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Abstract 

This thesis presents resource-bounded category and resource­

bounded measure - two new tools for computational complexity theory - and 

some applications of these tools to the structure theory of exponential 

complexity classes. 

Resource-bounded category, a complexity-theoretic version of the 

classical Baire category method, identifies certain subsets of PSPACE, E, 

ESP ACE, and other complexity classes as meager. These meager sets are 

shown to form a nontrivial ideal of "small" subsets ot the complexity class. 

The meager sets are also (almost) characterized in terms of certain two-person 

infinite games called resource-bounded Banach-Mazur games. 

Similarly, resource-bounded measure, a complexity-theoretic version of 

Lebesgue measure theory, identifies the measure 0 subsets of E, ESPACE, 

and other complexity classes, and these too are shown to form nontrivial 

ideals of "small" subsets. A resource-bounded extension of the classical 

Kolmogorov zero-one law is also proven. This shows that measurable sets of 

complexity-theoretic interest either have measure 0 or are the complements of 

sets of measure 0. 

Resource- bounded category and measure are then applied to the 

investigation of uniform versus nonuniform complexity. In particular, 

Kannan's theorem that ESPACE CZ P/Poly is extended by showing that P/ Poly 

n ESPACE is only a meager, measure 0 subset of ESPACE. A theorem of 

Huynh is extended similarly by showing that all but a meager, measure 0 

subset of the languages in ESPACE have high space-bounded Kolmogorov 

complexity. 



vi 

These tools are also combined with a new hierarchy of exponential time 

complexity classes to refine known relationships between nonuniform 

complexity and time complexity. 

In the last part of the thesis, known properties of hard languages are 

extended. In particular, recent results of Schoning and Huynh state that any 

language L which is ~p -hard for E or ~p -hard for ESPACE cannot be 
m T 

feasibly approximated (i.e., its symmetric difference with any feasible language 

has exponential density). It is proven here that this conclusion in fact holds 

unless only a meager subset of E is ~p -reducible to L and only a meager, 
m 

PSPACE . measure 0 subset of ESPACE is ~ -reduc1ble to L. (It is conjectured, 
m 

but not proven, that this result is actually stronger than those of Schoning 

and Huynh.) This suggests a new lower bound method which may be useful in 

interesting cases. 
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1. Introduction 

This thesis presents resource-bounded category and resource-bounded 

measure - two new tools for computational complexity theory - and some 

applications of these tools to the structure theory of exponential complexity 

classes. 

Like the reducibilities ~p and ~p introduced by Cook [1971), Karp 
T m 

[1972), and Levin [1973), and like the generalized Kolmogorov complexities 

investigated by Hartmanis [1983), Sipser [1983), and others, these tools are 

complexity-theoretic generalizations of well-developed mathematical methods. 

Specifically, resource-bounded category generalizes the classical Baire 

category method and resource-bounded measure generalizes Lebesgue measure 

theory. 

This thesis falls naturally into two main parts. In sections 3 through 5 

we introduce resource-bounded category and measure and their basic 

properties. In sections 6 through 10 we apply these tools to the structural 

investigation of exponential complexity classes. 

Resource-bounded category and measure impose new structure on (i.e., 

reveal new structure in) certain complexity classes by identifying certain 

subsets of these classes as "small." 

Sets which are small in the sense of category are called meager . T he 

classical Baire category method (in Oxtoby [1971), for example) says what it 

means for a subset of a complete metric space to be meager. A computable or 

effective, version of Baire category was introduced by Mehlhorn [1973) and 

has also been investigated by Lisagor [1979]. This effective version says what 

it means for a subset of the set of recursive functions to be meager. The 

resource-bounded version of Baire category developed in section 3 is a 
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natural extension of these ideas which enables us to discuss meager subsets of 

complexity classes like PSPACE, E, ESPACE, etc. (See section 2 for notations 

and terminology used in this introduction.) As it turns out, our formulation is 

general enough to include classical and effective versions as special cases, so 

the treatment here is self-contained. 

In classical Baire category, meager sets admit a characterization 

(described in Oxtoby [1971]) in terms of certain two-person infinite games of 

perfect information, called Banach-Mazur games. Computable Banach-

Mazur games were introduced in Lisagor [1979] and shown to give an analogous 

characterization in the effective setting. Resource-bounded Banach-Mazur 

games are introduced in section 4 and shown to (almost) characterize sets 

which are meager in the corresponding sense. 

Suppose a language L is chosen probabilistically by using an independent 

toss of a fair coin to decide whether each string is in L. Then classical 

Lebesgue measure theory (described in Halmos [1950] and Oxtoby [1971], for 

example) identifies certain measurable sets of languages (also called events) 

and assigns to each measurable set X a measure J,l(X), which is the probability 

that the language so chosen will be an element of X. A set X of languages is 

then small in the sense of measure if it has measure 0. E! fective versions of 

measure theory, which say what it means for a set of computable languages to 

have measure 0 as a subset of the set of all such languages, have been 

investigated by Friedzon [1972], Mehlhorn [1974], and many others. The 

resource-bounded measure theory introduced in section S has the classical 

and effective theories as special cases, but also defines measurability and 

measure for subsets of many complexity classes. The small subsets of the 

complexity class are then the measure 0 sets. 
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It is tempting and thought-provokinK to regard the measure of a subset 

X of a complexity class <: as the "conditional probability" that L E X, given 

that L E <:, when L is chosen by the above-mentioned experiment. However, 

this interpretation should not be taken seriously because e is itself a 

countable, hence measure 0, subset of the set of all languages. (See the 

remarks on the Borel paradox in Kolmogorov [1933), for example.) 

The main results of sections 3 through 5 are the definitions of the 

resource-bounded meager and measure 0 sets, the justification for calling these 

sets small (especially Theorems 3.12 and 5.9), the game characterization of 

meager sets (Theorems 4.3 and 4.4), and a resource-bounded generalization of 

the classical Kolmogorov zero-one law (Theorem 5.15) which indicates that 

measurable sets of interest in complexity theory have measure 0 or 1. Many 

other results can be proven but are not included here because they are not 

needed for the applications in the ensuing sections. 

The applications in sections 6 through 10 all concern the structure of 

exponential time and space complexity classes. Despite the fact that such 

classes are far beyond the realm of feasible computation, there are three good 

reasons for studying their structure. 

The first reason is the unfortunate circumstance that many known 

methods do not work below this level. One of the main areas of complexity 

theory, the effort to clarify relationships between uniform and nonuniform 

complexity measures, is currently in this predicament. 

A central part of the study of uniform versus nonuniform complexity is 

the ongoing investigation of (nonuniform, Boolean) circuit-size versus (uniform, 

algorithmic) time and space. In particular, if P/Poly is the set of languages 

which have polynomial-size circuits, then it is clear that P C P/Poly and that 
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P/Poly g: REC. The following is also known . 

Theorem Ll (Kannan [1982]). ESP ACE Q: P /Poly. 0 

It is generally believed that NP ~ P/Poly and in fact Karp and Lipton [1980] 

have shown that NP C P/Poly has the unlikely consequence of collapsing the 

polynomial-time hierarchy to the second level. Nevertheless, the weaker 

conjectures NP ~ SIZE(n) and E ~ P/Poly have yet to be proven, and the 

results of Wilson [1985] show that even these will require nonrelativizable 

proof techniques. 

In section 7 we extend Theorem 1.1 by "widening the separation" 

between ESPACE and P/Poly n ESPACE. As a matter of fact, our 

development of resource-bounded category and measure began with the 

following question. Among languages in ESPACE, is the phenomenon of not 

having small (e.g., polynomial-siz e) circuits rare or is it in some sense typical? 

In section 7 we show that the phenomenon is very typical in the senses of 

category and measure. For example, as a subset of ESPACE, P/Poly n 

ESPACE is meager and has measure 0. 

Although the results in section 7 were originally proven directly, they 

are proven here as easy consequences of the results in section 6, where we 

investigate the relationships between (nonuniform) resource-bounded 

Kolmogorov complexity and uniform time and space complexity. Our starting 

point for this is the following known fact, which is roughly equivalent to 

Theorem 1.1. 

Theorem 1.2 (Huynh [1986b]). There is a language L E ESPACE such that 

KS[2n}(L~n) > 2n - 1 a.e. 0 

In section 6 we extend this existence theorem by proving an "abundance 
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theorem" which says that a comeager, measure 1 set of the languages L in 

ESPACE have KS[2°}(L~n) > 2n i.o. It is interesting to note that the category 

portion of this result is proven by formulating the "voting argument," by 

which Theorems 1.1 and 1.2 were originally proven, as a winning strategy for a 

resource-bounded Banach-Mazur game. Moreover, playing this strategy 

against itself immediately gives Huynh's proof of Theorem 1.2. 

In sections 6 and 7 we also investigate nonuniform complexity in 

exponential time classes, but the results here are less satisfying. As 

mentioned earlier, an analogue of Theorem 1.1 for E is conjectured but will 

probably be very hard to prove. The same holds for Theorem 1.2. 

Nevertheless, we can generalize the notion of exponential time to more 

accurately pinpoint the limits of relativizable methods, and then prove 

category and measure results right up to these limits. 

To this end, we introduce the G-hierarchy G0 , G1 , ... in section 2. 

Each Gi is a class of functions from N to N, these functions being regarded 

as growth rates. The class G0 contains all linearly bounded growth rates and 

the class G1 contains all polynomially bounded growth rates. Each class Gi is 

closed under composition and each class Gi +1 contains growth rates which 

asymptotically dominate all growth rates in Gi . Thus, for i > 1, Gi contains 
00 

superpolynomial growth rates. Nevertheless, every element of U Gi is o(2n), 
i = O 

i.e., subexponential. 

We then define a hierarchy E 1 , E2 , via E · = DTIME(2Gi- 1). 
1 

The 

first two levels of this hierarchy are the widely studied exponential time 

complexity classes E
1 

= DTIME(2linear) = E and E
2 

= DTIME(2polynomial) 

= EXP. Here we use the expression "exponential time complexity class" to 

refer to any of the classes Ei . In sections 6 and 7 we investigate nonuniform 
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complexity in these classes. Among other things, we show that P/Poly is 

meager and has measure 0 in E3 and that SIZE(nk) is meager and has measure 0 

in E2 . Since Wilson [1985] has exhibited oracles relative · to which E2 C 

P/Poly and E C SIZE(n), these results are essentially the strongest that can 

be proven by relativizable means. 

The second reason for studying the structure of exponential complexity 

classes is the recent emergence of results which relate questions about these 

classes to open questions about classes at lower levels. As just one example, 

we note that Hartmanis and Yesha [1984] have shown that P/Poly n PSPACE 

~ P if and only if E ~ ESPACE. 

The third reason for studying the structure of exponential complexity 

classes is derivative from the first, and is the motivation for sections 8 

through 10 of this thesis. This is the fact that, unlike lower-level classes, 

the exponential classes have been proven to contain intractable problems. For 

the purpose of proving intractability of specific problems - arguably the most 

important objective of complexity theory- this existence of intractability is a 

valuable resource. 

In practice, proofs that specific languages L are intractable have taken 

the following three-part form. 

(i) A complexity class e is shown by diagonalization to contain an 

intractable language. (The language so constructed does not 

correspond to any natural problem.) 

(ii) The specific language L is then shown to be polynomial-time 

hard for e. i.e., it is shown that every language in e is polynomial­

time reducible to L. 

(iii) It is inferred from (i) and (ii) that some intractable problem is 
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reducible to L, whence L itself must be intractable. 

Thus the structure of the class e under polynomial-time reducibility allows us 

to infer the intractability of a specific problem from the existence of 

intractability in e. 

The advantage of this method is that part (ii), a "positive" assertion 

about what can be efficiently computed, is easier to establish by known 

methods than a direct proof of the "negative" assertion that L cannot be 

efficiently computed. 

For example, a number of problems are now known to be intractable 

because they are polynomial-time hard for E or ESPACE. (For examples, see 

Meyer and Stockmeyer [1972] and Stockmeyer and Chandra [1979].) Similarly, 

the real significance of the P versus NP question is the fact that many 

extremely important computational problems are known to be hard for NP, so a 

proof by any means that P ~ NP will imply immediately that these problems 

are not in P. 

