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Abstract 

A rectangular tank of high-aspect ratio contains a liquid of moderate depth. 
The tank is subjected to vertical, sinusoidal oscillations. When the frequency of 
forcing is nearly twice the first natural frequency of the short side of the tank, 
waves are observed on the free surface of the liquid that slosh across the tank 
at a frequency equal to one half of the forcing frequency. These sloshing waves 
are modulated by a slowly varying envelope along the length of the tank. The 
envelope of the sloshing wave possesses two solitary-wave solutions, the standing 
soliton corresponding to a hyperbolic-secant solution and the standing kink wave 
corresponding to a hyperbolic-tangent solution. The depth and width of the tank 
determine which soliton is present. In the present work, we derive an analytical 
model for the envelope solitons by direct perturbation of the governing equations. 
This derivation is an extension of a previous perturbation approach to include forc­
ing and dissipation. The envelope equation is the parametrically forced, damped, 
nonlinear Schrodinger equation. Solutions of the envelope equations are found 
that represent the solitary waves, and regions of formal existence are discussed. 
Next, we investigate the stability of these solitary-wave solutions. A linear-stability 
analysis is constructed for both the kink soliton and the standing soliton. In both 
cases, the linear-stability analysis leads to a fourth-order, nonself-adjoint, singular 
eigenvalue problem. For the hyperbolic-secant envelope, we find eigenvalues that 
correspond to the continuous and discrete spectrum of the linear operator. The 
dependence of the continuous-spectrum eigenvalues on the system parameters is 
found explicitly. By using local perturbations about known solutions and numeri­
cally continuing the branches, we find the bound-mode eigenvalues. For the kink 
soliton, continuous-spectrum branches are also found, and their dependence on 
the system parameters is determined. Bound-mode branches are found as well. In 
the case of the kink soliton, we extend the linear analysis by providing a nonlinear 
proof of stability when dissipation is neglected. We compute numerical solutions of 
the nonlinear Schrodinger equation directly and compare the results to the previ­
ous local analysis to verify the predicted behavior. Lastly, laboratory experiments 
were performed, examining the stability of the solitary waves, and comparisons 
are made with the foregoing work. In general, the agreement between the local 
analysis, the numerical simulations and the experiments is good. However, ex­
periments and direct simulations show the existence of periodic solutions of the 
envelope equation when bound-mode instabilities are present. 
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Nomenclature 

b is the width of the tank. 

€ is the length of the tank. 

h is the depth of the undisturbed fluid. 

9 is the constant acceleration that is due to gravity. 

ao is the amplitude of the vertical, sinusoidal forcing. 

w is one half of the frequency of the vertical, sinusoidal forcing. 

k = 7r Ib, and is the wave number of the first, sloshing mode. 

Wo = J gk tanh(kh), and is the natural frequency of the first, sloshing mode. 

a is a nondimensional measure of dissipation. 

(3 = (w2 
- w3)/(2w3), and is a nondimensional measure of the difference between 

the first, sloshing frequency and one half of the forcing frequency. 

, = (aow2
) I g, and is a nondimensional measure of the forcing amplitude. 

::y = ±V,2 - a 2 , and appears as a parameter in the soliton solutions and represents 
the forcing amplitude reduced by dissipation. The two signs of the square root 
indicate two different solution branches. 
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Introduction 
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The phenomenon of forced-wave motion is of fundamental interest in many disci­

plines, from oceanography to optics. Within these fields, basic understanding of 

issues such as wave generation, wave stability and wave interactions is a continu­

ing goal. Recently, attention has been given to parametrically forced, free-surface 

waves on a layer of liquid contained in a cylindrical tank as a result of the system's 

rich dynamical structure. Faraday (1831) first investigated parametrically forced 

water waves, observing subharmonic excitation of a liquid contained in a basin 

that was forced to oscillate vertically with frequency twice the natural frequency 

of the excited waves in the basin. Faraday waves have since been analyzed by 

Rayleigh (1883ab); Benjamin and Ursell (1954); Ockendon and Ockendon (1973); 

Miles (1984a, b); and others (for a review, see Miles and Henderson (1990)). By 

using small-motion approximations, Rayleigh explained why wave motions so ex­

cited are subharmonic. Benjamin and Ursell studied the stability of parametri­

cally forced water waves, using linear theory and found that Mathieu's equation 

described the resulting waves. Ockendon and Ockendon extended this analysis to 

obtain some of the main features of nonlinear self-interaction. Miles applied the 

averaged Lagrangian method to calculate the nonlinear-interaction coefficients. 
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Agreement between theory and experiment has been examined by Henderson and 

Miles (1990), with the effects of viscous dissipation and surface tension taken into 

account for circular and rectangular cylinders, and discussed in the review of this 

general subject by Miles and Henderson. 

One remarkable manifestation of the parametrically excited wave is the family 

called standing cross waves (or standing edge waves) generated on a layer of liquid 

contained in a rectangular basin of high-aspect ratio forced by a vertical, harmonic 

oscillation. Within this family, Wu et al. (1984) first showed experimentally the 

existence of a localized, standing solitary wave on a layer of modest depth contained 

in a high-aspect ratio, rectangular tank being subjected to vertical oscillation. At 

a forcing frequency slightly below twice the natural frequency Wo of the (O,l)-mode 

of the water waves within the tank, the forced oscillation generated standing cross 

waves sloshing to and fro across the width of the tank with their profile modulated 

by a hyperbolic-secant envelope along the tank's length. Subsequent theoretical 

work by Larraza and Putterman (1984) and Miles (1984b) showed that the standing 

soliton does not exist for values of kh ~ 1.022, where h is the uniform, quiescent 

water depth and k = 7r Ib, b being the width of the tank. However, we observed 

that for kh ~ 1.022 and for a forcing frequency slightly above twice the natural 

frequency Wo for the (0,1)-mode, a new family of surface waves exists that sloshes 

across the width of the tank and is modulated by a hyperbolic-tangent envelope. 

These waves are called kink waves and are stationary with respect to the long 

direction of the tank. Denardo et al. (1990) observed the kink wave independently, 

and we published our observations slightly after theirs without prior knowledge of 

their work. 
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In Chapter 2, we extend Larraza and Putterman's derivation of the enve­

lope equation to include the effects of parametric forcing. Larraza and Putterman 

were motivated by Wu's observation of the parametrically forced soliton; however, 

their theoretical work examines the unforced, undamped wave only. By direct per­

turbation of the Euler equations, our analysis leads to the parametrically forced, 

nonlinear Schrodinger equation (NLS), giving the same governing equation that 

Miles finds using his Lagrangian formulation. Soliton solutions for both the stand­

ing soliton (Miles, Larraza and Putterman) and the standing kink wave (Guthart 

and Wu (1991); Denardo et al. (1990)) arise from this NLS equation. 

As a preliminary objective, we seek to examine the stability of both the stand­

ing soliton and the standing kink wave analytically, numerically and experimen­

tally. Faraday waves provide an excellent model system for comparison of analysis, 

computation and experimentation. The governing NLS envelope equation has ap­

plications in many different disciplines, making the stability results widely appli­

cable to systems possessing nonlinearity, forcing and dissipation. Also, the exper­

imental apparatus is relatively simple, allowing for clear comparison with analysis 

and computation. Recently, Laedke and Spatschek (1991) examined the linear 

stability of the standing-soliton solution of the NLS equation by using a Hamilto­

nian approach to establish bounds on the maximum growth rate of eigenfunctions. 

They identified some regions of linear instability, and they computed direct numer­

ical simulations for some portions of the parameter space. We extend their work 

by determining the growth rates and eigenfunctions of their unstable modes and 

by confirming the existence of these instabilities in the laboratory. Furthermore, 

new regions of instability are identified within the parametric domain that were 
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omitted in their work. While writing our results, Barashenkov et al. (1991) inde­

pendently published a theoretical investigation on the linear stability of solitons 

in condensed-matter physics. Their governing equation may be transformed into 

the NLS equation studied here for the hyperbolic-secant solution. The results of 

their study are eigenvalue branches in the parameter space. However, they did 

not carry out any direct numerical simulations or experiments. Their results agree 

with our numerically determined eigenvalues for the hyperbolic-secant solution. 

Our work complements theirs by independently identifying similar phenomena in 

the Faraday wave system, by examining all the parametric regions numerically and 

by verifying the analytic and numerical predictions experimentally. 

In Chapter 3, we perform a linear-stability analysis for the standing soliton 

(kh > 1.022). The operator for the linear system possesses a continuous spectrum 

of eigenvalues. We determine the dependence of these eigenvalues on the system 

parameters explicitly. Next, we numerically construct the bound-mode eigenvalues 

for the linear operator. By using direct numerical simulation of the forced NLS 

equation, we examine the stability properties of the standing soliton and compare 

the results with the theory. We find that the theory accurately predicts most of the 

behavior of the NLS equation. Near the bound-mode instabilities, unstable solitons 

do not break down completely, but instead, develop into periodic solutions. Finally, 

we experimentally determine the soliton's stability regions and we observe growth 

rates for continuous spectrum instabilities. Comparison between the theory and 

experiments shows good agreement for small-amplitude waves and small values 

of forcing and frequency detuning. The comparison weakens as the amplitude 

of the forcing or the detuning increases. The qualitative behavior of the soliton 
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instabilities predicted by the numerical simulations is in excellent agreement with 

our experimental observations. 

In Chapter 4 we examine the stability of the standing kink wave. As with the 

standing soliton, we perform a linear-stability analysis. We identify the continuous 

spectrum of the linear operator and determine the eigenvalues. The bound-modes 

of the linear operator are difficult to identify in this case, since no local perturba­

tions of exact solutions of the linear system could be found. However, we construct 

a more satisfactory stability proof by using time-invariant functionals of the NLS 

equation. Benjamin (1972) first used the idea of shape stability in his stability 

proof for soliton solutions of the Korteweg de-Vries equation. Bona (1975) made 

improvements to the method of the proof, and Zhidkov (1986) used similar ideas to 

show the stability of the hyperbolic-secant solution of the unforced NLS equation. 

We apply these ideas to kink solutions of the forced, undamped NLS equation, and 

obtain a proof of nonlinear stability. Again, direct numerical simulation of the NLS 

equation confirms the theoretical predictions. Comparison with experiment shows 

good agreement for regions of small-wave amplitude and small-forcing amplitude. 
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Chapter 2 

Analytical Derivation 

In this chapter, we derive the governing equation for sloshing waves on a liquid con­

tained in a high-aspect ratio tank that is subject to vertical, sinusoidal oscillation. 

The derivation leads to a parametrically forced, damped, nonlinear Schrodinger 

(NLS) equation as a modulation of the first harmonic-sloshing mode. Analysis of 

the NLS equation shows that it possesses several stationary solutions, the standing 

soliton and the standing kink wave among them. 

2.1 Derivation of the Nonlinear Model 

We present here a theory for a dispersive, weakly nonlinear and weakly forced 

system, sustaining Faraday waves. The analysis is considerably simplified under 

the assumption that only one primary mode and its next higher harmonic are 

resonantly excited and that none of the natural frequencies of the secondary modes 

are close to the forcing frequency. We assume that no internal resonance occurs. 

A reference frame is taken, fixed to the rectangular tank with the x-axis directed 

along the long side of the tank of length R, the y-axis across the tank of width b, 

b «R. The wave number k of the standing cross wave generated by the vertical 

oscillation is 7r / band kR = 0 (1 / E) ~ 1 is a measure of the aspect ratio of the tank. 
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The z-axis points vertically upward so that z = 0 at the quiescent water surface 

and z = -h at the tank bottom, which is flat and horizontal. Figure 2.1 shows a 

schematic of the tank and coordinate system. With the liquid assumed inviscid and 

incompressible and the motion assumed irrotational and free of capillary effects, 

the velocity potential ¢(x, y, z, t) and free-surface elevation ((x, y, t) satisfy the 

field equation '\l2¢ = 0 for -h ~ z ~ ((x, y, t), the wall condition for the normal 

velocity n· '\l ¢ = 0 on the tank walls and bottom, and the free-surface conditions 

(2.1) 

(2.2) 

on z = ((x, y, t), the subscripts denoting partial differentiation. Here, the forced 

acceleration of the tank is absorbed in the gravity term so that g(t) = g(l + 

41cos(2wt)), 41 being the amplitude of the vertical, oscillatory acceleration im-

posed on the tank and scaled with respect to the constant gravitational acceleration 

g. The nondimensional forcing amplitude is then given by 1 = aow2 / g, where ao 

is the amplitude of the vertical, sinusoidal forcing and 2w is the frequency of the 

vertical forcing. We assume that ¢ = O( E) and ( = O( E) in the motion weakly 

forced with 1 = E2
" , being of 0(1), where E = a/h is the nonlinearity parameter 

for a typical wave amplitude a, with E ~ 1. Expanding the conditions in (2.1) and 

(2.2) about z = 0 in terms of E and eliminating ( in favor of ¢, we obtain (following 

Whitham (1976), now with additional t-dependence in g(t)) 
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( cPt)2 ( ) cPt [( )2] + 2g2 cPtt + gcPz zz - g V cP zt + 

+ E2,gcPz cos(2wt) + 2W,E2cPt sin(2wt) = O( (4
), (2.3) 

on z = O. In this equation, use has been made of the expansion of ( up to O( (2), 

( 1 1 2 3) g( = - cPt - gcPtcPzt + 2(VcP) ) + O(E , (z = 0). (2.4) 

The effects of the weak forcing excitation appear in the third-order terms of (2.3) 

and (2.4); however, they are needed only in (2.3). 

For the phenomenon under investigation, we look for solutions of the above 

equation representing motions that slosh across the tank like cos(ky), with fre-

quency w very nearly equal to the primary, natural frequency Wo and that are 

modulated along the x-direction by an envelope depending on a slow time, T, and 

a long space, ( The appropriate scales of these variables are t = wt for the fast 

time, T = E
2wt for the slow time, and ~ = EX for the long space. Thus, with the 

expanSIOns 

(2.5) 

(2.6) 

the original field equation V2cP = 0 becomes 

(2.7) 

where V~ = 8;+8; and 8y = 8/ 8y, 8z = 8/ 8z. Proceeding to solve these equations 

with the wall conditions and the free-surface condition (2.3) taken by orders of E, 

we obtain for cPl the solution 

_ -. cosh(k(z + h)) 
cPl - Rl(t,~, T) cos(ky) cosh(kh) , 
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RI(t;~, T) = 'IjJ(~, T) exp( -it) + c.c., 

(c.c. denoting the complex conjugate of its preceding term), together with w5 = 

gk tanh( kh) - gkT for the dispersion relationship. Suppression of the secular terms 

at the second-order analysis requires that WI = 0 and gives for 1>2 the particular 

solution 

with 

- cosh(2k(z + h)) 
¢2 = R2(t;~,T)[CI + C2cos(2ky) cosh(2kh) ], 

i'IjJ2(~, T) exp( -2it) + c.c., 

_k
2 

(1 + 3T2), (T = tanh(kh)) 
8wQ 

3k2 
4 

-T---=-2 (1 - T ). 
8wQ 

Note that the general solution to the second-order system includes a constant 

multiplying the solution to the homogeneous system, ¢l. However, we may absorb 

this homogeneous solution into the first-order solution without loss of generality, so 

that the second-order solution appears as shown above. In the third-order analysis, 

suppression of the secular terms yields for 'IjJ the equation 

where 

A 
k4 
S( -9T-2 + 16 - 5T2 + 6T4

), 

:k (T + kh(1 - T2)), 

and * denotes the complex conjugate. By dividing through by 2w5 and defining 

(2.8) 
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In terms of the real and imaginary components of'l/J = p + iq, (2.8) gives 

-qr + c2
p!.!. + ({3 + ,)p + Ap(p2 + l) 0, 

Pr + c2qf.f. + ({3 - ,)q + Aq(p2 + q2) o. 

The above equation is the same as that found by Miles, using his Lagrangian ap­

proach. In the absence of forcing excitation, the reduced version of Equation 2.8 

agrees with that given by Larraza and Putterman (1984). Furthermore, Equa­

tion 2.8 is consistent with a nonlinear Mathieu analysis when there is no ~ depen­

dence. Notice that when the forcing is of order €, instead of the present order €2, 

the foregoing analysis gives an equation similar to Equation 2.8 but without the 

cubic term and the ~ dependence and with the slow time given by r = €wt. Such 

an equation is consistent with the linear Mathieu analysis of Benjamin and Ursell 

(1954). 

It is useful to add weak dissipation to the nonlinear Schrodinger equation. 

Several, previous approaches have been used to add dissipation to weakly non­

linear wave models. Theoretical estimates of the dissipation parameter, based on 

boundary layer losses alone, generally disagree with experiments because of the 

complex interactions occurring at the liquid, solid and air interface as well as the 

losses that are due to contaminants on the free surface (see Miles (1967)). We can 

motivate the form of the dissipative term in the nonlinear Schrodinger equation by 

considering boundary layers on the tank walls and the free surface and assuming 

the inner core of the flow to be irrotational. When this is done, a nondimensional 

parameter a is introduced into the nonlinear Schrodinger equation as 

(2.9) 
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The parameter a is easily seen to be dissipative (see, for example, Equation 2.10), 

and we leave a to be determined experimentally. In order to ensure the loss of 

energy, a is taken to be positive. 

A few remarks about integrals of solutions to Equation 2.9 illustrate some of 

the basic properties of the equation. First, we note that 

d 1+00 

dr -00 'I/J(~, r) d~ # 0, 

so that the first moment is not conserved in time. Since the NLS equation governs 

the envelope of the first harmonic, sloshing mode, any 'I/J(~, r) conserves liquid 

mass. The energy integral is 

(2.10) 

The above integral clearly shows the role of the parametric forcing, " and the dis-

sipation, a . When a = 0, two time invariants of the motion given by Equation 2.9 

may be identified; namely, with 'I/J = p + iq, 

H 100 

(f!..(p2 + q2) + A(p2 + q2? + 1(p2 _ q2) _ c
2 

((p~? + (q~?)) d~, 
-00 2 4 2 2 

L 1: (p~q - qxiP) d~. (2.11) 

H is just the Hamiltonian identified by Miles (1984b). Both conserved quanti ties 

may be identified by analyzing the symmetries of the Lagrangian formulation of 

Equation 2.9 when a = O. 

