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ABSTRACT

A more comprehensive mathematical theory for liquid chromatography is set
forth, incorporating dynamical models for mixed solvents and solutes, and new
mathematical models for adsorption, including adsorbent and exchange processes.
The equations for solvent and solute are shown to possess unique solutions, us-
ing so—called energy methods. The solvent modulation of local velocity is found
theoretically, as is solvent control of solute adsorption, diffusivity, and dispersion.
The theory for solvent control of solute adsorption is found to be very accurate
against experiment, and offers a useful method of treating normal phase, reversed
phase, ion exchange, and ion pair liquid chromatography in a unified mathemati-
cal framework, under the name catalyzed adsorption. The long-recognised problem
of solvent localization is modelled, and the model shown to be consistent with ex-
periment. Another classical problem, solvent demiring, is explained in terms of
the nonlinear multicomponent solvent model, wherein solvent gradients steepen ac-
cording to the adsorption and shock formation. Perturbation theory, based on a
small packing number d, /L < 1 (where d, is substrate particle diameter, L is col-
umn length), is applied to the solvent-controlled pulsed solute dynamical equations.
When moment techniques are used in conjunction with perturbation theory, very
useful and simplified system control equations are obtained. These control equa-
tions are used in some model problems to discuss HETP (Height Equivalent to a
Theoretical Plate) variations with Peclet number, with relative solvent concentra-
tion, and between solutes. Finally, numerical methods for the solvent and solute

equations are discussed.
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INTRODUCTION

Probably the most commonly used method for organic quantitative and qual-
itative analysis in chemistry today is HPLC — High Performance Liquid Chro-
matography, used for the separation and analysis of chemical mixtures. Over the
past several years many advances in instrumentation have been made leading to
higher efficiency and better applicability of HPLC, but there always has been room
for improvement. The variables most directly affecting the capabilities of HPLC for
the separation of chemical mixtures are solvent type, solvent strength, flow rate, and
column type. Though accurate models for the uncontrolled dynamics of solutes have
been developed over the past forty years, no apparent attempt has been made to
generalize them to controlled dynamics. A more comprehensive and unified model
for the solvent-solute dynamics and control is developed here; it is apparent that
the methods presented in this paper for liquid chromatography will find important
applications also in thin layer chromatography, gas chromatography, ion exchange
chromatography, electrophoresis, et ¢. Figure 1 depicts the various classes of chro-
matography. Column liquid chromatography is among the most popular, primarily
in the form of Reversed Phase Liquid Chromatography (RPLC), which also presents

perhaps the most difficulties theoretically and experimentally.

In HPLC, a cylindrical container typically of steel is filled with a substrate,
for example porous silica particles or gel (see Figure 2). The substrate is then
saturated with a solvent such as water, alcohols, hydrocarbons, et ¢. and a pressure
gradient is applied across the ends of the column to establish a flow of solvent.
At some time a (possibly unknown) mixture of chemicals dissolved in the chosen
solvent is introduced to the “top” (the end at higher pressure) of the column, and

these solutes subsequently flow down the column. The solutes may interact with
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Figure 1: General Types of Chromatography.




L A
Injection Column
Port
A
Chromatogram
Pumip
Recorder
A
Detecter
Solvent

Figure 2: Typical experimental setup for chrematography.
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the substrate, typically with different equilibrium reaction coefficients. This results
in differing effective speeds down the column for each solute in the mixture, and
hence the solutes gradually separate spatially from one another. Usually at the
bottom of the column a detector of some sort (e.g., using light absorbance at a
single wavelength or over a range of wavelengths) registers the concentrations of
solutes as they elute. Hopefully the chromatographic system is chosen such that
all the solutes are resolved when they arrive at the bottom of the column; if not,
the system should be changed in some manner. The more solutes there are in
the mixture, the more difficult it is to guess how to change the system to improve
performance. Figure 3 depicts an example of a complex mixture run through a

column, with many solutes still confounded despite the long analysis time.

In HPLC the most important mechanisms acting inside the column to effect
separation of solutes are as follows. The solute travels in the flow around particles
(i.e., the mobile phase). Near the surface of each particle there is a boundary layer
in which the flow speed is sharply reduced, to zero at the particle surface. Thus
there is mass transfer of the solute through each particle’s fluid film. The surface
of the particle is usually porous (see Figure 4) and the solute molecules diffuse into
the pores, possibly adsorbing to the solid surface of the substrate. The molecule
is said to be in the stationary phase when it enters the particles’ boundary layer.
The solvent may then displace the adsorbed molecule, which may in turn eventually
diffuse out of the stationary phase back into the mobile phase. It is often the case
that not all of these mechanisms need to be included in a model to accurately
describe the system. That is, it may be that there are clearly rate limiting steps
— those steps which are the slowest and thus limit the rate of the whole process.
The substrate is not always a collection of porous particles, but sometimes a matrix

of nonporous particles. In this case, we would delete the above steps involving
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Figure 3: Typical example of 2 complex chromatogram, with many confounded
components, even for a run time of severzl hours. Adapted from Snyder, Glajch,

and Kirkland [ ].
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diffusion into and out of particle pores.

The dynamical equations of mixed solvent systems flowing through a porous
medium are found in chapter 1. The solvent equations are in part adapted from
equations originating from the study of ground water flow; changes were made due
to the markedly variable viscosity and density of many solvent systems utilized in
chromatography. From the solvent equations comes the local velocity at which the
mobile phase (unadsorbed solvent and solute molecules) travels. The calculated
local solvent concentration controls solute adsorption, diffusivity, and dispersion in
a specified manner. The solvent and solute dynamical equations are a system of
fairly complicated second order nonlinear partial differential equations; the existence
and uniqueness of solutions to these equations is shown in chapter 2 by means of

“energy methods.”

Chapters 3 and 4 briefly cover the simpler uncontrolled solute dynamical models

and their solutions that have appeared in the literature.

Chapters 5 and 6 cover the basics of a theory of solvent modulation of solute
adsorption, which is found to be quite accurate against experiment. The theory
includes the effect of an inhomogeneous adsorbent surface — resulting in what has
been called solvent localization in the experimental literature — and also provides a
means of treating normal phase, reversed phase, ion exchange, and ion pair liquid
chromatography in a unified mathematical framework, under the name catalyzed

adsorption.

Due to the nature of the nonlinear solvent equation, a solvent gradient will
steepen if the gradient is increasing in time, and will flatten if the gradient is de-
creasing in time. If the steepening is marked, it is (experimentally) known as solvent
demizing. An increasing gradient that flows in a long enough chromatography col-

umn will form a “shock,” or jump, in solvent concentration. Such solvent jumps are
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not desireable in chromatography, because they cause impurities in the column to
be released as the jump travels down the column, producing spurious “sample” con-
centration peaks. When solvent jumps are disallowed, such impurities are released
slowly and are typically lost in detector baseline “noise.” One can find a mathemat-
ical constraint on the input solvent profile so as to disallow shock formation within
the column (chapter 7).

The use of a control theory of chromatography is introduced and briefly dis-
cussed in chapter 7, for a simplified system.

In their partial differential equation form, the solute equations are too compli-
cated to be solved practically for complex solute mixtures. Therefore these equa-
tions must be simplified as much as possible without losing relevant information.
There are two mathematical methods utilized here, that together go far in simpli-
fying the solute partial differential equations, covered in chapters 8 and 9. One
method is to use moments, particularly the location (mean) of a sharp solute pulse,
and its width (variance). The other method utilized is perturbation theory, based "
on a small packing number d, /L < 1, where d, is the average substrate particle
diameter, and L is the column length. Typically in HPLC, d, /L ~ 10~*. It is
shown that, after undimensionalizing the dynamical equations, the nondimensional

parameters appearing in the equations are

Zv 1
& == iDL = ZsPe
v €
R
€
6€p=§§t-;'
L oDL_ e
VY JPe,’

where Pe is the Peclet number, Sh is the Sherwood number, St; is the kinetics

Stanton number, St; is the fluid film mass transfer Stanton number, Pe, is the



9

packing Peclet number, or Bodenstein number, and we call ¢ the packing number.
We see that the packing number occurs in each of the nondimensional numbers,

thus restricting the validity of the perturbation analysis to values

Pe<<é

g
Stk >e€
St; >

Pe, >

S| oMo

The perturbation and moment techniques applied to the solute partial differential
equations give rise to two first order ordinary differential equations for each solute,
one for the pulse location, and one for the pulse width. For the case of a constant
control (constant solvent conditions) the HETP - Height Equivalent to a Theoret-
ical Plate is calculated. The HETP is a function that has been used classically to
characterize the “efficiency” of a chromatographic system. In chapter 9 the HETD
is calculated for a model system for a large range of Peclet numbers, for differ-
ent constant solvent concentrations, and for different solutes. It is found that the
HETP varies widely for different constant solvent concentrations and between dif-
ferent solutes, indicating most importantly that for complex multicomponent chro-
matography systems, computer control with comprehensive mathematical models
are imperative, and that it is likely that the control theory developed in this paper

will result in improved separations of complex solute mixtures.
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CHAPTER 1
Hydraulic Properties of Porous Media

and Rheology of Mixed Solvents

Introduction: In liquid chromatography, changing the relative concentrations
of solvents is the most effective way to control the system, and so it is imperative
to understand the flow characteristics of mixed solvents through chromatograph
columns. In this chapter we develop a theory for such flows, based in part on the
extant theory of the flow of groundwater through sandy soil [5,6]. The specific
mathematical goal here is to find the formula for the local solvent velocity and
specifically how this velocity depends on the local and transcolumn solvent densities
and viscosities. Then, given empirical formulas relating mixed solvent density and
viscosity to relative constituent solvent concentration, one obtains the dynamical

equation for the mixed solvent.

With the above goal in mind, we proceed to develop the necessary concepts,
find the equation for the piezometric head, give a simple example relevant to HPLC,
and finally develop the required formula for the local velocity of the solvent mixture

in the general case.

Porosity: The porosity of a porous substrate is a measurement of the extent
to which it contains interstices. It can be expressed quantitatively as the ratio of

the volume of interstices to the total volume (within a control volume):

=—=1- = [dimensionless]
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where
¥ = porosity

v; = volume of interstices
V = total volume
v, = volume of fluid in saturated sample

vm = volume of substrate particles.

An alternate expression is

§e B 208 _q . P [dimensionless]
Pm Pom
where ) )
pm = mean density of particles
pa = density of dry substrate particles.

Considering spherical particles, the arrangement of particles can greatly af-
fect porosity — Slichter (see [11]) shows that the most compact — rhombohedral —
arrangement of particles gives a porosity of about .26, whereas for the least com-
pact, cubical arrangement the porosity is about .48. The shape of the particles
may increase or decrease the porosity, which is a local variable except for homo-
geneously graded, well-packed particles (as is usually the case in chromatography).
The greater the range of sizes of particle sizes in the porous medium, generally the
greater the porosity due to resulting non-compactness of the largest particles.

Void Ratio : The void ratio of a porous substrate is the ratio of the volume
of its interstices to the volume of the particles:

v; v 9 ) .
e i . e [dimensionless]

Permeability : The permeability of a porous substrate measures its ability
to transmit fluid under a potential gradient (see below); it is commonly found that

permeability is proportional to the square of the mean particle diameter:

k, =Cd?  [L?]
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where
k, = intrinsic permeability
C = dimensionless constant depending on porosity
d = mean particle diameter.

Darcy’s Law : Darcy [5,6] found empirically that the rate of viscous laminar
flow of water through a porous medium (sand) is proportional to the hydraulic
gradient (see Figure 5):

Q dé

where @ is the volume flux, A is the cross—sectional area of the medium, z is the
distance down the column, and the constant of proportionality K is the hydraulic
conductivity. Also, the form of the potential is ¢ = z + p/v where p is pressure, and

~ is the specific weight of the fluid, so

dé
q = —I{g;

holds also for an inclined porous medium. p/v is called the pressure head for an
incompressible fluid. To understand this more fully, consider Figure 5. A test
section of a porous medium is saturated with fluid which fills tanks at either end
of the test section. An arbitrary reference level is chosen, and the heights z; of the
ends of the test section are measured. The test section is tilted, is of length L, cross
section A, and has volume flux @ through it. There is a pressure head p; /v in the

tank at either end of the test section, giving a potential

i

¢ =z + 2

~

at either end. In this experiment we maintain constant levels of fluid in each end

tank, measuring inflow and outflow and hence Q. It is found that

AP —
Q_RA—L 3



13

T Y
PEPLILELLLL LIS ELELTS LTS CLLE LTI LT LTI IR L LA T LS EL LS LSS,

Figure 3: Flow through an inclined chromatograph column filled with a homeo-
geneous porous medium. Adapted from Bear [ ].
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Extension of Darcy’s Law : When K = K(z), the porous medium is as-

sumed isotropic, but
o
4= —7-(K¢).

As ¢ increases the relation between the specific discharge and the hydraulic gradient
deviates from Darcy’s proportional law. It is found that Darcy’s law is valid for
Re = ¢qd/v < 10, where Re is the Reynold’s number (see Figure [6]). Above Re ~ 10
the interstices develop turbulent flow.

Hydraulic Conductivity : The hydraulic conductivity is defined as

K=" _ 1‘3%3 (L/T]

v

where k [L?] is the permeability of the porous substrate, v [L? /T is the kinematic
viscosity, g [L/T?] is gravitational acceleration, n [M/LT] is the dynamic viscosity,
and p [M/L?] is fluid density. For a compressible fluid in isothermal conditions,

v = ¥(p), so the pressure head is

-

s 1CB)

and hence the piezometric head (or Hubbert’s potential) is

Pd
" =z+ f s
ro 7(P)
The length z represents elevation head (potential energy per unit weight of fluid.)
The sum of pressure head and elevation head is the piezometric head ¢*.

Fluid Velocity : For a fluid which does not react with the substrate, the

velocity depends on the porosity, hydraulic conductivity, and the hydraulic gradient:

1 _,.do¢*
ﬁh dz’

Y =—

where v is the velocity averaged over the cross section perpendicular to the direction

of flow. This formula is useful if the porous medium is quite homogeneous, as is the
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Darcy's Law

Figure 6:
Bear [ ].

Deviation from Darcy’s Law at high flow velocities. Adapted from
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case in chromatography. Since K = kpg/n, velocity is clearly inversely proportional
to the viscosity n of the fluid.

Solvent Mixture Viscosity: In liquid chromatography, the most effective
control variable is relative solvent composition in systems of two or more solvents.
As mentioned before, RPLC is usually done with a water-organic solvent mixture.
Such a mixture has long been known to have a rather large variation of viscosity
over the range of possible relative concentrations. The viscosity may vary about
a factor of three for water and methanol, ethanol, tetrahydrofuran, acetonitrile, or
n-propanol (e.g., Melander and Horvath, [34] ), as shown in Figure 7.

From the figure, least square fits were calculated to estimate the mixed solvent

viscosities for methanol-water and acetonitrile-water as
Mveon (8) = .01954s% — .03492s* 4 .00879s + .01017,

nacn (8) = .025255% — 076035 + .04676s + .09711,

(in Poise (gm/cm sec), at 25° C') where s is the percent volume organic solvent.

The density variations at 25° C, in gm/em?, are
pPreon (8) = —.08287s% — .121045s + .99652,

pacn (8) = —.212s +.999,

where least squares fitting was done with data from Perry and Green [38]. Later

the local velocities and diffusivities will be calculated using the above functions for

a hypothetical variation of solvent composition within a chromatography column.
Diffusivity and Dispersion : The variability of solute diffusion coefficients

with solvent mixture composition can be adequately predicted (Perkins and Geankopo-

lis [37]) by a modified Wilke-Chang equation

e ($M)ET
DJ- =74 x10 SW
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Figure 7: Variation of binary solvent viscesity with relative composition and
temperature. Adapted from Melander and Horvath [ ).
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where T° (K) is temperature, 7,, (cP) is the liquid mixture dynamic viscosity, V;

it

e ) is the molal volume at normal boiling temperature, D; (“"e‘: ) is the solute

diffusion coefficient in the bulk liquid mixture, and

OM =D z;¢: M;,

i#j

where ¢; is the “association constant” for pure liquid ¢, z; is the mole fraction of
liquid ¢, and M; is the molecular weight of liquid . The molal volume at normal
boiling temperature can be fairly accurately estimated (if not known empirically)
by either the method of LeBas or the method of Schroeder [37].

Using the above relation for the bulk liquid diffusion coefficients, the coefficients
for ethanol, hexanol, octyldecanol, and tritium tracer in methanol-water binary
solvent are (at 25° C, n,, in centipoise)

o (46.8 + 145)3
Nm (8)11.57

o (46.8 4 145)3
Nm (8)20.05

o (46.8 + 145)3
Nm (8)37.19

o (46.8 + 145)3  DOB

Ve (B)T o

Dg = 74%x10" x 298

-DH' 2 T4 x 10~ x 298

Dop = 7.4 %10 x 298

D, ~ 7.4 x 10~

shown in Figure 8.
Using the data of Greenkorn [17] (see Figure 9) one may estimate the disper-
sion coefficient D, over a very large range of linear velocities for different solvent

compositions. From Figure 9, we have approximately that

[

~ a + kPe,

with & ~ 1.163 and a ~ .7, where D is the solute diffusion coefficient in the

bulk solvent. Thus the packing Peclet number (or Bodenstein number) can be
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Figure 8: Theoretical bulk diffusion coefficients for trace octyldecanc], hexanol,
ethanol, and tritium, at various volume fractions of methanol in water. At 25°

C.
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media. Adapted from Greenkorn [].



approximated as
vd,

PCP:D

~ (1.163 + .7Pe™*) !,

Solvent Continuity Equation: Here we consider the density of the entire,
mixed solvent. Thus we need not worry about adsorption source terms in the

equation, since they cancel. For a control volume we obtain, assuming 9 = 9(z, 1),

p = p(z,t), ¢ = g(z,t), and p = p(z,1),
0 o
E(Pﬂ) = —E(PQ)-

Thus if p = p(p) only, then

a av adp o9 dp, Op
—(p)=p—+0=—=(p—+0=—)—=.

gt P =pg tig =l +95) 5

The solvent in the column is slightly compressible; define a coefficient of com-

pressibility 3 by
p=12
pop
The substrate can be considered elastic — it can undergo deformation and thus
change the porosity 9. This does not necessarily imply that the particles themselves
are deformed, though deformation can be dramatic, as for Sephadex packings with
high “G-numbers,” with Janson and Hedman [24] finding exponential variation of

permeability with pressure drop. The changes in porosity due to pressure changes

are characterized by the coefficient

__1 %
0_1—ﬂ3p°

From the above relations, we have

8 9y = (,20 4 9920 _ _ 9
=5(p9) = (pap +193p) o = pla(1—9) + #9] 5.
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Thus, using the relation between pressure and the Hubbert potential ¢* = z + p/,

9¢* _19p
ot  pgot’
so that
L S 9¢°
5:(P9) = gp*[a(1 - 9) + B0] == .
Set

S; = gp’[a(1 = 9) + B9,

which gives the mass of solvent added to or removed from storage in a unit volume
of the porous medium per unit change of the potential ¢*. Then the continuity
equation can be written
d¢" a
Se = =—=—(pq)-
At this point, typical assumptions made (Bear, [5]) for analysis of groundwater

flow are: 1) Darcy’s Law is valid; 2) S;, K are independent of variability of ¥ and

p(so K =k,pg/p=kypog/p ); and 3) qg—z < 19%‘:-. Then we have that

94" _ _0q
So ot 0Oz

where pS; = S;. The second assumption would seem generally valid for NPLC
solvent systems, but clearly not so for RPLC solvent systems. RPLC will be dis-
cussed shortly; first we consider a simpler problem of pressure variation within a
chromatography column.

Using the above assumptions, using Darcy’s law, we obtain

28" _ 0 08
So ot az(h Oz )

for an isotropic porous medium. If the porous medium is also homogeneous, then

K is constant:
ad¢” B 0% ¢
So 5 = K B2
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A typical chromatograph column for HPLC operates at high back pressure and
has a very nearly homogeneous, isotropic porous substrate, so for an NPLC solvent
Hubbert’s potential will be governed by the equation

05" _ K0
6t _So 3.22,

with boundary conditions

¢° (Oat) = f(t)s ¢.(L1t) = g(t),

where f(t) and g(t) are specified by specifying end pressures.

Example for HPLC : It is not uncommon for HPLC pumps to be capable
of back pressures of about 10 to 6000 psia (or: 1 to 400 atm). Often it is desired
to vary the type of solvent in time. This involves a variation in the viscosity of
the solvent mixture, and hence by Darcy’s Law either the pressure or the velocity
must change; if one wishes to keep the velocity constant, the back pressure must be
slowly changed.

Let’s consider a situation at constant solvent composition in which we specify an
acceptable initial pressure gradient and suddenly change the column end pressure.
This situation is modelled by

08" _ K o'
ot S, Oxz?
¢"(0,t) = ¢, constant

for0<z <L,

¢"(L,t) = ¢, constant
¢*(z,0) = f(z) given, such that

¢1 # £(0).

This type of problem is best solved by setting

¢. =u+w,
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where
Tu
dx?
U(O,t) = ¢1

=0

u(L,t) = ¢,

ou _ K o

at Sy Ox?
w(0,t) =0

w(L,t) =0
w(z,0) = f(z) —u(z),

Clearly then
T
u(z) = ¢1 + (¢2 “451)3
=, . ,ATT Kn?n?
w(z,t) = Z; ap sm(—L—)exp(— 5.7 t)

with
=2 [ O ~ 91— (82— 60 S1sin "
so that
R R e e
+ 3 s exp(-2 20 [ peysin( 2 de
If -
f(z) = @1+ (%2 = 21) T,
then
f f@)sin("TEydg = ~L > BE =B ey Ky

n=1

Since these sums are absolutely convergent we may combine the two as

¢ =¢, + (4 -qs,)%

+ _2_ \E: (2 — @2)(—=1)" — (¢1 — ®1) nrzT Kn?*rn? ),
™ e}

sin( I Yexp(— 5. 12
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the sum of steady-state and transient parts. If only the back pressure (at z = 0
) is changed, then ¢, = ®,, and ¢, # f(0). Then at around z = 0, ¢t = 0
there is a boundary layer such that | 9¢* /0z > 1, as seen in Figure 10, implying
that the instantaneous local average velocity is very large there, as is the pressure
gradient. To avoid rearranging and possibly shattering the substrate particles due
to the resulting large stresses over the length of a particle, (reaching critical values
of a for the substrate) changes in prescribed pressure should be made smoothly and
slowly.

