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Abstract 

 Protein engineering techniques such as directed evolution and structure-based 

design aim to improve the properties of natural proteins.  The next step, the de novo 

insertion of function into previously inert protein scaffolds, is the lofty promise of 

computational protein design.  In order to achieve this goal reliably and efficiently, 

computational methods can be iteratively improved by cycling between theory and 

experiment. 

 Efforts to both accelerate the rate and broaden the information exchanged within 

protein design cycles form the core of this thesis.  Improvements in the throughput of 

experimental stability determination allowed the thorough assessment of new multi-state 

and library design tools.  Intending to alleviate the fixed backbone, single native state 

design approximation, the study found constrained molecular dynamics ensembles useful 

for core repacking applications.  The subsequent development of automated liquid 

handling protocols for common molecular biology techniques brings design experiments 

to new levels of sample throughput.  This technology facilitated the creation of a stability 

database encompassing every single mutant in a small protein domain.  Although 

constructed to facilitate future computational training efforts, we answer a multitude of 

questions pertaining to mutational outcomes, distributions, positional sensitivity, 

tolerance, and additivity in the context of a protein domain. 

 By expanding the constraints of experimental molecular biology, this work opens 

up new possibilities in the efforts to train and assay new computational methodologies for 

protein engineering applications. 
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 Proteins are biology’s workhorse macromolecule, making up about half the dry 

weight of a typical bacterial cell and responsible for almost every action that occurs 

inside of it (1).  Over the course of natural evolution, proteins have developed prodigious 

catalytic properties, responsible for a variety of reactions, and exquisite binding activities, 

key to the cell’s signal transduction pathways.  Over the last thirty years, all of this 

functional diversity has become readily available to industrial and clinical biotechnology 

due to the maturation of recombinant DNA technology.  Unfortunately, their application 

is hindered by nature’s handicap: the ability to only select for proteins with activity and 

stability that provide a biological advantage, and nothing more.  This results in a variety 

of issues for biotechnology, chief among them being the marginal stability of natural 

proteins.  As most organisms on Earth thrive in moderate climates, their proteins have 

evolved for optimal activity at the same, non-industrially relevant temperatures.  In 

addition, cellular proteins are rapidly turned over in the viscous cytosol, deterring the 

serendipitous evolution of proteins with long shelf lives under extended in vitro 

conditions.  Current and future advances in protein engineering can enrich the number of 

applicable natural proteins as well as develop customized solutions for current issues in 

biotechnology. 

 Protein engineering techniques are centered on two complementary sub-fields, 

directed evolution and rational structure-based design (2, 3).  Directed, or molecular 

evolution, improves protein properties by making random iterative mutations to a library 

of sequences and evaluating them either through a direct experimental screen or a 

functional selection.  Larger jumps in sequence space can be achieved by DNA shuffling, 

a technique that emulates sexual recombination by fragmenting the linear genes of 
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familial proteins and then stitching them back together (4).  This alternative technique 

overcomes the double-edged sword involved in using conservative random mutagenesis 

methods to discover novel or dramatic performance enhancements.  The major drawback 

to evolutionary engineering techniques is the application of an appropriate high-

throughput screen or selection to sift through the library of mutant sequences.  

Consequently the adage, “You get what you screen/select for”, is well known to 

practitioners in the field as substrates or conditions are often altered from those used in 

the final application for screening purposes.  The largest advantage to directed evolution 

methods is that very little structural information is necessary for isolating enhanced 

variants, while it is absolutely required for rational design. 

 Structure-based protein engineering aims to reduce the experimental burden of 

screening thousands of proteins by rationally predicting desirable mutational effects from 

structural observations.  Efforts in modifying substrate sensitivity found early success (5, 

6), and as site-directed mutagenesis techniques improved, the body of literature on 

mutational tolerance and energetic interactions grew (7, 8).  With more scrutiny came an 

empirical understanding of the difficulty of rational engineering due to the context 

dependence of mutational effects.  This, coupled with the significant amount of 

experimental data now gathered in the community, sparked computational- and 

statistical-guided solutions to protein engineering.  The ability to evaluate the energy 

(stability) of structure-sequence pairs in silico before doing any bench work represented a 

tremendous advance in the field.  Currently, there are several algorithms in the literature 

that can predict the stability of a mutation in any globular protein as long as the structure 

is known (9–12).  Fewer methods can efficiently tackle the loftier goals in protein design, 
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but these advanced software packages have registered several high-profile achievements, 

including automated redesign (13), extreme thermo-stabilization (14), the design of a 

novel fold (15), and novel catalysts (16–18).   

 Despite this success in computational protein engineering and design, the non-

robust functioning of these methodologies encumbers their practical use in 

biotechnology.  One example is seen in the muted performance of designed novel 

catalysts, which leave much to be desired when compared against natural enzymes (19).  

The poor approximation of the principles important to stability is one factor that dogs 

both stability prediction and design algorithms, evidenced by the weak-to-moderate linear 

correlation between calculated and experimental values in recent performance 

benchmarks (20, 21).  Other factors include limited conformational sampling and the 

absent consideration of explicit non-native states.  Due to these issues, the shrewd 

conjunction of methods in which computational power informs directed evolution 

screening/selection procedures has proven to be an effective solution to current protein 

engineering problems (22–24).  Going forward, both styles of engineering have much to 

learn to from each other.   

 Since its inception, protein design theory has improved through the rigorous 

cycling between theory and experiment, known as a protein design cycle (25).  In order to 

complete a full cycle, designed sequences had to be synthesized, confirmed by DNA 

sequencing, translated into protein, purified, and tested before the information gathered 

could be fed back into the theory.  The nature of molecular biology bench work creates 

bottlenecks at all steps in the design cycle, preventing the rapid iteration of improved 

protein properties and engineering principles.  Commercial solutions for synthesis and 
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sequencing have improved over the years, but high costs remain an issue.  A more 

economical solution would be to adapt methods from directed evolution, potentially 

accelerating and broadening the exchange of information between modeling theory and 

experimental results.  Thus, the focus of my graduate work has been to establish 

experimental high-throughput stability screening methods and subsequently apply them 

towards the rapid evaluation and improved understanding of proteins. 

 The second chapter best captures the overall theme of the thesis as we established 

and applied medium-throughput purification and stability assays to provide a more 

thorough analysis of core repacking performance when modeling native-state 

conformational flexibility.  Recently developed algorithms for multi-state design (26) and 

library design generated 24 member libraries from structural inputs such as NMR and 

molecular dynamics ensembles.  The comprehensive experimental stability screening of 

each library provided insights into the sources of simulation error that crept in from other 

design approximations.  Although a constrained molecular dynamics ensemble produced 

an entire library of stabilized sequences, issues surrounding the serendipity in library 

selection prevented our full recommendation of the technique.  The large amount of data 

relative to similar experiments in the literature created an opportunity to discover and 

discuss the lack of correlation between the calculated and experimental measures of 

stability.  By using high-throughput methodology, we were able to more meticulously 

validate the applicability of novel computational tools for protein engineering. 

 Building on the experimental methodology presented in Chapter 2, we raised the 

bar in the third chapter through the implementation of a liquid handling pipeline that 

enables the high-throughput construction and stability determination of single-mutant 
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proteins.  Individual automated protocols for the Tecan liquid-handling robot were first 

developed independently and later strung together in a modular fashion.   The methods, 

better described in the attached robot manual (Appendix), include the automated 

construction of mutant alleles by PCR site-directed mutagenesis, transformation, and 

plating of bacterial competent cells, and the expression, purification, and stability 

determination of mutant proteins.  The completed automated pipeline is by no means 

static, as other sources of protein diversity, such as gene assembly, can easily swap in and 

take advantage of the high-throughput downstream solutions.  To showcase the value and 

power of the automated system, we carried out a project impossible to achieve through 

standard bench-top methods: the evaluation of every single mutant of the Gβ1 domain.  

The unbiased, self-consistent nature of the dataset should provide more value toward 

training next-generation energy functions than what is currently available.  

Simultaneously, the dense character of the output data coupled with the laboratory’s 

previous work on Gβ1 enables an analysis of mutational effects within the context of an 

entire domain, described in Chapter 4 of this thesis.  

 The analysis in the last chapter represents insight into mutational outcomes and 

distributions from the most complete domain-level single mutant stability dataset in the 

literature.  We learn that most single mutations to Gβ1 are either neutral or stabilizing, a 

much discussed topic with implications for protein evolution studies.  If we ignore the 

variants not solubly expressed, the overall distribution can be fit as the sum of core and 

surface Gaussian distributions.  Positional sensitivity to mutation is well predicted by a 

computational measure of packing density, but better information can likely be gathered 

from serine scanning mutagenesis.  Interestingly, the entire domain was most tolerant of 
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large hydrophobic residues, a property evidently shared by other, larger proteins.  The 

high-quality dataset can also serve as a benchmark for current stability prediction 

algorithms.  Their lackluster performance should serve as encouragement for the further 

improvement of energetic approximations.  Lastly, the drastic non-additivity seen in 

variants composed of surface mutations illustrates the knowledge gap that must be 

bridged before we may reliably and efficiently engineer proteins. 

 The sum of the work in this thesis is the development and effective use of high-

throughput methodology for the rapid testing and improvement of computational theory.  

As is common in the study of biology, improved technological capabilities lead to more 

questions, not answers.  Nevertheless, the last ten years have seen improved performance 

from the combination of directed evolution and structure-based design principles.  The 

next ten, hopefully, will strengthen these ties and further realize the benefits protein 

engineering can bring to biotechnology. 
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Abstract 

 The stability, activity, and solubility of a protein sequence are determined by a 

delicate balance of molecular interactions in a variety of conformational states.  Even so, 

most computational protein design methods model sequences in the context of a single 

native conformation.  Simulations that model the native state as an ensemble have been 

mostly neglected due to the lack of sufficiently powerful optimization algorithms for 

multi-state design.  Here, we have applied our multi-state design algorithm to study the 

potential utility of various forms of input structural data for design.   

To facilitate a more thorough analysis, we developed new methods for the design 

and high-throughput stability determination of combinatorial mutation libraries based on 

protein design calculations.  The application of these methods to the core design of a 

small model system produced many variants with improved thermodynamic stability, and 

showed that multi-state design methods can be readily applied to large structural 

ensembles.  We found that exhaustive screening of our designed libraries helped to 

clarify several sources of simulation error that would have otherwise been difficult to 

ascertain.   

Interestingly, the lack of correlation between our simulated and experimentally 

measured stability values shows clearly that a design procedure need not reproduce 

experimental data exactly to achieve success.  This surprising result suggests potentially 

fruitful directions for the improvement of computational protein design technology.  
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Introduction 

 Protein-engineering efforts based on directed evolution have met with 

considerable success (1-3). In tandem, structure-based computational protein design 

(CPD) methods have been developed to allow screening for desirable sequences to be 

performed in silico (4-6). Despite a number of high-profile results that demonstrate the 

utility of CPD (7-12), the routine computational design of functional proteins remains 

elusive.  Thus, many current efforts focus on the improvement of CPD methodology or 

on the synergistic application of CPD with experimental high-throughput screening or 

selection (13).  

Although the stability, solubility, and activity of a protein depend on the relative 

energetic contributions of many conformational states, including ensembles of native, 

unfolded, and aggregated structures (14), most CPD methods evaluate sequences based 

on their energies in the context of one fixed backbone structure.  This simplification has 

made design results undesirably sensitive to slight changes in main-chain and side-chain 

conformation, and has made difficult the selection of sequences with amino acid 

composition similar to naturally occurring protein.  These issues have been approached 

via the use of high-resolution structural templates, expanded rotamer libraries (15, 16), 

energy functions with softened repulsive terms (17, 10, 18), iteration between structural 

refinement and sequence design (10, 19), and amino acid reference energies (10, 20).  

Although these strategies can help to mitigate the impact of the fixed-backbone 

approximation, they do not address the fundamental reality that sequence fitness is a 

function of multiple conformational states.   
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In a handful of cases, multi-state design (MSD) procedures have been used to find 

sequences that simultaneously stabilize or destabilize a combination of a few different 

conformational states (21-23). However, MSD techniques have not yet been applied to 

native ensembles with many conformational states that might better reflect the flexibility 

of real proteins.  The degree to which various energy functions, rotamer libraries, and 

structural templates of single-state design (SSD) might be appropriate for this type of 

MSD calculation is, so far, unknown.  We recently developed a framework for MSD that 

allows for efficient sequence optimization given hundreds of conformational states (24). 

Here, we have applied this framework to test the applicability of current CPD methods to 

large structural ensembles, and to investigate whether the use of such ensembles might 

result in the selection of more desirable sequences by CPD.   

The most basic goal of CPD has been to optimize interactions between amino acid 

side chains to promote thermodynamic stability of the native state. Unfortunately, 

standard methods for the measurement of protein stability are too laborious to allow the 

testing of more than a few designed variants, and the top-scoring sequence produced by a 

new design procedure does not yet sufficiently reflect its general utility. Fortunately, 

recent progress in laboratory automation has allowed us to construct an efficient pipeline 

for the basic evaluation of new procedures in CPD.  In our scheme, gene libraries are 

assembled from degenerate oligonucleotides, proteins are expressed and purified in 

microtiter plates, and liquid-handling robotics assist in the preparation of chemical 

denaturation series in a 96 well format for assay by tryptophan fluorescence. The 

integration of these technologies has allowed us to assess the stability of hundreds of 



 14 

designed protein variants with minimal experimenter intervention and limited 

incremental expense.  

Given several design procedures to evaluate and a high-throughput experimental 

assay, we needed a general and rigorous method to choose a limited number of 

representative sequences to test from each design.  Although several useful computational 

protein library design methods have been developed (25-28), none reported so far takes 

directly into account simulation energies, allows control over library size and possible 

sets of amino acids, and eschews heuristics that can introduce bias into the libraries it 

produces. So that our experimental results might better reflect the results of the 

underlying CPD calculations, we developed a new library design procedure, called 

Combinatorial Libraries Emphasizing And Reflecting Scored Sequences (CLEARSS), 

which satisfies these criteria.  

 We used standard single-state design (SSD) and MSD to redesign the core of the 

small, stable domain Gβ1 based on several sources of structural information, including a 

crystal structure, an NMR structure, and MD simulations.  Our efforts were motivated by 

a curiosity about the relative merits of different sources of structural data for design, and 

the hypothesis that use of a structural ensemble might help to correct for design failures 

observed in SSD.  Because the imperfect nature of CPD limits the conclusions that can be 

drawn from a comparison of single sequences, we developed new methods for the 

computational design and high-throughput experimental stability determination of 

combinatorial protein libraries.  The results we report here provide simultaneous 

experimental validation for (1) the application of multi-state protein design methods to 

large conformational ensembles, (2) the transformation of arbitrary CPD results into 
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combinatorial mutation libraries, and (3) the experimental stability determination of these 

libraries by high-throughput gene assembly, protein expression, purification, and 

screening.      

 

Results and discussion 

Designed libraries  

To simplify the validation of our multi-state design methods, we applied them to a 

previously studied set of core positions (Figure 2-1) in a small model system, protein 

Gβ1, and relied on a set of energy functions that previously found stabilized variants of 

this sequence (17).  We assessed these methods by performing designs based on each of 

the following sources of structural information: a crystal structure (xtal-1), an NMR-

constrained minimized average solution structure (NMR-1), an NMR ensemble (NMR-

60), a constrained MD ensemble (cMD-128), and an unconstrained MD ensemble (uMD-

128).  Our new algorithm for library design (Figure 2-2) was then applied to produce 

degenerate oligonucleotide sequences that reflect quantitatively the amino acid 

preferences determined by the design calculations.  Given the requirements for purified 

protein of our stability assay, we chose to design and screen a 24-member library based 

on each structural data source described above.   

All five designed libraries comprise relatively conservative sets of mutations 

away from the wild-type sequence (Table 2-1).  The libraries other than uMD-128 share 

many characteristics in common.  Each of these libraries chose only the wild-type amino 

acid at positions A20, A26, F30, and A34. Every member of each of these four libraries 

contained the single-mutant Y3F, which previous experiments have shown to be well 
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tolerated by the structure.  These four libraries all allowed the wild-type amino acid at 

every other position, and all contain the most stable Gβ1 core variant previously 

characterized, Y3F+L7I+V39I (17). 

 The two NMR libraries were extremely similar to each other: both chose the 

amino acids FILV at position 52, and directed the remaining diversity to positions 7 and 

39.  In contrast, xtal-1 and cMD-128 allowed only the wild-type Phe at position 52, and 

instead allocated diversity towards positions 7, 39, and 54.  xtal-1 differs from cMD-128 

in that it gave up L7F and V39L to allow L5I. The unconstrained MD ensemble library 

uMD-128 was the least conservative, specifying a size reversal of two nearby residues via 

mutations L5A and A34F, and diversity at residue 30, a position untouched in the other 

libraries.  

 As shown in Table 2-2, the designed libraries generally succeeded in representing 

the top-scoring sequences from each design calculation, given the constraints imposed by 

the genetic code.  The exception was the uMD-128 library, which represented only three 

of the best 100 sequences from the original design calculation.   This was caused by an 

unusual designed sequence list, in which the best-scoring sequence contained a feature 

(the size reversal mentioned above) that was very uncommon in the remainder of the list.   

 

Experimental characterization of designed libraries 

Experimental screening of the xtal-1 library (Figure 2-3A) showed two distinct 

sets of variants.  The 12 library members with wild-type Leu at position 5 all exhibited 

stabilities similar to or better than the wild-type sequence, while the 12 with Ile at 

position 5 were all significantly destabilized.  Screening of the NMR-based libraries 
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(Figures 2-3B and 2-3C) showed a similar dichotomy.  In each case, the 6 library 

members with the wild-type Phe at position 52 exhibited wild-type-like stability or better. 

The remaining 18 variants from each NMR-based library were highly destabilized, and 

many lacked enough of a pretransition to be fit to the two-state unfolding model.   

Evaluation of the MD libraries indicated that all 24 variants from the constrained 

library, cMD-128, had stability similar to the wild-type protein or better (Figure 2-3D).  

In contrast, all 24 variants from the uMD-128 library failed to produce any significant 

change in fluorescence signal across the denaturation series, and likely assume an 

alternative structure, as discussed below.  Sorting the individual sequence members from 

every library except uMD-128 according to experimental stability (Figure 2-4) shows that 

the cMD-128 input structural ensemble favored more high-quality sequences (better than 

wild type) than any other library.  Every other designed library specified at least one 

problematic substitution that rendered many of its sequences destabilized or otherwise 

unlike the wild type.  

 

Impact of input structural data on designed libraries 

 Why were apparently destabilizing mutations such as L5I, F52ILV, and A34F 

chosen by the design procedure?  These mutations were all present in high-scoring 

sequences from the original design calculations, and thus reflect real preferences of the 

original design procedures, rather than artifacts introduced by the library design process.   

 The selection of the amino acids FILV at position F52 in the two NMR-based 

libraries resulted in three quarters of each library being significantly destabilized.  In the 

context of the NMR structures, no Phe rotamer in the library was able to fit perfectly at 
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position 52, encouraging the selection of smaller amino acids.  If the set of rotamers at 

this position is supplemented with the observed rotamer in each structure, the designs 

choose to allocate diversity to positions 7 and 39, resulting in libraries similar to xtal-1.  

This result highlights how dramatically the rotameric approximation can influence the 

results of a design, despite our biophysical intuition that a solution ensemble might better 

reflect protein structure than a single crystallographic snapshot.  It suggests that, at the 

very least, rotamers optimized for the wild-type sequence should be included when the 

goal is to simply find desirable sequences.  For this project, we omitted the structurally 

observed rotamer at each position in order to limit the significant bias towards the wild-

type sequence that these rotamers tend to cause.  In the context of a real-world protein-

engineering project, including these rotamers would have considerably increased our 

chances of success.  Interestingly, this failure of discrete rotamers even occurred in the 

design of the NMR ensemble, indicating that continuous side-chain optimization may be 

useful during design, even when allowing conformational flexibility of the main chain.   

The L5I mutation, which caused half of the xtal-1 library members to be 

destabilized relative to the wild-type sequence, may have been selected due to a failure of 

the softened repulsive contact potential that is used to counteract unrealistic rigidity 

introduced by the CPD model.  The γ methyl group of Ile5 bumps into a Thr residue on 

an adjacent β strand and is scored as a serious clash using unscaled van der Waals radii, 

but appears innocuous with the atomic radius scaling factor of α = 0.9 that we used for 

the designs evaluated here (17).  Repeating the design calculations with radii scaled by 

intermediate values such as 0.925 and 0.95 prevents Ile from being chosen at position 5, 

but also increases the frequency with which smaller residues are chosen at position F52.  
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Interestingly, the recommendation of α = 0.9 is derived from previous experiments based 

on the same set of Gβ1 core positions that were designed here.  The earlier work drew 

conclusions based only on the best-scoring sequences produced by the design 

calculations, and found no difference between scaling atomic radii by 0.9 or 0.95 (17).  

Our results indicate that the mutations produced by the design procedure vary 

significantly with values of α between 0.9 and 0.95 when more sequences are taken into 

account.  Therefore, a more rigorous investigation of appropriate α values for design may 

be warranted.  Although the L5I mutation might also be reasonably attributed to the fixed 

main chain and discrete rotamers, several good-scoring libraries based on the constrained 

MD ensemble also contained this mutation (see below).  Since the additional 

conformational diversity provided by the ensemble did not inhibit this design failure, we 

find explanations related to energy function more plausible.   

To analyze the uMD-128 data, it is important to note that our stability assay 

reports on the environment of the single Trp residue of Gβ1.  Changes in packing caused 

by substitutions at other positions could alter the native-state environment of Trp43 

enough to flip its side chain out into solution or change its fluorescence properties, 

crippling our ability to monitor unfolding by fluorescence.  This interpretation seems 

unlikely for the destabilized members of the crystal structure and NMR libraries, for 

which a partial unfolding transition is clearly indicated by the raw data.  However, the 

members of the uMD-128 library fail to show any such a transition, rendering the validity 

of our assay suspect in this case.   

A constant feature of the uMD-128 library is a size reversal specified by 

mutations A34F and L5A.  The model structures produced by this design were well 
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packed and contained no obvious flaws such as Trp43 flipping out into the solvent.  

Previous characterization of several Gβ1 variants that include mutation A34F has 

indicated that these sequences assume oligomeric structures and exhibit altered 

fluorescence properties (29-31).  This suggests that the structural basis for our designs, as 

well as our fluorescence assay, may be inappropriate for sequences containing this 

mutation.  When we reanalyzed a subset of the uMD-128 variants using circular 

dichroism, they uniformly displayed wild-type-like secondary structure but lower 

stability and low levels of protein expression.  The previous reports and our new results 

indicate that the uMD-128 library sequences likely assume structures different from the 

design target.  As target structures move away from experimentally determined structures 

and greater sequence diversity is enabled (32, 33), more effective negative design 

strategies may be required to exclude sequences that preferentially adopt alternative 

conformations.  

A recent theoretical analysis of NMR and crystal structures as templates for 

design has suggested that some individual members of NMR ensembles might be more 

appropriate templates than others (34).  To assess the impact this might have had on our 

results, we ranked the members of each structural ensemble by DREIDING energy (35) 

and separately by Rosetta energy (36). We then designed new libraries using only the top 

16 energy-ranked structures from each ensemble using each energy ranking (Table 2-3).  

The two new libraries produced from the NMR structural ensemble were similar to those 

from the original design; both specified diversity at position 52 and contain destabilized 

sequences.  The library based on the top 16 DREIDING-ranked sequences from the 

constrained MD ensemble only specifies known non-destabilizing substitutions, whereas 
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the top 16 Rosetta-ranked structures again gave diversity at position 52.  For the 

unconstrained MD ensemble, the top 16 Rosetta-ranked structures gave a library very 

similar to that produced by the entire ensemble, and the top 16 DREIDING-ranked 

structures gave a library of sequences that appear severely overpacked.  In total, the 

libraries produced from the top-ranked sequences were similar to those produced from 

the full ensembles in four cases, and were worse in the remaining two cases.  Based on 

this post-hoc analysis, our multi-state library design procedure seems robust to the 

influence of poor templates within each ensemble. However, more sophisticated methods 

of template selection may ultimately prove more fruitful.  For example, it might be 

interesting to choose a subset of a structural ensemble according to the degree to which 

individual members are able to recover wild-type-like sequences, and apply MSD to this 

subset rather than to the entire ensemble.   

 

Influence of the designed library selection method 

 At this point, it is important to address the degree to which the library design 

method might affect the conclusions we draw from our experiments.  The CLEARSS 

library design procedure was developed with an understanding that many different 

combinatorial libraries may similarly represent a given list of scored sequences.  It is 

intended to produce a list of the top-scoring designed combinatorial libraries that satisfy 

all constraints, and to let the user choose between them.  In general, this choice might be 

influenced by chemical intuition or prior mutational data, and thus partially account for 

properties of the system that are not modeled during the design procedure.  To make our 

evaluation of input structural data sources as fair as possible, we chose to ignore such 
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influences and apply an objective strategy based on the energies of the sequences in the 

libraries.  Still, we must ask how the other libraries generated by CLEARSS would have 

fared in our experimental assay.   

Each of the top 20 designed libraries based on the NMR ensemble, and each 

based on the single average NMR structure, assigned smaller residues than the wild-type 

Phe to position 52.  The remaining diversity of each library was occupied by various 

combinations of the other mutations present in the xtal-1, NMR-1, and NMR-60 libraries 

we screened in this work.  It seems very likely, then, that the screening of any of the top 

NMR-based libraries from our designs would have resulted in stabilities similar to those 

we have reported here.  Similarly, all of the top 20 designed libraries based on the 

unconstrained MD ensemble contained mutations L5A and A34F, and would be expected 

to exhibit properties similar to uMD-128.   

A more interesting case is provided by the designs based on the crystal structure 

and constrained MD ensemble.  Our analysis of the libraries xtal-1 and cMD-128 

produced by these designs seems to indicate that cMD-128 was more successful, since a 

much greater fraction of its members were shown to be highly stable.   However, when 

the top 20 libraries from each design were inspected in aggregate, it became clear that the 

xtal-1 and cMD-128 designs had produced a variety of libraries, some featuring the 

destabilizing mutations described above.  Both the xtal-1 library and the cMD-128 library 

were found in the top 20 set of libraries produced by each design.  Furthermore, each 

design produced several libraries with diversity at position 52, like NMR-1 and NMR-60.  

 The influence of the library design procedure on a comparison between structural 

inputs can also be assessed by scoring the sequences from each library on each of the 
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other input structures or ensembles.  Histograms of these energies (Figure 2-5) show that 

each structural input prefers the sequences from its own library over those from other 

libraries, though often by narrow margins.    

These observations, taken in total, suggest that the library design method we used 

did not unduly influence our optimistic conclusions about the merits of high-quality 

structural ensembles as inputs for computational protein design.   

 

Approximation in computational protein design 

 In addition to helping validate the use of multi-state and combinatorial library 

design methods for computational protein design, our results also reflect unexpectedly on 

protein design itself.  Plots of experimental stability versus simulation energy for the 

cMD-128 library (Figure 2-6) failed to yield any correlation, despite the apparent success 

of this design calculation.  Likewise, the design calculations for xtal-1 and the NMR 

libraries failed to predict the pronounced destabilizing effects of mutations L5I or F52L, 

even though these designs also found a variety of stabilized variants. 

An intuitive perspective on the development of CPD methods is that 

improvements in designed sequences will follow from improvements in our ability to 

predict or rank experimental stabilities (37). However, recent advances in stability 

prediction procedures (38, 39) have not yet, to our knowledge, produced the expected 

benefits to combinatorial protein design.  Our results are consistent with a recent 

assessment of stability prediction methods, which found that the ability to reproduce 

experimental stability rankings is unnecessary for useful CPD (40). These conclusions 
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prompt a modified view of the factors that make structure-based design possible in the 

first place. 

Protein structures relax to accommodate mutations, and the computational 

difficulty of simulating and scoring these relaxed structures has so far rendered 

intractable the accurate stability ranking of sequence variants with many mutations.  

Fortunately, this malleability also means that sequences chosen to fit into a rigid protein 

model, even using approximate energy functions, will likely be tolerated by whatever 

relaxed structure results from the mutations they contain.  In this way, the soft material 

properties of proteins serve to impede the development of the accurate quantitative 

protein design methods, but also enable the more qualitative methods we can apply today.   

The standard view of CPD has been as a single, rigorously quantitative problem: 

correct packing of amino acid side chains into a high-resolution template structure leads 

to a stable and well-behaved designed sequence.  However, our analysis supports a 

revised view of CPD, comprising two distinct problems:  (1) to find areas of sequence 

space that can favorably adopt the target structure, and (2) to avoid areas of sequence 

space that might favorably adopt alternate structures.  The first problem is simply an 

enhancement of the original formulation of CPD in which we admit that current methods 

for native-state sequence selection are approximate, and focus on finding areas of 

sequence space enriched with variants that satisfy the target fold.   

The second problem has typically been treated implicitly, as discussed above.  

The energy function used in this work applies a simple tripeptide model of the reference 

state for solvation energies, and assumes that all other interactions average out in the 

unfolded ensemble.  However, issues such as those encountered with the uMD-128 
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library likely cannot be addressed in a general way without the use of explicit competing 

state models.  Such simulations are more difficult than those that model only the native 

state, in large part because few non-native states have been characterized experimentally.  

In alpha helical peptide systems where large numbers of undesirable states are readily 

identifiable, explicit negative design has yielded improvements in structural specificity 

(41). We hope that general models of unfolded and aggregated states will lead to similar 

improvements in the design of globular proteins.   

 

Conclusions 

  We enlisted new methods for the design and screening of combinatorial libraries 

to test the application of multi-state design procedures to several structural ensembles, 

and to compare the resulting designs to those based on single structures.  Single-state and 

multi-state designs based on NMR data produced similar sets of libraries; likewise did 

those based on crystallographic data.  Although an MD-based library gave superlative 

results, we cannot definitively conclude that the use of a structural ensemble provides any 

particular advantage over a single high-resolution structure for the purposes of design.  

Nevertheless, this initial success confirms that the energy functions and rotamer libraries 

developed for single-state modeling are equally applicable for the multi-state design of 

large structural ensembles.   

This work also provides further support in favor of rigorously screening an area of 

sequence space discovered by simulation, and has helped in vetting our new, general 

method for library design.  For some designs that specified undesired destabilizing 

mutations, library screening suggested underlying causes for design failure that would not 
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have been apparent via the ad-hoc testing of individual sequences.  Because our library 

design procedure is specifically intended to faithfully represent its input scored sequence 

list, and is indifferent to the origin of the list, it should be more useful for the evaluation 

of new design procedures than its predecessors.    

 Current design procedures seem to find stable sequences by selecting mutations 

that are likely to be accommodated by a relaxed version of the template structure, and not 

by accurately ranking the mutations relative to each other. Given that protein stability and 

function depend on competing states as well as the native state, the poor agreement we 

observed between simulated and experimental energies in our successful libraries 

suggests that future effort towards explicit negative design is warranted.   