2.2 Solitary-Wave Solutions 

We are interested in finding exact solutions to Equation 2.9 that are bounded as f. 

goes to infinity. Without forcing excitation and without dissipation, (2 .9) reduces 
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to a cubic Schrodinger equation that possesses solitary-wave solutions (Whitham 

(1974) ; Miles (1984b)) . Taking, = 0, a = 0 and 

'Ij; = exp[i(r~ - sr))1l1(X), X = ~ - Ur, 

Equation 2.9 becomes 

(2.12) 

provided r = -woU / c2 and v = 2WOW2 - c2r2 + sw5 , where v is introduced in place 

of s for algebraic convenience. Solutions of Equation 2.12 are noted to depend 

upon the signs of v and A. In the NLS equation, A plays a role similar to the 

coefficient of the nonlinear term in a cubic Duffing equation with the change in 

sign of A from negative to positive, corresponding to the change from hard-spring 

to soft-spring behavior, in the Duffing equation. With h = 1 as the length scale, 

A is plotted versus k in Figure 2.2, which shows that A crosses zero from below 

at k~1.022, with increasing k. For v < 0 and k > 1.022 (A > 0), (2.12) has the 

solution 

-2v 1 -v 1 

1l1(X) = (A)2sech[(7)2X). (2.13) 

If r = 0 and S = 0 (U = 0 and v = 2WOW2), this gives for W2 < 0 (v < 0) the 

solution for the standing soliton that is stationary with respect to the slow time as 

reported by Larraza and Putterman (1984) and Miles (1984b). Since W2 < 0, the 

wave frequency W is slightly lower than the primary-mode frequency, Wo0 

In addition, however, we observe that for v > 0 and A < 0 (k < 1.022), there 

is a new solution of (2.12) of the form 

V 1 V 1 

1l1(X) = (-)2 tanh[(-)2X) . 
-A 2c2 

(2.14) 
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For r = 0 and s = 0, this solution exists for 1/ > 0 (W2 > 0 rendering the wave 

frequency w slightly greater than the primary-mode frequency, Wo, and is a wave 

envelope neither propagating nor varying with the slow time. 

In the presence of forcing excitation and dissipation, , =I- 0 and a =I- 0, we seek 

solutions of (2.9) that are similar in form to the, = 0, a = 0 solution (following 

Miles (1984b)). More precisely, 

where 0 is a constant, phase angle, a is a real, positive constant and 1 is a real 

function of K,~. Substituting the above expression into (2.9) leads to two families 

of solitary-wave solutions. When A > 0, we have 

1(K,0 sech(K~), 

sin(20) 
a 

, , 
cos(20) ~V1 - a 2/,2 = _1, , 

K2 1
2
(_,8+1') and 

c 

a2 ~(-,8 + 1') A . (2.15) 

The above solution of the parametrically forced, dissipative, nonlinear Schrodinger 

equation corresponds to the so-called standing soliton first observed by Wu, Keolian 

and Rudnick (1984). Miles was the first to identify the soliton analytically in the 

form shown above. Notice that the phase of the solution is independent of time 

and space, unlike the case of the free soliton. The phase locking of the soliton 

is due to the parametric forcing. There are at most two branches of stationary 

solutions whose relative phase is shifted by ninety degrees. These two solutions are 

differentiated by the sign of the parameter l' = ±vh2 - a 2. Furthermore, there are 
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no free parameters in the soliton solution. The amplitude, phase and characteristic 

length of the soliton are completely determined by the parameter space, (a, /3, ,). 

The first-order approximation to the surface elevation corresponding to this soliton 

is given by 

((x,y,t) = 2Ewasech(X:fx)sin(wt)cos(ky). 
g 

(2.16) 

A computer-generated plot of the above solution for the surface of the liquid at a 

fixed time is shown in Figure 2.3. The dependence of the soliton on the system 

parameters is discussed further in Chapter 3. 

When the depth of the water is less than the critical depth, kh < 1.022, the 

nonlinear, self-interaction coefficient changes sign (A < 0), and we look for the 

kink solution of Equation 2.9. Now the solution is 

f(x:O tanh(x:(), 

sin(2B) 
a , 

cos(2B) ±J1 - a2j,2 = 1, , 
x:2 ~(/3 + 1) and 

2c 

a2 _lA (/3 + 1)· (2.17) 

The above solution corresponds to the standing kink wave observed by Guthart 

and Wu (1991) and Denardo, Wright, Larraza and Putterman (1990). Again, the 

solution is phase-locked with respect to the forcing. The phase, amplitude and 

characteristic length of the wave are completely determined by (a, /3, I). The two 

branches corresponding to the sign of 1 are phase-shifted by ninety degrees. The 

first-order approximation to the surface elevation corresponding to this solution is 

((x, y, t) = 2EW atanh(X:Ex) sin(wt) cos(ky). 
g 

(2.18) 
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A computer-generated plot of the above solution for the surface of the liquid at a 

fixed time is shown in Figure 2.4. The dependence of the kink wave on the system 

parameters is discussed more fully in Chapter 4. 

2.3 Other Stationary Solutions 

The parametrically forced, damped, nonlinear Schrodinger equation (2.9) possesses 

many stationary solutions. The above soliton solutions are limiting cases of more 

general solutions. The simplest solutions to Equation 2.9 are independent of (. 

They are worth mention because they set the stage for the more complex behavior 

found in the soliton solutions. The (-independent solutions are given by 

sin(2B) 

cos(2B) = (2.19) 

The trivial case, TO = 0, is always a solution. When 'Y > (x, there can be zero, 

one, or two solutions in the form shown above. A complete discussion of the 

(-independent solutions is given in the first section of Chapter 3. 

When ( dependence is included, solutions can be found by taking 'IjJ(() to be 

of the form 

and substituting the above expression into Equation 2.9. Integrating the resulting 

equation once with respect to ( leads to 

sin(2B) = 
'Y 

, 
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cos(2B) ±/,,/2 _ a2 = 2, 
'Y 

~(-2(,8+i)f2_/4 2C) 
2c2 A + A ' 

(2.20) 

where C is an undetermined constant of integration. Equation 2.20 possesses 

solutions that are elliptic functions. The following solutions may be identified. 

'\Then kh > 1.022, implying that A > 0, there are two cases. Taking the integration 

constant C> 0, we have 

f(~) fA (,8 + i)2 2C) t 
a en (y ii A2 + A ~Im), where 

m ~ + -(,8 + i) and 
2 2)(,8 + i)2 + 2£ 

- (,8 + i) )r-(,8-+-i )-2 -2-C 
A + V A2 + A . (2.21 ) 

The above solution is phase-locked, as expected. There exists one free parameter, 

C. Taking C = 0 and requiring (,8 + i ) < 0 implies that m = 1, and the hyperbolic-

secant solution is recovered. A plot of the surface elevation corresponding to a 

cnoidal wave with m = 2/3 is shown in Figure 2.5. Miles (1984b) first identified 

the cnoidal wave solution. 

The second case for A > 0 assumes that C < O. An exact solution of Equa-

tion 2.20 can be found if the following conditions hold: 

C > 
(,8+1)2 

2A 

o > (,8 + i)· 

The solution is then a "dnoidal" wave given by 

1(0 = a dn (V A2 a ~Im) , 
2c 

and 
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m (2.22) 

Here, taking C = 0 implies that m = 1, and the solution corresponds to a spatially 

independent, nonzero solution . Figure 2.6 shows a plot of the free-surface elevation 

corresponding to a dnoidal wave with m = 2/3. In the literature on the standing-

soliton problem, no mention of the dnoidal wave solution has been made. 

Lastly, we can identify another solution when A < 0, (kh < 1.022). This case 

reqUlres 

C > 0 and 

(,8+i) > O. 

Integration of Equation 2.20 then yields the following solution: 

f(~) ~ ]'sn( - .-2 8~lm), 
2c 

1'2 
m 2' s 

]'2 (,8 +i) (,8 + i)2 2C 
and 

-A A2 +-;1' 

82 (,8 + i) + 
-A 

(,8 + i)2 2C 
A2 +-;1' (2.23) 

If C = ((3_~J/ ' then m = 1 and the kink-wave solution is recovered. The free-surface 

elevation corresponding to a snoidal solution with m = 2/3 has been plotted and 

is shown in Figure 2.7. The snoidal wave solution has been identified by ourselves 

and by Denardo et al. (1990). 
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Figures for Chapter 2 
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Figure 2.1: Schematic of experimental apparatus. 
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Figure 2.2: The nonlinear coupling coefficient, A, versus the wave number k, for 
cross waves in a rectangular tank with the water depth h = 1. 
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Figure 2.3: Computer-generated plot of the surface elevation for the sloshing soli­
ton with a = 1 and K, = 1. 

Figure 2.4: Computer-generated plot of the surface elevation for the sloshing kink 
wave with a = 1 and K, = 1. 
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Figure 2.5: Computer-generated plot of the surface elevation for the cnoidal wave 
solution with a = 1 and m = 2/3 . 
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Figure 2.6: Computer-generated plot of the surface elevation for the dnoidal wave 
solution with a = 1 and m = 2/3. 
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Figure 2.7: Computer-generated plot of the surface elevation for the snoidal wave 
solution with a = 1 and m = 2/3. 
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Chapter 3 

Standing-Soliton Stability 

In the preceding chapter, we derived the governing NLS equation and provided sev­

eral exact solutions, notably the standing solitary wave and standing kink wave. 

However, experimental investigations of the standing kink wave and standing soli­

tary wave show that they cannot be observed in all regions of the (a, f3, I) param­

eter space for which they formally exist. This leads to the question of stability 

of the various stationary solutions of the NLS equation. In this chapter, we start 

by analyzing the stability of the ~-independent solutions. Miles (1984a) analyzed 

the stability of the ~-independent solutions to ~-independent perturbations, while 

Laedke and Spatschek (1991) consider ~ dependence in their perturbation, but 

only for A > O. A brief review of the ~-independent linear-stability analysis is con­

venient as a springboard into the soliton-stability question. Next, we investigate 

the linear stability of the standing-soliton (hyperbolic-secant) solution of the NLS 

equation. We find the continuous spectrum and discrete spectrum of the linear­

stability operator. Numerical simulations of the NLS equation are performed and 

compared with the linear analysis. We conclude the chapter by comparing the 

stability analysis with our own experimental observations. 
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3.1 Stability of ~-Independent Solutions 

The governing NLS equation and the ~-independent solutions found in Chapter 2 

are 

7f;( ~) r ei(J o , 

r2 (J+::Y ---0 A 
, 

sin(2B) 
a , and 

cos(2B) - n ::y ± 1 - ,2 = l' (3.1) 

along with the solution ro == 0, which exists for all values of (a,{J,,). The regions 

of existence for the above solutions are determined by the conditions Q: < 1 and 
'Y 

r5 > 0. The regions of positive T~ depend upon the detuning, {J, and the sign of 

the nonlinear, self-interaction coefficient, A. A plot of T3 versus, for varying {J 

conveniently illustrates the solution branches, as shown in Figure 3.1 for A > 0 

and in Figure 3.2 for A < o. Where, < a, only the TO _ 0 stationary solution 

exists. Physically, when the forcing is insufficient to overcome the dissipation, the 

only steady solution is a fiat surface. When, > a, the number of steady solutions 

depends upon the sign of {J and A. 

For A > 0, there are three possible configurations for the nonzero-solution 

branches as determined by the T5 > 0 condition, as shown in Figure 3.1. When 

{J > 0, only one nonzero branch exists for ,2 > a 2 + {J2. As {J is reduced to 

zero, the inception point of the solution branch moves to , = a. Lastly, when {J 

becomes negative, the solution develops two nonzero branches for the range a < 

'Y < Va2 + {J2. The two branches are distinguished by the sign of::Y = ±J,2 - a 2. 
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As I is increased past Ja2 + (J2, only one branch keeps T5 > o. 

For A < 0, the situation is reversed, as shown in Figure 3.2. When 13 < 0, 

only one nonzero branch gives rise to positive T5. When 13 is increased to zero, 

the intersection of the branch with the axis moves to I = a. Lastly, when f3 

becomes positive, two solution branches exist for a < I < Ja2 + f32, dropping to 

one branch when I > Ja2 + 132. 

3.1.1 Stability of the Flat Surface 

Consider the linear stability of the flat-surface solution, TO = 0, subject to per­

turbations that depend on~. Letting 7/J{~, r) = p + iq, and substituting into 

Equation 2.9 gives 

o. (3.2) 

Linearizing with respect to p and q and taking p = poeo"T+iK~ and q = qoeo"T+iK~ 

leads to 

'iVhen the real part of 0' is positive, the flat surface is unstable. The condition for 

instability is then 

(3.3) 

Modes with K, = 0 are independent of ~ and are unstable when I > Ja2 + f32. 

If the value of K, is unrestricted and f3 ;::: 0, there exist unstable modes whenever 

I > a. If f3 < 0, unstable modes exist when I > Ja2 + 132. 

Notice that when I = Ja2 + (f3 - K,2c2)2 = Ie, the eigenvalues are given 

by 0'1 = 0, 0'2 = -2a, showing that a center manifold exists about the TO = 
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o fixed point. Using a result from dynamical systems theory, the stability of 

linearized system is insufficient to prove stability of the nonlinear system about 

the fixed point. When ~ dependence is included in the NLS system, the separation 

of variables used for the linear system fails when the nonlinear terms are included. 

However, if ~ dependence is neglected, we can find the stability property along the 

center manifold. The analysis is performed in Appendix B. The result is that the 

TO == 0 solution is unstable when I = Ie, and 

AfJ > O. (3.4) 

When A. is positive and fJ is negative, the TO = 0 solution is stable along the critical 

surface. If A is negative, the fJ positive solution is also stable. 

3.1.2 Stability of the Constant TO Solutions 

Now consider the stability of the nonzero TO solutions. Take 'IjJ(~, r) - (ro + 

'fJ(~, r))eiO
, where 'fJ is small. Substituting into Equation 2.9 gives 

i 'fJT + iCt'fJ + C2'fJ~~ + fJ'fJ + I'fJ* e-2iO + 2T5A'fJ + T5A'fJ* + ATo'fJ2 + 2Arol'fJ12 + A'fJI'fJ1
2 = o. 

Linearize the above equation and make the substitution TJ(~, r) = P + iq to get the 

system 

o. (3.5) 

Taking p = poeo"T+il<~ and q = qoeo"T+il<~ and solving for the eigenvalue J leads to 

the following equation: 

(72 + 2CtJ + /(/\,) = 0 where 

/(/\,) = /\,4C4 + 2(fJ + 2i)/\,2C2 - 4r5Ai. (3.6) 
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Therefore, we have, for the eigenvalues al,2, 

Instability occurs when a > 0, so that f(K,) < 0 implies instability. There are four 

cases to consider, A > 0 and A < 0 with l' > 0 and l' < O. 

Consider the case where A > 0 and l' > O. Figure 3.3 shows possible curves 

for f(K,) in this case. Everywhere f(K,) < 0 implies modulational instability. There 

are always unstable modes in this case. If A > 0 and l' < 0, possible curves 

for f(K,) are shown in Figure 3.4. This case also possesses unstable modes for all 

parameters for which the solution exists. When K, = 0 so that the perturbations 

are spatially independent, f = -4raA1" Then for A > 0, the l' > 0 solution is 

unstable, while the l' < 0 solution is stable. 

Now take the case A < 0 and l' > O. In this case, no value of K, makes f(K,) 

negative, so that the solution is always stable, as can be seen in the plot of f in 

Figure 3.5. For A < 0 and l' < 0, possible f's are shown in Figure 3.6. Here, 

there are always values of K, that are unstable. When K, = 0, the l' < 0 solution is 

unstable and the l' > 0 solution is stable. 

Notice that when f(K,) = 0, the eigenvalues become 0 and -2a, and a center 

manifold exists near the stationary solution. The linear-stability analysis is insuffi­

cient to predict the stability of the stationary solutions along the f(K,) = 0 surface. 

However, the separation of variables of ~ and r fails when the nonlinear terms are 

included. No information about the f(K,) = 0 surface is gained by neglecting the 

~ dependence since, f(O) =1= 0, so that the question of stability along the f(K,) = 0 

surface remains open . 

Now, we return to Figures 3.1 and 3.2 and display the stability information 
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about each branch. When A > 0, so that the water is above the critical depth, 

both nontrivial, constant amplitude solutions are unstable to modulations in ~, 

when I\, is allowed to take on any value. If A < 0, so that the water is relatively 

shallow, the upper branch of constant amplitude solutions is always stable while 

the lower branch is always unstable. Note, however, that a finite-length tank, 

~ E (-Rj2, £/2), implies that I\, must be greater than 7 so that solutions may be 

stabilized since some values of I\, cannot be obtained. Also, while large values of I\, 

are not troublesome mathematically, they imply variations in the laboratory space 

that contradict our original assumption of slow variations along the length of the 

tank. 

3.2 Stability of the Standing Solitary Wave 

We now examine the linear stability of the standing solitary-wave solution. The 

approach is the same as that used for the ~-independent solutions. Having iden­

tified all the parameter regions for which the solitary wave formally exists, we 

identify the stability properties of each branch. Although the analysis is linear, 

the problem is complicated by the addition of spatial variation in the coefficients 

of the linear operator. The addition of the ~ dependence in the solution results in 

a rich system, where variation of the parameters dramatically affects the response 

of the solitary wave. 

The standing solitary wave is a solution of Equation 2.9 when A > ° (kh > 

1.022), and is given by Relations 2.15, which are repeated here: 

aei(J f(I\,O, 

sech(I\,O, 
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sin(20) , , 
cos(20) ~J1 - 0:2/,2 = _1, , 

1
2
(-11+1') and 

c 

!(-I1+i). (3.7) 

Regions in the parametric domain for which the standing solitary wave exists can 

be determined by analyzing the above relations. Clearly" > 0: is necessary. 