Velocity Variations in RPLC Solvent Systems: The solvent is the carrier
of the solutes in the mobile phase; as such, the solvent determines the limiting
velocity of the mobile phase fluid through the column. Waves or local variations of
solvent composition create corresponding changes in viscosity and density, though it
is the overall solvent composition in the entire column that determines transcolumn
pressure gradients and hence overall flow. This will be borne out by our next
calculations. To find the dynamics of the solvent system we first need to consider
the dynamics of the pressure gradient. In order to accomplish this, we need to

consider S; and K to be variable with p and 7. In this case we use the equation

d¢" d
Sy — =——(pq),
with
" -0¢° - _ kpg
SO =P2[a(1_19)+ﬁ19]! Q‘:_I\E ’ K =Tv
where 3 = %%ﬁ— is the compressibility of the solvent and a = ﬁ%ﬁ- is the com-

pressibility of the solid substrate. When gradients of binary solvent are used in
the column, S;, p, and n are dependent on the solvent concentration s(z,t). This
implies that in order to find the pressure gradient, the solvent concentration dy-

namics must be known, but to find the solvent dynamics, the pressure gradient has
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transient
\ / .\_""-'\"_ -
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Pressure Head ¢
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9 Length Fraction 3

Figure 10: Efect of instantaneous change in end pressure head showing steep
gradient near column end. (Eighty terms taken in summation — oscillations
nonphysical.)
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to be known. Thus the hydraulic and solvent dynamical equations must be solved
simultaneously.

The dependences p = p(s) and n = 5(s) should be found empirically, as well
as dependencies on p and T, since there is no accurate means of estimating them.
This is not an unreasonable task, given that there are only a few important solvent
components typically used in RPLC and NPLC. We expect that the dependencies
will be much less important in NPLC, as discussed earlier.

It should be noted also that pressure (essentially ¢*) dependencies of relevant
parameters should be found, since pressure can vary a few hundred atmospheres
down the column. Figure 11 depicts the variability of viscosity with pressure. We
find that, for the solvents typically used in chromatography, viscosity can be con-
sidered constant with respect to pressure over typical column pressure gradients.

We consider density essentially constant with respect to pressure. The most
dramatic variations of mixed solvent density and viscosity derive from changes in
relative concentration of the solvent components.

The equation for the Hubbert potential for solvent gradient conditions in the
case where the pressures are fixed at either end of the column can be calculated as
follows. Assume that the solid substrate (e.g., silica) compressibility « is essentially

zero compared to solvent compressibility 4. Then we have

08" _ 0 kp? 08"

7]
B y e —
pﬂgat —3;1:( n Oz

with initial condition (0 < z < L)

T

¢*(z,0) = ¢y + (¢ —¢'1)E

with p(s(x,0)) = constant, 3(s(z,0)) = constant, and n(s(z,0)) = constant fol-

lowing from taking s(z,0) = constant. The boundary conditions are

¢"(0,t) = ¢, fixed, ¢°(L,t) = ¢, fixed.
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Figure 11: Viscosities of selected fluids as a function of pressure. Adapted from
Bridgman [].
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Since typical values (for the solvents of interest) of compressibility are less than
10-'%¢gs, volume fraction ¥ about 10°, viscosity about 10-?cgs, and permeability
about 10~% to 10~®cgs, the coefficient of the time derivative can be seen to be
a factor of about 10~° smaller than the space derivative coefficient, so one may

effectively consider the system to be always at steady state:

9 kp® 0¢”

=()
8.1:( n Oz e
so that
2 -
Ep__af = Qyp constant.
n Or

Thus the initial condition may be discarded since it will decay so fast onto the

steady state solution. One may solve for ¢* now: we have

9¢" _ aon(s)
oz kp(s)’

Time enters in now only as a parameter. Thus one obtains

sen= [ Bdos s

but

= L
¢*(L,t) = a—o_/ () dz + ¢y = ¢,
ko p2(s)
implying that
o _Ké—d)
T (L) 4
fO p?(s) o
Therefore
(¢2 — &1) “ n(s)

JE 2l de 7o p?(8)

0 p?(s)

This calculation enters in the equation for solvent dynamics via the velocity,

¢ (x,t) =

dr + ¢,.

and hence gf— . Thus we use

9¢" _ 1(é2 — ¢1)u(s)

oz e (.) foL n(() dis
P2 (s)
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The velocity of the mobile phase is thus

kg(¢s — ¢1)/L
19p(s) fu i(-’—-d.’:zr

p2(s)

V=

_ kpg 0™ _
1= "9y 0z

| =

Now this form of the linear velocity can be substituted in the solvent dynamical
equation. The requirement of fixed end pressures is indeed physically reasonable.
Intracolumn Reynolds and Peclet Numbers: We found that the piezo-

metric head in the case of an incompressible solvent varies as

(f2—¢1) [* n(s)

fOL ",(( )) dz’o P*(s)

¢ (x,t) =

dz + ¢,.
Rewrite this in a normalized form (with £ =z /L)

" — ¢y L (s -1 f¢ S
R el LA L

0

The linear velocity within the column was found earlier; let

the Reynold’s number is

RE(J? t) — dpvp s dpkg ¢2 _¢1
. n Iy Lfo‘f,-dg’

and we consider the quantity

5 Red  Agy -1 ! =
Rem B3(89) ([ 1)

Finally, we consider a Péclet number Pe = Pe/d,. To get a feeling for what
the range of these variables might be, consider a methanol-water solvent system

with hypothetical linear solvent composition variation within a column. We choose
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three hypothetical intracolumn composition variations, all increasing in methanol

concentration from column bottom to top:

si1(§)=1-¢
82(€) = .37 — .37¢
s3(€) = 1~ 63¢

Note that s, is associated with an increase, then a decrease in viscosity, s, is
associated with an decrease in viscosity, and s3 is associated with a increase in
viscosity. The corresponding variations in p, n, v, D, Re, and Pe are plotted in
Figures 12, 13, 14, 15, 16, and 17. One may see that the variations in all of these
variables are substantial. Of course, to get the solvent dynamics one must combine
the velocity calculation obtained in the previous section with the solvent continuity
equation. The solvent continuity equation, along with the solute equations, will be

discussed in more detail in chapters 2, 3, 4, 8, and 9.
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Figure 12: Intracclumn binary selvent density variation for three hypotheticel
solvent concentration distributions (see text). At 25° C.
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Figure 13: Intrzcolumn binary solvent kinematic viscosity variation for three
hypothetical solvent concentration distributions (see text). At 25° C.
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Figure 14: Intracolumn binary sclvent velocity variation for three hypothetical
solvent concentration distributions (see text). At 23° C.
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Figure 15: Intracolumn binzry solvent Reynolds Number vari?tion for three
hypothetical solvent concentration distributions (see text). At 23° C.
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Figure 16: Intracolumn solute (hexanel) diffusivity variation for three hypothet-

ical solvent concentration distributions (see text). At 25° C.
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thetical sclvent concentration distributions (see text). At 25° C.
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CHAPTER 2
Existence and Uniqueness of Solutions to the

Solvent and Solute Equations

Introduction: Here we examine the basic solvent and solute dynamical equa-
tions as to whether or not they possess solutions, and also if these solutions are
unique. The actual form of these equations is discussed in more detail in chapters
3, 4, 8, and particularly 9, the latter chapter dealing also with numerical solutions.
For this chapter, the mathematical structure of the equations is discussed in terms
of Sobolev norms, and no mention is made of Sobolev norms outside of this chapter.

The chosen normalized form of the solvent equation is

ds ds
E + ﬁ(s)a_é = 0:
with
o(s)
1+ 4550 (s)

a bounded strictly positive function; effects of a nonlinear isotherm b(s) are consid-

pA(s) =

ered more important than the relatively very small effects of dispersion, fluid film
mass transfer, or intraparticle diffusion. The coefficient ©(§, 7), the local velocity of

the solvent, has been discussed in detail in chapter 1, and has the form

o= (o [ Zeag)™,

where p = p/po is normalized density, and #§ = n/n, is the normalized dynamic

viscosity. The chosen form (for this chapter) of the solute equation, which includes
a linear isotherm, dispersion, and intraparticle diffusion, is

de de 3D 3c|
Vet v + — (l—ﬂ)ag -

or "' TR =2
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dé e 206
ﬂa—+—(K( é)) — +E_9)_0

subject to the initial and boundary conditions

&e,6,7) = (£, 7)

aCl -
39 e=0 ¢
c(£,0) =0

é(0,€,0)=0

c(0,7) = ¢(r),
with ¢,¢é € L,(0,00)
(One may also include fluid film mass transfer effects, as in chapter 9, but here they
are omitted for clarity.)

Mathematical Preliminaries: The reader is guided to reference [28] for a
more thorough development of Sobolev spaces and existence of solutions to partial
differential equations. Here we show (local) existence and uniqueness of the sol-
vent and solute equations. Existence is shown by introducing an iterative solution
technique, wherein each iterate possesses a unique, bounded solution, bounded in-
dependently of the iteration number, and then showing a Cauchy criterion holds for
the sequence of iterates, together implying uniform convergence of the iteration to
a solution.

We use the inner product and associated induced norm

(3 02) = (s (o Yy a7 = [ a6 mhua )

llell* = (u,u),

in conjunction with the Sobolev classes of inner products and norms defined by

6"”1 a’uz
(u11u2)H’ Z( ae’ 661 )
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lellfs = (s w)ne.
For functions a({, 7) we use the max norm
| @ | = max{] a({,7) [: 0 < { < oo}
We use the results that for u, v € L[0, c0)
(u1,at2) < lus[ llauz || <[ @ o [fean || [z ]
s sz < 5l 7 + f )
and the Sobolev inequality for u € C'[0, c0):
| u G < Hlull® +2]ull |l Il
which implies that
0 2 ulP + P + 151 < 2l < 2 el

We also will make use of the following versions of Gronwall’s Lemma and Picard’s

Lemma, stated here without proof:

Gronwall’s Lemma. Suppose y € C'[0,T], ¢ € C°[0, T] satisfy
dy
5 < ecy(t) + ¥(t); OLLE P

for some ¢ > 0. Then

WO <O + [ 160 dry;  0<t<T.

Picard’s Lemma. Let {n*(t)}, k = 0,1,2,... denote a sequence of nonnega-

tive continuous functions such that

pt+! Sa—l—b/ n*(r)dr
1]
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for 0 <t < T and a, b > 0. Then the sequence is uniformly bounded; if a = 0, the

sequence converges uniformly to zero.

Uniqueness of Solutions to the Solvent Equation. The solvent equation
is
0s 0s
e 8)5z =0,
ar + A )6{
where we note again that 3(s) is bounded and strictly positive.
Lemma 1. Solutions to the solvent equation are unique.

Proof: Let u,v be solutions. Then w = u — v satisfies

22+ Blu) g — PloYgg =

but
ou dv Ow dv
ﬂ(fi)a—€ - ﬂ(”)ég = ﬁ(")g +(B(u) - ﬁ(v))a—g,
and by the mean value theorem,

(Bn) - Blu) G = Bow.

Thus we have

% - B(u)g—? - ﬁ—;fw =0,
with
w(é,0) =0
w(0,7) = 0.
If the evolution of “energy” is calculated, we find
1d Jw

§d_( w(-,7), w(:, T))—(waa )
du,
e )

dw =
= _(waﬁ(ul)?jg + B
- | 33""

| B(w1) leo (w,w) = Klw(-,7)II%,

oo (w, w)+~ | B(u1) loo (w,w)

t\'JI'—‘
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so by Gronwall’s Lemma,
lw(, T)II* < €7 [lw(:, 0)?

and since w({,0) = 0, the above implies w(€,7) = 0 on the entire domain, and
hence u; = u,.

Existence of Solutions to the Solvent Equation. In this section we in-
troduce an iteration whose iterates s" possess smooth solutions on [0, L] x [0,T],
that the iterates are bounded independently of n, and satisfy a Cauchy criterion,
so that the iteration converges.

The iteration is defined as

%1 +1
as" L Os™

o TP o

=0,

where the coefficient is given by

g = B(s").
The initial and boundary conditions for each iterate is

s"*1(0,7) = ¢(7)
s"t1(€,0) = s, constant,
#(0) = so.
Lemma 2. The iterates to the above problem are bounded independently of n
in the H? norm.

Proof: The iteration begins at n = 1, and we take s° = s5. Clearly s! exists
and is bounded. Assume s* exists and is bounded. Note from its definition that the
coefficient 3 is positive, smooth, and bounded. Note also that each iterate problem

has a smooth, unique solution for a finite time; shocks will take time to develop if
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¢ is smooth. The evolution of the norm is given as

1d et ey 1dyapipo
S ) = S|
6Sn+l
== n41
(s, 55
asn+!
— e gP 1 n
(s"*',B 7€ )

as”
<[ s | o€ = l[s"* 11" + ¢*(7)8" (0, 7),
(using integration by parts as needed) where

n_ 98
T Osn

This is not sufficient to bound the norm, because of the derivative of s® appearing

on the right hand side. We then use the solvent equation to find the evolution of

V.7 Rt
g

the derivative

grsntl  Grsntl gt gantl

aear TP et 5 ae

=0,

with boundary conditions

83"“ o ¢:
oe 7= "50,n
6S"+1

which are obtained also from the original solvent equation. Using integration by

parts and the usual inequalities, we find

BB, op B g
2155 6l =2 )
3S"+1 azsn+l naS" asn-i-]

= e Y e e

S!‘I

a Js

aSn-}-l 4 " n-41 "
oo | 3¢ I* + A" (0, 7)( T (0,7))%,
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but the max norm of the derivative of s* can be approximated by the L, norm of
the second derivative of s® via the Sobolev inequality, so that we now need to find

the evolution equation for the second derivative:

1 d o%s g L B i
” 662 (3 )” ( aEz ? agg_r )
62 n41 833n+1 82 n41 63 52 n+1 623n+1 r.a‘sn+1 a‘.’sn
=g e )t o ¥ g Tae ) T 7 T e
Orgntl 4 2asru-i»l
R 32 n+1 4 & n+1 82 n+1 62 n
<519 |ul S o | 6 P 19" el Z o 1 M S
N 62 n41 N 0 az n+1 5
10" lal G 1 155 IS+ +6° 0 ) @ T

To obtain an estimate we need to relate the above estimates to a Sobolev norm, as

follows: P Hen
i n+4+1]2 < n 5 n+1||2 2 n
" <1 oo 3 loo [Is™FH11* + ¢%(7)87(0,7),
< Ko s" ||u= [ls"*H]|* + ¢2('f)ﬂ"(0, 7),

d Os"t! ) R _ ) gn+1 :
E”B—E("T)” <K |v |oo| 65 Joo l| 36 || + 3" (0, T)( 5€ (0,7))

(OaT))z,

a dg*t
< Kol e 12517 + 87 0,

I <519 el B o 1551
F17" L |3‘;(f R ||"’2(.3L';.+ 115
1ol G 12 15 NSl + 870, )(328;1(0 )y
< |l nmnazg; s 15 e 0 e+ 153
#8215 1] + 30, ) S (0,7))
< K|l umna“" =i+ 8 0N S O Y

0¢?
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so that, adding these three estimates, we obtain

snl

I B < Kl s 1574 [ + 627187 (0,7) + (0, 1) T (0,7

92sn+1
o2

this last step also following from the induction assumption. Let the forcing be

+8" (0, 7)(—5—(0, 7)),

denoted by

F(r) = ¢*(7)B(0,7) + (0, T)(ag(o ;7)) + B0, T)(Béz (0,7))?

noting that for these boundary terms no superscripts are necessary, so the solution
is

I|3n+1('ar)”?i’ —=

[0z + [ FGryar],
0
so it is clear that a time T can be found such that
l® 2 (IS < K°, for0< < T,

where K* is independent of the iterate number. Thus the lemma is proven.

To prove convergence, we need to find the evolution of the norm of

7]“+ . ('E'J T) = s"*! (5: T) e g (51 T)'

Lemma 3. The iteration n* — 0 as n — oo.
Proof: We have the equations

asn-l-l rl+l

+ (s )

=0,

asm

with the usual boundary conditions. Subtracting these two equations from each

other, we obtain

9 nt1 n n—1 _3_ shtl _ gn s" n-1
(" =)+ B ) )Bs™) - 8" )°

+1

65 ==
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Using the mean value theorem, we find the equation

ann-i-l n—1 ann+1 — AN ..n
81‘ +)6(S ) aé "‘¢' 77 ]
where
n,n ___" n 631’11-1 n
¢"n" = —p(s") 3¢ "

with homogeneous initial and boundary conditions. Thus the norm satisfies

li n+1 n+1 _li n+1||2
ann+1
n+1
_(Tl ’ aT )
ann-{-l
. n+41 n,n __ An

<| 8" leo 0™ I+ ]
S E°(In™1* + ™+ %)
on 0 <7 <7T,. Then by Gronwall’s Lemma,

I *H1* < exp(K°r)(|ln™** (-, 0)||* + K ] ™ Gy 7o) dr*),

0

but ||y (-,0)]| = 0, so

I+ i) < K [ Gy dr

0

(< BT, 2)IP),

where 0 < 7 < T}, so by Picard’s Lemma (or note that we can choose T} such that

K*T; = 1/2), the sequence converges uniformly to zero:

n

7" —0 as n — oo.

Uniqueness of Solutions to the Solute Equation. We have seen that the

solution to the solvent equation is unique and exists; also, it can be shown [28,
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and references therein] that a unique solution exists for a linear partial differential

equation of the type

dc d*c

‘é_ + U(ss T) o D(E T)Béz

on (537—) S [07 1] X [0500)1 C(E7T) =0, C(O'IT) = ¢'(T) C('3T) € L, [0?00)’ where v, D;
F are all bounded C? functions with D > 26 > 0, § constant, for all ¢, 7.

=F(,7)

Here we will show existence by converting the solute equations into an iterative
problem with each iterate possessing an equation in the form of the above linear
equation, so that each iterate exists and is smooth locally. Below we treat the case
of the solute unaffected by fluid film mass transfer; basically the same method as
below may be used when fluid film mass transfer is important.

Lemma 4. The form of the solute equation as mentioned earlier

dc de 3D

)52 +v m+__“—)_' =0

9é e 208,
651'_'-}-5;(1\((3)) —D(5—92+-9'3—9) =0

subject to the initial -~ boundary conditions

&(0,&,7) =c(§,7)

Bcl
dple=0 .
c(§,0) =0
¢(2,6,0) =0
C(U’T) = d’('r)
can be transformed into an equivalent form
acn+1 acn+1 a?cn+l

or +v 66 "Dea—fz‘l"L H(E,T—f)c"(f,f‘)d?:O,
e(0,7) = ¢(t)
C({,O) =
c € L,[0,00)
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That is to say, the transformalion is isomorphic.

Proof: We wish to solve the following problem:

dc de 3D aé d’c
Vor Tvae T R Dgglems Do =0
aé ' - F d0’¢  20¢

subject to the initial — boundary conditions

&1,&,7) = (€, 7)

g, _
Op'e=0
c(§,0) =0
é(0,£,0)=0
c(0,7) = ¢(7).

First we note that the equation only for é above is equivalent to
2

B e 9 -
E(@gc) - D-a—é;(‘I’QC) =0

where ®(€,7) = B + K(&, 1) subject to

0fl _, = c6,7)

One may solve for ¥(p,{,7) = 0é(p,€,7) in terms of the “boundary forcing”
¢ = ¢(&,7), using the Green’s function for ¢. In order to carry this out, we need
to express the boundary forcing ¢ above as a body forcing appearing in the partial
differential equation instead of in the boundary conditions. Thus we need to find

an eztended operator A, derived from the original operator A, where

9 o
A = a—T"}’(E,T) - Da{.
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Let the domain of A be described by the set of functions W(p, £, 7) satisfying

AW =0
W(0,£,7) =0
W(e,€,0)=0

W(o,&,7) = &(1,6,7) = (&, 7).

In these equations £ is merely a parameter. Introduce an inner product

(v, W));/m fl VW dodr,

where V = V(p,&,7) is an integrable function whose properties will be defined in

the following development.

We will now define a problem for V' adjoint to the one defined for W above, by

using the inner product. Using integration by parts,

(V, AW)) f f VA(W)deT

8" W

:f f V[—(v(&,‘r)W)— G dedr

_j {(VAWIY f / 17 W'dgdr

+f {~ DVaW f f( Da—Va—W)d dr

:/ {VAyW]e dg—] / 7-*-W'dgd'r

+] " DVBW

so we identify the adjoint operator A* as

82

. a
A" = —7(677’)5; - Da_g'*”
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and let the domain of A be described by the set of functions V(p, €, ) satisfying
AV =0

V(e, 6,7 = 00)=0
V(0,¢,7)=0

VK1, &, 7) = &1, &, 7)=elE, 1)
This allows the equality

(V, AWY)) = (A" V, W)).
Now we define the extended operator A, such that
(V, AW) = (A°V,W)=(V, 4. W)
Again using integration by parts, we obtain
o 33
(A V, W) = fo ]o A (VYW dpdr

_ fnw _/Dl[—"y(f,f)g—‘:l-v—D

=/01{_7v1-1f]g° dg—-/m /1(—V£(7W)) dodr
+] fes D—W]Ddr—[ / (- Da—vm—v)d &

_ fu VW= do— f f (—VE(WW)) dodr
+f (- D—W]odr—/m

so we identify the extended operator A, as

2
g VIV] dodr

62 W

A= 26 - D2 1 2D8 (o - 1)el(e,7),

0p?
and let the domain of A, be described by the set of functions W (0,€,7) satisfying
AW =0

W(e,£,0)=0
W(0,6,7)=0

W(1,¢,7)=0.
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Having found the body-forcing equivalent to the original problem, we now apply

separation of variables to the homogeneous problem to find the Green’s function.

oc(0,&,7) = f(m)g(0)h(£)

gives
S (6N (rale) = D (f(raCe) =

so that (k > 0)
(,yf)f e Dg”

f g
with boundary conditions g(0) = 0 = ¢g(1), implying that, setting x = Dn?n?,

g(p) = sin(nmp).

Also, we have

Fa +"‘)f 0,

so that

which simplifies to

_A'Y(f,o)ex —Dnig? Td_T

Thus we have the solution for the homogeneous initial and boundary conditions,

and with body forcing (£, p,7) as

T 1
wi(o,6,) =4[ [ Gloym 3, 7)(E, 5,7) db d,
0 0
where the Green’s function G is given by

7(€,0) exp(—Dn?n? [[ 77 o)
7(617- _T)

sin(nmo)sin(nwp).

G(Q:T; é: = Z
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Earlier we found that the body forcing we will be concerned with is
€(§,0,7) =2D6'(e — 1)c(¢, 7).

