximate answer for a given set of

parameters can be obtained by plotting a set of curves like that

in figure 5.1. From figure 5.1 it can be seen that the statisti

cal YCP for the Hamming (7 ,4) code and a 1 k bit leaf is about

70%. The large discrepancy between the calculated value of 94.2%

and the experimental value of 7096 is another measure of the con-

servatism of the naive model.

Address space as a function of area

This relationship is hard to demonstrate using results obtained

from the statistical experiment because it should be examined at

a fixed yield. There are, however, three yields for any given

design at which the behavior is known to some extent: 0<1 o, 100%

and the YCP. The first two are uninteresting from the point of

view of using components with those yields to build larger

memories. When the yield of a H RM is equal to the observed YCP

for the ECC used, it is possible to make a HRM with k times the

address space and the same yield using n + x times the area where

x represents the area of the new root node. x will typically be

rather less than unless very conservative design rules are used

for the root.

This result is probably not very useful in practice but it

reflects the theory which states that arbitrarily large memories

- 42 -

can be built using sufficient redundancy. It does provide the

ability to predict the yield of large HRMs by looking at the

yield of smaller ones. For example, figure 5 .3 shows that a 64k

RAM using 3 levels of (12,8) redundancy has a yield of 98%.

Using 12 of these to build a 512k RAM would result in a memory

with nearly 100% yield and approximately 6.5 overhead. In order

to make a comparison with the megabit RAM described in chapter 1,

it is deduced that a megabit RAM could be built with essentially

100% yield at a overhead of 9. An a rea overhead of 9 translates

into a linear overhead of 3 . A megabit irredundant memory using

the HRM bit store would be about 10cm square. The HRM would thus

be about 30cm square. It is still too large to consider building

but could possibly be made small enough by using a process with

smaller feature size and decreasing the overhead.

Choosing a design

The choice of parameters for a HRM will depend upon the applica

tion for which the memory is required. Figure 5.3 indicates that

a HRM with an overhead of between 1 and 3 can enable manufactur

ers to build memories which have substantially more address space

than is possible without redundancy. This type of design is the

optimum if density is the most important factor. If reliability

is more important, a design with a yield at or close to 100%

would b e more suita ble . Such a design is more likely to produce

circuits with enough spare working parts to t·esist lifetime

failures.

The leaf a r ray size, ECC and number of levels can be chosen by

looking at the observed YCP for the different ECCs and selecting

•

- 43 -

a suitable leaf array size. The leaf array size should be chosen

to give a yield greater· than the observed YCP if high reliability

is r equi r·ed and equal to it or somewhat below if low overhead is

the goal. Given the ECC and the leaf ar·ray size, the number· of

levels needed to make a memory of the required size is easily

determined .

- 44 -

Chapter 6

DESIGN AND ANALYSIS OF THE HRM

Yield and value

For redundant and irredundant circuits the notion of yield as the

proportion of circuits which are fully working is a valuable one.

For components of redundant circuits the measure 1s inappropriate

because they can make valuable contributions even if they are

only partially working. In fact a component with a design error

and a yield of zero will be useable provided that its error is

removed at a higher level by the redundancy. Thus, when tal king

about memory components, a more useful measure is the average

number of working bits.

In the case of the HRM even this measure is not really good

enough because the relationship between the yield of components

and the yield of the composite is fairly complex. The result is

that components whose average propo1·tion of working bits is

higher than the observed YCP are much more valuable than those

for which it is not. If one component has a yield less than the

YCP then others must have yields higher than the YCP if the

overall circuit is to have a yield higher than the YCP . This

fact sug~ests the need for a further measure

have a positive or negative value depending

average is above or below the YCP.

in which components

upon whether their

In fact the value of the leaves depends on the failure modes

rather than just the average proportion of working bits. This

dependency can be demonstrated by an analysis of two special

- 45 -

cases of the single level HRM. In the first case every leaf has

exactly one defective bit which can occur at any position with

equal probability. In the second case every leaf array has a

p'robability 1/ m of total failure where m is the number of bits in

the array. In each case the average proportion of working bits

is (m-1) / m.

