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ABSTRACT 
 

 The last decade has seen an outgrowth in the development of synthetic 

methodologies exploiting benzyne.  The unique ability of this reactive intermediate to 

directly furnish ortho-difuntionalized aromatic systems first stoked interest in this 

research group as a possible partner in asymmetric arylation reactions.  Since our initial 

forays, we have expanded our synthetic strategies to include bond insertions, 

cycloadditions, condensations, and multicomponent reactions. 

 The first project discussed in this volume is the development of an aryne 

annulation strategy for constructing common, synthetically useful heterocyclic structures 

in a convergent manner.  We have developed a convergent approach to indoles and 

indolines.  Likewise, through an orthogonal functional group intallation upon an enamine 

substrate, isoquinolines, quinolines, and isoquinolones can all be accessed as well.  In this 

manner, we have been able to generate an array of functionalized heterocycles, including 

some that are prohibited by traditional means of synthesis.  We have also begun to 

understand some of the reactivity trends in this context for the elusive aryne reaction 

partner. 

 The development of the aryne annulation strategy for the synthesis of 

isoquinolines directly led to the shortest reported total synthesis of the opiate alkaloid 

papaverine, and the tetrahydroisoquinoline anticancer antibiotic quinocarcin.  Our more 

recent, ongoing efforts toward the synthesis of the bis-tetrahydroisoquinoline antitumor 

molecule jorumycin and its many structural relatives are detailed herein.  Jorumycin has 

been targeted through a combination of aryne annulation and acyl-

alkylation/condensation methodologies aimed at the synthesis of a functionalized bis-

isoquinoline intermediate.  Reduction of this key bis-isoquinoline to a bis-

tetrahydroisoquinoline and subsequent lactamization will provide the pentacyclic core of 

jorumycin and related natural products in only three steps from simple isoquinoline 

building blocks. 

 The final project described is the development of several different aryne 

multicomponent reactions to form novel carbo- and heterocyclic scaffolds, including 

iminoisobenzfurans, iminoindenones, dibenzoketocaprolactams, and 2-quinolones. 
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