Substituting this into the integral of the Green’s function and integrating by parts,

we obtain
T 1 .
[ ] Gleri6,72D8 (6~ 1)elé, ) dga
o Yo

= [ (Gleri8.7)2D8(2 - 1t )y

—/ / a—Gé 1)2Dc(é,7) dp dT
f 39'9 2Dc(€,7) d7.
0
Also,
oG = y(€,0)exp(=Dn?n? [{~F oy
B le=1 =22 e sin(nme)(=1)"
n=:1 2

so that we now have

'}’(E 0)exp(—Dn?x? f{ ™7 —des) s .
2 v sin(nmp)(—1)"*'ne(€,7)d

Clearly the series appearing in the integrand is uniformly convergent in 0 < p <1

and 7 > 0, so we may differentiate ¢ with respect to p:

g_z :4“)] Z L& = 7)(-1)"*'n gg(m)c(g,ﬂdr.
Since
%(@) = nn(-1)",
we obtain
gzim: _4”217]; ,,Zj:l n’I, (&, — 7)e(¢, 7) df.
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With this expression the original equation for ¢(€,7) can be written as

9% + Vg—g —-12D%n*(1 - 19)] Y nL (6,7 —#)c(€,7)d7 = 0.

n=1

The problem to be solved is now in the form

dc Jc ! > x
19§+V8_5+]o H(¢,r=Fle(; T)df =

with boundary conditions

é(£,0) =0, &0, 1) =),
and hence the lemma is proven. Note that

QE7) = /T Hed?

is bounded if ¢ exists, since H is bounded on [0, 7) and ¢ is assumed in L, [0, c0).
Uniqueness of the Solution to the Solute Equation: For any two solu-
tions ¢;, ¢ N = ¢; — ¢, satisfies

317
or

&*n

‘pg2 U

o+ HEr -t -

with initial and boundary conditions

n{0,7)=0
n(€,0) =0
n € L,[0, 00)

Lemma 5. The above equation and boundary and initial data for n implies
1 =0
Proof: (Though the argument can be carried through with D, # 0, here we

take D, = 0 for clarity of the argument.) The form of the solute above equation
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suggests using Laplace transformation in the variable 7. Introduce the transforms

for ¢ and initial condition ¢ as

3p)= [ et o(rydr

0

AEp) = [ e HE)dr

0
Eg(ﬁ,p) = f e Pr C.‘(f,"') dr, giving
0
1 =¢ —Ca
and so
dn

d¢
with initial condition 7(0,p) =0,

Ipif+V— + Hij =0,

using the convolution theorem. The transformed solution can then be expressed as
_ _ "y § o=
7(6,p) = (0, p)exp(= | (37 + 7H(E,p)) de) = 0.
0

Thus ¢, = ¢&,, and hence ¢; = ¢, on the whole domain, and so the lemma is proven.
Existence of Solution to the Solute Equation: This follows by showing

that the solution of the iteration equation given by

acn+1 acn+1 a'.’cn+l . )
77 +v o - D, a6 =G

where the forcing is given by

G (6,r)=— [ H(e,T - ) (,7)dF + F(&,7);

(0, 7) = §(7)
c1(£,0) =0

"t € L,[0,00)
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is bounded independently of n, and satisfies a Cauchy criterion; hence the sequence

of twice differentiable functions {c"} converges, to a twice differentiable function

c(&,7)-

With this in mind, we proceed to state some lemmas.

Lemma 6. The above iteration at the (n+ 1) step is bounded independently of

| 2% (7)) |pa B K

where K depends on T,, depends on up to the second derivative of the boundary
data, and &, (where D, > 2§ > 0).

Proof: See reference [28].

Lemma 7: The sequence of solutions to the iterative problem satisfy
™ 2 < K(ln(-, 0)1%- +/ 7" (-, )| d7)
0

where n**1 (€, 7) = **1(€,7) — (£, 7); since n(£,0) =0, the sequence n"*' — 0.

Proof: See reference [28].

Hence the iteration is bounded, satisfies a Cauchy criterion, and hence con-

verges uniformly to a unique solution.
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CHAPTER 3

Uncontrolled Solute Dynamical Equations

In this chapter typical uncontrolled dynamical models of solutes in chromatog-
raphy that have appeared in the literature will be reviewed quickly. Solutions to the
simpler equations will be found in Chapter 4; subsequent chapters discuss controlled
dynamics.

Equations of conservation. For simplicity, let us consider only one solute in
the sample mixture as it travels down the column. The mobile phase is considered to
be in plug flow through a packed bed of porous particles, all assumed to be spheres of
uniform radius R and porosity 3. Plug flow refers to the case where the flow can be
averaged over each cross—section down the column; the flow must be quasilaminar.
The solute in the mobile phase has concentration ¢(z,t), where ¢ denotes time and
z denotes distance down the column. The solute in the stationary phase within the
particles has concentration é(r, z,t), where t and = are as before, and r denotes the
radial distance from the center of the particles. The column is of length L and has
a void volume fraction ¥, the volume available to the liquid outside the particles
relative to column volume. The concentration of adsorbed sample molecules in the
average particle at distance z down the column is denoted ¢(r, z,t), while the solute
concentration inside the average particle is denoted é(r, z,1).

Conservation of mass across a control volume in the column gives the equation

of continuity [2,9,11,14,29,30,32,33,41,50,51, 52,53]

de de 0s d*c
e Womop (L= — Dy =10

where 3§ = §(z,t) is the average solute concentration inside the particles, whether
adsorbed or not. The coefficient D, takes into account axial dispersion and diffusion

in the flow. If the particles are nonporous, the source term in the discussion above
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is instead (1 — 9)0q/dt, so the continuity equation is

dc de
ﬂa + Va

dq 8¢
< M Y}
ot ¢ Oz? 0

+(1-9)
Equations of Intraparticle Diffusion and Fluid Film Mass Transfer:
For the average particle at position z down the column, the diffusion of solute into

the particle and adsorption to the solid surface is given by

éi&"'“@_pp(

e 208é
ot | ot ) =0,

or? s r Or
where the adsorbent is of spherical particles of radius R and D, is the diffusion
coefficient inside the particles. For spherical particles, the surface area per unit bed

volume is
3(1-19)
=y
so that flux of solute into the particle pores gives the rate of change of the average
particle concentration:
. 03 3(1-9 aé
(-9 = [(T)DP Br oo
The rate of mass transfer of solute across the fluid film surrounding each particle is
given by
D, gf ir:R = ky[e(z,t) — &R, z,1)].
If the resistance to mass transfer is relatively small, at r = R we may take ¢(z,t) =
&R, =, 1),
Reaction equations (equilibrium theory). When V is not so large that we
must use kinetics equations for reactions of sample molecules with the substrate,

we assume a local equilibrium relation, called the adsorption isotherm, between

adsorbed and unadsorbed molecules:

q(z,t) = h(c(z,1)).
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The shape of the function h(c) affects the profile of a concentration pulse travelling

down the column.

In the linear equilibrium case, we have

glz;t) = Kise(z;t)

This relation is accurate whenever the solute concentration is quite small. A typical
relation for higher concentrations is the Langmuir isotherm, which indeed reduces

to the linear case for small ¢(z,t)

B kJQC(-T,t)
g(z,t) = kyC + (ky — ky)e(z,t)
so that
. k
Ko = kjg'
b

Reaction equations (kinetic theory). For weak adsorbers or small solute
concentration, there is a simple relation describing the rate of adsorption at (z,t) :

%! = k; Qc(z,t) — ks Cy(z,1),

where k; is the forward reaction rate constant, () is the adsorption capacity of the
column, k;, is the backward reaction rate constant, and C is the “solvent capacity.”

At steady-state we arrive at the linear equilibrium relation
-0 Q
g ) = K =salE ),
oe,t) = K Fe(z, )

where K° = k; [k;.
If instead we assume the forward adsorption rate is proportional to the product
of unadsorbed molecule concentration and the concentration of available adsorption

sites, and that the backward reaction rate is proportional to the product of adsorbed
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molecule concentration and concentration of “available sites” in the solvent, we
?

obtain the Langmuir kinetic equation
il = k (Q — g(z,1)) c(z,t) — ks (C — c(z,t)) g(z, t).

This will lead to the Langmuir isotherm at steady-state conditions. If the solvent
capacity is always much larger than the unadsorbed molecule concentration, then

we have
6q |

ot l = k; (A - g(z,t) c(z,t) — k Cq(z,1).

Dynamical equations. We first consider the equilibrium dynamical equa-

tions. Combining the isotherm equation
q(z,t) = h(c(z,t))

with the conservation equation

de de
ﬂ—é-E+V— +(1—19)

yeilds the simple hyperbolic equation

n9c  Oc
“(1+—]9—h E‘I"a——os

where v = V/¥ is the linear velocity. For a Langmuir isotherm this has been shown
to be an adequate model in circumstances with high solute concentrations (see
Figure 18).

There are two primary sources of nonequilibrium that can be of importance —
fast flow velocities v, and initial conditions not satisfying the equilibrium isotherm.
Initially, at the introduction of the sample into the column, there are no adsorbed
molecules. However, in using the equilibrium isotherm we actually are assuming

that there is (immediately) a concentration of adsorbed molecules proportional (in
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Figure 18: Predicted (solid curve) and experimental (+) concentration profiles
for a corrected nonlinear hyperbolic model (see text). Sample sizes .0025 mmel,
.00625 mmecl, .025 mmol, and .075 mmol. Adapted from
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the linear case) to the concentration of unadsorbed molecules introduced into the
column.

There are two usual ways around this contradiction. One way is to go ahead
and assume immediate equilibrium, so that the initial boundary value conditions
are

ez, 0) = g{=, 0] =0,

c(0,t) = f(t),
and

q(0,¢) = h(f(t)).

We then further assume that the decay of the “true” solution onto the approximate
solution satisfying these unphysical conditions is quite fast compared to sample
elution time. It is found experimentally that this is a reasonable assumption for the
usual range of flow velocities v.

The second way is to abandon the isotherm equation and use a kinetics equa-
tion, such as for linear kinetics, and use the more physically accurate initial and
boundary values

e(#,0) = ¢(x;,0) =0,

¢(0,t) = f(t),
q(0,t) = 0.

One finds that for v not too large this solution decays onto the equilibrium solution
in an exponentially short time.
To obtain the dynamical equation for the case involving the kinetics equation,

it is easiest to change independent variables:

and ﬁzt—%’;.

7=

v
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Then the conservation equation

de de 0dq
= — 4 2=
Vo ta =0
becomes
de 0Oq
57 T on .
This relation implies the existence of a potential F(7,7) such that dF is an exact
differential
dF = edn — qdT,
i.e.,
C(f, ﬁ) . %:]j’
ca oF
o7, 7) = =5

So, combining this with the linear kinetics equation

dq | 3]
B = a(f~—kaC(T ) — ks Cq(7, 7).

we obtain

9 F oF
Varon “‘an- thCo =

For Langmuir kinetics, we instead obtain

OF oF OF OF

W +k;Q +kaC——(L; +Lb)a 81] =0,

a7 dn o7
which can be put in the same form as the linear equation via the Thomas transfor-
mation, which will be discussed in the next chapter.

Dynamical equations for several solutes: equilibrium theory. In the

linear theory, there are no interactions between solutes, so that the equations are

decoupled:
6(:. a

o7 - on (I\ c,) =N
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for 1 = 1...n, where n denotes the total number of solutes.

Assuming a Langmuir isotherm, we obtain a set of coupled nonlinear hyperbolic

equations
dc; 0
57 + a—r_’(h(Kf,cl,...,cﬂ)) =
where K is given by
K = (C—(Z;¢)a
(@ - (E 4qj ) e

Dynamical equations for several solutes: kinetic theory. Using the

notion of potentials F; as defined from the conservation equation

80.- Bq,
b S L A
or -
for i = 1...n, so'that
. aF;
ci(7,7) = )
. oF;
(7,7) = T

and so the linear kinetics dynamical equations are

O F, OF; OF,;
Va an+kb.6‘a_ +k,,Qa_ = 0.

For Langmuir kinetics, the dynamical equations are a set of coupled, nonlinear

hyperbolic equations

0*F. OF;, , . OF ] ' OF, 0F,\ _
Va o7 +M;C¥+LJ."Qa—ﬁ+(zj: kg +l°b.j)(§ o7 8—1‘7) = 0.
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CHAPTER 4

Solutions to the Simpler Uncontrolled

Dynamical Equations

In this chapter the easier uncontrolled solute dynamical models that have ap-
peared in the literature will be solved. The more accurate dynamical models have
analytical solutions too complex to include here, and indeed are generally in them-
selves too complicated to be very useful. As we will demonstrate in following chap-
ters, other techniques can be more fruitfully implemented, namely perturbation and
moment techniques.

Solution of the linear equilibrium dynamical equations. Recall from

the third chapter that the equation for linear, local equilibrium theory of one solute

is (where v = V/4)

1 1=9.. yde Oc
;(14--—19 Ilm)&”l" 3z =0,
with
&(z;0) =0
and
c(0,t) = f(2).

Here we have assumed that the solvent is not changing with respect to z. This is
simple to solve using the method of characteristics. Let t = t(z). On the charac-

teristic curve defined by

dt 1
ey ;(1-{-

1—-49
J

#(0) = to,

I{th ) ]
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the concentration satisfies
de
s
C(Oa to) = f(to )

Thus the characteristic curve is given by

1 1-4

and so the solution to the overall problem is

1-9
J

il
c(.r,t)zf(t—;(l-{- K.)z)
for
1-49

9

tZ%(1+ Ku).

The solution for several solutes is of course analogous, with due respect to each

solute’s different reaction coefficient:

1-9
J

cilest) = & (t - %(1 + K,;,I.-)m)

for

t2%(L+l%EKWJm.

Solution of the nonlinear equilibrium dynamical equations: one so-

lute. Using the Langmuir isotherm to eliminate g(7,7n),we obtain

de 0 KQc B
ar +a—n(c+[1<- 1]c) =

(Again we assume that the solvent is not changing with respect to z.) Thus [50,54]

((C + [K — 1]c)3) de  dc

KQc ar T a_a] =l
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the characteristic curves are thus given by

r = ((C+ K - 1)y

I{Qf(Tu) )77+To.

Note that this is implicit in 75. Depending on the shape of f(7,), shocks can occur
in the solution.

Solution of the nonlinear equilibrium dynamical equations: several
solutes. This is not an easy solution, and there is no way to express the general
solution. Helferrich and Klein [19] have written a book on the subject as it pertains

to chromatography (see the review in appendix A).

Solution of the linear nonequilibrium dynamical equation: one so-

lute. This equation
O'F | LQOF  hCOF _
oTon vV dn vV or

0

which we will call the linearized Thomas equation, has been solved by Thomas
[50,51] for some very simple boundary conditions, and investigated in detail by
Goldstein [14,15]. Here it will be solved for a simple initial finite pulse.

Let k = ky, K = ky/ky, p = kQr, 0 = kCn, u(p,0) = c(p,0)/C, v(g,0) =
q(pt,0)/Q, and r = 1/K. Then the linearized Thomas equation becomes

o°F  OF = OF _

LN
8a0c T B | B

The boundary conditions are (assigning the arbitrary constant F(0,0) = 1)
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foru>0,0=0, and

6 e
a—§=f(g)=>F_=_1+/n flw)dw

for p 2 0, p = 0, where

0 o< p<w;
- {2 H0sesu

0, otherwise.

This initial boundary value problem can be solved perhaps best by Heaviside trans-
form with respect to p.

The Heaviside transformation of F(u, ) with respect to p is defined as

E(u,p) =p/ e " F(p, 0)deo,
0
and its inverse as
_ L] ve f dp
H(Q)F(”’ Q) e 2_”2 " € F(pip) p b

 where B denotes the Bromwich contour and H(p) denotes the unit step function.

The dynamical equation then becomes
oF .~ OF

(p+ 15— +rpF = pl5(1,0) + rF(u,0)] =0,
1 op

or

oF -
(p+ 1)5 + rpF —pr = 0.

The initial condition for this can be found from the boundary condition () by trans-

forming it:

F(0,p) =1+ f(p)/p,
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and since f(p) can be written in terms of step functions
fle) =c"[H(e) — H(e — w)],

we have
f(p) = ¢*[1 — exp(—pw)],

and so

- & pri & pry
Flu,p) =14 —eap| — — —expl| — exp(— :
(1, p) 5 o p+1) 5 p( p+1) p(—pw)

Taking the inverse transform of F
e e=w2>0
Flu,0)=1+¢° f J(rp,w)dw — c° _/ J(rp,w)dw,
0 0

where

C:c)d_C

1
J(-T,y)“—‘ﬁjﬂﬁxp(@— cr1 ¢

That the boundary conditions are indeed satisfied can be easily verified via one of
the properties of J(z,y):

J(0,4) = 1.
The original dependent variables satisfy

oF
Cc = ]\,Ca—g

oF
=
q Q o’
thus

o(r,n) = kC{ T (kQr /K, kCn) — J(kQr/K,kCy—w > 0) }
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kCn

q(r,n) = cho/K{] exp(—kQr/K — w) I, (2\/kQTw/K)dw},

kCn—w

where I, is the zeroth order modified Bessel function.

Solution of the linear nonequilibrium dynamical equation: n solutes.
Recall this case involves a set of uncoupled equations, so that we can use the solution

found in the previous section:

62E kf,,‘Q a-F. kb,ic aR .

atdn vV on vV or =0

Let ki — kj,is -K. = kf,t'/kb,ia Ho= kl’QTs 0 = kl‘Crf: u:’(ﬂ, 9) = Ci(#: Q)/Oa

v (1, 0) = ¢i(pt,0)/Q, and r; = 1/K;. Then the linearized Thomas equation becomes

dude = dp You

The boundary conditions are

OF;
on ="
for u >0, o =0, and
OF;
%—fs(g)

for 0 > 0, n = 0. As before, the pulses at the boundary are

0 if0< o< w
wo—{ Tosesn

0, otherwise.

Thus the solution to this set of equations is

ci(ryn) = KC{ T(Qr/ K, kiCy) — T (ki Qr/Ki, ki — w > 0) }

q(t,n) = k,»Qc?/K,—{j o exp(—k:QT/K; -—w)Iﬂ?\/k;Qru/Iﬁ)dw}.

k., Cn—w
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Solution of the nonlinear nonequilibrium dynamical equation: one

solute. As done previously, a potential is introduced; here we call it 1):

clru) = g
.
a(mn) =—5_
so that the Thomas equation is
Py QO KOO L 0y _
61’87]+ V. an T V or (ky + ks ar dn =0

Making the same independent variable transformations as in the previous section,

we obtain

0% o kC Oy oy O
Lk SR PR 4 N | TR, o kPR
dude 0o v r@,u + )au do
The boundary conditions are
P
S 0
for u >0, o =0, and
oy
for p > 0,4 = 0. We assign the arbitrary (0,0) = 1. Then %(u,0) =1 for p > 0
and
e
(0,0 =1+ [ flw)dw
0
for p > 0.

We can arrive back at the linearized form of the Thomas equation by introduc-
ing a nonlinear transformation, the one used here being slightly different than the

Thomas transformation [14,51]:

F(u,p) = exp[(1 —r)(¢(p,0) —o+ p— 1)1,
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which gives

Y(p,0) = : rln(F(#,e)) +o—p+1,

;e
and
u = N/F,

v = M/F.

Here we have set

oF
N-F-{-EE/(I-—I'),

oF
.AI—F"'%/(].—-T‘)

The dynamical equation is then

o F b grel=D
Oude = Ou do

The boundary conditions are
F(p,0) = exp[(1 —r)ul,

F©,0) = capl(1 =) [ (f(w) - D,

We use the Heaviside transformation again; the dynamical equation then be-

coimes

oF . oF
(P+1)a—p-+rpF—p[$+rF(p,0)] =1,

or

oF =
(p+ l)a + rpF — p[e®~-"¢] = 0.
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Thus the solution to the transformed equation is

[ea:p[(l —r)u] — eIP(—&)] &2 X(P)emp(_pir#—)’

F(u,p) =
(#,p) - S 1

-r+1

where x(p) is the Heaviside transform of F'(0, ¢). The expressions for M and N are

thus

N(sp) = [xt) + 2X2 1] eap(—-23)

and

[ xtp) , plx(p)-1] pri
M) = [ X5 + P2 S e )

The solutions are expressed in terms of the function

J(z,y) = %fa exp(Cy — ccfl) %,

whose many properties can be found in Watson [54]. One can develop the asymp-
totic and Taylor expansions of J(z,y), which can be of use for numerical work.

In this chapter we have covered solutions to the chromatography dynamical
equations that can be fairly simply expressed, though the Thomas equation has a
solution that is clearly not terribly simple. Solutions to the more complete equa-
tions, combining intraparticle diffusion and kinetics, et ¢. are not very useful in
themselves. Instead, one should use only the “important” or “relevant” parts of
the solutions, typically done by using moment techniques [29,30,32]. However, the
manner in which moment formulas have been obtained in past literature is useless
when dynamical control of the chromatography system is desired. In chapters 8
and 9 a new method is presented for arriving at moment formulas, called moment

integration by parts, a method easily applied to any control case.
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CHAPTER 5
Adsorbent and Binary Solvent Models

In chromatography, one or more solvents are always present in high concen-
trations; the number of adsorption sites on the solid substrate is quite small and
is entirely covered by the solvent and solutes. The solvent system is well into the
nonlinear range of the isotherm describing the relationship between adsorbed and
unadsorbed components.

From thermodynamics, we define an activity a; (normalized fugacity) which for
regular mixtures is simply related to the mole fraction z; of the solvent component
i1 a; = v;x;. Ideal miztures satisfy v; = 1. For a regular, nonideal mixture (Isaacs

23)), _
dlnvy; AV,
dp  RT’

where p is pressure, R is the gas constant, T is temperature, and AV, is excess
partial molar volume that is due to reaction, weakly dependent on solvent compo-
sition for small molecules, assumed negligibly so. Assuming that AV, is essentially

independent of pressure in the range 1 — 300 atmospheres, we can integrate:

AV
71' = Exl)(IRT )'

At equilibrium, a steady-state partition occurs between mobile-phase and stationary-
phase concentrations. This is described by the reaction coefficient, which is calen-
lated by finding a certain ratio of activities. Assume that we model the binary

solvent stationary-phase displacement reaction as

S, 4 S A = G A4 55,
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where S; represents a molecule of solvent ¢ and A represents an adsorbent site. Here
the solvents have been assumed to be of equivalent size on the adsorbent. Also, the

excess volume may be nonzero, and the binary solvent system is assumed to satisfy
Sl+32=1 and b1+b2=1,

where s; and b; represent mole fractions of unadsorbed and adsorbed solvent 1,

respectively. Then the Langmuir reaction coefficient (a constant) is given by

ay, Ay,

%, = _ by exp( )sq exp(mv )

GG s, exp(2r )by exp(Pps)
where a,, is the activity of unadsorbed solvent 7, and a,, is the activity of adsorbed
solvent ¢, and AV, are the respective excess volumes. If the two solvents are similar
in size and chemistry, the exponential terms cancel. Or if it is assumed instead that
AVj is independent of solvent composition, all the exponentials may be divided into

the K to define a new equilibrium constant. Since s, 4+ s, = 1, we obtain

= b1(1 e Sl)
Ky = ———=
S e
so that
— I\’L 31 - I{le
== (I‘L’L - 1)81 &1 Kps + sy
Likewise,
- (1 =5 52)52
K =——
S
S0
I\L So o I\L Sao

b, =

(I\-1_1)52+1 IxL S By
Note that indeed b, + b, = 1, and both solvents have Langmuir isotherms with
inverse reaction coefficients. Also, if K; = 1, then the solvents are identical in

chemistry and the isotherms are entirely linear. In general, in the linear region (s;
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small) b = Kps, and b, = I\"EISQ. There are analogous results for ternary or

higher-order solvent systems.