 

Materials and methods 

Input structural data 

Input atomic coordinates for the β1 domain of Streptococcal protein G (Gβ1) 

were taken from the 2.2 Å crystal structure 1pga (42), the 60 member NMR structural 

ensemble 1gb1, and a constrained, minimized average structure generated from the 

ensemble 2gb1 (43). Hydrogens (if any) were stripped from each structure, and new 

hydrogen positions were optimized along with side-chain amide and imidazolium group 

flips using REDUCE (44). Each structure was then standardized with 50 steps of 

conjugate gradient minimization using the DREIDING force field (35). An unconstrained 

128 member molecular dynamics (MD) ensemble was generated from the minimized 

crystal structure by running a 12.8 ps MD trajectory at 300 K in vacuum using the 

DREIDING force field and saving the coordinates every 0.1 ps.  The constrained MD 
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trajectory was generated by the same procedure, using an additional harmonic point 

restraint with a force constant of 100 kcal/mol/Å2 applied to keep Cα atoms near their 

initial positions.  Each MD snapshot was standardized as described above.  After 

standardization, the NMR, unconstrained MD, and constrained MD ensembles exhibited 

average pairwise main-chain RMSDs of 0.25, 0.84, and 0.12 Å, respectively.   

 

Sequence design specifications and energy calculations 

In the sequence designs, ten core positions of Gβ1 (3, 5, 7, 20, 26, 30, 34, 39, 52, 

and 54), were allowed to assume any of the hydrophobic amino acids A, V, L, I, F, Y, 

and W.  Tryptophan 43 was allowed to change conformation but not amino acid type, so 

that our fluorescence-based stability assay would not be compromised.   Allowed side-

chain conformations at the variable positions were taken from the Dunbrack backbone-

dependent rotamer library with expansions of ±1 standard deviation around χ1 and χ2 

(15). To avoid bias toward the wild-type sequence, this set was not supplemented with 

the side-chain coordinates from the input structure, except at position 43.  All other side 

chains and the main chain were fixed in the input conformation.  Pairwise energies were 

computed for each structure or ensemble member using energy functions described 

previously (45, 46), with the polar hydrogen burial term omitted.  

 

Sequence optimization 

FASTER was used to find optimized sequences in the single-state design of the 

crystal structure and the NMR constrained minimized average (47). Multi-state sequence 

optimization of each ensemble was performed as described (24). The energies of a 
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sequence in the context of ensemble member were combined into a single score by 

computing the free energy of the ensemble system at 300 K: 

 

€ 

A = −kT log( e
−E j / kT

j

∑ )  

where each Ej is the energy of the sequence when threaded on member j of the ensemble.  

While various functions could be used to combine the state energies into a single score, 

we chose the free energy function over other averaging schemes because it prefers 

sequences that satisfy multiple states in a physically reasonable way that does not require 

any particular number of states to be satisfied.   

 

Combinatorial library design 

To choose combinatorial sequence libraries for experimental screening, we used a 

new algorithm reported here (Figure 2-2).  Given a list of scored sequences, a list of 

allowed sets of amino acids, and a range of desired library sizes, the method evaluates all 

possible combinations of sets of amino acids at different positions that lead to a library 

with a size in the desired range. Each position in each library is scored by summing the 

Boltzmann weights of the sequences in the list that contain a library-specified amino acid 

at that position.  The position scores are then summed to give an overall library score. 

Our algorithm is able to consider all possible libraries because it treats positions 

independently, and because it ignores amino acid sets that are unnecessarily large in the 

context of a given position. In this work, we allowed only those sets of amino acids that 

can be specified by degenerate codons that do not include codons observed with low 

frequency in E. coli.  A temperature of 300 K was used in the Boltzmann weighting, and 
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the target library size was 24.  Setting the desired library size to other values, such as 12 

or 48, gave libraries composed of the same mutations found in the 24 member libraries.   

 After applying this algorithm to the lists of sequences produced by the 

computational designs, we instantiated the 20 best-scoring libraries from each design and 

rescored all of the amino acid sequences in each library by rotamer optimization.  Each 

library we inspected contained the best-scoring sequence from the design it was based on, 

although this is not required by the method.  From each design, we chose for 

experimental testing the library in the top 20 with the smallest energy spread between its 

best-scoring and worst-scoring sequence.   

 

Library construction, expression, and purification 

Oligonucleotides (Integrated DNA Technologies) containing ~ 18 bp overlapping 

segments were assembled via a modified Stemmer method (48) using KOD Hot Start 

Polymerase (Novagen) to generate full-length streptococcal Gβ1 with an N-terminal His6 

tag.  Secondary structure content and annealing temperatures were verified by NUPACK 

(49, 50).  For each library, oligonucleotides containing the desired single mutation or 

degenerate codon were swapped into the assembly mixture.  Standard subcloning 

techniques were performed to first insert the library into the frameshift selection plasmid 

pInSALect (51) and finally into an expression plasmid (pET11a).  The library was 

transformed into BL21 Gold DE3 cells (Stratagene) and colonies were picked into 96 

well plates for plasmid miniprepping and sequencing (Agencourt Biosciences). Any 

missing library members were generated by standard quick-change protocols.  Sequence-

verified library members were pulled from replicated glycerol stocks and inoculated into 
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Instant TB media (Novagen) in 24 well plates. After overnight incubation at 37oC, cells 

were pelleted by centrifugation.  Pellets were freeze/thawed once and resuspended in 1x 

CelLytic B (Sigma-Aldrich) lysis buffer before another identical centrifugation step.  Cell 

lysates were loaded onto an equilibrated HIS-Select filter plate (Sigma-Aldrich), washed 

twice, and eluted with buffer containing 250 mM imidazole, pH 8. 

 

Microtiter plate-based stability determination 

Appropriate amounts of GdmCl (Sigma-Aldrich), Milli-Q water, eluted protein, 

and NaPO4 buffer, pH 6.5, were added to maintain a fixed volume in each well of 96 well 

Costar UV transparent flat bottom plates by a Freedom EVO liquid handling robot 

(Tecan).  Adapting a previously reported stability assay, mutant proteins were subjected 

to a 12 point GdmCl gradient across the columns of the plate, where each row contained 

a separate denaturation experiment (52).  The plates were equilibrated for at least one 

hour and shaken at 900 rpm on a microtiter plate shaker (Heidolph). 

Tryptophan fluorescence measurements were taken on a fluorescence plate reader 

(Tecan) with a plate stacker attachment. Parameters empirically determined for wild-type 

Gβ1 were later used for each library assayed.  Excitation was performed at 295 nm and 

emission measured at 341 nm with 10 nm bandwidths.  Data were fit as a two-state 

unfolding transition using the linear extrapolation method (53) in Pylab.  The GdmCl 

concentration at the midpoint of denaturation, Cm, was estimated numerically based on 

the fraction-unfolded curve fit.  
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Microtiter plate-based stability assay controls 

 The fluorescence profiles of the GdmCl gradient and the elution buffer show no 

effect on the shape of the unfolding transition of wild-type Gβ1 (Figure 2-7A).  Sample 

signal below the elution buffer was interpreted as expression failure; any sample whose 

data could not be fit yet whose signal was above the elution buffer was deemed expressed 

but unstable, unfolded, or misfolded.  In order to test the accuracy of the microtiter plate-

based denaturation assay, Gβ1 unfolding was monitored by circular dichroism (Aviv 

Biomedical) and tryptophan fluorescence in a fluorimeter (Photon Technology 

International).  The denaturation profiles from these low-throughput experiments were 

compared to results from the fluorescence plate reader (Figure 2-7B).  The overlapping 

data points support the use of a two-state unfolding fit during our stability calculations 

and verify the accuracy of the assay.  Next, the unfolding curves from several protein 

preparations from different concentrations confirmed the assay’s precision (Figure 2-7C).  

These results support some assumptions that the stability determination method described 

here makes in order to maintain a high level of throughput.  First, we never assay for 

protein concentration before setting up the GdmCl gradient, relying on the fraction-

unfolded plot to remove any concentration bias/effects.  Second, the high concentration 

(250 mM) of imidazole in elution buffer is never dialyzed out of the eluted protein 

solution.  Figures 2-7B–C show that these discrepancies in protein preparation have no 

significant effect on fraction unfolded plots for the wild-type protein.   
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Figure 2-1:  The core residues of Gβ1 designed in this study.   Each of these positions 
was allowed to assume various rotamers of the hydrophobic amino acids Ala, Val, Ile, 
Leu, Phe, Tyr, and Trp.  Position Trp43 (not shown) was additionally allowed to change 
rotamer but not amino acid type.  All other side chains and the main chain were fixed in 
the input conformation for the state being modeled in each case.   
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Figure 2-2: General scheme used to design combinatorial mutation libraries based 
on computational protein design calculations.  A line of boxes indicates a protein 
sequence; each box represents a position in the protein chain.  Different colored boxes 
represent different amino acids.  The set of sequences on the far right corresponds to the 
expansion of a particular combinatorial library into the set of sequences it represents.  
The energies of the sequences in the expansions are used to decide which combinatorial 
library to test experimentally, as described in the Methods section. 
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Residue WT xtal-1 NMR-1 NMR-60  cMD-128 uMD-128 

3 Y F F F F F 
5 L IL L L L A 
7 L ILV ILV IL FILV FL 

20 A A A A A A 
26 A A A A A A 
30 F F F F F FIL 
34 A A A A A F 
39 V IV IV ILV ILV IL 
52 F F FILV FILV F F 
54 V IV V V IV AV 

 
Table 2-1: Combinatorial libraries designed from different sources of structural 
information.  xtal-1: library based on single-state design of the crystal structure.  NMR-
1: library based on single-state design of the constrained minimized average NMR 
solution structure.  NMR-60: library based on multi-state design of the 60 member NMR 
structural ensemble.  cMD-128: library based on multi-state design of the constrained 
molecular dynamics ensemble.  uMD-128: library based on multi-state design of the 
unconstrained molecular dynamics ensemble   
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 xtal-1 NMR-1 NMR-60  cMD-128 uMD-128 

number of top 20 list 
sequences found in 

library 
8 12 10 8 1 

number of top 100 
list sequences found 

in library 
15 20 16 16 3 

 
Table 2-2: Library coverage.  For each design problem, we report the number of top 20 
and top 100 designed sequences from each original list that were represented in each 
corresponding combinatorial library.  The maximum possible number of top 20 
sequences that could be represented is 20, whereas the maximum number of top 100 
sequences is 24 because each library contains only 24 members.    

 
  



!

!

40 

 

Figure 2-3: Fraction-unfolded curves derived from the stability determination of 
experimental libraries.  The dashed black curve denotes variant Y3F, which is the 
closest library member to the wild type in terms of sequence, and which is known to have 
a stability very similar to the wild type.  The blue curves denote variants with Cm < 2.0 M 
(“destabilized”) and the red curves denote variants with Cm > 2.0 M (“stabilized”).  (A) 
xtal-1 library:  Destabilized variants feature Leu at position 5 while stabilized variants 
feature Ile at position 5.  Not pictured:  variant Y3F+L5I+L7I, which did not give a signal 
that could be fit to a two-state unfolding model.  (B) NMR-60 library:  Stabilized variants 
feature Phe at position 52 while destabilized variants lack Phe52 but have Val at position 
39.  Not pictured:  14 variants that lack Phe at position 52 and which did not give a signal 
that could be fit to a two-state unfolding model.  (C) NMR-1 library:  Stabilized variants 
feature Phe at position 52 while destabilized variants lack Phe52 but have Val at position 
39.  Not pictured:  13 variants that lack Phe at position 52 and which did not give a signal 
that could be fit to a two-state unfolding model.  (D) cMD-128 library:  Only stabilized 
variants are present in this library.   

 
  

A B
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Figure 2-4:  Library mutants sorted by experimental stability.  All sequences from 
the cMD-128, NMR-1, NMR-60, and xtal-1 libraries were named according to their 
designed positions (Sequence ID) and sorted by their experimentally determined Cm 
value.  Some sequences have membership in more than one library.  All sequences above 
the “wild-type stability” label are more stable than the wild-type sequence.  No sequences 
below the “unfolded protein” label gave a measurable transition in the stability assay. 
  

Sequence ID
Library

cMD-128 NMR-1 NMR-60 xtal-1
FLIAAFAIFV
FLIAAFALFI
FLFAAFALFI
FLVAAFAIFV
FLIAAFAVFV
FLFAAFAIFV
FLFAAFAIFI
FLIAAFAIFI
FLIAAFALFV
FLVAAFAIFI
FLVAAFALFI
FLLAAFAIFV
FLFAAFALFV
FLIAAFAVFI
FLLAAFAVFV
FLVAAFAVFV
FLVAAFALFV
FLLAAFALFI
FLVAAFAVFI
FLLAAFAIFI
FLLAAFALFV
FLFAAFAVFV
FLFAAFAVFI
FLLAAFAVFI
FIIAAFAIFV
FIIAAFAIFI
FIVAAFAIFV
FILAAFAIFV
FIVAAFAIFI
FILAAFAVFV
FIIAAFAVFI
FIVAAFAVFV
FLIAAFAVIV
FILAAFAIFI
FILAAFAVFI
FLLAAFAVVV
FIVAAFAVFI
FLIAAFAVLV
FLVAAFAVIV
FLLAAFAVLV
FIIAAFAVFV
FLIAAFAIIV
FLIAAFAILV
FLIAAFAIVV
FLIAAFALIV
FLIAAFALLV
FLIAAFALVV
FLIAAFAVVV
FLLAAFAIIV
FLLAAFAILV
FLLAAFAIVV
FLLAAFALIV
FLLAAFALLV
FLLAAFALVV
FLLAAFAVIV
FLVAAFAIIV
FLVAAFAILV
FLVAAFAIVV
FLVAAFAVLV
FLVAAFAVVV

wild-type stability

unfolded protein

0.000

3.445

Cm (M GuHCl)
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Residue WT NMR-
16D 

NMR-
16R 

cMD-
16D  

cMD-
16R 

uMD-
16D 

uMD-
16R 

3 Y F F FY F W F 
5 L L L L L FLV A 
7 L ILV IL IL IL I FL 
20 A A A A A F A 
26 A A A A A A A 
30 F FILV F F F FILV FIL 
34 A A A A A A F 
39 V I IL ILV ILV IV IL 
52 F FL FL F FL F F 
54 V V ILV IV IV V AV 

 
Table 2-3: Combinatorial libraries designed from the top 16 energy-ranked 
structures based on two different energy functions.    NMR-16D: library based on the 
top 16 NMR structures ranked by DREIDING energy.  NMR-16R: library based on the 
top 16 NMR structures ranked by Rosetta energy.  cMD-16D: library based on the top 16 
constrained MD ensemble structures ranked by DREIDING energy.  cMD-16R: library 
based on the top 16 constrained MD ensemble structures ranked by Rosetta energy. 
uMD-16D: library based on the top 16 unconstrained MD ensemble structures ranked by 
DREIDING energy.  uMD-16R: library based on the top 16 unconstrained MD ensemble 
structures ranked by Rosetta energy 
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Figure 2-5:  Library member energies.  Energies of the members of each library when 
threaded on the structural basis for (A) the xtal-1 library, (B) the NMR-1 library, (C) the 
NMR-60 library, (D) the cMD-128 library, and (E) the uMD-128 library 
 
  

A

B

C

D

E
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Figure 2-6:  Correlation between simulation energy and experimental stability for 
the cMD-128 library.   No correlation was observed between the experimentally 
measured fitness of the sequences and simulation energies that were used to select them 
for experimental screening.   
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Figure 2-7:  Microtiter plate-based stability assay controls.  (A) Denaturation gradient 
and elution buffer fluorescence profiles.  Gβ1 (black) was expressed in a 5 mL culture, 
purified, and eluted with 500 µL of elution buffer (50 µM NaPO4, 300 mM NaCl, 250 
mM imidazole, pH 8).  Since each point of the Gβ1 denaturation profile contains 35 µL 
of eluted protein, the elution buffer profile (red) substitutes protein with 35 µL of elution 
buffer.  Similarly, the water profile (blue) adds 35 µL of water to make up the final 
volume.  Each denaturation profile contains an increasing gradient of GdmCl, 50 µM 
NaPO4 buffer at pH 6.5, and water.  (B) Fraction-unfolded profiles between different 
modes of detection.  CD data (red) measured 5 µM Gβ1 titrated with a 5 µM Gβ1/8 M 
GdmCl solution in 0.2 M steps at 218 nm.  Fluorimeter data (blue) measured 5µM Gβ1 
titrated as in the CD experiment with excitation performed at 295 nm and emission 
recorded at 341 nm with 4 nm bandwidths.  Plate-based data (black) measured 12 
separate solutions of 10 µM Gβ1 in response to increasing amounts of 8 M GdmCl with 
fluorescence parameters identical to the fluorimeter data except for 10 nm bandwidths.  
All samples were measured at 25°C in 50 µM NaPO4 buffer at pH 6.5.  (C) Fraction-
unfolded profiles between different protein preparations.  Gβ1 was expressed in 100 mL 
cultures, purified, and diluted to 1, 5, 10, and 500 µM in 50 µM NaPO4 buffer at pH 6.5.  
Another expression culture was dialyzed overnight (Pierce Biotechnology) after 
purification and diluted to 10 µM in the same buffer.  All measurements were taken on a 
fluorescence plate reader as described in the text. 
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Abstract 

 The development of scoring functions for predicting protein stabilities requires 

large amounts of high-quality data.  All current general-purpose stability prediction 

software was trained on the ProTherm database, an aggregate dataset of all stability data 

reported in the literature.  While extremely useful, the datasets extracted from the 

database suffer from the following limitations:  (1) data collected are from a wide variety 

of labs, experimental assays, and conditions, (2) the mutational distribution is biased 

towards large-to-small mutations, and (3) only positive measurements are reported, 

ignoring insoluble/unfolded sequences.  To address these concerns, we initiated a large-

scale project to facilitate the systematic construction of every single mutant of any 

particular protein domain.  We developed high-throughput automation technology and 

established an experimental pipeline for the ordering, mutagenesis, sequence verification, 

expression, purification, and stability analysis of single-site protein mutants.  The first 

domain we processed was Gβ1, a 56 residue beta-grasp (ubiquitin-like) fold, which 

entailed the construction of ~ 1000 single-site variants.  This dataset, managed by 

relational database software, is already significant as it contains precise and accurate data 

on a large number of both folded and unfolded protein sequences.  It is anticipated that 

single mutant data will be periodically added from domains on the order of 100–250 

residues and featuring vastly different folds.  The unique features of the current dataset 

are expected to directly benefit the optimization and validation of future stability 

prediction potentials.  
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Introduction 

 Site-directed mutagenesis has long been a potent tool for elucidating the 

principles governing protein function (1).  Much of the knowledge we have today on 

protein stability was determined by introducing point mutants into specific positions and 

correlating the change in molecular structure with the accompanying change in free 

energy (2–6).  This understanding of the forces behind protein stability has in exchange 

allowed insights into disease mechanisms (7) and unlocked the field of protein 

engineering and design (8, 9).  Recently, much interest has surrounded the ability to 

predict the stability of protein mutants from their wild-type structure in order to minimize 

the experimental burden of constructing and evaluating mutants (10–15).  Fresh critical 

analysis however, shows that most methods perform equally, and all have plenty of room 

for improvement (16, 17).  One possible reason for this consistent lack of accuracy may 

be that although the algorithms and molecular force fields differ significantly in their 

approach, almost every method performs some statistical analysis on experimental data, 

and every method that does so acquires its dataset from the same thermodynamic stability 

database, ProTherm. 

 Amassing its data from the scientific literature, the ProTherm database is a 

valuable repository of experimentally determined stability data (18).  At the time this 

chapter was written the database website boasted 24,875 entries from 716 unique 

proteins, retrieved from 1,846 scientific articles.  However, in order to serve as training 

data for stability prediction, the number of data points are commonly culled to a smaller 

collection totaling in the low thousands due to low-quality data or the lack of wild-type 

crystal structures.  These datasets, although useful, suffer from three major limitations.  



!

!

50 

First, the experimental conditions under which the data is collected varies not only in pH 

and temperature, which is known to alter the free energy determination (19), but also in 

the methods of stability determination between different laboratories.  Second, the 

distribution of mutations is overwhelmingly skewed toward small hydrophobic amino 

acids, with mutations to alanine more than twice as common as those to any other amino 

acid.  This bias is no fault of ProTherm itself, but is instead a byproduct of the value 

alanine scanning mutagenesis provides to the scientific community.  Finally, because it is 

not common practice to report mutations that completely impede protein folding, stability 

prediction efforts are hampered by the complete absence of this class of potentially 

valuable data. In order to overcome the deficiencies of the current datasets, we propose 

that a database containing stability data collected under a unified automated protocol 

would greatly benefit the prediction community.   

 A concerted effort to acquire protein stability information could improve efforts 

in prediction training by maintaining consistent experimental conditions, keeping a 

uniform mutational distribution, and providing much-needed data on non-folded 

sequences.  Here we report the development of an automated platform and database for 

the site-directed mutagenesis and stability analysis of protein domains.  Drawing both 

inspiration and methodology from structural genomics (20), the described procedures 

utilize liquid-handling robotics to efficiently and rapidly construct, validate, and assay 

very large numbers of protein mutants.  To demonstrate the capability of our platform, 

every possible single mutant of a protein domain was constructed and analyzed.   
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Results and discussion 

Experimental system 

 The protein chosen for this study was the β1 domain of Streptococcal protein G 

(Gβ1) primarily because it has already been well studied by ours and other laboratories in 

the protein engineering field (21–25).  Some reasons for these levels of interest include 

Gβ1’s small size, high amount of secondary structure, and the fact that the wild-type 

sequence is very well behaved.  The last point is especially important when adapting 

protein purification and analysis protocols for automation, where it may be difficult to 

reveal and understand strange results.  Although the literature does contain examples of 

bizarre behavior in Gβ1 (26–28), we feel it is an advantage knowing these details ahead 

of time before developing methodology and conducting a project of this size. 

 The wild-type sequence of Gβ1 is 56 amino acid residues long, so a complete 

site-directed mutagenesis project would involve constructing 1064 single mutants.  

However, the tryptophan residue at position 43 (W43) was left untouched due to that 

residue’s critical importance for measuring intrinsic fluorescence in the stability assay.  

Similarly, no cysteine or tryptophan residues were inserted as point mutants to avoid 

potential oligomerization (disulfide bridges) and analysis (multiple tryptophan residues 

could mask W43’s ability to report folded-ness in the stability assay) issues.  After these 

considerations, 935 point mutants were constructed and analyzed. 

 

Automation scheme 

 The experimental pipeline (Figure. 3-1), starts from mutagenic oligonucleotides 

and generates high-quality protein stability data from sequence-confirmed site-directed 
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mutagenesis (SDM) products.  With equal estimated costs, we employed explicit site-

directed oligos over degenerate site-saturation oligos, as it would be much simpler for the 

former method to recover single mutants not found in the initial round of sequencing.  A 

protocol featuring mutation confirmation by restriction analysis (29) was not considered 

due to the higher fidelity of sequencing and the potential difficulty of incorporating 

identical restriction sites at every position.  All liquid-handling steps are performed by a 

customized robotics platform (described in the Materials and methods), which ensures 

that each SDM reaction is individually addressable at any time as it moves between 24, 

48, 96, and 384 well microplate formats.  Each step in the pipeline was developed 

independently and then later strung together as modular parts for production experiments.   

 

Variant construction 

 The initial step of the automation scheme begins with site-directed mutagenesis, a 

mature technology that has seen widespread use because of its tremendous utility in 

protein science and the availability of easy-to-use commercial kits (Stratagene).  

However, because kits are cost-prohibitive in large volumes, an in-house method was 

developed from the existing literature.  Most reports improve upon the classical 

Stratagene Quik-Change method by avoiding primer-dimers and vary in the number and 

specific design of mutagenic oligonucleotides (30–34).  An ideal automated SDM method 

should be cost-effective, require a minimal amount of simple enzymatic steps, and robust 

enough to avoid manual intervention. The megaprimer-based method described by Tseng 

et al. best satisfies these criteria as it requires only one unique oligonucleotide per 

mutagenesis reaction, is completely PCR-based, and was reported to produce more 
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colonies at similar mutagenesis efficiencies when compared against the Quick-Change 

method (34).  Briefly, the mega-primer method combines a forward mutagenic primer 

with a static reverse flanking primer in an initial PCR reaction to generate large 

megaprimers that then anneal to the template plasmid in a second PCR reaction to 

generate the full-length mutagenized nicked circular plasmid.  The parental template is 

then degraded by Dpn1 digestion and the reaction is transformed directly into bacterial 

cells.  All liquid-handling manipulations during variant construction take place on the 

robot in 96 well PCR plates.   

 Further optimizations were made to improve the applicability of the megaprimer 

method for automation.  Although the megaprimer protocol already halves the 

expenditure on oligonucleotides because each reaction requires only a single unique 

primer, we employed shorter mutagenic oligos (~ 25 bases) than previously described 

because the cost-savings adds up in a large automation project.  The reaction was sped up 

upon switching from Pfu Turbo to Hot-start Phusion DNA polymerase.  This also made 

the setup more automation-friendly as the Affibody-based Hot-start feature prevents non-

specific amplification and primer/template degradation (35, 36).  Small-scale experiments 

showed that the primer melting temperature (Tm) correlated better with a basic Tm 

calculator (Tm = (64.9+41×(number of gc bp)−16.4)/(number of total bp)) (37, 38), 

improving reliability over the mismatch method used in the original paper.  The 96 well 

agarose gel in Figure 3-2 shows the performance of the final optimized two-step SDM 

method. 

 Less viscous percent solutions of Dpn1 were used to perform template digestion.  

Although bacterial transformation was very simple to automate through the use of an 
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integrated PCR machine, the cell recovery period had to be done off-line, as no 

automated solution could match the performance of high-speed shaking at 37°C.  Plating 

the cultures after transformation proved serendipitously simple to automate, as the eight-

channel liquid-handling arm (LiHa) on the robot can separate its tips into a range of 

distances, allowing for elegant column-to-column transfers between a PCR plate and a 48 

well LB agar Qtray (Genetix), using a matrix of liquid drops spotted onto each well to aid 

in spreading.  Combined with beads previously dispensed by hand onto the LB agar, 96 

well plates of bacterial transformations are plated onto two 48 well Qtrays in less than 10 

minutes.  After traditional overnight incubation, the Qtrays are are picked by a dedicated 

Qbot colony picker (Genetix).  As described in the methods, eight colonies for each 

segment of the 48 well Qtray are picked into 384 well LB glycerol plates, creating a one-

to-one correspondence between Qtrays and high-density glycerol stock plates.  The 

liquid-handling robot then re-arrays two cultures per reaction in 96 well plates for high-

throughput commercial miniprep and sequencing (Beckman Genomics). 

 The throughput of an automated system is stunning when compared against what 

can be done manually.  The speedup in variant construction leading up to sequence 

confirmation is achieved primarily by the robot’s ability to parallelize work on large 

numbers of samples without making mistakes common to human laboratory workers.  

Figure 3-3 shows that in the same amount of time (5 days), a single robot user can 

perform roughly up to two orders of magnitude more mutagenesis reactions than 

someone at the bench.  Also, because of the low time requirement each day and the fact 

that the chronological spacing of the procedures are a requirement of the bacterial cells 

and not of the robot itself, multiple runs through the experimental pipeline are possible by 
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staggering the operations one day apart.  After an initial development run with a small 

selection of Gβ1 mutants, four runs of variant construction (a total of 768 mutants) were 

performed in 7 days, demonstrating the power of automation. 

 

Sequence confirmation 

 Analysis of the sequencing results can give insight into the mutagenesis efficiency 

of the method.  In an initial run of variant construction, four colonies per reaction were 

sent for sequencing, successfully recovering 45 of the 49 constructs sought.  However, 41 

of the 49 constructs would have been found had we only sent two colonies for 

sequencing.  The savings afforded by halving the number of sequencing requests more 

than made up for the miniscule drop in recovery rate.  This modification was adopted 

throughout the rest of the project, and 96 well plates sent for sequencing had recovery 

rates between 80–90%.  In addition, the percentage of colonies coming back as wild type 

dropped as more experience was gained in performing the SDM methodology.  The 

percentage of colonies with non-mutated sequences fluctuated between 6 and 30% with 

an average of 17%, increasing when adding plasmid template to the mutagenesis reaction 

and decreasing when using more concentrated Dpn1 enzyme during template digestion.  

The parameters reported in the methods represent a qualitative balance between the cost 

of the Dpn1 enzyme, success of the SDM reaction, and mutant recovery rate.   

 After all of the 935 constructs were confirmed by sequencing, the cultures 

containing successful mutants were re-arrayed sequentially and by mutant amino acid 

type.  This allows the entire library of mutants to be stored on just ten 96 well 
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LB/glycerol plates, where they are easily accessible for both humans and robots to 

replicate from and perform further experiments. 

 

Stability analysis 

 The final block of the automation scheme probes the thermodynamic stability of 

the point mutant library after over-expression in auto-induction media and Ni-NTA 

purification.  As described in the methods, the robot performed all liquid-handling 

operations except for the wash and elution steps of the purification.  This was necessary, 

as automated vacuum methods could not replicate the reliability and speed provided by 

manually loaded centrifugation during filter-plate purification.  Future robot layouts 

needing to perform solid-phase extraction would benefit more from an integrated 

centrifuge than a vacuum station.  Lowering the imidazole concentration in the elution 

step and diluting the purified protein fivefold obviated buffer exchange, which would 

otherwise be necessary to remove the harsh conditions found in protein elutions after 

hexahistidine-based purification.   

 The automated plate-based stability assay developed here is a considerable 

improvement over the first iteration of this method (25), as it is faster to setup and 

process, while simultaneously maintaining precision and doubling the number of 

measurements from twelve to twenty-four.  Where the old method would have gathered 

1152 data points (12 data points over 96 proteins) in 5 hours, the new method gathers 

2304 data points (24 data points over 96 proteins) in 4 hours, a 2.5x increase in 

efficiency.  
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 By measuring the intrinsic fluorescence in response to a chemical gradient that 

unfolds the protein, the stability assay probes the environment around the single buried 

tryptophan at position 43 (W43) in the Gβ1 domain.  This information on the tertiary 

structure of the protein not only gives thermodynamic details of stability (free energy of 

unfolding, ΔG(H2O); denaturation concentration at 50% unfolded, Cm; slope of the 

denaturation curve, m-value), but can also shed light on the foldedness and oligomeric 

state of the purified protein.  Figure 3-4 shows fluorescence data for three examples from 

the single mutant library of well-folded, unfolded, and likely oligomeric proteins.  Since 

stability data from oligomeric and unfolded proteins are not amenable to curve fitting 

analysis, every 24 point measurement was annotated with a comment describing protein 

quality to simplify data cleaning.  Of the 935 mutants analyzed, 100 proteins had 

unfolding transitions consistent with very unstable, completely unfolded, or oligomeric 

characteristics.  These records, although missing proper thermodynamic parameters, still 

provide valuable information on mutations that substantially disrupt a protein’s native 

fold.  This type of negative data is typically unreported in the literature and therefore 

missing from datasets extracted from ProTherm. 

