
3

Chapter 2

System

We are interested in simulating nucleic acid molecules (DNA or RNA) in a stochastic regime;

that is to say that we have a discrete number of molecules in a fixed volume. This regime is

found in experimental systems that have a small volume with a fixed count of each molecule

present, such as the interior of a cell. We can also apply this to experimental systems with

a larger volume (such as a test tube) when the system is well mixed, as we can pick a fixed

(small) volume and deal with the expected counts of each molecule within it, rather than

the whole test tube.

To discuss the modeling and simulation of the system, we need to be very careful to

define the components of the system, and what comprises a state of the system within the

simulation.

2.1 Strands

Each DNA molecule to be simulated is represented by a strand. Our system then contains

a set of strands Ψ∗, where each strand s ∈ Ψ∗ is defined by s = (id, label, sequence). A

strand’s id uniquely identifies the strand within the system, while the sequence is the ordered

list of nucleotides that compose the strand.

Two strands could be considered identical if they have the same sequence. However, in

some cases it is convenient to make a distinction between strands with identical sequences.

For example, if one strand were to be labelled with a fluorophore, it would no longer be

physically identical to another with the same sequence but no fluorophore. Thus, the label

is used to designate whether two strands are identical. We define two strands as being

identical if they have the same labels and sequences. In most cases this distinction between
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the label and the sequence is not used, so it will be explicitly noted when it is important.

2.2 Complex Microstate

A complex is a set of strands connected by base pairing (secondary structure). We define the

state of a complex by c = (ST, π∗, BP ), called the “complex microstate”. The components

are a nonempty set of strands ST ⊆ Ψ∗, an ordering π∗ on the strands ST , and a list of

base pairings BP = {(ij · kl) | base i on strand j is paired to base k on strand l, and j ≤ l,

with i < k if j = l}, where we note that “strand l” refers to the strand occuring in position

l in the ordering π∗. Note that we require a complex to be “connected”: there is no proper

subset of strands in the complex for which the base pairings involving those strands do not

involve at least one base outside that subset. Given a complex microstate c, we will use

ST (c), π∗(c), BP (c) to refer to the individual components.

While this definition defines the full space of complex microstates, it is common to disal-

low some secondary structures due to physical or computational constraints. For example,

we disallow the pairing of a base with any other within three bases on the same strand, as

this would correspond to an impossible physical configuration. Another class of disallowed

structures are called the pseudoknotted secondary structures, which require computationally

difficult energy model calculations, and are fully defined and discussed further in Section

D.

2.3 System Microstate

A system microstate represents the configuration of the strands in the volume we are sim-

ulating (the “box”). Since we allow complexes to be formed of one or more strands, every

unique strand in the system must be present in a single complex and thus we can represent

the system microstate by a set of those complexes.

We define a system microstate i as a set of complex microstates, such that each strand

in the system is in exactly one complex within the system. This is formally stated in the

following equation:
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�

c ∈ i

ST (c) = Ψ∗ and ∀c, c� ∈ i with c �= c�, ST (c) ∩ ST (c�) = ∅ (2.1)

This definition leads to the natural use of |i| to indicate the number of complexes present

in system microstate i, and i \ j to indicate the complex microstates present in system

microstate i that are not in j.
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Chapter 3

Energy

The conformation of a nucleic acid strand at equilibrium can be predicted by a well studied

model, called the nearest neighbor energy model [16, 15, 17]. Recent work has extended

this model to cover systems with multiple interacting nucleic acid strands [5].

The distribution of system microstates at equilibrium is a Boltzmann distribution, where

the probability of observing a microstate i is given by

Pr(i) =
1

Q
∗ e−∆Gbox(i)/RT (3.1)

where ∆Gbox(i) is the free energy of the system microstate i, and is the key quantity

determined by these energy models. Q =
�

i e
−∆Gbox(i)/RT is the partition function of the

system, R is the gas constant, and T is the temperature of the system.

3.1 Energy of a System Microstate

We now consider the energy of the system microstate i, and break it down into components.

The system consists of many complex microstates c, each with their own energy. We also

must account for the entropy of the system (the number of configurations of the complexes

spatially within the “box”) in the energy, and thus must define these two terms.