The properties of languages which are hard for various complexity 

classes have been investigated extensively. Recently it has been shown that 

the intractability of hard languages for E and ESPACE also includes lower 

bounds for "approximate recognition." In particular, the following two facts 

are known. 

Theorem 1.3 (Schoning [1986], Huynh [1986a)). If L is ~p -hard for E, then L is 
m 

c 
2n far from P for some c > 0. 0 

Theorem 1.4 (Huynh [1986b]). If L 
p nc 

is 5: -hard for ESPACE, then L is 2 far 
T 

from P for some c > 0. 0 

Unfortunately, most problems which we would like to prove intractable 
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are probably not hard for such large classes as E or ESPACE. Efforts to 

prove the intractability of these problems have thus focused on carrying out 

part (i) of the above method for smaller classes ~. 

Here we propose a different remedy. Let 'Jb(L) be the set of languages 

which are polynomial-time reducible to L. Part (ii) of the above method 

requires us to show that e C 'Jb(L), i.e., that L contains all information about 

e in %-accessible form. In sections 9 and 10 we prove that, for e = E and e 

ESPACE, it suffices just to prove that 'Jb(L) n C is a non-small subset of 

e, i.e., that L contains a "substantial amount" of information about e. 

Specifically, we prove that the conclusion of Theorem 1.3 holds if a 

nonmeager subset of the languages in E are ~P -reducible to L. Similarly, the 
m 

conclusion of Theorem 1.4 holds if either a nonmeager or a non-measure 0 

subset of the languages in ESPACE are ~PSPACE_reducible to L. Stated in 
T 

the contrapositive, these results say that any language which is feasibly 

approximable contains very little accessible information about the class e. In 

the course of proving these results we also prove that "most" languages in E 

and ESPACE are intractable, even to approximation. 

Although it appears that we have greatly weakened the hypotheses of 

Theorems 1.3 and 1.4, this has not been proven. It is conceivable that every 

language which contains nonmeager or non-measure 0 accessible information 

about one of these classes is actually hard for that class. In section 8, after 

introducing some notation, we formulate some partial information 

hypotheses. These are conjectures which assert the existence of languages L 

E e such that 'Jb(L) n e is not small in ~ and also does not equal e, i.e., L 

contains "accessible partial information" about ~. If these conjectures hold, 

and can be proven, then the methods provided by sections 9 and 10 may lead 



- 9-

to interesting intractability proofs. 

The main results of sections 6 through 10 are the extensions of 

Theorems 1.1, 1.2, 1.3, and 1.4 (Theorems 7.2, 6.1, 10.6, and 9.3, respectively), 

the analysis of nonuniform complexity versus exponential time (Theorems 6.6 

and 7.6), and the fact that "most" languages in E and ESPACE are hard to 

approximate (Theorems 9.1 and 10.5). 

It should be noted here that the very interesting "highness" and 

"lowness" properties investigated by Schoning [1983], Balcazar, Book, and 

Schoning [1986], and others are somewhat analogous to the notions of 

accessible information content introduced in section 8. 
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2. Preliminaries 

If X and Y are sets, then X\Y = {x E X I x !l y}, X6. Y = (X\Y) U (Y\X) is 

the symmetric difference of X and Y, and lXI is the cardinality of X. 

We write {0,1}* for the set of all finite binary strings, lxl for the 

length of a string x, }.. for the empty string, {0,1} + for {0,1}*\(}..), {O,l}s:n for 

{x E {O,l}*llxl ~ n}, and {O,l}n for {x E {O,l}*llxl = n}. We fix the 

lexicographic enumeration s 0 = >-., s 1 = 0, s2 = 1, s 3 = 00, · · · of {0,1}* and 

let next be the successor function for this enumeration, i.e., next (sk) = 

sk +1 . We write x C y to indicate that x is an initial substring of y, i.e., y 

xz for some z. 

All functions, unless otherwise stated, are from {0,1}* into {0,1}*. Such 

functions are also called transductions. 

composition of f with itself. 

We write fn for the n- fold 

We say a condition 9(n) holds almost everywhere (a.e.) if it holds for 

all but finitely many n E N. We say 9(n) holds infinitely often (i.o.) if it 

holds for infinitely many n E N. 

All languages here are sets L C {0,1)*; we write 'P({O,l}*) for the set 

of all languages. We identify a language L with its characteristic bitstring 

b0b1 b2 •.• , where bk is 1 if sk E L and 0 otherwise. A string x is an initial 

bitmap of a language L, and we write x C L, if x is an initial substring of the 

characteristic bitstring of L. We write L~n for L n {O,Hs:n and L =n for 

L n to,un . 

Our model of algorithmic computation is the multitape Turing machine 

(TM). We write REC for the set of languages L which can be recognized by a 

deterministic TM. For a resource bound t :N - N we write DTIME(t) 
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(respectively, DSPACE(t)) for the set of languages L which can be decided by 

a deterministic TM which halts in O(t(n)) steps (respectively, after using 

O(t(n)) workspace) on inputs of length n. Similarly, NTIME(t) is the set of 

languages L which can be accepted by a nondeterministic TM which halts in 

O(t(n)) steps on all accepting computations. We mention the following well-

known uniform complexity classes. 

P = U{DTIME(nk) I k E N} 

NP = U{NTIME(nk) I k E N} 

PSPACE = U{DSPACE(nk) I k E N} 

E = U{DTIME(2kn) I k E N} 

ESP ACE = U{DSP ACE(2kn) I k E N} 

k 
EXP = U{DTIME(2n ) I k E N} 

EXPSPACE 
k 

U{DSP ACE(2n ) I k E N} 

For each E N we define a class Gi of functions from N into N as 

follows . 

G0 = {f I ( 3k)f(n) ~ kn a.e.} 

G - 2Gi(log n) {f I ( G ) f( ) 2g(log n) } i+l- = :3g E i n S: a.e. 

F 1 d f h f . - G b - ( ) 2 - ( ) 2g,Oog n) or i 2: , we e ine t e unctiOn gi E i y gl n = n , gi + l n = 

We will think of the functions in these classes as growth rates. In particular, 

G0 contains the linearly bounded growth rates and G1 contains the 

polynomially bounded growth rates. It is easy to prove by induction that for 

each i E N, the following hold. 

(i) Gi is closed under composition. 

(ii) For each f E Gi , f(n) = o(ii+l(n)). 

(iii) ii + l(n) = o(2n). 
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Thus, for each i > 1, Gi contains superpolynomial growth rates, but all growth 

rates in the G-hierarchy are subexponential. 

Using the G-hierarchy, we define, for ~ 1, the following u niform 

complexity classes. 

Ei = DTIME(2°'-1
) = U{DTIME(2g) I g E Gi _ 1} 

E -SPACE = DSPACE(2G'- 1
) 

1 

Using the standard hierarchy theorems for deterministic time and space, it is 

clear that E i ~ Ei + l and E iSPACE ~ Ei + !SPACE for each i ~ 1. It is also 

clear that E 1 = E, E 2 - EXP, E 1SPACE = ESPACE, and E2SPACE = 

EXPSPACE, i.e., the first two levels of these hierarchies are the well-known 

exponential complexity classes. We generalize this terminology by calling each 

Ei an exponential time complexity class and each EiSPACE an exponential 

space complexity class. (Note that all these are well below doubly ex ponential 

(lo g nJ0111 

levels.) The class E3 = DTIME{ 2n ) will be of particular interest. 

We also define some classes of transductions, i.e., of functions which 

transform strings. The computational model we use for this is the TM 

transducer, which is a TM augmented with a write-only output tape, the 

contents of which are not counted as workspace. To avoid confusing 

transduction classes with complex ity classes of languages, we will wri te 

transduction classes using lower-case letters. T he following classes are used. 

all = {f If: {0,1}* -. (0,1}*} 

rec = {f E all If is recursive} 

pi = (f E all If is computable in Gi time} 

pi space = {f E all If is computable in Gi space} 

logispace = {f E alii f is computable in O((log n)i) space} 

polylogspace = U logispace 
i~1 
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We write p, pspace, and logspace for pl , p1space, and log1space, respectively. 

If L1 and L2 are languages, then a many-one reduction of L1 to L2 is 

a transduction g such that for all x E {0,1)* , x E L1 iff g(x) E L2 . As 

usual, then, L1 is polynomial-time many-one reducible to L2 , and we write 

L1 S:~ L2 , if some g E p is a many-one reduction of L1 to L2 . 

For Turing reducibilities we use oracle machines. An oracle machine is 

a TM M augmented with a write-only oracle tape. An arbitrary language 

A C {0,1}* may be used as the oracle. During any cycle of execution, the 

machine is allowed to "query the oracle," i.e., to base its next action on 

whether or not the string currently written on the oracle tape is an element 

of A. We write L(MA) to denote the language decided by M when equipped 

with the oracle A. We then say L1 is polynomial-time Turing reducible to 

p 
L2 , and write L1 S: L2, if there is a polynomial-time- bounded oracle machine 

T 
L2 M such that L1 = L(M ). The polynomial-space Turing reducibi lity 

PSPACE · d f ' d 1 1 ' th h . h h 1 S: 1s e me ana ogous y, Wl t e convention t at t e orac e tape is 
T 

counted as workspace . For i ~ 1, we also consider the Turing reducibility 

S:~i , which is like S:~ , except that the oracle machine is Gctime-bounded. 

For a fixed TM M, a resource bound t, a language L, and n E N, the t-

time-bounded Kolmogorov complex ity of L:5:n relative to M is 

where -,r is the shortest "program," i.e ., binary string, such that for each 

x E {O,l}:S:n , the machine M on input <?r, x> correctly decides in S: t steps 

whether x E L. Since {O,l}:S:n = {s0 , ••• ,s n }, we abbreviate this condition by 
2 - 2 

2" 2 saying that M{ ( -,r, si)) - = L:S:n in S: t time. If there is no such program, 
i = O 

then KT M[t](L:S:n) oo • The space-bounded Kolmogorov complex ity 

KSM[t](L:5:n) is defined similarly, except that M decides membership in L using 



-14-

~ t cells of worktape. 

It is well-known (see Huynh [1986b], for example) that there exist a 

universal TM U and a polynomial p such that for each TM M there is a 

constant c such that the following hold for all t, L, and n. 

(i) KT u[t](L~n) ~ KT M[p(ct + c)](L~n) + c. 

(ii) KS0[t](L~n) ~ KSM[ct + c)(L~n) + c. 

As usual, we fix such a universal machine U and omit it from the notation . 

The time and space-bounded Kolmogorov complexities KT[t)(L =n) and 

KS[ t](L =n) are defined analogously. 

All circuits here are Boolean (combinational, acyclic) circuits over the 

basis {and, or, not, 0,1}. A circuit has some number n of inputs and a 

distinguished output gate at which it computes a set S C {O,l}n in the usual 

way. The size of a circuit c is the number size( c) of iates in c. (Inputs are 

not gates.) The circuit-size compexity of a language L is the function 

CSL : N __. N defined by 

CSL(n) = min(size(c) lc computes L=n>· 

We will insist that a circuit-size bound be a function f :N __. N which is 

nonzero, computable in space polynomial in n, and such that lim n2 -n f(n) 
n-.oo 

exists (or is infinite). For each such f we define the nonuniform complexity 

class 

SIZE(f) = (L C (O,l}* I CSL = O(f)} . 

We call f trivial if SIZE(f) = 'j)({O,l}*), otherwise nontrivial. Well-known 

theorems of Lupanov and Shannon establish that a circuit-size bound f is 

nontrivial if and only if lim n2 -n f(n) = 0. For any circuit-size bound f, we 
n-.oo 

note that SIZE(f) has the cardinality of the continuum and hence contains many 

nonrecursive languages. Finally, we define the set P/Poly = U{SIZE(nk) IkE N} 
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of all languages which have polynomial-size circuits. 

Following Yesha [1983], Schoning [1986], and others, a language L is f( n) 

c lose to a complexity class C if there is a language L' E C such that I(L D. L'\;n 1 

< f(n) a.e. Otherwise, L is f(n) far from C. 
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3. Resource-Bounded Baire Category 

In this section we introduce and develop a general formulation of notions of 

Baire category on ~({0,1}*). The formulation is general enough to admit the 

classical and effective notions as special cases, but its real significance is that 

it admits resource-bounded versions of Baire category which will be of use 

in computational complexity theory. 