Further conditions can be visualized by plotting ,,?c2 versus " as was done in the 

previous section, with T5 replaced by ",2 c2 . The plot is shown in Figure 3.7. When 

(3 is negative, two solitary-wave solutions exist for 0: < , < ..j 0:2 + (32, while one 

exists for, > ..j0:2 + (32. For (3 = 0, only one solitary-wave solution exists for all 

, > 0:. Lastly, when (3 > 0, no solitary-wave solution exists for 0: < , < ..j0:2 + (32, 

and one exists for , > ..j 0:2 + (32. 

Take 'l/J(~, T) = 'l/Jo(O +ei01}(~, T), where 1}(~, T) is assumed to be small. Substi-

tuting into the nonlinear Schrodinger equation, Equation 2.9, and neglecting terms 

of O( 1}2) gives the following equation: 

Let 1}(~, T) = p(~, T) + iij(~, T) and take ~ = "'~. Substituting Equation 3.7 for 'l/Jo 

gives 

-ijT - 20:ij + ",2C
2p(( + ((3 - i)i5 + 6",2c2sech2(~)p 0, 

PT + ",2c
2 ija + (11 + i)ij + 2",2c2sech2(~)ij 0. 

Now take p(~, T) = Re(p(~)e(TT] and ij(~, T) = Re[q(Oe(TT] and drop the bar on ~ for 
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convenience to get the system 

o. (3.9) 

Now, since K,
2

C
2 is known from Equation 3.7, substitution and rescaling gives the 

system 

-o-q - 2o.q + Pf,f, - P + 6sech2(~)p 0, 

0, (3.10) 

where 

m 
(3+i 
(3 - i' 

a 
and 0-

-(3 +i 
a 

(3.11) 0. 
-(3 + i' 

so that the coefficients take a simple form. The System 3.10 is nonself-adjoint 

with regular singular points at ~ = ±oo. We regard 0- as an eigenvalue and seek 

eigenfunctions (p(~), q(~)) satisfying Equation 3.10 with (p(~), q(~)) ~ (0, 0) as 

~ -+ ±oo. Examination of Equation 3.10 shows that if 0- is a eigenvalue with 

eigenfunction (p, q), then 0-* is an eigenvalue with eigenfunction (p*, q*). Further-

more, when a = 0, if 0- is an eigenvalue with eigenfunction (p, q), then -0- is an 

eigenvalue with eigenfunction (-p, q). 

In the search for eigenfunctions and eigenvalues for the linear system, Sys-

tem 3.10, we expect the singular points at infinity to lead to a continuous spectrum 

and possibly, a discrete spectrum of eigenvalues. In order to find the eigenvalues for 

the system, we examine the system by constructing the Frobeneous series, about 
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the singular points, for a general solution of the linear system. By examining the 

series, we determine the values of a that lead to solutions satisfying the boundary 

conditions on p and q, thereby finding the eigenvalues and eigenfunctions. 

In order to examine the properties of the system, it is convenient to make 

the transformation z = tanh(~) to bring the singular points at infinity to z = ±1. 

Series solutions are found at the singular point z = -1 in the form 

Substitution of the expansions into the linear system determines the coefficients, 

an and bn , and gives for the indices, r, 

r = ±_1-J -;3 ± V,2 - (a + a)2. 
2K,c 

(3.12) 

The indices at z = 1 are given by the same expression, since the system is sym-

metric about z = O. In general, the four indices, r, are complex. Two classes of 

eigenfunctions may be distinguished and constructed corresponding to continuous-

spectrum eigenvalues and discrete-spectrum eigenvalues. The complete algorithm 

for constructing the eigenfunctions and eigenvalues is given in Appendix C, and a 

brief outline of the algorithm follows. 

There are four independent series that may be constructed at the singular 

points corresponding to the four independent solutions of the linear system. Where 

the four values of the index, r, are distinct and not separated by integers, each index 

completely determines one series solution. Where there are repeated indices or 

indices separated by integers, the functional form of the series is different, but four 

independent series may still be constructed. From ordinary differential equation 

theory, each series is known to converge in the circle extending to the nearest 
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neighboring singular point. Therefore, the series solutions starting at z = -1 

converge for Z E [-1, +1) , while the series solutions starting at z = 1 converge 

for Z E (-1 , +1]. Every solution of the linear system must approach each singular 

point along a combination of the four series found near each singular point. To 

construct a complete solution across the entire interval [-1, +1], we can match the 

four series starting at Z = -1 smoothly to those from Z = + 1 at any intermediate 

point Zo E (-1 , + 1). Let an arbitrary solution be represented by a sum of the four 

series a t z = -1 so tha t 

P-l(Z) - C1 Pl(z) + C2 pz(z) + C3 P3(z) + C4 P:t(z) 

q-l(Z) - C1 ql(z) + C2 q2"(z) + C3 q3(z) + C4 q:t(z), 

where the C i are arbitrary complex constants, and pj is one of the four independent 

series originating at z = -1. The same solution may be represented by a sum of 

the four series at z = + 1 so that 

where the Di are arbitrary complex constants, and pj is one of the four independent 

series originating at Z = + 1. A representation of the solution convergent across 

the entire interval, [-1, + 1] is obtained by matching the two series representations 

smoothly at a point Zo E (-1, + 1 ). A smooth match requires that 

P-l(Zo) 

q-l( Zo) 

P~l (zo) 

q~l(Zo) 

P+l(Zo), 

q+l(Zo), 

P~ 1 ( zo) , and 

q~l (zo). (3.13) 
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The first two conditions require continuity of the functions, and the second two 

conditions require continuity of the first derivatives. Application of the differential 

equations will ensure the continuity of all higher derivatives so that Conditions 3.13 

ensure a completely smooth solution. However, not all of the solutions will satisfy 

the boundary conditions, p(±1) = q(±1) = O. The equation for the indices, 

Equation 3.12, shows that the indices arise in two pairs, r = ±ri, where i = 1,2. 

The form of the indices distinguishes two classes of eigenfunctions. 

One class of eigenfunctions occurs when all four indices have a nonzero real 

part. When this is the case, inspection of Equation 3.12 shows that two indices 

will have positive real part, and two will have negative real part. In order to satisfy 

the boundary conditions at z = ±1, only the two indices having positive real part 

can be present. The two with r < 0 are singular at z = ±1 and fail to satisfy 

the boundary conditions. By including the series at z = ±1 that possess indices 

with positive real part, we can look for eigenfunctions by finding the o-'s for which 

the series originating at z = -1 can be joined smoothly to the series originating 

at z = + 1 by application of Conditions 3.13. The matching requirements impose 

four conditions on the four series coefficients, Gi , D i , i = 1,2, giving a four-by­

four matrix whose determinant must be zero in order for nontrivial solutions to 

exist. Values of 0- that allow the matching conditions to be satisfied with nontrivial 

series coefficients are eigenvalues. These eigenvalues occur at discrete values of 0-

for fixed (Ct, (3,,) and are similar to the bound modes of the linear Schrodinger 

equation, \lI~~ + (E - V(~))\lI = 0, when the energy, E, is less than the maximum 

potential. For the present system, the discrete-spectrum eigenvalue branches are 

found as functions of the parameters, (Ct,(3,,). Asymptotic approximations to 
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the bound-mode eigenvalues and eigenfunctions are found for small regions of the 

parameter space and the branches are continued numerically. We use a Newton­

Raphson scheme to find the zeros of the determinant of the matrix given by the 

Conditions 3.13. The scheme is described in detail in Appendix C. 

A second class of functions with indices given by Equation 3.12 occurs when 

pairs of the four indices are purely imaginary and opposite in sign. In this case, 

at least two of the four general solutions oscillate, without growth or decay, as 

z ~ ±1 (~ ~ ±oo). To illustrate the construction of an eigenfunction, let one 

pair of indices be purely imaginary, while the second pair possesses nonzero real 

part. The series solutions with a purely imaginary index do not satisfy the bound­

ary conditions, since they oscillate without growth or decay as the singular point 

is approached. However, in analogy with continuous-spectrum eigenfunctions of 

the linear Schrodinger equation , we relax the boundary condition at the singular 

points , looking for bounded solutions at z = ±l. We will show later that the 

original boundary conditions may be recovered. For the case of one pair of purely 

imaginary indices, three of the four series solutions are bounded at the singular 

points. Therefore, by retaining the three bounded series and discarding the sin­

gular series, application of the matching conditions, Conditions 3.13, leads to four 

conditions on the six coefficients, Gi , D i , i = 1,2,3. The matching conditions 

can always be satisfied by suitable choices of the six coefficients. Therefore, solu­

tions that are bounded at the singular points and span the interval can always be 

constructed where at least one pair of indices is purely imaginary. 

The case of two imaginary pairs of indices has a similar property. In this 

case, all four series at the singular points lead to bounded solutions. Therefore, 
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the matching conditions, Conditions 3.13, impose four conditions on the eight 

coefficients, Gi , Di , i = 1, ... ,4. These matching conditions can always be satisfied 

by suitable choices of Gi and D i , so that a bounded solution that spans the interval 

can always be constructed when both pairs of indices are purely imaginary. 

The boundary conditions at z = ±1, p(±l) = q(±l) = 0 are recovered for 

the solutions possessing a pair or pairs of purely imaginary indices by a synthesis 

of the eigenfunctions that are described above. We find that for fixed parameters, 

(a, f3,,), eigenvalues leading to purely imaginary indices occur in a continuous 

range, C5 E [C5m in, C5max ]. Therefore, a general solution of the linear system is a 

synthesis of all the possible eigenfunctions at the fixed values of the parameters, 

(a, (3, ,). For example, 

p(z) "-' l::: x 

F(C5)(l + z)ip(u) dC5 as z ~ -1, 

where p(C5) is known from Equation 3.12, r = ip, and F(C5) is a well-behaved 

weighting function determined by the initial conditions. This expression can be 

shown to go to zero by repeated application of integration by parts . Therefore, 

solutions satisfying the boundary conditions and the differential equation with a 

known distribution of eigenvalues may be constructed. This continuous range of 

eigenvalues is similar to the continuous spectrum of the linear Schrodinger equation 

and is called the continuous spectrum for the present linear system. Appendix C 

provides a complete description of the matching algorithm. 
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3.2.1 Continuous Spectrum 

Solutions to Equation 3.9 possessing pairs of complex indices at the singular points 

constitute the continuous spectrum. Purely imaginary indices require that 

(3.14) 

is real and negative. There are four cases that satisfy this condition. The sign 

of the leading term, -/3, is important, and two cases arise from each sign. Let 

a = a r + iai where a r and ai are real. 

First, let /3 > ° so that only the 1 > ° solution is present, and, > Ja2 + /32 

is required for existence of the solution. Then Expression 3.14 is real and negative 

for at least one sign of the square root when 

ai 0, 

-a - ,< ar <, - a, (3.15) 

or when 

ar -a and 

ai takes on any value. 

Any a in the regions above leads to an eigenfunction of the linear system. There­

fore, since, > a for any soliton solution, Equation 3.15 shows that eigenfunctions 

exist with 0 < ar < , - a, so that these solutions grow exponentially in the slow 

time and are unstable. Therefore, when /3 > 0, the lone soliton solution (1 > 0) is 

always unstable to the continuous spectrum. 

Now let /3 < 0 so that both the 1 > 0 and i < 0 solutions exist. Expres­

sion 3.14 is real and negative, when the negative sign of the square root is taken, 
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for the following two cases: 

ai 0, and 

(3.16) 

when "(2 > f32 and 

a,. -0:, with 

ai > Jf32 _,2, or 

a· , < -J f32 _,2, (3.17) 

when ,2 < f32. In both cases, one pair of indices is purely imaginary and one 

pair is purely real. At least one pair of imaginary indices exists throughout the 

parameter space. The eigenvalues leading to these indices have negative real part 

and nonzero imaginary part when, < 1,81, and they have nonzero real part and 

zero imaginary part when, > 1,81. Figures 3.8 and 3.9 show the regions in the 

parameter space possessing these solutions. 

The stability property of the continuous spectrum is described as follows. 

When ,8 < 0 and , < 1,81, the continuous spectrum always produces solutions 

to Equation 3.9 that are stable, having real part -0: and nonzero imaginary part 

as given by Equation 3.17. When, increases past 1,81, the continuous-spectrum 

solutions have eigenvalues that are purely real and lie within the range given by 

Equation 3.16. The purely real eigenvalues give rise to unstable solutions when 

a,. = -0: + 11',2 - ,82 > 0, implying instability when 

The above stability result is the same as that found by Laedke and Spatschek 

(1991). However, we are able to give an analytic expression for the maximum 
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i>O i<O 
/3>0 Always Unstable Does not exist 
/3<0 Stable for, < va~ + /3~ Always Stable 

Table 3.1: Continuous-spectrum stability results. 

growth rate of the unstable modes, 

(3.18) 

Notice that the above results apply to both solitary-wave solutions, corresponding 

to i positive and negative when /3 < o. When i > 0, the stationary solution exists 

for /3 > 0, /3 = 0, and /3 < o. If /3 > 0, positive eigenvalues always exist and this 

solution is always unstable. When /3 = 0, unstable modes also exist. Lastly, for 

f3 < 0, the solution exists for all , > a and is stable for a < , < ..; a 2 + /32. 

The second stationary solution, i < 0, can exist only for /3 < 0 and, < 

..; a 2 + /32. Hence, the maximum growth rate of the continuous modes is always 

negative, and this mode is always stable with respect to the continuous spectrum. 

The response of the two solutions to the continuous spectrum of the linear operator 

is summarized in Table 3.1. 

3.2.2 Discrete SpectrulTI 

When the four indices corresponding to Equation 3.9 all possess nonzero real part, 

eigenfunctions for the linear system occur only at discrete values of a. The method 

for constructing eigenfunctions is a combined numerical and asymptotic approach. 

We can find asymptotic approximations to the bound-mode eigenvalue branches for 

small a and,. By starting a numerical scheme along these approximate branches, 

we can continue the branches out into the rest of the parametric space. 



-39-

Originally our computations were performed for arbitrary a and ,. However, 

following Barashenkov's work on a similar equation, it is possible to transform 

our linear system containing nonzero a into one with a = 0 and thereby reduce 

the parameter space by one. This transformation is achieved by taking "l(~, T) in 

Equation 3.8, to be 

"l(~, T) = e-QT(p(~, T) + iq(~, T». 

Taking & = a/ /\,2c2 and scaling time as T = /\,2C2 T gives the linear system, 

p(( - p + 6sech2(~)p = L1[P], 
(3+ -

q~~ + (3 ~ q + 2sech2(~)q = L2[q]. -, 
Now, taking p(~, T) = Re [e<7Tp(~)] and q(~, T) = Re[e<7Tq(~)] gives 

(a+&)q 

-(a - &)p 

Defining v2 = a2 - &2 and i](~) = (a + &)q(O/v, leads to 

vi] L 1[p], 

-vp L 2 [q], 

which is just the linear system with & = o. Hence, only the eigenvalue branch 

occurring when a = 0 needs to be computed. The eigenvalues for a # 0 follow 

from the inversion of the above transformations. The transformation allows for 

the elimination of a in the matching computation only. In order to reconstruct the 

genera l stability diagram with nonzero a , it is necessary to feed the a = 0 branches 

into a second program to process the inversion. Therefore, while the transformation 

reduces the root-finding computations to one case, a second computation is needed 
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to reproduce the general case so that as a practical matter, computational work is 

only slightly reduced. 

The dependence of the eigenvalue on the parameters is shown in Figures 3.10 

and 3.11, for the two stationary solutions corresponding to l' positive and negative 

with (3 < O. In Figure 3.10, l' is positive (3 < 0, a = 0 and the real and imaginary 

parts of a are plotted versus I' Notice that below a threshold, IU ~ 0.2541(31, 

the real part of a remains zero, and the imaginary part grows with increasing 

,. However, at IU, the imaginary part has a vertical tangent, and a new branch 

of a emerges with growing real and imaginary parts as I increases past IU' For 

I > Iu, the eigenvalue's real part becomes positive, resulting in instability to this 

discrete mode. When a of- 0, the real part of the eigenvalue shifts down so that the 

point of intersection of the eigenvalue branch with the ar = 0 line, I = IU( a, (3), 

increases with increasing a. A plot of the critical line, I = IU( a, (3), above which 

the solution becomes unstable to the discrete spectrum, is shown and described 

in the following section. When l' > 0 and (3 > 0, purely real, positive eigenvalues 

exist wherever the soliton exists for any a ~ 0, so that the l' > 0 soliton is unstable 

to the discrete spectrum for (3 > O. 

In Figure 3.11, l' is negative, (3 < 0 and a > O. For this stationary solution, 

purely real, positive, eigenvalues exist throughout the parameter domain for any 

value of a ~ O. Therefore, the l' < 0 solution is always unstable to the discrete 

spectrum. 

The discrete mode stability results may be summarized as follows. For the 

stationary solution corresponding to l' < 0, unstable, discrete modes exist for all 

parameters for which the stationary solution exists, and therefore, this stationary 
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1>0 1<0 
13>0 Always Unstable Does not exist 
13<0 Stable for 1 < IU (0,13) Always Unstable 

Table 3.2: Discrete-spectrum stability results. 

solution is always unstable to a discrete mode. For the stationary solution corre-

sponding to 1 > 0 with 13 < 0, the solution is stable to discrete modes for 1 < IU 

and is unstable for 1 > IU, where IU( 0,13) is computed numerically. Lastly, when 

13 > 0, the 1 > 0 solution is always unstable to the discrete spectrum. Table 3.2 

summarizes the stability response to the discrete spectrum. 

Perturbation Expansion for the Discrete Spectrum 

To verify, analytically, the existence of the discrete-spectrum branch found using 

the numerical matching scheme and to start the numerical scheme along a solution 

branch, it is possible to construct solutions to Equation 3.10 for 1 near zero, using 

a perturbation method. For a small and 1 small, there are four branches that 

emerge from the 1 = 0 point, as described in Appendix D. One branch has a = O. 

Another has a = -2&. For the other two branches, the dependence of a on 1 is 

found to be 

a = -& ± /&2 + 8~ + 0(&2), 

as shown in Equation D.ll. 