Let us first consider the entropy term. We consider the “zero” energy system microstate

to be the one in which all strands are in separate complexes, thus our entropy term is in

terms of the reduction of available states caused by having strands join together. We assume
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that the number of complexes in the system, N , is much smaller than the number of solvent

molecules within our box, Ms. We can then approximate the standard statistical entropy

of the system as N ∗RT log Ms. Letting K be the total number of strands in the system,

our zero state is then K ∗ RT log Ms. Defining ∆Gvolume = RT log Ms, the contribution

to the energy of the system microstate i from the entropy of the box is then:

(K −N) ∗∆Gvolume

And thus in terms of N,K,∆Gvolume and ∆G(c) (the energy of complex microstate c,

defined in the next section), we define ∆Gbox(i), the energy of the system microstate i, as

follows:

∆Gbox(i) = (K −N) ∗∆Gvolume +
�

c ∈ i

∆G(c)

Before we turn our attention to the energy of a complex microstate, let us examine a

situation where we are modeling a fixed volume of a larger solution, and how that relates to

the quantity Ms. If we assume that the volume studied is V (units of liters), we can easily

compute the number of solvent molecules in this volume using the density d of water (the

solvent, in g/L) , the molar mass M of water (in grams per mol), and Avogadro’s number,

as follows: Ms = V ∗d
M ∗ NA. In practice, we may wish to choose a simulation volume V

based on other physical quantities, such as the concentration of a single molecule within

the volume1.

The energy formulas derived here, suitable for our stochastic model, differ from those in

[5] in two main ways: the lack of symmetry terms, and the addition of the ∆Gvolume term.

We compare this stochastic model to the mass action model in much more detail in Section

C.

1
Calculating Ms from a concentration u in mol/L of a single molecule in the volume is straightforward.

We assume that our concentration u implies the volume V is chosen corresponding to exactly one molecule

being present in that volume, as follows: V =
1

u∗NA
and thus Ms =

d
M∗u =

ρH2O

u where ρH2O is the molarity

of water (55.14 mol/L at 37
◦
C) and the other quantities are as defined above.
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3.2 Energy of a Complex Microstate

We previously defined a complex microstate in terms of the list of base pairings present

within it. However, the well studied models are based upon nearest neighbor interactions

between the nucleic acid bases. These interactions divide the secondary structure of the

system into local components which we refer to as loops, shown in figure 3.1.

IV.
Multiloop

V. Exterior
Loop

I.
StackIII. Bulge

Loop

II. Interior
Loop

VI. Hairpin

Figure 3.1: Secondary structure divided into loops.

These loops can be broken down into different categories, and parameter tables for each

category have been determined from experimental data [17]. Each loop l has an energy,

∆G(l) which can be retrieved from the appropriate parameter table for its category, which

is discussed in more detail in section B.3. Each complex also has an energy contribution

associated with the entropic initiation cost [3] (e.g. rotational) of bringing two strands

together, ∆Gassoc, and the total contribution is proportional to the number of strands L

within the complex, as follows 2: (L− 1) ∗∆Gassoc.

2
The free energy ∆G ◦

for a reaction A + B −��− C is usually expressed in terms of the equilib-

rium constant Keq and the concentrations [A], [B], [C] (in mol/L) of the molecules involved, as follows:

e∆G ◦/RT
= Keq =

[A][B]
[C] . We can also express the free energy ∆G�

in terms of the dimensionless

mole fractions xA, xB , xC , where xi = [i]/ρH2O (for dilute solutions), and ρH2O is the molarity of wa-

ter. In this case, we have e∆G�/RT
= K�

eq =
xA∗xB

xC
, and relating it to the previous equation, we see that

e∆G�/RT
=

([A]/ρH2O)∗([B]/ρH2O)

[C]∗ρH2O
=

[A][B]
[C] ∗ 1

ρH2O
= e∆G ◦/RT ∗ e− log ρH2O . Thus if we have an energy ∆G ◦

which was for concentration units and we wish to use mole fraction units, we must adjust it by −RT log ρH2O

to obtain the correct quantity. In general, if we have a complex of N molecules, the conversion to mole frac-

tions will require an adjustment of −(N − 1) ∗ RT log ρH2O. To be consistent with [5], we wish to always

use free energies which are based on the mole fraction units, and thus must include this factor since the

reference free energies are for concentration units. In [5], the factor is included in the ∆Gassoc term, and

thus we include it in the same place, as follows: ∆Gassoc = ∆Gpub
assoc −RT log ρH2O, where ∆Gpub

assoc is found

in [3]. Thus our ∆Gassoc is the same as the ∆Gassoc
found in [5] (footnote 13).
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The energy of a complex microstate c is then the sum of these two types of contributions.