We will define a notion of category to be a class of functions from 

{0,1 }* to {0,1 }* which contains certain initial functions and is closed under 

certain operations. Our first task is thus to specify these initial functions 

and operations. 

We fix once and for all a one-to-one pairing function < , > from 

{0,1}* onto {0,1}* such that the pairing function and its associated projections 

7f1(<x,y>) = x, 7f2(<x,y>) = y are computable in logarithmic space. We insist 

further that <x,y> E {O}* iff x, y E {O}*. This latter condition canonically 

induces a pairing function < , > from N X N onto N. We write <x,y,z> for 

<x,<y,z>>, etc., so that tuples of any fixed length are coded by the pairing 

function. 

By the conditional function we mean the function cond(<x,y,z,w>) 

whose value is z if x C: y and w otherwise. 

The composition fog, concatenation fg, and pairing <f,g> of two 

functions f and g are defined by (f og)(x) = f(g(x)), (fg)(x) = f(x)g(x), and 

<f,g>(x) = <f(x),g(x)>, respectively. 

The functions and operations defined thus far are natural and somewhat 

standard in the theory of subrecursive function classes. Two more operations 

which will be needed here are specified in the following definition. These 
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operations are a little more awkward to state than the preceding ones but are 

natural in the context of resource-bounded computation. Both are called 

"inversion" operations because they involve reconstructing ways in which a 

string could have been built up by recursion. 

For a function f and k E N it will be convenient to define the function 

fk(x) k = f(<O ,x>). The function f can thus be considered a "uniform 

enumeration" of the functions f o• f 1' 

Definition 3.1. Let f be a function. 

1) The type I inversion of f is f 1(x) = <Ok,xk>, where k is maximum 

such that the sequence x0 = X, xn + 1 = f n<xn) satisfies 

x0 C x 1 C · · · C xk C x . 
~ ~ ~ 

2) The type II inversion of f is f 11(x) = om, where m = 0 if X = ). 

and otherwise m is maximum such that there exists a sequence 

x 0, ... , xm_1 satisfying 

>- c x0 C f 0(x0) C ·· · c xm_1 c fm_1<xm_1) C x 
~ ~ ~ ~ ~ ~ 

Since f1(x) and f 11(x) specify "internal" properties of the string X with respect 

to f, it is also natural to think of these inversion operations as "internal 

primitive recursion" and "internal search recursion," respectively. 

The general formulation of notions of Baire category can now be stated 

and developed. 

Definition 3.2. A notion of category is a class r of functions from {0,1}* 

into (0,1}* which contains the projections, all constant functions, and the 

conditional function, and which is closed under composition, concatenation, 

pairing, and type I inversion. A notion of category r has the Mazur 

property if it is also closed under type II inversion. 
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From now on, r, r', etc. will denote notions of category. 

The essential link between Definition 3.2 and the development of a 

Baire category theory for ':P({O,l}*) is the simple observation that binary 

languages can be constructed by using functions from {0,1}* into {0,1}*. 

A constructor is a function "' which satisfies x C "/(x) for all 
rt= 

x E {0,1}*. The result of a constructor "' (i.e., the language constructed by 

"/) is the unique language R("/) such that "/k(~) C R("') for every k E N. A 

clocked constructor is a function "' which satisfies x C "/(<w,x>) for all 
rt= 

w E {0}* and x E {0,1}*. The result of a clocked constructor "' is the unique 

language R("/) such that xk C R("/) for every k E N, where x0 = ~ and 

"/k(xk). (No confusion will result from the obvious ambiguity here.) 

Intuitively, a constructor or clocked constructor "' builds a language 

R("/) by starting with ~ and then iteratively generating successively loneer 

initial bitmaps of R("/). A clocked constructor is permitted to have an "agenda 

that varies over time," i.e., to extend the initial bitmap in a way which 

depends upon the stage k of the construction. 

For each r, r c denotes the set of all constructors in r and r cc denotes 

the set of all clocked constructors in r. It is then natural to define the sets 

R(r c>, R(r cc) of all R("/) such that "' E r c• "' E r cc• respectively. 

Lemma 3.3. If r is a notion of category, then R(r c) = R(r cc). 

Proof. If "/ E r c• then "/ o '11" 2 E r cc and R(')' o '11" 2) = R("/), so 

R("/) E R(r cc). Conversely, if "' E r cc , then "' o -yl E r c and R("/ o "/I) 

R("/), so R("/) E R(r c). 0 

Lemma 3.3 says that it makes no difference whether constructors or 

clocked constructors are used in a notion of category. This justifies the 
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following definition. 

Definition 3.4. The result class of r is R(r) 

The following routine lemma is the reason for our interest in the 

transduction classes defined in section 2. 

Lemma 3 .5. The classes all, rec, pi(i L 1), pispace(i L 1), logispace(i L 1), and 

polylogspace are notions of category with result classes as follows. 

(i) R(all) = ':P({O,l }*). 

(ii) R(rec) = REC. 

(iii) R(pi) = Ei . 

(iv) R(pispace) = EiSPACE. 

(v) R(logispace) = DSPACE(ni). 

(vi) R(polylogspace) = PSPACE. 

The classes all, rec, and pi space (i L 1) have the Mazur property. 0 

The classes all and rec are, respectively, the classical and effective 

notions of category on 'Y({O,l}*). The classes pi , pispace, logispace, and 

polylogspace are resource-bounded notions of category. Of course many 

other such notions can be defined, e.g., by relativization, variation of the 

resources or bounds, etc. 

We conjecture that the time-bounded classes pi do not have the Mazur 

property, but this is probably hard to prove, since it implies, for example, 

that p does not contain every function which is computable on-line in 

polynomial space. 

The significance of a notion of category r lies in the structure it 

imposes on ':P({O,l}*) and on the result class R(r). In particular, these 

structures yield natural notions of "smallness" for subsets of ':P({O,l}*) and 
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R(r). The structures on ~({0,1}*) and on R(r) are analogous and will be 

developed in parallel. 

Definition 3.6. For each x E {0,1}*, the basic set about x in ~({O,l}*) is 

Bx = {L C {0,1}* I x C L}. The corresponding basic set about x in R(r) is 

Bx n R(r). 

Definition 3.7. A set Z C ':P((O,l}*) is r-nowhere dense (respectively, 

nowhere dense in R(r)) if there exists h E r c such that Bh(x) n Z = 0 

(respectively, Bh(x) n R(r) n Z 0) holds for every x E {0,1}*. 

Intuitively, a set Z is r -nowhere dense if r provides sufficient 

resources to compute from any basic set Bx a basic set By C Bx which 
~ 

completely avoids Z. 

The following lemma summarizes some easy properties of nowhere dense 

sets. 

Lemma 3.8. 

1) If Z is r-nowhere dense, then Z is nowhere dense in R(r). 

2) If Z is r-nowhere dense and r C r', then Z is r'-nowhere dense. 

3a) Subsets of r-nowhere dense sets are r-nowhere dense. 

3b) Subsets of sets nowhere dense in R(r) are nowhere dense in R(r). 

4a) Finite unions of r-nowhere dense sets are r-nowhere dense. 

4b) Finite unions of sets nowhere dense in R(r) are nowhere dense in 

5) Finite subsets of R(r) are r-nowhere dense. 

Proof. Assertions 1, 2, 3a, and 3b are obvious. 

To prove 4a, let Z, Z' be r -nowhere dense sets, with h, h' E r cc as 

witnesses. Then h o h' E r c testifies that Z U Z' is r-nowhere dense. The 
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result for arbitrary finite unions follows inductively. The proof of 4b is 

identical. 

To prove S, fix "' E r cc· By 4a it suffices to prove that the singleton 

set {R("/)) is r -nowhere dense. 

Define 

{ 
xO if xl C "/("/1(x)) 

h(x) 
xl otherwise . 

Then h E r c• so it suffices to show that Bh(x) n {R("/)} = 0 holds for all x. 

If x g: R("/) this is trivial, so fix x C R("/). Let z = "/("/1(x)). Then z C 

R("/) and z g: x C R("/), so x C z, so either xO C z C R("/) or xl C z C 
~ 

R("/). In the first case h(x) = xl U: R("/); in the second case h(x) = xO U: 

R("/). Either way, Bh(x) n {R("/)} = 0. 0 

We are finally ready to define what it means for a se.t to be "small" 

with respect to a notion of category r. 

Definition 3.9. A set X C Cj>({O,l}*) is r - meager (respectively, meager in 

R(r)) if there exist a function h E r and a family {Zk I k EN} of sets such 

that 

(i) X C U{Zk lk EN}, 

(ii) for each k E N, the function hk testifies that Zk is r-nowhere 

dense (respectively, nowhere dense in R(r)). 

(Note that this forces h E r cc·> A set X C 'j>({O,l}*) is r-comea.ger 

(respectively, comeager in R(r)) if its complement Cj>({O,l}*)\X is r-meager 

(respectively, meager in R(r)). 

Thus a set X is r -meager if r provides sufficient resources to 

"uniformly enumerate" a family of r-nowhere dense sets which covers X. 

More concisely, X is r-meager if it is contained in a ·T-union of r-nowhere 
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dense sets." 

If r = all, then ''r-meager" and "meager in R(r)" are both equivalent to 

the classical notion of "meager set", i.e., "set of first category". If r = rec, 

then "meager in R(r)" is equivalent to the effective notion of meagerness in 

Mehlhorn [1973] and Lisagor [1979]. 

The rest of this section will develop the interpretation of meager sets 

as "small" subsets of R(r). For this, we need the following definition. 

Definition 3.10. A r-union of r-meager sets (respectively, of sets meager in 

R(r)) is a set X such that there exist a function g E r and a family 

{Xk IkE N} of sets such that 

(i) X = U{Xk I k EN}, 

(ii) for each k E N, the function gk testifies that Xk is r-meager 

(respectively, meager in R(r)). 

Lemma 3.11. 

0) r-nowhere dense sets are r-meager and sets nowhere dense in 

R(r) are meager in R(r). 

5) Lemma 3.3 holds with "nowhere dense" replaced by "meager" 

throughout. 

6a) r -unions of r -meager sets are r -meager. 

6b) r-unions of sets meager in R(r) are meager in R(r). 

Proof. Assertions 0, 1, 2, 3, and S are obvious and assertion 4 follows trivially 

from assertion 6. 

To prove 6a, assume X is a r -union of r - meager sets with g E r and 

{Xk I k E N} as witnesses. Then for each k, gk testifies that Xk is r -meager, 

i.e., there is a family {Zkj I j E N} of sets such that Xk C U(Zkj I j EN} 
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and each gkj = (gk)j testifies that zkj is r -nowhere dense. Define 

h(<<y,z>,x>) Then h E r, X 

U(Xk I k EN} C U(Zkj I j, k E N} = U(Z~ In E N}, and each hn = g?r 
1
(n)-,r

2
(n) 

I 

testifies that Zn is r-nowhere dense, so X is r-meager. 

The proof of 6b is similar. 0 

Assertions 1 and 2 of Lemma 3.11, though obvious, are important 

because they unify results for various r. For example, if we prove that a 

set X is p-meager, then we know that it is meager in E, but we also know that 

it is pspace-meager, rec-meager, and all-meager, whence it is immediately 

meager in ESPACE, REC, and ':P({O,l}*) as well. Thus a proof that X is p-

meager yields considerably more information than a proof that it is meager in 

E. This is why results are usually stated in terms of r-meagerness, even 

when the matter of primary interest is meagerness in R(r). 

In the classical case, i.e., when r =all, a r -union is simply a countable 

union, so assertions 3 and 6 of Lemma 3.11 say that the meager sets form a 

CT-ideal of subsets of ':P({O,l}*). Accordingly, in the general case, we interpret 

3 and 6 as saying that the r -meager sets form a "r -ideal in ':P({O,l}*)" and that 

the sets meager in R(r) form a 'T -ideal in R(r)''. Assertion 5 then tells us 

that these r-ideals contain many sets. (Note, however, that a singleton set (L} 

need not be r-meager if L ll R(r).) 

It is natural to think of the sets in a r-ideal as small, provided that 

the r-ideal is proper, i.e., does not contain every set. The following 

generalization of the classical Baire category theorem establishes this for the 

meager sets and thereby completes our argument that meager sets can be 

thought of as small sets. The simple diagonalization proof is a natural 

extension of the classical one. 
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Theorem 3.12. 

1) A r -meager set contains no basic set. 