(3.19) 

To illustrate the behavior of the eigenvalues branches, take & = 0 and return 

to a = a( -13 + 1). The two branches given by Equation 3.19 reduce to 

a 

a 

±2 J2131 + 0(,) for 1 > 0, and 

±2J-2131 + Db) for 1 < O. (3.20) 
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When (3 < 0, Equation 3.20 shows that the l' > 0 solution leaves, = 0 with purely 

imaginary eigenvalues, while l' < 0 leaves, = 0 with purely real eigenvalues. 

When (3 > 0, the l' < 0 solution ceases to exist, and the l' > 0 solution possesses 

purely real eigenvalues near, = O. Comparisons of the eigenvalues derived by the 

perturbation expansion with the results of the matching computation are shown in 

Figures 3.12 and 3.13. The agreement for small, is quite good. The eigenfunctions 

for the approximate asymptotic solutions are known analytically and compare well 

to those computed using the numerical matching scheme. 

3.2.3 The Complete Stability Picture 

We can now combine the stability results of the continuous spectrum and the 

discrete spectrum to construct the complete linear-stability diagram for the two 

standing, solitary-wave, stationary solutions. The stationary solution correspond­

ing to l' < 0 was always found to be stable to the continuous spectrum and always 

unstable to discrete modes. Therefore, instabilities will always exist for this station­

ary solution, and the solution is generally unstable everywhere in the parametric 

domain. 

The stationary solution corresponding to l' > 0 was always found to be un­

stable to the continuous spectrum when (3 2: O. When (3 < 0, the solution is 

unstable to the continuous spectrum for f > Jo:2 + (32. The solution is unstable 

to discrete modes when f > fU( 0:, /3), where fU is computed numerically. The 

region of stability of the l' > 0 mode can be conveniently plotted, for 0: > 0, 

in the "I == ,/0: versus {J = (3/0: plane. Figure 3.14 shows the regions of linear 

stability and instability. The region labelled I is unstable to the continuous spec­

trum. Region I I is unstable to the discrete spectrum. Region I I I is stable to 
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all small perturbations. Laedke and Spatschek found the instability that was due 

to the continuous spectrum as well as the instability for all i < o. However, the 

unstable, discrete mode was not found because their perturbation expansion in the 

region f3 < 0, i > 0" < Ja2 + f32 is for small,. When the eigenvalue branch 

is continued numerically, the emergence of a positive real part can be seen. The 

stability of the stationary solutions along the a = 0 surfaces in the parameter space 

cannot be determined by the preceding linear theory. The stability analysis there 

must include the nonlinear terms that were initially neglected in the linearization. 

3.2.4 Standing-Soliton Numerical Simulations 

We may now compare the preceding linear-stability analysis with numerical so­

lutions of the nonlinear Schrodinger equation (NLS), Equation 2.9. The above 

stability analysis provides an excellent platform for validation of a numerical code 

for solving the parametrically forced NLS equation. By choosing initial conditions 

near the stationary soliton solution and the system parameters in an unstable re­

gion, we should observe, in due time, the instabilities predicted by the foregoing 

theory with known eigenvalues. For unstable solutions, no superimposed initial 

perturbation is necessary, since any numerical code will have errors that provide a 

perturbation. For stable solutions, superimposed initial perturbations should de­

cay, and the solution should approach the stationary solution. Lastly, the numer­

ical simulations help to describe how the system behaves after instability occurs, 

information that cannot be ascertained from the preceding analysis. 

Several numerical schemes have been developed to solve the parametrically 

forced NLS equation. The simplest scheme is a finite-difference scheme using 

a Runga-Kutta time step and central differences in space. A second scheme is 
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pseudospectral, using Fourier transforms and time marching in phase space. The 

invariants given for Q = 0, Equations 2.11, provide a test for numerical accuracy 

when Q = O. Deviations from their constant value indicate numerical instability. 

The results shown here are produced using a finite-difference scheme in ~ space, 

with second-order central differences in ~ and a fourth-order Runga-Kutta time­

marching method. Boundary conditions on e are ~ \I! = 0 at e = ±C/2, where Cis 

much larger than the characteristic length of the soliton. When Q =I- 0, the numer­

ical code is quite stable, allowing for large steps (6t = 0.2) in the nondimensional 

time. When Q = 0, the time step needs to be reduced considerably in order to 

obtain numerical stability. In the presentation of the simulations, the evolution of 

the solution of the envelope is shown as a three-dimensional plot in e and T. A 

plot of the evolution of a point fixed in e with time, T, follows, demonstrating the 

nature of the eigenvalue and allowing for comparison with the analysis. 

The first series of simulations examines the stability of the ;Y < 0 stationary 

solution. In this case, (3 < 0 and ,2 < Q2 + (32, and the soliton is predicted to be 

unstable to bound modes. Figure 3.15 shows the evolution of the soliton envelope 

in time as computed from the nonlinear Schrodinger Equation for fixed Q, (3, and 

, falling within this region. The case shown in the figure is characteristic of the 

evolution when the parameters fall in this region. Figure 3.16 shows the eigenfunc­

tion computed from the matching scheme for the bound mode described above. 

The predicted eigenfunction is in good agreement with the growth observed in Fig­

ure 3.15. Lastly, Figure 3.17 compares the growth rate observed from the nonlinear 

evolution with that predicted by the bound-mode instability, again showing good 

agreement for small times. As the solution evolves for long times, it decays and 
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approaches the flat surface. From the linear-stability analysis of the flat surface, 

we know that the flat-surface solution is stable when 'Y < ..ja2 + /32. 

The second series of simulations examines the stability of the l' > 0 stationary 

solution. When (3 2: 0, 'Y 2: ..ja2 + (32, and the solution is unstable to the continu­

ous spectrum, as shown in Figure 3.18. Notice that the instability tends to create 

neighboring disturbances. Figure 3.19 shows a time history of a single point along 

the ~ axis. For small times, the solution grows away from the stationary solution 

exponentially, and the maximum growth rate may be compared to that predicted 

by Equation 3.15 as shown in the figure. The comparison is good for small times, 

when the deviation of the solution from the stationary solution is small. For longer 

times, the direct simulation shows that the growth is capped by nonlinear effects. 

In this case, the solution evolves into a cnoidal-wave solution of the NLS equation, 

one of the solutions found in Chapter 2. 

For l' > 0 and (3 < 0, the solution may be stable, unstable to the discrete 

spectrum, unstable to the continuous spectrum, or unstable to both. Figure 3.20 

shows the evolution of the stationary solution when the parameters fall into re­

gion I, of Figure 3.14, unstable to the continuous spectrum. Again, the solution 

evolves into a system of neighboring disturbances, and the maximum growth rate 

may be compared to that given by Equation 3.18. Figure 3.21 shows the region 

of the stability diagram in which the parameters fall for this case. Figure 3.22 

shows the time evolution of a point fixed in ~ compared with the growth rate pre­

dicted by the linear theory. Here the predicted growth rate is purely real. The 

agreement between the theory and the simulation is good for small times. As the 

solution grows away from the soliton solution, the linear theory will be a poor 
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approximation, and we expect deviation from the theory for longer times. For the 

continuous-spectrum instability, the system grows away from the stationary soliton 

and towards a cnoidal-wave solution of the NLS equation. 

When the parameters fall into region I I of Figure 3.14, the solution is unstable 

to the discrete mode. Here, the solution grows with an oscillatory component, and 

the tendency is for the solution to peak, as seen in Figure 3.23. The region of 

the stability diagram giving rise to these bound-mode instabilities is shown in 

Figure 3.24. The eigenvalue for the growing mode in this region may be computed 

using the Frobeneous matching scheme and compared to the oscillatory growth of 

the nonlinear evolution, as shown in Figure 3.25. The agreement is good for small 

times. The solution approaches the flat surface after experiencing the instability 

that is due to the discrete spectrum. The linear-stability analysis of the flat surface 

shows that it is stable in this case. 

Lastly, we choose parameters in the stable region, region I I I. The evolution of 

the nonlinear Schrodinger equation is shown in Figure 3.26. Here, the small initial 

disturbances are seen to decay with an oscillatory component, and the stationary 

solution is approached, as predicted. The region of the stability diagram leading 

to stable solitons is shown in Figure 3.27. Figure 3.28 shows the time evolution 

of a point fixed in ~ compared with the eigenvalue found by the preceding theory. 

The agreement in this case is excellent since small perturbations become smaller, 

thereby keeping the system within the assumptions made for the linear-stability 

analysis. 

A very interesting phenomenon occurs when the parameters lie in region I I 

(unstable to bound modes) but near region I I I (stable) of Figure 3.14. The linear-
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stability theory here predicts that the stationary solution will be unstable to bound 

modes. The instability has an oscillatory component, and the eigenfunction tends 

to focus the energy towards the peak of the soliton. When the full, nonlinear 

evolution equation is computed, we find that initially we have growth away from 

the stationary solution as predicted. However, when the perturbation grows to be 

sufficiently large, we find that the growth is capped, and the flow approaches a 

periodic orbit about the stationary solution. The numerical solution for this ca.<;e 

is shown in Figure 3.29, with the appropriate region of the stability diagram shown 

in Figure 3.30 and the time evolution of a point fixed in ~ shown in Figure 3.31. 

The capping of the solution after initial growth is the result of the nonlinear terms 

not included in Equation 3.9. The linear theory is a good approximation for small 

times, so that the solution grows initially. However, as the solution grows away 

from the soliton solution, the nonlinear terms neglected in the linearization of 

the NLS equation become large and bound the motion, leading to a solution that 

is periodic in the slow time. The periodic orbit cannot be predicted using the 

linear-stability analysis alone, and its identification is a nice result of the direct 

simulation. 

3.2.5 Standing-Soliton Experiments 

Experiments were performed to investigate the standing solitary-wave stability and 

to evaluate the theoretical and numerical results. Several tanks were used, each 

rectangular in cross section and constructed from acrylic. Vertical sinusoidal oscil­

lations were provided by an electromagnetic shake table with a linear potentiometer 

attached to the driving surface, giving drive displacement. A resistive-type wave 

gauge was used to measure surface elevations. The liquid used in the experiment 
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was distilled water, with several drops of Kodak Photo-Flo to decrease the ten-

dency of the water to pin against the walls. Surface tension of the water was also 

measured. The frequency-detuning parameter, {3, is given by 

{J 

(It 

2w~ 

7r 

k= b' 

where T is the surface tension of the water, p is the density of the water, b is the 

width of the tank, h is the undisturbed water depth, 9 is the constant acceleration 

that is due to gravity, and w is one half of the drive frequency. The forcing 

parameter, " is given by 

aow2 

,=--, 
9 

where ao is the drive amplitude. Hence, T, p, band h are known and fixed for a given 

run, and W o , the natural frequency of the (0 , 1) mode, may be computed. The drive 

frequency, 2w, is measured using a frequency counter, and the drive amplitude, 

ao , is measured using the linear potentiometer. The remaining parameter, lX, is 

measured by finding the '"'I for which motion ceases to exist. This minimum forcing, 

from the preceding theory, is equal to lX. The forcing-frequency measurement 

had an uncertainty of two percent. The plate-displacement measurement had an 

uncertainty of six percent, because of sticking of the potentiometer at its extremum, 

particularly at small drive displacements. Wave amplitudes were accurate to five 

percent. 

The effects of friction are represented in the preceding theory by the single 

parameter , lX . In the laboratory, several frictional effects are present. First, the 

presence of viscosity in the liquid leads to boundary layers on the tank walls and 
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bottom as well as the free surface. The boundary layers on the tank walls have 

a thickness on the order of one millimeter. Contaminants on the free surface also 

contribute to frictional losses. Lastly, the motion of the interface consisting of the 

liquid, the air and the tank wall is hysteretic, and there are frictional losses at this 

interface. The liquid advancing on a dry wall behaves differently than the liquid 

receding down the wall. All of these frictional effects are absorbed into the single 

parameter, CY, which is obtained experimentally. The functional form of a may be 

motivated, however we do not attempt a rigorous derivation of the form of each of 

the foregoing frictional effects. 

First, the stability boundaries for the standing solitary wave with (3 < 0 and 

i > 0 (the only case possessing stable solutions) were experimentally identified. 

These boundaries were loosely identified in the original paper by Wu et al. (1984). 

The method is to fix (3 and put, inside the stable region of Figure 3.14, region 

I I I. Within this region, the soliton is generated by sloshing a small paddle inside 

the tank. Once a stable soliton is produced, , is slowly reduced until the forcing 

can no longer overcome the frictional effects. By averaging the minimum , for 

varying (3, we find CY. Next, the stable soliton is again generated, and, is slowly 

increased until the soliton becomes unstable and gives way to a new solution. The 

process is then repeated for a new (3. 

Figure 3.32 shows the experimental results plotted in the (3/ a versus ,/ a 

plane for a tank width, b, of 2.5 cm. Figure 3.33 shows the result for a tank width 

of 5.0 cm. Outside the filled dots, the soliton ceases to exist. When, / a < 1, 

the forcing is insufficient to overcome friction. When ,/ a is above the dots, the 

soliton has become unstable. The two sets of data represent two different tank 
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SIzes. As expected, no solitons are observable for f3 > O. When the parameters 

lie in region i of the figures, the wave goes unstable to the continuous spectrum, 

and the agreement between the theory and the experiment is quite good. As 

predicted by the numerical simulations, the soliton in the laboratory goes unstable 

by continually generating neighboring disturbances, eventually developing into a 

cnoidal wave solution. Region ii of the figures indicates points at which the soliton 

goes unstable to discrete-spectrum instabilities. Here, the soliton increases in 

amplitude and decreases in breadth until it breaks down and the system tends 

toward the flat surface, in agreement with the numerical predictions. Region iii of 

the experimental stability figures is the region in which the soliton is completely 

stable. Here the envelope is stationary in the slow time. 

Lastly, region iv of the figures is a region possessing the slow-time, periodic, 

envelope solutions predicted by the direct, numerical simulations. In this region , 

the solution initially grows away from the soliton and approaches a slow-time 

periodic solution. We observe a breathing period for the wave in this region, where 

the wave focuses and peaks, followed by decay and spreading. The boundary of this 

breathing region has not been determined analytically. Notice that the boundary 

of the periodic solutions in the stability diagram differs for the two different tank 

widths. This difference points to the influence of nonlinear terms in the capping 

of the growth predicted by the linear theory. The parameter kh, different for 

the two tanks, does not playa role in the linear-stability theory. However, when 

the solution grows away from the soliton, the linear approximation breaks down 

and the nonlinear terms become important. These nonlinear terms depend upon 

A( kh), so that the different-sized tanks should have a different response for the 
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periodic solutions. 

When the parameters fall within the region leading to instability to eigenvalues 

m the continuous spectrum, we can measure the maximum growth rate of the 

unstable modes by placing a wave gauge in the region neighboring a stable soliton 

and increasing I into the unstable region. A sample time trace for a wave gauge so 

positioned is shown in Figure 3.34. By computing the growth rate from the wave 

gauge output, having measured I and (3, a comparison between the theoretically 

predicted growth rate and the observed one can be made. The results of such 

a comparison are shown in Figure 3.36. The solid line represents the maximum 

growth rate given by Equation 3.18, while the dots represent measured growth 

rates for many experimental runs. When (3 and I are small, the agreement is very 

good. For larger values of I, the theoretical prediction overshoots the experimental 

evidence. There are two probable causes for the overprediction by the linear theory. 

First, the losses that are due to the liquid's advancing on a dry wall is not included 

in the theory and is sure to reduce the measured growth rate with respect to 

the theoretical case. Second, the nonlinear terms neglected in the linear analysis 

bound the exponential growth, so that as the wave grows away from the stationary 

solution, the actual growth rate is smaller than that predicted by the linear theory. 

For higher-growth rates, it is reasonable to expect greater disagreement with the 

theory, since higher-growth rates lead to higher amplitudes. A combination of the 

two effects is responsible for the overprediction seen in the figure. 

A wave gauge time history for a solution whose envelope is periodic in slow 

time is shown in Figure 3.35. The wave gauge is placed at the soliton peak. The 

fast oscillation in the trace is due to the fast-time sloshing (rv 5 Hz), while the slow 
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modulations are due to the breathing (rv ~ Hz). The breathing phenomenon was 

also observed in the numerical simulations of the nonlinear Schrodinger equation, 

Figure 3.29. 

For large values of 1,81, the flat parts of the free surface become unstable to 

longitudinal modes that compete with the sloshing mode of interest. The effect of 

this interaction is beyond the range of validity of the theory presented here and 

represents the boundary between the small detuning approximation and the linear 

theory of Benjamin and Ursell (1954) for finite forcing and detuning. The frequen­

cies and forcing amplitudes at which the plane free surface becomes unstable to 

modes other than the (0,1) mode can be computed, using their result. The incep­

tion of unstable, longitudinal modes may be delayed by putting wave-absorbing 

material at the tank ends. 

The experimental results for the standing soliton are summarized as follows . 