The probability of the memory working in the first case 1s the

pr·obability that no two bits in equivalent positions of different

arrays fail or:

n-1
II

i=1

•
(m-i) / m

0 otherwise

for n <= m

where the memory uses n leaf nodes. The minimum values of m and

n are one and three respectively. For the second case, the prob-

ability of working is the probability that no more than one array

fails or:

n n-1
((m - 1) / m) + n ((m-1)/m) (1 / m)

This expression can be rewritten as:

This result is

unless m equals

n -1
((m+n -1)/m) ((m - 1) / m)

higher than that obtained

one, in which case they are

for

both

the first case

zero. The first

factor is always greater than one and the second factor is

clearly greater than the result for the first case if m is

greater than one. This result shows that the failure distribu-

tion, representing the different failure modes, is important as

well as the average number of bits affected .

- 46 -

Single level and multiple level memories

If a H RM has more than one level of redundancy, accurate analysis

without the use of statistical modeling is made exceedingly dif

ficult by the mathematical properties of the coding scheme and

the effects of partial damage. Since a well-balanced design

should have a leaf yield not too much greater than the observed

YCP, the use of approximations is highly unreliable. If a good

design is evaluated using a pessimistic model, it is likely that

the leaf yield will be calculated to be less than the observed

YCP and, hence, the overall yield would appear to be very low.

The opposite effect would be produced by the use of an optimistic

model on a memory whose leaf yield was a little below the

observed YCP.

Even in a single level memory the effect of partial damage is

hard to calculate. For multiple level memories the problem is

compounded by the fact that the errors which propagate up the

tree are often the result of the intersections of areas of par

tial damage. The analysis of multiple level memories other than

by statistical means would therefore require very complicated

formulae. Appendix C shows the formula for a model used later in

this chapter for the analysis of a single leve l memory . A simi

lar formula for a multiple level memory would be much more com

plex. Also the formula in Appendix C uses appr·oximations in its

treatment of partial damage. These approximations would have to

be removed if the formula was to be reasonably accurate.

If a memory has only one level of redundancy then the inaccuracy

of optimistic, pessimistic or other approximate models is less

- 47 -

severe. In this case there is some hope of achieving useable

results by analytic models and the remainder of this chapter con

tains a discussion of some possible methods.

Models for single level memories

The following models were investigated in an attempt to determine

upper and lower bounds on the yield of a single level HRM. They

involve no information about the internal design of the cells but

do rely on information about the global wiring structure. For

example it is known that data wires run vertically through bit

stores and hence that errors within bit stores can affect columns

if they affect the data wires. The upper bound is achieved by

using optimistic assumptions for the extent of the damage to

cells and the lower one by using pessimistic ones.

The lower bound turns out to be given by the naive model; power-

to-ground shorts affect the whole array and so all failures are

assumed to do likewise. Even if power-to-ground shorts are

ignored, no better res u It is obtained. The occurrence of a

defect in a bit cell can cause either a row or column failure

and, pessimistically, is assumed always to cause both . Thus, if

more than one array is defective, there are at least two

addresses within the leaf array for which more than one array has

a bad bit . The only improvement over the naive model is that the

memory will have fewer bad bits; the yield remains the same.

This difference would be useful only in the case of a multi-level

memory .

In the least optimistic model errors in bit stores affect only

- 48 -

that bit while errors in row and column decoder cells affect only

the appropriate row or column. This model leads to a very com

plex expression because of the need to calculate the combined

effect of multiple d efects. The expression can be simplified,

and made more optimistic, by ignoring some failures due to mix

tures of different types of defect . A further simplification can

be achieved by assuming that the effect of failure of individual

bit stores is negligible or, equivalently, that bit stores never

fail .