2) A set meager in R(r) contains no basic set in R(r). 

In particular, ~({0,1}*) is not r -meager and R(r) is not meager in R(r). 

Proof. Assertion 1 follows easily from assertion 2 via part 1 of Lemma 3.11. 

(Alternatively, assertion 1 follows from the classical Baire category theorem 

via part 2 of Lemma 3.11.) 

To prove 2, let X C ~({0,1}*) be meager in R(r) with h E r cc and 

{Zk I k EN} as witnesses and let B:l = Bz n R(r) be a basic set in R(r). 

Define 

{ 
h(<A,z>) if x = ).. 

"'f(<w,x>) = 
h(<w,x>) if x ~ ).. , 

and define the sequence x0 = ).., xk+1 = "Yk(xk) 

Note five things: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

-y E r cc• so R(-y) E R<r> . 
I 

R(-y) E Bx for each k E N • 
k 

I I I 

R(-y) E Bxl = Bh()..,z) C Bz 

B~1 n z0 = Bho<z> n z0 = 0, so R(-y) ~ z0 . 

I I 

For k ~ 1, xk ~ >., so Bxk+l n Zk = Bhk(xk) n Zk 

0, so R("Y) ~ zk . 

These things together imply that 

I 

whence X does not contain B z . 

Thus the sets which are meager in R(r) form a proper r-ideal. 

0 
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4. Resource-Bounded Banach-Mazur Games 

It is usually awkward to explicitly exhibit a r-meager set as a r-union of 

r -nowhere dense sets. In this section we give an alternate characterization of 

r -meager sets (and sets meager in R(r)) which is often easier to use when 

proving that a set is r -meager. The characterization is in terms of certain 

two-person infinite games of perfect information, called Banach-Mazur 

games. In the present setting, the games will be resource-bounded in the 

sense that a player may be required to play according to a strategy which can 

be computed within the resources provided by r. Thus the "perfect 

information" may not always be available in a usable form. 

Informally, a Banach-Mazur game is an infinite game in which two 

players construct a language L by taking turns extending an initial bitmap of 

L. There is a distinguished set X of languages such that player I wins a play 

of the game if L E X and player II wins otherwise. 

More formally, a strategy for a Banach-Mazur game is a constructor cr. 

A play of a Banach-Mazur game is an ordered pair (a.,/:3) of strategies. The 

result of the play (a.,/:3) is the language R(a.,/:3) = R(/:3 o a.). This result is 

the language constructed when player I uses strategy a. and player II uses 

strategy {3. If X C ':P({O,l}*) and LI, :Ln are classes of functions, then 

G[X;:L1 •Ln1 is the Banach-Mazur game in which X is the distinguished set, 

player I is required to use a strategy a. E LI , and player II is required to 

use a strategy /3 E En . A winning strategy for player I in G(X; 1:1 , En1 

is a strategy a. E Er such that R(a.,/:3) E X holds for every {:3 E En- A 

winning strategy for player II in G[X ; Er , Enl is a strategy f3 E En such 

that R(a.,/3) !l X holds for every a. E E 1 • A player wins G[X ; Er , Enl 

if he has a winning strategy in G[X ; E 1 , En1· 
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For any strategy {3, we define the associated function {3[ ] from {0,1}+* 

VVe then define the sets 

U{B{3[u] lu E {O,l}+*, llu ll ~ k}, 

n{Y k[/31 I k E N}, 

Z k[/3] = '.P({O,l}*)\ Y k[,B], 

Z[.B] = '.P({O,l}*)\ Y[/31 = U{Zk[/3] Ik E N }. 

(Here {0,1}+* is the set of all sequences of nonempty binary strings and, for 

u = (xl' ... ,xn) E {0,1}+*, llu ll = lx 11+ · · · + 1xn l.) Intuitively, {3[x1, . .. ,xn1 is the 

status of a Banach-Mazur game immediately after player Il's nth move if 

player I appends xi to the bitmap in his i th move and player II uses strategy 

{3 . Thus 8{3[ ] is the set of all languages which could "conceivably" 
Xp ... ,Xn 

result from this play of the game, no matter what strategy either player uses 

after player II's nth move. In this same sense, Y k[,8) is the set of all 

languages which could conceivably result from any play of the game in which 

player II uses strategy {3 in all moves up to and including his response to the 

move by which player I's total contribution to the bitmap reaches or exceeds 

k bits. Hence Y[/3] is the set of all languages which could result from any 

play of the game in which player II uses strategy {3. 

Note that {3[ ] is recursive in {3, but that {3[ ] need not be in r, even 

when {3 E r. Also note that lf3[u) l ~ !lu ll and {3[u] C {3(v] hold for all 

u, v E{O,l}+* with u an initial subsequence of v. 

Lemma iJ... For any strategy {3 E r, Z[,8] is r-meager. 

Proof. Let {3 E r c and define 

{ 
{3(x) 

h( <x,y>) - {3({3(y )x) 
if y ~ 

if y ~ ~ 
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lhii(x) l > k ~ Bx n Zk = 0 

holds for all x and k. Define t3(x) = h(<hii(x),x>). Since h E r cc and r has 

the Mazur property, t3 is a strategy in r. To see that {3 wins G[X ; all, rJ for 

player II, let ex. be an arbitrary strategy for player I. It is immediate from the 

definitions of hii and t3 that lhll ((t3 o cx.)0(~))1 is strictly increasing in n. It 

follows by (*) that for each k there exists n such that B({3 ocx.)n(f,) n Zk = 0 . 

Since ({3 o cx.)0(~) C:: R(cx.,{3) for each n, it follows that R(cx.,t3) r£ Zk for each k. 

But then R(cx.,{3) r£ X, i.e., player II wins, so (a) holds. 0 

Analogously, we characterize the sets which are meager in R(r) . 

Theorem 4.4. For a set X C '.P((O,t}*), consider the following conditions. 

(a) Player II wins G[X n R(r); all, rJ. 

(b) Player II wins G[X n R(r); rec(r), rJ. 

(c) X is meager in R(r). 

In any case, (a) implies (b) and (b) implies (c). If r has the Mazur property, 

then (c) implies (a). 

Proof. It is trivial that (a) implies (b). 

The proof that (b) implies (c) is the same as the proof that (a) implies 

(b) in Theorem 4.3, except that X n R(r) is used in place of X and part 3 of 

Lemma 4.2 is used in place of part 2. 

If r has the Mazur property, then the proof that (c) implies (a) is the 

same as the proof that (b) implies (a) in Theorem 4.3, except that X n R(r) is 

used in place of X and basic sets Bz n R(r) in R(r) are used in place of basic 

sets Bz. 0 

In the case where r has the Mazur property, the equivalence of (a) and 

(b) in Theorem 4.4 is somewhat remarkable. For example, if r = pspace and 
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x C ESP ACE, this says that player II wins G[X; all, pspace] if he wins 

G[X; rec, pspace]. That is, if player II can beat every recursive strategy, he 

can beat every strategy whatsoever. Intuitively, this says that, in the game 

G[X; all, pspace], most of player I's available resources are no help to him. 

The role of the Mazur property in Theorems 4.3 and 4.4 illustrates an 

interesting aspect of the resource-bounded setting. In the classical and 

effective settings (where the Mazur property holds trivially), the fact that 

player II can win whenever the designated set is meager is the "easy direction" 

of the characterization. (This direction was noted by Mazur when he 

invented the classical game; it was Banach who subsequently proved the 

converse.) In the resource-bounded setting, this direction seems to require an 

additional property, which we have called the Mazur property. For example, 

it is not clear that player II wins G[X; rec, p], or even G[X;p,p], whenever X is 

a meager subset of E. 

We conclude this section with an easy application. A language L is 

sparse if there is a polynomial q such that IL = n I ~ q(n) for all n. The 

sparse languages are a central concern of current research in computational 

complexity theory. It is easy to see that the set SPARSE of all sparse 

languages has the cardinality of the continuum, i.e., of ':P({O,l}*). The 

following theorem shows that SPARSE is nevertheless small in the logarithmic 

space-bounded sense of category. 

Theorem 4.5. SPARSE is logspace-meager, hence meager in DSPACE(n). 

Proof. Consider the strategy f3 that extends x by appending 4lxl + 1 l's to 

it. It is clear that f3 is a constructor and f3 E logspace. It is also easy to 

check that, for any strategy a., there are infinitely many n such that 

!R(a.,fJ) = nl = 2n, whence R(a.,fj) e SPARSE. Thus f3 wins G[SPARSE; all, 
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logspace] for player II, so the present theorem follows from Theorem 4.3. 0 
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5. Resource-Bounded Measure 

The sense in which meager sets are small is not always the most intuitive one. 

For example, consider the set X of all languages L such that xx C L only 

holds for finitely many strings x. The strategy /3(x) = xx testifies readily 

that X is p-meager. However, if L is chosen probabilistically by using an 

independent toss of a fair coin to decide whether each si E L, then it is easy 

to see that L will be in X with probability 1, i.e., almost certainly. Thus the 

Baire category notion of smallness disagrees sharply with this very intuitive 

probability measure on <J»({O,l}*). 

This independent coin-toss measure is precisely the classical Lebesgue 

measure on <J»({O,l}*). That is, if we identify a language L with the real 

number x E [0,1] whose binary expansion is the characteristic bitstring of L, 

then the measure of a set of lam~uaies is (when defined) precisely the usual 

Lebesgue measure of the corresponding subset of the unit interval. 

Equivalently, this measure is the product probability measure on [1 {0,1}, 
xE{O,l}* 

where {0,1} has the uniform distribution. 

In this section we introduce and develop resource-bounded (Lebesgue) 

measure, i.e., resource-bounded probability, for complexity classes of 

languages. This will provide a notion of smallness for subsets of these classes 

which corresponds nicely with the classical Lebesgue measure on <J»({O,l}*). 

The subject of this thesis is resource-bounded category and measure in 

exponential complexity classes. It will thus suffice here to say that a notion 

of measure is a class ~ of functions from {0,1}* into {0,1}*and that the 

classes all, rec, pi (i ~ 1), and pispace (i ~ 1) are notions of measure. Some 

results will be stated in terms of arbitrary notions of measure ~. but we will 

only require their proofs to be valid for these examples. This approach is 
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less general than that of section 3 but is still general enough to encompass 

classical, effective, and resource-bounded notions. 

From now on, ~, ~~, etc., will denote notions of measure in the above 

sense . The result classes R(~) are defined exactly as in section 3, so the 

language classes treated here are Cj>({O,l}*), REC, Ei (i 2: 1), and EiSPACE 

(i 2: 1). 

Definition 5.1. The measure of a basic set Bx is t.t<Bx) 2 - lxl . T he 

measure of the empty set is t.t(¢J) = 0. 

Definition 5.2 . A ~-cover is a pair (h,m) E ~2 such that m({O}*) C {O}* and 

holds for each £ E N. If (h,m) is a ~-cover, then h is called the 

enumerator, m is called the modulus, and the real number 

exists and is called the total measure of (h,m). 

Intuitively, a ~-cover is a family of basic sets Bh(}.) , Bh(O) , Bh(OO) , 

such that ~ provides sufficient resources to enumerate the family and to 

compute approximations of the finite total measure of the family . 

Definition 5.3. A ~-cover of a set X C Cj>({O,l}*) is a ~-cover (h,m) such that 

X C U{Bh(Ok) lk E N}. 

Definition 5.4. A ~-null cover of a set X C Cj>({O,l}*) is a pair (h,m) E ~2 

such that the following two conditions hold for each k E N. 

(i) (hk , mk) is a ~-cover of X. 

(ii) t.t*(hk) ~ 2 - k 
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Definition 5.5. Let X C 'j)({O,l}*) and let Xc 'j)({O,l}*)\X be the complement 

of X. 

1) X has ..0.-measure 0, and we write fJ. .0. (X) 

.0.-null cover of X. 

0, if there exists a 

2) X has measure 0 in R(.O.), and we write f.J.(X IR(.O.)) = 0, if 

3) X has ..0.-measure 1, and we write fJ. .0. (X) = 1, if fJ. .0. (Xc) = 0. 

4) X has measure 1 in R(.O.), and we write f.J.(X IR(.O.)) = 1, if 

Thus a set X of languages has ..0.-measure 0 if .0. contains sufficient 

resources to uniformly enumerate ..0.- covers of X with rapidly vanishing total 

measure. 