For small detuning and small forcing amplitude, the instability that is due to 

the continuous spectrum of the linear-stability equations accurately describes the 

physical situation. Envelope solitons, in this case, lose stability to sloshing waves 

modulated by a cnoidal-type envelope, in agreement with numerical simulations of 

the NLS equation. The initial growth rates in this case compare well with those 

predicted by linear theory. When the parameters are in the region leading to the 

bound-mode instability, but near the boundary with the stable region, the soliton 

gives way to a slow-time, periodic solution, in which the envelope disturbance is 

localized in space and unsteady in slow time. For large, negative detuning, the 

soliton is unstable to the bound mode and may break or excite longitudinal modes 

in the tank, both of which are beyond the scope of the linear theory. No solitons 
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were observed for positive detuning, again in agreement with the theory. 
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Figures for Chapter 3 
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plotted against, for different values of (3 when A > O. 
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Figure 3.4: Possible curves for f(K,) when A > 0 and ::y < O. If f(K,) < 0, the 
constant TO solution will be unstable with wave number K,. 
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Figure 3.7: Stationary solution branches for the standing solitary wave. a : f3 > 0, 
b : f3 = 0, c : f3 < 0. 
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Figure 3.9: Eigenvalue regions giving rise to purely imaginary indices. Imaginary 
part of the eigenvalue, ~i' 
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Figure 3.10: The complex eigenvalue, a = ar + iai, plotted against " for a = 0 
and f3 = -1, when l' > O. 
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Figure 3.11: The complex eigenvalue, a = ar + iai, plotted against " for f3 = 
-1, l' < 0 and a = 0.1. 
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Figure 3.12: Comparison of perturbation expansion and matching computation of 
eigenvalue dependence, (J against "/ for a = 0 and j3 = -1 and i > O. 
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Figure 3.13: Comparison of perturbation expansion and matching computation of 
eigenvalue dependence, (J against, for a = 0 and j3 = -1 and i < O. 
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Figure 3.14: Stability diagram for l' > 0, f3 < O. Region I is unstable to the 
continuous spectrum. Region I I is unstable to the discrete spectrum, and region 
I I I is stable to all small perturbations. 
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Figure 3.15: Evolution of NLS for l' < o. Iwl2 is plotted versus x and t. In this 
case, f3 = -1, ,= 0.25 and a = 0.001. 
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Figure 3.16: Evolution of NLS for i < O. The eigenfunction of the unstable bound 
mode. In this case, f3 = -1, I = 0.25 and a = 0.001. 
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Figure 3.17: Evolution of NLS for i < O. Comparison of NLS growth rate to 
that predicted by linear theory. The evolution of a point fixed in ~ is shown as a 
function of time. In this case, f3 = -1, I = 0.25 and a = 0.001. 
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Figure 3.18: Nonlinear Schrodinger Equation evolution when l' > 0, f3 > O. For 
this plot, f3 = 0.145, 'Y = 0.25 and a = 0.1. 
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Figure 3.19: Nonlinear Schrodinger Equation evolution when ;Y > 0, {J > 0o 
Evolution of a point fixed in ~ with time. For this plot, {J = 0.145, I = 0.25 and 
a = 0.1. 
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Figure 3.20: Wave evolution for i >0, f3 < 0, when the soliton is unstable to 
the continuous spectrum. For this plot, f3 = -0.29, I = 0.5 and a = 0.1. 
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Figure 3.21: Region of the stability diagram in which the parameters lie when the 
soliton is unstable to the continuous spectrum. 
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Figure 3.22: Evolution of a fixed point in time when the soliton is unstable to 
the continuous spectrum. The time and space evolution is shown in the preceding 
figures. For this plot , (J = -0.29, I = 0.5 and a = 0.1. 
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Figure 3.23: Wave evolution for i > 0, f3 < 0, when the stationary solution is 
unstable to the discrete spectrum. For this plot, f3 = -0.99, "I = 0.25 and a = 0.1. 
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Figure 3.24: Region of the stability diagram in which the parameters lie when the 
stationary solution is unstable to the discrete spectrum. 
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Figure 3.25: Evolution of a fixed point in time when the soliton is unstable to the 
discrete spectrum. The time and space evolution is shown in the preceding figures. 
For this plot, {J = -0.99, l' = 0.25 and 0:: = 0.1. 
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Figure 3.26: Wave evolution for l' > 0, f3 < 0, when the stationary solution is 
stable to all small perturbations. For this plot, f3 = -0.29, I = 0.125 and a = 0.1. 
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Figure 3.27: Region of the stability diagram in which the parameters lie when the 
soliton is stable. 
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Figure 3.28: Evolution of a fixed point in time when the soliton is stable. The time 
and space evolu tion is shown in the preceding figures . For this plot, j3 = -0.29 , 
'Y = 0.125 and Q = 0.1. 
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Figure 3.29: For values of the parameters making the solution weakly unstable 
to the discrete modes, nonlinear terms cap the linear growth and stabilize the 
stationary solution. For this plot, {3 = -0.58, , = 0.125 and a = 0.1. 
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Figure 3.30: Region of the stability diagram in which the parameters lie when the 
soliton is bounded by a periodic solution. 
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Figure 3.31: Evolution of a fixed point in time when the soliton goes to a slow­
time, periodic solution. The time and space evolution is shown in the preceding 
figures. For this plot, f3 = -0.58, I = 0.125 and a = 0.1. 
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Figure 3.32: Experimental stability diagram for the standing solitary wave. The 
dots are the experimentally determined stability boundaries, and the lines are the 
linearized stability results . The width of the tank is 2.54 em and the undisturbed 
water depth is 2.1 em. 
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Figure 3.33: Experimental stability diagram for the standing solitary wave. The 
dots are the experimentally determined stability boundaries, and the lines are the 
linearized stability results. The width of the tank is 5 em and the undisturbed 
water depth is 5.25 em. 
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Figure 3.34: Wave gauge time trace for an unstable mode in the continuous spec­
trum. For this plot, f3 = -0.021, I = 0.055 and a = 0.032. 
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Figure 3.35: Wave gauge time trace of a solitary wave in the region unstable to 
linear, discrete modes but possessing periodic solutions. In this case, f3 = -0.046, 
I = 0.019 and a = 0.008. 
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Figure 3.36: Comparison of continuous-spectrum growth rates. The line is the 
theoretical result , while the dots are the experimental results. 
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Chapter 4 

Kink-Wave Stability 

We now analyze the stability of the standing kink wave or hyperbolic-tangent solu­

tion of the governing NLS equation, Equation 2.9. As in the case of the hyperbolic­

secant solution, we perturb the stationary solution and linearize the system. The 

continuous spectrum of the linear operator is identified, and we draw conclusions 

about the stability of the wave relative to the continuous spectrum. When bound­

mode branches are investigated, some branches are found numerically. However, 

asymptotic solutions for the bound-mode branches, used in Chapter 3 to verify 

the numerical findings, could not be found for the kink wave. We improve upon 

the result of the linear-stability analysis by constructing a proof of Lyapunov sta­

bility for one of the two kink stationary solutions under the nonlinear dynamics 

of the NLS equation when dissipation is neglected. The stability behavior of the 

hyperbolic-tangent solutions is found to be simpler than that of the hyperbolic­

secant solutions. Direct, numerical simulations of the NLS equation are performed 

and compared with the preceding theory, confirming all of the theoretical results. 

Lastly, the stabili ty analysis is compared to experimental observations of the sta­

bility of hyperbolic-tangent solutions. 
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4.1 Kink-Wave Linear Stability 

Now consider the stability of kink-wave, stationary solutions. Kink-wave solutions 

occur when A of Equation 2.9 is negative, and the stationary solutions are given 

by Relations 2.17 , repeated as follows: 

'l/Jo ae
iB f("'O, 

f("'~) tanh(",~), 

sin(2B) 
a , , 

cos(2B) ±J1 - a 2/,-y2 = 1, , 
",2 ~(,8 + i) and 

2c 

a2 _lA (fJ + i)· ( 4.1) 

As with the standing solitary wave, the number of possible standing kink-wave 

solutions depends upon the parameters, a, fJ, ,. We have A < ° and, > a for the 

existence of any kink solutions. Plotting ",2C2 (or - Aa2 ) versus, helps to visualize 

the solution branch , as shown in Figure 4.1. Where,8 is negative, no solutions 

exist for, < J a 2 + ,82, while one solution, corresponding to i > 0, exists for 

I > J a 2 + fJ2 . \iVhen fJ = 0, one stationary kink solution exists for all , > a. 

Lastly, when fJ > 0, two solutions exist for, < Ja2 + fJ2, while only one exists 

when, is greater than Ja2 + ,82. 

We proceed to analyze stability of the kink wave by perturbing a solution of 

the NLS equation as follows. Take a solution of the NLS equation to be 'Ij;(~, 7) = 
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1/Jo(f.) + ei0'T}(f" T), where 'T} is assumed to be small. The linearized system is 

which is the same form as in Chapter 3 with 1/Jo now a hyperbolic tangent and 

A < 0. Substituting Relations 4.1 into the above equation, taking 'T}(f" T) = 

p( f" T) + iij( f" T) and scaling f, by K, give the system 

1 
-ijT - 20:ij + "2({3 + :Y)ih,f. + ({3 + :Y)(l - 3tanh2(f,))p 0, 

1 
PT + "2({3 + :Y)ijf.f. + ({3 - :y)ij - ({3 + :Y)tanh2(f,)ij - 0. 

Separating the time dependence as P = Re[p(f,)eUT
] and ij = Re[q(f,)eUT

]' dividing 

through by ({3 + :Y)/2 and using sech2(f,) + tanh2(f,) = 1 give the following simple 

form : 

-o-q - 2aq + Pf.f. - 4p + 6sech2(f.)p 0, 

0, (4 .3) 

where 

20' 
( 4.4) if 

{3+:Y' 
20: 

and (4.5) a 
{3+:Y 

4:Y 
(4.6) m --

{3+:Y 

The System 4.3 is fourth-order, nonself-adjoint and possesses regular singular 

points as f, ~ ±oo. We regard a as an eigenvalue and seek eigenfunctions, (p, q), 

that go to zero at infinity. If a is an eigenvalue, so is 0'*. If 0: = 0, an eigenvalue 

a implies that -a is a lso an eigenvalue. 
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In analyzing System 4.3, we proceed by introducing the transformation z = 

tanh(~), taking the points ~ ---t ±oo to z = ±1, and examining the indices at 

the singular points. The procedure is the same as that used to analyze the linear 

system as described in Chapter 3, and is described in detail in Appendix C. The 

eigenfunctions are represented by Frobeneous series about the regular singular 

points. For the series originating at z = -1, the series are 

Now, by substituting the above expansions into System 4.3, solving for the index, 

r, and the coefficients, an and bn , gives for the indices, 

(4.7) 

The four values of r given by the above are arranged in paIrs. When all four 

indices possess nonzero real part, two indices lead to solutions that satisfy the 

boundary conditions (those with positive, real part) and two give rise to solutions 

that do not satisfy the boundary conditions (those with negative, real part). In 

this case we expect discrete-spectrum eigenvalues, as outlined in Chapter 3. If the 

indices possess a pair of purely imaginary indices, we expect a continuous spectrum 

of eigenvalues, a synthesis of which will satisfy the boundary conditions at the 

singular points. Appendix C describes the algorithm for constructing eigenvalues 

and eigenfunctions in detail. 

4.1.1 Continuous Spectrum 

We determine the range of eigenvalues leading to a continuous spectrum by finding 

the values of (J that make at least one pair of indices purely imaginary. From 
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Equation 4.7, a purely imaginary index requires 

{3 + 2i' ± J {32 - 2aa - (J2 

to be real and negative. There are several eigenvalue regions that satisfy this 

condition with the sign of the first term, {3 + 2i', distinguishing two cases. Let 

First consider the i' < 0 solution and take {3 > o. If Ii'I > {3/2 so that 

{3 + 2i' < 0; then the following ranges of (J lead to at least one pair of imaginary 

indices: 

(Ji - 0, 

-a-Ja2+{32< (Jr <-a+Ja2+{32, (4.8) 

or 

(Jr -a and 

(Ji takes on any value. 

Where ar > 0, we have eigenfunctions that grow exponentially in the slow time 

implying instability. Equation 4.8 shows that when {3 + 2i' < 0, there are always 

eigenvalues in the range 0 < (Jr < -a + Ja2 + {32 so that this case is always 

unstable. 

Now let {3 + 2i' > 0 and consider stationary kink solutions corresponding to 

both signs of i'. The following ranges of a lead to one pair of purely imaginary 

indices corresponding to the negative sign of the inner square root in Equation 4.7: 
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ar < -a + Ja2 - 4i(,8 + i), 

ar > -a - Ja2 - 4i(,8 + i), 

when 4i (,8 + i) < a 2 and 

a r - -a, 

a· , > J4i(,8 + i) - a 2
, 

a i < -J4i(,8 + i) - a2
, 

(4.9) 

( 4.10) 

when 41(,8 + i) > a2 . The maximum growth rate is given by the first inequality 

of Equation 4.9 , 

armax = -a + Ja2 
- 41(,8 + i)· (4.11) 

The condition for instability is armax > 0, implying 

1(,8 + i) < O. ( 4.12) 

However , K,
2

C
2 = (,8 + 1)/2 > 0; therefore, (,8 + i) is always positive wherever 

the stationary solutions exist. Therefore, the stationary solution having i < 0 

satisfies Condition 4.12 for instability for all values of the parameters for which 

the solution exists and as a consequence, is always unstable to continuous modes. 

Conversely, the stationary solution having 1 > 0 never satisfies Condition 4.12 and 

is stable to continuous modes for all parameters for which the stationary solution 

exists. A summary of the stability properties of the continuous spectrum is shown 

in Table 4.1. 

4.1.2 Discrete Spectrum 

When both pairs of r possess nonzero real parts, we look for eigenfunctions in the 

discrete spectrum. The eigenvalues and eigenfunctions are computed using the 
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1'>0 1'<0 
j3>0 Always Stable Always Unstable 
j3<0 Always Stable Does not exist 

Table 4.1: Continuous-spectrum stability results. 

same kind of scheme described in Chapter 3, with the series solutions computed 

from Equation 4.3. The series coefficients and the numerical scheme are given in 

Appendix C. 

VVe look for eigenvalue branches for both the l' positive and the l' negative 

kink solutions. When considering the l' < 0 stationary solution, only the trivial 

branch (J - 0 is found. Also, for the second stationary solution, l' > 0, with 

j3 < 0, no nonzero eigenvalue branch is found. Surprisingly, a bound-mode branch 

exists for the case j3 > 0, l' > 0 and is shown in Figure 4.2. The eigenvalue of 

this branch always possesses negative real part for nonzero dissipation, ()I. We are 

unable to find a perturbation expansion in terms of analytic functions to verify the 

branch found numerically. However, by simulating the linear-evolution equation 

directly, Equation 4.3, we verify the matching code. The direct simulation uses a 

fourth-order, Runga-Kutta time-stepping scheme with central differences in space. 

When the eigenfunction computed by the matching scheme is introduced as an 

initial condition to the evolution code, the resulting eigenvalue can be extracted 

and compared with that predicted by the matching scheme. Figure 4.3 shows the 

result of such a computation. Figure 4.4, a plot of the centerline time evolution, 

shows excellent agreement between the predicted eigenvalue and that found us-

ing the evolution computation. In summary, the kink-wave, stationary solutions 

corresponding to l' > 0 and l' < 0 are found to be everywhere stable to discrete-
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1>0 1<0 
f3>0 Always Stable No Branches Found 
f3<0 No Branches Found Kink does not exist 

Table 4.2: Discrete-spectrum stability results. 

spectrum perturbations. A summary of the discrete-spectrum results is shown in 

Table 4.2. 

4.1.3 The Linear-Stability Picture 

The complete linear-stability picture for the standing kink wave is summarized as 

follows. For the stationary solution with 1 < 0, the kink solution is always unstable 

to the continuous spectrum with a maximum growth rate as given by Equation 4.9 

or Equation 4.8. For this solution, no bound branches are found. For the stationary 

solution with 1 > 0, the solution is always stable to both the continuous modes 

and the discrete modes. The stability diagram for this stationary solution is shown 

in Figure 4.5. Notice that the solution is observable for both f3 > 0 and f3 < 0 in 

comparison with the hyperbolic-secant solution, which is observable only for f3 < o. 

Also, the stabili ty of the stationary solutions along the a = 0 line remains unknown, 

since the nonlinear terms, neglected in the linear analysis, will become important 

there. The linear theory predicts that the stable region of the 1 > 0 solution 

is unbounded in I and f3. However, when f3 and I become relatively large, the 

assumption of weak forcing and weak detuning will become a poor approximation. 

Therefore, we expect that the kink wave will deviate from the linear theory for 

some large f3 and I as a result of dynamics that has not been modeled in the NLS 

system. 
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4.2 Kink-Wave Nonlinear-Stability Property 

The preceding linear-stability analysis shows that one stationary kink solution is 

stable to the continuous spectrum, while the other is unstable to the continuous 

spectrum. A complete stability conclusion for the ;Y > 0 solution can be provided 

when the dissipation is taken to be zero. Here stability is meant in the Lyapunov 

sense, and the analysis follows the reasoning established by Benjamin (1972) re­

garding the stability of soliton solutions of the Korteweg-de Vries (KdV) equation. 

Benjamin introduced the idea of stability of the shape of the soliton and used two 

time-invariant, nonlinear functionals of solutions of the KdV equation to establish 

Lyapunov stability. Improvements in the method of the proof were made by Bona 

(1975). Stability of solitary-wave solutions to the unforced, undamped, nonlinear 

Schrodinger equation was shown by Zhidkov (1986), using a method similar to 

Benjamin's. Linear and nonlinear stability of solitary-wave solutions to the forced 

KdV (f1<dV) equation were examined by Camassa & Wu (1991) and Holm, Mars­

den, Ratiu & Weinstein (1985) provide an overview of nonlinear-stability proofs in 

fluid and plasma problems. 

In the present work, we apply similar ideas to the problem of nonlinear sta­

bility of kink-wave, stationary solutions of the parametrically forced, undamped 

NLS equation. Nonlinear stability is intended in the sense that there exists a met­

ric d(·,·) in an appropriate functional space on which the parametrically forced 

NLS equation is defined, so that given any € > 0, there exists a 8 > 0 such that 

d(\II, \110) < 8 at T = 0 implies that d(\II, \110) < € for any T > 0, where wand 'liD 

are solutions of the NLS equation. 

In defining the metric, d(·, .), we note that the parametrically forced NLS 
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equation is invariant to translations in ~, ~ = ~ + ~o. With this invariance in mind, 

we use the idea of stability of the shape of the solution used first in Benjamin's 

work. A translation of the stationary solution in ~ without a change in the form of 

the solution is considered stable within this definition. Define 111]111 = J~:' 11]1 2 + 

11]~12d~, the Sobolev norm. Then d(·,·) is defined to be 

( 4.13) 

The existence of the metric, d, and its continuity in time has been shown by Bona 

(1975). A similar definition of the metric is used by Zhidkov (1986). 