When applied to a HRM built from the circuits used for the sta

tistical experiment, these two models result in a very large

envelope. For a single leve l 4k RAM using the (7 ,4) code and a

defect density of 0 . 6 per million square lambda, the naive model

gives a yield of 3. 7%, the statistical experiment 4796 and the

optimistic model 85%. Thus, even for a single level memory, the

effect of partial damage cannot be estimated r e liably without

knowledge of the interna l cell designs. Appendix C describes the

optimistic model used for this example.

Divided cell approach

The divided cell approach is a mixture of the statistical and

analytical models providing greater accuracy tha n the analytic

approximations while r·equiring · less computer time than the full

statistical model. Under this approach the cells are initially

evaluated using the circles program; they are then divided into

sections according to the fa il ure modes and their probabi lities.

Thus a bit cell in which defects have a 5096 probability of

affecting one bit, a 2096 probability of affecting one row and a

- 49 -

30% pr·obability of affecting one column would be divided into

thr·ee sub-cells of 50°6, 20% and 3096 of the area of the original

cell .

After all cells have been treated in this way, the new cells are

regrouped accor·ding to the failure modes which they repr·esent.

Thus the proportion of the bit cell which causes a column failure

is amalgamated with the proportion of the column address decoder

which causes a column failure. The resulting reorganised leaf

array is much closer to the idealised form assumed in the ana-

lytic models. The analytic models can now be applied using

appropriate treatment of the partial column and similar failures

to provide optimism or pessimism to give upper or lower bounds.

This approach is more accurate than the strictly analytic one

because it enables differentiation between the various failure

modes which can occur in a single cell.

This approach was applied to the upper bound calculation from the

example in the last section. Since the upper bound used an

optimistic model, partial row or column failures were treated as

single bit failures and multiple row or column failures as single

row or column failures . The resulting yield was 78% which is

still considerably higher than the 4796 given by the statistical

experiment. The reasons for this discrepancy are the optimistic

treatment of multiple defects in the model (Appendix C) and the

treatment of partial and multiple column and row failures.

The experiment was repeated once more where partial row and

column failures were treated as a 50% chance of losing a single

bit and a 50°6 chance of losing the whole row or column . Simi-

- 50 -

larly multiple row and column failures were divided equally

between single row and column failures and complete array

failures . In this case the yield was 6396 , showing that the

treatment of such cases has a marked effect on the result.

Results of this type cannot be used for upper bound calculations

because they are no longer uniformly optimistic.

Model name Bound Yield

Naive Lower 3.7%
Statistical experiment None 47%
Optimistic Upper 8596
Divided cell optimistic Upper 7896
Divided cell approximate None 63%

Table 6.1

Table 6.1 lists the yields given for the example circuit by the

various models described . The naive and optimistic models are

useful only as a cheap test that a design is within the appropri-

ate yield range. The divided cell models are more expensive

because they require the use of the circles program. They do not

give a very accurate result if there is a significant proportion

of failures involving partial rows or columns or multiple rows or

columns but, for designs where such failures are infrequent,

these models should give useful results . The statistical experi -

ment is the most expensive model but, for designs like the one

analysed here, it is the only model which can provide reasonable

accuracy.

- 51 -

Defensive design

The use of redundancy requir·es a knowledge of the ways in which

circuits fail and how to guard against such failures. In

irredundant design the circuit is discarded if it does not work

properly and it does not matter whether the faults affect large

or small parts of the circuit. With redundant design it becomes

necessary to study the possible failure modes and their relative

frequencies and plan the circuit so that damage is minimised.

An example from the leaf node of the H RM is that a frequent

failure mode of the address decoders resulted in one or more

pairs of rows or columns being faulty . A simple design change

saved one of each pair from being affected thus halving the

number of bits affected. Because a large proportion of the

failures involving larger numbers of bits were accounted for by

this failure mode, the average number of bits lost could be con

siderably reduced.