Note that f.J.(X IR(.O.)) depends only on the set X n R(.O.). In particular, 

the conditions f./.( X IR(.O.)) = 1 and fJ. .0. (X n R(.O.)) = 1 are not equivalent . 

It is amusing to think of f.J.(X IR(.O.)) as the "conditional probability" that 

L E X, given that L E R(.O.), when L is chosen by independent tosses of a fair 

coin. It should be emphasized, however, that this interpretation is not 

meaningful (and is probably misleading) because, in cases of interest, R(.O.) will 

be a countable, hence measure 0, subset of 'j)({O,l}*). 

The next definition and lemma are analogous to 3.10 and 3.11. 

Definition 5 .6. A .0.-union of ..0.-measure 0 sets (respectively, of sets of 

measure 0 in R(.O.)) is a set X such that there exist a pair (h,m) E .0.2 and a 

family {Xk lk E N} of sets such that 

(i) X = U{Xk lk E N}, 

(ii) for each k E N, the pair (hk , mk) E .o.2 testifies that Xk has 



- 35-

11-measure 0 (respectively, has measure 0 in R(l1)). 

Of course any finite union is a 11-union here. 

Lemma 5 .7. 

1) If X has 11-measure 0, then X has measure 0 in R(l1). 

2) If X has 11-measure 0 and 11 C 11', then X has 11'-measure 0. 

3a) Subsets of 11-measure 0 sets have 11-measure 0. 

3b) Subsets of sets with measure 0 in R(l1) have measure 0 in R(l1). 

4a) 11-unions of 11- measure 0 sets have 11-measure 0. 

4b) 11-unions of sets with measure 0 in R(l1) have measure 0 in R(l1). 

5) Finite subsets of R(l1) have 11-measure 0. 

Proof. Assertions 1, 2, and 3 are clear and 4b follows immediately from 4a, so 

it suffices to prove 4a and 5 . 

To prove 4a, let (h,m) E 112 and the family {Xk lk E N) testify that X 

is a 11-union of 11-measure 0 sets. Define 

h'(<u,<v,w>>) = h(<v,<uvO,w>>). 

i j ) j Then h' E tl. and for each k, i, j E N, hk_(<O , 0 > = hi,k+i+l(O ). That is, 

hk_ "weaves together" the enumerators hi,k+i+l for i E N. Note that each 

(hi,k+i+l , mi,k+i+l) is a tl.-cover of Xi with total measure t.t*(hi,k+i+l) ~ 
- (k+i+l) . * * 2 • In 11 we can compute a funct10n m': {0,1) ..... {0,1) such that 

(i) m'({O}*) C {O}*; 

(ii) for each i, j, k, e E N, the condition <i,j> ~ lmk_(Oe)l implies that 

2e+1 
i ~ e + 1 or j ~ lmi,k+i+l(O )1. 

Then (h', m') E 112 . We will show that (h', m') is in fact a 11- null cover of X. 

For this, it suffices to prove that the following three things hold for each k, 

e E N. 



(a) X C U{Bh'(O") In E N}. 
k 

(b) ~ £ tL[Bh~(O") ~ 2-e 

n-lm~(O )I 

(c) JL*(h') ~ 2-k 
k 
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So fix k, e E N. To prove (a) just note that each Xi C u{ Bh (OJ) lj E N} 
l,k+t+l 

= u{Bh~(O") In EN}, i.e., (a) holds. For convenience, write m = lmi,k+i+l(02e+l)l. 

Before proving (b) and (c), note that the following two 

things hold for each i E N. 

(iii) j~O tL(Bh~(<O',OJ>)) = JL*(hi,k+i+l). 

(iv) oo ( ) - c2e+ o 
j Lm JL Bh~(<O',OJ>) ~ 2 . 

Now to prove (b), note that (ii) tells us that 

~ tL( Bh'(O")) 
n= lm~(0£)1 k . 

~ ~ J·~o tL(Bh'k(<O',OJ>)) 
i=£+1 

whence by (iii) and (iv) we have 

~ tL( Bh'(O")) 
n = lm~(O£) I k 

E JL*<hi k+i+l> + f 2 -c2
e+l) 

i = e + I • i=O 
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i .e., (b) holds. Finally, (iii) tells us that 

s: f 2-(k+i+1) 

i=O 

- 2-k - . 
i.e., (c) holds. Thus (h' , m') is a a-null cover of X, so 4a is affirmed. 

To prove 5, it is sufficient by 4a to prove that singleton subsets of 

R(a) have a-measure 0. So let L = R(c5), where c5 E a. Define h(<u,v>) 

c5n(>..), where n is least such that lc5n(>..)l > luvl, and m(<u,v>) = v. Then it is 

easy to check that (h,m) is a a-null cover of {L). 0 

Assertions 1 and 2 of Lemma 5.7 have the same unifying effect as the 

corresponding assertions of Lemma 3.11. Thus, for example, if we prove that a 

set X C "P({O,l)*) has p-measure 0, then we can conclude immediately that 0 = 

,u(XIE) = .u(XIESPACE) = .u(XIREC) = ,u(X). 

Assertions 3 and 4 of Lemma 5 .7 say that the a - measure 0 sets form a 

a-ideal in "P({O,l}*) and that the sets which have measure 0 in R(a) form a 

a-ideal in R(a). Assertion 5 then says that these a - ideals contain many sets. 

The followinK theorem is analogous to Theorem 3.12 in that it shows 

that these a-ideals are proper. The main idea of the proof is a 

diagonalization, which we first isolate in a lemma. (This lemma is a resource-

bounded version of a classical theorem of Borel.) 
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Lemma 5.8. If X C R(a) has a a-cover with total measure less than 2 - lzl , 

then X does not contain Bz n R(a). 

Proof. Let (h,m) be a a-cover of X C R(a) with .u*(h) < 2 -lzl and let 

X' = U{Bh(Qk)lk EN}. Note that X C X' . Fix a binary rational q and a 

positive integer € such that 2121 ,Ll*(h) S: q < q + 2 -€ < 1. Define from h a 

real-valued "density function" 

and an "approximate density function" 

e(x,n) lxl n-1 { ) 
2 L .Ll Bx n Bh(Ok) . 

k=O 

Note that each e(x , n) S: d(x) and 

each x E {0,1}* , 

lim e(x , n) 
n-oo 

(i) Bx C X' implies d(x) ~ 1, and 

(ii) d(x) = ~[d(xO) + d(x1 )]. 

Define a clocked constructor 6 by 

d(x). Note also that for 

6 (x) = {xO if e(xO,m) ~ q + 2-€(1_2-k) 
k x1 otherwise , 

where m lm(Oixl+k+e+2)!. Since h, m E a, it is easy to check that 6 E a. 

Assume for a moment that d(x) S: q + 2 -e(l - 2-k). Then (ii) tells 

us that min{d(xO),d(x1)} S: q + 2 - e(l - 2-k), whence e(6k(x), m) S: q + 
2-e(l - 2-k). It follows that 



- 39-

d(ok(x)) ~ e(ok(x),m) + 21xl+1 ~ 2 - lh(OJ)I 
j=m 

Now define the clocked constructor 6 by 6k(x) = ok(x), where x = z if 

x C z and x - x otherwise, and define the sequence x0 = >.. , xk+1 = 6k(xk). 

It is clear that 6 E 4 and that z C x 1 , whence R(6) E Bz . It is also clear 

that d(z) ~ 2lzl .u*(h) ~ q, whence the preceding paragraph provides an 

inductive proof that 

holds for each k :?: 1. 

Now let k E N be arbitrary and let k = lh(Ok)l + 1. Then (iii) tells 

us that d(x-) ~ q + 2 - e < 1, so Bx g: X' by (i). In particular, then, 
k k 

Bxk Q;: Bh(Ok) . Since lxk I ~ k > lh(Ok)l and R(6) E Bxk , it follows that R(6) 

~ Bh(Ok) . Since k is arbitrary here, it follows that R(6) ~ X' , whence R(6) ~ 

X. 

We now have 6 E 4 such that R(6) E Bz\X. It follows that X does not 

contain Bz n R(4). 0 

Theorem 5.9. 

1) A 4-measure 0 set contains no basic set. 

2) A set of measure 0 in R(4) contains no basic set in R(~). 

Proof. Assertion 1 is immediate from assertion 2 via part 1 of Lemma 5.7. 

To prove 2, let the null cover (h,m) testify that ,u(X IR(A)) = 0 and fix 

a basic set Bz n R(4) in R(4). Then the pair (hlzl+1 , mlzl+l) is a a-cover of 

*( ) 2 - lzl - 1 2 - lzl X n R(4) with total measure .u hlzl+l ~ < . It follows by 
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Lemma 5.8 that X does not contain Bz n R(~). 0 

By Lemma 5 .7 and Theorem 5.9, the measure 0 subsets of R(~) are 

"small" subsets of R(~). 

Now once again let X be the set considered in the first paragraph of 

this section. For each k, e E N, let hk(Oe) = XX, where X is the eth binary 

e 2e+l 
string of length > k, and let mk(O ) = 0 It is easy to check that (h,m) is 

a pspace-null cover of the complement of X, whence X has pspace-measure 1. 

On the other hand, we saw that X is p-meager, hence certainly pspace-meager. 

It follows that X is meager and has measure 1 in ESPACE. Thus, just as in 

the classical case, resource-bounded notions of category and measure do not 

always agree as to which sets are small. 

It is conspicuous that the resource-bounded measure theory developed 

so far only assigns measures of 0 or 1 to sets of languages. We now present 

the basic ideas of a more comprehensive resource-bounded measure theory and 

explain why sets of intermediate measures are of very little interest in 

complexity theory. 

The following definition is based on Lebesgue's original formulation of 

measurability via inner and outer measure. 

Definition 5.10. Let X C ~({0,1)*) and let Xc ~({0,1}*)\X be the complement 

of X. 

1) X is ~-measurable if there is a triple (g,h,m) E ~3 such that the 

conditions 

(i) (gk , mk) is a ~-cover of X, 

(ii) (hk , mk) is a ~-cover of Xc , 

(iii) J,L*(gk) + J,L*(hk) ~ 1 + 2 -k 



- 41 -

all hold for each k E N. In this case, the real number 

/.J.tl. (X) = 

exists and is called the fl.-measure of X. 

2) X is measurable in R(tl.), i.e., is an event in R(tl.), if there is a 

triple (g,h,m) E tl.3 such that conditions (i'), (ii'), and (iii) hold for each k E N, 

where (i') and (ii') are conditions (i) and (ii) above with X and Xc replaced by X 

n R(tl.) and R(tl.)\X, respectively. In this case, the real number 

f.,I.(X IR(tl.)) = 

exists and is called the measure of X in R(tl.). 

It is easy to see that if X is fl.-measurable (respectively, measurable in 

R(tl.)), then f.J.tl.(X) (respectively, f.,I.(XIR(tl.))) is well-defined, i.e., does not depend 

on the witness (g,h,m). Also, each of the conditions f.J.tl.(X) 1, 

f.,I.(X IR(tl.)) = 0, f.,I.(X IR(tl.)) = 1 holds under Definition 5.10 if and only if it 

holds under Definition 5.5. 

If fl. = all, then fl.-measurability and measurability in R(tl.) are 

equivalent to each other and to classical Lebesgue measurability in ':P({0,1}*). 

Similarly, a set is measurable in R(rec) = REC if and only if it is effectively 

measurable in the sense of Friedzon [1972). 

For an easy resource-bounded example, one can check that each Bx is 

p-measurable with f.J.p(Bx) It follows easily that each Bx is 

measurable in E with J.,~.(Bx iE) = f.,I.(Bx). As a cautionary example, however, 

note that Bx n E is not p-measurable for any x. 

We now give two useful lemmas. The first is immediate from Definition 

5.10. 
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Lemma 5.11. 

1) If X is ~-measurable, then X is measurable in R(~) 

and .u(XIR(~)) = .u~ (X). 

2) If X is ~-measurable and ~ C ~~ , then X is ~'-measurable 

and .u~,(X) = .u~(X). 0 

Lemma 5.12. 

1) If X is ~-measurable and (h,m) is a ~-cover of X, then 

.u*(h) ~ .u ~(X) . 

2) If X is measurable in R(~) and (h,m) is a ~-cover of X n R(~), then 

.u*(h) ~ .u(X IR(~)). 