The use of mole fractions in the above calculations presents some difficulties,
primarily when combining the solvent reaction model into the solvent continuity
equation. The difficulty is that unless the two solvents have essentially the same
chemical makeup, the total number of moles cannot remain constant, because the
volume in the column is constant. Thus we cannot simply divide each solvent’s
dynamical equation by the total number of solvent moles to obtain the dynamics of
the solvent mole fractions. A more natural form of the concentrations is the volume
fraction; there is a constant volume available to the mobile phase, and a constant
“volume” available to the stationary phase. We may take the mole concentrations
appearing in each solvent equation and multiply through by its partial molar volume,
assumed constant, and so we obtain the volume fraction of solvent per cm® column
volume. The partial molar volume is not truly constant; for example, consider the
partial molar volumes for the ethanol- water mixture in Figure 19. However, we
find satisfactory accuracy with experimental data, assuming that the partial molar

volumes are constant, at least in the examples considered to date.

The form of the solvent isotherms in terms of volume fractions can be found to
be essentially identical to those in terms of mole fractions, the only difference being
in the reaction coefficient (“Langmuir coefficient”). Returning to the definition
of the Langmuir reaction coefficient in terms of activities, and assuming that the

activity coefficients cancel, then

b]_S')

I‘L—L =
bez’

where s;, b; are in mole fractions. If §, b represent molar concentrations, then
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Figure 19: Variation of the partial molar volumes of water and ethanol in zque-
ous ethanol. Adapted from Atkins [].



Vit

from the above,
by ¥z s
K, = 2ty Bidds b3,
L = = = —
5 by Slbg

Fy+¥2 by+by

From the definition of partial molar volumes and the presence of constant volumes

in the stationary and mobile phases, we can write
aVa+mV,=1
biViy + b Vi = 1;
i.e., the sum of volume fractions is one in each phase. Thus

‘:sz 51(1 _flf_fsl)
Vea” 51(1 = b6, Vi)

I‘:L — (

Thus the first solvent’s isotherm is given in terms of volume fractions as

— = I_\"L(Vugﬂ
Vi by Y= ~ -
(Vi br) 14 K, —1)(Va15)

where ) )
= () ().
sl 2

which is weakly dependent on s, , but here is assumed constant in the isotherm. It

is easy to see that the second solvent isotherm (V;45,) has a “Langmuir coefficient”

of K1,
If the solvents are not of similar size, and obey the displacement reaction

51 +ZSQ‘A1_—"SI ‘.4.+ZSQ
then the equilibrium constant is
in mole fractions, and

> f’rbl _52 s (vblgl) 1—(51‘7;1) 2
K =K, | =—)|= = Sl
@ =x(32) (32) (T} T — (o Vas)

-

-
S
L
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in volume fractions. Either of these formulas expresses an isotherm that must be
calculated from the implicit equation

(1-3) _(Q-b)
K3 by

b |

where the terms are either for mole or volume fraction.

Adsorbent Models : Typical adsorbents for HPLC are based on uniformly
sized silica beads, 5 to 50um in diameter, usually treated so as to be superficially
porous (pellicular) or totally porous (see Figure 4). NPLC methods utilize the bare
silica surface as adsorbent, though steps should be taken so as to make the silica
surface more “generic” with solvent additives 48. Even then, there are typically
adsorbent sites of various activities. As reviewed by Little [31], the typical silica
surface prepared for chromatography is composed of “free” silanol (SiIOH) groups
(Figure 20), “geminal” silanols (Figure 21), and hydrogen—bonded silanols (Figure
22). A two-dimensional schematic (Figure 23) of the adsorbent silanols and resulting
polarity inhomogeneities shows what a polar solute might experience as it passes
over the surface. An apolar solute would experience an essentially homogeneneous
surface. The effects of inhomogeneities that are due to various types of silanols will
be discussed in the next section in conjunction with solute and solvent equilibria.

RPLC adsorbents consist of silica beads with one of the usual functional groups
attached to the silanols. Probably the most common of the functional groups are
alkyl chains, often of length eight or eighteen carbons. Figure 24 shows a schematic
of “octylsilica,” or a hydrocarbonaceous ligand of length eight bonded to the silica
surface. The silanols are never entirely covered, though the silanols are well beneath
the alkyl “surface.” Note that in contrast to the polar NPLC surface, the bonded
RPLC surface is apolar and hydrophobic. Thus polar solutes will bind less than
apolar solutes, in contradistinction to the NPLC adsorbent surface characteristics.

The silanols within the “forest” of alkyl chains may or may not be accessible to a
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Figure 25: Mcbile Phase Interaction with Bonded Phase.
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solute, independently of its polarity, depending on its size. Figure [25] schematically
shows how large molecules (a) may interact only with the surface of the hydrocar-
bonaceous adsorbent, and sterically restricted from entering into the alkyl chain
“forest.” Solutes or solvents (b) that are small enough might enter into the “forest”
to interact with the silanols. (Sometimes such silanols are capped with smaller alkyl
groups — however, the important aspect to note is the actuality of multiple adsorp-
tion site types for smaller molecules.) Thus the smaller molecules may experience
a somewhat different porosity and slightly different dynamics (see Figure 26) than
the larger molecules. Figure 25 shows a molecule (c¢) with an alkyl chain attached
and a hydrophilic portion represented by the dashed square and shows how such
a molecule would adsorb to the surface alkyl chains, with the hydrophilic portion
outward. Such arrangements can effect strong binding and can modify the adsor-
bent characteristics if present in high concentrations (see the chapter on catalyzed

adsorption for further discussion of this matter).

RPLC solvents must be chosen so as to “solvate” the ligands on the silica
surface. For instance, if we choose pure water as solvent with no organic component,
we commonly obtain “greasy patches” [34] of ligands that are due to the water
molecules’ energetically not being able to remain between the ligands, which then
“fold up” on each other (see Figure 27). Thusit is important to keep a few percent of
the organic component in the mixed solvent, which allows assumption of a constant

adsorbent capacity.

Solvent Localization Models. In the previous section we assumed that all
adsorbent sites are equivalent, and that no interactions occur between adsorbed sol-
vent molecules. Little [31] reviewed apparent exceptions to this, when two or more
types of adsorption sites exist on the substrate. Snyder [44,45] has called adsorp-

tion to the sites with higher reactivities (usually associated with surface silanols)
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localization.

Snyder [45] proposed a model in which one type of adsorption site exists for
solvent 1, and two exist for (localizing) solvent 2. Let j3; represent the mole fraction
of solvent 2 adsorbed to adsorbent site type i, the sites being present in a fraction
N; of the total number of sites. Let i represent the mole fraction of unadsorbed
solvent 2, s the mole fraction of unadsorbed solvent 1, and b the mole fraction of
adsorbed solvent 1. Snyder then proposed that when s 4+ ¢ =1, b+ 3 = 1, then

B = N;pBi + N2f3;, and
K+

Ai = 1+ K

Snyder did not go further in the analysis, except to investigate the linear capacity
of such a system. However, if we proceed to find the isotherm of the nonlocalizing

solvent, we find
KNy KNy

b=1—8=1-— =

which gives (after some algebra)

N N
14+ Ky 14 K

b = by + by,

where b; are the “co-isotherms,” which are notably not of Langmuir type. Thus
(nonlocalizing) solvent 1 does not have the desired Langmuir isotherm.

The above difficulties with Snyder’s proposal can be remedied, as will be shown,
but it will be apparent that his idea that only one of the two solvents in a binary
solvent system might show “localizing” behavior is erroneous.

To improve Snyder’s model and take it further, assume a less approximate form

for the j; isotherms:

_ K¢ K

(K- +1 Kip+s

An example isotherm is depicted in Figure 28, for N, = .25, N, = .75, I; = 100,

Bi

and K, = 2. Note the sharp rise at low concentrations. To compare with some
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experimental data supposed to demonstrate localization, look at ¥/ qualitatively
in Figures 29 and 30:

¥ [1+ K = 1]¢] [1 + [ — 1]Y]

BT N1+ (K, — U] + NI [1+ [K; — 9]

We see two regions of essentially linear behavior (instead of only one — as is the
case for Langmuir-type isotherm) as the system first fills the more energetic sites
according to a Langmuir scheme, and then fills the less energetic sites, also according
to a (different) Langmuir scheme.

The b isotherm is calculated as
b=1-—f8=1-N,6, — N.f3;
K¢ _N K
Kip+s "KyYp+s
(K 4 8)(IKatp +5) — Ny Ky p(Kath + 8) = No Ky b (Ko vp + s)
- (it + 5)(IKa 1) + 5)
K Ky — (Ny + N ) K IG Y2 4+ (1 — Ny )sKy 4 (10— Ny )s Koo + 52
B (K19 + s)(K2 9 + 5)
N NysKi9p + NysKyh + (Ny + N, )s?
- (K. + s)(Kap + 5)
— N, s(Kyv + s) N, s(I Y + 8)
(I + s)(I27) + s) (K ¢ + s)(I2) + 8)
K's K;'s
"K's 41 & K's+ 9
N — K, "8 N, K;'s
(K7 —1)s+1 (K;' —1)s+ 1.

This again is in “Langmuir form” if we look at the two terms independently, and we

:1_17\’1

— AT

see each term is in the same form as the corresponding j3; except with a Langmuir
reaction coefficient that is the inverse to the original. Also note that both solvents
show the effects of localization, contrary to Snyder’s thoughts. In the next section
we study the effects of this solvent localization on the binding of solutes.

Note that, using the isotherm

K1 Ky

& —Do+l T m — e 1

p =N,
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to calculate %’f—, we can then find the dynamical equation for :

op I 1-908 _
Vet 9 e

which becomes

— 19 JV]I(I L =47 N2I{2 % % B
v )[(Kl — 1+ 1) +( J )[(1{2_1)¢+112] &y 0,

1 1
=17 =
v [ ( ot Oz
which can of course be dealt with by the method of characteristics.

Binary Solvent Modulation of Sample Retention: In Chapters 6 and
(particularly) 7, we derive the equations describing how solvent concentration affects
the solute retention (equilibrium reaction coefficient). For a binary solvent, we find

that the equilibrium coefficient for a solute is

n

qs
chr’

I\’aam =

where ¢, b are adsorbed solute and solvent concentrations, respectively, and ¢, s are
unadsorbed solute and solvent concentrations, respectively, the balance equation

following from the displacement reaction
C+n(S-A) far 0. (nA) +nS,

where A denotes an adsorption site. Thus

bn

Sﬂ.

9= (I\',am )c = Kypypie

and since

n -

% = (14K -1s)

where I, is the Langmuir coefficient for the solvent, we have

In(K.pp) =In(Kam) —nln(l + [K, — 1]s).
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This model can be rigorously tested against experimental data from Karger et al
[25], who found how n-hexanol and n—octanol retention on a C-18 bonded phase
column depended on the methanol (MeOH) and acetonitrile (ACN) concentration
varied in MeOH-water and ACN—water solvents, respectively. To find the param-
eters Kyam ny Ksam,0y Mhy Moy Kpreon, and Ko n , there is no need to do a least
squares fit to obtain the outstanding curves in Figure 31. At s = 0 we can find
Kiamn =63, Kum o, =~ 1000. For the MeOH-water data, taking s = 1, we find the
values for ny In(Kycon ) and n, In(Kyr .0 n ), noting at this point that n, /n, = .75.
We make the assumption at this point that methanol (CH;) — OH and acetoni-
trile (CH3) — C = CN are chemically the same size in the displacement of the
n-hexanol and n-octanol from the adsorbent. Thus, using the ACN-water data, we
find for s = 1 the values n, In(K cn ) and n, In(K ¢ ) (noting that also in this

case n, /n, ~ .75). From the four values at s = 1, we find

I‘:hfeOH Rz 1.995

I‘-’AC.\" =~ T.87:

|Sv)

n., ~ 4.018

n, =~ 3.015.

Very interestingly, note that the ratio n, /n, & .75 is the same as the ratio of the
number of carbon atoms in each alcohol (6/8), which is consistent with the picture
of the alkyl group of the alecohol nesting into the alkyl forest of the bonded phase
adsorbent. From this picture, we can predict the n;’s and K,,,, ;’s for all alcohols
from ethanol to n-octadecanol by interpolation and extrapolation. A more extensive

analysis of this and of similar problems will appear in future papers.

Localizing Solvent Effects on Solute Retention: Assuming a solute the

same size (n = 1) as the solvent molecules, we obtain the isotherm (as resulting
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from a localizing solvent) as

or

We find that

B _ N K, [1+ [, — 1)) + No I, [1+ (K, — 1]¢]

P (14 [K, — 1)) [1+ (K, — 1))

Thus

N K, + N, Ky) + N Ky [Ky — 1) + N K [K, — 1]11)] )

T
§=Kiom [ ([Ky =1y + 1)([K, — 1] + 1)

so the solute’s effective reaction coefficient for the case of a binary localizing solvent

is

(N Ky + Ny Ko) + N (K, — 1 + N K [ — 1]?;,]

K% ) = Koars | ([ =1y + 1)([K2 = 1]¢ +1)

For a case where N; = .25, N, = .75, K, =100, K, = 2, ln(Ke"}j /K, am ) is plotted

in Figure 32.

If n > 1, so that several solvent molecules are displaced by one solute molecule,

we obtain

(N K, + NoKo) + Ny K [Ko — 1y + N KK — 1]1;,] n

~loe = 4
K57 (%) = Kiam [ (K =1+ 1)([K. —1]¥ + 1)
so that

I[K=5 ()] = In(Koam ) + 2 [In[(N Ky + No Ky ) + Ny Ky [Ky — 19 + No Ko [, — 1Y)

~In([K; — 1] + 1) — In([K, — 1]y + 1)) .

The above example is shown again in Figure 33, except with n = 4.
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The dynamical equation for the solute is easily found by obtaining dg/dt and

substituting it in the equation

3c+vac 1—19@2'_'0
at dz 9 ot

An in-depth comparison with experimental data will be given in a future article.
In this chapter we have discussed binary solvents and their effects on solutes
without solvent-solute binding in the mobile or stationary phases. In the next
chapter higher-order solvent systems are discussed, along with the novel concept of
catalyzed adsorption, which serves to unify notions of ion exchange and ion pairing

in a form useful for the dynamical equations of chromatography under discussion.
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CHAPTER 6
Multisolvent Systems and

Catalyzed Adsorption Models

Introduction : In this chapter we will develop models for systems of more
than two solvents. We note that for such systems, if we assume that solvent behavior
is governed by only simple displacement effects, nothing is gained by having more
than two solvents, except possibly a larger range of solvent strengths. That is,
selectivity, or dispersion of the solutes’ retention times, is not affected. In fact,
for each solvent added to the system (over two), a higher-dimensional redundancy
is created. Therefore, if we are to have three or more solvents in a system, we
should introduce solvents that interact in chemical pathways other than simple
displacement.

The following theoretical development includes new models appropriate for
both normal and reversed-phase chromatography, including effects of ion pairing,
ion exchange, bases, acids, compler exchange, and hateron chemistry, all in a uni-
fied framework. All these effects are classified here under catalyzed adsorption, since
they provide alternative chemical pathways parallel to simple displacement, either
diminishing or enhancing adsorption at equilibrium. Selectivity may be enhanced
by altering either the mobile phase or the stationary phase; catalyzed adsorption
includes both of these options. Localization effects on the adsorptive surface (pri-
marily associated with “hot” silanol sites) are discussed because of the effect on
selectivity, though these effects are not classified under catalyzed adsorption.

First we will introduce multisolvent systems with simple displacement chem-

istry, then add in localization effects, and finally discuss catalyzed adsorption.
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Though in one circumstance a less phenomenological theory exists for a particu-
lar adsorption process (Melander and Horvath’s solvophobic theory for some RPLC
cases [34]), we choose a level of description that.can be applied to all forms of
chromatography and easily integrated into the proper dynamical equations.
Multisolvent Displacement : Typically no more than three or four solvents
are mixed together for a given chemical separation, so we confine the discussion to
systems of that size. Assume that the different solvent molecules are of similar size,
and that the volume change upon displacement (adsorption) is negligible. Then we
can consider displacement to be described by simple binary reaction coefficients,

expressed as ratios of mole fractions:

o

iS5

by

§

I\.’.‘j -

tn

where b; are the adsorbed solvent species and s; are the unadsorbed solvent species.
Clearly,

K; = I‘i}' ) I K = K

solving for b; we obtain
Si

b,‘ = = '
S8 + Zj;\fl' I\j,‘SJ'

Choosing solvent ¢ = 1 to be the “weak” reference solvent (e.g., water in RPLC,

methylene chloride in NPLC),

K s

bi — - )
i - Zj;tl [Iijl w—r 1]81

using

slzl—z &s

i#1
The same form of isotherm holds for volume fractions (see Chapter 5) with different

“equilibrium coefficients” I;;. The reference solvent is chosen such that all Kj; > 1;
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K;y = 1 implies that there is no difference in the displacement process between
solvent j and solvent 1, and will force the [K;; — 1]s; term to vanish.

Eluotropic Series : If the solvent coefficients I{;; are quite different, we may
use three or four solvents to increase the available range of solute I,;; values; the
K, then provide a basis for an eluotropic series of solvents.

Localization : A standard choice of NPLC solvent systems is now emerging
[48], which includes two localizing solvents. Also, in RPLC we almost inevitably
have to contend with silica surfaces unsaturated with hydrocarbonaceous ligand,
though this effect can be largely controlled [34]. In gas chromatography, we also
have similar localization problems [38]. Clearly, localization effects are important
to consider. Call the two localizing solvents i = 3 and ¢ = 4, implying that they are
the two stronger (in NPLC) solvents — localizability is associated with the more
polar solvents. (In RPLC, the more polar solvents are “weaker”).

Suppose that there are only two types of adsorption sites, present in proportions

N, and N, = 1 — N,, respectively. Then for a four-component solvent system, we

have
o1 el
b,’ — .L?\rl I&“ ‘s,:‘l + ]\Tg IX“ Li:
1+zj¢1[1&j1 _1]5_; 1+Zj¢1[1\j1 _1]31
If solvents 1 and 2 are not localizing in themselves, then we require K}, = K.
Thus, when s; = s3,
b o I\fgl S
i 1 4 [I(g) S— 1]52
B o S1 . 81 o
= il == [I{QI — 1]32 N 81 + I{'_’l So
=1- bg.

These expressions must be rewritten if there is a possibility that s, = 0:

K s;

b,’ = = 5
S +2]¢1 I\jl‘sj
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In NPLC or RPLC this is a possibility. However, the previous expression for the
isotherm brings out the important aspects of the K;; values.

Solvent Isotherm Effects on Solute Retention : The solute—solvent dis-
placement

m,1

K.a
C+n(S-A) = C:(nA)+nS
is described at equilibrium by the constant

ald
qs5,

T
I\aam,l = Cb? ]

where we have chosen solvent 1 as the reference. Thus

r = & ‘—'b !
q=Kep06, with Keppa ':B‘“’“'l(sl) :
1

or

P
I{C.ff-l = I(aam,l [z N,'{Sl + I{;I 84 + 1{5] S35 + I\’g'1 52}—1]'1,
=1

where there are P distinct localized adsorption site types, four solvents of equal
size, and the solute being discussed is the size equivalent of n solvent molecules.

Catalyzed Adsorption : A unified scheme will now be presented that in-
cludes effects of ion exchange, ion pair, and complex exchange effects on the dis-
placement process; these effects we call catalyzed adsorption because they represent
additional chemical pathways parallel to adsorption via displacement. Catalyzed
adsorption can be utilized theoretically to good effect in any liquid chromatogra-
phy, though ion-pair and ion-exchange chromatography are currently done in an
RPLC setting.

Denote the displacement of solvent by solute as
C +n(S-A4) 2 C-(nd) +nS.

Parallel chemical pathways can be introduced by two general means: liquid (mo-

bile) phase solvent-solute interactions and solid (stationary) phase solvent—solute
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interactions, as follows. Note that the reactions are balanced with respect to the
entire chemical system; though we use the same stoichiometric factor n throughout,

it will in general be different at the various steps below.

C+2n(S-A)+nS K C-(nA) +2nS +n(S - A)
A K, Z ke [ K
C-(nS)+2n(S- A) 2 (nS)- C- (nA) 4+ n(S- A) +nS = (n[S- A])- C - (nd) +2nS

NK‘ e

C - (n[S A]) + n(S - A) +nS ’

whereby we obtain the following expressions:

all

- qs
Ky =
% cb?
K=
cs”
- 95"
I\g -
a4
.o qb"
K =
i3 qb
- _ s"qf
K=
., S"gb
=
s"ch
Ky =
T
. s b
K- =
AT
where
cf = concentration of C-(nS)

¢h = concentration of C - (n[S - A])
qf = concentration of (nAd)-C - (nS)

¢» = concentration of (nA)-C -(n[S - A4]).
We may see that K, is the equilibrium coefficient associated with simple displace-

ment, and that K, represents a competing pathway whereby “ion pairing” occurs
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in the mobile phase. From the ion-paired complex, various pathways are possible
for adsorption — here we have a schematic representation showing either that the
complexed solvent is adsorbed first, or that the complexed solute is adsorbed first.
The more complex the shape of the solute, the more possible paths there are parallel
to displacement. The total adsorbed solute A can be written in terms of the I;
and ¢, the unadsorbed solute:

A?(s,c) =q+qh + gl +cb

=K%, 1+ (K + —Iif{K‘ )s" + K310
0

s THP

= K, 11 C
Here b = b(s) is the isotherm for that solvent, which may or may not be localizing;
also,

’ ~ (byn
I\fff =I\0(;) .