Another example was that row and column failur·es occurred mor·e

frequently in those rows and columns furthest from the line

drivers. If a uniform addressing scheme was used, that would

mean that the addresses cor·responding to these positions, and

particularly to the corner bit store, would exhibit a rather

higher failure rate than the average. By encoding the address

decoders in such a way that different leaf arrays have different

addresses in those positions, it is possible to even out the dis

tribution of failure probability over the address space.

These two examples illustrate the two main techniques in defen

sive design. The first is that of design changes which reduce

- 52 -

the amount of circuitry affected by a fa i I u re. The second does

not reduce the damage but serves to reduce its effect on the per

formance of the overall circuit .

r-- c - -
1--

I

t""L r- - ~ t ~ n r- - - J
t-

l ~p--~ ~ n ..--- ..__ r-- -p I
I I !r+ u I ! f ;::
I ~

i
-t

~

J

L-- ..___ @ '-

Figure 6 . 1

Defensive design can be used to make the analytic mod~ls more

realistic . In the case of the HRM it would be possible to design

the cells using duplicate wires in certain locations . Figure 6.1

shows a bit store cell which uses a double select line to reduce

the probability of partial row failure. Partial row failures

cannot occur without either a very large single defect or two

suitably located normal sized defects. By using similar tech -

niques in the row and column decoders for protection against

- 53 -

address line failures, the circu·it could be made approximate to

one in which a defect in a bit stor·e caused s ingle bit, partial

column or full column failure and a defect in a row or column

decoder caused single row or column failure. An envelope could

then be obtained by assuming that all bit store defects caused

column failures for a pessimistic model and single bit failures

for an optimistic model. It is important to note that while such

strategies improve yield and aid analysis they are not neces

sarily the best strategies in terms of yield improvement versus

area cost.

Iterative design

The circles program can be used as a basis for iterative design.

The major design flaws in a circuit can be identified in the

early iterations; later ones would allow the designer to experi

ment with design changes which affect the proportions of dif

ferent failure modes .

Old des ign New design

% of circles cau s ing d efects 26 .3 24.5
Area in square lambda 1116 1216
Re lative area 1 1 .09
Single bit failures 4396 51.5%
Double bit failures 7% 1°6
Part row failures 11 96 -
Part column failures 28% 40°6
Double part co lumn failures - 2%
Whole column failures 396 5.5%
Whole array failures 8% -

Table 6 . 2

- 54 -

The bit cell design used in the statistica l experiment was

designed to be as small as possible. A major design flaw was

that regions of diffusion carrying power and ground were close

enough to each other that defects could cause shorts. Figure 6.1

shows a revised ~esign in which power and ground were kept

further apart to pr·event shorts and the select line was repli

cated to reduce the probability of partia l row failures. The

result

by a

damage

cells.

was a larger cell with

smaller proportion of

per defect. Table

more open space which was affected

possible defects and sustained less

6.2 gives a comparison of the two

Where leaf arrays contain s co lumns of s bits each, the average

number of bits lost per 100 defects in the cell array is

2
8 s + 22.5 s + 57

for the original design and

27.5 s + 53.5

for the new design . These formu lae are derived by multiplying

the number of bits lost due to failure by the probability of that

type of failure; partial row

affecting s/2 bits. Table

and column failures are counted as

6.3 shows the evaluation of these

expressions for three different values of s. The absence of a

term for s squared in the expression for the new design means

that, for typical array sizes, the new design results in several

times fewer bad bits. The increase in cell area is about 9%.

For i rredu ndant designs the normal practice is to minimise the

area occupied by a cell while not violating the design rules . In

fault tolerant designs extra area can be used either· to implement

- 55 -

s Old design New design

1 87.5 81
8 749 273.5

32 8969 933.5

Table 6.3

extra functions or to reduce the probability of error in existing

functions. After it has been decided how much area to allot to a

cell, it is still important to experiment with layout topology.