Proof. Assertion 1 follows immediately from assertion 2 by part 1 of Lemma 

5.11. 

To prove 2, let (g', h', m') testify that X is measurable in R(~) and let 

k E N be arbitrary. Then (hk_, mk_) is a ~-cover of R(~)\X with .u*(hk_) ::::;: 

2 - k + Ji_!~00 .u*(h~). Now (h,m) and (hk_, mk_) can be "woven together" to give 

a ~-cover (h", m") of R(~) with .u*(h") = .u*(h) + .u*(h' ). By Lemma 5.8, 
k 

then, 1 ::::;: .u*(h") = .u*(h) + .u*(hk_), so .u*(h) ~ 1 - .u*(hk) ~ 1 - nl!_.m
00 

.u*(h~) -

2 - k = ,u(X IR(~)) - 2 -k . Since k is arbitrary here, it follows that 

.u*(h) ~ .uCX IR(~)). 0 

The following definition formalizes what it means for a class of 

languages to be "insensitive to finite alterations." 

Definition 5.13. 

1) Two languages L1 , L2 C {0,1}* are equivalent almost 

everywhere, and we write L1 = L2 a.e., if their symmetric 

difference L1 6. L2 is finite. 
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2) A set X C 'P({O,l}*) is a tail set if for all L1 , L2 C {0,1}* such 

that L1 = L2 a.e., L1 E X if and only if L2 E X. 

In complexity theory, virtually all language classes of interest are tail 

sets. In classical measure theory, the Kolmogorov [1933] zero-one law states 

that every measurable tail set has measure 0 or 1. We now prove a resource-

bounded generalization of this law . We first need a lemma. 

Lemma 5.14. If X is a tail set which has a ~-cover of total measure < 1, then 

X has ~-covers of arbitrarily small total measure. 

Proof. Let (h,m) be a ~-cover of the tail set X with .u*(h) r < 1. Fix k 

such that r 2 + 2 - k < r 312 and let n be the maximum of all lh(Oi) l for 

0 ~ i < rn, where rn = lm(Ok)l. Let Wo J w1 ' ... , ws-1 be a list of distinct 

strings of length n such that U{Bw1IO ~ i < s} = U{Bh(O') 10 ~ i < rn}. 

Define from h a real-valued density function d exactly as in the proof of 

Lemma 5.8. Note that d(wi) L 1 for 0 ~ i < s. Fix a string u of length n 

such that d(u) ~ r . (This u exists because d(}.) = r and each d(x) = ~[d(xO) 

+ d(x1)].) 

Now modify the list h(>-.), h(O), h(02), ..• as follows. 

(i) Delete the first rn entries. 

(ii) In each place where there is an entry of the form uv, insert the 

entries w0 v, . . . , w
5

_ 1 v immediately after. 

Since k, m, n, s, the list w0 , ... , ws_1 , and u are all constants, there is an 

enumerator h' E ~ such that the resulting list is exactly h'(>-.), h'(O), 

. s + 1 s + l Also, the function m' E ~ defmed by m'(x) = m(xO ) 

satisfies lm'(Oi)l ~ (s + l)jm(Oi+s+1)1, hence is clearly a modulus for h ' , i.e .. 

(h' , m') is a ~-cover. In fact, since X is a tail set, (h,m) is a ~-cover of X, 

and h' replicates on each X n Bh(Oi) ,0 ~ i < m, the cover of X n Bu by h, 
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(h' , m') is a ~-cover of X. This new ~-cover of X has total measure 

u*(h') = 2 - n sd(u) +: ~ _ J.L( Bh(Oi)) 
t = m 

~ J.L*(h) d(u) + 2 - k 

We have now shown that if r < 1 and X has a ~-cover of total 

measure r, then it has a ~-cover of total measure < r312 • Since the 

sequence r 0 = r, r n +1 = r~12 converges to 0, this proves the lemma. 0 

We now prove the zero-one law for resource-bounded measure. 

Theorem 5.15. 

1) If X is a ~-measurable tail set, then J.L~(X) = 0 or J.L~(X) = 1. 

2) If X is a tail set which is measurable in R(~), then ,t.L(X IR(~)) = 0 

or J.L(X IR(~)) = 1. 

Proof. Assertion 1 follows immediately from assertion 2 by part 1 of Lemma 

5.11. 

To prove 2, let X be a tail set which is measurable in R(~) and assume 

that .uCXIR(~)) < 1. Let € > 0 be arbitrary. By Definition 5.10, X n R(~) 

has a ~-cover of total measure < 1, whence by Lemma 5.14, it has a ~-cover 

(h ,m) with .u*(h) < L By part 2 of Lemma 5 .12, then, _u(X IR(~)) < € . Thus 

.u(X IR(~)) 0. 0 

As we have noted, most sets of interest in <?omplexity theory are tail 

sets. By Theorem 5 .15, every measurable tail set in R(~) has measure 0 or 1 

in R(~), so sets of intermediate measure are of very little complexity-

theoretic interest. We should emphasize, however, that for resource-bounded 

notions ~. measurability in R(~) is a very strong hypothesis. Thus we do not 
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interpret Theorem 5.15 to mean that sets of interest necessarily have measure 

0 or 1. The third possibility, non-measurability in R(~). must be considered. 

In this section we have presented a mere beginning of resource-bounded 

measure theory. We have not selected an axiomatization, we have restricted 

attention to measures induced by the usual Lebesgue measure on ,({0,1 }*), and 

we have omitted even the most basic properties of measurable sets (e.g., they 

form a "~-algebra," the measure is monotone and "~-additive," etc.). The only 

theorems we have proven are 5.9, the nontriviality of the measure, and 5.15, 

the resource-bounded zero-one law. Nevertheless, we have enough to begin 

applying the theory to the structure of exponential complexity classes . 
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6. Resource-Bounded Kolmogorov Complexity 

Theorem 1.2 says that some languages in ESPACE have high space-bounded 

Kolmogorov complexity. In this section we prove that, with respect to both 

category and measure, nearly all languages in ESP ACE have this property. 

We then prove an analogous but weaker result for exponential time complexity 

classes . 

Theorem 6.1. For any c > 0 and b < 1, the set of all languages L such that 

KS[2cn](L~n) < b · 2n+1 a.e. is pspace-meager and has pspace-measure 0. 

Proof. Let X be the set of all such L, where we assume without loss of 

generality that c is a positive integer and b is a binary rational between 

0 and 1. 

To see that X is pspace-meager, it suffices by Theorem 4.3 to exhibit a 

winning strategy /3 for player II in the game G[X; all, pspace]. Let /3 be defined 

as follows. 

begin 

input x; 

n : = the least integer such that (1 - b)2n+1 ::::?! lx l + 1; 

while lx l < 2n+1 - 1 do 

begin // decide s lxl // 

VOTE; 

if yes < ~(total) 

then x : = x1 

else x . - xO 

end while; 

output x 

end /3. 
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The macro VOTE operates as follows . 

yes, total, 1r : = 0, 0, >-.; 

if OK (?r,n,x) then 

begin ll1r gets to vote II 

total : = total + 1; 

if U(<'lf,slx l>) outputs 1 in ~ 2cn space 

then yes : = yes + 1 

end if; 

1r : = next (?r) 

end while 

end VOTE. 

The predicate OK(?r,n,x) here asserts that lxl < 2n+l - 1, U(<?r,si>) halts in 

~ 2cn space for each 0 ~ i ~ lx l, and U(<?r,si>) outputs the ith bit of x for 

each 0 ~ i < lx 1. It is clear that this condition can be tested in space 

polynomial in 2° + lx l + i?rl, whence it follows easily that (3 E pspace. 

Now fix one of the values of n computed by player II during a play 

(a.,/3) of the game, where a. is an arbitrary strategy for player I. For each 

lx l ~ j ~ 2n+l - 1, let total(j) be the final value of total computed by VOTE 

during the while-loop cycle in which (3 decides s j . (Here lx I denotes the 

length of the original input to (3 and we insist that total (2n+l - 1) be defined 

even though the corresponding cycle of the while-loop is not actually 

executed.) Then (3 ensures that 0 ~ total (lxl) < 2b ·2"•1 and 0 ~ 
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total (j + 1) ~ ~ total (j) for lx l ~ j < 2n+1 - 1. It follows from these and 

the choice of n that 0 ~ total (2n+1 - 1) < 1, whence total (2n+l - 1) = 0. 

But this implies that KS[2cn](R(a.,/3)~n) L b · 2n+l . Since /3 establishes this 

condition for a different value of n during each of player II's turns, it follows 

that R(a.,/3) !l X. Thus /3 wins G[X; all, pspace] for player II, so X is pspace-

meager. 

We now turn to the proof that X has pspace-measure 0. For each j E 

N, let Xj be the set of all languages L such that KS[2cn](L~n) < b · 2n+1 holds 

for all n L log j. Clearly, X = U(X jlj E N}. By Lemma 5.7, it suffices to 

show that this union is in fact a pspace-union of pspace-measure 0 sets. 

Fix j, k E N for a moment and choose the least n E N such that 

(1 - b)2n+l L j + k + 2. Let '7\(0), ••• , '7t'(N -l) be the lexicographic enumeration 

of all programs 1!' of length < b · 2n+1 such that U(<?!',x>) halts in ~ 2cn space 

for all lxl ~ n. Then it is easily checked that there is an enumerator 

h jk E pspace such that 

e 
hjk(O ) 

if e < N 

if e L N 

holds for each e E N. In fact, since 2n is linear in j + k, there is a function 

h E pspace such that this holds for all j, k, e E N. Similarly, there is a 

function m E pspace such that m jk(Oe) = oN+e for all j, k, e E N. It is now 

routine to check that each (h jk, m jk) is a pspace-cover of X j with total 

measure ,u*(h jk) ~ 2 - k . It follows that each (h j , m j) is a pspace-null cover 

of X j• whence (h,m) testifies that X is a pspace-union of the pspace-measure 0 

sets xj. 0 

Corollary 6.2. For any c > 0 and b < 1, the set of languages L with 
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KS[2cn](L~n) 2 b · 2n+1 i.o. is comeager and has measure 1 in ESP ACE. 0 

If the game strategy {3 used in the first part of the proof of Theorem 

6.1 is played against itself, then the result R(/3,{3) is essentially the language 

constructed by Huynh [1986b] in his proof of Theorem 1.2. In this sense, 

Theorem 1.2 is an immediate corollary of Theorem 6.1. 

A simple modification of Theorem 6.1 and its proof gives the following 

result, which will be useful in section 7. 

Corollary 6.3. For any c > 0 and b < 1, the set of all languages L such that 

KS[2cn](L =n) < b · 2n a.e. is pspace-meager and has pspace-measure 0. 0 

The situation in exponential time complexity classes is not as well 

understood as the situation in ESPACE. It is reasonable to conjecture that E 

contains languages whose KT -complexities are superpolynomial, but this implies 

E g;;; P/Poly, which is a major open problem of complexity theory and cannot 

be proven by relativizable methods. 

Here we prove a weaker analogue of Theorem 6.1. In order to 

formulate this result, we use the G-hierarchy of section 2 to define the 

following hierarchy of time-bounded Kolmogorov complexity classes. 

Definition 6.4. For each i 2 1, 

Each KEi is an uncountable nonuniform complexity class. Nevertheless, 

these classes have the following useful properties. 

Lemma 6.5. For each i 2 1, Ei C KEi C KEi+1 and KEi+1 is closed under 

p. 
~ 1

-reductions and Gi closeness. 
T 

Proof. It is obvious that KEi C KEi+1 . If L E Ei , then KTC2°'- 1
] is 
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bounded, so it is also clear that Ei C KEi . 

pi 
Assume L' ~ L E KEi+1 . Then there exist a Gctime- bounded oracle 

T 
(0) (1) L 

machine M and a sequence 7\ , 7\ , ..• of programs such that L' = L(M ), 

17\(n) IE Gi , and U(<'7t'(n) , x>) decides whether x E L in Gi(n) time for all 

x E {0,1}~n and n E N . For each n, then, consider a program ?r(n) which 

simulates M, using 7\(t(n)) to answer oracle queries, where t E Gi is a bound on 

the running time of M. It is easily checked that the programs ?r(n) testify 
p . 

that L' E KEi+ 1 . This proves that KEi+1 is closed under ~T1-reductions. 