Let \II(~,T) be a general solution of the forced NLS equation and 1lJo(~) be 

the kink-wave, stationary solution. In the work that follows, 1](~, T) = 1lJ(~, T) -

\II o( ~ - v) is taken to be at v such that 

( 4.14) 

We assume that 1] --+ 0 as ~ --+ ±oo and that 111]111 exists. Note that II \II 0 II 1 is 

infinite. However, this does not pose a problem, since only differences of solutions, 

T/, are used to demonstrate stability. In the following analysis, the T dependence 

of 1] and \II is dropped from the notation for convenience, since it does not play an 

active role. 

We note that the undamped, parametrically forced NLS equation possesses 

two functionals that are invariant in time, as given by Noether's First Theorem. 

The two functionals arise from the invariance of the Lagrangian with respect to 

translations in time, T, and space, ~ . The time-invariant functionals are 

H(\II) ( 4.15) 

L(\II) ( 4.16) 
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The energy integral, used as an invariant in Zhidkov's proof, 

is not invariant with time when, =1= O. Let a general solution of Equation 2.9 be 

denoted \lJ (~, T) = 'rJ( ~, T) + \lJ o( 0, where 'rJ( (., T) is taken at the location in (. for 

which the difference between the solution and the stationary kink is a minimum. 

For the case under consideration,::Y > 0, K,
2C2 = ({3 + ,)/2 and \lIo(~) = atanh(K,(.), 

where III 0 is purely real. We construct the total variations of the functionals about 

the stationary solution; namely, 

-1: [~1'rJ12 + :(1lI~'rJ*2 + 1lI~2172 + 4I\l1oI21'rJ12) + ~(172 + 'rJ*2) - K,2C21'rJ{12] d~­

_1:00 ~(\lJ;1'rJ12'rJ + \lIol'rJ1 2'rJ*)d(. -1: :1'rJ1 4 d(., 

and 

where 'rJ(~ , T) = p(~ , T) + iq((., T). For convenience, let ~ = K,~. Now consider the 

functional 

6.M 
2 2 

6.H + ~(6.L? 
a2 

( 4.17) 

K,2C21:OO [(p~? + (4 - 6sech2(~))p2] d~ + 

+K,2
C
21:OO [(q{)2 + (C - 2sech2(e))q2] d(. + 

+ alAI 1:00 
tanh((.)1'rJ1

2 
p d(. + 1:11:

00 

1'rJ1
4 d~ + 

4 2 2 2 4K,
2
c
2 
Fi /+00 K,

2
C
2 (/+= ) 2 + -3 K, c Fi + M p{q d(. + -2 p{q d~ , 

v 3a -= a-oo 
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where F1 = :{} J~~ q sech2(O d(" C = /3;'Y' and the bar over (, has been dropped. 

Note that C > 0, since 

6;.M is invariant in time since 6;.H and 6;.L are both invariant in time. The motiva-

tion for choosing this particular combination of 6;.H and 6;.L will become apparent 

later. 

The method of the proof is to establish an upper bound on flM that depends 

upon 1177111 and to bound a second function of 1177111 by flM. Then, fixing a b at 

T = 0 fixes flM for all time since it is invariant. The form of the inequalities on 

6;.M determines the relationship between € and o. 

4.2.1 Upper Bound for tlM 

An upper bound for flM may be established as follows. First, consider the second-

order terms 

[:00 [(pd2 + (4 _ 6sech2(O)p2] d(, + [:00 [(q~? + (C - 2sech2((,))q2] d(, 

< [:= [(p~)2 + 4p2] d(, + [:00 [(q~)2 + Cq2] d~ 

< C l 11 1711i, 

where C1 = max[4, C]. Next, we can bound the term 
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(4.18) 

where I 100 is the supremum norm and the Sobolev inequality, 117100 ~ 1117lhl y2, 

has been used in the last step. Continuing to reduce each term we take 

( 4.19) 

Also, 

( 4.20) 

Finally, we can bound 

< (1:00 
11712 d~) 2 

< 1117111· (4.21 ) 

Combining the above results gives an upper bound for ~M; namely, 

( 4.22) 

where Dl = K;
2c2 (max[4, C] + 2), D2 = a~1 + K2C: 12 and D3 = ~2a;2 +~. All the 

coefficients, D i , are positive. 
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4.2.2 Lower Bound for !::::..M 

We now proceed to construct the lower bound for our invariant. First, consider the 

implication of the translation condition given by Definition 4.13. As in Benjamin's 

work, the following alternative translation simplifies the analysis. The solution 

'l1(O is relocated to 'l1(e; - vo), where vo(r) is determined by 

1+<Xl 1'l1(e; - vo) - 'l1 0 (e;)1 2 de; = inf 1+<Xl 1'l1(e; - v) - 'l1 0 (e;)12 de;. 
-<Xl v E R -<Xl 

However, since 'l1 o(~) is purely real, translations in ~ will not affect contributions 

to the integral from the imaginary part of the difference. Let 'l1 (~) = r( e;) + is( e;) 

and recall the assumption that 1'l1(e;) - 'l10(e;) I --+ 0 as e; --+ ±oo. Then, 

Differentiation of the above integral with respect to v at v = a gives 

o i:<Xl r'(~ - a)(r(~ - a) - 'l10(~)) d~, 

-i:= r'(e; - a)'l1o(~) de;, 

i: r(e; - a)'l1~(~) de;. 

Setting r(e; - a) = p(O + 'l1 0(0, the above integral reduces to 

0, or 

0, 

giving a condition imposed on p by the translation of the solution in e;. 

( 4.23) 

Following Benjamin, spectral theory is used to establish the second-order in-

equalities. Again we proceed term by term, starting with the second-order varia-

tions. The second-order integral involving p is 



-93-

We can provide a lower bound for Ip by considering the form 

(4.24) 

Appeal is now made to spectral theory to evaluate the first integral. Consider the 

eigenvalue problem 

¢" + (,\ + 6sech2(O)¢ = 0, ¢(±oo) - 0, 

where ,\ is real. Recalling some fundamental results for this case (the limit-point 

case), the set of eigenvalues ,\ consists of a finite number of discrete, negative 

values together with a continuous spectrum of values from 0 to 00. In general, if 

P E L2( -00,(0), there exists a transform 

1
+00 

G('\) = -00 ¢(~; '\)p(~) d~, 

with an inversion in the form 

1
+00 

p(~) = -00 ¢(~; '\)G('\)dp('\), 

where p('\) is the so-called spectral function. For the above eigenvalue problem, 

there are two discrete eigenvalues, 

with corresponding eigenfunctions 

where the eigenfunctions have been chosen such that 

1+00 
-00 ¢i,2 d~ = 1. 
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With p expressed in terms of the above spectrum, we can form the following 

equality, 

where G l and G2 are given by 

G l i:oo 

<PlP d~, 
G2 [:00 <P2P d~. 

However, application of the translation condition, Equation 4.23, shows that G l = 

O. Therefore, we can conclude that 

Returning to J, Equation 4.24, the above inequality shows that J ;::: O. Finally, 

decompose the original integral, I p , as 

establishing the bound desired. 

The second-order integrals involving q are now considered. They are given by 

where 

( 4.26) 

In order to establish lower bound for I q , it is necessary to separate q into its odd 

and even parts, q(O = f(~) + g(~), where f(~) is even and g(~) is odd. 
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The contribution to the integral from the even part, j, may be written 

Notice that the first integral is the same as that used to analyze the second-order 

p contribution, with the additional restriction that we are considering only even 

functions. Therefore, 

Inserting this result into the expression for I qf shows that 

2 2/+
00 

2 2 2 II 112 Iqf ~ yt, c -00 3(f~) + Cj d~ ~ COl j 1, ( 4.27) 

where COl = min[~, C], which is in the form desired. The reason for constructing 

the peculiar combination of 6H and 6.L in 6.M can now be seen. In the combi-

nation specified, we can cancel out the FI terms in the invariant and reduce the 

integral to the desired form. 

The contribution to Iq from odd functions is determined as follows. Let J-l be 

a real number such that J-l E [O,lJ. The odd function contribution may be written 

Iqg yt,2c2 [: (g~? _ 2sech2(Og2 d~ + yt,2C
2 [:00 cl d~ 

yt,2c2(1 _ J-l) [: (g~f - 2sech2(~)g2 d~ + J-lyt,2C
2 [:00 (g~)2 + (~ - 2)g2 d~ 

+yt,2c2 [:00 2J-l(1 _ sech2(~))g2 d~, 

for any J-l in the specified range. Now, appealing again to spectral theory, the 

integral 
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since the spectrum of the underlying operator, K = d2 /de+()'+2sech2(~)), has no 

bound eigenvalues with odd eigenfunctions. Recalling that C > 0, we can always 

choose p < C /2 . Then 

( 4.28) 

where CO2 = ,,;2c2min[p, C - 2p). Now, combining the results for the odd and even 

parts of q, Equation 4.27 and Equation 4.28, give for the Iq term, 

( 4.29) 

where C03 = min [COl , CO2]. Using the relation 111Jlli = IIplli + Ilqlli and combining 

the results for the second-order variations, Iq and Ip, Equations 4.25 and 4.29, give 

the result 

( 4.30) 

We have derived the lower bound for the second-order term in b..M. Approx-

imations to the higher-order terms follow easily, using results already derived. We 

have shown 

From Inequalities 4.18, 4.19, 4.20 and 4.21, we have the results 
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1: tanh(e;) pl1712 de; < ~1117l1t, and 

1:00 

11714 de; < II 1711 i . 

Therefore , we can conclude that 

The above expression may be written 

(4.31 ) 

where C2 = a~J + v0.:zcz 
and C3 = 141 + ~:~2. Equation 4.31 represents the bound 

on 111711 l necessary for the proof of stability. Note that Cl , C2 and C3 are positive. 

4.2.3 Proof of Stability 

We are now able to establish stability. The previous sections have provided the 

Inequalities 4.31 and 4.22 repeated here, 

~M > Cdl1Jlli - C2 111Jlit - C31i1J1ii. 

~M < Dl ll1Jlli + D2111J1I~ + D3 111Jlli· 

The proof proceeds as follows . Let 111Jlh < 8 at T = O. Then ~M ~ 1I(8), where 

1I(8) = D 182 + D283 + D384. Define the function F(II7Jlld = Cl ll7Jlli - C2 1i7Jllt -

C31117111 . A plot of F is shown in Figure 4.13. From the figure , it can be seen that 

F takes on a maximum positive value of Fmax at 117Jllmax. Take 8 to be sufficiently 
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small such that at T = 0, v(8) < Fmax. Let 1117116 be the value of 1117111 such that 

F(II17116) = v(8). Then the inequality 

assures that 

since t::.M is independent of time. Hence we have established a 8 dependent bound 

for 1117lh for all T > O. Finally, given an € > 0, we can determine a 8 > 0, such 

that 1117116 < €, thereby showing 1117111 < € for all T > 0 when 1117111 < 8 at T = O. 

Hence, we can conclude stability of the kink shape for the parametrically forced, 

nonlinear Schrodinger equation for the mode i > o. 

If the above argument is applied to the second kink mode, i < 0, it fails be­

cause C --t i~~' which is negative everywhere this kink exists. The bounds on t::.M 

that were formed previously cannot be established, and the analysis fails to draw 

the conclusion of stability. Such a failure is expected, since the linear-stability 

analysis shows that this particular mode is unstable to continuous-spectrum eigen­

functions. 

4.3 Kink-Wave Numerical Simulations 

Numerical simulations of the nonlinear Schrodinger equation, Equation 2.9, are 

computed to verify the preceding analytical results. The codes used are the same 

as those described in Chapter 3. As before, the numerical simulations provide 

information about the evolution of the system after instabilities occur near sta­

tionary solutions, a property that cannot be found from the preceding analysis. 

There are only two stability conclusions for solutions starting near the kink-wave 
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solutions. Solutions near the i > 0 solution are expected to be stable, while those 

near the i < 0 solution are expected to be unstable. The simulations verify these 

conclusions. 

The first case examines the stationary kink solution given by i < o. Figure 4.6 

shows the evolution of the kink in this case, clearly showing the evolution of un­

stable modes. The instability is to the continuous spectrum of the linear operator 

and results in the spreading of energy away from the kink center. Remarkably, the 

long-time evolution of the NLS equation shows that after the onset of instability, 

the system tends towards the second stationary kink solution, the ::y > 0 solution, 

which is known to be stable everywhere it exists. The next figure, Figure 4.7, 

shows the evolution of the center point of the space as a function of time and com­

pares the growth rate to the maximum growth rate predicted by Equation 4.11. 

The predicted growth rate is good for short times with nonlinear effects creating 

differences for longer times. The centerline time evolution shows the approach to 

the stationary kink solution. The evolution of the i < 0 kink into the i > 0 kink 

is typical for our simulations. The above instability cannot be observed in the 

laboratory, since the negative ::y solution is nowhere stable. 

The evolution of a solution near the stationary solution given by ::y > 0 with 

f3 > 0 is shown in Figure 4.8. Notice that despite a relatively large initial pertur­

bation , the solution quickly returns to the stationary solution. The evolution of a 

point along the centerline is shown as a function of time in Figure 4.9. Figure 4.10 

shows the evolution of the perturbed solution when i > 0 and f3 < O. Again, the 

solution is stable to perturbations, as predicted. In each case, the stability analysis 

predicts the stability behavior of the kink wave. 
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4.4 Kink-Wave Experiments 

We observe the standing kink wave in the laboratory, using the experimental ap­

paratus described in Chapter 3. With the undisturbed water depth such that 

kh < 1, the kink soliton is generated by an impulsive twist of the tank about a 

line directed vertically upward through the centroid of the tank's rectangular cross 

section. The kink is more difficult to observe than the standing soliton because 

the appropriate initial condition is difficult to obtain. Also, the shallowness of the 

water tends to amplify the effects of irregularities in the tank's walls and bottom, 

resulting in preferred locations for the kink transitions. Once established, the kink 

wave is stable. 

Denardo, Wright, Larazza & Putterman (1990) provide an experimental­

existence diagram for the kink wave. While no stability analysis is offered, they 

experimentally identify the regions of existence of the kink wave. A plot of their 

experimental results, rescaled in terms of f3 and " is shown in Figure 4.12. For 

small f3 and" the stability region is bounded only by the lines required for formal 

existence of the solution. This result is in agreement with the foregoing analysis, 

which shows that the i > 0 solution is always stable. Denardo et al. properly iden­

tified the formal existence lines in their work, but they did not perform a stability 

analysis. 

For large positive f3 it is observed that the kink wave develops variations along 

the length of the tank on the order of the tank's width, eventually giving way to 

oscillations containing more than the primary mode. These oscillations can be 

attributed to the instability of higher modes in the tank that are described by 

Benjamin & Ursell's (1954) work and are beyond the scope of this single-mode 
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analysis. Furthermore, for large values of I, the kink wave appears to become 

unstable spatially, running towards the tank's ends and eventually annihilating 

itself in the tank's corner and leading to the plane (0,1 )-sloshing mode (observed 

by Denardo et al. and ourselves). No explanation has been given for this instability, 

since I is clearly large enough to violate the assumption of smallness in this work. 



-102-

Figures for Chapter 4 
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2 2 
lC C = 

y=a r 
2 2+ A2 Y = a JJ 

y=a r 

2 2 
lCC = ~~------~~------------------------------

2 2+ A2 y= a y = a JJ r 

Figure 4.1: Branches for stationary, kink-wave solutions. a : {J > 0, b : {J = 0, 
c : {J < O. 
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Figure 4.2: Bound-mode branch for the kink wave when f3 > 0 and ::y > O. The 
case shown here has f3 = 1 and a = 0.1. 

Figure 4.3: Evolution of the linear-stability equation in the bound-mode region. 
For this case, f3 = 1, I = 1.1 and a = 0.01. 
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Figure 4.4: Evolution of the linear-stability equation in the bound-mode region. 
Comparison of the center line motion with that predicted by the matching code 
for f3 = 1, I = 1.1 and a = 0.01. 
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Figure 4.5: Linear-stability diagram for the i > a solution. 
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Figure 4.6: Evolution of the NLS equation for the kink solution having i' < 0 for 
f3 = 1, I = 0.75 and a = 0.5. 
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Figure 4.7: Evolution of the NLS equation for the kink solution with i' < O. 
Comparison of the NLS growth rate of the solution on the center line with that 
predicted by the linear theory for {3 = 1, I = 0.75 and a = 0.5. 
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Figure 4.8: Evolution of the NLS equation for the kink solution given by ::y > 
0, f3 > O. For this figure, f3 = 1, I = 0.75 and a = 0.5. 
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Figure 4.9: Evolution of the NLS equation for the kink solution given by ::y > 
0, f3 > O. Time evolution along the centerline when f3 = 1, I = 0.75 and 
a = 0.5. 



-108-

Figure 4.10: Evolution of the NLS equation for the kink solution given by ::y > 
0, f3 < O. In this figure, f3 = -I, ,= 1.5 and a = 0.5. 
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Figure 4.11: Evolution of the NLS equation for the kink solution given by ::y > 
0, f3 < O. Time evolution along the centerline for f3 = -1, , = 1.5 and a = 0.5. 
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Figure 4.12: Experimental-stability diagram for the standing, kink wave from 
Denardo et al. (1990). 
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Figure 4.13: A plot of the lower-bound function, F , versus 1111lh. The maximum 
value, Fmax occurs at Il7Jllmax. The value 1/(8) is determined by the upper-bound 
condition, and bounds F at the value 111111.5. 
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By using a small-amplitude approximation and an assumption of a single, primary 

sloshing mode, we derive the parametrically forced, nonlinear Schrodinger equation 

as the governing equation for the modulating envelope of a sloshing wave in Faraday 

resonance. Given fixed tank dimensions, the character of the stationary solutions 

of the envelope equation is seen to depend on the depth. Solitary waves exist 

as solutions to the NLS equation at all depths. The kink solitary wave exists 

for shallow depths , while the standing soliton exists for larger depths. Once the 

undisturbed water depth is fixed, the solitary-wave behavior depends upon three 

operating parameters , I , the amplitude of parametric forcing, f3, the frequency 

de tuning between the forcing frequency and the first natural sloshing frequency, 

and a, the dissipa tion. The properties of the solitary waves can be completely 

det ermined by the operating parameters. We also show that the NLS derivation 

may be generalized to the case of an internal free surface in a two-layer, stratified 

liquid and we find the modified equation for this case. 