 In order to get a measure of data quality, duplicate records with measurable 

thermodynamic parameters were correlated against each other using ddG, the difference 

between the free energies of the wild-type and mutant proteins.  Two different measures 

of ddG were examined, one taking the difference between the fitted dG(H2O) values 

given by the linear extrapolation method (LEM) for stability analysis (39) (ddG-true, 

Figure 3-5A), and the other taking the difference between Cm values and multiplying by 

the average of the wild-type and mutant m-values (ddG-mAVG, Figure 3-5B).  The latter 
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calculation is much more precise (r = 0.78 versus r = 0.99) as advocated in the literature 

(40, 41), and removes any uncertainties concerning the non-linear dependence of free 

energy on denaturant concentration, a potential issue when using the linear extrapolation 

method (41).  However, this simplification is only valid when single mutations are not 

expected to greatly affect the m-value or the stability of the mutant protein.  The strong 

linear relationship between ddG-true and ddG-mAVG as seen in Figure 3-5C (r = 0.89), 

supports the application of the ddG-mAVG assumption for this dataset.  

 

Data tracking and analytics 

 An important factor that supports and facilitates the proper operation of the 

automated scheme is the usage of relational database software.  Early in the development 

of the project, a need arose for a data management solution to tackle the volume of 

oligonucleotide, mutation, and stability information already being generated as well as 

that on the horizon.  The database marketplace has many chemoinformatic solutions for 

the pharmaceutical industry, but painfully few options exist for handling protein-centric 

mutational studies.  Taking cues from an inventive solution (42) to the problem, we 

developed in-house databases in Access 2010 (Microsoft) to house records detailing the 

construction and experimental stability of the protein mutant library. 

 The focus of the experimental construction database (ecDB) is to maintain records 

of every mutation attempt and to track the mutants that have been recovered versus those 

that haven’t been confirmed by sequencing.  For each construction attempt, records are 

kept detailing protocol parameters for the SDM, template digestion, and transformation 

methods.  This detailed metadata was helpful while optimizing mutagenic oligo designs 
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and the SDM protocol.  To facilitate reconstruction attempts, SQL queries identified 

those mutants still missing after sequencing and provided robot-friendly location 

information of the required mutagenic oligo.  After sequence confirmation, another query 

identified the first instance of each mutation from the sequencing plates and reported its 

robot-friendly location for the re-array procedure. 

 With the entire library located in a manageable number of 96 well plates, the 

experimental stability database (estabDB) was designed to keep records on protein 

purification attempts as well as the resultant raw and fitted stability data.  Like ecDB, it 

stores detailed metadata for the expression, purification, and stability assay protocols.  

Although the raw stability data was fitted and analyzed outside the database and later 

imported, future database iterations using open source MySQL will enable on-the-fly 

analysis and recording of fitted data.  Data cleaning routines made use of a data comment 

system, made necessary by the concerns conveyed in Figure 3-4, to quickly filter 

denaturation curves containing outliers or depicting potentially oligomeric or unfolded 

proteins.  To enable future in-depth analysis of the stability data, queried results not only 

contain standard thermodynamic stability details but also separate the mutation label 

(e.g., V29A) into fields for the wild-type amino acid, position, and mutant amino acid.  In 

this way ancillary tables containing information on the individual amino acids and protein 

domain positions can be related to the stability results, permitting the investigation and 

rationalization of advanced queries such as “How many proteins were stabilized over 

wild-type and featured steric volume loss by mutation?” or “Which surface-exposed 

positions on the protein were most accepting of mutations?”  An in-depth analysis to 

queries of this nature is the focus of the next chapter in this thesis.   
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Automated gene assembly 

 The modularity of the developed automation scheme allows the pipeline to be 

easily adapted to other protein engineering methods, such as gene assembly.  Automated 

gene assembly overcomes the multitude of ways to design self-assembling 

oligonucleotides into a full-length gene constructs (43–49).  Recently the technology has 

garnered a great deal of attention for its utility in synthetic biology (46, 48) and has 

already been previously adapted for robotic automation (49).  If appropriate methods to 

assemble and insert a gene of interest into a plasmid were available, the current site-

directed mutagenesis pipeline could fill in the rest of the necessary molecular biology.  

Two methods that may satisfy the demands of automated gene assembly, oligo design by 

DNAworks (44) and gene cloning by circular polymerase extension cloning (CPEC) (50), 

are currently undergoing laboratory testing.  A promising small-scale experiment has 

shown that 80% of a 60 member individually assembled gene library was successfully 

recovered after sequencing 3 colonies per construct (results not shown). 

 

Future data deposition 

 The methods developed to perform the complete site-directed mutagenesis of Gβ1 

will continue to be employed in future domain mutagenesis projects.  A growing database 

of stability and eventually activity information will be that much more valuable for 

stability prediction and a better understanding of the complexity of protein physics.  In 

choosing the next few proteins to undergo the mutagenesis treatment, a handful of 

characteristics will be considered.  First and foremost, target proteins must be compatible 
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with our plate-based stability assay.  This requires a high-resolution crystal structure in 

order to identify (preferably single) tryptophans buried away from solvent that can act as 

a fluorescence reporter for foldedness.  Second, proteins on the smaller side of the 

structural continuum are preferred over multi-domain behemoths because of the lower 

price tag of a mutagenesis effort and the increased likelihood of a two-state cooperative 

transition during denaturation.  The latter criterion is required for proper application of 

the linear extrapolation method used to estimate thermodynamic parameters such as the 

free energy of unfolding and the slope of the denaturation curve.  Lastly, domains 

recognized as superfolds (51) under the CATH classification of protein architectures (52) 

are preferable as it makes the acquired information more applicable to greater proportions 

of natural proteins.  Also, superfolds are also more likely to have thermophilic homologs 

that could provide interesting perspectives on mutagenesis data from their mesophilic 

counterparts.  

 Whereas the production and characterization of the Gβ1 single mutant library 

took over a year because of the simultaneous development of the automated 

methodology, future projects should see completion in considerably less time.  As 

depicted in Figure 3-3, staggering the experimental modules allows for a large number of 

mutants to be constructed and sent for sequencing all at once.  Drawing from this 

experience, a majority of mutants can be attained in the first wave of mutagenesis, but the 

subsequent production of the remainder of the library can markedly slow the entire 

procedure.  Nevertheless it is not unreasonable to expect that the complete single mutant 

mutagenesis of an entire domain of 100 residues (~ 1700 point mutants, excluding Cys 

and Trp) be constructed and analyzed in three months time under our current automation 
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scheme.  Future modifications to increase the throughput of the scheme could include: 1) 

the integration of a 384 well PCR machine for faster mutagenesis/template digestion, and 

2) integration of an automated centrifuge for avoiding the manual intervention now 

necessary during protein purification.  Unfortunately, because of the appeal for our 

stability assay that can produce high-quality thermodynamic data but requires significant 

amounts of protein, high-throughput fluorescent dye-based thermal scanning (53) or in 

vitro transcription and translation methods are not appropriate (54). 

 

External database comparisons 

 To ensure the accuracy of the automated method, the stability of a small 

collection of previously determined point mutants of Gβ1 were correlated against values 

from our database.  The test-set, retrieved from ProTherm, was comprised of mutants 

from a proline-scanning mutagenesis study and a site saturation mutagenesis study, the 

former being previously performed in our lab.  Remarkably, the combined test-set gave 

correlation coefficients of r = 0.84 and r = 0.88 (Figure 3-6) when correlated against our 

ddG-true and ddG-AVGm data, respectively, despite reporting thermodynamic data from 

dissimilar experimental methods.  This result affirms the validity of the automated site-

directed mutagenesis method and the ancillary high-throughput stability assay. 

 In addition to providing self-consistent and seemingly accurate data, our 

experimental method has provided a dataset with a unique composition when compared 

against those previously used for energy function training and stability prediction testing.  

Although a recent training set used in the development of the stability prediction 

algorithm PopMusic 2.0 has a fairly even distribution over wild-type identity amino acids 
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(Figure 3-7A), the mutated amino acid distribution is heavily skewed towards alanine 

incorporation (Figure 3-7B).  One might then presume that any stability ranking potential 

trained on this data might perform remarkably well on predicting large-to-small 

mutations, but fail to accurately predict the effects of other types of amino acid 

substitutions.  Published datasets from ProTherm used in the training of other stability 

prediction algorithms have almost identical distributions (results not shown).  In contrast, 

our dataset is unbiased in its distribution (Figure 3-7D) of mutant amino acids because of 

the nature of the mutagenesis project.  Unfortunately, a similar impartiality is not evident 

in the wild-type amino acid distribution (Figure 3-7C) as this is dependent on the wild-

type amino acid composition of only one system (Gβ1).  Future deposits of stability data 

from other systems will help to ameliorate this issue.  

 

Conclusions 

 We have developed automated methods to construct, validate, and analyze very 

large numbers of protein point mutants.  Our automated platform sees massive gains in 

throughput over traditional bench-top methods by employing liquid-handling robotics to 

boost the number of samples performed during each run and parallelize the number of 

concurrent runs through the experimental pipeline.  Each pass of the mutagenesis routine 

can expect to recover 80–90% of the desired sequences.  Using this platform, 935 

variants of Gβ1, comprising almost every single mutation possible, were constructed and 

assayed for thermodynamic stability.  The precision and accuracy of the improved high-

throughput stability assay is comparable to existing lower throughput methods, and all 

relevant data and metadata has been stored in relational databases that proved useful for 
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data tracking and later for data cleaning and analysis.  In large part because of the success 

of the methodology, the employment of this automated platform will not end with this 

lone mutagenesis project. 

 Our experimental pipeline, built modularly, can be adapted for use in projects 

featuring functional enzymatic assays or even repurposed for automated gene assembly.  

The volume of thermodynamic stability data collected will grow in spurts and jumps as 

more domains are processed by the total site-directed mutagenesis method.  And 

ultimately this is where the automated system can make a fundamental impact on protein 

science: by reporting higher quality and more diverse mutational stability data than what 

is already publicly available, it is expected that substantial progress in stability prediction 

and understanding of protein physics will follow. 

 

Materials and methods 

Liquid handling robotics 

 A 2 meter Freedom EVO (Tecan) liquid-handling robot was used to automate the 

great majority of the experimental pipeline.  The instrument includes an eight-channel 

fixed-tip liquid-handling arm, a 96 disposable-tip single-channel liquid-handling arm, and 

a robotic plate-gripping arm.  The robot’s deck features a fast-wash module, a 

refrigerated microplate carrier, a microplate orbital shaker, a SPE vacuum system, an 

integrated PTC-200 PCR machine (Bio-Rad Laboratories), stacks and hotels for 

microplates and an integrated Infinite M1000 microplate reader (Tecan). 
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Variant construction and enrichment conditions 

 The Gβ1 gene, with an N-terminal hexahistidine tag, was inserted into pET11a 

under control of an IPTG inducible T7 promoter.  Mutagenic oligonucleotides were 

ordered from Integrated DNA Technologies in a 96 well format (150 uM concentration, 

25 nmole scale) and purified by standard desalting.  The site-directed mutagenesis 

reaction was performed in two parts: 1) the diluted mutagenic oligonucleotide was mixed 

with a mastermix solution composed of Hot-start Phusion DNA polymerase (NEB), GC 

Phusion buffer, dNTPs, the plasmid template, and the non-mutagenic flanking 

oligonucleotide, and 2) ¼ of the first step product was mixed with a similar mastermix 

solution that omits the flanking oligonucleotide.  The PCR cycling conditions for the two 

parts were: 1) a 30 sec preincubation at 98°C followed by 15 thermocycling steps (98°C, 

8 sec; 62°C, 15 sec; 72°C, 20 sec), and 2) a 30 sec preincubation at 98°C followed by 25 

thermocycling steps (98°C, 8 sec; 72°C, 3 min) followed by a final extension step at 72°C 

for 5 min.  

 Reactions were often diagnosed by E-Gel 96 (Invitrogen) electrophoresis systems, 

with loading performed by the liquid-handling robot.  A bright band corresponding to the 

size of the template plasmid indicated a successful second-step reaction.  Samples could 

be troubleshot by observing the desired first-step product, the amplified megaprimer.  If 

the reactions performed well they would be subjected to an 8%-by-volume Dpn1 (NEB) 

digestion reaction (37°C, 1 hour) in order to remove the parental template plasmid. 
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Bacterial manipulation and sequence verification 

 Dpn1 digested products were mixed with homemade chemically competent BL21 

Gold DE3 cells (55) in a 20 uL total reaction volume, and incubated at 4°C for 10 min.  

After heatshock (42°C, 45 sec) on the PCR machine, the bacterial transformations were 

recovered by adding 100 uL of SOC media, and shaken off robot at 1200 rpm for 1 hour 

at 37°C on a microplate shaker (Heidolph). 

 The transformations were plated by the liquid-handling robot onto 48 well LB 

agar Qtrays (Genetix) and spread by sterile beads (55).  The Qtrays were incubated for 14 

hours at 37°C.  For each mutagenesis reaction eight colonies were picked by a colony-

picking robot (Qbot, Genetix) into 384 well plates (Genetix) filled with LB/10% glycerol.  

The 384 well receiving plates were incubated overnight at 37°C, after which 2 of the 8 

cultures per mutagenesis reaction were used to inoculate 96 well microplates containing 

LB/10% glycerol.  These 96 well glycerol stock plates were grown overnight at 37°C, 

replicated, and sent to Beckman Genomics for sequencing. 

 After analyzing the sequencing data, missing library members could be recovered 

either by sending more picked colonies from the 384 well receiving plate, or by redoing 

the entire mutagenesis reaction with different PCR conditions.  The 96 well E-Gel results 

were critical in informing the subsequent optimization that should take place.  Once all of 

the mutants were constructed, work-lists were generated for the liquid-handling robot to 

cherry-pick from the replicated 96 well glycerol stock plates and inoculate into column-

arrayed 96 well master stock plates containing LB/10% glycerol. 
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Protein expression and purification 

 Small volumes from replicated master stock plates were used to inoculate 5 mL of 

Instant TB auto-induction media (Novagen) in 24 well round-bottom plates (Whatman).  

The 24 well plates were incubated overnight, shaking at 250 rpm, at 37°C.  The 

expression cultures were then pelleted, lysed with a sodium phosphate lysis buffer 

solution (pH 8) containing CelLytic B (Sigma Aldrich), lysozyme, and HC Benzonase 

(Sigma Aldrich).  Lysates were then added directly to 96 well His-Select Ni-NTA resin 

filter plates (Sigma Aldrich) and processed off-robot by centrifugation.  His-tagged 

protein was washed and eluted in sodium phosphate buffer (pH 8) containing 0 mM and 

100 mM imidazole, respectively.  Protein samples were diluted fivefold into sodium 

phosphate buffer (pH 6.5), thereby diluting the amount of imidazole in each sample. 

 

Plate-based stability assay 

 Large volumes of a 24-point gradient of GdmCl in sodium phosphate buffer (pH 

6.5) were constructed using graduated cylinders and dispensed into 96 well deep-well 

plates by a multi-channel pipettor.  These reagent reservoirs, along with the liquid-

handling robot, greatly simplified and sped up the stability assay previously described 

(25).  Each stability assay was comprised of twenty-four individual solutions containing 1 

part purified protein to 4 parts GdmCl/buffer solution, and measured by the integrated 

plate reader for tryptophan fluorescence (Ex: 295 nm, Em: 341 nm).  The assay employed 

384 well UVstar plates (Greiner) that allowed 16 different protein mutants to be 

measured per plate, thus requiring 6 of these plates per 96 well master stock plate.  

Measurements were made in duplicate.  Data was analyzed as described previously (25). 
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Figure 3-1:  The automated site-directed mutagenesis pipeline.  The methodology is 
composed of nine modular protocols that can be grouped into three blocks.  The pipeline 
leads off with variant construction, a block of procedures that takes one mutagenic 
oligonucleotide per construct and ends with eight colonies per mutagenesis reaction.  The 
next block, sequence confirmation, rearrays all of the constructs only after being 
validated by sequencing.  The last block of protocols, stability analysis, takes from 
rearrayed, confirmed plates of mutants to generate high-quality data. 
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Figure 3-2:  Visualization of a 96 well plate of SDM products.  Agarose gel 
electrophoresis of DNA, by E-Gel 96, shows first- (∗) and second-step (∗∗) products 
from the megaprimer method for site-directed mutagenesis.   
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Figure 3-3:  Variant construction timeline.  Standard bench-top low-throughput (LT) 
methods are compared against the automated high-throughput (HT) methodology.  
Although both methods take five days before sending samples for commercial 
sequencing, the HT method processes 20-fold more reactions.  For larger projects, the HT 
pipeline can be parallelized, processing 4-fold more reactions in just seven days. 
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Figure 3-4:  Potential protein unfolding curves.  Tryptophan fluorescence data, plotted 
against a guanidinium chloride (GdmCl) gradient, for three examples of data from the 
high-throughput stability assay.  A quality protein, with substantial pre- and post-
transition baselines flanking a smooth transition is pictured in plot A.  Unfolded or non-
expressed protein, with very low fluorescence intensity increasing in value, is pictured in 
plot B.  Plots of non two-state or oligomeric proteins can exhibit various characteristics, 
but plot C shows one example with an inflection (arrow) in the transition region, 
violating the two-state assumption. 
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Figure 3-5:  Precision among experimental measures of protein stability.  Duplicate 
measurements of ddG-true (A) and ddG-mAVG (B) from the complete mutagenesis of 
Gβ1 were correlated against each other.  A strong linear relationship exists between ddG-
true and ddG-mAVG (C).  Linear trend lines are in solid black.  Each data point in A and 
B is colored by the absolute difference in dG(H2O) measurements.   
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Figure 3-6:  Dataset accuracy from literature comparisons.  Stability data on a subset 
of single mutants of Gβ1 were collected from Protherm and correlated against (A) 
dG(H2O) and (B) ddG-mAVG values from our automated site-directed mutagenesis 
library.  The previously reported data differ in unfolding method (thermal against 
chemical denaturation) and experimental conditions (pH 5.2–5.5 against pH 6.5) from our 
dataset.  Linear trend lines are in solid black. 
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Figure 3-7:  Point mutant amino acid distributions.  The wild-type amino acid (A) and 
mutated amino acid (B) distributions are shown for a training set of 2,649 data points 
(collected from Protherm) used in developing PopMusic 2.0, a protein stability prediction 
algorithm.  The wild-type (C) and mutated (D) amino acid distributions for the current 
version of our mutagenesis database (775 data points) 
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Abstract 

 Proper understanding and prediction of the fitness consequences upon sequence 

mutation is an outstanding challenge in protein engineering.  Although mutational data 

traditionally has been difficult and expensive to acquire, recent advances in laboratory 

automation have enabled the thermodynamic evaluation of almost every single mutant in 

a small 56-residue protein.  With a domain-level perspective, we explore mutational 

outcomes, distributions, positional sensitivity, and mutant amino acid tolerance.  

Benchmarking current stability prediction methods reveals unbalanced performance 

across different structural criteria, but a uniform capability to capture the trends of our 

unbiased dataset.  The surprising neutrality of single mutations to the domain contrasts 

with the stark negative epistasis seen in small, heavily mutated datasets, especially in 

variants comprised solely of individually stabilizing mutations.  The poor predictability 

of multiple mutants from single mutations indicates that the field must move beyond 

single global stability measurements in order to truly comprehend the mutational effects 

of proteins. 
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Introduction 

 Protein mutagenesis data has long provided insights into the forces responsible for 

protein stability and folding (1–5).  The protein-engineering field flourished from the 

ability to test hypotheses by comparing the thermodynamic effect of single- and multiple-

amino acid mutations against a wild-type sequence.  Abstraction of these concepts into 

computationally tractable algorithms have pushed the field even further, allowing users to 

score near or distant mutant sequences (6–9).  These tools have also made feasible the 

computational probing of the mechanisms surrounding domain mutational tolerance and 

evolvability (10–13). 

 Despite this success, the principles of stability engineering describe only the 

general trend of the effects of amino acid mutations.  Results are often mixed when 

applied to any specific problem due to the number of possible secondary and tertiary 

environments found in proteins (1, 4).  A typical solution to this issue of proper context is 

the acquisition of more and more data in your protein of interest.  This was a daunting 

task in the past, as the efforts required to engineer and purify protein mutants scaled 

linearly with the number to be made.  Recently, technological advancements in laboratory 

automation and next-generation sequencing (14–16) have lowered this barrier so that the 

construction effort is identical for orders of magnitude more variants.  Here, we analyze 

thermodynamic data from almost every single-mutant of an entire protein domain 

obtained through a previous effort in laboratory automation.  As experimental data of this 

magnitude will only become more common, we examine the general utility of large 

datasets, and explore the performance of today’s scoring algorithms. 
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 Rare in the literature due to its laborious nature, domain-level mutagenesis data 

can provide valuable insight on mutational distributions and average positional and 

amino acid effects in proteins.  Early work on mutational effects was performed on 

globular proteins such as the globins, lac repressor, lysozyme, staphylococcal nuclease, 

and barnase.  Numbers on the fraction of mutations experimentally found stabilizing or 

destabilizing varied with each report, suggesting that the distribution of stability effects 

was unique to each protein.  Although a convincing universal distribution for globular 

proteins was recently reported, most of the evidence was computationally derived (17).  

Conclusions on positional and amino acid effects from the pioneering studies centered on 

the importance of core and surface patterning of polar and nonpolar amino acids and 

secondary structure propensities.  But what dominates or decides the sensitivity of a 

position?  And which amino acid is best tolerated by the protein of interest?  Our domain-

level perspective of single mutant data simultaneously verifies the nature of mutational 

distributions and illuminates topics on positional sensitivity and amino acid tolerance.  

 Structure-based stability prediction algorithms translate our general knowledge of 

non-covalent protein interactions into a context-sensitive output.  The degree to which 

they succeed is entirely dependent upon the constitution of the test dataset.  A long 

necessary independent analysis of prediction algorithms concluded that all of the tested 

methods did not perform as well as previously reported and frequently failed to capture 

details (18).  The curious fact that the algorithms had previous success in predicting 

mutational effects was reconciled with their ability to recapitulate general trends in the 

independent test set.  Unfortunately, the test dataset used by Potapov and colleagues was 

biased towards large-to-small amino acid mutations, a feature very common to datasets 
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extracted from the popular online aggregate database of stability data, Protherm (19).  As 

most of the current algorithms were trained on datasets sampled from Protherm, their true 

capabilities may be more underwhelming than reported.  Our comprehensive single-

mutant library provides a truly unbiased dataset upon which to test the performance of 

current and future prediction algorithms.     

 Experimental data on the stability landscape of a protein elicits inquiry into 

additivity effects and the domain’s mutational robustness. Recent work on these topics 

has put forth that proteins thermodynamically stabilized from wild type or under weak 

functional selection exhibit a threshold against deleterious mutations that, once 

exhausted, declines rapidly (11, 12).  The larger than expected effect of detrimental 

mutations after the threshold defines the system as negatively epistatic.  We weigh in on 

this theory with real datasets and, alternatively, determine what effects the combination 

of multiple beneficial mutations might bestow upon a protein.  The literature contends 

that all manner of simple and complex effects can exist under this scenario (20).  Does 

the knowledge of every favorable single mutation enable the engineering of hyper-

stabilized proteins?   

 Using a streamlined laboratory automation method, we constructed 935 single-

mutants of the small monomeric domain Gβ1, multiplying 55 of 56 positions by 17 of 19 

possible mutant amino acids.  Variants were purified and assayed for thermodynamic 

stability by observing tryptophan fluorescence in response to chemical denaturation.  

Rather than engage in the details of individual mutations, we chose to explore an array of 

topics important to protein engineering.  We experimentally verify previous conceptions 

about the distribution of mutational effects for an entire protein domain, as well as 
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describe novel trends previously unexplored due to the lack of data.  The unbiased nature 

of the dataset provided us a terrific avenue upon which to test popular stability prediction 

algorithms, as well as to guide the mutagenesis of multi-point mutants aimed to explore 

the epistatic effects of favorable mutations.  

 

Results and discussion 

The mutational distribution of Gβ1 

 The overall distribution of ΔΔG effects in the Gβ1 domain is shown in Figure 4-1.  

As a significant fraction of mutations lead to severely destabilized or insoluble proteins, it 

is not a normal distribution.  Thus, we report an overall median ΔΔG of -0.25 kcal/mol 

with an interquartile range of 1.88 kcal/mol.  If neutral mutations are those with a ΔΔG of 

±0.5 kcal/mol then the fractions of positive, neutral, and negative mutations are 16%, 

41%, and 43%, respectively.  While technically these values indicate that most mutations 

are destabilizing, 57% of mutations (positive + neutral) would have at worst almost no 

effect on protein stability. Roughly 12% of mutations tested could not be accurately 

measured by our stability assay (“unf” in the mutational distribution) and likely represent 

evolutionary dead ends.   

 This data illustrates that across the entire domain, the native sequence is robust to 

point mutations.  This topic has seen much debate in the literature with evidence in favor 

for and against mutational robustness.  Discrepancies likely arise (beyond those due to 

measuring different proteins) from varying stringencies in functional selection and by 

incorporating only the residues allowed through amber codon suppression.  Our stability 

data likely represents the upper limits of robustness, as layering an activity requirement 



! 86 

upon sequences will lower the yield of neutral and positive mutational outcomes.  

Omitting unbiased tryptophan and cysteine incorporation, although necessary for the 

fidelity of the stability assay, also likely skews the fractional outcomes toward mutational 

tolerance.  Finally, because the Gβ1 domain is small (56 residues), its ratio of surface-to-

buried positions fosters a tolerant distribution that may not be the case for larger proteins 

with larger cores.  Previous measures of a mutation’s functional inactivation probability 

across a protein domain are divergent, with values from 5% (21) to 34% (10).  Again, 

differences in protein identity, selection stringency, and incorporated residues are likely 

the answer to these inconsistencies.  In Gβ1’s case, having 88% of single mutations 

available for mutation presents an enormous amount of “safe” potential evolutionary 

trajectories for stabilization.  This finding is somewhat surprising considering the 

relatively low thermodynamic threshold of Gβ1 (~ 4–5 kcal/mol) in comparison to other 

proteins (up to 15 kcal/mol).  Of course, the interactions between subsequent mutations 

will ultimately decide the feasibility of any particular path, and will likely shrink the 

potential complexity (22).   

 Although it appears intuitive that the mutational distributions of any two unrelated 

monomeric proteins will differ, this was found not to be the case in a recent 

computational study (17).  Using the FoldX algorithm, the authors computed mutational 

distributions for a large panel of proteins and show that they all follow a similar 

asymmetric distribution.  While future experimental efforts will be able to support or 

refute the full finding, we can currently verify the presence of the universal distribution in 

our dataset and confirm the FoldX algorithm’s suitability for this type of study.  We fitted 

our dataset (excluding those mutations labeled unfolded) to the bi-Gaussian and 
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individual core/surface distributions described in (17).  In addition, we compare the 

derived means and variances to those from an identical dataset produced by FoldX3 

(Table 4-1).  Both sets of data fit the Gaussian equations well and exhibit the overall 

universal trend of sharper, stabilizing surface distributions with wider, destabilizing core 

distributions (Figure 4-2).  In fact, the exquisite agreements between the calculated and 

experimental standard deviations provide noteworthy support for a Gaussian description 

of the surface and core mutational distributions.  A two-population t-test to determine the 

similarity between the calculated and experimental individual Gaussian means finds the 

core distributions statistically identical (α = 0.025, p = 0.30) and the surface distributions 

different (α = 0.025, p = 9.2x10-13).  This discrepancy can be explained by the historically 

poor treatment of surface energetics in stability algorithms along with small margin of 

error due to the tighter distribution.  As shown in the literature (17, 18, 23) and later in 

our analysis, it appears that algorithms like FoldX3 can fail to capture specific details but 

still produce the correct experimental trend.   

 

Positional sensitivity and mutant amino acid tolerance 

 Efficient visualization of each individual mutant in the library is accomplished 

through the use of a heat map (Figure 4-3).  This perspective makes it abundantly clear 

that sequence position, not identity of the incorporated mutant amino acid, dominates 

mutational effects.  This phenomenon is supported by the mutational sensitivity of wild-

type non-polar amino acids that contribute to the hydrophobic core of the protein.  Box 

plots of the stability effects separated by RESCLASS (Figure 4-4), an algorithm that uses 

the geometry from a crystal structure to designate core, boundary, or surface positions, 
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illustrates this behavior extremely well.  The 75th percentile of the core mutation 

distribution sits below the inter-quartile range of the other categories, illustrating the 

intolerance of core positions to mutation.  Only amino acid mutations to proline or 

glycine serve as exceptions to this result as they are generally deleterious regardless of 

the position due to their unique phi psi distributions.  

 Although we know that random core mutations are deleterious to protein stability, 

what quantitatively determines positional sensitivity?  We approached this question by 

using supervised classification on a large number of attributes to train a linear regression 

model to predict the average ∆∆G of each position in the Gβ1 domain.  The best model 

gives a correlation coefficient of 0.83 and includes weights from a measure of the 

hydrophobicity of the wild-type amino acid and RESCLASS categories.  However, the 

major contributor to the model was occluded surface packing value (OSP), which alone 

gives a correlation coefficient of 0.78 (Figure 4-5).  As a metric for protein packing, OSP 

is routinely used to analyze structural datasets and protein folding predictions (24).  That 

its found to be the chief determinant of domain-wide positional sensitivity is not 

unrealistic, as the result extends previous work on core mutations (25, 26) and makes 

intuitive sense: heavily occluded amino acids would be less likely to accommodate 

disruptions in their packing environments.  The major outliers to this correlation are 

Gly41 and Tyr45, whose average ∆∆G values are greatly destabilized in comparison to 

their OSP.  Position 41’s sensitivity can be explained by its proximity to Trp43, the 

reporter amino acid for the stability assay, which will severely limit the allowed mutation 

types (small or flexible).  And while position 45 is located on an outer beta strand, it is 

only one of two hydrophobic amino acids responsible (the other being Trp43) for 
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shielding an edge of the protein’s core from solvent.  Overall, OSP does a superb job in 

identifying the most sensitive positions to mutation and should be a part of the protein 

engineer’s toolbox. 

 Complementary to the analysis on positional sensitivity is determining which 

amino acid scan of the domain best captures the average ∆∆G for each position.  Actual 

experimental data on the system can help alleviate the issues with complex environments 

that protein packing alone predicted poorly.  Whereas alanine mutagenesis is most often 

used to derive functional hotspots, it is unclear which amino acid can best forecast overall 

destabilizing, neutral, or stabilizing sites.  The result of both a ∆∆G deviation method and 

a linear ranking method  (see Methods) show serine as the highest-ranking amino acid, 

with a mixture of methionine, threonine, and glutamine rounding out the top four (Figure 

4-6).  All of these amino acids are non-charged, polar, and fairly amphiphilic in nature, 

making them reasonable choices for an amino acid stability scan.   