Finally, assume L' is Gi close to KEi + 1 , i.e., that I(L' 6 L)~nl E Gi for 

some L E KEi + 1 • Then, since i L 1, each (L' 6 L)~n has a listing whose 

length is Gi as a function n. These listings can then be combined with 

programs testifying that · L E KEi + 1 to get programs testifying that L' E 

KEi + 1 . T hus KEi + 1 is also closed under Gi closeness. 0 

We now prove a time analogue of Theorem 6.1. This says that most 

languages in Ei + 1 have high KT -complexity in the sense that they are not in 

KEi. 

T heorem 

Proof. 

6.6 . For i L 1, KEi is pi + 1-meager and has pi + rmeasure 0. 

g .(n) 
Let X be the set of all languages L such that KT[2 1 ](L~n) 

a.e. Then KEi C X, so it suffices to show that X is pi + 1-meager and has 

pi + 1-measure 0. 

To see that X is pi + 1-meager, modify the strategy {3 used in the proof 

of Theorem 6 .1 in the following ways. 

(i) In the assignment to n, replace (1 - b)2n + 1 with 2° . 

(ii) n + 1 ~ In VOTE, replace b · 2 with gi(n) and replace 2 space with 

2
g;(n) t · 

1m e. 
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gl(n) - < n) 2n I I Since 2 = gi+1 2 and is linear in x, it is easy to check that the 

modified strategy (3 runs in Gi + 1 time, i.e., that {3 E pi + 1 . Also, in a play 

(a..,{3) of the game, player II establishes the condition 0 :5:: total (2n + 1 -1) < 

2g,(n)-2" for a different value of n during each of his turns. Since gi(n) 

o(2n), it follows that total (2n + 1 - 1) = 0 for all sufficiently large such n, 

whence R(a..,{3) ~ X. That is, {3 wins G[X;all,pi+11 for player II, so X is 

pi+Cmeager by Theorem 4.3. 

Now for each j E N, let X j be the set of languages L such that 

KT[2g;(n)](L:s;n) < gi(n) for all n ~ log j. We will show that X is a pi + 1-union 

of the pi+1-measure 0 sets xj . 

g,(log k) _ (- ( )) 
Since 2 2 gi gi log k + k + 2 holds for all but finitely many k, 

there is a finite modification g of gi such that g(k) 2 k and 2n ~ gi(n) + k 

+ 2 hold for all k and all n 2 g(log k). 

Now, given j and k, we let n g(log (j + k)). This is easily computed 

and 2n is Gi+1 as a function of j + k. 

g (n) - n 
There are fewer than 2 1 

= gi + 1(2 ) programs 7r of length < gi(n). 

g.(n) 
The total time to run U(<7r,x>) for 2 ' steps for each such 7r and each x E 

{O,l}:s:n is thus Gi + 1 as a function of 2n , hence as a function of j + k. 

Using this simulation, we can now imitate the second half of the proof of 

Theorem 6 .1 to get (h,m) E p~+ 
1 

such that each (h jk , m jk) is a pi+ rcover of 

X j with total measure .u*(h jk) :5:: 2 -k . This shows that X is a pi + 1-union of 

the pi+1-measure 0 sets Xj, whence X has pi+rmeasure 0 by Lemma 5.7. 0 

Corollary 6.7. Fori 2 1, KEi is meager and has measure 0 in Ei+l . 0 

The case 2 here says that most languages in E 3 have 

superpolynomial time-bounded Kolmogorov complexity. 



- 52-

7. Small Circuits in Exponential Classes 

Theorem 1.1 separates ESPACE from P/Poly n ESPACE. In this section we 

widen this separation by proving that P/Poly is meager and has measure 0 in 

ESP ACE. We then examine circuit-size complexity in exponential time 

complexity classes and prove, among other things, that P/Poly is meager and 

has measure 0 in E3 . 

This investigation of small circuits in exponential complexity classes 

was our original motivation for the development of resource-bounded category 

and measure. Consequently, the main results of this section were originally 

proven directly. Here, however, we use Lemmas 7.1 and 7 .5, which express a 

well-understood relationship between Kolmogorov complexity and circuit-size 

complexity, to easily derive the present results from those of section 6. For 

both these lemmas, we fix a one-to-one coding scheme 

#:{circuits} - {O,l}* 

and a constant k1 E N such that 

(i) given w, y E {0,1}* , a deterministic TM can compute in polynomial 

time whether y is the code of a circuit c with lw I inputs and, if so, 

the output of c on input w; 

(ii) I#( c) I < k1 size (c) log (n + size (c)). 

Lemma 7 .1. If f is a nontrivial circuit-size bound, then every L E SIZE(f) has 

KS[2n](L = n) < 2n - l a.e . 

Proof. Let f be such a bound and let 

h(n) = k1 g(n) log (n + g(n)), 

where g is a nontrivial circuit-size bound chosen so that f o(g). Note that 

h(n) = o(2n). 
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Now assume L E SIZE(f) and for each n E N, let cn be a minimum-size 

circuit computing L=n . Then for each n, we can combine a circuit-simulating 

machine M with the circuit code #(en) to get a program ~(n) such that the 

following conditions hold for almost every n. 

(i) l~(n)l < h(n) < 2n - 1 . 

(ii) For each x E {O,l}n , U(<~(n) , x>) correctly decides whether x E L 

in ~ 2n space. 

That is, the programs ?r(n) testify that KS[2n](L=n) < 2n - 1 a.e. 

From Lemma 7.1 and Corollary 6.3, we immediately get the following. 

0 

Theorem 7 .2. If f is any nontrivial circuit-size bound, then SIZE(f) is pspace-

meager and has pspace-measure 0. 0 

(The category portion of this was proven directly by a voting argument in 

Lutz [1987].) 

Corollary 7 .3. If f is any nontrivial circuit-size bound, then SIZE(f) is meager 

and has measure 0 in ESPACE. 

Corollary 7.4. P/Poly is meager and has measure 0 in ESPACE. 

0 

0 

We now turn to the matter of small circuits in exponential time 

complexity classes. Here it is convenient to use the KE-hierarchy introduced 

in section 6. 

Lemma 7.5. If i ~ 1, then SIZE(Gi) C KEi+l 

Proof. Let f be an arbitrary circuit-size bound in Gi . Since i ~ 1, we can 

choose g E Gi such that f = o(g). If we then define h from g as in the proof 

of Lemma 7 .1, we will have h E Gi also. 

Now assume L E SIZE(f). Then an easy modification of the argument 
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used in the proof of Lemma 7.1 shows that KT[Gi](L ~n) E Gi , whence 

L E KEi + 1 . Thus SIZE(f) C KEi + 1 . 0 

From Lemma 7 .5 and Theorem 6.6, the following theorem is immediate. 

Theorem 7 .6. If i ~ 1, then SIZE(Gi) is pi + 2- meager and has pi + 2-measure 0. 0 

Corollary 7 .7. P/Poly is meager and has measure 0 in E 3 . 0 

If we fix a particular circuit-size bound f E Gi (i ~ 1) and a language 

L E SIZE(f), then the proof of Lemma 7.5 gives us a function g E Gi such 

that KT[g(n)](L ~n) < g(n) a .e . It follows by the proof of Theorem 6.6 (with gi 

replaced by g) that SIZE(f) is pi+1-meager. This argument gives us the 

following. 

Corollary 7 .8. If ~ 1 and f E Gi' then SIZE(f) is pi +rmeager and has 

pi + rmeasure 0. 0 

Corollary 7 .9. For each k E N, SIZE(nk) is meager and has measure 0 in E2 .0 

Since Wilson [1985] exhibits oracles under which E2 C P/Poly and 

E C SIZE(n), Corollaries 7.7 and 7 .9 take us about as far as we can go with 

relativizable techniques. 
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8. Information Accessible .!?Y_ Reducibilities 

As mentioned in section 1, most intractability proofs for specific problems 

have taken the same form. Here we describe the more general reducibility 

method, which includes this form as a special case but may also lead to new 

lower bound arguments. 

The reducibility method can be stated simply and informally as follows. 

Given a language L, let %(L) be the set of all languages which are efficiently 

reducible to L. Then the size of %(L), which is a measure of the amount of 

%-accessible information in L, provides a lower bound for the complexity of 

computing L. 

In applications of this method which are taken here as paradigmatic, the 

size of %(L) is simply the matter of whether or not %(L) contains a particular 

complexity class C, i.e., whether or not L is %-hard for C. To date, most uses 

of the reducibility method have followed this paradigm. 

The recently proven Theorems 1.3 and 1.4 show that the paradigmatic 

reducibility method also gives lower bounds for "approximate recognition" of 

languages. 

The primary weakness of the paradigm is its extremely primitive 

interpretation of the "size" of %(L). Unless L is %-hard for C, i.e., contains 

all information about C in %-accessible form, the paradigm deems %(L) to be 

small and offers no nontrivial lower bound. Since most interesting intractable 

problems are probably not hard for classes now known to contain 

intractability, this limitation is a severe one. It means, for example, that 

Theorems 1.3 and 1.4 are not likely to be applicable to interesting problems. 

The remedy we propose is to use resource-bounded category and 
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measure to refine this primitive notion of size. If we do this, then the 

reducibility method, as stated above, gives a quantitative relationship between 

the %-accessible information content of L and the computational complexity of 

L. 

and 

The 
p 

~ I (i 
T 

specific reducibilities of interest here are ~p , ~p , ~PSPACE , 
m T T 

~ 1). It is thus convenient to define the set Pm(L) = (L' I L' ~p L}, 
m 

and to define the sets PT(L), PSPACET(L), and P iT(L) similarly from the other 

reducibilities. 

c 
Under the hypothesis that L is 2n close to P for every c > 0, 

Theorems 1.3 and 1.4 tell us that E Q: Pm(L) and ESPACE Q: PT(L), 

respectively. In sections 9 and 10 we will show that this hypothesis in fact 

implies that Pm(L) is meager in E and that PSPACET(L) is meager and has 

measure 0 in ESPACE. That is, we replace conclusions of the form e (( ".Jb(L) 

with conclusions asserting that ".Jb(L) n e is a very small subset of e . Put 

differently, we replace conclusions stating that L does not contain all 

information about e in %-accessible form with conclusions stating that L 

contains very little %-accessible information about e . Although these new 

conclusions appear to be considerably stronger, this has not been proven. We 

thus formulate the following hypotheses. 

Definition 8 .1. If e is a complexity class and ".Jb is a reducibility, then the 

category partial information hypothesis for e and ".Jb is the assertion 

PIHcategory<e,".Jb) which says that there is a language L E e such that ".Jb(L) 

does not contain e and ".Jb(L) is not meager in e. The measure partial 

i nformation hypothesis PIHmeasure (e,".Jb) is defined similarly, except that 

" meager" is replaced by "measure 0." 

Thus partial information hypotheses assert the existence of languages 
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containing "substantial but incomplete" information about e in %-accessible 

form. 

We make the following three conjectures. 

p 
Conjecture 8.2. PIHcategory(E• S: m) holds. 

PSPACE 
Conjecture 8.3. PIHcategory(ESPACE, S:T ) holds. 

PSPACE 
Conjecture 8.4. PIHmeasure(ESPACE, S: ) holds. 

T 

If any of these conjectures hold, then the results of the following two 

sections do indeed increase the power of the reducibility method. 
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9. Information Accessible in Polynomial Space 
c 

Theorem 1.4 says that, if L is 2n close to P for every c > o, then PT(L) 

does not contain all of ESPACE. In this section we prove the stronger result 

that, if L is 2nc close to DSPACE(2nc) for every c > 0, then PSPACET(L) is 

meager and has measure 0 in ESPACE. That is, a language which is 

approximable in feasible space does not contain significant polynomial-space-

accessible information about ESPACE. 

The key to Huynh's proof of Theorem 1.4 is Theorem 1.2, the existence 

of ESPACE languages with high space-bounded Kolmogorov complexity. 

Theorem 6.1, which says that most languages in ESPACE have this property, 

plays an analogous role in this section. 

We first prove that almost all languages in ESPACE are very hard to 

approximate. 
n+ l 

Theorem 9.1. If c > 0 and b > 1, then the set of languages which are 2bn far 

from DSPACE(2cn) is pspace-comeager and has pspace-measure 1. 