We examined the linear stability of the standing-soliton (hyperbolic-secant) 

solutions of the NLS equation . The result is that of the two possible stationary 

solutions, only the soliton present in the undamped, unforced case has a stable 
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region, the second stationary solution possessing unstable modes throughout the 

parameter space. For the soliton possessing a stable region, we find that the stable 

region exists only when the detuning is negative, so that one half of the forcing 

frequency must be below the first natural sloshing frequency. As the parameters 

I and {3 are varied for fixed 0:, different classes of instabilities arise. For rela­

tively small detuning, an increase of the forcing amplitude causes the soliton to 

become unstable by creating neighboring disturbances, eventually developing into 

a cnoidal-wave solution. For relatively large detuning, the soliton becomes unstable 

to modes that focus the energy towards the soliton peak with a slowly oscillating 

component, eventually breaking the soliton and driving the system to a flat-surface 

solution. Lastly, for parameter values near the stable region but with slightly larger 

detuning, the soliton is unstable and gives way to a solution that is localized in 

space and periodic in the slow time. Numerical simulations of the NLS equation 

give an excellent, qualitative picture of the stability properties. The slow-time 

periodic solution, not found analytically, is easily observed by direct simulation. 

Also, the eigenvalues predicted by the analysis compared well with those computed 

in the direct simulations. All the qualitative features of the standing-soliton sta­

bility are observed experimentally, with good quantitative agreement for values of 

E ~ ~. 

The stability of the standing, kink-wave solution of the NLS equation was 

also investigated. The linear-stability analysis shows that only one of the two 

possible solutions is stable. Again, the stable solution is the one that exists for 

the unforced, undamped motion. The linear analysis predicts stability wherever 

the stable mode exists. For the stable kink wave, we have shown that the solution 
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is stable under the nonlinear dynamics of the NLS equation when dissipation is 

neglected. The nonlinear-stability argument also provides a bound on the possible 

initial conditions that will lead to the standing kink wave. Direct simulation of the 

NLS equation provided an excellent check for the stability properties of the kink 

wave and a basis for comparison of the eigenvalues found analytically. We observed 

that the unstable kink solution evolves into the stable solution. Experimental 

investigations of the kink wave show that for small E, the boundaries of the solution 

in parameter space are indeed the existence boundaries of the stable solution. 

When E increases, the kink becomes unstable to sources that are not modeled in 

this work. 

In general, the parametrically forced, damped NLS equation adequately pre­

dicts the behavior of the envelope of the sloshing wave. When E is small, the NLS 

equation is in excellent quantitative and qualitative agreement with physical obser­

vations of the solitary waves. Even when E is large, the qualitative behavior of the 

waves is predicted by the NLS model. We find that strongly nonlinear effects such 

as wave breaking and droplet formation occur when E is near one and the NLS 

equation is inadequate, as expected. This study highlights some problems that 

warrant further research. First, the dynamics at the air, liquid and wall interface 

are not well understood and clearly play a role in the wave motion. A second, 

related problem concerns a better understanding of energy losses in the tank. This 

kind of Faraday wave system may be a good model system for future investigations 

of both of these effects. 
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Appendix A 

Derivation of the Nonlinear 
Schrodinger Equation for a 
Stratified Fluid 

In Chapter 2 we derive the equation of motion for the envelope of a single-mode 

sloshing wave on the free surface of a liquid contained in a high-aspect ratio rectan­

gular tank that is forced in vertical, sinusoidal motion. In this appendix, we derive 

the evolution equation of a modulating envelope for sloshing motion on an internal 

surface between two immiscible liquids contained in a closed, rectangular tank of 

high-aspect ratio that is forced in vertical, sinusoidal motion. The motivation for 

such a derivation comes from the KdV equation, where Zhu (1986) shows that 

the fXdV equation, derived for waves on a homogeneous liquid, has an analogy 

for the internal layer of a two-layer liquid system. Here, we succeed in deriving a 

parametrically forced NLS equation for the modulating envelope in the two-layer 

case. The equation is similar to the one found in Chapter 2, Equation 2.8, with 

the coefficients modified for the internal-wave case. 

The derivation proceeds in the same fashion as the derivation in the case of a 

homogeneous liquid. A rectangular tank of high-aspect ratio contains two immis-
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cible liquids. The lighter liquid rests atop the heavier liquid, and the tank is closed 

on the top with a rigid lid. The two liquids completely fill the tank's volume. We 

assume that only one primary mode and its next higher harmonic are resonantly 

excited on the interface between the liquids, and that none of the natural frequen-

cies of the secondary modes are nearly equal to the forcing frequency. Assume 

that no internal resonance occurs. Take a reference frame fixed to the rectangular 

tank with the x-axis directed along the long side of the tank of length, f, the y-

axis across the tank of width b, b « f. The wave number k of the standing cross 

wave generated by the vertical oscillation is 7r Ib, and kf = O( 1 If) is a measure of 

the aspect ratio of the tank. The z-axis points vertically upward such that z = 0 

at the quiescent, internal surface, z = -h2 at the tank bottom, and z = hI at 

the tank lid. Figure A.l shows a schematic of the above problem. Quantities in 

the upper, lighter liquid will be denoted with a subscript "1," while those in the 

lower liquid will have the subscript "2." The upper liquid has density PI, and the 

lower liquid has density P2 such that P2 > Pl. Both liquids are assumed inviscid 

and incompressible, and the motion is assumed to be irrotational and free of cap-

illary effects. The velocity potentials are (Pt,2(X, y, z, t), and the internal surface 

displacement is ((x, y, t). The velocity potentials satisfy the Laplace equations 

The wall conditions for the normal velocity are n· '\1 <Pi = 0 on the tank walls, top 

and bottom with i = 1,2. The conditions on the internal interface are 

PI 1 ( )2 _() - + <PI t + -2 '\1 <PI + 9 t ( 
PI 

0, (A.l) 
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P2 1 ( )2 _() - + <P2t + 2" V <P2 + g t ( 
P2 

0, (A.2) 

(t + <P1x(x + <P1y(y <P1z, (A.3) 

(t + <P2x(x + <P2y(y <P2z and (A.4) 

PI P2 (A.5) 

on z = «(x, y, t). The forced acceleration of the tank is absorbed in the gravity 

term so that get) = g(l + 41cos(2wt)), 41 being the amplitude of the vertical os-

cillatory acceleration imposed on the tank and scaled with respect to the constant, 

gravitational acceleration, g. We assume that <Pi = O(E) for i = 1,2 and ( = O(E) 

in the motion weakly forced with 1 = E2
" , being of 0(1), where E = a/h2 is the 

nonlinearity parameter for a typical wave amplitude a, with E ~ 1. Combining 

the two dynamic, boundary conditions, Equations A.1 and A.2, with the pressure 

condition on the interface, Equation A.5, leads to the equation 

where v = pI! P2 < 1. As before, we expand the internal surface conditions on z = ( 

about z = 0 in terms of E and eliminate ( in favor of <PI and <P2. In the stratified 

liquid case we obtain two equations, one from the combination of Equations A.3 

and A.6, and the other from the combination of Equations A.4 and A.6. The first 

equation is given by 

¢tt + 9<Plz - ~(¢tt + 9<P1z)z + ~[(V<P2)2 - V(V<pl)2]t+ 

+V<Pl . V¢t + (¢tt+2~(!>Iz)z [~(¢t); - (V<P2? + V(V<P1?] + 

+ (~) (¢tt + 9<Plz)zz + ~V<Pl . V[(V<P2? - V(V<Pl?]­

-t (l(V <P2)2 - v(V <pt}2]tz + [V <PI . V ¢t]z) + 
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+E24,.9 cos(2wt )<Plz + E28w, sin(2wt)¢t = O( E4) with 

¢ = <P2 - V<Pl and 

.9 = (1 - v)g 

on z = O. The second equation on z = 0 is similar and is given by 

¢tt + .9<P2z - t(¢tt + .9<P2z)z + ~[(V<p2)2 - v(V<pl)2h+ 

+"V <P2· "V¢t + ( ;j,tt+2~4>2 %)% [~(¢t); - (V<p2)2 + v(V<Pd2] + 

+ (~) (¢tt + .9<P2z)zz + ~V<P2 . V[(V<P2)2 - v(V<pd2l-

4> ( 2 2 - ) - gt [(V <p2 ) - v(V<pd ltz + [V<P2 . V<ptl z + 

+E24,.9 cos(2wt)<P2z + E
28w, sin(2wt)¢t = O( E4). 

In these equations , use has been made of the expansion of ( up to O( E3), 

g(1 - v)( = -(<P2t - v<Plt) + 9(1~lJ)(<P2tz - v<Pltz)(<P2t - v<Plt)­

~[(V <P2)2 - v(V<pd2l + 0(E3) 

(A.7) 

(A.8) 

(A.9) 

on z = O. The effects of weak-forcing excitation appear in the third-order terms of 

A.7 , A.8 and A.9; however, they are needed only in Equations A.7 and A.8. 

As in the homogeneous liquid case, we look for solutions of the above equations 

representing motions that slosh across the tank like cos(ky) with frequency w very 

nearly equal to the primary, natural frequency Wo and that are modulated along 

the x-direction by an envelope depending on a slow time, T, and a long space, ( 

The appropriate scales of these variables are i = wt for the fast time, T = E2wt for 

the slow time, and ~ = EX for the long space. We construct the expansions 
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The original field equations \l2<Pi become 

(A.IO) 

where \l~ = 0; + 0; and Oy = %y, Oz = %z. Now, solving the Laplace 

equations, Equations A.IO with the wall-boundary conditions and the conditions 

on the internal surface, Equations A.7 and A.S, taken by orders of E, we obtain the 

following first-order solution. 

T2 - cosh(k(z - hI)) 
- Tl RI(t;~, r) cos(ky) cosh(kh

l
) , 

- cosh(k(z + h2 )) 
RI(t;~, r) cos(ky) cosh(kh

2
) , 

'l/J(~, r)exp( -it) + C.c., 

where c.c. denotes the complex conjugate of its preceding term and 

gkTI T2(I - v) 

TI + vT2 
with 

(A.11) 

The first-order solution gives the dispersion relation for linear waves on the internal 

interface. Examination of the second-order system requires that WI = 0 in order 

to suppress secularity. Solving for the particular solutions yields 

- 2TI 
R2(t;~, r)CI cos(2ky)[cosh(2kz) - T2 sinh(2kz)], and 

1 + I 

- ( 2n) R2(t;Cr) C2+C3 cos(2ky)[cosh(2kz) + I+Tisinh(2kz )] , 
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with 

- 2-R2(t; C r) = i'IjJ(t;" r) exp( -2it) + c.c., 

and CI, C2 and C3 are known functions of k, hI, h2 and v. Finally, in the third-order 

analysis, suppression of the secular terms yields, for 'IjJ(t;" r), the familiar equation 

where 

with 

(A.13) 

2kri~ ; :~2)2 (1-~2kTf(1 - Ti) + TfT2 + vhIkTi(1- Tf) + VTITi) 

k4(ao + aIv + a2v2 + a3v3) 

8T'{T2(vTI + T2)(TI + vT2)2' 

ao Tf( -9 + 16Ti - 5Ti + 6T~), 

al T 1
2T2( -9Tf + 10Tt + 18TIT2 - 6T(T2 + 10T1Ti -

+10Ti - 4T1Ti + 6TtTi), 

a3 = (-9 + 16Tf - 5Tt + 6Tf)T~. 

(A.14) 

Note that when v ~ 0, so that the density of the upper liquid goes to zero , the 

coefficients reduce to those for the case of the homogeneous liquid. The coefficient 

c; is always positive. The nonlinearity coefficient, As, depends upon hI, h2 , v and 

k. Figure A.2 shows the nonlinearity coefficient as a function of k and v for fixed 
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hI = h2 = 1. When v = 0, the dependence on k is that shown in Chapter 2. 

The depth at which the nonlinearity coefficient changes sign may be solved as a 

function of hI, h2, v and k. The critical wave number decreases as v increases, as 

shown in the figure. We can also plot the nonlinearity coefficient as a function of 

h2 and v for fixed k and hI. Figure A.3 shows a plot of As in this case. Here, the 

point at which As = 0 decreases in h2' with increasing v. 

Once Equation A.13 is obtained, we can use all of the analysis from the single­

layer case to analyze the stratified-liquid system. Therefore, we expect to observe 

the standing, solitary-wave ("sech") solution when As > 0 and the kink wave, 

when As < o. The stability properties should also apply when the parameters are 

properly scaled. 

Some preliminary experimental observations were made for sloshing solitons 

on the internal interface of two liquids. We used kerosene for the top liquid and 

water for the lower liquid. The experimental apparatus is the same as that used 

for the homogeneous liquid case. The tank is one inch by nineteen inches and is 

constructed of lucite. liquid depths, hI and h2' ranged from one to two inches. 

The value of the density ratio, v, is 0.85 for the kerosene and water combination. 

The main features of the standing soliton were observed. A stable soliton was 

produced, with its amplitude and characteristic length matching reasonably well 

with the predicted values. The absolute-forcing amplitudes tended to be much 

greater for the internal-interface case than for the homogeneous-layer case. That 

this is so may be seen by examining, = aow5! g. The natural frequency, wo, is 

much lower for the stratified liquid, so that ao must increase to give the same value 

of,. A more detailed experimental study of sloshing waves for the stratified liquid 
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requires more work than has been done to date. 
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Figures for Appendix A 
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Rigid Top Surface 

1 

zi2; 
x 

t a"cos(2oot) 

Figure A.I: Schematic of experimental apparatus for the two-layer, stratified liq­
uid. 

0 .4 

Density Ratio 

Wave n umbe r 

Figure A.2: The nonlinear, self-interaction coefficient, A, versus k and v for fixed 
hI and h2 . 
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1 

A 

Density Ratio 

Lower Depth 

2 0 

Figure A.3: The nonlinear, self-interaction coefficient, A, versus h2 and 1/ for fixed 
k and hI' 
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Appendix B 

Center Manifold for the Flat 
Surface 

When analyzing the stability of the flat-surface solution (1'0 == 0) of Equation 2.9, 

we find that the stability analysis breaks down when I = J a 2 + ((3 - ,,;2C2) = Ie, 

as shown in Chapter 3.3.1. If ( dependence in the NLS equation is neglected, we 

use the center-manifold theory to determine the stability of the solution along the 

critical surface I = IC' Here, 0"1,2 = (0, -2a), and the system looks like 

Transform the system so that the two-by-two matrix is diagonal, and let Q be the 

two-by-two matrix whose columns are the eigenvectors of our linear system such 

that 

Substitution into Equation B.1 gives 

d(1') (0 0 )(1') (!I(1',s)) dT s = 0 -2a s + 12(1', s) , 

where !I (T, s) and h( T, s) are known functions of their arguments. Following Wig-

gins (1990), the question of stability of the system at I = Ic is reduced to the 
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equation on the center manifold, 

(B.2) 

For small r, a positive coefficient of r3 indicates instability. Therefore, the condition 

for instability is 

Af3 > 0, (B.3) 

which is the desired result. 
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Appendix C 

Eigenfunction-Construction 
Algorithm 

The linear-stability analysis of Chapters 3 and 4 relies upon an algorithm for 

constructing approximate eigenfunctions of the linearized, perturbation equations, 

Equations 3.10 and 4.6. This appendix describes the algorithm for the construction 

of the eigenfunctions and for the numerical search for eigenvalues. Both continuous­

spectrum eigenfunctions and discrete-spectrum eigenfunctions may be constructed. 

The same system is used for both the hyperbolic-tangent and the hyperbolic-secant 

cases, although the actual numerical codes differ in the detailed nature of the 

coefficients. 

An outline of our procedure follows, and the detailed constructions for Equa­

tions 3.10 and 4.6 are presented in the subsequent sections. The system of interest 

consists of two coupled equations, second-order in ~, that are singular as ~ ~ ±oo. 

The eigenvalue is 0-. First, we make the transformation z = tanh(~) to bring the 

regular singular points from infinity to ±l. Using a result from ordinary differen­

tial equation theory, we construct four Frobeneous series at each singular point. 

There are four series at each point corresponding to four indices. We distinguish 
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two cases, depending upon the form of the indices. When at least one pair of 

indices is imaginary, the eigenfunctions belong to the continuous spectrum of the 

linear operator, which will be treated later in the appendix. When the indices 

possess nonzero real part, only those indices with positive real part contribute to 

eigenfunctions that satisfy the boundary conditions. In this case, each singular 

point has two acceptable indices leading to two undetermined constants at each 

singular point. Using a result from the theory of ordinary differential equations, 

the Frobeneous series are known to converge in a circular region, extending to 

the nearest neighboring singular point. Therefore, the series solutions starting 

at Z = -1 converge for Z E [-1,1), while the series solutions starting at Z = 1 

converge for Z E (-1, 1]. An eigenfunction of the linear system must approach 

each singular point along a combination of the two series solutions found near each 

singular point. To construct a complete eigenfunction across the entire interval 

[-1, 1], we match the two series smoothly, starting at z = -1 to those from z = 1 

at any intermediate point Zo E [-1,1]' by requiring that the solutions (P-l, q-l) 

starting at z = -1 and those at z = 1 (PH, q+l) satisfy 

P-l(Zo) PH(Zo), 

q-l (zo) q+1(zo), 

P~l(Zo) P~l (zo), and 

q~l (zo) q~l(Zo). (C.1) 

The first two conditions require continuity of the functions and the second two 

conditions require continuity of the first derivatives. Application of the differential 

equations will ensure the continuity of all higher derivatives so that Conditions C.1 

ensure a completely smooth eigenfunction. Conditions C.1 impose four conditions 
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on four undetermined, complex constants (the coefficients of the two series at the 

two singular points), leading to a four-by-four matrix whose determinant must 

be zero to satisfy the Equations C.1 with a nontrivial solution. Therefore, eigen­

values are the values of 0- that make the aforementioned determinant zero. The 

hyperbolic-secant and the hyperbolic-tangent cases follow, illustrating the appli­

cation of the algorithm. 

