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ABSTRACT

A detailed study of the propagation of sound in small diameter tubes
has been made. The physical configuration studied, is typical of
instrument systems. The transient response has been determined in
addition to the frequency response. The solutions have been programmed
on a high speed digital computer and evaluated.

Several approximate solutions have been compared. Iberall's
results have been expanded to provide a solution of the transient problem.
The range of applicability of the various approximations, and their
deviation from the more precise solution including heat conduction, has
been determined. A detailed analysis of the restrictions that are made
on the more precise solution is given.

The results have been put in a dimensionless form to provide more
general applicability. The proper parameter to describe the damping of
the tube has been determined. A knowledge of this parameter and the
volume on the end of the tube permits a quite accurate prediction of the
response of the system. The value of this parameter required for

optimization has been found.
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NOTATION

constants

internal energy

a forcing function

the Heaviside step function

length of the tube

assumed solution of equation 2,32; also the part of that

solution that is a function of r alone

the two solutions of equation 2, 21; also the part of those

solutions that is a function of r alone
inside radius of the tube

gas constant

absolute temperature

instrument volume at the end of the tube
body force acting on fluid in the x direction

area of the tube = 1TR2

Newton velocity of sound = 7/ po//Oo
Laplace velocity of sound = 7/ a’po//OO

velocity of sound appropriate to the polytropic process in

the tube

velocity of sound appropriate to the polytropic process in

the instrument volume
specific heat at constant pressure

specific heat at constant volume
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Lol
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<

force in x direction due to the variation of the pressure
as a function of x
force in x direction due to the viscous friction
VT
thermal conductivity
mass
absolute pressure
dimensionless pressure = (p-po)/po, sometimes used to
represent only the r-dependent part of the pressure
particle velocity in the radial direction
the part of the radial velocity that comes from solving the
homogeneous equation
radial coordinate
dimensionless radial coordinate = r/R
Laplace transform variable
dimensionless Laplace transform variable = sL/c:T
condensation
time
average velocity in the x direction
dimensionless average velocity in the x direction

uuL i

. - 2
PoR Wb

particle velocity in the x direction

dimensionless particle velocity in the x direction
e ks,

- £ 2
poR W¥hb
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the part of the particle velocity in the x direction that
comes from solving the homogeneous equation

axial coordinate

the dissipation function

dimensionless function that includes the effects of heat
conduction

a real number

dimensionless coefficient = '\/-'5?/ 1'%

ratio of the specific heats = Cp/Cv

d¥/4¥

low-frequency approximation of )

full-frequency expression for g

high-frequency approximation of )

dimensionless specific acoustic impedance per unit length,
the subscripts L, F and H have the same meaning as above
the two roots of equation 2.24

temperature excess

dimensionless temperature excess = Ocv/bz, sometimes
used to represent only the r-dependent part of the
temperature excess

thermal diffusivity = k/p <,

coefficient giving the x dependence of p, 0, etc.
dimensionless coefficient = AL

coefficient of absolute viscosity

second coefficient of absolute viscosity



v = coefficient of kinematic viscosity

v! = second coefficient of kinematic viscosity
v° = (—l-v +v')
» 2
< = dimensionless Laplace transform variable = -livi = 1//;
# = density
.

= Prandtl's number = /lcp/k

)
Il

dimensionless time = tcT/L
= dimensionless instrument volume = Vc:,I.Z/a.LcI2

= angular coordinate in a cylindrical system

dimensionless axial coordinate = x/L

e ® &
"

= dimensionless tube parameter = chT/vL

>
"

angular frequency

A subscript zero on a symbol indicates the initial, quiescent value of the
quantity represented by that symbol.

for example:

To' pa, loo’ etc.

An asterisk * after a symbol indicates the Laplace transform of that

symbol. -

v :,[ ve ¥ g%

0

for example:

# o~k %k ok % %
Ps V38 ,m, s ;F,et.



An arrow —~ over a symbol indicates that the symbol is a vector which
includes all three space components. The same symbol without the
arrow represents the x component of that vector.

for example:

p—— —— -
Y, V, vo, vo,X,X, etc.