 If the structure of the protein of interest is available, then adjusting the scan by 

RESCLASS would likely lead to higher prediction accuracy.  In our study, methionine 

and alanine dominated the core rankings, while threonine, serine, and glutamine topped 

the rankings for boundary and surface positions.  These results again show a preference 

for uncharged amphiphilic amino acids, along with moderate “like dissolves like” 

tendencies for core and boundary/surface predictions.  Alanine ends up performing 

respectably well across the core and boundary segments of the protein, although it is a 

decidedly poor indicator of positional sensitivity on the surface, where the majority of 

other amino acids outcompete it.  In total, the two deviation calculations give similar 
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results, unifying and strengthening the evidence for small amphiphillic residues such as 

serine as the first choice for stability scanning mutagenesis.   

 Instead of averaging by position, we now average by mutant amino acid and ask, 

which amino acid is best or least tolerated by the domain, and why?  Because reasonable 

solutions to this query require a comprehensive number of mutations per position, our 

dataset is uniquely positioned to explore this topic.  The worst amino acid for general 

incorporation is proline, followed by glycine  (Figure 4-7).  This isn’t surprising, as the 

special amino acids are well known to be debilitating to protein stability.  Aspartic acid is 

the third worst incorporated amino acid, most likely due to its highly acidic nature.  It 

also contains the smallest amount of nonpolar atoms in comparison to the other charged 

amino acids, strengthening its relative charge and snowballing its destabilizing nature.  At 

the other end of the spectrum are the hydrophobic amino acids, and in particular, the 

large aromatics tyrosine and phenylalanine.  Why are these tolerated so well on a domain 

that, due to its small size, features a much larger surface-to-core ratio than most other 

proteins?   

 Close observation of the data in Figure 4-7 shows that among the functionally 

identical amino acid pairs (D/E and N/Q), the residue carrying an extra methylene was 

tolerated better across the protein.  This, coupled with a high surface-to-core ratio when 

compared to the average protein, suggested that the Gβ1 domain may be unique in its 

accommodation of hydrophobic mutations, perhaps in an effort to bury more hydrophobic 

surface area.  Since average mutant amino acid data is recapitulated well by Popmusic2 

(Figure 4-8) we investigated our hypothesis by calculating the systematic scan of four 

other proteins, all larger than Gβ1, with the Popmusic2 web server. The proteins selected 
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isolated the effects size, secondary structure composition, and packing density might 

have on amino acid tolerance (Table 4-2).  Amazingly, all four had very similar average 

mutant amino acid rankings, essentially duplicating the experimental Gβ1 results (Figure 

4-8).  The tolerance to large hydrophobic amino acids across a domain appears to be a 

general feature of soluble globular proteins. 

 Native proteins feature very modest amounts of solvent-exposed hydrophobic 

residues due to the possibility of alternative folded states that better bury the nonpolar 

surface area.  Yet, the very presence of modest amounts of surface hydrophobic residues 

indicates that the physical mechanism underlying this behavior has some buffer 

preventing disastrous aggregated outcomes.  Single incorporations of nonpolar residues 

are not likely to alter the native conformation, and as seen by the data, can stabilize the 

fold.  Previous experimental work on staphylococcal nuclease supported the notion that 

this “reverse hydrophobic effect” is almost nonexistent across single mutations (27).  

Interestingly, they note that fully exposed positions better tolerate aromatic incorporation 

than partially buried sites, arguing that mutation sites are still susceptible to steric clashes 

and packing effects despite being close to the protein surface.  We found similar results 

when the average stability effects of the top four tolerated amino acids (Phe, Tyr, Leu, 

Ile) in boundary and surface sites were broken down into two populations of packing 

density.  However, when the data was broken down into quartiles, there is a bump in 

average stability in the partially exposed quartile, providing evidence for preferential 

packing between the incorporated hydrophobic amino acid and the nonpolar atoms of 

other native residues near the surface (Table 4-3).  In sum, considering the hydrophobic 

mutability of protein cores (28, 29), the support for partially exposed hydrophobic 
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clusters, and that the native conformation is unlikely to change because of a single 

mutation on plastic protein surfaces, non-polar residues offer the best chance at making 

neutral or stabilizing interactions across a protein domain. 

 

Stability prediction algorithm performance 

 Three popular prediction algorithms, Popmusic2, FoldX3, and Rosetta, were used 

to calculate the stability change of the 935 mutations in our domain mutagenesis dataset. 

Popmusic2 is a reduced-representation statistical energy function trained to recapitulate a 

large experimental dataset from the Protherm database.  FoldX3 is similarly trained, but 

uses an empirically derived energy function mixed with weighted statistical terms.  

Rosetta mixes statistical potentials with an all-atom physical potential, and was trained to 

recover native sequence composition for protein design.  Three versions of Rosetta are 

used, each with increasing amounts of backbone flexibility.  The specific details and 

parameters used for each algorithm are described in the methods.  Unfolded mutations for 

which only approximate data is available were filtered, leaving 825 mutations.  

Unrealistic predicted energies from the FoldX3 and Rosetta calculations prompted further 

filtering by removing mutations with abnormally high van der Waals clash or repulsive 

energies, respectively.  Algorithm performance was evaluated by correlation coefficients 

(Table 4-4) and fraction correct % (Table 4-5).  In addition, these metrics are reported for 

the datasets broken down by volume change, RESCLASS, and polarity change to assess 

performance by mutation type.   

 When asked to recapitulate energetic details of the full dataset the hybrid energy 

functions perform quite poorly, as the purely statistical Popmusic2 method led the pack 
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with a correlation coefficient of 0.56 (Table 4-4).  After filtering mutations with large 

clashes, FoldX3 shows improved performance while the flexible backbone Rosetta 

methods achieve the best overall correlations to the dataset.  Although full backbone 

minimization reduces the number of outliers due to repulsive clashes, it is outperformed 

by constrained minimization, even against our unbiased dataset (Chapter 3).  The notion 

that too much backbone freedom may simultaneously hurt and help structure prediction 

of a mixed dataset (30) is upheld by our results.  When asked to recover the fraction of 

positive, neutral, and negative mutations in the data (Table 4-5), all of the algorithms 

perform almost equally.  This result speaks to the utility each method has in predicting 

the correct trend in large datasets (17, 30).  That they all do so equally well is both 

reassuring to users in the field and frustrating to developers looking for avenues of 

improvement.  

 Mutations that remove volume (-VolΔ) are better predicted than those that add 

volume (+VolΔ) across all algorithms and both tables.  The closer a mutant protein’s 

conformation is to wild type, the better each prediction algorithm performs, as most are 

capable of only torsion preferences or rotameric flips.  The methods that do introduce 

backbone flexibility perform better, but can be restricted by limited sampling of correct 

conformations (30).  The preference for large-to-small mutations then implies limited 

structural rearrangements across the domain for this mutation type, a conclusion 

supported by work on T4 lysozyme (31).  The overwhelming number of alanine and 

glycine mutants (-VolΔ) in the Protherm database may also partially explain the affinity 

Popmusic2 and FoldX3 have for this mutation type.  A surprising detail is the continued 

advantage constrained minimization exhibits over unconstrained minimization, even 
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across the small-to-large mutations (r = 0.56 vs. r = 0.52) that are expected to introduce 

sizeable backbone rearrangements.  

 As a large determinant of mutational sensitivity, tertiary structure can be expected 

to play a role in algorithm performance.  The overwhelming number of destabilizing 

mutations in the core inflates the fraction of mutations easily predicted (Table 4-5), while 

mutations closer to the surface are binned at > 50% accuracy.  However, knowledge of a 

mutant’s ΔΔG direction is no guarantee of correlation coefficient accuracy, as shown by 

the poor performance of core mutants in Table 4-4.  The fact that destabilizing variants 

exist across a larger energetic range than more benign mutations likely promotes this 

inaccuracy in predicting buried positions.  

 Breaking down the data by polarity changes highlights the underlying principles 

that govern the prediction algorithms.  The effective van der Waals potential in FoldX3 

and Rosetta give these methods an advantage in predicting the core packing effects of 

nonpolar-to-nonpolar mutations (Table 4-4).  Likewise, Rosetta’s suboptimal treatment of 

buried electrostatics (nonpolar-to-polar, r = 0.34) and nonpolar exposure (polar-to-

nonpolar, r = 0.42) is ameliorated by allowing backbone flexibility.  No particular method 

excels in polar-to-polar mutations, likely a result of the lack of explicit solvent from any 

of the calculations.  Differences between algorithm frameworks may be best embodied by 

comparing the core (nonpolar-to-nonpolar/polar) and surface (polar-to-nonpolar/polar) 

prediction accuracies of FoldX3 and Popmusic2.  Despite very similar training sets, each 

method’s competency lies in inverse structural environments:  Core mutations come 

easier to FoldX3 due to its effective treatment of sterics, while surface mutations are 
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better captured by Popmusic2 because the statistical nature of its potential can implicitly 

capture complex multi-body effects.  

 The differences seen in Table 4-4 between the algorithms are smoothed when the 

stringency in prediction accuracy is lowered, as in Table 4-5.  Only the poor performance 

in polar-to-polar mutations by FoldX3 and Rosetta is effectively reproduced from the 

previous metric.  Popmusic2 performs admirably in predicting the fraction correct in all 

polarity change categories.  This jack-of-all-trades quality likely stems from the fact that 

each statistical term is weighted by solvent accessibility, allowing it to grossly fractionate 

between debilitating core mutations and neutral surface mutations.   

 Any recommendation on the prediction algorithm of choice must be tempered by 

the type of question being asked.  Queries concerning the specific and accurate stability 

of particular single-mutants would probably be best estimated by the constrained 

backbone minimization Rosetta protocol.  However, attention should be paid to filter 

unreasonable repulsive energies and to consider that accuracy can drop with polar-to-

polar mutations, buried positions, and mutations that add volume.  If computational 

power is limited or the number of mutations is greater than 103, Popmusic2 is 

significantly faster and is effective in predicting the trends in the data (Figure 4-8).  The 

actual magnitude of each calculation should be viewed skeptically, unless the mutation 

involves only polar residues, in which case Popmusic2 performs better than any iteration 

of Rosetta.  FoldX3 serves as the middle ground between the other methods in terms of 

both speed and accuracy.  While observations from mutational trend studies in which 

FoldX was used are likely to be duplicated by other algorithms, specific values should be 

taken lightly, especially those involving polar surface mutations. 
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Additivity of multiple mutations 

 The wild-type sequence of the Gβ1 domain is very tolerant to single mutations, as 

evidenced by the mutational outcome percentages and heat map distribution reported in 

the first section.  Mutability trials, where single mutations are added until exhausting 

some threshold, reemphasize the observed leniency surface positions have over those in 

the core.  These calculations assume each mutation is completely additive, an unrealistic 

assumption for proteins, although they do provide reference points for the mutational 

load of a perfectly additive system.  If the threshold is 4.5 kcal/mol (the ΔG(H20) of wild-

type Gβ1 is 4.04 ± 0.4 kcal/mol), then an average of 6.28 ± 4.9 random mutations over 

1000 trajectories are needed to break the protein.  Predictably, the required number of 

mutations increases as one progresses through the RESCLASS categories from 2.07 ± 1.1 

mutations (core), to 10.27 ± 8.9 mutations (boundary), to a maximum of 17.46 ± 15.0 

mutations on the surface.  Given the stated evidence, one might assume that making 

multiple mutations on the surface of Gβ1 would be more successful than mutating a 

similar number of positions in the core. 

  Data from previous efforts in individually designing the core and surface of Gβ1, 

coupled with our comprehensive dataset, allows us to examine the relative performance 

of our design procedures as well as the additivity of mutations in different regions of the 

protein.  The core mutant dataset is a compilation of libraries designed from different 

sources of structural diversity where only hydrophobic amino acids were allowed (23).  

Each mutant is 2–5 fold away from wild type, above the 2.1 random mutation reference 

mark, yet more than 80% of the dataset is thermodynamically neutral or better than wild 
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type (Figure 4-8).  This result endorses the all-atom two-body energy function (similar to 

Rosetta) we used to predict these sequences for modeling hydrophobic core interactions.  

Rosetta’s advantage in accurately predicting nonpolar-to-nonpolar single mutations 

(Table 4-4) supports this finding.  The surface mutant dataset is a single library of 

mutants, designed using the same energy function as the core study, which aimed to 

improve overall stability through mutations to the β-sheet surface of the protein 

(unpublished results).  No mutant carrying more than 1 mutation in this library was 

stabilized from wild type, and a mild inverse relationship exists between stability and the 

number of mutations (Figure 4-8).  In addition, the observed number of mutations isn’t 

remotely close to the random mutation reference point for this segment of the protein, 

reemphasizing the reduced capacity of physics-based energy functions to capture surface 

interactions.   

 The discrepancy in algorithm performance in different protein environments 

could also be attributed to the nature of additivity in each environment.  When the core 

mutant data is plotted against the sum of individual ∆∆G stability values from our single 

mutant dataset, the linear trend line (r = 0.86) is jilted above the perfect additivity line (y 

= x), signifying that the mutants are destabilized compared to what the simple sum would 

predict (Figure 4-8).  As the majority of mutations are stabilizing, one explanation may 

be that there is some limiting level of local stabilization that a protein core can reach 

before interactions elsewhere in the protein become more important globally (20).  

Conjecture aside, this plot serves as a reference to an identical chart featuring the surface 

mutant data (Figure 4-8).  Here the trend line dramatically intercepts the perfect additivity 

line, demonstrating much more pronounced non-additivity than in the core mutants.  The 
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particular number of mutations is also very important, as the slope of the trend line 

radically changes after introducing 3 mutations to the wild-type background, mirroring 

the largely simple additivity found in double-mutants from another large data study (14).  

Why is the additivity of multiple mutations so different between the structural 

environments?   

 One biophysical explanation would be that the capacity of surface residues to 

change conformation, along with the greater number of potential interaction partners 

(solvent molecules) as compared to the situation in the core, allows for the differences 

seen in mutational non-additivity.  Interactions not modeled by traditional protein design 

software, such as buried waters and extensive hydrogen bond networks along the surface, 

could be so important to the enthalpy of the protein that they overcame any gain in 

entropy from joining the bulk solvent.  Finally, a parallel can be made between our 

observations and recent work in linking fitness robustness and epistasis.  Bershtein and 

coworkers describe a quantitative inverse correlation between higher tolerance to 

mutations and the level of negative epistasis (12).  Enzymes (β-lactamase) tested under 

low fitness (ampicillin) levels exhibited higher degrees of negative epistasis; that is, the 

effect of mutations after exhausting some threshold level was greater than when under 

higher levels of fitness stringency.  Similarly, surface positions, seemingly tolerant of 

most single mutations, display markedly stronger non-additivity than core positions.  This 

finding extends the robustness-epistasis theory from describing global, random mutations 

to capturing particular tertiary-structure effects of proteins.  Unfortunately, the ~ 100 

multiple mutants in this combined study represent an incredibly small slice of the number 
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of potential two-, three-, four-, and fivefold mutants possible, and therefore this parallel 

may only exist for the variants examined here. 

 The surface mutations in the previous additivity study didn’t include any greatly 

stabilizing single mutations, an element that may have had an effect on the observed 

epistasis.  In fact, the Bershtein theory is reported to represent combined deleterious 

mutational effects.  What is the result of combining multiple mutations that are all 

individually significantly stabilizing?  Drawing from our comprehensive dataset, we 

constructed three variants (Table 4-6) by first selecting mutations that each stabilized the 

Gβ1 domain by more than 1 kcal/mol.  This led to 33 individual mutations over 16 

positions, a great majority of which introduced large hydrophobic residues.  We selected 

one mutation per position with an eye towards limiting the number of incorporated non-

polar residues and combined them into a single variant (16-fold).  The mutations were 

then visualized on the 1PGA structure and funneled down to 8 mutations, removing 

clustered, interacting residues (8-fold).  Lastly, 2 more mutations were screened out due 

to their mutation of special residues, which tend to have entropic effects on protein 

stability (6-fold).   

 The three variants were expressed, purified, and assayed for stability in the same 

way as the entire single mutant dataset.  The 16-fold mutant had no soluble expression as 

determined by the criteria set in Chapter 3.  The 6 and 8-fold mutants expressed normally 

yet both displayed neutral ∆∆G stability values, despite featuring individual mutations 

that, when summed, should stabilize the protein by more than 8 and 10 kcal/mol, 

respectively (Table 4-6).  Rationally combining multiple efficacious single mutations 

from our stability map proved not to be a successful avenue for protein stabilization.   
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 Upon investigating the results, all but two of the mutations in the 16-fold mutant 

occurred in the boundary or surface of the Gβ1 domain, and more than half of them 

involved a polar-to-nonpolar mutation.  Introducing that many hydrophobic residues to 

the protein surface is thought to be dubious for aggregation reasons, unlike single 

nonpolar incorporations that can be stabilizing (1, 2, 32, 33).  Anticipating the 16-fold 

mutant’s issues, the 6- and 8-fold mutants were designed more conservatively, avoiding 

the insertion of potentially destabilizing interactions and evening the ratio of polar and 

nonpolar mutations.  Mutated sites were selected for their three-dimensional distance 

from each other, thereby promoting conditions for perfect additivity (20, 34).  The 

subsequent severe non-additivity encountered by the variants suggests very large 

unfolded state effects are at play.  Whether these effects are due to the tertiary location, 

residue type, number of the mutations, or some combination of these attributes is 

unknown.  Future work on these variants should attempt to definitely explain the source 

of non-additivity by tracing their potential mutational paths through sequence space. 

  Structure-based protein engineering and design seeks to modify the properties of 

proteins through the calculation of folded state energetics.  Our analysis of the additivity 

of mutations in the Gβ1 domain demonstrates the difficulty in identifying distant, 

stabilizing sequences without explicit consideration to the unfolded state.  Despite a wild-

type sequence experimentally determined to be accommodating of most single mutations, 

multi-fold variants became increasingly harder to predict, especially if the mutations 

occurred on the surface.  Modern techniques minimize this deficiency in structure-based 

design by testing libraries of engineered sequences to spread the risk in selecting a 

mispredicted variant.  Although this can be effective (23, 35, 36), novel, efficient, and 
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effective methods for the unfolded state, among other absent concerns and 

approximations, will help to usher in truly robust protein design.  Concurrently, efforts to 

capture experimental data on more than just the global stability of mutant proteins 

deserve attention.  For example, multiplexing thermodynamic stability with solubility, 

expression level, and proteolysis resistance would produce quality high-density datasets 

that will deepen our understanding of both in vitro and in vivo stability. 

 

Conclusions 

 Our aggregate analysis of stability data on every single mutant in Gβ1 provided 

the first experimental look at the mutational distribution of a protein domain.  The rather 

tolerant nature of the protein, especially to hydrophobic residues, illustrates the plasticity 

of non-core residues and the heavy desire to bury nonpolar surface area.  Atomic packing 

density linearly correlated with positional sensitivity, and scanning with serine, not 

alanine, served as the best experimental indicator of positional hotspots.  The unbiased 

nature of the dataset provided an even playing field upon which to test popular stability-

prediction algorithms.  Although Rosetta was the clear performance leader, every method 

could satisfactorily recapitulate the general trends of the data.  Upon examining the 

additivity of previous design efforts, we learned that non-additivity was prevalent 

throughout the protein, but especially on the surface.  Attempts to utilize the data for 

rational stability engineering failed in the face of tremendous non-additivity. 

 Large mutagenesis datasets will only become more common with the maturation 

of automation technologies and next-generation sequencing.  This incoming avalanche of 

data will provide breadth in complementing traditional in-depth analysis of important 



! 102 

systems.  However, the volume of data current cutting-edge technologies can produce 

(105 variants, or all double mutants in a 50 aa protein) still pales in comparison to the 

enormity of potential sequence space.  This is especially troubling considering that ours 

and another study show that double mutants are fairly additive (14), in contrast to what 

we see with variants three or more mutations away from wild type.  Computational 

solutions exist that can traverse the ocean of potential sequences, but require high-density 

datasets from which to train new methods to properly evaluate proteins distant from the 

starting sequence.   

 

Materials and methods 

Dataset 

 Thermodynamic stability data from 935 single mutants of the β1 domain of wild-

type Streptococcal protein G (Gβ1) was generated as described in Chapter 3 of this 

thesis.  Briefly, each gene was constructed through laboratory automation and sequence 

verified.  Every protein was expressed, purified, and its chemical melting point (Cm) 

determined by measuring tryptophan fluorescence in response to a 24-point GdmCl 

gradient.  The !!!!"#$%# value was used to calculate ∆∆G from the following equation: 

∆∆! = !! ∗ (!!!!"#$%# − !!!!") 

where ! is the average of the wild-type and mutant m-values (37), a parameter obtained 

from the linear extrapolation method (38) for determining changes in free energy.  Using 

this equation, stabilizing mutations held positive values, while destabilizing mutations 

held negative values.   
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∆∆G distribution fitting  

 The experimental ∆∆G data was binned into a histogram with 0.5 kcal/mol 

intervals.  In order to match previous work, all stability data was multiplied by -1, making 

positive values represent destabilizing mutations and vice versa.  We used the following 

Gaussian model to fit the individual core and surface distributions, with F the percent 

fraction and x the ∆∆G values (17):  

!! ! = ! 100
2!!!

exp − ! − ! !

2!!  

The bi-Gaussian fit model was given as a superposition of two Gaussians with di!erent 

means and variances, and !! the fraction of the first Gaussian:  

!!" ! = 100 !!
2!!!!

exp ! − (! − !!)
!

2!!!
+ 1− !!

2!!!!
exp ! − (! − !!)

!

2!!!
 

If the fit is good, the mean and variance of the first Gaussian should correspond with the 

surface distribution, while the mean and variance of the second Gaussian should 

correspond with the core distribution. A two-sided t-test was conducted using the 

Mathematica HypothesisTesting package (Wolfram Research) in order to determine 

agreements between the means of two given Gaussian distributions (assuming equal and 

unknown variances).  P-values were generated with a 95% confidence interval (α = 

0.025). 

 

Amino acid scanning analysis  

 Single mutant data of 19 amino acids across 55 of 56 positions in the Gβ1 domain 

allowed us to identify the best amino acid for experimental stability scanning. We 

experimented with two ways to rank the deviations between the ∆∆G for a particular 
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mutation and the average ∆∆G at each position in the protein.  Let us define !∆∆!!,! as 

the deviation of the stability ∆∆!! for amino acid mutant i from the average stability at a 

single residue position a where 1 ≤ i ≤ 19 and 1 ≤ a ≤ 56. This is given by the following 

equation: 

!∆∆!!,! = ∆∆!!,! −
∆∆!!,!!"

!!!
19  

In the first ranking system, we used a weighting directly proportional to the actual  

!∆∆!!,!!value calculated.  We derived !∆∆!!,! for every single possible mutant and then 

summed the results for each amino acid across all residue positions. The scoring function 

for each individual amino acid i in this weighted deviation method is given by:  

!"#$%! = !∆∆!!,!
!"

!!!
 

As the weighted deviation method can be biased by the large stability changes common 

to core positions versus those on the surface, an alternative deviation method was 

developed.  In this ranking system, we sorted !∆∆!!,!!for all amino acids i from smallest 

to largest, at residue position a. The ranked position of a given mutation i at residue a is 

defined as !(!∆∆!!,!).!!For a particular residue a, we would assign a score of 1 to the 

first-ranking single mutation, a score of 2 to the second-ranking single mutation, and so 

on through the last amino acid. Once completed, we then summed the individual 

scores!!(!∆∆!!,!)! for each amino acid across all positions to obtain an aggregate score 

for that particular amino acid. This score for a given amino acid i in this ranked deviation 

method is given by:  

!"#$%! = !(!∆∆!!,!)
!"

!!!
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As the actual scores in each method aren’t physically relevant, they are normalized with 

respect to the score determined for alanine incorporation. 

 

Prediction algorithms  

 The webserver for Popmusic version 2.1, located at!

http://babylone.ulb.ac.be/popmusic, was used by performing a “Systematic” command on 

the wild-type crystal structure of Gβ1 (1PGA).   

 The latest release of FoldX (version 3.0, beta 5) was retrieved from 

http://foldx.crg.es.  The crystal structure of Gβ1 (1PGA) was prepared by using the 

“RepairPDB” command to perform Asn, Gln, and His flips, alleviate small Van der 

Waals’ clashes, and optimize wild-type rotamer packing. Every mutation in the dataset 

was constructed through the “BuildModel” command, and the difference in energy 

between the WT reference and the corresponding mutant was averaged over five trials.  

 The latest release of Rosetta (version 3.3) was retrieved from 

http://www.rosettacommons.org.  The ddg_monomer application was used to generate 

single mutant stability data from a pre-minimized version of the crystal structure of Gβ1 

(1PGA).  We explicitly followed the available online documentation in order to prepare 

all necessary input files. Option sets described in the documentation pertain to the various 

Rosetta iterations tested in this paper (no bb min: low-resolution protocol; cst bb min: 

high-resolution protocol; full bb min: high-resolution protocol with an empty distance 

restraints file). 

 The performance of each algorithm was evaluated by Pearson’s correlation 

coefficient and the fraction correct, defined as the number of correctly categorized 
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mutants (stabilizing (>= 0.5 kcal/mol), neutral (< 0.5 kcal/mol and > -0.5 kcal/mol), and 

destabilizing (<= -0.5 kcal/mol)) divided by the total number of mutations in the set.   

 

Mutability determination 

 In order to provide an upper bound on the mutability of the protein we assumed 

perfect additivity of the ∆∆G values for single mutants.  We defined !!"#$!as the critical 

number of mutations needed to exceed the threshold ∆∆G of 4.5 kcal/mol. For a series of 

N mutations, the net stability of such a domain is:  

∆∆G!"# = ∆∆G!
!

!!!
 

The probability of stabilizing/destabilizing a protein domain with a random mutation was 

examined by making each single mutant equally probable.  We ran a simulation in 

Mathematica for 1000 or 10000 trials with 200 random mutations in each trial.  This 

many random mutations were made in order to have a high likelihood that we would 

reach the unfolding threshold before this value.  We found the critical number of 

mutations !!"#$  by checking the net stability after each successive mutation. When 

∆∆G!"#,! > 4.5 kcal/mol, then !!"#$ = !.  
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Figure 4-1: Single mutant stability distribution for the Gβ1 domain.  As an example, 
if ∆∆G stability data is represented by χ, then the zero bin holds data with values 0 ≥ χ > 
1.  The “unf” bin holds mutant stability data that could not be determined, and is likely 
insoluble or in an alternative conformation.   
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 Experimental data FoldX3 data 

Type µ1 σ1 µ2
 σ2

 R2 µ1 σ1 µ2 σ2 R2 

Surfacea -0.13 0.65 - - 0.996 -0.53 0.68 - - 0.995 

Corea - - 0.28 1.23 0.932 - - -0.17 1.25 0.901 

All -0.13 0.53 1.01 1.43 0.999 -0.55 0.64 1.02 1.75 0.997 
a Surface and core determination done as described in the methods 

 

Table 4-1: Gaussian fitting parameters for the mutational distributions 
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Figure 4-2: Gaussian fits of the Gβ1 mutational distribution.  The single mutant 
dataset was calculated using FoldX3, and values corresponding to unfolded data were 
removed from both datasets.  Equation fits are described in the methods.  Positive ∆∆G 
values indicate destabilizing variants and vice versa. 
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Figure 4-3: Single mutant stability landscape for the Gβ1 domain.  Each mutant is 
colored by its ∆∆G value, where red is destabilizing and green is stabilizing.  Self-
identity mutations, e.g., M01M, are assigned a zero value and colored gray.  Mutant 
stability data that could not be determined are given the arbitrary value of -5.  
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Figure 4-4:  Single mutant stability distributions by RESCLASS.  The ∆∆G stability 
distribution for each RESCLASS category is separated into quartiles.  The median values 
for the core, boundary, and surface distributions are -2.89, -0.06, and -0.02, respectively.  
The red dashed line is the median value for the entire distribution, -0.25.  Mutant stability 
data that could not be determined are given the arbitrary value of -5. 
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Figure 4-5:  Packing density is linearly correlated with ∆∆G averaged by position.  
Each data point represents a position in the Gβ1 domain, and is colored by RESCLASS.  
The equation for the red trend line is ! = −7.9! + 1.6, with an r2 of 0.62. 
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Figure 4-6:  Amino acid scanning mutagenesis.  The amino acid that best matches the 
stability at every position in the Gβ1 domain was determined using both ranking and 
actual kcal/mol weighted deviations (see Methods).  The results are normalized to alanine 
incorporation (black dotted line) to compare against typical functional scanning 
methodology.  The charts describe the overall data and RESCLASS categories and are 
sorted from the best to worst match.  Amino acids are colored by physiochemical type.  
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Figure 4-7:  Stability distribution of Gβ1 by mutant amino acid.  Incorporated amino 
acids are sorted by the average ∆∆G stability effect of that mutation (black reference line) 
over the Gβ1 domain.  Amino acids are colored by physiochemical type.  
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Figure 4-8:  Calculated stability distributions by mutant amino acid.  Single mutant 
stability data was calculated with Popmusic2 for the Gβ1 domain (1pga), along with four 
other proteins: cystatin (1cew), azurin (2aza), alcohol dehydrogenase (1deh), and 
lysozyme (4lyt).  Incorporated amino acids are sorted by the average ∆∆G stability effect 
of that mutation (black reference line) over each domain.  Amino acids are colored by 
physiochemical type. 
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Variant Number of Residues % Helixa % Stranda Average OSPb 

1pga 56 25 43 0.332 

1cew 108 20 48 0.314 

2aza 129 16 36 0.368 

4lyt 129 41 11 0.376 

1deh 374 28 25 0.392 
a Secondary structure was determined through DSSP. 
b Residue packing density (OSP) was averaged over each protein.  
 