C.l Matching Code for the Standing Soliton 

The detailed scheme for finding eigenvalues and constructing eigenfunctions of the 

linear-stability equation for the hyperbolic-secant, stationary solution of the NLS 

equation follows. We start with Equation 3.10 and Definitions 3.11 from Chapter 3. 

Letting z = tanh(~) gives us the system 

-(0- + 20) q + (1 - z2)2 p" - 2z(1 - z2) p' - P + 6(1 - z2) P 

0- P + (1 - z2? q" - 2z(1 - z2) q' - m q + 2(1 - z2) q 

0, 

0, (C.2) 

where' denotes differentiation with respect to z, fz. Now, we look for the Frobe­

neous series about the point z = 1 in the usual way. Let 

p(z) (1-zrE~=oan(1-z)n and 

q(z) (1 - zrE~=o bn (1- zt, (C.3) 

and substitute the expansions into the differential system, Equations C.2. By 

equating powers of (1 - z), we obtain the form of the indices, r, as well as a 

recursive relationship for the coefficients, an and bn. Equating powers of (1 - zy 

in the differential system leads to 

r = ±2;/2 J1 + m ± V(1- m)2 - 40-(0- + 2a) and 
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a 

-m---4-r-=-2 ao, 
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(C.4) 

giving the four indices and the relationship between the first-order terms of P and 

q. The recursive definition of the coefficients is 

where 

Po 

~(m - 4n2 - Snr - 4r2)(5 + 3n - 2n2 + 3r - 4nr - 2r2), 
Po 

~(m - 4n2 - Snr - 4r2)( -4 - 3n + n2 - 3r + 2nr + r2), 
Po 
2 
-(1 + 3n - 2n2 + 3r - 4nr - 2r2)(2a + a), 
Po 
1 
-( -3n + n2 - 3r + 2nr + r2)(2a + a), 
Po 

~(5 + 3n - 2n2 + 3r - 4nr - 2r2)a, 
Po 
1 
-( -4 - 3n + n2 - 3r + 2nr + r2)a, 
Po 
2 
-(1 + 3n - 6n2 - 12n3 + Sn4 + 3r - 12nr - 36n2r + 32n3r -
Po 
-6r2 - 36nr2 + 4Sn2r2 - 12r3 + 32nr3 + Sr4

), 

1 
-( -3n + n2 + 12n3 

- 4n4 - 3r + 2nr + 36n2r - 16n3r + r2 + 
Po 

+36nr2 - 24n2r2 + 12r3 - 16nr3 - 4r4) and 

m - 4n2 - 4mn + 16n4 - Snr - 8mnr + 64n3r - 4r2 - 4mr2 + 

(C.6) 

Now, for a given index, r, each series for P and q is determined up to the constant 

ao, when a, a and m are fixed. Without loss of generality, take ao = 1, so that 

each one of the four possible series is completely determined up to a multiplicative 
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constant. Each of the four indices leads to a different series in an and bn . The 

cases for a repeated index and for indices separated by integer cause the above 

series to break down. However, new series may be constructed in this case (see 

Ince (1926)). Notice that the indices and the recursion relations at z = -1 are the 

same as those derived above, since the equation is symmetric about z = O. 

C.l.I Discrete-Spectrum Eigenvalues 

We construct an eigenfunction as follows. Let the four series given by Tj be denoted 

pj(z) (1 - z ri E a~ (1 - z)n, 

qj(z) (1 - zriE ~ (1 - z)n, 

pj(z) (1 + z P E a~ (1 + z t , and 

qj(z) (1 + zriE ~ (1 + z)n, 

with j = 1, ... ,4. Any solution of the differential system, System C.2, with z E 

( -1, + 1], may be expressed in the form 

C1 pt(z) + C2 pt(z) + C3 pj(z) + C4 pt(z), 

C1 qt(z) + C2 qt(z) + C3 qj(z) + C4 qt(z). 

Likewise, the same solution with z E [-1, +1) may be expressed in the form 

Dl Pl(z) + D2 P2(z) + D3 P3(z) + D4 pi(z), 

Dl ql(z) + D2 q2(Z) + D3 q3(z) + D4 qi(z). 

(C.7) 

(C.S) 

Consider the case when all four indices have nonzero real part. From the form 

of the index equation, Equation C.4, two indices will have positive real part and 

two will have negative real part. The indices with negative real part lead to series 
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solutions that are singular at z = ±1, thereby failing to satisfy the boundary 

conditions on p and q. Therefore, only two of the four series may be present in 

this case. Let rl and r2 denote the two indices with positive real part. The series 

representation of the solutions is reduced to 

Dl Pl(z) + D2 P2"(z), with 

Application of the conditions required for a smooth solution spanning the range 

[-1,1], Conditions C.1, and satisfying the boundary conditions lead to 

(C.g) 

where the prime denotes differentiation with respect to z. In order for a nontrivial 

solution to exist, defined on [-1,1]' the above four-by-four matrix must have a 

zero determinant, det(M) = O. However, the matrix M is a function of ii, a and 

m. Therefore, for fixed m and ii, the values of a that lead to a zero determinant 

are eigenvalues. The corresponding eigenfunctions are found by determining the 

relationship between GI , G2 , Dl and D2 , given by the independent rows of M. To 

find the eigenvalues numerically, we truncate the series at n = N (usually N = 40), 

and search for the zeros of det(M) by using a two-dimensional, Newton-Raphson 

root-finding algorithm to find a = ar + iai. As usual with a Newton-Raphson 

scheme, a good initial guess for a is required in order for the numerical scheme to 

converge. By using the asymptotic solutions found in Chapter 3 for the discrete-
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spectrum solutions, we provide good initial guesses for small i. Then, we march 

in small steps of i, finding jj at each step and using the previous step's jj as 

the initial guess for each subsequent step. Using this procedure, the eigenvalue 

approximations converge to machine accuracy in five to ten iterations per i step. In 

this way, numerical approximations to the discrete-spectrum, eigenvalue branches 

are constructed. 

C.1.2 Continuous-Spectrum Eigenvalues 

When the eigenvalue and parameters are such that the indices of the differential 

system possess at least one purely imaginary pair, the eigenfunctions have a differ­

ent character, that of the continuous spectrum of the operator. Assume that one 

pair of the indices given by Equation C.4 is purely imaginary and that the other 

pair has nonzero real part. Let rl,2 = ±ip and r3 possess positive real part. The 

boundary condition on P and q requires that they go to zero when z = ±l. How­

ever, in analogy with the continuous spectrum of the linear Schrodinger equation, 

we relax the boundary conditions at the singular points, requiring eigenfunctions 

to be bounded at z = ±l. We show later that a synthesis of these continuous­

spectrum eigenfunctions satisfies the boundary conditions. As before, any solution 

of System C.2 may be represented as the two series solutions given by Equations C. 7 

and C.S. In order for the solution to be bounded at the singular points, we require 

the coefficient of the r 4 series to be zero, and the two representations become 

P+l (z) 

q+l (z) 

P-l(Z) 

C1 pt(z) + C2 pt(z) + C3 pI(z), 

C1 qt(z) + C2 qt(z) + C3 qI(z), and 

Dl Pl(z) + D2 P2(Z) + D3 P3"(z), with 
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Now, application of the matching conditions, Conditions C.1, give the linear system 

(C.10) 

For the present system, the linear system above always possesses nontrivial solu-

tions. If the determinant of M is zero, we are free to set G3 and D3 to zero, and 

we can construct an eigenfunction. If the determinant of M is nonzero, specifying 

c3 / D3 and solving the above system for GI , G2 , DI and D2 fixes the eigenfunction 

to within a multiplicative constant. The case of two pairs of purely imaginary 

indices proceeds in the same way. In the case of two pairs of imaginary indices, 

all four series must be included in each solution. The matching process leads to 

four conditions on eight constants. Again, the requirement for smooth solutions 

can always be satisfied so that values of (J leading to two pairs of purely imaginary 

indices are also continuous-spectrum eigenvalues. 

Lastly, we show that the solutions of System C.2 can be constructed containing 

the continuous spectrum such that they satisfy the boundary conditions p(±l) = 

q( ± 1) = o. Any parts of the solution that approach the singular points with an 

index having positive real part clearly satisfy the boundary condition. For the 

parts of a solution with a purely imaginary index, we note that the eigenvalues 

leading to purely imaginary indices occur in a continuous range (for example, 

(Jr E [(Jrmin, (Jrmax]). Therefore, while a single eigenfunction does not satisfy the 
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boundary conditions, a general solution of the linear system is a synthesis of the 

continuous-spectrum eigenfunctions and the discrete-spectrum eigenfunctions. The 

oscillatory part of a solution approaches the singular point at z = -1 as 

p(z) f"V larmax Fl(o-)(l + z)ip(a) do- + larmax F2(0-)(1 + z)-ip(a) do-, 
arTnin O'r7nin 

where Fl and F2 are well-behaved, weighting functions determined by the initial 

conditions. The integrals may be written 

larmax F
i
( 0- )e±ip(a) In(1+z) do-. 

O'rTnin 

By using the method of stationary phase, the above expression can be shown to 

go to zero as z ---t -1. The behavior of q is similar. Therefore, the synthesis of the 

continuous-spectrum eigenfunctions satisfies the boundary conditions. The range 

of eigenvalues leading to purely imaginary indices is outlined in Chapter 3. 

C.2 Matching Code for the Kink Wave 

The matching algorithm for the linear-stability operator for the hyperbolic-tangent 

solution is the same as that presented above, with changes in the coefficients and 

indices reflecting the changes in the governing equation, Equation 4.6. The trans-

formation z = tanh(~) applied to Equation 4.6 leads to 

0, 

0, (C.lI) 

where 

20-

f3 + :y' 
(C.12) 
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2a 
and (C.13) a 

/3+1 
41 (C.14) m 

/3+1 

Construct the Frobeneous series about z = 1 by taking 

p(z) (1 - zr~~=o an (1- zt and 

q(z) (1 - zr~~=o bn (1- zt (C.15) 

and substituting into System C.1l. Solving the equations by order of (1 - z) gives 

for the index and the relationship between the first-order terms 

r 

bo 

± 2;/2 V 4 + m ± .j(m - 4)2 - 40-(0- + 2a) and 

4(r2 - 1) 
0- + 2a ao· 

The recursive definitions for the series coefficients are 

where 

~(m - 4n2 - 8nr - 4r2)(5 + 3n - 2n2 + 3r - 4nr - 2r2), 
Po 

~(m - 4n2 - 8nr - 4r2)( -4 - 3n + n2 - 3r + 2nr + r2), 
Po 
-2 
-(1 + 3n - 2n2 + 3r - 4nr - 2r2)(2a + 0-), 
Po 
-1 
-( -3n + n 2 - 3r + 2nr + r2)(2a + 0-), 
Po 
2 
-(5 + 3n - 2n2 + 3r - 4nr - 2r2)0-, 
Po 
1 
-( -4 - 3n + n2 - 3r + 2nr + r2)0-, 
Po 

(C.16) 



-136-

S 
-(1 + 3n - 3n2 - 3n3 + 2n4 + 3r - 6nr - 9n2r + Sn3r -
Po 

-3r2 - 9nr2 + 12n2r2 - 3r3 + Snr3 + 2r4), 

4 
-( -3n + n2 + 3n3 

- n4 - 3r + 2nr + 9n2r - 4n3r + r2 + 
Po 

+9nr2 - 6n2r2 + 3r3 - 4nr3 - r4) and 

Po 4m - 16n2 - 4mn2 + 16n4 
- 32nr - Smnr + 64n3r - 16r2 - 4mr2 + 

(C.1S) 

The construction of the discrete spectrum and the continuous spectrum proceeds 

as for the hyperbolic-secant case. The discrete spectrum exists where the indices all 

possess nonzero real part. Where the indices possess one or two purely imaginary 

pairs, the eigenvalue belongs to the continuous spectrum. Results for the spectra 

are given in Chapter 4. 
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Appendix D 

Perturbation Expansion for 
Bound-Mode Eigenvalues 

The discrete spectrum of the linear operator for the stability of the standing soliton 

of Chapter 3 is found numerically. However, we need a starting point for the 

numerical code as well as a way to verify the numerical results. Both are provided 

by constructing an asymptotic expansion of the eigenvalue branch near a known, 

neutrally stable solution. Consider the linear system given by Equation 3.10 and 

repeated as follows, 

0, (D.1) 

with 

(3+i 
m 

(3 - i' 
(]" 

and jj 

-(3 + i 
0: 

0: -(3 + i· 
(D.2) 

The boundary conditions require (p, q) -t (0,0) as ~ -t ±oo. We can find exact 

solutions of the above system when i = 0 and 0: = O. In this case, m = 1, jj = 0, 
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and the solutions are the Legendre functions 

Po Cp sech(~)tanh(~), 

Cq sech(~). (D.3) 

The coefficients Cp and Cq are real and independent constants. We construct an 

expansion for small l' and small a as follows. Let 8 ~ 1 be an arbitrary, positive, 

small parameter and define the following series in 8, 

p(O Po(~) + 8p1(~) + 82p2(O + 0(83
), 

q(O qo(O + 8q1(~) + 82q2(~) + 0(83
), 

a- 8a-1 + 82a-2 + 0(83
), 

a 8a1, 

1 82-12, and 

2-
m 1 + 82 ;2 + 0(84). (DA) 

At 0(1), the first-order terms in the expansion satisfy 

o. (D.5) 

The solution of the above system is given by Equation D.3, where Cp and Cq are 

independent, real constants. The next order, 0(8), is given by 

(D.6) 

In both of the above equations, the forcing function is orthogonal to the solution 

of the homogeneous equation, so that a particular solution exists. The particular 
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solutions are 

1 2"Cq (iTI + 2ad (sech(~) - ~ sech(~)tanh(~)), 

1 2"Cp iT I ~ sech(~). (D.7) 

The third-order system, O( (P) is 

(iTl + 2adqI + iT2QO, 

- + 2/2 --(TIPI 73QO - (T2PO· (D.8) 

For the system above, application of the Fredholm Alternative Theorem on each 

of the equations requires that 

0, and 

0, 

if our asymptotic expansion in (j is to have solutions that go to zero at infinity. 

After integration, the two conditions are reduced to 

iTI(iTI + 2al) Cp 

(8i -iTI (iTI +2ad)Cq 

0, and 

O. 

(D.9) 

(D.10) 

There are four different solution branches that will satisfy both of the above con-

ditions. For the first series, take Cq == 0 and iTl = - 2al. For the second series, 

take Cq == 0 and iTl = O. For the third and fourth series, take Cp 0 and 

Solving for iTI in this case yields 
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Without loss of generality, take 0:1 = 1 so that 8 = 0:. The above equation gives 

the approximate solution branches 

(D.ll) 

where 0: is small. 

The four solution branches are the two given by Equation D.11, a = 0 and 

a = -20:. These branches are used to verify the numerical scheme used to find 

the bound-mode branches near i = o. The comparison shows good agreement 

for small i, as expected. The computed eigenfunctions compare favorably to the 

eigenfunctions found in the above perturbation. 

To illustrate the behavior of the branches more simply, it is convenient to 

return to (J" = a( -/3 + i) and let 0: = O. Then the four branches reduce to two 

branches along (J" = 0 and two branches given by 

(J" ±2J2/3r + Db) for i > 0 and 

(J" ±2J -2/3r + Db) for i < o. 

These are the two branches compared to the numerically generated branches shown 

in Figures 3.12 and 3.13. 
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Appendix E 

Direct Simulation Algorithm 

This appendix describes the finite-difference schemes used to compute direct sim-

ulations of the parametrically forced, damped, nonlinear Schrodinger equation, 

Equation 2.9. The simplest scheme uses a leapfrog time step and second-order 

central differences in space. Letting tl.t represent the time step in T and tl.x the 

spatial grid in E" the time and space are discretized as 

T = ntl.t and E, = jtl.x, 

where nand j are integers. Let the envelope of the velocity potential be denoted 

'l1(E" T) = 'l1'] . 

The leapfrog scheme takes initial data in E, and uses a fourth-order, Runga-Kutta 

first time step. All subsequent steps are computed using the scheme 

. 2 

'l1j+l = 'l1j,-l + 2tl.t[(i,8 - a:)'l1j + ~:2('l1j+l - 2'l1j + 'l1j_l) + 

+ir'l1j* + iA'l1jl'l1jI2]. (E.1) 

A numerical-stability analysis on the above equation determines the relative orders 

of tl.t and tl.x leading to a stable numerical scheme. For simplicity, we discard a: 
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and 'Y and approximate the nonlinear term by A'lt 1 'It 12 ~ A'lt 1 'It 012, where 'It 0 is 

a characteristic wave amplitude. Using the von Neumann method for stability 

analysis, we take 'ltj = pn eikj
6.x. Substituting into Equation E.1 with a = 'Y = 0 

and the approximate cubic term gives 

2c2 

p2 _ 2i~t[,8 + AI'lto I2 + ~x2(cos(k~x) - l)]p -1 = o. (E.2) 

The two roots of the above equation, Pl,2, satisfy 

PIP2 -1 (E.3) 

PI + P2 - -2i~t [,8 + AI'lto I2 + ~:2(COS(k~X) - 1)] . (EA) 

We require IPl,21 < 1 for stability. Equation E.3 implies that Ipdlp21 = 1, so 

that stability implies Ipd = Ip21 = 1. Then, using IPI + P21 :S IPll + Ip21 = 2, 

Equation E.4 implies that 

(E.5) 

which is the condition on ~X and ~t that implies a stable, numerical scheme. The 

addition of (x, 'Y and the nonlinear term will change the scheme so that the above 

stability result is useful only as an approximate guideline. We find that when the 

leapfrog time step is replaced with a fourth-order, Runga-Kutta time step we get 

a more efficient scheme. The increased stability of the Runga-Kutta scheme allows 

for time steps that are large enough to offset the increase in computation at each 

step. 
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