We can also divide any free energy ∆G into the enthalpic and entropic components, ∆H

and ∆S related by ∆G = ∆H + T ∗ ∆S, where T is the temperature of the system.

For a complex microstate, each loop can have both enthalpic and entropic components,

but ∆Gassoc is usually assumed to be purely entropic [16]. This becomes important when

determining the kinetic rates, in section 4.

We use ∆G(c) to refer to the energy of a complex microstate to be consistent with the

nomenclature in [5], where ∆G(c) refers to the energy of a complex when all strands within

it are consider unique (as is the case in our system), and ∆G(c) is the energy of the com-

plex, without assuming that all strands are unique (and thus it must account for rotational

symmetries). This is discussed more in Section C.

In summary, the standard free energy of a complex microstate c, containing L = |ST (c)|

strands:

∆G(c) =




�

loop l ∈c

∆G(l)



+ (L− 1)∆Gassoc

3.3 Computational Considerations

While the simulator could use the system microstate energy in the form given in the previous

sections, it is convenient for us to group terms such that the computation need only take

place per complex. Thus we wish to include the (K − N)∆Gvolume term in the energy

computation for the complex microstates. Recall that K is the number of strands in the

system, and N is the number of complexes in the system microstate. Assuming that we are

computing the energy ∆Gbox of system microstate i, we can rewrite K and N as follows:
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K =
�

c ∈ i

|ST (c)|

N =
�

c ∈ i

1

And thus arrive at:

∆Gbox(i) =
�

c∈i

�
∆G(c) + (|ST (c)| − 1) ∗∆Gvolume

�

We then define ∆G∗(c) = ∆G(c)+ (|ST (c)| − 1) ∗∆Gvolume, and Lc = |ST (c)| and thus

have the following forms for the energy of a system microstate and the energy of a complex

microstate:

∆Gbox(i) =
�

c∈i
∆G∗(c)

∆G∗(c) =




�

loop l∈c

∆G(l)



+ (Lc − 1) ∗ (∆Gassoc +∆Gvolume)

Since we expect the probability of observing a particular complex microstate to remain

the same no matter what reference units we use for the free energy (see footnote 2), this

implies that if we wanted to express our ∆G∗(c) for concentration units, we would use

∆Gassoc = ∆Gpub
assoc and ∆Gvolume = RT log Ms

ρH2O
= RT log 1

u = RT log V
V0
, where u is the

molar concentration of a single molecule in the box volume V , and V0 is the volume for 1

molecule at the standard concentration of 1 M.
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Chapter 4

Kinetics

4.1 Basics

Thermodynamic predictions have only limited use for some systems of interest, if the key

information to be gathered is the reaction rates and not the equilibrium states. Many

systems have well defined ending states that can be found by thermodynamic prediction,

but predicting whether it will reach the end state in a reasonable amount of time requires

modeling the kinetics. Kinetic analysis can also help uncover poor sequence designs, such

as those with alternate reactions leading to the same states, or kinetic traps which prevent

an intended reaction from occurring quickly.

The kinetics are modeled as a continuous time Markov process over secondary structure

space. System microstates i, j are considered adjacent if they differ by a single base pair

(Figure 4.1), and we choose the transition rates kij (the transition from state i to state j)

and kji such that they obey detailed balance:

kij
kji

= e−
∆Gbox(j)−∆Gbox(i)

RT (4.1)

This property ensures that given sufficient time we will arrive at the same equilibrium

state distribution as the thermodynamic prediction, (i.e. the Boltzmann distribution on

system microstates, equation 3.1) but it does not fully define the kinetics as this only

constrains the ratio kij
kji

. We discuss how to choose these transition rates in the following

sections, but regardless of this choice, we can still determine how the next state is chosen

and the time at which that transition occurs.
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state j: state i:

state q:

kji

kij

kqjkjq

Figure 4.1: System microstates i, q adjacent to current state j, with many others not shown.

Given that we are currently in state i, the next state m in a simulated trajectory is

chosen randomly among the adjacent states j, weighted by the rate of transition to each.

Pr(m) =
kim
Σjkij

(4.2)

Similarly, the time taken to transition to the next state is chosen randomly from an

exponential distribution with rate parameter λ, where λ is the total rate out of the current

state, Σjkij .