In the above example of the redesigned bit store, the reduction

in the aver·age number of bad bits was achieved by topological

changes. Iterative design using the circles program is an effec-

tive way of evaluating and improving cell designs. Designers of

irredundant circuits accept a cell design when the effort of mak

ing it smaller becomes too high; designers of redundant circuits

would accept a cell design when the effort of reducing its sus

ceptibility to errors became too high .

Timeliness

- 56 -

Chapter 7

CONCLUSIONS

The use of redundancy is not in itself a new idea nor is the pos

sibility of using it in integrated circuit design . It is there

fore necessary to examine why it has not been widely used when it

would appear from the above results that it is eminently feasible

and, for many applications, economically advantageous. The most

obvious answer is that there has been very little work done on

investigating the benefits and limitations of redundant design.

As can be seen from the preceding chapters, there is no simple

relationship between redundancy and yield.

Another factor is that the size of circuits is becoming limited

by the size of the well in the standard integrated circuit pack

age. Any attempt to include redundancy would increase the size

of the circuit, preventing it from fitting in the standard pack

age, or decrease the function, lowet·ing the price that can be

commanded for the part. Soon it will be necessary to start using

larger packages for irredundant circuits anyway and it is to be

hoped that a standard allowing the use of redundant circuits will

be adopted. It is interesting to note that IBM, the producer of

a 64k RAM using static redundancy, does not use the industry

standard package even for its irredundant circuits.

In the case of static redundancy, the tradeoffs are fairly obvi

ous and the departure from traditional design is relatively

small. The hardest problems are the design of the configuration

- 57 -

circuitr·y and the choice of the optimum number of spare modules.

For dynamic redundancy there is more reason for its absence from

the marketplace as, until recently, it was not economical. In

order to build a HRM with a high enough yield, it is necessary

that the yield of the bottom level decoder be fairly close to

100%. It is now possible to build a Hamming (7 ,4)

encoder/decoder and a 4-way multiplexor with a combined yield of

about 96-9896. This yield is barely sufficient to enable the

building of a H RM because, for the (7 ,4) code, the YCP is just

over 94%. Since the failure of a non-leaf node affects the whole

sub-tree of which it is a root, the non-leaf node must have a

yield greater than the YCP for its ECC by a sufficient margin for

some errors in its children to be corrected . The HRM has thus

only recently become a cost-effective alternative to traditional

designs . As processing techniques improve the cost-effectiveness

of the HRM will increase greatly because the yield of the non

leaf nodes will get higher, enabling larger leaf arrays with

correspondingly more errors to be used.

Defensive design

In order to reduce damage effectively it is necessary to have a

good understanding of the possible failure modes. This under

standing can only be achieved by the building of test circuits

and the application of suitable electrical tests and visual

inspections. Different processing technologies are su sce ptible

to different failure modes; it is possible that the dominant

technology in the future will be the one which is best suited to

minimisation of damage.

- 58 -

The results of the statistical experiment show that, even without

much r·egard to defensive design, the HRM can be used to increase

yield of existing memor· ies and enable the building of larger

ones . The use of suitable defensive design techniques will

result in smaller overheads than is indicated by this research.

Possible refinements to the H RM

The description of the HRM given above is the one used in this

research . There are some refinements which could be made to

improve various aspects of the memory according to the designer's

r·equirements. These refinements are concerned with the addition

of static redundancy or extra processing capability to improve

yield or decrease testing time or both. The reason for not using

these techniques in the analysis presented here is that the

intention is not to produce an optimum design but to demonstrate

the feasibility of a class of designs.

