CaltechTHESIS
  A Caltech Library Service

The geochemistry of quicksilver mineralization. Magnetometer examination of the Monte Cristo magnetite-ilmenite deposits

Citation

Dreyer, Robert M. (1939) The geochemistry of quicksilver mineralization. Magnetometer examination of the Monte Cristo magnetite-ilmenite deposits. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:01052012-135937897

Abstract

The investigation has involved a geochemical, petrographic, and spectographic study of quicksilver mineralization. It has been found that cinnabar can be deposited only from alkaline sulphide ion concentration which is, in turn, partially dependent on the alkalinity of the solution. Such alkaline solutions are capable of dissolving silica, but carbonate and alkaline earth ions cannot exist together in such alkaline solutions. Any carbonatization of quicksilver deposits must thus represent a stage in the period of mineralization distinct from the period of cinnabar deposition. However, silica is often deposited syngenetically with cinnabar and the relationship of cinnabar and silica (unlike that of cinnabar and carbonate) is so intimate that the cinnabar occurs, in some places, as an extremely fine dispersion throughout associated silica. Associated with quicksilver mineralizing solutions are small amounts of a number of heavy metals as iron, chromium, manganese, arsenic, antimony, gold, silver, copper, zinc, nickel, germanium, lead, and cobalt. Of these elements, copper, silver, cobalt, lead, and germanium are always differentially concentrated in the cinnabar and such differential concentrations as have been observed are independent of the geographical and geological location of the deposit and are likewise independent of the type of wall rock in which the deposit occurs. The varying shades of cinnabar coloration cannot be attributed to any spectrographically determinable concentrations of any elements nor to the total amount of impurity which is differentially concentrated in the cinnabar.

The cinnabar-bearing solutions gain access into the wall rocks through fractures and intergranular voids and the greater part of all cinnabar ores is the result of such open-space filling. When the openings become filled, however, the solutions are quite capable of replacing the adjacent wall rock. If the wall rock is out of equilibrium with the quicksilver mineralizing solutions, the adjustment of equilibrium and consequent precipitation of mercuric sulphide will be quite rapid.

Precipitation of cinnabar is caused primarily by relief of pressure, evaporation of solvent, and wall rock reaction. Except in ammoniacal solutions, a decrease in temperature will not cause precipitation. Dilution of solutions causes the precipitation of metacinnabar and colloidal mercury. Such dilution is probably responsible for the native mercury which is a common, minor component of many quicksilver deposits. Acidification will likewise precipitate metacinnabar, but not cinnabar. The infrequent occurrences of metacinnabar can best be explained by near-surface dilution or acidification of hypogene solutions. Insofar as temperature and alkalinity are concerned, pyrite or both pyrite and marcasite could be formed simultaneously with cinnabar of metacinnabar or both. However, where marcasite occurs with cinnabar alone (as is quite commonly the case), the marcasite has probably been deposited separately form the cinnabar. Since cinnabar (rather than metacinnabar) is deposited only from hot alkaline solutions and since oxidized mercury minerals are very rare, supergene deposition of cinnabar must be a very local and a very uncommon occurrence.

Some cinnabar darkens rapidly on exposure to sunlight and it is suggested that this darkening may involve the formation of a surficial layer of colloidal mercury in solid solution in the cinnabar.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Geology
Degree Grantor:California Institute of Technology
Division:Geological and Planetary Sciences
Major Option:Geology
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Fraser, H. J. (advisor)
  • Campbell, Ian (co-advisor)
Thesis Committee:
  • Unknown, Unknown
Defense Date:1 January 1939
Additional Information:Minor thesis: Magnetometer examination of the Monte Cristo magnetite-ilmenite deposits - pp.[202-224]
Record Number:CaltechTHESIS:01052012-135937897
Persistent URL:http://resolver.caltech.edu/CaltechTHESIS:01052012-135937897
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:6761
Collection:CaltechTHESIS
Deposited By: Benjamin Perez
Deposited On:05 Jan 2012 23:12
Last Modified:26 Dec 2012 04:39

Thesis Files

[img]
Preview
PDF - Final Version
See Usage Policy.

70Mb
[img]
Preview
PDF - Supplemental Material
See Usage Policy.

13Mb

Repository Staff Only: item control page