Examples of log I\.’:‘; ;, curves are given below. We can use the alcohol series for
which the K7, were calculated (Chapter 5) to demonstrate how one might under-
stand what the effective reaction coefficient would look like if methanol- catalyzed
adsorption occurred along with the usual displacement reaction in methanol—water
solvent. We compare these curves with the experimental curves for some phenylala-

nine oligomers (Figure 34), which apparently are affected by methanol-catalyzed

adsorption. Note that the correction to In K7, , that is due to catalyzed adsorption

1s
S n
In{1 i 8" _
T 11( + a;s +02[1+[I{’ — l]s] )a
where (for methanol on C-18 columns) K, = Ky.on = 2. In Figure 35 we see
curves generated from the a; = 10, a; = 0 case, and the a; = 0, a, = 100

case in Figure 36. The solute isotherms are modulated by the solvent by raising
In(K,; ;) at high s values; the curve at higher s values becomes progressively more

downturned (yet always monotonic) for larger a,. A similar correction is apparent
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Figure 34: Retention behavior of phenylaizinine oligomers on C-18 bonded phace
for various indicated solvent compositions, with orthophespheric acid modifier.
The domein of solvent compositions is limited by the compoenent miscibility of
the binzary solvents. Shown zre data for cligomers of length 1 to 5.
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ethanol, propanol, butanol, and pentanocl; variation with methanol mole fraction

in water, K o1, =2, a1 =0, aa = 40.
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in Figure 37 where @; = 0 and ay; = 40, and the alcohol series data are derived
from the analysis in Chapter 5. Note that the alcohol series’ curves are similar, with
hypothetical catalyzed adsorption effects included, to the phenylalinine curve sets.
In Figure 35 all alcohols were taken to have the same a; and a,; such is unlikely,
but no experimental values were available. Future papers will deal with detailed
experimental data for oligomers and alcohol series; it appears that the theory holds
good possibilities of explaining such curves.

For situations in which ion exchange is present parallel to displacement:
C+nS +2n(5- A) 2 C - (S - A +n(S- A) + nS 2 (n[S-A]) - € - (nd) +2nS,
which gives

qrs" _ch
e

This in turn implies

A¢(s,c)=q+gb+cb
K K
Ko

Ky
K,

=KB”[1-I—( b e

)s" +

rie

= I,;,c.

Note that A has the same dependence on s, b that A"”? does, so that they are
empirically indistinguishable.
In a system of four solvents, with the fourth giving catalyzed adsorption, we

could have (assuming K}, = K], for every i,j, — i.e., solvents 1 and 2 nonlocaliz-

ing)
P

Ko1a = Kama 12, Nlsy + K s+ K s34+ K8 s,)7 " - [+ a(K; st + B )b,
p=01

so that

log Kpp0 = log Kf”‘l +log[1 + a(K;)sy + B(K; )bf;],
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where a and /3 represent appropriate functions of the equilibrium coefficients. In an
optimization of resolution of a system of such solutes, we would find the dynamics
of s;(x,t) to determine the equilibrium coefficients’ actual values for each solute.
It should be stressed that in the above catalysis schemes, various stoichiometries
are possible; for simplicity it was assumed that the same stoichiometric factor n

occurred in every reaction — generally, they seem to be different.
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CHAPTER 7
Controlled Dynamics :

Preliminaries

Introduction: There are various ways to control dynamics in chromatography,
including varying solvent strength, temperature, pressure gradient, and substrate.
However, the most useful and apparently effective way is to vary solvent strength
through time as the sample solutes pass through the column; the next best way
generally is to vary the velocity of the fluid (effected by changing the pressure drop
across the length of the column.) We will focus our discussion primarily on solvent
control, though in some cases in conjunction with velocity control. The idea of
control is of course to arrive at a “better” or “best” separation, via optimization
of control. In this chapter we introduce basic ideas of control of chromatographic
dynamiecs using the simplest dynamical model. In chapter 9 we consider a thor-
ough control model, though due to the complexity of the subject, a more complete
discussion of optimization will be postponed to later papers.

Isocratic separations: Recall from the discussion in chapter 4 that the elu-

tion time for the simplest dynamical model of chromatography is given by
L -
tyi = f,-(ﬁ' + (1 = 9)Ki(s)) + wo,

(where s is solvent concentration in a binary solvent mixture) which, when undi-

mensionalized by the erperiment time t.,, becomes

T; = ttb" = A(ﬂ. = (1 = ﬁ)I{i) =+ 61

erp

where A = L/vt,,, and § = wy/t.;,. This characteristic curve will be found to be

essentially the same as the equation for the first moment (see chapter 9).
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For a given i** component, the width of its concentration pulse can be simply

stated in terms of characteristic curves:
w=1t:—t,

(where t;; denotes the characteristic for the back of the pulse, and t;; denotes
the characteristic for the front of the pulse,) a constant throughout the column.
Therefore the bisolute resolution R; given by the difference in mean positions of
two solutes divided by the sum of their individual widths is simply proportional to

the difference in the mean positions:
A "
Ri = o= ([Pisr = D] +[(1 = Jig1 ) igs = (1 = D) Ki)).

We see that a cost function for optimization based on bisolute resolutions permits
(for this model) independent adjustment of the reaction coefficient terms and A
(the latter being usually equivalent to adjusting the mobile phase velocity since the
length of the column usually is not considered variable.) This property may be used
to advantage in the following way.

If we fix a desired overall experiment time (the duration of the entire chro-

matographic run) and then optimize (maximize) overall resolution — say

T (@~ 0) + [ = 9 )Kiws — (L= 90K,

C=) R}=

with respect to solvent effects on I{;, then we would obtain various R; with possibly
a large range of values. Thus there might be a very small value of min{R;}. But
one can rectify this by changing A (i.e. velocity or column length) so as to make

the minimum resolution component comply with a desired minimum value r;:
. S
min{R; }=r;,

and so all other R; (j # t) scale accordingly.
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One could also vary the velocity so as to make the R; essentially equal once C

is maximized. Note that for each solute, its characteristic equation is given by

dt (190K +9;
dz ~ ERTIN

so if V = V(t), we obtain

f" V(t)dt = -;—'fL((l —9)K; +0;)dz = ([1 — 9]K; + ;).

to

One is then free to select V(t), though one should limit V(¢) to experimentally
achievable values, and indeed, well within the limits determined by acceptable dis-
persive effects.

Let us reconsider the cost function. If the overall experiment time is left un-
specified and is optimized (along with solvent concentration) it is easily seen that
for any given velocity V' or solvent strength (concentration) s, longer experiment
times lead to higher resolutions, so we expect the experiment time to increase with-
out bound in an optimization (maximization) of C. This problem might be resolved
by subtracting the square of the overall experiment time from C and maximizing,
but there is a compelling reason not to do this: there is no direct control over
the minimum bisolute resolution min; {R;}, so it could conceivably be essentially
zero. A way to handle this problem without varying the velocity (as we did above)
is to introduce a new cost function which encourages the minimum resolution to
be a given value; this should lead to phenomenologically better performance. To

implement this thinking, we can try the new cost function
M
€= R:—Mmin{R:} — rmin ),
n=1 !
where r,,;, is the specified minimum resolution, and we have weighted this objective

proportionally to the number of components.
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We note that the dependence of a solute reaction coefficient K,,,, on solvent

concentration s has by many researchers (e.g., [43-48]) been taken to be
In(K,am ) =1 —as,

where a and n are solute-dependent empirical parameters. However, it is well
documented that this relation is only approximate (though less so for small solute
molecules in aqueous methanol solvent,) and often quite inadequate. A way is now
presented (also see chapter 5) to relate the effective sample reaction coefficient and
s in a less empirical manner. Our model involves the assumptions that mobile
phase solute-solvent interactions are negligible, the solvent is present in the system
in large quantities, so as to be well into the nonlinear portion of the isotherm, and
competes with the solute for adsorption sites on the substrate, following a Langmuir
isotherm. We will develop the model here, where only constant solvent control is
considered, but the model will be in a sense more important for the gradient control
case; this is due to the fact that our model allows us to easily include the effect of
solvent dynamics on the sample retention, including gradient steepening, or shock
formation.

Assuming a binary solvent, the solvent-solute equations are, in mole fractions,

f '1.93; =+ VS_-,: 4 (1 — ﬂ)bt = 0 ]
{ 1 | (solvent equations)
\

by =ry[s(1=b) — 7——b(1—3)] =0,
solv
( 19C:+VC:+(1“19)‘?:=0\}
1 (solute equations)
= ko1 =) = Z—a(1— 5] =0 |
and consider the local equilibrium case ¢¢ = 0, b, = 0. Here ¢ = ¢(z,t) and

q = q(z,t) denote free and bound solute (respectively), and s = s(z,t) and b =

b(z,t) denote free and bound solvent (respectively). Above we made the implicit
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approximations that 1 —b—g~1—b,and 1 — s —c = 1— s. Note that only the
solvent is in nonlinear quantities; the solute’s second-order effects are negligible in
the reaction equations due to the assumed small quantities present. We then can

determine the isotherms for the solvent and the solute:

. 8K i
" Koo —1]8 41
1
[I{aolu - 1]3 4l

b

q - Ixsam (

)e.
Therefore an effective reaction coefficient K,;; can be defined for the solute:

1
[I{”h, —_ 1]8 +1 ’

I{GII = I{mm

Note that if K,,;, = 1 there is no dependence of K,;; on s, as expected since this
would imply there is no effective difference between the two solvents in the system.
This gives the new relation between the (effective) reaction coefficient for the solute

and the solvent concentration:

(K. ;) = In(K,am ) — In(1 + [K,or0 — 1]5).

In the above we assumed implicitly that it took just one solvent molecule to displace
one solute molecule, and vice versa. For the case where n > 1 solvent molecules

displace one solute molecule, which is often the case, we obtain instead

1
G = kf [C(l == b)ﬂ = K q(l == S)n] = 01

sam

which gives at steady state

]. — b n
= I‘F.mm )
g b [1 - s]
but since
SI{:oi'u

bz[KmU~Hs+1
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we obtain
1

F A | e e

q=K,am (

In this case, we have the relation
In(K.;;) =In(Kom ) — nIn([K,p1, —1]s 4+ 1).

If [K .1, — 1]s(z,t) < 1, this last formula is similar to the linear phenomenological
model since In(1 + €) ~ € for € small. For K, large, there is a considerable dis-
crepancy with the linear phenomenological model, but better correspondence with
general experimental data (chapter 5). We take this to mean that our solvent-solute
model has experimental validity. Using this new model we can include explicitly
the influence of the dynamics of the solvent in the effective reaction coefficient of
the solute.

We can use the simple dynamical model giving the solutes’ characteristic curves,
which depend on the effective reaction coefficient of the solute on the substrate, to
demonstrate optimization of isocratic control. A very simple mixture of solutes is
used, with effective reaction coefficients as shown in Figure 39. Assuming a constant
peak width, the minimum bisolute resolutions are calculated and plotted in Figure
40. One can easily pick out the global maximum of the curve, at about s = .3.
If one ran an experiment at this solvent concentration one obtains the optimum
performance over the set of isocratic binary solvent controls, relative to the given
cost function.

Gradient Control: Consider for a moment what is required in the case of a
solvent gradient control. Experimental examples of solvent gradient controls applied
to a test mixture of solutes is shown in Figure 41. To obtain s(z,t), we need to

solve

aS 63 a SI{so!u

VT Va: T ([I{,o,., =15+ 1

ot 9z | Ot ) =0,
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117

or

7 (o s+ 1yl 0t Tz =0

11 1-9 K ystu 17 3}

1 [+ 1 8 S

v
where v is the linear velocity. Using the method of characteristics, we obtain the
set of equations

_di_l+ll_0 Ii’lofv
de v v 9 ([K, —1]s+1)2’

d ’
ﬁ =0, s(0,t0)= ¢(ts) given.

t(0) =t

If we choose ¢(t;) to be a simple linear variation, one can solve these equations
analytically. Note that we do not want the solvent gradient to develop into a
shock — experimentally this results in spurious sample peaks — this corresponds
mathematically to allowing only one solution to a cubic equation in the variable ¢,:
i.e., the discriminant of the cubic must be positive.

Solvent Shock Constraints: We find the characteristic curves for the solvent

are then
s = constant = ¢(t,)

l 1- ’[9 I{squ
v 0 ([Keow —1]¢(te) +1)2

Shocks will form if the chosen ¢(t,) is increasing; it is important that shocks do

1
t(z) = (- + )&+ ta.
not form inside the column: z < L (see the introduction). To find the location of

the shock, we describe two characteristic curves: (i) one passing through a given

t,(0) = t, and (ii) one nearby, passing through t,(0) = t, + At:

‘ 1 1 ]. —'19 I{Jolu
(z) tl(l‘)—(;"r; T (Kours —-1]¢(t0)+1)2)1 + to
11— K
@ @) =(teils? Kaoty izt - i

v ' v 9 ([Keote — 1é(to + At) +1)2
The envelope of intersecting characteristics is found by subtracting (i) from (ii),

where we take t,(z*) = t2(z*):

0

_ 1= Ko | 1 1 ]
S v (1 [Keaw = et + A2 (14 [K,ow — 1]8(5))?

z¥ + At.
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Figure 41: Test mixture separated with indicated solvent gradients. The top
gradient is acetonitrile — water, and the bottom two gradients methanel - water.
All gradients are from 0% to 100% organic solvent. Adapted from Schoenmakers,
Billiet, and de Galan [). '
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Dividing by =2 2tKsate | we have

9 v _ L[ ! 1 I
1= 0 Koty AtHI+ [Kaorw — 1(te + A0 (1 + Koot — 1e(te))2

then taking the limit At — 0, we obtain

v v d
1 -9 K, o dt,

= 22" Kooty — 1]@/(to) (1 + [Krore — 1]6(20)]

(1 * [I{aolu - 1]¢(t0)) -’ T

so that the value z* at which the shock occurs is

N '19 v [1 + [I(aofu - 1]¢(t0)]3
T 1-92KZ, P!(to)

.T;‘

Since the shock is not allowed inside the column, we require z* > L; thus

(1 + (Ko = 1g(t)]” _ 1-92L
I{azafv ¢’(t0) - 19 v

is a constraint on the choice of solvent, gradient slope, and concentration.

For example, if one chose a linear gradient

b(ty) = uto + 7o

W

for 0 <ty < y;, the resulting constraint on the control parameters would be

(14 [Keore — 1(2222t0 + )] J1-92L

v
- ) -0

For such a choice in ¢(t,) we have ¢(0) < ¢(t5); for this choice in gradient t, is

eliminated:

[1 + [I{sofu - 1]70]3 > ]. — '19 ..2_£
K2 (n=xe) = g o
v

solu

Of course, the constraint is released when 7, = 7¢. Indeed, as long as ¢ is strictly

monotonic in t,, we have

[1 4= [I{solu — 1]¢(0)]3 > 1-9 &

72 I —
I\sofu ¢mas 19 v
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or more generally
[1+[Klofu - 1]¢min]3 ag 1 —ﬂ?ﬁ
Kfo!u ¢:nax B J v ,

where

¢min = n}in ¢(t0) and ¢'ma: = n}ax Q&’(to)-

There are some other introductory points to discuss concerning control func-
tion specification. For a linear gradient of solvent, we need to find a beginning
solvent concentration v, (at time ¢t = 0,) the final solvent concentration 7,, and the

“gradient time” 7, which defines the slope cf the gradient:

gradient slope = AW

1

Let 7; denote the time at which the slowest solute elutes from the column. One may
find a unique solvent characteristic 7°(z) which at z = L satisfies 7°(L) = 7,. Call
the value 7°(0) the control time. For a well-defined v,, the sample is released into
the column at ¢ = 0 with simultaneous solvent concentration 7,. For a well-defined

71 the gradient time should be taken to be identical to the control time:
Ty = To (0)

Thus the solvent concentration that the slowest solute experiences as it elutes from
the column is v;. Note that if ; # 74(0), 71 would of course not be the actual solvent
concentration at the time of slowest solute elution, giving undesireable redundancy
in the mathematical system through an ill-defined control function. Indeed, for
arbitrary ¢(t), one must make a similar definition as was done above for the control

time.
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CHAPTER 8

Perturbation Theory for Liquid Chromatography

Introduction. Perturbation theory can be applied very effectively and appro-
priately to HPLC models. In this chapter we cover two different developments of
perturbation theory for the record, the first (Giddings’ method) more of a heuristic
method. The preferred development is done in chapter 9; the reader may skip to
chapter 9 without loss of continuity of argument.

The reason that perturbation theory works is primarily due to the nature of
modern column technology, which to a large extent prevents much sample or solvent
concentration peak spreading, so one typically can express the effects from mech-
anisms such as intraparticle diffusion, fluid film mass transfer, and nonequilibrium
reactions as perturbations of more easily solvable “equilibrium” dynamical equa-
tions. Recall that the sample solute equations are assumed linear due to the small
sample concentrations, and though the solvent equations are nonlinear no solvent
shocks are allowed to occur in the chromatography column, (effectively preventing
spurious peak formation). Without the use of perturbation theory the controlled
dynamical equations (having variable coefficients) are at best very tedious to solve
and use, and apparently do not offer significant improvement over the perturba-
tion solution. Finally, one may use representations of the perturbed solute control
equations’ solutions in the calculation of the “cost” functional in turn used for opti-
mization of the control. In such a manner one has more control over peak spreading,
primarily through the steepness of the solvent gradient. While kinetics, diffusion,
dispersion, and fluid film mass transfer processes widen the solute peaks, solvent

gradients of increasing concentration of the solvent component with larger reaction
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coefficient will cause the solute peak to narrow. This is a result of the rear of the
solute peak experiencing a higher solvent concentration than the front, so the rear

is moving faster than the front.

There are three ways we can obtain equilibrium solution perturbation terms.
Giddings [11] originally found perturbation solutions for the uncontrolled linear
kinetics and intraparticle diffusion cases, using a somewhat heuristic method derived
from his research on flame diffusion-reaction flow systems. We review one of his
solutions, extend it to the solvent-controlled case, but do not go further because
the method does not suit the ultimate purpose in obtaining the perturbed equations
— this will be discussed later. The other method we use in this chapter is simply
from the standard perturbation techniques for partial differential equations ( e.g. ,
Nayfeh [36], Kervorkian and Cole [26]), applied to the controlled dynamics equations
(variable coefficients). These latter perturbed equations have not been reported
before in the literature. We then show that they have a special structure which
generically allows mass conservation in the system, something Giddings’ resulting
equations do not possess. Equations for the first two moments (peak location and
width) are found, which are surprisingly simple, and allow effective optimization of
the system. The third and best method, called moment integration by parts will be

used to derive the “full” moment control equations in chapter 9.

Giddings® Method

Giddings and Hirschfelder [11,12] developed a method of determining the amount

of spreading of a solute concentration pulse due to nonequilibrium effects and mass
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transfer. They noted that in actuality the stationary phase concentration profile
lags behind that which exists at exact equilibrium, and the mobile phase concentra-
tion profile is displaced ahead of the exact equilibrium profile. That is, ahead of the
center of the concentration profile the mobile phase concentration is greater than
that of what would be expected at equilibrium, and behind the center of the concen-
tration profile the mobile phase concentration is less than the equilibrium amount.
Further, the rate of migration of the solute overall is proportional to the mobile
phase concentration at any point. If R denotes the fraction of solute molecules
in the mobile phase at equilibrium, the solute’s mobile phase ahead of the profile
center is actually travelling at a greater rate than Rv, where v is the linear velocity,
and the mobile phase behind the center of overall concentration is travelling at a
lesser rate than Rv. Thus the solute’s overall concentration profile is widened, the
the rate of which depends on the degree of nonequilibrium. Note that the larger v
is, the more pronounced the nonequilibrium effects are.

One-site adsorption kinetics: constant solvent concentration. Though
one can develop a theory for multiple types of adsorption sites, we only consider
the solution process for adsorbents with a single type of adsorption site. Consider
the concentration ¢(z,t), the amount of solute per unit volume packing material,
equal to the sum of solute per unit volume of column packing in the mobile phase

¢ and stationary phase ¢,. At complete equilibrium, we label these terms ¢, and

-

c;. Next we introduce the “equilibrium departure” terms e, , €, via
cm =ch (14 €n) ¢, =c.(l+e,),
so that
. = €, €y =]
€n = 24 L €, = : 2
e c

We assume that ¢; << 1. The sum of the component concentrations in both cases
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-

Gy iy, = c.+c, =¢ 80 €+, =ic; FCe

Thus

c:n(l-l—em)-{—c:(l—l-e,):c: +c;~.a

or cem +C e =0, so that
& G Re,,
€, = — = — .
! i 1-R

Through adsorption and desorption, the rate of mass transfer between phases in-

creases as nonequlibrium increases. For the mobile phase this rate of transfer is
_ (dc_"*)
Sm = dt ' mt?
the rate of increase in ¢,, purely due to mass transfer; thus
3m =kye, — kyem

for the linear theory. At equilibrium,

sm = 0=kye, — kyen; €, =€, Em =10,

Then
Sm o =hkyc;(14€)—kpel, (1 +€,)

= (kyc} —kyc;,) + kicle, — kel en

= kycle, — ksl €m.

Eliminating e,,

Smo=—ch (ky + ks )em .
Then we relate s,, to flow properties. From the conservation of mass, we obtain

de,,
or

de,n, de,,
= (—Jt—)mt == (W)

Jlow?
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where
de,, deon,
G —. Y
dt ~Jlow dz
so we have
9cm o c and
—__ — Sm — V53 Cnm,
ar dz
85 = acm +v-2c
™ or 63: "
dc;, 86 Lol g .
_[6—T+ c 1+ +Ua—$emcm]
= or 3:1:
neglecting the terms of order €,. Now by definition, ¢, = Re, and the mass
conservation equation for ¢ is simpler; mass transfer effects leave ¢ = ¢,, + ¢,

unchanged. Thus any net gain in ¢ in a control volume is due to influx of mobile

phase:
Jc 9] 3]
3 = VgpCm = [cm(l—{-em)] N—Uax
But since ¢, = Re, then R™! aac; = 22, 50 we now have
dc: de;
LR R m_, th
ar R or’ .
" de;, " s
m Ve
B dz ™
3]
R —-Rua—c:1 + v%c;
=v(l— R)a%cfn

Earlier it was found that

S = '_C:n (kf + kb)em 1

so now we have

—ci (ky + Fky)en = (1 — R)va—ic;‘n, which implies

_(A-R)v
ki + ky 8:!:(1 n)-
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(Note that €, is positive at the front of the concentration peak and negative at the
back, as per the intuitive discussion earlier.)

Thus

_(1—=R) 9 ,
k! +kb Bzc’"’
. R(O-Rpw o ,

=c —— —¢

Con, =285 (1 g ) 83 €
= k5 3:1: e
The last step derives from

(k} +k5)/k;, .- 1+k!k5 — 1+C:/C:n :—C/C:rl - 1/R.