The addition of static redundancy by means of including extr·a

leaf nodes or extra storage within the leaves or both can be used

to reduce susceptibility to fabrication flaws. In the basic

design the loss of a complete leaf array causes any other

failures in the group of leaves to result in an incorrect bit

being passed up to the next level. In the case of two array

failures in the same group all bits in the gr·oup ar·e rendered

useless. The inclusion of an extra leaf in each group would mean

that if only one array failed it could be discarded with a

resulting high probability that the sub-tree ·would work correctly

for a ll addresses. In the case of a double array failure, one of

the failed arrays would be discarded with the result that, in

- 59 -

most cases, a reasonable proportion of the sub-tree would work

and so make a useful contribution to the next level. If no leaf

arrays fail completely whichever one has the most errors or,

better , whichever one has th e most errors coinciding with errors

in other leaves in the group, would be discarded. If three

arrays failed, it would be impossible to pass up corrected bits

to the next level, but each bit position in the multiplexor could

be connected to one of the partially working arrays thus ensuring

that at least some of the bits passed up were working correctly.

This stratagem could also be applied to the basic HRM without

static redundancy in the case where two or more arrays fail.

The problem with the inclusion of static redundancy is that extra

logic has to be included in the circuit to enable testing of phy

sical addresses in the memory and configuration according to the

results of the testing . In addition to the increased testing

time there is the problem of failure of the testing and confi

guration circuitry. For example a leaf array might work per

fectly but its physical address mechanism be faulty. In that

case the testing will show the array to be useless when in fact

it is not. Conversely it could happen that testing shows the

array to be fully working but the configuration circuitry is

faulty, resulting in an attempt to use a good array through a

faulty switch. Despite these problems it would appear that the

benefits possible from such techniques

that this area is worthy of further study.

The addition of extra storage within

sight not appear to be very valuable.

could be considerable and

an array would at first

Such extra stor·age can be

used for protection only against small numbers of errors in each

- 60 -

array and the whole memory works on the basis of guarding against

sma ll numbers of errors. However, if one array in a group fails

completely then all other errors in arr·ays in the same group will

result in errors being passed up to the next level. If such

errors occur in small numbers they can be corrected by using

spare bits or lines of bits. Thus small numbers of extra bits

can be used to help correct the errors due to array failures.

Again this type of redundancy involves the testing complications

described for the inclusion of extra arrays.

The addition of extra processing power in the non-leaf nodes is a

very attractive idea which could reduce testing time dramatically

and might be used to overcome the problems outlined above for

static redundancy. It is not currently practicable because of

the need to maintain a high yield for non-leaf nodes and it is

now impossible to build significantly more complex non-leaf nodes

than the simple form which performs the minimum function

described above . In the future it is likely to be possible to

include a moderately powerful, but probably serial, processor in

each such node. One of the main tasks of this processor would be

to test its sub-tree, including any configuration circuitry, and

configure it to provide the maximum possible number of corrected

bits. This modification would substantially decrease testing

time because external test equipment would be necessary only for

testing the root node. If the root was found to be faulty the

circuit would be discarded, otherwise it would be set to test

itself. This testing would not only require a minimum of specia l

equipment, but would proceed more quickly than external testing

because it could be done in parallel in the different sub-trees

- 61 -

resulting in a logarithmic time complexity .

Conclusions

The results of the statistical experiment show that redundant

design of memories can be cost-effective without the use of spe

cial processes for providing fuses and switches. Moreover such

designs provide valuable protection against transient er rors and

circuit failures . The circuit used for the statistical experi

ment was designed without much regard to defensive design. The

experiment described in the section about iterative design indi

cates that, with suitable tools, it is possible to make major

improvements in cell designs at very little cost in area. It

should therefore be possible to build HRMs with substantially

higher yields than indicated by the statistical experiment.

- 62 -

Appendix A

TABLES OF RESULTS

Meaning of the tables

The following tables list the results obtained for a number of

different designs at three memory sizes and six defect densities.

Each r·esult was obtained from "building" 100 memories. These

numbers were used as an indication of which examples to use in

chapter 6. A further sample of 1000 was taken to provide the

data used in chapter 6.