Table 4-2: Bioinformatics statistics for selected proteins 
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OSP percentile 
rank 

Average ΔΔGa 
by quartiles 

Average ΔΔGa 
by halves 

1–25 0.382 
0.449 

26–50 0.516 

51–75 0.097 
-0.094 

76–100 -0.285 
a Calculated over Y/F/I/L amino acids only 

 

Table 4-3: Comparing the average ΔΔG of hydrophobic mutations by OSP 
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Popmusic2 FoldX3 Rosetta 

(no bb min)a 
Rosetta 

(cst bb min)b 
Rosetta 

(full bb min)c 

All 0.56/825 0.35/825 0.26/819 0.45/825 0.44/825 
All w/o 
clashes -/- 0.52/742 0.35/747 0.62/810 0.61/824 

+VolΔ 0.46/489 0.42/417 0.37/428 0.56/476 0.52/488 

-VolΔ 0.6/340 0.53/329 0.35/323 0.62/338 0.64/340 

Core 0.28/127 0.31/73 0.3/75 0.26/115 0.22/127 

Boundary 0.55/221 0.65/217 0.63/213 0.72/219 0.71/221 

Surface 0.54/477 0.41/452 0.35/459 0.57/476 0.57/476 

NP!NP! 0.43/125 0.57/91 0.52/85 0.60/118 0.62/124 

NP!P! 0.49/163 0.62/125 0.34/139 0.64/156 0.53/163 

P!NP! 0.66/249 0.47/240 0.42/236 0.69/248 0.68/249 

P!P! 0.58/288 0.41/286 0.58/287 0.52/288 0.53/288 
All entries are tuples of correlation coefficient (r) and number of data points (n); NP: nonpolar; P: polar. 
a No backbone minimization after repacking 
b Constrained backbone minimization after repacking 
c Unconstrained backbone minimization after repacking 
 
 
Table 4-4:  Algorithm performance by linear correlation 
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Popmusic2 FoldX3 Rosetta 

(no bb min) 
Rosetta 

(cst bb min) 
Rosetta 

(full bb min) 

All 0.62/935 0.59/935 0.61/918 0.61/935 0.60/935 

+VolΔ 0.52/527 0.52/527 0.52/510 0.53/527 0.51/527 

-VolΔ 0.75/412 0.69/412 0.72/412 0.71/412 0.70/412 

Core 0.78/204 0.84/204 0.86/187 0.83/204 0.82/204 

Boundary 0.57/238 0.57/238 0.53/238 0.53/238 0.52/238 

Surface 0.58/493 0.50/493 0.55/493 0.53/493 0.54/493 

NP!NP! 0.61/147! 0.68/147! 0.61/140! 0.65/147! 0.64/147!

NP!P! 0.66/210! 0.72/210! 0.68/200! 0.74/210! 0.67/210!

P!NP! 0.61/272! 0.57/272! 0.64/272! 0.61/272! 0.60/272!

P!P! 0.62/306! 0.49/306! 0.53/306! 0.51/306! 0.52/306!

All entries are tuples of fraction correct and number of data points (n); NP: nonpolar; P: polar. 
a No backbone minimization after repacking 
b Constrained backbone minimization after repacking 
c Unconstrained backbone minimization after repacking 
 

Table 4-5:  Algorithm performance by fraction correct 

 

!

!
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Figure 4-9:  Complex additivity in core and surface mutation libraries.  Actual ∆∆G 
is plotted against the sum of single mutation ∆∆G values for core (top) and surface 
(bottom) mutational libraries.  Each data point is colored by the number of mutations 
from wild-type it carries.  The black dashed line is ! = !, and serves as the indicator for 
perfect additivity.  The r2 for the red trend lines are 0.74 (top) and 0.15 (bottom). 
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Variant Identity Actual ΔΔGa  Sum ΔΔGb  

6-fold K04T  L12Y  E27L  F30Y  N35K  E56F -0.10 8.07 

8-fold 6-fold  G14L  D47P 0.57 10.98 

16-fold 8-fold  M01F  T02I  L07I  T16I  E19I  
N37L  D40F  E42I unfolded 21.21 

a Determined stability through experiment; units in kcal/mol 
b Determined stability by summing the ΔΔG of the individual single mutants; units in kcal/mol  

 

Table 4-6:  Identity and stability of additive variants  
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Overview(

This%chapter%provides%an%introduction%to%successful%operation%of%the%Tecan%Freedom%EVO%
liquid%handling%robot.%%It%outlines%the%system%basics,%proper%power%on/off,%maintenance,%
and%software%usage.%%This%manual%should%be%used%in%conjunction%with%the%Tecan,provided%
EVOware%Help,%a%fantastic%resource%that%explains%every%setting%inside%the%software.%

The%Tecan%Freedom%EVO%is%located%in%the%Beckman%Institute%in%Room%288.%%The%space%is%
owned%by%the%Protein%Expression%Center,%headed%by%Dr.%Jost%Vielmetter.%%The%lab%benches%
and%pipettes%immediately%around%the%robot%can%be%used%to%prepare%your%automation%
experiments.%%Full%size%refrigerators%at%−20°C%and%4°C%are%also%on%hand%to%help%with%
experiment%preparation.%%The%center%cabinet%underneath%the%desk%is%full%of%labware%and%
supplies%for%the%Mayo%Lab.%

The(Tecan(Freedom(EVO(200(

The%2,meter%robot%sits%on%a%reinforced%table%inside%of%positive%pressure%sterile%hood%and%is%
composed%of%three%unique%arms%overlooking%a%precisely%manufactured%deck%(Figure%1).%%
The%left,most%arm,%the%8,tip%Liquid%Handler%(LiHa),%has%eight%liquid,sensing%fixed%tips%that%
require%a%washing%step%after%each%use.%%Each%tip%is%individually%addressable%and%ideal%for%
cherry,picking%operations.%%The%middle%arm,%the%Multi%Channel%Arm%96%(MCA96),%uses%
disposable%tips%to%pipet%96%volumes%of%liquid%at%once,%making%it%very%useful%for%serial%
dilutions%or%buffer%additions.%%The%right%arm,%the%Robotic%Manipulator%(RoMa),%can%pick%up%
and%move%any%microtiter%plate%that%conforms%to%the%Society%for%Biomolecular%Science%(SBS)%
standard.%Different%kinds%of%carriers%(holding%places%for%microtiter%plates)%populate%the%
deck,%and%although%the%deck%layout%was%optimized%for%our%applications,%not%all%carriers%are%
accessible%to%all%of%the%arms.%%%

System%Liquid%
All%fixed%tip%systems%have%a%tip%wash%station%that%requires%water%from%an%outside%source.%%In%
the%general%case,%this%is%a%large%water%reservoir%that%is%manually%refilled%as%it%empties%
through%the%system.%%Luckily,%our%Freedom%EVO%has%been%customized%(courtesy%of%Dr.%
Vielmetter)%with%a%reservoir%that%auto,refills%from%a%local%house%DI%water%line.%%The%custom%
reservoir%also%has%a%UV%filtration%unit%installed%that%prevents%microbial%growth%in%the%
standing%water.%%This%setup%greatly%minimizes%weekly%maintenance%of%the%system.%%The%
custom%reservoir%feeds%sterile%water%through%a%single%tube%into%the%Freedom%EVO%through%
the%back;%this%tube%is%split%into%8%channels%(as%seen%by%the%8%syringes%on%the%middle%top%bar%
of%the%instrument)%that%then%exit%out%of%the%8%tips%of%the%LiHa.%%%

Chapter%1:Chapter%1: %%
Robot%OperationRobot%Operation %%
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Figure(1.((The(Tecan(Freedom(EVO(200,(as(seen(in(BI288.(

The%LiHa%wash%station%drains%into%the%house%drainage%system%on%the%left%side%of%the%
instrument.%%With%this%modification,%the%Freedom%EVO%is%essentially%a%closed%loop%system:%
water%is%pulled%from%the%house%line%into%a%sterile%reservoir,%passed%through%the%robot%
system,%flushed%through%the%LiHa,%and%finally%clears%out%into%the%drain.%

The%LiHa%arm%in%our%system%is%outfitted%with%the%Te,Fill%accessory%that%enables%it%to%
dispense%large%volumes%of%liquid%from%reservoirs%located%on%the%left%side%of%the%instrument.%%
The%Te,Fill%system%can%be%used%to%switch%between%five%different%buffer%sources%for%a%variety%
of%extended%automated%routines.%%However,%the%pump%on%the%Te,Fill%is%slow%and%was%the%
motivation%for%acquiring%and%integrating%the%peristaltic%pump%system%(described%below).%

Deck%Layout%

The%deck%layout%as%seen%in%the%EVOware%software%(Figure%2)%is%an%accurate%portrayal%of%
most%of%the%carriers%on%the%deck%that%are%physically%accessible%by%the%liquid%handling%arms.%
Two%room%temperature%plate%hotels,%three%controlled%temperature%plate%hotels,%and%four%
plate%stackers%along%the%back%of%the%instrument%are%not%properly%represented%in%the%figure.%

Directly%below%the%deck,%the%robot%table%houses%two%peristaltic%pumps%installed%and%
integrated%by%Dr.%Vielmetter.%%These%devices,%in%combination%with%specialized%labware%also%
developed%by%Dr.%Vielmetter,%are%able%to%provide%fast,filling%reservoirs%of%any%desirable%
liquid.%%One%useful%arrangement%of%this%subsystem%is%as%a%tip%wash%station%for%the%MCA96%in%
which%the%primary%reservoir%is%constantly%exchanging%water%(to%wash%the%tips),%and%the%
secondary%reservoir%is%exchanging%fresh%ethanol%(to%dry%the%tips).%%Outside%of%the%hood%and%
to%the%left%is%a%variable%temperature%water%recirculator%that%is%connected%to%a%specialized%3%
position%carrier%on%the%deck.%%The%recirculator%can%cool%the%carrier%down%to%4°C%or%warm%it%
up%to%37°C%in%30%minutes.%
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Figure(2.((The(deck(layout,(as(depicted(in(the(EVOware(software.((The(features(on(the(deck(are(as(
follows:((1)(LiHa(tip(wash(station,((2)(3(position(100mL(trough(carrier,((3)(4(position(MCA(tip(box(
carrier,((4)3(position(MP(variable(temp(carrier,((5)(2(position(TeSVac(vacuum(system,((6)(four(3(
position(MP(flat(carriers,((7)(2(position(TeSShake(MP(shaker,((8)(attached(Tecan(Infinite(M1000(plate(
reader,((9)(4(offSdeck(stackers,(1(SPE(hotel,(1MP(hotel,((10)(3(offSdeck(variable(temp(hotels,((11)(BIOS
RAD(thermalcycler(with(automated(lid.((MP:(microtiter(plate,(SPE:(solid(phase(extraction)(

Power(ON(

The%robot%platform%and%accompanying%computer%can%usually%be%found%with%the%instrument%
and%computer%powered%on%and%the%computer%at%the%Microsoft%Windows%login%screen.%%In%
this%instance,%simply%login%to%the%computer,%double,click%the%EVOware%icon,%and%login%to%
the%EVOware%software.%%%

After%a%cold%start%(the%robot%was%turned%off/on),%the%robot%will%need%to%do%a%long%
initialization%in%which%the%three%arms%test%their%range%of%motion%and%move%to%the%left,most%
edge%of%the%deck.%%It%should%be%noted%that%when%the%robot%is%turned%off,%the%arms%are%no%
longer%locked%in%place%and%can%be%moved%freely%by%the%user.%%This%5,minute%process%is%not%
done%when%the%robot%is%left%on.%%Instead,%the%robot%will%move%the%LiHa%and%the%RoMa%to%
their%home%positions,%which%is%a%much%faster%process.%

Maintenance%after%Power%ON%
Immediately%after%running%EVOware,%it%is%very%important%to%run%the%Daily_Flush%
maintenance%routine.%%This%script%not%only%initializes%the%instrument%(prompting%the%arms%
to%move%to%their%home%positions%on%a%warm%start)%but%also%flushes%and%rinses%the%LiHa%with%
25mL%of%water.%%The%act%of%flushing%the%LiHa%removes%bubbles%and%restores%the%system%
liquid%trailing%air%gaps%(STAG)%in%the%eight%tips.%%This%is%important%for%accurate%liquid%
dispense%operations,%especially%multi,dispense%techniques.%%After%flushing,%the%
maintenance%routine%moves%the%LiHa%over%the%second%microtiter%plate%carrier%and%spreads%
the%tips%to%allow%the%user%to%rubdown%each%tip%with%an%ethanol,soaked%kimwipe.%%This%
ethanol%rubdown%step%also%helps%in%maintaining%the%accuracy%of%the%liquid%dispensing%
system.%%Finally,%check%that%all%the%twist%knobs%associated%with%the%LiHa%syringes%are%finger%
tightened%before%use.%%A%common%reason%for%inaccurate%liquid%handling%is%loose%syringes.%%
After%this,%the%robot%is%ready%for%use.%

Additional%maintenance%may%be%needed%if%your%robotic%routine%calls%for%the%Te,Vac%or%the%
thermalcycler.%%If%using%the%Te,Vac,%check%that%the%waste%bucket%is%less%than%half,full,%or%
preferably%empty%it%if%you%have%a%vacuum%heavy%routine.%%If%using%the%thermalcycler,%the%
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sealing%pad%on%the%automated%lid%should%be%washed%with%a%dilute%bleach,soaked%kimwipe%

and%subsequently%washed%twice%more%with%a%water,soaked%kimwipe.%

Power(OFF(

After%your%robotic%routine%is%completed,%clear%the%deck%of%your%labware,%including%plates,%

tubes,%and%tips.%%Throw%away%used%tips%boxes%and%eppendorf%tubes.%%Exit%the%software,%

double,click%the%“shutdown%EVOware%drivers”%icon,%and%log%out%of%the%computer.%%You%may%

leave%both%the%computer%and%the%robot%on%for%the%next%user%in%this%state.%

To%leave%the%instrument%in%a%true%OFF%state,%after%the%above%is%completed%press%the%light%

green%arrow%button%on%the%robot%located%on%the%bottom%far%right%side.%%Turn%off%the%

computer%through%the%Windows%Start%menu.%

Maintenance%after%Power%OFF%

Most%if%not%all%routines%include%a%tip%wash%step%for%the%LiHa%after%use,%so%any%extra%wash%

steps%are%unnecessary%after%a%script%is%finished.%%If%the%Te,Vac%was%used,%be%sure%to%clean%the%

carrier%and%the%vacuum%carrier%using%a%dilute%bleach%rinse.%%If%the%cooling%water%

recirculator%was%used,%remember%to%turn%it%off%and%refill%it%with%DI%water%if%necessary.%%%

Using(EVOware(2.1(

Upon%execution%of%the%EVOware%software,%the%Startup%window%asks%whether%you%want%to%

run%an%existing%or%maintenance%script,%create%a%new%script,%edit%an%existing%one,%or%

configure%the%system.%%If%you%are%just%starting%your%session,%select%“Run%maintenance”%and%

then%"Daily_Flush"+(Figure%4).%%This%opens%the%Runtime%Controller%window,%where%clicking%
“RUN”%sends%the%script%to%the%robot%to%be%performed.%%After%the%process%and%the%

appropriate%maintenance%is%completed,%the%Runtime%Controller%will%alert%you%of%the%

successful%completion%of%the%script.%%By%clicking%“Cancel”%after%a%successful%finish,%the%

software%will%return%you%to%the%Startup%window.%
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Figure(3.((Run(the(maintenance(script("Daily_Flush"(from(the(Startup(screen.((After(clicking(“START(
YOUR(SELECTION,”(click(“RUN”(at(the(Runtime(Controller(window.(

After%running%"Daily_Flush,"%select%“Edit%an%existing%script”%to%open%the%list%of%saved%scripts.%%
Select%the%script%of%interest%(frequently%used%scripts%may%be%located%in%the%Favorites%tab)%
and%open%it%(Figure%5).%%Scripts%can%also%be%found%in%separated%folders%at%the%bottom%of%this%
list.%%This%will%open%the%main%functional%window%of%the%EVOware%software.%%%

Another%option%is%to%create%a%new%script%and%select%a%template%from%the%Favorites%tab.%%
When%running%one%of%the%methods%described%later%in%Chapter%2,%this%is%the%preferred%option%
so%that%any%edits%made%are%isolated%to%that%user’s%script.%%The%majority%of%users%should%
ignore%the%other%options%on%the%Startup%window.%%Accessing%the%system%configuration%is%
only%appropriate%for%advanced%users.%%Remember,%running%a%script%without%inspection%is%
decidedly%not%recommended%unless%it%has%been%thoroughly%debugged%and%you%are%an%
advanced%user.%%

%

%
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Figure(4.((Edit(an(existing(script(from(the(Selection(window.((Select(the(script(of(interest(and(click(the(
green(arrow(button.(

Line%Editing%
Along%the%right%side%of%the%screen%is%the%Script%Editor%window.%%Here,%each%line%is%the%
equivalent%of%a%line%of%code%that%must%be%performed%sequentially.%%It%is%extremely%important%
to%double%check%every%line%of%code%to%make%sure%the%robot%is%given%the%correct%procedure.%%%

Every%available%command%and%popup%screen%is%detailed%in%the%EVOware%Help%(hit%the%F1%
key%or%click%“Help”%along%the%top%of%the%screen,%then%“Contents”),%so%only%a%brief%description%
of%the%commonly%used%“Aspirate”%and%“Transfer%Labware”%commands%will%be%provided%
here.%

Many%script%lines%feature%information%that%is%useful%when%scanning%a%script%for%possible%
errors%before%execution.%%The%“Aspirate”%command,%for%example,%shows%a%cartoon%of%the%
tips%in%use%next%to%a%highlighted%area%of%the%labware%it%will%pull%from%(Figure%6).%%Next%to%
this,%the%top%line%shows%the%amount%being%aspirated%and%the%liquid%class%the%system%will%use%
to%do%it.%%The%bottom%line%displays%the%name%of%the%labware%(in%quotation%marks)%followed%
by%the%exact%positions%that%will%be%aspirated%(in%parentheses).%%If%the%command%is%changed%
as%part%of%an%iterable%loop,%the%number%of%options%that%are%changing%is%displayed%as%well.%
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Figure(5.((The(LiHa("Aspirate"(command(is(highlighted,(as(seen(in(the(Script(Editor(window.(((

The%“Transfer%Labware”%command%also%contains%information%that%is%useful%to%check%before%
running%a%particular%script.%%The%top%line%describes%a%source%site%using%carrier%position%
notation;%this%is%followed%by%the%destination%site,%which%uses%the%same%notation%(Figure%7).%%
Finally,%the%type%of%grip%(narrow%or%wide)%is%described.%%If%using%a%special%microtiter%plate%
(such%as%the%PCR%plate),%a%different,%user,defined%vector%is%used%by%the%RoMa.%%All%these%
settings%are%defined%by%the%user%when%the%script%is%initially%written%but%can%be%edited%by%
double,clicking%the%line%of%interest.%

%

Figure(6.((The(RoMa("Transfer(Labware"(command(is(highlighted,(as(seen(in(the(Script(Editor(window.(

Worktable%Editing%

The%Worktable%Editor%window%shows%a%faithful%reconstruction%of%the%physical%deck%
configuration%of%the%robot.%%Through%this%graphic%interface,%the%user%can%assign%carrier%and%
labware%placements%and%label%labware.%In%general,%this%window%should%be%used%to%populate%
the%deck%of%the%robot%with%the%labware%needed%for%a%particular%script.%%However,%the%user%
should%be%aware%that%EVOware%creates%duplicate%instances%of%labware%that%is%moved%by%the%
RoMa.%%For%example,%a%PCR%plate%that%is%labeled%“insert,pcr”%will%show%up%with%the%default%
label,%“Labware1”%in%other%sites%where%it%will%eventually%end%up.%%For%this%reason,%script%
authors%should%label%all%labware%before%entering%any%RoMa%commands%to%help%in%
identifying%the%duplicates.%

As%noted%earlier,%carriers%that%are%not%accessible%by%the%liquid%handling%arms%(such%as%the%
plate%stackers%and%hotels)%are%pictured%without%respect%to%their%numerical%position%on%the%
robot%deck%(Figure%2).%%Their%physical%positions%are%only%indicated%when%they%have%been%
clicked%on%by%the%user.%

Interface%tips:%
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!  Double,clicking%a%piece%of%labware%will%open%the%labeling%popup.%
!  To%quickly%create%a%duplicate%of%a%piece%of%labware,%hold%down%"Control"%while%dragging%

the%labware.%
!  For%advanced%users:%%Right,clicking%on%labware%or%carriers%opens%the%option%to%edit%

them.%%This%is%where%new%labware%or%where%RoMa%vectors%to%carriers%can%be%taught,%
respectively.%%%

Running%a%Script%

After%a%script%has%been%inspected%and%the%user%is%comfortable%proceeding,%click%the%"RUN"%
icon%(green%arrow)%along%the%top%of%the%screen.%%If%the%latest%version%of%the%script%isn’t%
saved,%the%program%will%prompt%you%to%save%it%before%continuing.%%Now%the%Runtime%
Controller%window%will%pop%up;%click%"RUN"%to%proceed%(Figure%8).%%Near%the%top%of%the%
Runtime%Controller%window%is%a%check%box%for%running%the%full%script.%%If%unchecked,%
specific%line%numbers%corresponding%to%portions%of%the%script%can%be%entered.%%This%is%useful%
in%cases%in%which%a%script%was%programmed%to%handle%two%microtiter%plates,%but%you%want%
to%process%one.%%The%Runtime%Controller%window%also%has%toggle%buttons%to%open%extended%
view%and%to%open%the%active%logfile%viewer.%%

%The%extended%view%window%is%very%handy%for%checking%how%far%along%the%robot%is%in%
processing%your%script.%%The%top%left%window%prints%out%comments%that%are%programmed%in%
the%script.%%The%bottom%left%window%features%loop%counters%for%any%loops%you%may%have%in%
the%script.%

Once%the%robot%is%done,%the%Runtime%Controller%window%will%report%the%elapsed%time%and%
allow%the%user%to%view%the%extended%view%and%logfiles%of%the%completed%script.%%Click%
“Cancel”%to%return%to%the%main%screen%of%EVOware.%%Clicking%“New”%will%allow%the%user%to%
run%the%same%script%again%right%away,%which%is%generally%not%recommended.%

%
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Figure(7.((The(Runtime(Controller(window.((Important(options(on(this(window(include:((1)(the(“Run(full(
script?”(toggle,((2)(the(extended(view(button,(and((3)(the(logfile(viewer(button.(

Error%Messages%and%Stopping%a%Script%

There%are%any%number%of%errors%that%can%occur%during%the%execution%of%a%script,%but%the%two%
most%common%are%hardware%crashes%and%notices%of%insufficient%liquid.%%Although%neither%
should%happen%when%running%verified%scripts,%they%can%still%creep%in%if%a%carrier%on%the%deck%
has%moved%or%if%liquid%volumes%are%adjusted%on%the%fly.%

When%the%software%has%detected%a%hardware%crash,%the%script%is%stopped%and%the%arms%lock%
down%into%place.%%EVOware%will%ask%to%be%placed%into%virtual%mode,%where%it%can%no%longer%
communicate%with%the%hardware.%%In%this%instance,%shut%down%EVOware%and%then%turn%off%
the%instrument.%%Now%the%arms%should%be%unlocked%and%the%user%can%attend%to%the%situation%
on%the%deck.%%Once%finished,%double,click%“Shutdown%EVOware%drivers,”%and%then%turn%on%
the%instrument.%%Open%EVOware%and%login%as%usual.%%You%may%get%messages%(that%you%can%
cancel/ignore)%asking%you%to%zip%and%send%the%last%logfile%to%Tecan.%%Opening%a%script%that%
has%caused%a%crash%will%open%the%“Recover”%option%in%the%Run%menu.%%Never%use%the%
“Recover”%feature%of%EVOware;%it%is%much%better%to%highlight%the%remainder%of%the%script%
you%wish%to%execute.%%The%“Run%Direct”%command%simply%skips%through%the%runtime%
controller;%there%is%no%need%to%use%it.%%The%script%editor%will%also%highlight%which%line%caused%
the%crash.%

An%insufficient%liquid%notice%is%much%easier%to%handle%and%is%only%a%factor%when%using%liquid%
detection.%%A%popup%box%will%ask%if%you%wish%to%detect%again,%go%to%z,max,%or%aspirate%
nothing.%
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Figure(8.((The(Run(menu(in(EVOware(after(an(error(has(occurred.(((1)(The(three(options(are(Run,(Run(
direct,(and(Recover.(((2)(The(script(line(that(produced(the(error(is(also(highlighted(in(orange,(and(can(
sometimes(be(highlighted(in(red,(depending(on(the(severity(of(the(error.(

In%almost%every%case,%the%user%should%move%along%and%aspirate%nothing%because%moving%to%

z,max%may%cause%a%hardware%crash%and%detecting%again%will%give%the%same%error.%%A%note%

should%be%made%as%to%why%there%was%not%enough%volume;%sometimes%the%robot%may%be%

attempting%to%aspirate%an%unexpectedly%viscous%liquid%or,%more%likely,%a%scripting%mistake%

has%occurred.%

If%the%user%detects%a%potential%upcoming%problem%in%the%execution%of%a%script,%the%Runtime%

Controller%window%allows%for%pausing%or%stopping%a%script.%%After%stopping%a%script,%click%

“Cancel"%to%return%to%the%main%EVOware%window.%%Again,%never%use%the%“Recover”%feature%

of%EVOware,%as%it%is%somewhat%unpredictable.%%Pausing%here%is%identical%to%pressing%the%

pause%button%on%the%robot.%%Stopping%or%pausing%a%script%from%within%the%software%allows%

the%robot%to%finish%the%line%it%is%on%before%completely%stopping%and%unlocking%the%shield.%%If%

a%hardware%crash%is%imminent,%it%may%be%necessary%to%immediately%stop%the%robot%by%

turning%it%off%at%the%power%button.%

Email%Notification%

One%of%the%most%useful%features%in%EVOware%is%the%ability%to%send%an%email%at%any%point%in%

the%script.%%To%do%this,%you%must%be%entered%as%a%recipient%in%the%EVOware%Configuration%

and%then%add%a%“Notification”%line%to%your%script.%

In%the%EVOware%Configure%window,%click%the%“General”%tab%and%then%under%“Notifications,”%

click%“Recipients”%and%add%the%name%and%email%of%a%new%user.%%Then%under%“Notifications,”%

click%“Groups”%and%add%the%new%user’s%name%as%a%new%group.%%At%the%minimum,%make%the%

new%user%and%the%current%automation%specialist%in%the%lab%members%of%the%newly%created%

group.%%This%configuration%allows%the%automation%specialist%supervision%of%new%users%

without%flooding%other%uninvolved%users%email%inboxes.%%Along%the%top%of%the%screen,%click%

"Save"%and%then%click%"Exit."%%Restart%EVOware%to%make%the%changes%permanent.%

1(

2(
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Backing%Up/Restoring%EVOware%

For%advanced%users%only.%%The%home%directory%for%the%EVOware%installation%is%“C:\Program%
Files\TECAN\EVOware.”%

Complete%backups%of%the%EVOware%installation%can%be%made%by%entering%the%EVOware%
Configure%window%and%clicking%“Backup”%at%the%top%of%the%screen.%%This%will%generate%a%
folder%with%everything%needed%to%restore%a%broken%installation%in%“.\backup.”%These%
backups%are%also%useful%for%restoring%a%particular%version%of%a%script%or%for%viewing%
labware/carrier%definitions.%%Every%script%is%saved%to%a%scripts%folder%in%the%backup,%
allowing%the%user%to%copy%the%backup%script%into%the%“.\database\scripts”%folder%in%the%real%
EVOware%installation%directory.%%Labware%and%carrier%definitions%are%not%saved%
independently%in%the%backup%folder,%but%instead%are%saved%as%one%carrier.cfg%file%that%can%be%
copied%into%the%real%“.\database”%directory.%

The%software%also%keeps%every%saved%version%of%important%files%so%as%to%immediately%
recover%from%a%negative%change.%%For%example,%another%user%may%have%edited%a%carrier%
definition%improperly%a%few%days%ago%but%the%last%full%backup%was%done%two%months%ago.%%In%
that%span%of%time,%several%positive%changes%may%have%been%made%so%that%you%wish%to%keep%
the%installation%and%only%fix%the%carrier%file.%%A%user%can%enter%the%
“.\AuditTrail\configuration”%folder%and%copy%the%carrier.cfg%file%from%before%the%negative%
change%was%made%(minding%the%dates)%and%paste%it%into%the%actual%“.\database”%directory.%

As%in%any%instance%in%which%a%system%file%is%being%copied%over,%remember%to%create%a%
duplicate%of%the%file%in%case%the%older%one%makes%things%worse.%

Basic(Operation(Checklist(

!  Login%to%the%computer%and%then%into%EVOware.%
!  Run%the%maintenance%script%"Daily_Flush."%
!  Check%syringe%knobs%and%wipe%down%the%LiHa%tips.%
!  Create%a%new%script%from%a%template%or%edit%an%existing%script.%
!  Check%the%script%code%for%possible%errors%and%make%adjustments.%
!  Populate%the%physical%deck%by%following%the%Worktable%editor.%
!  Check(the(script(code(for(possible(errors.(
!  Run%the%script.%
!  When%finished,%clear%the%deck,%close%EVOware,%and%log%out%of%the%computer.%
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Overview(

This%chapter%covers%the%important%procedures%that%have%been%developed%on%the%Tecan%
Freedom%EVO%200.%%Most%of%these%protocols%were%developed%with%performing%site%
saturation%mutagenesis%in%mind,%but%can%be%run%independently.%%%

Each%protocol%described%here%features%a%brief%introduction,%followed%by%a%materials%list%
(complete%with%order%numbers),%and%a%methods%section.%%In%the%methods%section,%the%actual%
robotic%script%is%reprinted%from%the%basic%template%procedure%and%important%details%are%
highlighted.%%The%corresponding%deck%image%is%also%included%for%every%full%script%shown.%

All%the%procedures%were%saved%as%separate%EVOware%templates.%%To%run%a%protocol,%select%
“Create%a%new%script”%from%the%Startup%Menu%and%select%the%template%of%interest.%%Then%save%
the%opened%script%with%your%initials%as%a%prefix.%%This%makes%for%a%much%faster%startup%for%
novice%users%who%wish%to%run%the%default%protocol.%%Also,%it%keeps%the%core%of%the%program%
intact,%allowing%individual%users%to%make%any%appropriate%changes%for%their%particular%
experimental%setup%without%affecting%other%users'%scripts.%%Of%course,%if%a%user%wishes%to%
run%the%exact%same%protocol%again%later,%their%EVOware%script%can%be%found%under%“Edit%an%
existing%script.”%

IMPORTANT(

The%robot%was%upgraded%and%its%deck%remodeled%in%the%fall%of%2010.%%As%such,%the%details%of%
many%scripts%described%here%are%incorrect%but%the%concepts%remain%the%same.%%A%handful%of%
scripts%were%added%after%the%upgrade,%are%up,to,date,%and%are%marked%appropriately.%
% %

Chapter(2:Chapter(2:%%
Robot%ProceduresRobot%Procedures%%
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Dilute(Oligonucleotides((Gene(Assembly)(

*Current%Deck%Layout%

This%script%performs%the%replacement%method%of%library%assembly%as%detailed%in%chapter%4.%%

The%methodology%was%developed%in%response%to%issues%with%the%moderate%number%of%high,

ranking%sequences%found%in%designed%degenerate%codon%libraries.%%Explicit%consideration%of%

each%sequence%allows%for%a%more%direct%translation%of%protein%design%results%into%

experimental%reactions.%%The%Python%script%described%in%chapter%4%produces%a%robotic%

worklist,%written%into%the%.csv%format,%which%is%then%translated%into%the%robot,readable%.gwl%

format%by%the%EVOware%software.%

There%are%three%main%specification%pages%when%ordering%plate%oligos%from%IDT.%%For%the%

first%page,%mark%“file%upload,”%“email,”%“96,well%plate,”%and%“column”%loading.%%For%the%

second%page,%mark%“25%nmole%DNA,”%“standard%desalting,”%“no”%CE%service,%“full%yield,”%“V,

bottom%plate,”%and%shipping%“wet.”%For%the%third%page,%mark%“150µM,”%leave%the%volume%
blank,%and%mark%“IDTE%buffer%pH%7.5.”%

These%specifications%allow%users%to%start%automation%experiments%much%faster%because%

there%is%no%need%for%resuspension,%and%they%keep%the%plate%in%a%robot,friendly%column,

loading%scheme.%%The%lower%limit%for%ordering%oligos%in%the%plate%format%is%24.%%A%MS%Excel%

template%is%available%in%the%lab%or%from%IDT%to%upload%the%sequence%information.%

Materials(

96GWell(IDT(Oligonucleotide(Plate(s).%%The%oligo%plates%from%IDT%arrive%with%a%rubber%
capmat,%lid,%and%taped%up.%%Dispose%of%the%tape%but%keep%the%capmat%and%the%lid.%

96GWell(VGBottom(Plate(s).%%These%plates,%available%through%Axygen%(P,96,450V,C)%were%
chosen%for%diluting%oligos%because%of%their%similarity%to%the%plates%from%IDT.%%They%are%

ordered%non,sterile%and%autoclaved%before%use.%

Sterile(H2O(in(100mL(Disposable(trough.%%This%trough,%available%from%Tecan%
(10613049),%fits%in%the%carriers%located%in%grids%2%through%5.%%Fill%with%high%quality%water%

typically%used%for%diluting%the%oligos.%

Microtiter(Plate(Rubber(Capmat.%%The%96,well%V,Bottom%plates%are%sealed%with%an%
Axygen%ImpermaMat%(AM,2ML,RD,IMP)%to%prevent%evaporation.%%Non,frozen%sealed%plates%

may%need%to%be%centrifuged%down%prior%to%opening%due%to%sample%adhesion%to%the%seal.%
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Methods(

Setup&

The%gene%assembly%oligo%dilution%script%creates%10uM%diluted%plates%from%an%original%

150uM%IDT%plate.%%Volumes%can%be%adjusted%to%dilute%to%concentrations%more%applicable%to%

the%user’s%downstream%procedures.%%A%robot%worklist,%“1A53,8ng.csv”,%then%directs%the%

assembly%of%oligonucleotides%into%each%well%of%the%oligos%collection%plate.%

Water:%%100ml%disposable%trough%

a,150uM:%%96,well%IDT%oligonucleotide%plates%

a,10uM,%oligos:%%96,well%V,bottom%plates%

tube:%%ignore,%not%used%in%the%method%%

%

%

Sample(data(from(“1A53G8ng.csv”(
(
source!
position!

source!
label!

dest!
position! dest!label! volume!