Thus the nonequilibrium dynamics can be approximated by using only the equilib-

rium solution.
Adsorption kinetics: variable solvent concentration. We can also apply
Giddings’ method to the case where the solvent is varying, implying that k;, &,

and R all depend on z,t. Much of the analysis is unchanged from the previous

derivations; we find that
Sm = = (ky + Ky )em,
_ e 3 ad
~or "oz
oc;, a .
= €

ar oz ™’

but now, since ¢, = Re,

Jc;,  O(Re) _ca_R+ dc
or  9r  Or ar

so that
9 Apes, o8 106, & @R
dr R Or or' R Or R 87"
Hence
2(‘: ~ _vé_c‘
or dz ™
implies
de cm OR oR a o
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and so
T B
m R v 32 c., gives
c, OR a . 5
S =~ "EE:—‘URB cm+v£cm
- OR )2' .
a R ar 3a:c"“
Therefore
OR
—c (ks + &y Yem = S & CR = R)—c
and so

1 4R (1- R)ual( )
R(kb-}-k!)aT kb+kf .‘.L' Cm
19R R(1—-Rp d

k) Or e GO

Em R —

again using 1/(ky + k;) = R/k,. Finally,

¢, R R(1-R)v 0

B = B (14l JBRE, —

p-.
-
o]
<
&
Q
8
3

Since ky, k; depend on time through the mobile phase solvent concentration s(z,t),

we call use

JR  dR 0s
ar  ds or’

Standard Perturbation Techniques. The equations of chromatography
have been written down in previous sections, but for clarity they will be summarized
here. We denote the mobile phase solute concentration by ¢(z,t) and stationary
phase sample concentration by ¢(z,t). The mobile phase solvent concentration is
denoted by s(z,t) and the stationary phase solvent concentration by b(z,t). Con-
centrations of solute and solvent internal to porous substrate particles are denoted

by é and § respectively, both dependent on r, z,1.



The solute equations are

19c  9c  3(1-9)D, 3&' _ D, &%
vot Oz Riv  9r '"=R "~ gy 9z
0¢ 2
DPEL:R = kf(c_ C’,.=R)
g¢  0q 24
ﬂat Tg Y
09 _, /a 1 .
B =k (@1 - 1) - 2 —q(1 - 5))
with boundary conditions
9 2| —
Eclrzo =0

c(0,1) = ¢()
e(+,t) € Ly(0,00),

and initial conditions

e(z,0) =0
é(z,0) =0
é(r,z,0) =0
q(r,z,0) = 0.

At equilibrium we obtain the linear isotherm
¢ = Kepy{i, 12

(See chapter 5.) If the particles are not considered porous, the intraparticle diffusion

equation is eliminated and the

3(1—-9)D, @I
Riv or'r=r

term in the first equation is replaced by

199
Jv Ot
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The solvent equations are (concentrations measured in mole fractions)

10s §+3(1—19)D,,§| _D. &s
vat Oz RIv  dr'r=R ~ Yy 9z2
03 <
D, =kylo—dl,_)
05 0ob -
ﬁa + = D,V?3
ob 1
'a_t =Ky [(1 - b)S - I{“,; b(l - S)]
with particle boundary condition g—b s, =0
r r=
and initial-boundary conditions 8(r,z,t) = 3(z,t)

s(0,t) = &(t)

s(z,0) = constant
3(z,0) = constant.
o(r,2,0) =0.

Note that, whereas K,,,, is dependent on = and t, via its dependency on s(z,t),
K,,; is constant. The diffusion coefficient D, and diffusion coefficient D, will be in

general different for solvent and each solute. At equilibrium we obtain the isotherm

- I‘{.lol"§
T

Again, if the particles are not considered porous, the intraparticle diffusion equation

is disregarded and the
3(1-9)D, 93 |
Ryv  Or'r=R

term in the first equation is replaced by

1—08_8
Jdv Ot

These equations will now be investigated for the cases of one rate-limiting

mechanism at a time. Dispersion effects will not be considered here; in chapter 9
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they will be dealt with. In each solute case, the equations first will not be solved
for constant K., which solution is easily obtained from the variable K., case.
Solute Equations: equilibrium reaction, intraparticle diffusion, no

fluid film mass transfer, variable K,;,. The continuity equation is

19 , dc , 3(1-9)D, 2

vt Oz RIv  Or |'=H= 0;
the intraparticle diffusion equation is
0¢  0q g @ 08
Swte T B oD
which can be written as
L dc Oc 3(1-9)D, 8¢,
;E-*_Lax-l_L RIv  Or == 0,
L _90¢ Ladq L 4 0 5 O8
i Rt W o s -2 ¥ ez
UBBt vot v " o @

or, introducing normalized variables r = -, { = z/L, and ¢ = 7/R,
_a_c_+i(:.+—3(1—ﬁ).i_@l -
or  0¢ 9 ePedp'e=1

06, 00 4,0 0

ar dr  ePe® ng do =%

Here we have set what we call the packing number ¢ = d, /L and the Peclet number

vd

Pe = 2=, We assume ¢ = K.;;é. We also assume ¢ < 1, where ¢ = ¢Pe/4, and

substitute é = & + €é, + €*¢é, + -+ into the dynamical equations to find a regular

perturbation series:

d i . d R X ﬁ
55;(50 + €y + €é3++-+) + E[K‘”(C" + by + €28 +-00)] —
1

8 .0 .. 2 "
;9_255923_9(00 +eé +€é+--0)=0.
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Equating like powers of ¢, we obtain

o ,0
] -2 = 27 & =0
which implies that
2,
" o
6“
ﬁl —u=0 =
o =
ACl='01
&Q:C
g 8@ 8

a ~ r - -
el E[ﬁCU'FI\e”Cu]:Q 3_9 a_gcla

but from the above result, ¢, = ¢, so

a . % 0 =8 .
E[ﬂc+-[\effc] =g 255925501,
LR _ g2,
3 ar[ﬁc_{_-[xe]‘fc]_l-’\ﬂ—g 3961
0é,
2
)‘0:03

2

so that %%[ﬁc—i—fx’e”c] 4+, =6

implies
& —1

: 9
YT 6 or

[ﬂc+ I{efj Cl.
& = I - B
et : E[gcl + 8K, 18]l =0 za—ggza—gcg.
or, substituting in the result for ¢

02 —18°
6 Or?

o .0
. -2 2 ]
loc+ BK.ssc]l =0 20% 55
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Now integrating, we obtain

6 a .

ers¢l + Ao = 0 a—cz,

18

but the boundary condition
0¢,
do l"=° =

implies Ay = 0, so that

9 0? a .
(g—o—%)a—[ﬂ c+ K.yc] = TC23

and it is not necessary to find é,.

Evaluating the derivatives & —l— ] , we find
o L 3(1 0)1
b |[e=1= e {0+ ——[ﬂc—i—I&E”c]
e* 9*
_Ea 2[ﬂc+‘[{€f!c]+"'}’
9. .0¢c de 09,
= —[ﬁ —+ Koy 5+ 5 (Keyp o)l

1—"(9 & 32 c')Ke”Q(_:__i_azK,”
ar Or or?

The combination of continuity and intraparticle diffusion equations then yeilds

E@Iﬁ” )]-(9_c+é:- 1-49 61{,” __e_azK'e”
15 ar

1-49 -
[1 ¥ T(ﬂ-i-ﬁeu -

This form of dynamical equations indicates any pulse initial data obviously
will travel while spreading. Note there seems to be a source term (the zeroth-order
derivative) — however, as we soon will see, the “source” term serves to cancel the
perturbed “wave velocity” and a “source” term from the diffusion. This will be

clear once the special structure of the equation is seen. If we label

1—1.9 = 2e 6.[\:;;
A =14 — K., - ——
(é!T) + (ﬂ+ L ff 15 aT

B, 7) = [/8+I\e]f]
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then the dynamical equation becomes

8 BA a*B o?
Ao + o2 55 te=Bl6.r) 5 =0.

One must retain the fundamental assumption of mass conservation; here it is not
immediately clear that it is retained. It is easily shown that mass is conserved by
integrating the equation throughout time, keeping in mind that the solute pulse
is very narrow, so coefficients A and B are essentially constant over the nonzero

portion of the pulse, located at 7 = 7*(§):

j“’ A&, T ) dr+ d +/ aA 623} cdr

- [ B,

0

= 0.

Integrating by parts, with 0 < £ < 1, then

/ A(&,'r) dT—[Ac]o - %ich
r e
=_'aa_A(£1T )mﬂ
- d*c * 0B Odc
[” Bengrir=ip5ie - [ G5
aB = B

cdt

= [E_— ]0 5 aT2

52}3 )f

323 "
= F(&T Jmg.

* Oc a [”
—dr ~ — cdt
j; 73 €/,

. amg

ot -
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/""‘ 0A O'B

" or or? bedr

0A ) 623
5 E™) + g6 [ e

= (Zem)+ M(m )} m.

Thus the total mass satisfies

04, . B, . ) A, .. 0B, . B
—E(gar )mﬂ + ar? (617- )mO b 8_£m° +{ or (f:T )+ or? (617- )}mo =
or simply
amo —
GJ3 =0,

so mass is clearly conserved in the dynamical equation. The location 7*(£) is just the
first moment: p) (§) = 77 (€) (see appendix A for a discussion of moment techniques).
Next we will determine the dynamical equations for p). Multiply the dynamical

equation by 7 and then integrate'

[ rAG )5 dr+_[o d+f {-‘?i+a”3

0
—-j; TB(S’T)E;ZHCITZO"

Integrating by parts, similar to the calculation for my:

| A otdr = trady - %(rA)cdr

Yedr

= ——g—A(ﬁ o )/0 Tedr — A(E,T")_/; cdr
B —a—(g,-r" ymy — A(E, 77 )my.
' TB(g,r) ~dr = [TB—]O T2 (TB)g:
= ——[E(TB)C]SJ ~]—j;J P YedT
~ 2@(6, T')_/ cdr
aZBé‘r )/mrcdr
= 25_—(677-.) : Tt)ml'




. a?nl
= 5
“ 0A 0°B
/0 {6_ 573 }redr
dA . 0’B . *©
R {E'-(E’T )+ %(E,T )} /O Tedr
a . 9*B .
= {5-4(5,7‘ )+ 57 6T )} my.
Thus m, satisfies
. 0A . adm; [ 0A . 0*B .
—A(&, 7 )mo — B—T(E’T Jmy + 7{4—{ E(E’T ) + m(f,‘r )}m1
B . d9°B .
"26—1_(&7' Jmg — %(fﬁ Jmy =0
or simply
a
se = AT )ms +292 (6, mo,

but p} =m, /my and ™ =y}, so

dpy
¢

—A(f,m)+” (E,T )-

Thus for the case where the equilibrium dynamics are perturbed by intraparticle

diffusion,
au 1
&—1+—ﬂm¢w@mn

Next we will determine the dynamical equations for y;. Multiply the dynamical

equation by 72 and then integrate:

'/m T A(f,r) d’r+[ T2 dT-i—f aA agB} cdr

0

—] T*B(&, 1) —dT =/0.
Integrating by parts,

« 0 , 0A ”
[ 7 A my g dr s —2AG€, iy — S Y

0
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[ s

0

o 9

f{aAa

Thus m, satisfies

, d , d
—2A(6, i )y — - A6 i )ma +

56
—2B(&, py )mo—4

or simply (since p} = m; [/my)

W = 2406 ) + 2B 1) + 45
=2(A+ ‘)%E);t +2B
" 2%’1 | +2B
= () +28

but p, = p, — (p47)?, so

(f,T)a—sz ~ .-B({,ﬂl )mo 4 4

/‘” Bcd ~

m2+{

O_T(é, JU"1 )‘rnl -

o’B
(E,,ul)ﬂll b oo o2 (5!#’1)

amz

3

0B

} ? dT"“{a (6,#1)'{' B 2(6 .ul)}"'nz

A(Eﬂul) + g P (& py)}ma

B ..
m(f'} Hy )Tn2 = 0;

B .
8_7_(5,#1)#11

I d 4
I d_g(ﬂl )2

1)

For the case where the equilibrium dynamics are perturbed by intraparticle diffu-

4 _4d
ae? T de
implies
d}lg .
G = 2B
sion,
Oty 1—-19 € ,
=2 e ]

— 4 ePe

T [ﬁ+1‘eu]

For a typical gradient solvent control, K,;; is monotonically decreasing — one can

thus slow the growth of pu,.
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Solute Equations: nonequilibrium reaction, no diffusion or fluid film

mass transfer, variable K,,,;. Here the relevant continuity equation is

Oc  Oc 1—-909q

r T T S o
The reaction kinetics equation is

dq L, 1
5 — ;R! [(1 — b)C o I{”m Q(l = S)]

which can be written as

dq 1
EO—T = (]. — b)C - I(mm Q‘(l — b).
Where
v d, v
= — = — = t
Siab w8

¢ is the packing number, and St, is the kinetics Stanton number. (Recall K,,, =
ky/ky.) We let 7 = vt/L and £ = z/L. Now, assuming that e < 1, we substitute
q = qo +€q +€°¢, + -+ into the dynamical equations. Though this is truly
a singular perturbation problem, we only consider the outer (regular) expansion,
since the singular part of the ¢ expansion is associated with initial conditions and

very small times. The continuity equation gives

de Oc 1-19 0

S— — —— — 2 ... —_— e
37'+3{+ 9 aT(QG+EQ1+EQ2+ ) 0
The reaction kinetics equation gives

1
I{-& am

0
GE((IG +eq tef +oo0) =(1—-b)c— (1 —3s)(go +eq + € g2+ ).

Equating like powers of €, we obtain

o (1 — b)

: == I{sam
€ qo (1 — 5) [ &
61 ) aq;; 1

o T TR (1-3)q-
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Combining these last two equations we obtain

I{azam 01-b I{:dm
(1-s)0r 1——3]_#( 3)3 [Ke”C]

G ==

Thus the combination of continuity and reaction equations yeilds

9 Bc 1-90 (1=,
(I—ay 2"

5£+ v Oar
I\aam a ( b) ])

-8 (s =
Collecting terms,
1—-49 -390 K,,.. 1—19I\.',,,m a .. de
R BT e L7 Tﬁ{EI“”)a_r
dc 1-19 . 0 Kyam .0 . K, om
+§+T(5(mm (T 2 Koy ) — (32 ) g (g )
-9, K,am d%c B
N T e ))I{,,,6T2 =0.

This perturbed equation fits the generic equation type introduced in the last

section, with

-9 _. 19 G Ko 1-VK,om 0
9 I\ef!—f ( )I(e!!—'_.f 1} 1—36_1'

F 1
A, p ) =1+

and

—-4d I.mm -
B(Eﬂu"l)z 9 ((\ ))IG.U

Thus the dynamics for p)(€) and p,(€) can be determined with the same generic

equations, which for this case are

o, . 1-9 1-9 8 Kyom
2e ~ 1t g Ky v R 5o
0[12 1—-9 I\sam

=9 e
o€ g Kes7Z

Note the location pj of the concentration pulse is perturbed slightly by the kinetics.
For the case of the solute being equivalent to n solvent molecules, in the above

equations replace (s — 1) with (s — 1)*, and the appropriate K.,;; .
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Solvent Equations: equilibrium, intraparticle diffusion, no fluid film
mass transfer. We will find the regular perturbation to the solvent equation, since
the singular part only is important where the second derivative is large — i.e., at
shocks and “corners” of the control forcing. Recall that shocks are disallowed in the
solvent profile within the column; also, with small perturbations we can do without
the minimal corrections to the K,;; obtained by equilibrium theory entirely —
the equations presented below are included just for comparison with the solute
equations, and that indeed intraparticle diffusion affects the solvent also.

The continuity equation is

19s | 8s , 3(1—9)D, 83

vot Toz T Row  or e=nT D
The intraparticle diffusion equation is
25  0b 20 ,08
/354‘5&‘—.1)},1‘ arr or =
which can be written as
L Os Js 3(1—-9)D, 03 | B
v Ot +L89: L Ry Or 'r=R 0,
L 05 Ldob L a ,0s
bl - Loy S —'D o SR 0
v 6t+v6‘t v " o or
or, forr=tv/L,é =z/L, p =r/R,
ds  0s 3(1-9)LD, 85, _ 0

6r+8—£+ R*v dp le=1"

05 b ID, L0 05 _
ar T ar oR: © 399 0o

B

Also, we assume
B Kiar8
14K, —1)3

so that
_@ . I{aol %
ar = (1 + Koot — 13 01
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Now, if e € 1, where
Rv 1d,dyv 1

= -2 L _ = _P
D,L 4LD, 4 °

&=

we substitute § = §; + €3; + €3, + - - - into the dynamical equations:

3 ” .. 2 A a I{lol(§D+€§l +€2'§2 +"')
Agrllo +ehi+ et )+6T[1+[I(,,;—1](.§0-{—e§1+€2§g+"')]_
120 20 o o1 a; -
<% 9,° 39@04-w1+-632+ )= 0.

Equating like powers of €, we obtain

a
e : 9'2i ?=—3 =0

90" e
which implies that §, = s (a constant with respect to p), using the same argument

as for the solute.

R,s

9
g8 - AT
‘ ‘ar[ﬁ“r 1+ (K, —-1]s] e 5:° e

then integrating:

sS 6“
%—3%[;63-& K,s ]] 84

A_
T3 [K —1s T =05,

where A, is a constant, but then the boundary condition

05 | _
69 lp:O_ 0
implies A = 0, so
I’
[ﬂb + ‘HT—]] + A =
implies that (noting §; =0 at p = 1)
;| = ol
NETE P TINK, —1)s
0 K,s a ,d
3, - 291 3 P . A S
or Pt TEE, =1 =9 50° 90
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or, substituting in the result for §,,

—-138 K, ]6[[3 K,s ])=_2323A

6 or (s + A+[K. —1s) or° T T+ [K, —1]s)2 9 90"

Now integrating, we obtain

i B _gi 2 K, i K,s 6&
(30 18)3T([ﬂ+(1+[K,——1]s)2]3rm 1+ [K, —1]s )"’ )+Aﬂ_ 9o’
but the boundary condition

682 |
g le=0™"
implies Ay = 0, so
03 I, K,s _ a .
(56~ 18)8 (ts+ 1+ (K, — 1]s)z] ar 5rlbs + 1+ (K, —1]s)2]) or
and it is not necessary to find 3,.
Evaluating the derivatives %’; } _ ., we find
3(1 —-9)10s = 3(1-9)1 K,s
9 edp et 0 {0+ ['BS+(1+[K,—~1]3)2]
€’ K, a K, s
T 1ar 5= (18+ AT 1o or Pt 0Tk, = 113)2]) o),

The combination of continuity and intraparticle diffusion equations then yeilds
K, )} Os 33 +461—’|9 (K, — 1)K} 33)
1+ [K, —1]s 9t " 15 0 (1+[K, —1]s) or
_l=de K? 0%s
9 151+ [K, — 1]s)* dr2

Note that this is a singular perturbation problem, typical of the form of equation

{1+~¥(ﬂ+

= 0.

obtained when dispersion, fluid film mass transfer, or kinetics perturb the solvent
system. It can be dealt with as a regular perturbation problem, ignoring the initial
boundary layer, unless shocks are allowed in the solvent system. If shocks are
disallowed, one simply uses the method of characteristics to solve the resulting
hyperbolic subproblems. This will be considered at length in future papers; for
most problems we simply use the unperturbed dynamics for the solvent equation,

as appears in chapters 2 and 9.
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CHAPTER 9

Moment Control Equations

When solvent concentrations are allowed to vary, the solute reaction coefficient
can no longer be considered to be constant, so that the dynamical equations have
variable coefficients. This renders Laplace transform techniques ineffectual for ob-
taining useful expressions for the moments. We found a method superior to Laplace
Transforms for obtaining the moments from the constant coefficient equations, that
can be applied effectively to the variable coefficient equations also, yielding ex-
tremely useful first-order ordinary differential equations for the moments. We will
call this technique moment integration by parts since it relies on integration by
parts of the dynamical equations, and to denote its difference from other extant
techniques. Moment integration by parts is the most economical way of finding
moment equations for pulsed systems. In the following development, the equilib-
rium reaction coefficient, diffusion coefficient, and other transfer coefficients will be
considered variable, but the reader may easily see the corresponding solution for
the constant coefficient case.

Central to the solution of the variable coefficient case is an understanding
that coefficient variability comes from changes of solvent composition, pressure,
temperature, or velocity on a much smaller time scale that the solute concentration
pulse width. Therefore, one can make the very important assumption that, over
the scale of the solute pulse width, the coefficients in the dynamical equations are
constant.

The reader unacquainted with definitions of the moments and their significance

to pulse analysis in chromatography is referred to appendices B and C. Also, we
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need to clarify some aspects of one of the dynamical equations, concerning solute
adsorption kinetics modulated by solvent concentration (see also chapter 5):

a il
ea—Tq e (1 - b)C i K. (1 - S)q
1
- m(—’{enc —q)(1 —s).

Note that dg/0r = 0 when either ¢ = K., ¢ (reaction is at equilibrium) or when
s =1 = b= 1 (adsorbent is saturated with the strong solvent). The latter case does
not represent local equilibrium; at solvent saturation of the adsorbent the solute has
no chance to adsorb. Since this is not a useful situation, we require that s < 1 and
hence that b < 1. Actually, keeping in mind the approximations made in deriving
the solute isotherm, we require 1 —s > cand 1 —b > ¢. Thus it is important for the
validity of our model to consider s < .95. Also, in RPLC it is typically necessary
to keep at least a few percent organic component in the solvent to keep the bonded
phase adsorbent “solvated” (see chapter 5), so we require s > .05.