Proof. Fix such c and b and suppose L is in the complement of this set, i.e., 

that there is an 0(2cn) space-bounded machine M such that j(L !::. L(M)) I < 
s:n 

2
n+l 

bn a.e. Fix 0 < c' < c and ~ < b' < 1. Then for each n we can combine a 

description of M with a listing of (L !::. L(M)) to get a program 'lf(n) such that 
s:n 

the following conditions hold for almost all n. 

(i) 

(ii) 

That is, the programs 'lt'(n) testify that KS[2c'n](Ls:n) < b' · 2n+1 a.e. By 

Theorem 6.1, the set of all L with this property is pspace-meager and has 

pspace- measure 0. 0 
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Corollary 9.2. 2
n•l 

If c > 0 and b > 1, then the set of languages which are bn 

far from DSPASCE(2cn) is comeager and has measure 1 in ESPACE. 0 

We now give our improvement of Theorem 1.4. 

Theorem 9.3. 
c c 

If L is 2n close to DSPACE(2n ) for every c > 0, then 

PSPACET(L) is pspace-meager and has pspace-measure 0. 

c c 
Proof . Let X be the set of languages L such that KS[2n ](L s:n) < 2n holds 

a.e. for every c > 0. If the hypothesis holds, then an argument like that in 

the proof of Theorem 9.1 shows that L E X. Since Theorem 6.1 says that X 

is pspace-meager and has pspace-measure 0, it thus suffices to prove that X is 

PSPACE 
closed under ~ . 

T 

Assume L' ~PSPACE L E X. Fix a q(n)-space-bounded oracle machine 
T 

M such that L' = L(ML), where q is a polynomial. Also, for each c > 0 and n 
c 

E N, fix a program '7!"(c,n) testifying to the value of KS[2n ](L ). s:n 

Now for each c and n, consider a program '7!"'(c,n) which simulates M, 

using '7!"(c,q(n)) to answer oracle queries. Then there is a constant d > 0, not 

depending on c or n, such that for almost all c, for almost all n, the following 

conditions hold. 

(i) 

(ii) 
s:n 

For all x E {0,1} , U(<'7!"'(c,n),x>) decides whether x E L' in ~ 

q(n) + 2q(n)c + d space. 

Now let c1 > 0 be arbitrary and choose c > 0 such that q(n) + 2q(n)c 

c l cl ' c l < 2n a.e. Then the programs '7!"'(c,n) testify that KS[2n ](Ls:n) < 2n a .e. 

_....PSPACE 
Thus L' E X, whence X is indeed closed under ~ and the proof is 

T 

complete. 0 
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c c 

Corollary 9.4. If L is 2n close to DSPACE(2n ) for every c > 0, then 

PSPACET(L) is meager and has measure 0 in ESPACE. 0 

Thus, if a language can be shown to contain significant polynomial-

space-accessible information about ESPACE, it will follow that the language is 

not very close to PSPACE. 
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10. Information Accessible in Polynomial Time 

If Conjecture 8.3 or Conjecture 8.4 holds, then section 9 already extends the 

class of languages which can be proven intractable by the reducibility method. 

However, any language which is susceptible to the methods of section 9 still 

must lie "well outside" of PSPACE. Since most languages that we would like 

to prove intractable are elements of PSPACE, it follows that we need a finer 

method, i.e., a method which applies to a finer reducibility. 

c 
Theorem 1.3 says that, if L is 2n close to P for every c > 0, then 

Pm(L) does not contain all of E. In this section we show that, if L is 

c nc 
2n close to DTIME(2 ) for every c > 0, then P mCL) is actually meager in E. 

That is, a language which is approximable in feasible time contains only meager 

~p -accessible information about E. If Conjecture 8.2 holds, this strengthens 
m 

Theorem 1.3. 

The basis of section 9 is Theorem 6.1, which says that most ESPACE 

languages are incompressible in a space-bounded algorithmic sense. Similarly, 

the present section is based on Theorem 10.2 below, a technical result which 

says, in part, that most languages in E are incompressible in a time-bounded, 

many-one sense. The following definition, which specifies this sense, uses the 

function mg(n) = l{x E {0,1} ~n I 3y E {0,1} ~n[x rf y and g(x) = g(y)]} I to quantify 

the rate at which a function g :{0,1}* - {0,1}* fails to be one-to-one. 

Definition 10.1. 

1) A language L is f(n)-fncompressible by ~p -reductions if every 
m 

~p -reduction g of L has mg(n) ~ f(n) for infinitely many n. If 
m 

this holds for some constant function f(n), then L is strongly 

incompressible by s;:p -reductions. 
m 
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2) A language L is simultaneously f(n)-incompressible by ~P-
m 

reductions and h(n) far from a set X of languages if for each ~p­
m 

reduction g of L and each language L' E X there are infinitely many 

n for which mg(n) ~ f(n) and I(L ~L')~nl 2 h(n) both hold. 

Theorem 10.2. For any e. > 0, any a > 0, and any nondecreasing, unbounded 

function f(n) which is computable in 20(n) time, the set of all languages which 

e.n p 2n+l 
are simultaneously 2 -incompressible by ~m -reductions and f(n) far from 

DTIME(2an) is p-comeager. 

Proof. Let X = X(e., a, f) be the set of all such languages, where we assume 

without loss of generality that E ~ 1 and f(n) ~ 2n for all n. Let M0 , M1, ... , 

and T 0 , T 1, ••• be standard enumerations of the Turing machine acceptors and 

transducers, respectively. 

If T k is a transducer and x, y E {0,1}* ,we say that T k(x) = T k(y) in 

time t if T k(x) = T k(y) and T k halts in ~ t steps on each of the inputs x 

and y . We then say that x defies T k if there exist i < j < lxl such that 

the ith and }h bits of x are different but T k(s1) = T k(sj) in time ixl. 

If x defies T k and x C L it is clear that T k is not a many-one 

reduction of L. It is also clear that the predicate "x defies T k" can be 

evaluated in time polynomial in lxl. 

Now let 9(k,i,j,x,n) be a predicate asserting that k < lxl, x does not 

defy T k, i < j, lxl :s;: j < 2n+1 - 1, and T k(si) = T k(s j) in time 2n+1 . Note 

that the condition (3k,i,j) e (k,i,j,x,n) can be tested in time polynomial in 

lxl + 2n . Consider the strategy {3 = {3(E.,a,f) defined as follows. 
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input x; 

z,n,e := x, [E:-1 log(2 + lxl)], 0; 

if ( 3 k, i, j) 8 (k, i, j, X, n) 

then fix such i, j with k minimum 

else i,j := 0, 1; 

while lzl < 2n+l - 1 do 

lzl i: z := zO 

[] lzl = j: z := zb, where b is the negation of the ith bit of z 

[] else: if M t accepts s lz I in ~ 2(a+ l)n time 

then z, e := zO, (f+l) mod lf~n)J 

else z,e : = zl, (f+l) mod lf~n)J 

end cases and while; 

output z 

end /3. 

Since 2n is polynomial in lxl here, it is easy to check that 13 E p. In 

fact , we will show here that (:J is a winning strategy for player II in G[Xc; all, 

p], where Xc = .,({0,1}*)\X(£, a, f). To this end, let L = R(a., (:J), where a. is an 

arbitrary strategy for player I. It suffices to show that L E X. 

Fix a ~p -reduction g of L and a language L' E DTIME(2an), with 
m 

witnesses T k and Me , respectively. 

Since g = T k is a reduction of L, no initial segment of L defies T k . 

This implies that the first if-test in (:J is not true with k as the least witness 

during any move by player II. Since T k runs in polynomial time, this in turn 



- 64-

implies that, for all but finitely many of player II's moves, mg(n) s lx I < 2€n. 

The machine M£ runs in 0(2an) time on any input in {O,l}~n , so the 

while-loop in {3 ensures that, for all but finitely many of player II's moves, 
n+3 

I(L 1:::. L')~nl 2 [(2n+l - lx l - 3)/[f(4n)JJ 2 2 - 4 1x l-12 
f(n) 

20+2 -12 
1 2 f(n) 

2
n+1 

f(n) · 
Since g and L' are arbitrary here, we have now shown that L E X. 

Thus {3 does indeed win G[Xc; all, p] for player II, so Theorem 4.3 tells us that 

X is p-comeager. 0 

Corollary 10.3. For any € > 0, any a > 0, and any nondecreasing, unbounded 

function f(n) which is computable in 20(n) time, the set of all languages which 

E:n p 2n+1 

are simultaneously 2 -incompressible by s;:m -reductions and f(n) far from 

DTIME(2an) is comeager in E. 0 

If the game strategy /3 used in the above proof is played against itself, 

where € = c = 1 and f(n) = n, then we get the following result, which is the 

basis of Schoning's proof of Theorem 1.3. 

Corollary 10.4. There is a language L E E which is strongly incompressible by 

p n 

s m -reductions and ~ far from p. 0 

If we ignore the incompressibility in Theorem 10.2, then we immediately 

get the following. 

Theorem 10.5 . If c > 0 and f(n) is any nondecreasing, unbounded function 

n+l 

which is computable in 20(n) time, then the set of languages which are ;(n) far 

from DTIME(2cn) is comeager in E. 0 

Since f(n) may be an extremely slow-growing function, this is a very 

strong non-approximability theorem. It says that, in the sense of category, 

most languages in E cannot be feasibly approximated with an error rate that 
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c~mverges to 0 in any feasible way. 

We finally come to our improvement of Theorem 1.3. 

nc c 
Theorem 10.6. If L is 2 close to DTIME(2n ) for every c > 0, then Pm(L) is 

p-meager. 

Proof. Assume that Pm(L) is not p-meager and let X be the set of languages in 

Theorem 10.2, where € = ~ , a = 1, and f(n) = n. Since X is p-comeager, 

there is a language A E X n Pm(L). Fix such, let g be a ~p -reduction of A 
m 

to L, let q be a polynomial such that lg(x) I ~ q( lx I> for all x, and choose 0 < 

c < b such that q(n)b ~ n a.e. 

c 

c 
We will show that L is 2n far from 

DTIME(2n ). 

Let L' E DTIME(2nc). Then g - 1(L') E DTIME(2n), so there exist 
n 
2 1 2Ml 

infinitely many n such that mg(n) ~ 2 and I(A ~ g- (L')) ~n I ~ ~ 

2
n+1 

sufficiently large such n we thus have I(L~L')~q(n)l L ~ 
c 

For any 

z 2 
q(n) nc nc 

Since L' E DTIME(2 ) is arbitrary here, it follows that L is 2 

nc 
far from DTIME(2 ). 0 

nc nc 
Corollary 10.7. If L is 2 close to DTIME(2 ) for every c > 0, then Pm(L) is 

meager in E. 

Thus, if a language L can be shown to contain non-meager ~~-accessible 

information about E, it will follow that the language is not very close to P. 

In fact, the proofs of Theorems 10.2 and 10.6 show that this will follow if it 

is just shown that player II does not have a winning strategy for the game 

G[P m<L); all, p]. 0 

It is not known whether Theorem 10.6 holds with PT(L) in place of 

Pm(L) or with "measure 0" in place of "meager," but it is now easy to get the 
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following much weaker result. 

Theorem 10.8. If i :z 1 and L is Gi close to Ei+1 , then PiT(L) is pi+2-

meager and has pi +2-measure 0. 

Proof. By Lemma 6.5, the hypothesis implies that PiT(L) C KEi+l , so this 

follows immediately from Theorem 6.6. 0 

Corollary 10.9. If L is polynomially close to E 2 , then PT(L) is meager and has 

measure 0 in E3 . 0 
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11. Conclusion 

Resource-bounded category and measure have been introduced and shown to 

reveal new structure in many complexity classes. This structure has been 

used to refine known relationships between uniform and nonuniform complexity 

measures. It has also been used as the basis for a new formulation of the 

reducibility method. 

The important open questions here concern the partial information 

hypotheses. If any of Conjectures 8.2, 8.3, or 8.4 hold, then the newly 

formulated reducibility method is indeed more powerful than the old one. Of 

course it would be ideal for these conjectures to be shown to hold with 

interesting, natural problems as witnesses, since then the work here gives 

lower bounds for such problems. 

In any case, it is already clear that resource-bounded category and 

measure interact in interesting ways with resource-bounded reducibilities, 

nonuniform complexity measures, approximation, and other much-studied 

structural aspects of complexity classes. It is expected that the study of 

such interactions will continue to yield clarifying insights. 
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