1! a310! 1! oligos! 5!
2! a310! 1! oligos! 5!
3! a310! 1! oligos! 5!
4! a310! 1! oligos! 5!
5! a310! 1! oligos! 5!
6! a310! 1! oligos! 5!
7! a310! 1! oligos! 5!
8! a310! 1! oligos! 5!
9! a310! 1! oligos! 5!

10! a310! 1! oligos! 5!
11! a310! 1! oligos! 5!
12! a310! 1! oligos! 5!
13! a310! 1! oligos! 5!
14! a310! 1! oligos! 5!
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Procedure&
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IPIPE(and(CPEC(PCR((Gene(Assembly)(

*Current%Deck%Layout%

The%gene%assembly%scripts%described%here%bring%the%PIPE/CPEC%methods%established%on%
the%benchtop%to%the%robot.%%Chapter%4%features%a%full%description%of%the%methodology.%%Since%
the%IPIPE%and%CPEC%methods%are%very%similar,%they%are%grouped%into%this%one%entry.%

The%input%to%these%scripts%is%a%96,well%plate%with%mixed%oligos.%%The%IPIPE%method%will%then%
perform%assembly%PCR%followed%by%amplification%with%IPIPE%outside%primers.%%After%the%
IPIPE%method%the%PCR%products%can%be%combined%with%VPIPE%products%and%transformed%
into%bacteria.%%It%is%recommended,%however,%to%continue%with%the%CPEC%method%and%use%the%
resulting%product%to%transform.%%Much%better%rates%of%transformed%colonies%have%been%
found%when%using%CPEC%products%over%the%PIPE%reaction.%%%

Materials(

96Gwell(BIOGRAD(PCR(Plate(s)(on(96Gwell(cooled(block.%%This%PCR%plate,%available%from%
BIO,RAD%(HSP9601),%is%preferred%for%automated%operations%due%to%its%robot,friendly%hard%
shell%and%full%skirt.%%All%automated%thermocycler%operations%have%been%developed%
exclusively%with%this%plate.%%The%cooled%block,%along%with%the%water%recirculator,%can%cool%
the%samples%down%to%4oC.%

96Gwell(VGBottom(Plate(s).%%These%plates,%available%through%Axygen%(P,96,450V,C)%were%
chosen%for%diluting%oligos%because%of%their%similarity%to%the%plates%from%IDT.%%They%are%
ordered%non,sterile%and%autoclaved%before%use.%

Microtiter(Plate(Rubber(Capmat.%%The%96,well%V,Bottom%plates%are%sealed%with%an%
Axygen%ImpermaMat%(AM,2ML,RD,IMP)%to%prevent%evaporation.%%Sealed%plates%should%be%
centrifuged%down%(500xg%for%30%sec)%prior%to%opening%due%to%sample%adhesion%to%the%seal.%

1.5mL(eppendorf(tubes(in(24Gwell(cooled(block.%%These%are%the%lab%standard%
autoclavable%tubes%available%in%any%biochemistry%lab.%%The%cooled%block,%along%with%the%
water%recirculator%can%cool%samples%down%to%4oC.%

Mastermix(Solution.%%These%solutions%vary%due%to%their%intended%use.%%In%general,%the%
assembly%mastermix%should%include%DNA%polymerase,%dNTPs,%water%and%DNA%polymerase%
buffer.%%The%IPIPE%amplification%mastermix%should%add%the%IPIPE%primers%to%the%assembly%
mastermix.%%The%CPEC%mastermix%should%add%linearized%vector%(VPIPE%product)%to%the%
assembly%mastermix.%%%
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Methods(

Setup&–&IPIPE&

Turn%on%the%water%recirculator%at%least%a%half,hour%before%running%the%procedure%to%ensure%
the%24%and%96,well%blocks%are%cool.%%Organize%the%deck%as%shown%in%the%figure%below.%%The%
script%will%transfer%oligo%mixtures%from%the%V,bottom%Plate%into%the%1st%Step%PCR%Plate,%and%
then%add%assembly%mastermix%on%top%of%that.%%The%gripper%arm%will%transfer%the%plate%to%the%
thermalcycler,%execute%the%program,%and%bring%it%back.%%A%small%amount%of%product%is%
transferred%from%the%1st%Step%to%the%2nd%Step%PCR%Plate,%IPIPE%mastermix%is%added%on%top%of%
that,%and%the%thermalcycler%is%engaged%again%for%the%insert%amplification.%

1st%Step,%2nd%Step%PCR%Plate:%96,well%BIO,RAD%PCR%Plates%
Mastermix:%1.5mL%eppendorf%tubes%in%24,well%cooled%block%(split%the%assembly%mastermix%
into%C1,D1;%split%the%IPIPE%amplification%mastermix%into%C2,D2)%
Labware1:%%96,well%V,Bottom%Plate%

%

Setup&–&CPEC&

Turn%on%the%water%recirculator%at%least%a%half,hour%before%running%the%procedure%to%ensure%
the%24%and%96,well%blocks%are%cool.%%Organize%the%deck%as%shown%in%the%figure%below.%A%
small%amount%of%PCR%product%is%transferred%from%the%1st%Step%to%the%2nd%Step%PCR%Plate%and%
CPEC%mastermix%is%added%on%top%of%that.%%The%gripper%arm%will%transfer%the%2nd%Step%PCR%
Plate%to%the%thermalcycler,%execute%the%program,%and%bring%it%back.%%%

1st%Step,%2nd%Step%PCR%Plate:%96,well%BIO,RAD%PCR%Plates%
Mastermix:%1.5mL%eppendorf%tubes%in%the%24,well%cooled%block%(split%the%CPEC%
mastermix%into%C2,D2)%%
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Procedure&–&IPIPE&
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Procedure&–&CPEC&
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CPEC(Transformation(

*Current%Deck%Layout%

Although%an%automated%cell,free%expression%protocol%would%obviate%the%need%for%bacterial%

transformation,%few%assays%have%the%prerequisite%sensitivity%to%deal%with%the%low%levels%of%

protein%expression%from%cell,free%extracts.%%In%most%cases,%bacterial%transformation%and%

subsequent%plating%will%be%a%necessary%step%in%automated%pipelines.%

Competent%cell%manipulation%was%kept%at%a%minimum%to%avoid%disturbing%the%cells.%%The%

proper%setting%for%the%outgrowth%step%(2%hr%shaking%at%room%temperature)%was%determined%

empirically.%

This%method%is%updated%from%the%older%Bacterial%Transformation%script.%%Instead%of%shaking%

on%the%robot%at%room%temperature,%this%method%calls%for%off,robot%shaking%at%37°C%that%
improves%the%number%of%colony%forming%units.%

Materials(

CPEC(Product.((This%is%typically%carried%over%from%the%“CPEC%PCR%(Gene%Assembly)”%
procedure%in%a%96,well%BIO,RAD%PCR%plate.%

1.5mL(Eppendorf(Tubes(in(24Gwell(Cooled(Block.%%These%are%the%lab%standard%
autoclavable%tubes%available%in%any%biochemistry%lab.%%The%cooled%block,%along%with%the%

water%recirculator%can%cool%samples%down%to%4oC.%

BL21(Gold(DE3(Competent(Cells.%%These%homemade%chemically%competent%cells%are%very%
effective%in%transforming%plasmid%and%nicked%DNA%and%not%very%sensitive%to%variations%in%

heatshock%protocols.%%For%one%96,well%plate,%thaw%2.4mL%of%competent%cells%from%the%,80oC%

freezer.%%Their%preparation%protocol%is%included%in%the%appendix%of%this%manual.%

96Gwell(BIOGRAD(PCR(Plate(s)(on(96GWell(Cooled(Block.%%This%PCR%plate,%available%from%
BIO,RAD%(HSP9601),%is%preferred%for%automated%operations%due%to%its%robot,friendly%hard%

shell%and%full%skirt.%%All%automated%thermocycler%operations%have%been%developed%

exclusively%with%this%plate.%%The%cooled%block,%along%with%the%water%recirculator,%can%cool%

the%samples%down%to%4oC.%

96Gwell(Costar(Sterile(Round(Bottom(Plate(s).%%This%plate,%available%from%Costar%(3788),%
is%preferred%for%automated%operations%due%to%its%robot,friendly%hard%shell.%%

200uL(Robot(Tips.%%These%automation%tips%are%available%from%USA%Scientific%(TipONE%
#1188,1700).%%They%are%stacked%with%yellow%inserts.%

LB(in(100mL(Trough.%%These%troughs,%available%from%Tecan%(10%613%049),%only%fit%in%the%
carrier%located%at%grid%2.%%Fill%with%at%least%15%mL%of%lab%standard%LB%liquid%media%for%the%

transformation%of%one%96,well%plate.%%Keep%warm%before%use%for%better%results.%
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Methods(

Setup&

Turn%on%the%water%recirculator%at%least%a%half,hour%before%running%the%procedure%to%ensure%
the%24%and%96,well%blocks%are%cool.%%Organize%the%deck%as%shown%in%the%figure%below.%%The%
script%will%transfer%a%small%amount%of%CPEC%product%to%the%cooled%PCR%plate.%%Competent%
cells%are%aliquoted%on%top%of%this%product,%incubated%for%15%min,%and%then%the%plate%is%
heatshocked%in%the%thermalcycler.%%Once%the%plate%is%returned,%LB%media%is%added%to%the%
cells%as%recovery%media.%%The%MCA96%arm%then%transfers%the%cells%to%a%sterile%96,well%plate%
for%off,robot%shaking%at%37°C.%

Cells:%%Competent%cells%split%into%2%tubes%in%C1,%D1%of%the%24,well%cooled%block%
cpec:%%CPEC%PCR%product%in%96,well%BIO,RAD%PCR%Plate%
transf1:%%96,well%BIO,RAD%PCR%plate%on%96,well%cooled%block%
shaking%plate:%96,well%Costar%sterile%round%bottom%plate%
200uL%tips:%%200uL%disposable%tips%for%the%MCA96%
Warm%LB:%%LB%in%100mL%trough%
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Qtray(Plating(w/Sterile(Beads(

*Current%Deck%Layout%

Directly%after%the%bacterial%transformation%step%is%completed,%the%outgrowth%cultures%are%

plated%onto%48,segmented%Qtrays.%%This%protocol%is%the%most%improvised%procedure%in%the%

entire%chapter%because%the%Qtray%is%not%a%standard%microtiter%plate.%%Load%the%prepared%

Qtray%(see%appendix)%with%>4%sterile%beads%in%each%segment.%%Follow%the%placing%diagram%

on%the%following%page.%

Materials(

Transformed(bacterial(culture.%%This%is%carried%over%from%the%“CPEC%Transformation”%
procedure%as%a%96,well%Costar%round%bottom%plate.%

96Gwell(Costar(Sterile(Round(Bottom(Plate(s).%%This%plate,%available%from%Costar%(3788),%
is%preferred%for%automated%operations%due%to%its%robot,friendly%hard%shell.%%

Qtray(s).%%This%specialty%petri%plate,%available%from%Genetix%(x6029),%has%48%subdivisions%
upon%which%different%bacterial%cultures%can%be%plated.%%The%plate%was%chosen%as%it%is%the%

only%input%to%the%Genetix%Qbot,%a%colony%picking%robot%located%on%the%2
nd
%floor%of%the%

Beckman%Institute.%

% %
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Methods(

Setup&

The%script%takes%less%than%5min%to%complete.%%Load%a%Qtray%with%sterile%beads%precisely%as%
shown%on%the%following%page%and%organize%the%deck%as%seen%in%the%figure%below.%%After%the%
procedure%is%finished%cover%the%Qtray%and%shake%it.%%Remove%the%beads%and%let%the%solutions%
air,dry%under%a%flame.%%Replace%the%cover%and%incubate%overnight.%

Qtray:%%48,segment%Qtray%
transf:%%Transformed%culture%in%a%96,well%Costar%round%bottom%plate%
Labware1:%%Placeholder%reference%for%arm%movements,%ignore%

&

%

&

%
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Dilute(IDT(Oligonucleotides(

Most%automation%projects%start%with%ordering%oligos%through%Integrated%DNA%Technologies%

(IDT)%to%either%generate%site,directed%mutants%or%assemble%library%variants.%%Luckily,%oligos%

are%much%cheaper%when%specified%to%arrive%on%a%96,well%plate.%%Of%course,%certain%options%

such%as%PAGE%purification%are%unavailable%in%the%plate%format,%but%that%feature%is%

prohibitively%expensive%when%ordering%the%amount%of%oligos%used%in%automation%

experiments%anyway.%%%

There%are%three%main%specification%pages%when%ordering%plate%oligos%from%IDT.%%For%the%

first%page,%mark%“file%upload,”%“email,”%“96,well%plate,”%and%“column”%loading.%%For%the%

second%page,%mark%“25%nmole%DNA,”%“standard%desalting,”%“no”%CE%service,%“full%yield,”%“V,

bottom%plate,”%and%shipping%“wet.”%For%the%third%page,%mark%“150µM,”%leave%the%volume%
blank,%and%mark%“IDTE%buffer%pH%7.5.”%

These%specifications%allow%users%to%start%automation%experiments%much%faster%because%

there%is%no%need%for%resuspension,%and%they%keep%the%plate%in%a%robot,friendly%column,

loading%scheme.%%The%lower%limit%for%ordering%oligos%in%the%plate%format%is%24.%%A%MS%Excel%

template%is%available%in%the%lab%or%from%IDT%to%upload%the%sequence%information.%

Materials(

96GWell(IDT(Oligonucleotide(Plate(s).%%The%oligo%plates%from%IDT%arrive%with%a%rubber%
capmat%and%lid,%and%taped%up.%%Dispose%of%the%tape%but%keep%the%capmat%and%the%lid.%

96GWell(VGBottom(Plate(s).%%These%plates,%available%from%Nunc%(249944),%were%chosen%
for%diluting%oligos%because%of%their%similarity%to%the%plates%from%IDT.%%They%are%ordered%

non,sterile%and%are%autoclaved%before%use.%

Sterile(H2O(in(100mL(Disposable(Trough.%%This%trough,%available%from%Tecan%(10%613%
049),%only%fits%in%the%carrier%located%at%grid%2.%%Fill%with%standard%molecular%biology%water%

for%diluting%the%oligos.%

Microtiter(Plate(Rubber(Capmat.%%The%96,well%V,bottom%plates%are%sealed%with%an%
Axygen%ImpermaMat%(AM,2ML,RD,IMP)%to%prevent%evaporation.%%Non,frozen%sealed%plates%

may%need%to%be%centrifuged%down%prior%to%opening%due%to%sample%adhesion%to%the%seal.%
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Methods(

Setup&

The%template%script%is%named%“AN_Dilute_IDT_Oligos”%and%takes%roughly%48%min%to%
complete.%%Fill%the%water%trough%to%at%least%100mL.%%Organize%the%deck%as%shown%in%the%
figure%below.%

This%template%file%creates%10µM%and%1µM%diluted%plates%from%two%original%150µM%IDT%
plates.%%Volumes%can%be%adjusted%to%dilute%to%concentrations%more%applicable%to%the%user’s%
downstream%procedures.%%

Water:%%100ml%disposable%trough%
a/b,150µM:%%96,well%IDT%oligonucleotide%plates%
a/b,10µM,%a/b,1µM:%%96,well%V,bottom%plates%

%

%
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Procedure&

%

See%Note%2%
See%Note%1%

See%Note%3%
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%
%

See%Note%4%
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Notes&

1. All%mixing%steps%in%the%scripts%are%based%on%there%being%at%least%150µL%in%each%well.%%
Adjust%the%volume%if%this%is%not%the%case.%

2. All%“1%option”%loop%tags%instruct%the%LiHa%to%move%over%1%column%in%every%cycle%of%
the%loop.%

3. If%only%1%plate%needs%to%be%diluted,%highlight%script%lines%1%to%25.%%Alternatively,%
delete%all%script%lines%after%line%25.%

4. At%the%end%of%the%dilution%script%there%is%a%command%to%send%an%email%to%the%user.%%
This%is%useful%since%the%script%runs%longer%than%15%min.%
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SiteGDirected(Mutagenesis(

The%procedure%outlined%here%is%based%on%the%article,%“A%novel%megaprimed%and%ligase,free,%
PCR,based,%site,directed%mutagenesis%method”%by%Tseng%et!al.,%Anal.%Biochem,%2008.%%This%
method%was%chosen%and%optimized%as%an%automated%protocol%for%the%total%site,saturation%
mutagenesis%of%the%β1%domain%of%protein%G.%%More%details%on%the%background%of%the%method%
can%be%found%in%Chapter%3.%

Although%this%site,directed%mutagenesis%(SDM)%protocol%was%initially%developed%using%New%
England%Biolab%(NEB)%Hot%Start%Phusion%DNA%polymerase,%the%user%can%easily%change%the%
mastermix%and%appropriate%dispense%volumes.%%The%thermalcycler%program%must%be%
entered%directly%using%the%thermalcycler%number%pad.%

Materials(

Diluted(Oligonucleotide(Plate(s).%%Typically,%the%diluted%mutagenic%oligos%are%in%96,well%
V,bottom%plates%at%a%concentration%of%1µM.%%These%are%prepared%by%running%the%“Dilute%IDT%
Oligonucleotides”%protocol.%

96GWell(BIOGRAD(PCR(Plate(s)(on(96GWell(Cooled(Block.%%This%PCR%plate,%available%
from%BIO,RAD%(HSP9601),%is%preferred%for%automated%operations%due%to%its%robot,friendly%
hard%shell%and%full%skirt.%%All%automated%thermocycler%operations%have%been%developed%
exclusively%with%this%plate.%%The%cooled%block,%along%with%the%water%recirculator,%can%cool%
the%samples%down%to%4°C.%

1.5mL(Eppendorf(Tubes(in(24GWell(Cooled(Block.%%These%are%the%lab%standard%
autoclavable%tubes%available%in%any%biochemistry%lab.%%The%cooled%block,%along%with%the%
water%recirculator,%can%cool%samples%down%to%4°C.%

Mastermix(Solution.%%For%one%96,well%plate,%prepare%(1)%520µL%of%5×%Phusion%HF%buffer,%
(2)%52µL%of%10µM%reverse%primer,%(3)%52µL%of%10mM%each%dNTPs,%(4)%13µL%of%50mM%
MgSO4,%(5)%13µL%of%160ng/µL%plasmid%template,%(6)%16.25µL%of%Phusion%Hot%Start%DNA%
Polymerase,%and%(7)%1430µL%of%sterile%H2O.%%This%is%a%130×%mix%(total%volume:%2.1mL)%of%a%
16µL%recipe%that%is%combined%with%4µL%of%1µM%forward%primer%to%obtain%a%final%volume%of%
20µL%in%each%well.%%%

%

%
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Methods(

Setup&

The%template%script%is%named%“AN_SDM_1PLATE”%and%takes%roughly%2.5%hr%to%complete,%

including%2%hr%and%12%min%for%the%thermalcycler%protocol.%%Turn%on%the%water%recirculator%

at%least%30%min%before%running%the%procedure%to%ensure%the%24,%and%96,well%blocks%are%

cool.%%Evenly%split%the%2.1mL%mastermix%into%two%1.5mL%eppendorf%tubes.%%Organize%the%

deck%as%shown%in%the%figure%below.%You%can%ignore%the%labware%with%generic%names%

(Labware1,%Labware2,%etc.)%as%they%are%only%placeholders%for%the%software.%

1.5mL%tubes:%%SDM%mix%split%into%two%tubes%in%C1,%D1%of%the%24,well%block%

sdm1:%%96,well%BIO,RAD%PCR%plate%

primers1:%%96,well%V,bottom%plate%

%

Troubleshooting&

Even%after%optimizing%the%melting%temperature%(Tm)%of%an%oligo,%transformable%plasmid%

may%not%have%been%generated%after%the%SDM%procedure.%%In%that%case,%several%variables%can%

be%adjusted.%One%could%vary%the%1st%step%annealing%temperature%and%increase%the%

concentration%of%template,%MgSO4,%or%enzyme.%%Of%course,%there%may%be%negative%

consequences%to%changing%some%of%these%parameters%(see%Table%2,1%on%the%next%page).%%%

The%mastermix%components%and%thermalcycler%program%for%a%96,well%plate%SDM%are%listed%

below.%%The%user%may%use%these%values%to%calculate%the%appropriate%amount%of%mastermix%

to%prepare,%depending%on%the%number%of%columns%and%plates%to%be%processed.%

%

130× ( 1× ( Mastermix(Component( ANGSDM1(

520% 4% 5×%HF%Phusion%buffer% 1.%%98°C,%30%sec%
52% 0.4% reverse%primer%(10µM)% 2.%%98°C,%6%sec%
52% 0.4% dNTPs%(10mM%each)% 3.%%64°C,%15%sec%
13% 0.1% template%(160ng/µL)% 4.%%72°C,%20%sec%(go%to%step%2%for%10×)%
13% 0.1% MgSO4%(50mM)% 5.%%98°C,%6%sec%

16.25% 0.125% HS%Phusion%enzyme% 6.%%72°C,%3%min%(go%to%step%5%for%25×)%
1430% 11% water% 7.%%72°C,%10%min%

%
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Table(2G1.((SDM(Troubleshooting.(
(

Condition( Pro( Con(

1st(step(anneal(
(°C)%

A%temperature%gradient%
may%reveal%a%condition%that%
improves%the%generation%of%
1st%step%product%

None%

Increase(template% Generates%more%2nd%step%
product%(transformable%
plasmid)%

Increases%wild,type%
recovery%during%sequence%
verification%

Increase(MgSO4% Generates%more%1st%and%2nd%
step%product%
%

May%lead%to%non,specific%
banding%and/or%incorrect%
products%

Increase%enzyme% Generates%more%1st%and%2nd%
step%product%

May%lead%to%non,specific%
banding%and/or%incorrect%
products%
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Procedure&

%

See%Note%2%

See%Note%4%

See%Note%1%

See%Note%3%
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%
%

See%Note%6%

See%Note%7%

See%Note%5%

See%Note%8%
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Notes&

1. The%amount%of%mastermix%placed%in%each%tube%is%key%to%the%script%moving%forward%
because%the%aspirate%commands%use%liquid%detection.%%If%it%measures%an%insufficient%
volume,%the%script%will%stop%and%ask%for%input%from%the%user.%%If%this%happens,%click%
“Go%to%Z,max,”%which%will%move%the%tip%to%the%bottom%of%the%tube%to%aspirate.%

2. Script%lines%8%and%16%control%how%many%columns%of%the%sdm%plate%the%robot%will%
dispense%into.%%For%example,%if%you%wish%to%only%dispense%into%9%columns%and%not%
12,%change%script%line%16%to%3%loops.%%Don’t%forget%to%change%the%aspiration%volumes%
of%lines%12–15%to%reflect%the%smaller%amount%of%mastermix%needed.%%Continuing%the%
example,%each%aspiration%volume%would%be%changed%to%48µL.%%

3. Script%line%21%controls%how%many%columns%of%the%sdm%plate%to%fill%and%mix%with%
oligos%from%the%oligo%plate.%%For%example,%if%you%only%had%9%columns%of%oligos,%
change%the%number%in%line%21%to%9%loops.%

4. The%liquid%class%“LiHa%Tip%Mixing%AN”%does%a%satisfactory%job%in%mixing%the%oligos%
into%the%mastermix.%%The%volume%to%mix%is%based%on%a%20µL%total%volume;%adjust%this%
if%the%script%is%being%changed%to%accommodate%larger%total%reaction%volumes.%

5. The%Transfer%Labware%commands%used%in%lines%29%and%42%employ%custom%made%
vectors%that%handle%the%tricky%BIO,RAD%PCR%plates.%%The%plates%are%difficult%for%the%
RoMa%to%work%with%primarily%because%of%the%restricted%space%around%the%
thermalcycler%loading%area.%

6. The%actual%thermalcycler%program%call%occurs%here%on%line%32.%%Adjust%the%program%
name%as%necessary.%

7. Grouped%commands%on%lines%34–38%and%43–47%pick%up%a%manufacturer%agnostic%lid%
(it%can%fit%plates%from%Greiner,%Costar,%Nunc,%etc.)%from%sites%1%and%2%of%the%9pos%
microplate%hotel%and%place%them%on%the%oligo%plate%and%sdm%plate.%%These%lines%are%
useful%if%this%script%is%going%to%be%run%overnight.%

8. At%the%end%of%the%mutagenesis%script,%there%is%a%command%to%send%an%email%to%the%
user.%%This%is%useful%since%the%script%runs%longer%than%15%min.%
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Dpn1(Digestion(

The%Dpn1%digestion%step%is%necessary%in%the%site,directed%mutagenesis%automated%pipeline%
to%remove%the%wild,type%template%plasmid.%%A%more%efficient%digestion%step%will%directly%
lead%to%decreased%wild,type%contamination%in%the%sequencing%results%and%improved%
recovery%of%the%mutant%of%interest.%%%

A%traditional%bench%PCR%digestion%step%maintains%the%Dpn1%enzyme%concentration%at%2–4%%
of%the%reaction%mixture.%%The%Dpn1%mix%described%in%the%Materials%below%keeps%the%enzyme%
concentration%at%8%%to%digest%as%much%methylated%and%hemi,methylated%wild,type%DNA%as%
possible.%

The%default%thermalcycler%protocol%is%37°C%for%2%hr.%%This%can%probably%be%adjusted%to%30%
min,%or%even%decreased%to%5%min%if%the%manufacturer’s%(NEB)%advertising%is%true.%

Materials(

SiteGDirected(Mutagenesis(DNA(Product(on(96GWell(Cooled(Block.%%This%is%typically%
carried%over%from%the%“Site,Directed%Mutagenesis”%procedure%as%a%96,well%BIO,RAD%PCR%
plate.%%The%cooled%block,%along%with%the%water%recirculator,%can%cool%the%samples%down%to%
4°C.%

1.5mL(Eppendorf(Tubes(in(24GWell(Cooled(Block.%%These%are%the%lab%standard%
autoclavable%tubes%available%in%any%biochemistry%lab.%%The%cooled%block,%along%with%the%
water%recirculator,%can%cool%samples%down%to%4°C.%

Dpn1(Mix.%%For%site,directed%mutagenesis%product%in%10µL%aliquots,%prepare%(1)%175µL%of%
10×%buffer%4,%(2)%140µL%of%Dpn1%enzyme,%and%(3)%185µL%of%Diluent%B%for%one%96,well%plate.%%
When%4µL%of%this%mix%is%added%to%10µL%PCR%product,%buffer%4%and%the%Dpn1%enzyme%attain%
effective%concentrations%of%1×%and%8%,%respectively.%

50µL(Robot(Filter(Tips.%%These%automation%tips%are%the%ART%BioRobotix%tips%available%
from%Molecular%BioProducts%(#906,021).%%They%are%individually%wrapped%in%green%boxes.%

%
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Methods(

Setup&

The%template%script%is%named%“AN_Dpn1_1PLATE”%and%takes%roughly%2.5%hr%to%complete,%
including%the%2%hr%digestion%time.%%Turn%on%the%water%recirculator%at%least%30%min%before%
running%the%procedure%to%ensure%the%24,%and%96,well%blocks%are%cool.%%Organize%the%deck%as%
shown%in%the%figure%below.%%You%can%ignore%the%labware%with%generic%names%(Labware1,%
Labware2,%etc.),%as%they%are%only%placeholders%for%the%software.%

1.5mL%tubes:%%Dpn1%mix%split%into%two%tubes%in%C1,%D1%of%the%24,well%block%
sdm1:%%96,well%BIO,RAD%PCR%plate%
50µL%tips:%%50µL%robot%filter%tips%(black%box)%

%

%

Advanced(Technique:(

The%Dpn1%digest%protocol%can%be%tagged%onto%a%trusted%SDM%procedure%to%save%time.%%In%
addition,%a%few%different%techniques%can%be%used%to%get%the%SDM%samples%down%to%10µL%for%
efficient%digestion.%%First,%10μL%of%each%sample%is%needed%to%run%the%HT%DNA%Agarose%Gel%
Electrophoresis%procedure.%%This%puts%the%surplus%volume%to%good%use.%%Second,%a%more%
complicated%yet%time%efficient%procedure%is%to%aspirate%10μL%with%the%MCA96,%dispense%
that%volume%into%a%waste%trough,%use%LiHA%multi,pipetting%to%deliver%the%Dpn1%mix,%and%
finally%mix%the%samples%with%the%same%50μL%robot%filter%tips%used%in%the%first%aspirate.%%This%
will%decrease%the%procedure’s%time%by%about%25%min.%
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Procedure&