Now we proceed to derive the moment control equations. The most general
form of equations considered here include solvent equilibrium modulation of the
solute reaction coefficient, and perturbative spreading of the solute pulse due to
reaction kinetics, interparticle and intraparticle diffusion, and fluid film mass trans-
fer. All parameters may have dependence on solvent composition, though velocity
dependence (due to changing viscosity) demands a different form of the dynami-
cal equations (where v is not included in the independent variable), which will be
treated later. The equations are (recall { = z/L, 7 = Lt/v, p = r/R)

Oc Oc 3(1—-9)1 0¢, d%c
o o

& or T T 0 el Tvag T

with boundary conditions c(€,0)=0

c(0,7) = f(r)

e(+,7) € Ly(0,00),
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9% 9¢ 1 _, 0 ,0¢

eI T S — =0,

ar or epg 399 do

with boundary conditions

o¢
a—g |p=0 =0
oé =
623_9 Ip:l =c—¢,
dq z 1
ekE__ &= (1 - b) . I{u:m (1 = S)q

——-:——-:—-—P
Y Al A e
(ot _ &
* 7 Lk, St

b= ——= =
kIR k!dp Sh
E
56 = 331,
. _D,L ¢
R Y _ﬂPep’

where Pe is the Peclet number, Sh is the Sherwood number, St; is the kinetics
Stanton number, St; is the fluid film mass transfer Stanton number, Pe, is the
packing Peclet number, or Bodenstein number, and we call £ the packing number.
Note that since D;, v, and Pe, vary with s, so do all of the above dimensionless
quantities except . In HPLC, usually ¢ &~ 10~%, so this limits the size of the
multiplicative dimensionless quantity if perturbation technique is to be useful. In

the following derivation, we use the moment notations
mi€) = [ rele,r)dr,
0
we) = [ ree,r)dr,

0

n©) =] e,

oy iE)
O = ®
a(€) = (6 = (14 (©)).
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Calculation of m}: The equation

d . 1
€5 =(1-b)— K. (1-3s)g

gives

ekl/m 2—da—

0

Assuming s, b varying slowly over the concentration pulse for ¢, ¢, and using inte-

gration by parts, this gives

~ ¢
0= (1 - b)Tno - If;am (1 - s)pl]'l
or gy = K gp iy,

Then,
o¢  0Oq 1 .8 .08
ﬂar &4 or € L 39 Jdo =%

gives through integration by parts

—él P—rhl =
do- 8o °
2 ~ 1 Yo o e
so that —my=-— = 7% =0 from the boundary conditions.

do ° o
Thus m} is constant with respect to p. From the fluid—film mass transfer equation,

we then obtain

O | ! ~r |

= = -z ' oAt
= my m0|e=1—0 => my =My

for all £, 7. Now, from the continuity equation

8c+ c_|_3(1—19)16cI —e%—{)
o€ v e Qo 'e=' g2
we obtain
dmy, d*mj,
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dmfy  dmy
¢~ d¢
Since ¢(+,7) € Ly(0, 00) (physically, mass is not added to the column), we must take

so that

1
Io exp(gg)

%3- | ,= 0. Thus mj = constant throughout the column (i.e., for all £).

Calculation of mj: The equation

ad ) 1
€L Eq =(1-b)é - K. (1—3s)g

gives

00 aq 00 . 1 00
fk_/ ngr=/o 7(1—b)édr — I / (1 — s)gdr.

0 sam 0

Assuming s, b varying slowly over the concentration pulse for é, ¢, and using inte-

gration by parts, this gives

7 L 1 r
—€r Py =(1_b)rnl i I( (l_s)pl’

but since
Po = Kegy1ing,
Py = & %ﬁlg + K. ;pmi;
and also
—pmg — K,y ymy — ég-z% gaigrh,l -0
which implies
—& 0" (B + Kopg)my = C%g?a%:ﬁ;;

integrating and using the boundary conditions,

- ] a N}
—€ g(ﬁ + Koy )mp = 5-57711;

From the fluid—film mass transfer equation, we then obtain
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which gives
1 ] | 1 r
—be, §(ﬁ + Kepp)mg =m) + ¢ g(ﬂ + Koy )mg —m,

which gives the value of the constant v, ; hence

1-— p?

~ 1 - ] -
my = m) + e, g(ﬂ + Kepy)mp + 6 5 (B+ Kepp)my
and so
o, 1 X
691 o1 =% 3(B+ Koy p)my

Now, from the continuity equation we obtain

om), ,  3(1—=9) 1 0m *my
T R ey ol Rl bl
which upon substitution becomes
d*m})  dm| ,  3(1-9)1 —¢ 4
—€e df"’ df — My =+ 19 g[ 3 (43 i I{C.ff )] my = 0’

so that we obtain an equation for yuf:

&y dy (1=9) .
— i =
€, d£2 d(f + + 19 (,B'{-I\cff) 0,
with the initial condition
, 1 [ .
py(0) = — T¢(r)dr  given,
0 0

and the initial value dT"ErL(O) to be discussed momentarily.

Calculation of m!: The equation

dq : 1
g = (1 -b)é— . (1—s)q

gives

231 - 2 . a . 2 .
e,,‘/; i dr /0 7°(1 - b)édr 7 _/ 72(1 — s)gdr.

0
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Assuming s, b varying slowly over the concentration pulse for é, ¢, and using inte-

gration by parts, this gives

1
I{a am

=2ep; = (1-—b)ray — (1 —s)p),

which would be used for the calculation of mz. We found

PG My + Keppriny;
using the internal diffusion equation we have
~ ' 1 - d 8 ~
—28m,| — 2p| — ;:g ? 8—9926—97112 =0

which implies (substituting for p| and m})

0% — ot
_2EP((ﬂ+I{e!I)[Q2m‘1 +6P 6
K,, ; a ,0

+ P K. iy —20m ) = —p® —t0’
e e M 0

2
(B + Kop gy + 8y S (B + Koy Ymiy)

integrating and using the boundary conditions,

3
mruxﬁ—ﬁwﬁ+m”m¢

K.,m
1-—

—pr((ﬂ‘l'ﬁ'eu)[g

+ée, 3(ﬁ + K,y ymh] + Ixc” € ——— mo) mz,

3

We need not calculate ), itself, only its derivative as above.

Now, from the continuity equation we obtain

31-9)1 0 ., o

' ' [ /T
=iy + 2y — — e — g |y +eea—§;mz =0

which upon substitution becomes (also dividing by m}, ):

d*py,  dph
©der T de

1—49
+2[1+~§——(B+Ix’w)],u‘1 + F, =0,
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where F, is given by

2 1-49 2. 1—-49
F, = T T(ﬂ + Keff )+ ‘5€p (B+ Koy )?
- 19 I{anm
+ 26;: 19 I\e_{f 1—s 3
with the initial condition
1(0) = — ] rg(r)dr  given,

and the initial value TE’—(O) to be discussed momentarily.

We now have, for each solute, equations for the moments g} and pf, which will

ultimately yeild the position and width of each solute’s associated concentration

pulse:
d? g d#1
e — F = My
de dé + 0
d*py,  dy
g~ o H2RU B =0,
where

1—-49
F = 1+T(X3+I(e”)

and F) is given as before. The F; terms may be considered forcing in these second—
order equations, determined by the solvent and system constants. These equations
can be reduced to first-order differential equations by precluding nonphysical ex-
ponential growth (from the condition ¢(-,7) € L,(0,00)). This is done similarly as
in the solution to my; we simply choose the values of the initial conditions appro-

priately. Integrating the equation for p} once, we obtain

dtzl*ekp( )[—_f EXP(“—)F1d€+7h]

Integrating by parts, we obtain

duy ' .d.ﬁ 2 & Fy
d_f _exp(g)[fh —= F1(0) = &, (0) — € de? fa 0} =
£ anl
_5"-/0 exp(—é)ﬁdf-]-exp(—z)(Fl(é)—'_
dF} , d* Fy

5 g B +d 2 e~
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Choosing the previously undetermined derivative initial condition to be
- %0 =X e )Rl
e dE 1 £=0"

the exponential behavior of 4] is eliminated, and now we have

du, | dFl
d& E(E) +-16s

(Note: if solvent concentration s is increasing in time, it is decreasing in space, so

(€)+

K,;; is increasing in space, as is F;. Thus the solute is slowed by a very small

amount.) Assuming e, < 1, we approximat.:

duy
Z Fi(8).

This is the appropriate dynamical equation for ), and now we can more easily find

the associated dynamical equation for
pa = py — (1),
since from this identity

dpa _ duy dpy  duy
— —_ 2 4 ~ —
G T a Mg ¥ b

The equation for y), can likewise be reduced to a first—order differential equa-

tion; using precisely the same kind of argument as for the p} equation, we obtain

dusy
d§

with initial condition

d
—QCFRp + )+ ---

=2F1#'1+F2 +€ed§

e

d
i (0) = 2F, (0)x}, (0) + F»(0) + ¢, -&—6-(21"’1#'1 B ¥

so, dropping the smaller-order terms, we have finally the approximate equation

/

[ ' d '
dg ~ 2F“U,1 +F2 +€ed_€'(2Rul)1
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and hence the approximate equation for the “variance” term p, is

du dF, d
Sla ze—[—2ee(.u'ld—£+Fl ul)

3
=F +~5=P1d£ + 2¢ F2.
The final set of approximate equations for each solute are thus
-1+ 864 k)
%%=f—5p1 (B+Keps) + 3 55:» (ﬁ+I'¢”)2

1-— G I\aam % 198‘[“!!

+26k J I\,};l_s'f'-g#i 9 85

The last term in the expression for du, /d€ contains the factor dK,;; /d€, which

+ 2¢ (1+-——(B+K,”)) :

will be negative for the typical solvent gradient, and hence will reduce the growth of
the peak width. In fact, in the absence of dominating peak width growth parameters
€y, €y €, or 6, the width will actually narrow under the influence of a solvent
gradient. Such an effect in experiment has long been acknowledged.

In terms of standard dimensionless variables as reviewed earlier this chapter,

we have
d{lo 1 1-— '0 " 2 E 1-— )
—_— _ I’e 2

ok 1—191. Kisia +2 [ 1 -0 0K,
2 s -
St 0 15T 9P, Ty o

If, as generally happens in RPLC, the linear velocity v is variable, we go back

+ (1 + 1—;g(ﬂ + I\"eff))z] ;

to dimensional moments

L. . B
Bo==p and i =(2) .

The expressions for du! /d¢ and du,/d§ may be used to find directly the dy-

namics of the Height Equivalent to a Theoretical Plate (HETP — see appendix C)

for a given solute:
_ ML
(1y)?
dH L dy, M2 L dpf

dE T (w)? dE T(uh)® dE
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The HETP has been used classically to characterize the “efficiency” of columns — the
smaller the HETP, the more “efficient” the column. Define the normalized HETP as
H = H/L and the reduced HETP as h = H /e = H/d,. For the constant—parameter
case, the reduced HETP is

—H(l) 2 +1;ﬂ( ﬁ+K,,, )2[ Pe+ i

9.Pe; 1+ 1 LB+ K.y] 35t
1—19 2 2 1 K
Iic sam
* Y (1 [ﬁ'i’f&ejf]) St 11—

This agrees with the HETP found by moments derived by means of Laplace trans-
forms, as discussed in detail by Arnold et al. [3] (see appendix C), the only dif-
ferences being the explicit dependencies on Pe, St;, St;, and the nature of the
dependence of the reaction coefficient on the solvent concentration.

We can write (as per the discussion in chapter 1) the packing Peclet number as
Pe;' ~1.16 4+ 2.8 Pe™';
the fluid film Stanton number can be expressed as

Sty = di Sh Pe™?!,
P

and so (from (3,21,22,39])
Q(9)

= &
Stf ~ dp (Pe) 3
for Pe > 50, and
0%
St, ~ Q(‘?)E’ (Pe)~!
for Pe < 50.
Thus for a tracer solute with no binding
1 2 1-19 Jé; d,
—H(1)= =(1.16 + 2.8 Pe™! — P
() = 5116+ 28Pe™) + =5 (1+%5) [30 sns0T ¢
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for Pe < 50, and

1 2 _ 1-49 B 2.1 d 2
~H(1) = =(1.16 + 2.8 Pe™! — —L Pes
“H(1) = 5(1.16 + 28 Pe™") + = (1+¥ﬂ) (o5 Pe + 3% Pel]

for Pe > 50. This combined expression for the plate height is close to the Van

Deemter form, obtained by a heuristic argument [11]:
B
H=A+—+0Cy,
v

where v is a form of the velocity.

For the isocratic control case, we need not worry about solvent dynamics; using
the predicted HETP for the case of methanol-water solvent in a C-18 column, with
n-hexanol as solute, we obtain the following results. We take J = 1/4, g = 1/4,
D; = 6D for the relation of intraparticle diffusivity to bulk diffusivity, @ =1, d, =
10 um, and L = 10cm. Assuming the forward reaction rate to be k;,, = .5sec™!,
we obtain the curves in Figures 42 and 43, showing HETP dependence on s and
Pe. Note that as Pe gets smaller, s has less influence on the system. Increasing
ksor to 100, as in Figures 44 and 45, we see s has little effect on the system unless
we look at much higher Peclet numbers (velocities). Figure 46 shows HETP curves
for two different molecules (assumed with the same k/,,, for lack of experimental
data), as functions of the hexanol Pe. We see substantially different curves.

These HETP curves would seem to indicate that it is not a simple matter
to choose an overall best flow velocity, since the HETP minimum changes dra-
matically for different molecules and different relative solvent concentrations. This
underscores the necessity of developing an advanced optimization theory for solvent
control.

Gradient Control : As mentioned in chapter 7, when using a solvent gradient
for solute dynamical control, it is useful to define a control time (the duration of

the control scheme), which has to depend on the ezperiment time (the column exit
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time of the slowest solute). Suppose (1) is the largest column exit time of all the
solutes. We want this time to be the same as the time when the end of the solvent
gradient exits the column. Clearly p}(1) depends on solvent dynamics. Solvent
dynamics depend on the velocity through the column, which depends itself on the
solvent dynamics. This will now be expressed mathematically.

Solvent dynamics for nonporous particles is expressed as

— 19 b
&gt 5 g =0
where
B K,s
T 14K, —1)s’
and s(z,0) = 0, s(0,t) = ¢(t), and the linear velocity v is determined by end

pressures, density, and dynamic viscosity:

_ kgA¢/L
 9p(s) f) Medd

p?(s)

Notice that v is a global operator on s, so the equation for s is not hyperbolic.

Let v, be the linear velocity of some standard isocratic solvent mixture. Define a

()f 2() ,

where © = v /vy, 7 = /10, and p = p/po. Then the solvent equation can be put in

normalized velocity as

the form

P( )f n(s) 1-9 K, ) ds Os

14+ ;3_T+6_§

52(s) 9 1+ (K, —1]s)? =

where 7 = vot/L and £ = z /L. The initial and boundary conditions are

s(£,0) =0, and s(0,7) = ¢(7L/vo),
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with ¢ some arbitrary function. However, we are only interested in ¢ on the interval

0 €7 < Teon, the control time, so define o = 7/7.0n = t/teon, s0

3(0,0) = ¢(0Teon L/vo) = $(0).

The trouble with the above use of 7.,, is that it is not known d priori. It must be

calculated in conjunction with 7., = g} (1).

Let

Qi) = [ L ae,

with 7.,n = Teon as an initial guess. If 7., turns out to be incorrect, a new guess
is made, so that ¢(o) is rescaled. Given 7.,,, an iterative technique might be tried

such as

ar . 1-— 19 I{, aS;+1 63,‘.‘},1
oisn)Qsi;0) (1+ =5 A+ K —Usis2)?’ 0r | ¢

=0,
(as was used to prove existence of a solution to the solvent equation) starting with
constant sy, so as to give a hyperbolic structure to each subproblem, but then it
would be awkward to calculate p}(1), because one would have to store and inter-
polate over many s values across its domain. Instead, it is best to calculate the
solvent equation numerically as a partial differential equation (for instance using
finite differences), simultaneously calculating p (€).

The solvent equation can be solved numerically to obtain estimates of s for all
¢ at each time step, and so approximate Q(s; o) at each o. One takes a grid in space
with constant stepsize A&, but a variable sized time step Ao, being careful not to
violate any stepsize constraints imposed by conditional convergence (e.g., Courant—
Friedrich-Levy condition). The time step size is determined by the calculation of
Ao = p (€4 AE)— p)(€) via an ordinary differential equation solver. This technique
is used to calculate the reduced HETP of n-hexanol in a methanol-water solvent

(see Figure 47).
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Figure 47: Theoretical dynamics of aqueous methanol solvent and hexanol so-
lute. Concentration profiles are shown at two times within the column of length
10 cm; solute profiles exaggerated horizontally and vertically. Note steepening
of smooth solvent gradient, and very little spreading of the solute pulse. Con-
ditions are: T' = 25° C, dp = 10 microns, Pe = 400, 3 = .25, J = .25, cubic

spline initial solvent gradient from .25 to s = .50.
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Use of Average Velocities : If one estimates the density and viscosity of
the solvent mixture as constant, one may use an easier technique, utilizing only

characteristic equations. We solve the equation

dpy _
-d-_g- = Fl(S)

using, say an explicit ordinary differential equation solver, stepping from £ to £ +A¢
using the value of s(&, p} (€)/tcon ) to obtain o = pi (€ + A€)/t.on. Then one follows
a solvent characteristic £ back to oy at £ = 0 to find the new value of s along that
characteristic. Hence we can step again in space.

To obtain o, at each step one must solve the equations for the solvent charac-

teristic

do 1 . 1-9 K
_— a 1 3
d§  Teon Ha)dialt + Jd (1+[K, — 1].9)2)
e PPl audisa Xy
with initial condition o(0) = oy;
ds
&=

with initial condition s(0,00) = ¢(o,). where Q(s) is an averaged value assuming
constant viscosity and density of solvent over a certain time.

Thus
5(€a a(€)) = ¢(op) = constant

on the characteristic curve, so we obtain the nonlinear equation

= F(¢(Uo )1 Teon )£ + o9

to solve. In the integration scheme, we know that o = u} (& + A€) and the space
location £ = £, + A€ and hence can use a Newton iterative technique to find ay.
Once (1) and the corresponding o, is estimated, if oy # 1 one must try a new

Teon ; this process can be cast into a numerical “shooting” technique.
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APPENDIX A

Nonlinear Multicomponent Stoichiometric Systems

In this appendix the theory of Helfferich and Klein [19] is briefly covered, partic-
ularly with regard to how it fits in with our formalism for general chromatographic
systems.

Considering mobile and stationary phases of a set of solutes to be at equilibrium

in the column, we define (using Helfferich and Klein’s notation)

C; =dg and Ci = 04¢is

where we now have both stationary phase concentration C; and mobile phase con-
centration C; given per unit volume of the column rather than of the respective
phase. We also define total concentrations of sorbable species’ phases as

C = Z Cl'v é = Z éi'
If the system has C and C constant, we may conveniently define the normalized

concentrations y;, z; as

_G _G
y:—C, zt—c—,a
so that Z e =1, Zz,-:l.

Thus, if there are n components in a system, we can represent the mobile or sta-
tionary phase concentration state as a point on an (n — 1)-dimensional simplex.

Further, a normalized distribution ratio is defined as:

4 96

Yi N C'Ci
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and a binary separation factor

Be = C_'.'C" y..?:_,
1) A CJ x’ yJ
Note that
o = a'.‘jl . Oy = 1

The n components are ordered in terms of their affinity C;/C;, such that

G

> & for j > i.

Q|Q|

Hence a;; > 1, for j > i. We call this an affinity sequence, with decreasing
values of affinity.

If in this system sorption of one component implies desorption of another,
this process is called ezchange sorption; if the sorbent has a constant capacity for
sorbable components, then the exchange sorption is stoichiometric (1.e., the amount
sorbed is equal to the amount desorbed). A physical example of such a system
is ion exchange chromatography of dilute systems, according to the authors. Of
importance to the developments of the present research is that the authors note
that systems of n components having Langmuir isotherms can be represented as an
(n+ 1)-component stoichiometric system. That a Langmuir system of the type the
authors consider is not in itself stoichiometric is easy to demonstrate; consider for
the following development that

Q; K, c;

N ke i [ fi 1 (-
QJ 1+E'.I{,'C.', N o e

For this to be stoichiometric, we must have the total sorbed concentration constant:

Q;Kjc;
? gy = Z 1_'_’): I\J = constant,

which clearly only holds for ¢; infinitely large.
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Also of importance is that the a;; are constant in a Langmuir system:
i K
vy = QE
Q; K;
so that indeed the authors’ formalism can be applied.

To convert such a Langmuir system into a stoichiometric system, note that

9 _ Q; K;

=—27 _ f
Cj 1 +2'.I‘:,'C;’ or

= ity

and that a stoichiometric system can be written as

g ajx R

= = forr 4= 1 owdfis
cj 1+Zi#k(aik - 1)z;’ e
where
R= g: z: = constant.

Thus such an n—component Langmuir system is equivalent to an (n+ 1)-component

stoichiometric system via

Qi K; = Ra; for 1=1.::k~—1,
K;c; = (Of-',k - 1)1',' for i1=1...%k— 1,
Q,‘I{; :Rai+1,k for i:k...n,
I\P,'C,' — (a’:'+1,k — 1)33,'+| for 1=%:; .n,
so take
Gk = Q}i{‘ fOI' = s k — 1,
x; RIK;
L = e f =1.:8—1
C; Q.‘I\’i — R or ! :
aiH,k:Q}?i for 4= K oo
:B:"l = Q,—i’f\—i—R for 4 =k... 7,

If we want the same scale for measuring concentration in both phases, we the have

Yi K;
= f =1...k—-1,
qi Q:K; — R ot
Yig1 K;
—_— f — k C
qi Qi Ky~ R ot "
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We are free to choose R; if we choose
0<R<Q.K,,

then all z;, y; will be positive; so we choose R within this interval and such that

E o < L

i#Fn41

In this way, the pseudocomponent will have lowest affinity, and is labelled with
index n+ 1. To demonstrate this procedure, we carry out calculations for Langmuir
systems with one and two components.

The dynamical equations

ac; L oC; 1 ac; _0
ot o dz ot

can be undimensionalized using the previous normalizations:

wWC ot Tu ot oz
Defining
C (t & )
T==u(t — —
¢ 0
T==z
a_co
3t a UDC ('J‘r
9__Co 2
8z COr 0k
so that our equation is now
O 9z _
or 0%
with equilibrium isotherms
;i 2 for j=1...n

B 1+E,#J O.’,‘J'Z.',
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Another way to represent the dependent variables is through the so-called H-
Transform, which reduces to the problem of finding the “H-roots” of
- I\'-,' Cg
2 () =1

hQ. K, _1
i=1 Q1 K,

which can be shown to satisfy

HLI(MJ_&_l)

= Q. K,
3 - n QK
KTy (G- 1)

for the mobile phase variables. The H-transform is remarked to be similar to Binet’s
Transformation for the description of homofocal surfaces in differential geometry
[35).

For instance, in a three component space for an ordinary stoichiometric system,
we can represent the available compositions in a simplex as shown in Figure 48. The
interior solid and dashed lines are called composition paths, which satisfy

¢ _ o¢,
ac; ~ ac;

for all 7, 5.

In a three component system, there are two such paths through each composition
point. These paths are important in the representation of coherence, which consti-
tutes quasi-steady state behavior for the nonlinear waves in the system. Helfferich
and Klein give a complete characterization of coherence in such systems. Schemati-
cally, one may represent the attainment of coherence as a sort of “vector projection.”
Suppose the system has an initial state of a square pulse, as in Figure 449.

Then through time we see a development in which the respective pulses find
and retain the same general shape and relative positions — the scales of the pulse
lengths and heights will change dynamically. If the dependent variables are viewed
on the simplex, we see in time that the noncoherent initial state resolves itself

into two “vectors” lying along the composition paths which intersect at the base
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Figure 48: Path grid for mobile phase compesitions for a three component
system with separation factors a2 = 2, ay3 = 4. Adapted {rom Helfferich and
Klein [ ].
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composition point for the initial composition variation. Note that the composition
paths are solely determined by the equilibrium properties of the system, and are

independent of space, time, and experimental conditions.