Pr(∆t) = λ exp(−λ∆t) (4.3)

We will now classify transitions into two exclusive types: those that change the number

of complexes present in the system, called bimolecular transitions, and those where changes

are within a single complex, called unimolecular transitions.
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4.2 Unimolecular Transitions

Because unimolecular transitions involve only a single complex, it is natural to define these

transitions in terms of the complex microstate which changed, rather than the full system

microstate. Like Figure 4.1 implies, we define a complex microstate d as being adjacent to

a complex microstate c if it differs by exactly one base pair. We call a transition from c

to d that adds a base pair a creation move, and a transition from c to d that removes a

base pair a deletion move. The exclusion of pseudoknotted structures is not inherent in this

definition of adjacent states, but rather arises from our disallowing pseudoknotted complex

microstates.

In more formal terms we now define the adjacent states to a system microstate, rather

than those adjacent to a complex microstate as in the simple definition above. Recall from

section 2.3 that |i| is the number of complexes present in system microstate i, and i \ j is

the set of complex microstates in i that are not also in system microstate j.

Two system microstates i, j are adjacent by a unimolecular transition iff ∃c ∈ i, d ∈ j

such that:

|i| = |j| and i \ j = {c} and j \ i = {d} (4.4)

and one of these two holds:

BP (c) ⊂ BP (d) and |BP (d)| = |BP (c)|+ 1 (4.5)

BP (d) ⊂ BP (c) and |BP (c)| = |BP (d)|+ 1 (4.6)

In other words, the only differences between i and j are in c and d, and they differ by

exactly one base pair. If equation 4.5 is true, we call the transition from i to j a base pair

creation move, and if equation 4.6 is true, we call the transition from i to j a base pair

deletion move. Note that if i to j is a creation move, j to i must be a deletion move, and

vice versa. Similarly, if there is no transition from i to j, there cannot be a transition from

j to i, which implies that every unimolecular move in this system is reversible.
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4.3 Bimolecular Transitions

A bimolecular transition from system microstate i to system microstate j is one where the

single base pair difference between them leads to a differing number of complexes within

each system microstate. This differing number of complexes could be due to a base pair

joining two complexes in i to form a single complex in j, which we will call a join move.

Conversely, the removal of this base pair from i could cause one complex in i to break into

two complexes within j, which we will call a break move. Note that if i to j is a join move,

then j to i must be a break move, and vice versa. As we saw before, this also implies that

every bimolecular move is reversible.

Formally, a transition from system microstate i to system microstate j is a join move if

|i| = |j| + 1 and we can find complex microstates c, c� ∈ i and d ∈ j, with c �= c� such that

the following equations hold:

i \ {c, c�} = j \ {d} (4.7)

∃x ∈ BP (d) s.t. BP (d) \ {x} = BP (c) ∪BP (c�) (4.8)

Similarly, a transition from system microstate i to system microstate j is a break move

if |i|+1 = |j| and we can find complex microstates c ∈ i and d, d� ∈ j with d �= d� such that

the following equations hold:

i \ {c} = j \ {d, d�} (4.9)

∃x ∈ BP (c) s.t. BP (c) \ {x} = BP (d) ∪BP (d�) (4.10)

While arbitrary bimolecular transitions are not inherently prevented from forming pseu-

doknots in this model, we again implicitly prevent them by using only complex microstates

that are not pseudoknotted.
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4.4 Transition Rates

Now that we have defined all of the possible transitions between system microstates, we

must decide how to assign rates to each transition. We know that if there is a transition

from system microstate i to system microstate j with rate kij there must be a transition

from j to i with rate kji which are related by:

kij
kji

= e−
∆Gbox(j)−∆Gbox(i)

RT (4.11)

This condition is known as detailed balance, and does not completely define the rates

kij , kji. Thus a key part of our model is the choice of rate method, the way we set the rates

of a pair of reactions so that they obey detailed balance.

While our simulator can use any arbitrary rate method we can describe, we would like

our choice to be physically realistic (i.e. accurate and predictive for experimental systems).

There are several rate methods found in the literature [10, 11, 26] which have been used for

kinetics models for single-stranded nucleic acids [7, 26] with various energy models. As a

start, we have implemented three of these simple rate methods which were previously used

in single base pair elementary step kinetics models for single stranded systems. In addition

we present a rate method for use in bimolecular transitions that is physically consistent

with both mass action and stochastic chemical kinetics. We verify that the kinetics model

(and thus our choice of rate method) have been correctly implemented by verifying that the

detailed balance condition holds (Section 6.1.2).

In order to maintain consistency with known thermodynamic models, each pair of kij and

kji must satisfy detailed balance and thus their ratio is determined by the thermodynamic

model, but in principle each pair could be independently scaled by some arbitrary prefactor,

perhaps chosen to optimize agreement with experimental results on nucleic acid kinetics.