%

See%Note%1%

See%Note%2%

See%Note%3%
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&

See%Note%4%

See%Note%6%

See%Note%5%

See%Note%7%

See%Note%8%
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Notes&

1. The%Group%“MCA96%commands,”%encompassing%lines%3–14,%instruct%the%robot%to%
pick%up%tips,%aspirate%10μL%from%the%“sdm1”%plate,%and%drop%off%the%tips%(along%with%
the%volume)%back%into%the%tip%box.%%There%is%no%need%to%dispense%the%10μL%volume%
because%the%tips%(and%tip%box)%will%not%be%used%for%anything%else%in%this%script.%

2. The%Group%“Move_MCA_Safe_to_Right_Back_Corner”%is%a%set%of%commands%that%
orient%the%MCA96%into%a%safe%position%starting%from%anywhere%on%the%deck.%%This%
helps%to%avoid%crashes%when%executing%the%“Get%DiTis”%command.%

3. Lines%10%and%12%instruct%the%MCA96%to%move%to%a%far%site%so%that%it%won’t%collide%
with%the%thermalcycler%as%it%moves%between%the%MP3Pos%carriers%and%its%DiTi%
carrier.%

4. The%liquid%class%“LiHa%Tip%Mixing%AN”%does%a%satisfactory%job%in%mixing%the%samples%
with%the%Dpn1%enzyme.%%The%volume%to%mix%is%based%on%a%14μL%total%volume.%%Adjust%
this%if%the%script%is%being%changed%to%accommodate%larger%total%volumes%of%product%
and%Dpn1%enzyme.%

5. The%Transfer%Labware%commands%used%in%lines%28%and%34%employ%custom%made%
vectors%that%handle%the%tricky%BIO,RAD%PCR%plates.%%The%plates%are%difficult%for%the%
RoMa%to%work%with%primarily%because%of%the%restricted%space%around%the%
thermalcycler%loading%area.%

6. The%actual%thermalcycler%program%call%occurs%here%on%line%31.%%Adjust%the%program%
name%as%necessary.%

7. Lines%36%and%37%pick%up%a%manufacturer%agnostic%lid%(it%can%fit%plates%from%Greiner,%
Costar,%Nunc,%etc.)%from%site%1%of%the%9pos%microplate%hotel%and%place%it%on%the%
newly%Dpn1%digested%SDM%product%plate.%%These%lines%are%useful%if%this%script%is%
going%to%be%run%overnight.%

8. At%the%end%of%the%digestion%script,%there%is%a%command%to%send%an%email%to%the%user.%%
This%is%useful%since%the%script%runs%longer%than%15%min.%
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Bacterial(Transformation(

Although%an%automated%cell,free%expression%protocol%would%obviate%the%need%for%bacterial%
transformation,%few%assays%have%the%prerequisite%sensitivity%to%deal%with%the%low%levels%of%
protein%expression%from%cell,free%extracts.%%In%most%cases,%bacterial%transformation%and%
subsequent%plating%will%be%a%necessary%step%in%automated%pipelines.%

Competent%cell%manipulation%was%kept%at%a%minimum%to%avoid%disturbing%the%cells.%%The%
proper%setting%for%the%outgrowth%step%(2%hr%shaking%at%room%temperature)%was%determined%
empirically.%

Currently%(3/24/10),%the%RoMA%is%having%difficulty%loading%the%PCR%plate%onto%the%Te,
Shake.%%We%therefore%recommend%running%the%script%to%line%47,%manually%loading%the%PCR%
plate,%and%then%running%the%remainder%of%the%script%after%line%49.%

Materials(

Dpn1(Digested(Product.((This%is%typically%carried%over%from%the%“Dpn1%Digestion”%
procedure%as%a%96,well%BIO,RAD%PCR%plate.%

1.5mL(Eppendorf(Tubes(in(24GWell(Cooled(Block.%%These%are%the%lab%standard%
autoclavable%tubes%available%in%any%biochemistry%lab.%%The%cooled%block,%along%with%the%
water%recirculator,%can%cool%samples%down%to%4°C.%

BL21(Gold(DE3(Competent(Cells.%%These%homemade%chemically%competent%cells%are%very%
effective%in%transforming%plasmid%and%nicked%DNA%and%are%not%very%sensitive%to%variations%
in%heatshock%protocols.%%For%one%96,well%plate,%thaw%2.2mL%of%competent%cells%from%the%
−80°C%freezer.%%Their%preparation%protocol%is%included%in%the%appendix%of%this%manual.%

96GWell(BIOGRAD(PCR(Plate(s)(on(96GWell(Cooled(Block.%%This%PCR%plate,%available%
from%BIO,RAD%(HSP9601),%is%preferred%for%automated%operations%due%to%its%robot,friendly%
hard%shell%and%full%skirt.%%All%automated%thermocycler%operations%have%been%developed%
exclusively%with%this%plate.%%The%cooled%block,%along%with%the%water%recirculator,%can%cool%
the%samples%down%to%4°C.%

LB(in(100mL(Trough.%%These%troughs,%available%from%Tecan%(10%613%049),%only%fit%in%the%
carrier%located%at%grid%2.%%Fill%with%at%least%15mL%of%lab%standard%LB%liquid%media%for%the%
transformation%of%one%96,well%plate.%%Keep%warm%before%use%for%better%results.%
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Methods(

Setup&

The%template%script%is%named%“AN_Transformation_1Plate”%and%takes%roughly%2.5%hr%to%run,%
including%the%2%hr%shaking%outgrowth%period.%%Turn%on%the%water%recirculator%at%least%30%
min%before%running%the%procedure%to%ensure%the%24,%and%96,well%blocks%are%cool.%%Organize%
the%deck%as%shown%in%the%figure%below.%%You%can%ignore%the%labware%with%generic%names%
(Labware1,%Labware2,%etc.),%as%they%are%only%placeholders%for%the%software.%

1.5mL%tubes:%%Competent%cells%split%into%2%tubes%in%C1,%D1%of%the%24,well%block%
sdm1:%%Dpn1%digested%product%
transf1:%%96,well%BIO,RAD%PCR%plate%on%96,well%cooled%block%
LB:%%LB%in%100mL%trough%

%

%

Remember,%as%of%3/24/10,%run%the%script%to%line%47,%manually%load%the%PCR%plate%onto%the%
Te,Shake,%and%then%run%the%rest%of%the%script%starting%from%line%49.%

%
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See%Note%1%

See%Note%2%

See%Note%3%
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%

See%Note%5%

See%Note%6%

See%Note%4%
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See%Note%8%

See%Note%7%
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Notes&

1. Script%line%3%controls%how%many%columns%of%the%“sdm1”%plate%to%add%to%the%
“transf1”%plate.%%For%example,%if%you%only%had%9%columns%of%digested%product,%
change%the%number%in%line%3%to%9%loops.%

2. The%amount%of%volume%in%the%1.5mL%tubes%is%key%to%the%script%proceeding%properly.%%
If%there%is%an%input%error,%hit%“Move%tips%to%Z,Max”%to%aspirate%from%the%bottom%of%
the%tube.%%Script%lines%14%and%22%control%how%many%columns%of%the%“transf1”%plate%
the%robot%will%dispense%into.%%For%example,%if%you%wish%to%only%dispense%into%9%
columns%and%not%12,%change%script%line%22%to%3%loops.%%Don’t%forget%to%change%the%
aspiration%volumes%of%lines%10–13%and%18–21%to%reflect%the%smaller%amount%of%
competent%cells%needed.%%Continuing%the%example,%change%each%aspiration%volume%
to%54μL.%%

3. Common%in%most%transformation%protocols,%script%lines%26–28%incubate%the%plate%
for%15%min%at%4°C.%

4. The%Transfer%Labware%commands%used%in%lines%31%and%37%employ%custom%made%
vectors%that%handle%the%tricky%BIO,RAD%PCR%plates.%%The%plates%are%difficult%for%the%
RoMa%to%work%with%primarily%because%of%the%restricted%space%around%the%
thermalcycler%loading%area.%

5. The%actual%thermalcycler%program%call%occurs%here%on%line%33.%%Adjust%the%program%
name%as%necessary.%

6. Script%line%38%is%a%user%prompt%that%stops%the%script%and%only%continues%when%a%user%
clicks%OK%in%the%software.%%Ideally,%this%is%when%the%user%will%take%warm%LB%and%add%
it%to%the%100mL%trough.%

7. The%Te,Shake%is%addressed%by%a%Start%command,%then%a%timer,%and%finished%by%a%
Stop%command.%%In%lines%49–63,%the%Te,Shake’s%frequency%is%set%(1800%is%the%
maximum),%followed%by%commands%for%12%cycles%of%1%min%shake,%3%min%rest,%1%min%
shake,%and%5%min%rest.%%This%was%programmed%to%keep%the%cells%suspended%in%media%
over%2%hr.%

8. At%the%end%of%the%transformation%script%there%is%a%command%to%send%an%email%to%the%
user.%%This%is%useful%since%the%script%runs%longer%than%15%min.%
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QTray(Plating(

Immediately%after%the%bacterial%transformation%step%is%completed,%the%outgrowth%cultures%
are%plated%onto%48,segmented%Qtrays.%%This%protocol%is%the%most%improvised%procedure%in%
the%entire%chapter%because%the%Qtray%is%not%a%standard%microtiter%plate.%%After%finding%a%
consistent%location%for%the%Qtray%on%the%deck,%a%simple%and%convenient%spreading%method%is%
used,%which%pipettes%just%enough%culture%in%the%plate%segment%to%both%spread%by%gravity%
and%dry%in%a%reasonable%amount%of%time.%

Materials(

Transformed(bacterial(culture.%%This%is%typically%carried%over%from%the%“Bacterial%
Transformation”%procedure%as%a%96,well%BIO,RAD%PCR%plate.%

Qtray(s).%%This%specialty%petri%plate,%available%from%Genetix%(x6029),%has%48%subdivisions%
upon%which%different%bacterial%cultures%can%be%plated.%%The%plate%was%chosen%because%it%is%
the%only%input%to%the%Genetix%Qbot,%a%colony%picking%robot%located%on%the%2nd%floor%of%the%
Beckman%Institute.%

Methods(

Setup&

The%template%script%is%named%“AN_qtrayplating”%and%takes%less%than%5%min%to%complete.%%
Load%the%Qtray%precisely%as%shown%on%the%following%page%and%organize%the%deck%as%seen%in%
the%figure%below.%%After%the%procedure%is%finished,%cover%the%Qtray%and%shake%slightly%to%
spread%the%drops%in%each%segment.%%Remove%the%cover%and%let%the%solutions%air%dry.%%Replace%
the%cover%and%incubate%overnight.%

Qtray:%%48,segment%Qtray%
transf:%%96,well%BIO,RAD%PCR%plate%

%
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%

%

%

See%Note%2%

See%Note%1%
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Notes&

1. Change%the%loop%“whole”%to%reflect%the%number%of%columns%you%wish%to%plate.%%
Typically,%leave%this%at%6,%the%maximum%number%of%columns%you%can%plate%onto%a%
48,segment%Qtray.%

2. Double%click%this%LiHa%aspirate%command%on%line%4%and%change%the%starting%column%
from%column%1%to%column%7%when%plating%the%second%half%of%“transf.”%%Save%the%
changes%and%run%the%altered%protocol.%
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Culture(Rearray(

The%colony%picking%robot,%or%Qbot,%is%located%on%the%2nd%floor%of%the%Beckman%Institute%and%
is%available%for%supervised%use%by%all%members%in%the%Mayo%Lab.%%Contact%Autumn%(email:%%
qiuy@caltech.edu)%to%schedule%a%session.%%The%preferred%output%plate%of%the%Qbot%is%a%
Genetix%384,well%plate.%%However,%it%is%beneficial%for%us%to%generate%96,well%glycerol%stock%
plates%because%it%gives%the%experimentalist%more%volume%to%pull%from%when%it%is%time%to%
inoculate%expression%plates.%%For%the%site,directed%mutagenesis%experimental%pipeline,%8%
colonies%are%picked%per%reaction%(48%different%reactions%per%384,well%plate)%and%2%colonies%
are%sent%for%initial%sequencing%to%Agencourt%Bioscience.%%Hence,%this%robot%protocol%takes%2%
colony%cultures%per%reaction%from%a%384,well%plate%and%rearrays%them%into%2%96,well%
plates.%%%

Materials(

384GWell(Genetix(Picking(Culture(Plate(s).%%These%plates,%available%from%Genetix,%are%
used%exclusively%with%the%Qbot%to%inoculate%picked%cultures%into%liquid%media.%%They%can%be%
filled%with%LB/antibiotic%on%the%colony%picking%day%by%the%Qfill%instrument,%located%in%the%
Qbot%room.%%For%this%protocol,%the%plate%should%contain%overnight%cultures.%

96GWell(RoundGBottom(Plates(s).%%These%polystyrene%(PS)%plates,%available%from%Falcon%
(351177),%are%used%to%send%samples%to%Agencourt%Bioscience%for%sequencing%and%to%keep%as%
frozen%stock%from%which%to%inoculate%downstream%volumes%of%media.%%These%plates%were%
chosen%because%of%their%optical%clarity,%which%allows%visual%checks%of%bacterial%growth,%and%
for%their%sterility%right%out%of%the%box.%%They%are%typically%sealed%with%aluminum%sticker%
seals.%%Fill%with%250μL%of%LB/10%%glycerol%before%use%on%the%robot.%

LB(With(10%(Glycerol.%%Four%96,well%plates%(2%384,well%plates,%or%looking%back,%1%96,well%
site,directed%mutagenesis%plate)%require%about%100mL%of%this%media.%%We%recommend%
making%1L%in%a%2L%Corning%bottle%by%mixing%100mL%of%glycerol%with%25g%of%LB%granules%and%
filling%with%900mL%of%MilliQ%water.%
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Methods(

Setup&

The%template%script%is%named%“AN_Qbot_rearray”%and%takes%roughly%X%min%to%complete.%%It%

will%inoculate%the%first%two%picked%colony%cultures%from%each%reaction%of%the%384,well%plate%

into%a%fresh%96,well%plate.%%It%then%creates%a%duplicate%96,well%plate%to%send%for%sequencing%

and%continues%to%do%the%same%procedure%on%another%384,well%plate.%%Organize%the%deck%as%

shown%in%the%figure%below.%

96,1A,%96,1B,%96,2A,%96,2B:%%96,well%round,bottom%plates%

384,1,%384,2:%%384,well%Genetix%picking%culture%plates%

%

Colony(Placement:(

Execution%of%the%script%inoculates%the%first%two%colony%cultures%(X,1,%X,2)%from%the%384,well%

plate%into%the%96,well%array%shown%below.%%The%96,well%plate%uses%the%column,style%

numbering%from%the%48,well%Qtray%the%384,well%plate%was%picked%from.%%The%arrows%are%

provided%as%guides%for%possible%manual%inoculations%and%the%subsequent%sequencing%

sample%identification.%

%
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Procedure&

%

See%Note%1%

See%Note%2%

See%Note%4%

See%Note%3%
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Notes&

1. This%loop%on%script%line%3%controls%the%creation%of%a%duplicate%plate%to%send%to%
Agencourt%for%sequencing.%%%

2. Script%lines%5–8%control%which%colony%cultures%to%pick%from%out%of%the%384,well%
plate.%%Currently,%they%are%pulling%the%top%two%colony%cultures%from%each%reaction.%%
If%you%wanted%colony%cultures%3%and%4,%line%5%should%read%(Col.%1,%Rows%5,7),%line%6%

should%read%(Col.%2,%Rows%5,7),%line%7%should%read%(Col.%1,%Rows%6,8)%and%line%8%

should%read%(Col.%2,%Rows%6,8).%%Also%notice%that%the%liquid%class%name%is%

encapsulated%by%“>>%<<”%notations,%indicating%a%custom%liquid%class.%%In%this%case,%
the%liquid%class%“Water%500%SP%Visc%NO%DETECT”%is%prefixed%with%a%tip%mixing%

routine%to%resuspend%bacterial%culture%that%may%have%settled.%%This%feature%was%

implemented%in%this%way%to%avoid%having%an%extra%four%Tip%Mixing%script%lines%in%
the%code%before%each%aspiration%block.%

3. The%comment%on%line%13%separates%the%script%into%two%parts,%indicating%the%
completion%of%the%first%384,well%plate.%%%

4. At%the%end%of%the%rearray%script,%there%is%a%command%to%send%an%email%to%the%user.%%
This%is%useful%since%the%script%runs%longer%than%15%min.%
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Expression(Plate(Inoculation(

For%experimental%assays%that%require%a%large%amount%of%protein,%it%is%very%beneficial%to%
grow%5mL%bacterial%cultures%in%24,well%plates%as%opposed%to%1mL%cultures%in%96,well%deep,
well%plates.%%To%assist%with%this%task,%a%robotic%procedure%was%developed%to%inoculate%24,
well%plates%from%a%96,well%liquid%stock%plate.%%Incubate%the%24,well%plates%for%16%hr%with%
shaking%and%at%the%appropriate%temperature%for%optimal%protein%expression.%

Materials(

96GWell(Frozen(and(Liquid(Stock(Plate(s).%%Typically,%96,well%frozen%stocks%are%kept%in%
Falcon%round,bottom%PS%plates%(351177)%with%aluminum%seals.%%These%are%then%replicated%
into%identical%plates%filled%with%200μL%of%LB/antibiotic%and%grown%statically%overnight.%%
This%liquid%stock%plate%is%then%used%to%inoculate%the%24,well%plates.%

24GWell(Expression(Plate(s),(Lid(s),(and(Capmat(s).%%These%round,bottom%Whatman%
plates%(7701,5110)%are%made%of%polypropylene%(PP),%arrive%sterile,%and%can%be%autoclaved%
and%reused.%%The%BugStopper%capmats%from%Whatman%(7704,0014)%are%porous%to%air,%
autoclavable,%and%keep%the%wells%sealed%from%each%other%during%incubated%shaking.%

AutoGInduction(TB(Media(and(Antibiotic.%%This%media,%available%from%Novagen%(71491,
4),%obviates%the%need%for%an%induction%agent%such%as%IPTG%and%can%be%prepared%in%the%
autoclave%or%microwave.%%Any%leftover%media%is%refrigerated.%%For%1L,%add%1%packet%(60g)%to%
10mL%of%glycerol%and%fill%with%water.%%Add%the%appropriate%antibiotic%before%dispensing%into%
the%24,well%plates.%
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Methods(

Setup&

The%template%script%is%named%“AN_96inoculate_1x5mL”%and%takes%roughly%10%min%to%

complete.%%Organize%the%deck%as%shown%in%the%figure%below.%

Frozen/liquid%stock%plate:%%96,well%Falcon%round,bottom%PS%plate%

1A,2A,3A,4A:%%24,well%Whatman%round,bottom%plates%

%

Example:(

% %%%%%%%%%% %

Every%three%columns%of%the%96,well%plate%is%moved%to%a%24,well%plate%following%the%labeling%

shown%above.%

%
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Procedure&

&

See%Note%3%

See%Note%2%

See%Note%1%

See%Note%4%
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Notes&

1. The%mixing%steps%are%based%on%there%being%at%least%100μL%in%each%well%of%the%stock%
plate.%%It%is%OK%to%be%more%aggressive%and%add%more%cycles%if%the%cells%have%
precipitated.%

2. The%“2%options”%loop%tag%on%script%lines%6–9%inform%the%LiHa%to%(1)%move%over%1%
column%every%“aspdisp”%and%(2)%either%move%over%3%columns%in%every%“diffplate”%in%
lines%6%and%7%or%move%down%1%labware%in%every%“diffplate”%in%lines%8%and%9.%%The%
first%option%is%consistent%with%the%“1%option”%tag%in%script%lines%15–18%and%23–26.%

3. The%liquid%class%has%been%defined%to%dispense%liquids%under%the%presumed%volume%
level%in%the%destination%plate.%%This%minimizes%cross,contamination%from%ricochet%
droplets.%

4. The%next%two%24,well%plates%(plates%3A%and%4A)%are%inoculated%in%separate%blocks%of%
script%code,%which%helps%to%visualize%what%is%going%on.%

%
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Protein(Purification(

Automated%protein%purification%has%long%been%a%major%goal%of%high,throughput%
methodology,%hence%the%existence%of%several%commercial%applications.%%Several%companies%
offer%96,well%nickel%filter%plates%and%readily%available%lysis%and%elution%reagents.%%Much%of%
the%procedure%described%here%was%developed%by%balancing%the%simplicity%of%ordering%
materials%against%the%cost%of%those%materials.%%%

Purification%protocols%vary%from%protein%to%protein,%and%the%procedure%here%is%no%different.%%
All%conditions%were%developed%with%the%β1%domain%of%protein%G,%and%preparation%of%other%
protein%domains%will%likely%need%some%optimization.%%In%addition,%the%vacuum%steps%in%the%
procedure%are%not%entirely%robust%and%currently%require%human%supervision.%%This%
procedure%is%fed%directly%from%the%“Expression%Plate%Inoculation”%protocol%described%
earlier.%%This%signifies%that%the%unpacking%scheme%used%to%inoculate%24,well%plates%is%used%
to%transfer%the%cell%lysates%to%the%96,well%nickel%filter%plate.%

Materials(

Expression(Cultures(With(Lids.%%Typically,%automation%experiments%use%24,well%round,
bottom%Whatman%PP%plates%(7701,5110)%filled%with%5mL%cultures%of%bacteria.%%
Autoclavable%BugStopper%capmats%from%Whatman%(7704,0014)%are%used%as%lids%during%
overnight%growth.%

Centrifuge(Plate(Adapters.%%The%Sorvall%Legend%RT%centrifuge%with%a%swing,out%rotor%in%
Broad%140%(autoclave%room)%has%four%hanging%bucket%adapters%for%microtiter%plates.%

Lysis(Buffer.%%For%four%24,well%plates,%make%45mL%of%lysis%buffer%consisting%of%(1)%4.5mL%of%
10×%CelLytic%B%(Sigma,Aldrich),%(2)%0.9mL%of%10mg/mL%lysozyme%(Sigma,Aldrich),%(3)%9μL%
of%HC%benzonase%(Sigma,Aldrich),%(4)%0.45mL%of%elution%buffer,%and%(5)%enough%
equilibration%buffer%to%fill%to%45mL.%%%

HisGSelect(Filter(Plate(s).%%These%nickel%plates,%available%from%Sigma,Aldrich%(H0413),%are%
the%most%expensive%reagent%in%the%purification%process.%%However,%the%purity%in%all%
purification%schemes%performed%so%far%has%been%excellent.%

96GWell(Reservoir(Plate.%%Available%from%Seahorse%Scientific%(#S30014),%these%are%
pyramid,bottom%PP%reservoirs.%

Equilibration,(Wash,(and(Elution(Buffers(in(100mL(Troughs.%%These%troughs,%available%
from%Tecan%(10%613%049),%only%fit%in%the%carrier%located%at%grid%2.%%To%purify%one%96,well%
plate,%prepare%57.6mL%of%equilibration%buffer%(50mM%NaPO4%buffer,%300mM%NaCl%at%pH%8),%
115.2mL%of%wash%buffer%(equilibration%buffer%+%5mM%imidazole%at%pH%8),%and%48mL%of%
elution%buffer%(equilibration%buffer%+%250mM%imidazole%at%pH%8).%%Be%sure%to%have%at%least%
15%%more%volume%than%required%in%the%appropriate%troughs.%

200μL(Robot(Tips.%%These%automation%tips%are%available%from%USA%Scientific%(TipONE%
#1188,1700).%%They%are%stacked%with%yellow%inserts.%
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96GWell(Collection(Plate(s)(and(Plate(Seal(s).%%These%plates%are%manufactured%by%
Axygen%and%are%available%from%VWR%(P,DW,11,C,S).%%They%are%1mL%deep,well%PP%plates%

and%arrive%sterilized.%%These%plates%fit%and%work%well%with%the%Tecan,provided%spacer%#2%

and%are%used%to%minimize%cross%contamination%during%elution.%%The%plastic%sticker%seal%is%

then%applied%to%prevent%evaporation.%

Methods(

Setup&

The%template%script%is%named%“AN_ProtPurif_1x5ml_96”%and%takes%roughly%1%hr%to%

complete.%%Organize%the%deck%as%shown%in%the%figure%below.%

1A,2A,3A,4A:%%Expression%cultures%in%24,well%Whatman%round,bottom%plates%

Lysis/equilibration/elution%buffers:%%Stored%in%100mL%troughs%at%grid%2%

Wash%buffer:%%96,well%reservoir%plate%

Filter%plate:%%96,well%His,Select%filter%plate,%on%top%of%separation%block%

Elute%plate:%%96,well%collection%plate%on%top%of%spacer%#2%

Tips:%%200μL%robot%tips%(blue%box)%

%

%

Prior%to%the%robot%procedure:%

1. Centrifuge%24,well%expression%cultures%at%3060%×g%and%dump%the%supernatant.%

2. Freeze%plates%at%−20°C%for%at%least%15%min.%%Bring%back%to%25°C.%%Once%pellets%are%
sufficiently%thawed,%proceed%with%the%robot%protocol.%
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See%Note%1%

See%Note%2%
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%

See%Note%3%

See%Note%4%
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%
%

See%Note%5%

See%Note%6%

See%Note%7%



Chapter(2:(Robot(Procedures(

Page%202%
High,Throughput%and%Automation%Methods%

%

202%

%

See%Note%9%

See%Note%8%
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Notes&

1. The%“2%options”%loop%tags%in%lines%6–9%refer%to%the%loops%defined%in%lines%3%and%4.%%
The%loop%in%line%3,%“lyse%all%plates%on%carrier,”%moves%through%the%labware%on%the%
current%carrier.%%The%loop%in%line%4,%“lyse%plate,”%moves%through%every%2%columns%on%
the%24,well%plates.%%Script%lines%14–21%define%an%isolated%“lyse%plate”%loop%for%the%
fourth%24,well%plate%on%the%middle%carrier%at%grid%20.%

2. All%mixing%steps%use%the%special%liquid%class%“LiHa%Lysate%Resuspension%AN”%
developed%exclusively%for%this%protein%purification%procedure.%%Lysates%are%mixed%
immediately%after%the%lysis%buffer%dispense%command%and%again%before%being%
added%to%the%nickel%filter%plate.%%These%steps%do%an%adequate%to%superb%job%of%
resuspending%the%pellets.%

3. All%the%Vacuum%Separation%commands%in%the%script%follow%the%same%structure.%%The%
first%(line%31)%tells%which%of%the%two%blocks%to%pull%from%(rear%or%front)%and%at%what%
pressure%(mbar).%%Then%the%script%counts%off%a%timer,%after%which%the%pressure%is%
vented%(line%34)%and%the%vacuum%is%turned%off%(line%35).%%All%vacuum%pressure%and%
timer%parameters%were%determined%empirically%and%can%and%should%be%adjusted%
depending%on%what%the%user%sees%during%a%run.%

4. The%loops%within%the%cell%lysate%pipetting%steps%are%identical%to%those%described%in%
Note%1.%

5. Line%65%(and%later%on,%lines%87%and%108)%has%user%prompts%that%stop%the%run,%unlock%
the%shield,%and%require%the%user%to%click%OK.%%Due%to%the%non,robustness%of%the%
current%purification%protocol,%these%prompts%are%necessary.%

6. The%Group%“Move_MCA_Safe_to_Right_Back_Corner”%is%a%set%of%commands%that%
orient%the%MCA96%into%a%safe%position%starting%from%anywhere%on%the%deck.%%This%
helps%to%avoid%crashes%when%executing%the%“Get%DiTis”%command.%

7. Line%74%instructs%the%MCA96%to%move%to%a%far%site%so%that%it%won’t%collide%with%the%
thermalcycler%as%it%moves%between%the%MP3Pos%carriers%and%its%DiTi%carrier.%

8. Lines%89–93%are%very%specific%RoMa%vectors%that%were%developed%to%move%the%
separation%block%from%the%rear%to%the%front%position.%

9. At%the%end%of%the%purification%script%there%is%a%command%to%send%an%email%to%the%
user.%%This%is%useful%since%the%script%runs%longer%than%15%min.%



Chapter(2:(Robot(Procedures(

Page%204%
High,Throughput%and%Automation%Methods%

%

204%

HT(Agarose(Gel(Electrophoresis(

In%order%to%aid%with%the%high,throughput%visualization%of%nucleic%acid%product,%Invitrogen%
has%developed%48,%and%96,well%agarose%gel%systems%for%use%on%liquid%handling%platforms.%%
The%96,well%version%was%purchased%and%adapted%for%use%on%the%Tecan%Freedom%EVO.%%
Check%the%Invitrogen%website%for%questions%concerning%what%percentage%agarose%is%
appropriate%for%the%size%of%the%products%being%separated.%

Invitrogen%provides%the%MS%Windows%program%“E,Editor”%that%aids%in%visualization%by%
aligning%EGel%images%into%a%variety%of%convenient%arrays.%

Materials(

Nucleic(Acid(Product.%%Typically,%this%is%DNA%product%from%a%site,directed%mutagenesis%
procedure%in%a%96,well%BIO,RAD%PCR%plate.%%%

EGGel(Low(Range(Quantitative(DNA(Ladder.%%This%ladder%is%from%Invitrogen%(12373,
031).%%For%one%96,well%agarose%gel,%200μL%of%a%1:1%mixture%of%ladder%and%water%is%required.%

EGGel(96(2%(Agarose(Gel(s).%%These%are%available%in%packs%of%eight%from%Invitrogen%
(G7008,02).%%This%version%uses%ethidium%bromide%for%staining,%but%Invitrogen%also%offers%
non,carcinogenic%versions.%

Mother(Ebase.%%This%is%the%base%(EB,M03)%for%the%48,%and%96,well%agarose%and%PAGE%gels%
that%Invitrogen%offers.%%They%can%be%daisy%chained,%but%we%currently%only%have%one.%%Plug%it%
into%the%power%strip%underneath%the%deck.%

50µL(Robot(Filter(Tips.%%These%automation%tips%are%the%ART%BioRobotix%tips%available%
from%Molecular%BioProducts%(#906,021).%%They%are%individually%wrapped%in%green%boxes.%

1.5mL(Eppendorf(Tubes(in(24GWell(Cooled(Block.%%These%are%the%lab%standard%
autoclavable%tubes%available%in%any%biochemistry%lab%placed%in%the%24,well%cooled%block.%%
For%this%method,%the%block%doesn’t%need%to%be%cold.%

Sterile(H2O(in(96GWell(Low(Profile(Reservoir(Plate.%%Available%from%Seahorse%Scientific%
(S300,18),%these%are%pyramid,bottom%PP%reservoirs.%%Although%the%low%profile%is%not%
required,%the%method%was%developed%when%only%this%reservoir%was%available.%%Fill%with%
standard%sterile%DI%water.%
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Methods(