In the next section the applicability of the authors’ formalism to our MPLC

control problem will be discussed.

Application to Process Modelling in MPLC. First of all, the idea of co-
herence mentioned in the previous section implies the formation of various shocks
in the concentration profiles. Recall that shocks are not to be allowed in the chro-
matographic column, and so coherence is never allowed to develop. For this reason
Helfferich and Klein’s formalism has no applicability to the control problems dis-
cussed in this paper. The present problem deals with nonlinear concentrations only
for the solvent system; the solutes are assumed in small, linear concentrations. The
solvent control will generally be assumed monotonic; shocks would indeed form
within the column if the control were allowed to vary nonmonotonically, or if the
solutes were in very high concentrations. The latter situation points to the impor-
tance of being aware of the linear capacity of the column. In future papers we will
discuss the control problem wherein such shocks are allowed in the system, which
has its importance in multicomponent affinity chromatography, along with the im-
portant aspects of the so-called coherent states. Roughly speaking, the situation
for fully nonlinear dynamics is as follows. There will be n solute components to
be separated, and two or three solvents to control the separation. The concept of
coherence is intimately related with that of component resolution, since a coher-
ent state will be seen to represent the maximum attainable resolution for a given

control.

All solutes begin their history within the column as pulses of equal width, with

solvents possessing the least affinity and solutes with progressively higher affinities —



171

if a component has lower affinity than the solvents, ther is no solvent control possible
for that component. Though the solutes are generally in nonlinear concentrations,
there also might be those that are in small, linear concentrations.

More general nonlinear problems involving fluid film mass transfer, porous—
particle diffusion, and nonequilibrium reactions can be approached as perturbations

from the above equilibrium problem.
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APPENDIX B

Moment Techniques

Moment techniques are used in various physical theories for pulsed systems, as
they ignore some of the detail of solving the overall partial differential equations,
while not leaving out the essentials. Essentially following Kubin [29] and Kuéera

[30], the form of the solution to a set of equations for chromatography is postulated

to be
clmt) = f: anH, (1),
where -
& g
r= 2;‘21 ,
gy = Q"k!mT;?rT-/om c(x,t)H, (7)dt,

my(z) = / t*c(z,t)dt,

0

() = T2

My
1 . t\k
pe =— [ (t —py) e(z,t)dt,
Mg Y
and H; is the k'* Hermite polynomial

Hi(r) = (=1) exp(r)? %emp(—rz).

The quantities p; and p; are called moments. The first few coefficients a; can be

calculated as being
Mg
a T — ——,
ol#) V 27, ()

a; =a; =0,
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Qg = ( )ﬂ

‘)231\/_ #2 ’

and further terms involving higher and higher moments:

(%]
Mo (—1)"#'1—21:#’5

V2T Ly b 2¢k!(n — 2k)!(2u, )12]

a. =

where for even n

n n
51=3
and for odd n
n n—1
[E] S=s

Kubin applied moment techniques to a linear model of partition chromatog-
raphy with a finite pulse as initial condition, whereas Kuéera considered the same
equations but with a delta function initial condition. Recall that in chapter 4 ex-
plicit solutions to these problems were reviewed. The value of the moment method
becomes clear when we try to interpret the analytical solution and compare with
experimental data, for the first moments have much physical and mathematical sig-
nificance. The solution method involved the Heaviside transformation; it turns out
that one can avoid taking the inverse transform of the entire solution and relatively
easily find the moments instead. This is indeed an advantage in terms of relative
simplicity and clarity, when comparing with the full analytical solution, if it can be

found. Kubin notes that

d ; [C(sz)]

m = (— 1)
where s is the transform variable, and any moment u; or uj can be expressed
in terms of combinations of m; for k = 1---00. Here we note that the moment
integration by parts method found in this paper is much easier to implement than

Kubin and Kucera's method for their constant coefficient equations; their method

is not viable for the controlled equations considered in this paper.
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For the case of equilibrium chromatography such that there is only axial dis-

persion, no mass transfer and delta function initial conditions the first few moments

are (from Kucera)

Ho = fig =1
=0
. L 2D,
pl = u 2
ef uc]
2D, L 8&D3,
H2 3 2
ug, Uy,
12D?, L  64D?,
e = 5 7+ [
u;, u,

where Kucera has the “effective velocity” u,; and “effective diffusion” D,; as

u
We) = T
f 14 eK.
D
D, =—%£—,
d 1+ ek,

For the more complete linear problem with longitudinal diffusion, radial dif-
fusion in the particles, mass transfer, completing the inverse transform has proven

intractable so far, and yet the moments can be calculated. The first few are as

follows:
Ho = po =1
=0

b= (E+2) 14+ x4+ K,)]

oD, L 8D? ) o
| . +u—;)[1+e/1\c(1+fx,,)]

9L 4Dy . [R'(1+K,? e(1+K.,)
+( + uz)d‘c D, v(v + 2) H,

=]
T E,
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Note that the first moment y) does not depend on the effective shape of the
substrate particles v the radial diffusion D, or the mass transfer coefficients H, and
H, , but only on the equilibrium reaction coefficients K, and K, the solute velocity
V, and axial dispersion D).

A pertinent question about the Hermite expansion is how many terms are
needed to obtain satisfactory results, and indeed, what are satisfactory results?
This brings us back to considering the primary concern in chromatography: we
would like to have a clear separation of the different solutes. The expression of
this goal involves a definition of resolution, which is agreed to depend on the width
of each solute peak and the relative retention times of the different solutes. This
means that the moments p} and p, are crucial to the problem. But can we get
away with using only these moments? That is, if we substitute the Hermite ex-
pansion into the chromatography equations of our choice, are we forced to solve
equations involving any other moments if we try to find g} and p,? For all the
linear equations considered, we find that the answer is no — higher moments are
not needed. However, this answer should be qualified somewhat. If a Gaussian
distribution of concentration is assumed, and this distribution is decomposed into
Hermite modes, we should only need to consider the first term in the expansion,
since that is all that is needed to model the peak perfectly. However, if for instance
a “box” function is modelled with the expansion, there are of course more terms
in the expansion having a nonzero contribution. More generally, if the function is
symmetric, its Hermite expansion will have odd terms zero; if the function is odd,
the even terms in the Hermite expansion will be zero. Asymmetries in a function
will make both even and odd terms important. If we consider only the width and
retention time important for a solute’s peak, then we can fit a Gaussian shape to

that peak, ignoring further structure of the solution.
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APPENDIX C

Relation of Moments to Physical Parameters

Kucera [30] notes that if a detector measuring the concentration of solutes
eluting from the chromatographic column is at distance * = L down the column,
then we can define various significant times. First, there is the time ¢; of peak

maximum such that
de(L,t) |
at |!=1R

and the time t5 of the peak median defined as

= ),

ts 1 o0
_/; c(L,t)dt = 5/ e(L,t)dt

0
which is when half the area of the peak is registered, the time ¢¢ of the mean (center
of “gravity”) of the peak given by

te =p(L) = [ te(L,)dt,

0

and the time #, when the concentration peak’s maximum passes by the point z = L:

Oc(z,t) |

Oz I”=L:O'

For the uncontrolled case, it makes good sense to define an effective velocity
u.s, and hence to define the retention time as t;, = L/u.;. It is generally known

that ¢, = tp; the relation between ts and t}, can be had from the relation

u2, (1% )2 \/u2 ts i3 \/u2 (1% )2 \/u2 e
ef\'R ef ef"R e NER ef
_ _ f + =1
erfc(\/ 4D, ;s 4D, ) exp( D,, )er C( 4D, ts 4D., )

which gives approximately that
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Kucéera [ ] also shows that

" DC!
th =te + L,
ef
and the relation
. 2D.;
tR =tlc — "f;

is directly from the first moment, and gives for large times a difference between the
two times which can be neglected. The retention time is important to determine
accurately because it gives the partition coefficient.

The second moment p, is the variance of a Gaussian peak shape and clearly
depends on all the important parameters in the chromatographic system. For dy-
namics without a change in solvent strength, i, increases with length of the column,
with longitudinal diffusion, and the size of the substrate particles; it decreases with
larger radial diffusion in the particles, with an increase in the mass transfer across
the particle boundary, and increased symmetry of the particles.

The definition of u., and D,; as constants is invalid when the partition coeffi-
cient changes as it does in the case of solvent strength control. The first moments
are still useful, though, and really the above times can all be obtained from the
moment g .

There is a question as to whether or not the popular phenomenological expres-
sions for the HETP have more accuracy and predictability than HETP expressions
based on moments. In this section it is argued that moments offer as much accuracy
and perhaps better predictability; also, moments are derived from an underlying
dynamic model of chromatography, so giving overall a more complete and detailed
understanding of the chromatographic system.

Arnold et al. [3] have made a careful study of the HETP and its relationship
to moments, particularly in the context of measuring equilibrium binding constants

and rate constants of biochemical reactions. Horvath and Lin’s [21,22] plate height
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expression
H TP B
= —+ = v
1+b01/3 v
commonly used in such cases is taken to task, as the expression is sometimes inap-
propriate to the situation. We note that yet another popular form for the HETP
1s

h = Av'/® +B/v+cv

put forth by Knox [27]. Clearly there is disagreement as to what the proper form is
for the A term. Knox does not give a theoretical derivation for this term, but rather
merely states that if one assumes a functional form of the plate height contribution
from flow anisotropy — dispersion coupled with solute diffusion outside the particles

as
hitow = ;_
U o L
with z < 1, v = wed, /D,,, h = H/d,, and 5, v constants then we can fit experi-
mental data rather closely. The value of z seems to be between 0.2 and 0.5, yet for

the reason that this form is “cumbersome” Knox suggests the form
hjf,,w = A'Ulls.

It might be inferred that Knox’s reasoning behind this was based on the following:
note that 0.2 < 1/3 < 0.5; as v — 0, and z = 1/3,

—r
n+ v

L
h]row = ¥y

1
— —v
i
giving Knox’s final form for h;,, . However, it is quite clear that if v is not small,
Knox's expression is in large error. Indeed, for v large,
1 1
)

Rptow = ———— — =
n+qv:  q

clearly a constant.
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Overall, Knox’s arguments do not seem compelling, partly because of the lack
of sensitivity of his expression for h;;,, to changes in the exponent z — with
enough parameters it seems that relevant data could always be fitted, and partly
because there is no rigorous quantitative theoretical reasoning behind his choice of
the functional form of h;;,, . Knox has found that only very high quality data over
a range of two magnitudes of v give an accurate estimation of h. On the other hand,
Horvath and Lin’s expression is backed by a theoretical argument. We would like
to relate the phenomenological plate height to physical parameters with as few free
parameters as possible; while Horvath and Lin present a more physical argument
for their plate height expression, Arnold et al. [3] take exception to the extent to
which their model is typically taken. Further, they find that for the effective region
of applicability of Horvath and Lin’s model, there is a model given from moment
techniques which gives an essentially identical expression.

Let us consider Arnold’s arguments. In the case that the peak profile is Gaus-

sian, so that u, is identified with the variance, the HETP can be expressed as

If the column characteristics are already set, H can be written in terms of mobile
phase velocity u. One such expression that has been in use for quite some time is

the Van Deemter equation

H=A+%+Cu

where the effects of molecular diffusion and dispersion determine the first two coeffi-
cients, and mass transfer, intraparticle diffusion, and sorption kinetics determine the
last coefficient. As Arnold remarks, Giddings [11] explained that the Van Deemter
equation did not take into account flow and diffusive coupling in the space between

particles, and that A should have flow rate dependence. Horvdth and Lin [21,22]
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suggested a form for this dependence, which was subsequently used by many re-
searchers. Arnold has made suggestions as to the proper form of the flow rate
dependence and for what values of u.

For terms other than for the flow and diffusion coupling, it happens that
Horvath and Lin’s model agrees in detail (see Arnold [3]) with the plate height
equation derived from the moment expressions found by Kuéera [30] and Furusawa
et al. [9]. Arnold questions the need for the term introduced by Horvath and Lin,
as the calculation from using the moments would seem to include any coupling
between axial mixing and diffusion. Using Arnold’s notation, the moments and
resulting HETP are

L
po=Zle+(1- 98+ - o, K

0

o= 2 (Efera-apa+ 2] +a-o|

so that the HETP defined by H = pu, L/i}* is

Pkt
ka

4B oKy2, 1 . 10
g ) (D£+—k]dp)])

24, 20- &L +(B+ oK) (% + 22)]
Pe, [+ (- B + 0, KT’

Ug

where Pe, = ugd, /E. is the packing Peclet number.
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APPENDIX D
“Fast Method Development”

Here we give a short description of the philosophy and method behind what
is called “Fast Method Development” (FMD) in order to show contrast with the
techniques presented in this paper and highlight certain important issues.

Fast Method Development. FMD has developed over the past five years as a
primarily personal computer-based process whereby two to seven initial chromato-
graph experiments (see Figure 50), each at a different solvent strength, are done
to identify the retention properties of the solutes in a mixture of chemicals to be
separated. The isocratic retention of each solute can then be predicted using a well-
known linear relationship between solvent strength and the logarithm of retention.
A standard algebraic approximation of the dependence of isocratic bi-peak resolu-
tion on “capacity factor”, “column plate number,” and peak spacing is then used
by computer software to predict resolution at any solvent strength thereby giving
a map of minimum bi-peak resolution for all solute pairings (Figure 51). Then the
experience of the chromatographer is called into play along with more software to
help improve separation by changing column type, particle size, and flow rate.

Recently [48] FMD has been upgraded to include the possibility of a linear vari-
ation in solvent strength during the chromatographic experiment, not only isocratic
(constant) solvent conditions. Thus FMD presents an increase in ease of developing
what is now considered an acceptable chromatogram.

We start by defining the resolution between two consecutive solutes’ peaks.
The peak shape is assumed to be Gaussian, which turns out to be quite acceptable

for most cases. The bisolute resolution R is

tr2 —tlr
BR=9=—""__ 7
W, + W,
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1) Do two gradient runs.

2) Do sclvent strength simulation.

3) Find relative resclution map.

4) Select solvent.

3) Do column simulation-optimization.
6) Fine tune final procedure.

Figure 50: Guidelines for Fast Method Development.



183

—_—

e
-

(S
w

il | Aﬁ-\
c{lbllglll i . 0 5

Figure 51: Fast Method Development applied to RPLC separation of six stercids
(see text). Adapted from Snyder, Glajch, and Kirkland [ ).
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where tg ; is the retention time and W; is the peak width for solute 7. If we define

the plate number as
N =16(tg /W)?

_tra—1to th2 Kk
tRll _to t;?.l k;.

where
t'n,.- = tR.i — 1y
and
3 i_‘_
e

Since the peak shape is Gaussian, we interpret W = 40, i.e., the width is four stan-
dard deviations. From these relations we can easily find that the bisolute resolution

is
VNa—-1 k

ey

The primary importance of k' is that it is proportional to the equilibrium
partition coefficient (Giddings [11].) Note that the definition of N assumes that it
is a well — defined constant for the column, which we will show is often incorrect
and would lead us to err in some important situations; N is dependent on such
things as solute type, solvent type and concentration, solvent gradient, and solute
concentration.

If we accept the above phenomenological relationship then we can state that

the plate number N, of the column must satisfy

[ gk ey

N, > N,,., = 16R?
- ! B a—1 k!

where R is the resolution required to separate any two of the solutes. Thus we
will have to know how N. depends on column length, particle diameter, and flow

velocity. For short columns, often times peak profile is markedly disturbed; this is
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probably a nonequilibrium phenomenon which can be modelled by including kinetics
in the system equations — this cannot be dealt with in FMD. So, a column length
is assumed that does not give rise to such perturbations; then generally N, is found
to be roughly proportional to column length. Another parameter closely related to

N is H, the Height Equivalent to a Theoretical Plate (HETP) given by
H=L/N.

The bandwidth near the end of the column can be expressed in units of length

relative to column length, so giving us the expression
N =(L/o)?

where o? is the Gaussian peak variance. Then the expression for H becomes
M =a° [ L

Further, 6 can be considered to be the sum of variances (peak spreading) origi-
nating from assumed independent mechanisms such as diffusion, fluid flow through
the column, mass transfer resistance between mobile and stationary phases, and
adsorption kinetics (Giddings [11]). Diffusion in the mobile phase arises from the

solute concentration gradient, and gives rise to a variance of
-
8% o = DV Lt

where v is the tortuosity coefficient due to the structure of the substrate. Stationary

phase diffusion gives a variance contribution of
op., =2kv. D, Lfu

Variance contribution from the fluid flow derives from differing streamlines and
microchannel diameters in the substrate — local fluid velocities depend on the

structure. This contributes a factor

2

- 1/3
op =alu
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where a is a constant depending on particle diameter and mobile phase diffusion.
Finally, since diffusion across the boundary between mobile and stationary phases

takes a finite time, there is a variance due to mass transfer resistance

CLdiu
o° =
tr Dm
where C' is a function of solute retention. (Here again we see that the plate height
is really solute — dependent). Since adsorption kinetics contributes a variance pro-
portional to Ld2u/D,, its coefficient can be included in C.
The above variances summed up give an expression for the HETP of

Cdu
D,,

2
H= ;(71% Dy, + k"YaDa)'l'aul/S =+

It should be noted, however, that at large enough velocities the flow characteristics
change considerably, as turbulence sets in within the microchannels (Giddings [11]).

A solvent model is necessary for the formulation of any theory of chromatogra-
phy. Snyder, et al. [44,45,47] has improved nondynamical models of the behavior of
solvents on various chromatograpic packings. This model is primarily for columns
with silica or alumina as substrate, though simpler versions of the model are quite
adequate for other substrates as long as only certain combinations of solvents are
used. It is assumed that the measured effect of solvent on solute behavior is due
not to interactions in the mobile phase but rather due to competition for for ad-
sorbing sites on the substrate. A phenomenological parameter solvent strength € is

postulated to affect the solute retention coefficient as

log(ky [ks) = ad, (€3 —€1)

where k; denotes the value of &’ for a mobile phases 1 and 2, « is a substrate activity

constant, and A, refers to the cross—sectional area of the adsorbing molecule.
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The surface of the typical substrate, or adsorbent, has isolated polar (i.e., with
dipole moment) groups scattered across its surface in addition to the generalized
reactability of all exposed surface. These polar areas can react differently with a
given mobile phase molecule if the molecule is itself polar. With silica as substrate,
the polar areas are silanols (Si-OH) randomly scattered. The column can be pre-
treated with a depolarizer to incapacitate the polar groups, but polar groups can
actually aid the separation of some solutes. For two solutes of similar retention in a
nonpolar environment, changing to a polar solvent can create large changes in the
solutes’ relative retention if one is more polar than the other. The formula above
already includes effects of localization of solvent and solute: a change in solvent
localization changes € whereas a change in localization of solute changes apparent
A, value. What the equation does not include is the effect of interactions of the
two types of localization. Snyder, et al. [45] found that for silica adsorbents and

localizing solvent /solute combinations the following equation holds:

log(k; /kg) = CYA,(EQ = 61) +A1.

A, depends both on the properties of solute (X) and mobile phase M;. Suppose
Ay is the measure of relative localization of X. Let the coefficient m; increase
both with the amount of localization of some mobile phase solvent S; and with its
proportion of coverage §; of the adsorbent. An experimentally — verified linear free

energy relationship between these parameters is
Al = _AX m;.

Here increased localization results in decreased solute retention. On the other hand,
Ay increases with increasing X localization. m; can be varied to help control

solutes’ retention times, via changing solvent composition. m can be calculated



188

by determining the polarity coefficient m° of a pure solvent which localizes and

specifying the fraction 6; of the polar solvent:
m = m° f(6;).

The function f is empirical, taking values between zero (for §; = 0) and one (for
8=1.)

Still another factor was found to be of importance, though less so than solvent
strength and solvent /solute localization. The relative basicity of a solvent is thought
to give rise to a noticeable effect on solute retention. Snyder, et al. call this effect

solvent-specific localization which gives rise to a term A,:
Iog(kl/kz) - G’A,(ﬁg = El) + Al + Ag.

We see then that solvent strength, solvent/solute localization, and solvent—
specific localization can be varied independently, allowing a great deal of control of
the selectivity of the chromatographic system. It should be noted, however, that
these parameters have upper and lower bounds; indeed, the maximum value of m;
increases as the solvent strength increases. The proposition is then to include, say,
four solvents in the mobile phase, changing respective concentrations in order to
institute solute retention control. For example, we choose solvents A,B,C,D, where
A in nonpolar, B is weakly polarized, and C and D are increasingly polar. Also,
C and D have basicity, increasing from C to D. In such a way we can predict the
retention characteristics for solutes, and use this predictability to improve separa-
tion. Snyder, et al. [48] suggest for example hexane (a saturated hydrocarbon)
for A, methylene chloride for B, an ether like methyl tert.— butyl ether for C, and
acetonitrile for D.

These results have been found useful for the case where solvent characteristics

are changed only from experiment to experiment — not for solvent changes during



189

the chromatographic run — except for the case when only solvent strength e is
varied. This is not to say that one could not obtain superior results by considering
changesin A, and A,, just that methods utilizing these other aspects of the solvent
model have not been developed. Rather, Snyder and his colleagues have focussed on
simpler techniques for improving solute separation via Fast Method Development.

It appears that FMD cannot handle more parameters gracefully or easily.

Snyder’s equations express what occurs with a static solvent — solute model. To
help take into account the dynamics when the solvent charcteristics change during
the experiment, Snyder [47] uses an averaging of the solvent gradient to give effective
relative retentions. This approach fails if anything more complicated than a linear
solvent strength gradient is modelled. In fact, it is very likely the case that a large

amount of controllability of the system is lost through averaging.

There is still another very important aspect that the model fails to address:
the nature of high concentrations of solvent in the mobile phase. It is perfectly
natural to consider the solvents present in the mobile phase as solutes, in light
of the mechanisms of solvent action (i.e., competition for attachment sites on the
adsorbent; mobile phase effects negligible) shown to hold true by experiment. This
behavior can be modelled by nonlinear dynamical equations (Thomas [50,51], Walter
[52,53], Goldstein [14,15]) the nonlinearity deriving from the high concentrations.
Thus we would expect to find that the implicitly linear model used in FMD to fail
to show peculiarly nonlinear effects. Most notable among these effects are gradient
spreading and “shock” formation from gradients. Which effect will occur depends
on the particulars of variations in the solvent concentration; for the simple type of
solvent gradients used in FMD, the solvent gradient will tend to increase its slope
as it travels down the chromatographic column. This means that solutes near the

top of the column experience a solvent gradient that is not as steep as the solutes
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further down the column. Exactly how important this nonlinear effect is to the

control of the solute separation will have to be investigated.
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