0 . 1 faults per million square lambda

Code Levels Overhead Yields : 4k, 16k, 64k

- - 0 56% 14% 0°6
(21,16) 1 0.4 91 96 58% 1496
(12,8) 1 0 . 6 91 °6 65°o 179o
(7,4) 1 1 8696 7396 34%
(21,16) 2 1 - 77% 58°6
(12,8) 2 1 . 6 9996 97% 72%
(7 ,4) 2 3 100°6 94°6 71 °6
(12,8) 3 3.3 - 9996 9896
(7,4) 3 7 100% 10096 9896
(5,2) 2 8 - - 5496
(7,4) 4 15 - 100% 100°6

- 63 -

0.2 faults per million square lambda

Code Levels Overhead Yields: 4k, 16k, 64k

- - 0 35% 1% ·0%
(21 '16) 1 0.4 7396 3396 1%
(12,8) 1 0.6 8096 37% 6%
(7,4) 1 1 8896 48% 24%
(21 , 16) 2 1 - 5296 6%
(12,8) 2 1. 6 92% 81 % 21 96
(7,4) 2 3 9896 82% 2696
(12,8) 3 3.3 - 9096 73%
(7,4) 3 7 100% 100% 89°6
(5,2) 2 8 - - 3296
(7,4) 4 15 - 10096 10096

0 . 3 faults per million square lambda

Code Levels Overhead Yields: 4k, 16k, 64k

- - 0 30°6 0% 096
(21 , 16) 1 0 .4 53°6 16% 0%
(12 ,8) 1 0.6 59% 25% 4%
(7,4) 1 1 6896 40% 1396
(21 , 16) 2 1 - 1896 0%
(12,8) 2 1 . 6 7796 4796 196
(7 ,4) 2 3 9596 64% 11 %
(12 ,8) 3 3 .3 - 5896 17%
(7 , 4) 3 7 100% 959o 5996
(5,2) 2 8 - - 17%
(7,4) 4 15 - 10096 100°6

- 64 -

0 .4 faults per million square lambda

Code Levels Overhead Yields: 4k, 16k, 64k

- - 0 11 96 09o 0°6
(21' 16) 1 0 .4 45% 89o 0%
(12,8) 1 0.6 50°6 15°6 39o
(7,4) 1 1 54°6 2696 13%
(21, 16) . 2 1 - 69o 0°6
(12 , 8) 2 1. 6 70% 27% 0°o
(7 ,4) 2 3 88% 42% 2°6
(12 , 8) 3 3.3 - 25% 3%
(7 , 4) 3 7 100% 909o 229o
(5,2) 2 8 - - 12%
(7 , 4) 4 15 - 10096 98°6

0 . 5 faults per million square lambda

Code Leve ls Overhead Yields: 4k, 16k, 64k

- - 0 9% 0°6 09o
(21 ' 16) 1 0.4 35% 49o 0%
(12 ,8) 1 0 . 6 35% 109o 1°o
(7 , 4) 1 1 5396 209o 8%
(21 , 16) 2 1 - 496 0°6
(12 , 8) 2 1. 6 5396 18% 0%
(7 ,4) 2 3 88% 26% oo 0

(12,8) 3 3.3 - 896 0°6
(7 , 4) 3 7 98% 7596 6°6
(5 , 2) 2 8 - - 49o
(7,4) 4 15 - 100% 80%

- 65 -

0.6 faults per million square lambda

Code Levels Overhead Yields: 4k, 16k, 64k

- - 0 3% 0% 0%
(21,16) 1 0.4 2996 396 0%
(12,8) 1 0.6 3896 5% 1%
(7,4) 1 1 4796 16% 7%
(21,16) 2 1 - 1% 0%
(12,8) 2 1. 6 43% 6% 0%
(7,4) 2 3 7196 1396 0%
(12,8) 3 3 .3 - 196 0%
(7,4) 3 7 90% 5996 1%
(5,2) 2 8 - - 7%
(7,4) 4 15 - 94% 49%