Setup&

The%template%script%is%named%“AN_EGel_load_econ”%and%takes%roughly%20%min%to%complete,%
including%the%12,min%electrophoresis.%%Organize%the%deck%as%shown%in%the%figure%below.%%
Plug%in%the%Mother%Ebase%and%make%sure%it%is%set%to%“EG”%for%E,Gel.%%Open%the%E,Gel%package%
and%load%the%E,Gel.%%The%display%on%the%Mother%Ebase%should%switch%to%a%12,min%timer.%

1.5ml%tubes:%%Put%the%1:1%DNA%ladder/water%mix%into%A4%of%the%24,well%block%
sdm1:%%96,well%BIO,RAD%PCR%plate%%
Water%trough:%%96,well%low%profile%reservoir%plate%
Gel:%%Mother%Ebase%loaded%with%an%E,Gel%96%
50μL%tips:%%50μL%robot%filter%tips%(black%box)%

%

%

E,Gel%Low%Range%Quantitative%DNA%Ladder%

%

%
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Procedure&

&

See%Note%1%

See%Note%2%

See%Note%4%

See%Note%3%
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Notes&

1. The%Group%“Move_MCA_Safe_to_Right_Back_Corner”%is%a%set%of%commands%that%
orient%the%MCA96%into%a%safe%position%starting%from%anywhere%on%the%deck.%%This%
helps%to%avoid%crashes%when%executing%the%“Get%DiTis”%command.%

2. Lines%8%and%12%instruct%the%MCA96%to%move%to%a%far%site%so%that%it%won’t%collide%with%
the%thermalcycler%as%it%moves%between%the%MP3Pos%carriers%and%its%DiTi%carrier.%

3. The%liquid%class%“MCA96%trough%(2nd%aspirate)”%used%in%line%10%was%developed%to%
allow%the%MCA96%to%introduce%a%small%airgap%between%successive%aspirations.%%By%
doing%this,%the%script%obviates%the%need%for%a%separate%dilution%plate%and%instead%
dispenses%10µl%each%of%water%and%DNA%product%directly%into%the%E,Gel.%

4. After%the%script%is%finished,%check%the%E,Gel%for%any%missed%dispenses.%%If%everything%
is%satisfactory,%run%the%12,min%electrophoresis%program.%

%
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(

Overview(

Although%there%are%numerous%site,directed%mutagenesis%(SDM)%procedures%available,%it%

can%be%difficult%to%select%and%effectively%employ%the%protocol%that%best%serves%your%

application.%%In%this%case,%an%automated%SDM%protocol%should%be%cost,effective,%simple%in%

terms%of%enzymatic%steps,%and%robust%enough%to%avoid%manual%intervention.%%The%method%

described%by%Tseng%et#al,#Anal.%Biochem,%2008#%titled%“A%novel%megaprimed%and%ligase,free,%
PCR,based,%site,directed%mutagenesis%method”%satisfies%all%of%these%prerequisites.%%The%

single%mutagenic%primer%halves%oligo%costs%when%compared%against%the%standard%

quickchange%method.%%The%absence%of%phosphorylation%or%ligase%steps%simplifies%the%

overall%procedure%and%with%some%tweaking%the%method%can%be%robust%enough%to%not%incur%

a%large%number%of%repeat%reactions.%

Some%modifications%were%made%to%the%procedure%described%in%the%paper%in%order%to%further%

accommodate%the%needs%of%automated%protocols.%%The%most%important%change%was%to%the%

choice%of%polymerase%from%Pfu%Turbo%to%NEB’s%Hot%Start%Phusion%Polymerase.%%The%new%

enzyme%is%faster%(speeds%reaction%times%from%8%hours%to%2%hours),%advertised%as%higher%

fidelity%and%its%Hot%Start%feature%prevents%it%from%modifying%template%and%primer%DNA%

before%the%initial%melting%step.%%Polymerase%choice%has%a%large%effect%on%the%successful%

outcome%of%this%particular%SDM%protocol,%and%therefore%should%be%investigated%for%each%

new%system.%%A%minor%modification%to%the%overall%procedure%was%the%usage%of%smaller%

mutagenic%oligos%which%can%function%as%well%as%larger%oligos%so%long%as%the%annealing%

temperature%has%been%optimized.%%The%financial%benefits%of%ordering%hundreds%of%shorter%

oligos%are%quickly%realized.%

The%SDM%protocol%is%outlined%below%in%Figure%1.%%First,%megaprimers%are%amplified%by%

annealing%the%mutagenic%and%constant%flanking%oligos%to%the%template.%%Then,%full%length%

product%is%generated%by%annealing%the%megaprimers%to%the%template%and%completing%the%

extension.%%Finally,%a%Dpn1%digestion%step%is%necessary%to%remove%the%parental%wild,type%

template.%

Chapter%3Chapter%3 :: %%

SiteSite ,,DirectedDirected %%

MutagenesisMutagenesis %%
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Figure(1.((Schematic(of(the(megaprimed(and(ligase-free(SDM(method.((Adapted(from(Tseng(et#al,(Anal.(
Biochem.(2008.(

(Oligonucleotide(Design(

In%the%original%paper,%an%oligo%Tm%calculation%is%described%that%includes%a%“%mismatch”%
variable%in%order%to%account%for%the%number%of%basepairs%that%won’t%anneal%exactly%to%the%
template%strand.%%Initial%oligo%design%work%was%guided%by%this%Tm%value,%and%five%amino%
acid%scans%(A,%V,%S,%T,%and%M)%of%the%small%model%system%GB1%were%tested.%%Upon%
experimental%construction%of%the%variants%it%was%noticed%that%the%calculated%Tm%values%had%
no%bearing%on%successful%amplification%of%the%mutagenic%megaprimer%and%therefore%
subsequent%full%length%mutated%plasmid.%%Instead,%successful%amplification%and%
mutagenesis%correlated%better%with%the%Tm%values%calculated%by%IDT,%done%by%the%nearest%
neighbor%method.%%In%fact,%a%later%review%of%the%data%showed%that%a%simpler%Tm%calculator%
was%almost%as%good%as%the%complex%nearest%neighbor%method%in%terms%of%predicting%
successful%amplification.%

The%first%few%amino%acid%scans%were%designed%manually%in%an%excel%spreadsheet.%%In%order%
to%facilitate%the%entire%high,throughput%scheme,%a%python%script%was%developed%
(oligotm.py)%that%scans%a%given%nucleotide%sequence%and%generates%a%mutagenic%oligo%for%
each%codon%in%the%sequence%while%keeping%the%Tm%within%a%user,defined%range.%%This%range%
should%reflect%the%annealing%temperature%used%in%the%first%step%of%the%SDM%reaction.%%The%
Tm%calculators%implemented%so%far%are%the%basic%Tm%calculator%(oligo%tm%=%
64.9+41*(number%of%gc%bp),16.4)/(number%of%total%bp)%and%the%mismatch%Tm%calculator%
(oligo%tm%=%81.5+0.41*(oligo%gc%),675/(number%of%total%bp),mismatch%).%%The%script%
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output%can%easily%be%tailored%to%allow%for%a%simple%copy/paste%operation%into%an%IDT%excel%
order%form,%thus%simplifying%oligonucleotide%design.%

As%is%the%script%is%ideal%for%site,directed%scanning%mutagenesis,%facilitating%the%design%of%
oligos%for%small%projects%such%as%alanine%scans%all%the%way%to%larger%projects%like%total%site%
saturation%mutagenesis%of%a%protein%domain.%%Alternatively,%automated%oligonucleotide%
design%for%codon%saturation%mutagenesis%schemes%(all%codons%at%non,continuous%sites)%can%
be%adapted%from%the%existing%functions%defined%in%the%python%script.%

Experimental(Pipeline(

The%methods%for%automated%site,directed%mutagenesis%were%developed%in%response%to%the%
desire%for%a%database%containing%stability%data%for%every%single,mutant%of%the%GB1%domain.%%
The%project%was%initiated%in%the%spring%of%2009%and%saw%completion%by%the%summer%of%
2010.%%A%simple%schematic%of%the%experimental%pipeline%is%shown%in%Figure%2.%%Protocols%
were%first%developed%as%separate%modules%and%later%strung%together%into%an%efficient%
system.%%Over%the%course%of%the%project,%clustered%groups%of%samples%fed%to%the%
experimental%pipeline%provided%opportunities%to%individually%refine%and%optimize%each%
module.%%Currently,%192%single%mutants%can%be%constructed%and%sent%for%confirmation%
sequencing%in%five%days%with%minimal%experimentalist%strain.%

%

Figure(2.((The(5(day(SDM(experimental(pipeline.((The(majority(of(the(procedure(is(automated(by(
stringing(together(the(relevant(robotic(procedures(described(in(chapter(2.(

Day#1#

Allow%the%oligos%delivered%from%IDT%to%come%to%room%temperature.%%Prepare%and%run%the%
protocols%“Dilute%IDT%Oligos”,%“Site,Directed%Mutagenesis”,%and%“Dpn1%Digest”.%%For%
maximum%efficiency,%generate%“2plate”%versions%of%SDM%and%Dpn1%Digest%and%then%
combine%them%into%one%~8hr%script%that%can%be%run%overnight.%

Day#2#

In%the%afternoon%of%the%second%day,%prepare%and%run%the%protocols%“Bacterial%
Transformation”%and%“Qtray%Plating”.%%For%maximum%efficiency,%generate%a%“2plate”%version%
of%Bacterial%Transformation.%

• Dilute(IDT(Oligos(
• SDM(and(Dpn1(

Digest(

Day(1(

• Transforma:on(
• Qtray(Pla:ng(

Day(2(
• Qbot(Colony(

Picking(

Day(3(

• Culture(Rearray(

Day(4(
• Agencourt(
Sequencing(

Day(5(
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Day#3#

Colony%picking%can%be%performed%manually%at%the%bench%or%robotically%by%contacting%

Autumn%(qiuy@caltech.edu)%in%the%Beckman%Institute%(BI)%to%assist%with%the%Qbot%colony%

picker.%%If%done%robotically,%on%the%morning%of%the%third%day%bring%the%Qtray%plates%and%an%

appropriate%volume%of%LB/antibiotic%(153.6ml%for%4%Qtrays)%to%the%BI.%%Incubate%the%picked%

384,well%Genetix%plates%overnight.%

Day#4#

On%the%morning%of%the%fourth%day%prepare%and%run%the%“Culture%Rearray”%protocol%for%the%

four%384,well%plates.%%Incubate%the%generated%96,well%plates%for%12%hours.%

Day#5#

On%the%morning%of%the%fifth%day,%prepare%the%96,well%plates%for%shipping%by%first%

professionally%labeling%them,%then%affixing%aluminum%seals%and%finally%freezing%them%with%

dry%ice.%%Fill%a%Styrofoam%box%with%freezer%packs,%the%plates,%and%the%Agencourt%order%form%

and%ship%it%via%Fedex.%%In%approximately%one%week,%a%representative%will%contact%with%data%

downloading%instructions.%

The%fantastic%increase%in%experimental%productivity%provided%by%these%automation%

methods%should%not%be%overlooked.%%As%an%example,%consider%the%time%courses%shown%in%

Table%1.%%Before%the%introduction%of%automation%methods%to%the%lab,%only%handfuls%of%single%

mutants%could%be%generated%at%any%single%time%for%stability%studies.%%It%is%unrealistic%for%one%

experimentalist%to%routinely%construct%and%verify%any%more%than%5%mutants%with%these%

manual%methods,%especially%considering%the%large%time%commitment%required%in%

performing%stability%determination%by%circular%dichroism.%%The%robotics%assisted%method%

for%constructing%single%mutants%presented%here,%coupled%with%the%plate,based%stability%

assay%described%in%Allen,%Nisthal%and%Mayo,%2010%is%able%to%generate%and%analyze%192%

mutants%in%about%the%same%amount%of%time.%%The%limiting%step%in%this%procedure%is%the%week%

long%turnaround%time%of%confirmation%sequencing.%%However,%this%turnaround%time%should%

remain%constant%if%more%mutants%are%sent%for%sequencing,%ensuring%the%superb%scalability%

of%the%automated%methods.%

% %
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Table(1.((Time(Required(to(construct(and(measure(stabilities(for(single(mutants.((The(lab(procedure(in(
2007((manual(construction)(was(only(feasible(for(a(handful(of(mutants.((The(current(state(of(
automation(in(the(lab(allows(for(~40x(more(mutants(to(be(constructed(and(analyzed(in(roughly(the(
same(amount(of(time.((

Procedural(Step(

Manual(
Construction((
(5(mutants)(

Robotics(Assisted(
Construction((
(192(mutants)(

(

SDM(and(Dpn1(Digest( 1.5%days% Overnight%

Transformation(and(Plating( 0.5%day% 0.5%day%

Colony(Picking( 0.5%day% 0.5%day%

Protein(Expression(and(
Purification(

1.5%days% 1%day%

Sequencing(Turnaround( 1%day% 7%days%

Dialysis( Overnight% Overnight%

Stability(Determination( 5%days% 1%day%

Total(Time(Required( 10(days( 10(days(

%
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Co6written(with(Samy(Hamdouche(

Overview(

The%chief%benefit%to%developing%automation%technology%in%the%lab%is%to%expedite%the%
interplay%between%theory%and%experiment.%%Having%the%ability%to%take%the%results%from%a%
protein%design%calculation%and%in%a%minimal%amount%of%days%produce%viable,%sequence%
verified%mutant%genes%should%greatly%improve%the%productivity%of%the%lab.%%%

The%project%was%first%approached%from%the%experimental%side,%as%it%was%necessary%to%
determine%whether%it%was%possible%to%perform%the%molecular%biology%needed%to%construct%
and%clone%genes%into%an%expression%plasmid%in%an%automated%fashion.%%After%failing%to%adapt%
the%complex%gene%construction%methods%detailed%in%Allen%et#al,#PNAS%2010%for%automation,%
more%simplified%protocols%were%tested.%%To%assist%with%constructing%multiple%variants%the%
DNAworks%source%code%was%acquired%and%installed%onto%our%local%computer%cluster.%%By%
ordering%completely%overlapping%oligonucleotides%(as%designed%by%DNAworks),%
performing%a%PCR%assembly%reaction,%and%then%amplifying%the%product%with%flanking%
primers%we%were%able%to%recover%the%correct%sequence,verified%gene%more%than%half%the%
time.%%The%next%step%required%automating%molecular%cloning%for%further%protein%expression%
and%production.%

The%traditional%cloning%methods%of%restriction%enzymes%and%overnight%ligation%reactions%
are%already%not%very%robust%when%done%on%the%bench,%so%in%their%stead%we%first%adapted%the%
PCR%cloning%method%called%PIPE,%for%polymerase%incomplete%primer%extension%(Klock%et#al,%
Proteins,%71,%2008).%%As%shown%in%Figure%4,1,%the%PCR%products%from%an%insert%amplification%
(IPIPE)%and%a%plasmid%linearization/amplification%(VPIPE)%are%mixed%together%and%
transformed%directly%into%cells,%without%any%modifications.%%Any%wild,type%background%is%
eradicated%by%limiting%the%choice%of%plasmid%to%those%containing%a%suicide%gene%such%as%
ccdB,%where%upon%transformation%the%gene%product%kills%the%cell.%%Although%this%method%
performs%admirably%under%benchtop%conditions%(~40%colonies%%

per%300uL%transformation),%attempts%to%transfer%that%success%to%the%robotic%platform%have%
failed%to%produce%enough%colonies%in%a%robust%fashion.%%To%address%this%problem%a%second%
PCR%cloning%method%was%introduced%into%the%lab%called%CPEC,%or%circular%polymerase%
extension%cloning%(Quan%and%Tian,%PLoS%ONE,%2009).%%Figure%4,2%shows%that%the%method%is%
essentially%a%site,overlap%extension%(SOE)%PCR%reaction%that%uses%the%IPIPE%and%VPIPE%

Chapter%Chapter% 44 :: %%
Automated%Automated%Gene%Gene%
AssemblyAssembly %%
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products%as%templates%for%each%other%in%order%to%create%a%fully%assembled%plasmid.%%

Benchtop%testing%with%this%method%has%shown%a%direct%correlation%between%number%of%PCR%

cycles%and%amount%of%transformed%bacteria,%with%15%cycles%of%CPEC%producing%~800%

colonies%from%a%300uL%transformation.%%The%primary%reason%for%the%twenty,fold%

improvement%in%transformable%material%is%that%where%the%PIPE%procedure%uses%the%minor%

product%of%a%PCR%reaction%(incomplete%PCR%products)%to%form%complete%plasmid,%the%CPEC%

method’s%major%product%is%our%desired%end%product.%%%

Plugging%in%the%transformation,%plating%and%picking%routines%developed%for%automated%site,

directed%mutagenesis%(Chapter%3)%completes%the%experimental%pipeline%for%gene%assembly.%%

Detailed%robotic%protocols%for%the%steps%mentioned%above%can%be%found%in%Chapter%2.%%

Finally,%a%significant%amount%of%scripting%was%required%in%order%to%bridge%the%gap%between%

the%sequence%lists%produced%by%typical%protein%design%software%and%robot,compatible%

worklists.%%We%now%describe%our%method%for%taking%sequence%lists%from%standard%or%library%

designs%and%ultimately%outputting%an%IDT%oligonucleotide%order%form%and%an%oligo%

assembly%worklist%for%the%robot.%%%

Figure(461.((Schematic(of(the(polymeriase(incomplete(primer(
extension(method,(or(PIPE.((Adapted(from(Klock(et#al,(2008.(
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Python(Scripting:((From(the(Computer(Screen(to(Reality(

Once%a%standard%or%library%design%calculation%is%made,%a%python%script%is%available%to%
generate%both%an%IDT%order%form%for%the%required%oligonucleotides,%and%the%robot%work%list%
that%assembles%the%oligonucleotides%into%the%pre,mixes%for%gene%assembly.%There%are%
several%options%for%how%the%order%form%and%worklist%is%generated,%including%whether%the%
sequence%list%is%generated%from%standard%or%library%design%output,%whether%a%replacement%
oligonucleotide%or%degenerate%oligonucleotide%method%of%library%construction%is%desired,%
and%whether%the%wild,type%oligonucleotides%have%previously%been%designed%by%DNAworks%
and%are%arrayed%onto%a%96,well%plate.%All%of%these%options%are%specified%in%the%input%file%to%
the%script.%A%call%to%the%script%is%of%the%form%

>%python%geneassem.py%input.txt%

where%the%argument%“input.txt”%simply%designates%the%name%of%the%input%file.%

The(Input(File(

The%input%file%specifies%the%parameters%for%the%python%script%and%consists%of%five%lines.%The%
parameter%of%the%first%line%can%either%be%“previous”%or%“new.”%The%argument%“previous”%
specifies%that%the%wild,type%oligonucleotides%have%already%been%constructed%using%non,
gapped%design%by%DNAworks%and%are%arrayed%column,wise%onto%a%96,well%plate.%In%this%
case,%the%second%line%of%the%input%file%specifies%the%name%of%the%DNAworks%output%file%for%
the%wild,type%sequence,%and%the%solution%number%from%the%DNAworks%output%that%is%used,%
separated%by%whitespace.%The%argument%“new”%specifies%that%the%script%should%design%the%
wild,type%oligonucleotides%and%generate%an%order%form%including%both%wild,type%and%
mutant%oligos.%In%this%case,%the%second%line%of%the%input%file%is%simply%the%wild,type%amino,
acid%sequence%from%which%oligos%are%to%be%designed.%The%third%line%of%the%input%file%is%the%
name%of%the%PDB%file%for%the%wild,type%protein%(i.e.%from%input%to%PHOENIX).%The%parameter%
of%the%fourth%line%can%either%be%“standard”%or%“library,”%specifying%whether%sequences%are%
taken%from%standard%or%library%PHOENIX%design%output,%respectively.%In%the%former%case,%
the%PHOENIX%output%files%“design.out”%and%“design.phoenix”%are%expected%in%the%same%

Figure(462.((Schematic(of(Circular(Polymerase(Extension(Cloning,(or(
CPEC.((Adapted(from(Quan(and(Tian,(PLoS(ONE,(2009.(
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directory%as%the%script.%In%the%latter%case,%the%library%number%desired%is%also%specified%on%
the%fourth%line,%with%a%whitespace%separator,%and%the%PHOENIX%library%design%output%file%
“design.out”%is%expected%in%the%same%directory%as%the%script.%Finally,%parameter%on%the%fifth%
line%can%be%either%“replacement”%or%“degenerate,”%designating%whether%the%replacement%
oligonucleotide%(separate%assembly%and%construction%of%each%individual%mutant)%or%
degenerate%oligonucleotide%(libraries%that%sample%multiple%mutations%at%a%position%are%
assembled%via%degenerate%oligonucleotides)%method%of%library%construction%is%used,%
respectively.%

%

%

Figure(463.(Top:(an(example(input(file,(where(wild6type(oligos(have(previously(been(designed(and(
plated.(Bottom:(an(example(input(file,(where(the(wild6type(oligos(have(not(been(designed(or(ordered.(

Output(

The%output%of%“geneassem.py”%is%two%files.%If%the%replacement%oligonucleotide%method%is%
used,%the%files%will%be%named%“idt_order.xls”%and%“wl.csv.”%The%file%“idt_order.xls”%is%the%
excel,formatted%IDT%order%form%for%the%replacement%oligonucleotides%on%the%required%
number%of%96,well%plates%needed%to%construct%the%library%(which%includes%wild,type%oligos%
if%the%“new”%parameter%is%specified).%The%second%output%file%is%the%robot,formatted%work%
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list,%“wl.csv.”%In%the%case%that%the%wild,type%oligos%have%previously%been%plated,%the%work%
list%directs%the%robot%to%assemble%the%pre,mixes%for%all%the%mutants%in%the%library%from%the%
wild,type%oligonucleotides%in%96,well%plates%(labeled%“wt%plate%*,”%where%“*”%denotes%the%
plate%number)%and%the%replacement%oligonucleotides%on%separate%96,well%plates%(labeled%
“mut%plate%*,”%where%“*”%denotes%the%plate%number).%In%the%case%that%the%wild,type%
oligonucleotides%are%ordered%along%with%the%mutant%oligos,%the%work%list%directs%the%robot%
to%assemble%the%pre,mixes%for%all%the%mutants%in%the%library%from%the%wild,type%
oligonucleotides%and%the%replacement%oligonucleotides%from%the%96,well%plates%ordered%as%
per%“idt_order.xls”%(labeled%“idt%plate%*,”%where%“*”%denotes%the%plate%number).%%

In%the%case%that%the%degenerate%oligonucleotide%method%is%used,%output%of%“geneassem.py”%
will%be%the%files%“idt_order_deg.xls”%and%“wl_deg.csv,”%which%are%the%IDT%order%form%and%the%
robot%work%list,%respectively,%in%which%degenerate%oligonucleotides%are%used.%

Test(Case:((Rational(Stabilization(of(a(Designed(Enzyme(

An%example%of%this%powerful%methodology%is%exhibited%in%the%recent%construction%and%
analysis%of%two%degenerate%oligonucleotide%libraries%that%attempted%to%stabilize%the%HG,2%
enzyme%reported%in%Privett%et#al%while%maintaining%it’s%activity%(in%preparation).%%%

The%two%libraries%came%from%a%design%that%repacked%the%hydrophobic%space%between%the%
inner%beta%sheets%and%outer%alpha%helices%of%the%enzyme’s%fold.%%One%library%used%the%output%
design%structure%from%the%enzyme%design%calculation%as%a%structural%input%(deslib)%while%
the%other%library%used%the%experimentally%determined%crystal%structure%of%the%designed%
enzyme%(xtallib).%%Each%32,member%library%was%designed%and%chosen%using%the%protein%
design%software%and%parameters%as%described%in%Allen%et#al,%PNAS%2010.%%%

First,%the%wildtype%HG,2%enzyme%was%constructed%in%DNAworks%and%its%oligos%were%
ordered%from%IDT.%%Then,%as%in%Figure%4,3,%the%appropriate%inputs%were%submitted%to%
libseqgen.py,%followed%by%writedeg.py,%and%finally%wlgen.py.%%The%oligos%necessary%to%
construct%the%two%libraries%were%ordered%using%the%output%idt_order.xls%file%and%once%the%
materials%were%received,%the%libraries%were%assembled%on%the%robot%using%the%output%wl.csv%
file.%%%

A%PCR%assembly%reaction%was%then%performed%on%this%pre,mix%of%oligos,%producing%a%great%
number%of%different%construct%sizes%that%can%be%visualized%as%a%smear%on%an%agarose%gel.%%
The%correctly%sized%construct%was%then%amplified%out%of%the%smear%by%running%an%IPIPE%PCR%
reaction%with%the%appropriate%flanking%oligos.%%An%agarose%gel%confirmed%a%single%band%of%
the%correct%size%was%amplified%after%this%reaction.%%Mixing%the%IPIPE%PCR%product%in%a%1:1%
ratio%with%previously%prepared%VPIPE%product%and%subsequently%transforming%the%solution%
with%chemically%competent%cells%produced%an%adequate%amount%of%colonies%for%simple%
molecular%cloning.%%An%additional%transformation%was%performed%the%next%day%to%get%the%
required%amount%of%colonies%for%sequencing%a%4x%oversampling%of%the%library%size.%

Analysis%of%the%sequencing%results%showed%that%we%had%recovered%~75%%of%the%members%
of%each%library.%%These%mutants%were%then%tested%for%stability%by%first%following%the%
inherent%tryptophan%fluorescence%(chemical%denaturation)%and%then%by%adding%the%
fluorescent%dye%SYPRO%Orange%(thermal%denaturation).%%Unfortunately,%no%stabilizing%
mutants%were%found%in%the%libraries.%
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Including%the%weeklong%turnaround%required%for%high,throughput%sequencing,%the%
experimental%construction%and%verification%of%the%two%libraries%spanned%less%than%one%
month.%%We%would%not%expect%the%time%to%increase%significantly%when%considering%the%
simultaneous%construction%of%many%more%libraries.%%%
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BL21(Gold(DE3(Competent(Cell(Preparation(

This%strain%grows%extremely%fast%and%is%useful%for%both%plasmid%and%protein%expression%and%
recovery.%%When%transforming%mutagenic%protein%libraries%into%this%strain%of%competent%
cells%be%sure%to%keep%a%glycerol%stock%of%the%picked%colonies;%this%simplifies%and%expedites%
protein%expression%after%plasmid%sequencing%as%there%is%no%need%to%perform%miniprep%or%
transformation%procedures.%%%

On%the%day%of%competent%cell%preparation,%be%sure%to%clear%space%in%the%cold%room%for%all%
4oC%manipulations%and%to%autoclave%a%1L%centrifuge%container.%%Alternatively,%prechill%all%
pipets,%volumes,%and%containers%to%,20oC%and%perform%all%procedures%on%ice.%

MgCl2%solution.%%100mM%MgCl2/water,%filter%sterilized.%%Store%at%4oC.%

CaCl2%solution.%%100mM%CaCl2/15%%glycerol/water,%filter%sterilized.%%Store%at%4oC.%

1.% Start%a%10mL%overnight%culture%in%LB%at%37oC%for%a%1L%batch.%

2.% Seed%a%1L%volume%with%the%10mL%overnight%culture%and%shake%at%37oC%until%OD600%
reaches%0.4,0.6.%All%further%operations%need%to%be%done%at%4oC.%

3.% Spin%down%the%culture%at%2500xg%for%20%min%at%4oC%in%a%liter%centrifuge%container.%%
Pour%off%the%supernatant%and%add%100mL%(1/10th%of%initial%1L%culture)%of%the%MgCl2%
solution.%%Resuspend%the%pellet%gently,%ideally%by%shaking%at%200,250%rpm%on%ice.%%Split%the%
volume%between%two%pre,chilled%50mL%tubes.%

4.% Incubate%the%resuspended%cells%at%4oC%for%30%min.%

5.% Spin%down%the%cultures%at%2500xg%for%20%min%at%4oC.%%Pour%off%the%supernatant%and%
add%20mL%(1/50th%of%initial%1L%culture)%of%the%CaCl2/glycerol%solution.%%Resuspend%the%
pellet%gently,%ideally%by%shaking/inversion/nutating.%

6.% Divide%the%cells%into%1.2mL%aliquots%in%1.7mL%sterile%eppendorf%tubes.%%Don’t%use%a%
repeater%pipet.%%Flash%freeze%the%aliquots%in%liquid%nitrogen.%%Store%at%,80oC.%

%
% %
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48;Well(Qtray(Preparation(

The%Genetix%48,well%QTray%(x6029)%is%the%perfect%petri%dish%for%high,throughput%bacterial%
transformation%experiments.%%The%8%row%by%6%column%format%is%amenable%to%the%Freedom%
EVO’s%LiHa,%and%two%Qtrays%represent%exactly%one%96,well%plate.%%They%are%prepared%in%
much%the%same%way%as%normal%petri%dishes.%

1. Prepare%the%Qtrays%ideally%the%day%before%you%expect%to%plate%the%transformation%
reactions.%%Turn%on%the%55oC%water%bath%located%at%the%end%of%the%Bay%3/4’s%sink.%

2. For%four%Qtrays,%or%conversely,%2%96,well%Site,Directed%Mutagenesis%plates,%
autoclave%1L%of%LB%agar%(mix%25g%of%LB%broth%miller%with%15g%of%Bacto,Agar%and%
add%1L%of%MilliQ%water).%

3. Move%the%flask%out%of%the%autoclave%and%into%the%prepared%water%bath.%%After%~25%
min,%the%LB%agar%should%be%cool%enough%to%add%antibiotic%and%pour%into%the%Qtrays.%

4. Turn%on%your%Bunsen%burner.%%Add%antibiotic,%mix,%and%then%using%a%50mL%sterile%
pipet%add%200mL%of%LB%agar%to%the%open%Qtray.%%The%best%location%found%so%far%is%the%
bench%in%Bay%2%or%Bay%3%as%it%is%more%level%then%the%bench%in%Bay%1.%%Flame%off%any%
bubbles,%replace%the%48,well%divider,%and%then%put%on%the%Qtray%lid%in%a%skewed%
position%to%allow%air%exchange.%

5. Let%the%plates%cool%to%room%temperature%and%dry,%ideally%overnight%in%this%position.%%
When%storing%the%plates%before%or%after%transformation,%make%sure%to%keep%them%
upside%down%to%prevent%moisture%from%collecting%on%the%agar%surface.%%If%the%plate%
was%stored%in%the%cold%room,%remove%any%moisture%on%the%surface%of%the%agar%
before%transformation%by%removing%the%lid%and%letting%them%air,dry%under%a%
Bunsen%burner%for%~30min.%%This%same%drying%process%is%also%highly%recommended%
after%plating.%

% %



Appendix(

Page%221%
High,Throughput%and%Automation%Methods%

%

221%

EasyPress(Operation(

%
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E;Gel(96(Operation(

%
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DNA(Ladder(for(E;Gel(96(

%
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