However, since the number of microstates is exponential, this leads to far more model

parameters (the prefactors) than is warranted by available experimental data. For the time

being, we limit ourselves to using only two scaling factors: kuni for use with unimolecular

transitions, and kbi for bimolecular transitions.
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4.5 Unimolecular Rate Models

The first rate model we will examine is the Kawasaki method [10]. This model has the

property that both “downhill” (energetically favorable) and uphill transitions scale directly

with the steepness of their slopes.

kij = kuni ∗ e−
∆Gbox(j)−∆Gbox(i)

2RT (4.12)

kji = kuni ∗ e−
∆Gbox(i)−∆Gbox(j)

2RT (4.13)

The second rate model under consideration is the Metropolis method [11]. In this model,

all downhill moves occur at the same fixed rate, and only the uphill moves scale with the

slope. This means that the maximum rate for any move is bounded, and in fact all downhill

moves occur at this rate. This is in direct contrast to the Kawasaki method, where there is

no bound on the maximum rate.

if ∆Gbox(i) > ∆Gbox(j) then kij = 1 ∗ kuni (4.14)

kji = kuni ∗ e−
∆Gbox(i)−∆Gbox(j)

RT (4.15)

otherwise, kij = kuni ∗ e−
∆Gbox(j)−∆Gbox(i)

RT (4.16)

kji = 1 ∗ kuni (4.17)

Finally, the entropy/enthalpy method [26] uses the division of free energies into entropic

and enthalpic components to assign the transition rates in an intuitive manner: base pair

creation moves must overcome the entropic energy barrier to bring the bases into contact,

and base pair deletion moves must overcome the enthalpic energy barrier in order to break

them apart.
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if i to j is a creation: kij = kuni ∗ e
∆Sbox(j)−∆Sbox(i)

R (4.18)

kji = kuni ∗ e−
∆Hbox(i)−∆Hbox(j)

RT (4.19)

otherwise, kij = kuni ∗ e−
∆Hbox(j)−∆Hbox(i)

RT (4.20)

kji = kuni ∗ e
∆Sbox(i)−∆Sbox(j)

R (4.21)

We note that the value of kuni that best fits experimental data is likely to be different

for all three models.

4.6 Bimolecular Rate Model

When dealing with moves that join or break complexes, we must consider the choice of how

to assign rates for each transition in a new light. In the particular situation of the join

move, where two molecules in a stochastic regime collide and form a base pair, this rate is

expected to be modeled by stochastic chemical kinetics.

Stochastic chemical kinetics theory [8] tells us that there should be a rate constant k

such that the propensity of a particular bimolecular reaction between two species X and Y

should be k ∗#X ∗#Y/V , where #X and #Y are the number of copies of X and Y in the

volume V . Since our simulation considers each strand to be unique, #X = #Y = 1, and

thus we see the propensity should scale as 1/V . Recalling that ∆Gvolume = RT log(V ∗ y),

where y is a collection of constant terms (discussed in Section 3.1) and V is the simulated

volume, we see that we can obtain the 1/V scaling by letting the join rate be proportional

to e−∆Gvolume/RT .

Thus, we arrive at the following rate method, and note that the choice of k (above) or

our scalar term kbi can be found by comparison to experiments measuring the hybridization

rate of oligonucleotides [21].
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if i to j is a complex join move: kij = kbi ∗ e
−∆Gvolume

RT (4.22)

kji = kbi ∗ e−
∆Gbox(i)−∆Gbox(j)+∆Gvolume

RT (4.23)

otherwise, kij = kbi ∗ e−
∆Gbox(j)−∆Gbox(i)+∆Gvolume

RT (4.24)

kji = kbi ∗ e−
∆Gvolume

RT (4.25)

This formulation is convenient for simulation, as the join rates are then independent

of the resulting secondary structure. We could use the other choices for assigning rates

from 4.4, but they would require much more computation time. While the above model

is of course an approximation to the physical reality (albeit one which we believe at least

intuitively agrees with what we expect from stochastic chemical kinetics), if we later deter-

mine there is a better approximation we could use that instead, even if it cost us a bit in

computation time. One issue in the above model that we wish to revisit in the future is that

due to the rate being determined for every possible first base pair between two complexes,

the overall rate for two complexes to bind (by a single base pair) is proportional roughly

to the square of the number of exposed nucleotides, in addition to the 1
V dependence noted

earlier.