- 66 -

Appendix 8

DERIVATION OF EQUATION 4.1

Equation 4 .1 was claimed to be an expression for the probability

of a (7 ,4) one level HRM working when the simple model treats it

as not working . The equation given was:

64 7 448-i
P = r a b

i=2

i
(1-b)

64 i
c (7 - 7)

The summation is for varying numbers of bit failures . The

minimum is 2 because the case of one failure is covered by the

simple model. The maximum is 64 because the memory cannot work

if more than 64 bits fail . The term in a represents the case

that all 7 decoders work. The terms in b and 1-b give the proba

bility of a given pattern of i bits failing. The remaining terms

are a count of such failure modes. The first one is the number

of ways of allocating the ·bits to specific addresses within the

arr·ays . The second is the number of ways of allocating the bits

among the seven arrays such that not all are in the same array.

- 67 -

Appendix C

AN OPTIMISTIC MODEL FOR THE SINGLE LEVEL HRM

Definitions

y = yield of overall circuit
ye = yield of al l except non-leaf node
yb = yield of bit store cells
yr = yield of row decoder cells
yc = yield of column decoder cells
yd = yield of non-leaf node
n = number of leaf nodes
s = height and width of leaf array (in bits)
m = number of bits in leaf array (= s squared)

Failure groups

The yield of the whole memory (y) equals the product of the

yields of the non-leaf node (yd) and the remainder of the circuit

(ye). There are eight possible groups of failures: 1) no

failures , 2) co lumn failur·es, 3) row failures, 4) bit failures,

5) row and column failures, 6) column and bit failures, 7) row

and bit failures, 8) row and column and bit failures. For each

case the probability of that case occurring without causing

overall failure is calculated .

Case 1

The probability of no failures is:

ns ns nm
yc yr yb

Case 2

The pr·obability of benign column failures is given by the

- 68 -

probability that all the row d ecoders and bit stores work and

that no more than s columns fail with no two failed columns being

in the same position of different arrays:

ns nm s i
yr yb r n

i=l

Case 3

s
c

ns-i
yc

i
(l-ye)

The probability of benign row failures is similar to case 2 with

yr and yc interchanged:

ns nm s i
yc yb r n

i=l

Case 4

s
c

ns-i
yr

i
(1-yr)

The probability of benign bit store failur·es is the probability

that not more than m bits fail, with no failures occurring in the

same address in differ·ent arrays:

ns ns
yc yr

Case 5

m i m
r n C
i=l

nm-i
yb

i
(l - ye)

For a mixture of row and column failures to be benign, they must

all occu t' in the same array. The pr-ob abi lity is derived by tak

ing the c a se that, for one array, not all rows and not all

columns work :

nm (n-l)s
yb yc

(n-l)s
yr

s s
n (l-ye) (1-yr)

- 69 -

Case 6

This case is simplified by taking the probability that none of

the column failures conflict with each other and that none of the

bit failures conflict with each other . The case of column

failures conflicting with single bit failures is ignored:

ns s s
yr (I n C

i=1

Case 7

ns- i
yc

i m i m
(1-yc))(I n C

i=1

nm-i
yb

i
(1-yb))

This case is derived from case 6 by interchanging yc and yr:

ns s i s
yc (I n C

i=1

Case 8

ns- i
yr

i m i m
(1-yr))(I n C

i=1

nm-i
yb

i
(1-yb))

This is similar to case 5 where all failures have to be in the

same arr·ay:

(n-l)m (n-1)s
yb yr

Calculation of yield

(n-1)s
yc

m s s
n (1-yb) (1-yc) (1-yr)

The yield for th e whole memory is given by

y = yd ye

where ye is obtained by taking the sum of the probabi lities of

the eight cases .