Wherever possible, the following representations are used to distinguish

the curves obtained by using the various approximations.

low-frequency approximation (LF)

full-frequency approximation (FF)
high-frequency approximation (HF) — — — — — — — — — — —

theory with heat conduction (HC)

modified low-frequency approximation (MLF)

Optimum Response:

For the purposes of this work, optimum response is arbitrarily
defined as that response which rises to 99% of its final value in a
minimum time, and has less than 1% overshoot when a pressure step is

applied to the end of the tube.



COMMENTS ON THE NOTATION

The quantities 3, 7, }ﬁ and v, as defined here are used in both
the first and the second sections of the Analysis. In Section One, the
parameter ¢ can take on any value between b and ¢, the Newton and
Laplace velocities of sound, respectively. This permits the investigation

of the results of considering the process in the tube as polytropic. How-

ever, in Section Two, since heat conduction in the tube is rigorously
taken into account, S must be set equal to c. If it is desired to consider
the process in the instrument volume as polytropic, c; can be adjusted

to take this into account in either Section One or Section Two. In general

c, would not equal Cop because of the different geometries involved.

I



VALUES OF THE PHYSICAL PARAMETERS USED

For the purpose of numerical calculations, it was assumed that

the sound was being propagated through air under the conditions:

pressure,

p, = latm = 760 mm Hg

temperature,
T =300°K.
o

Air under these conditions has the following properties (9).

c =1,139.5 ft/sec = 13,674 in/sec

2.678 x 10~

M lb--sec:/in2

P = 1.101 x 10‘7 1b-sec2/in4
v= 2,432 % 10-2 inZ/sec
Y =1.4017

o= 0.708

In figure 12, data for Argon, under the same conditions as above,

are given. The pertinent properties (9) are:

Y =1.670
a=0.677.
Where the orders of magnitude of the various approximations are
calculated, it is assumed that the tube has the inside radius:
R = 0.1 in.
Of course, accurate results can be obtained, using the methods

presented here, even when the tube under consideration has a radius

differing greatly from that assumed above.



I. INTRODUCTION

In recent years, engineers have been faced more and more often
with the problem of measuring rapidly fluctuating pressures. As a
result, the manufacturers of pressure transducers have developed a wide
variety of devices with very short response times. However, it is not
always possible for the engineer to place the transducer at the point
where the pressure is to be measured. A tube is then used to connect
the transducer to the measuring point., When this is done, the effect of
the tube on the overall response of the measuring system must be
investigated.

To date, the engineer has had little analytical help in designing
an optimum system. Previous papers have generally considered only
special elementary cases. Delio, Schwent and Cesaro (1) treated the
case where the tube and transducer can be reduced to a lumped constant
system. Taback (2), and Rohmann and Grogan (3) gayve frequency response
data for tubes using the electrical transmission line analogy, accurate
only for low frequencies. If the engineer was forced to design a system
where these restricted analyses did not hold, and little was said about
the range of applicability, he was at a loss, Crandall (4) discussed the
specific acoustic impedance of a tube, giving both high frequency and low
frequency approximations, but did not apply his results to a measuring
system. He does quote some experimental results verifying his ex-

pressions for the high frequency approximation.



Iberall (5), in his now classic paper of 1950, provided a complete
analysis, accurate to very high frequencies. He also included the effects
of heat conduction. He gave frequency response data for a high frequency
approximation as well as for a low frequency approximation. He also
presented some data in the middle range (see Appendix B of this work).

The expressions he obtained, however, were just too complicated to be

evaluated with a reasonable amount of labor.

For the problem of the transient response, Schuder and Binder (6)
added the time solution for a step input using the low frequency approxi-
mation. The low frequency approximation corresponds to the problem
of electrical transmission along a line without leakage. An excellent and
complete discussion of transmission line theory is given by Weber (7). In
fact, the problem that Schuder solved is the analog of problem 8.12 in
Weber.

The traveling wave solution for the high frequency approximation
given in Appendix A of this work is shown on page 377 of Weber to give
results similar to those obtained in the electrical analogy of a trans-
mission line including skin effects and corona. A traveling wave solution,
corresponding to the low frequency approximation is also given in Weber,
page 383, but it is not as useful as the high frequenéy case, because it
requires graphical or numerical evaluation.

With the advent of high speed digital computers, the computational
difficulties of Iberall's expressions vanish. Complete frequency response
data can be obtained easily in all ranges of the frequency spectrum. The

results of the various approximations can be compared.



Of even more interest, the transient response for a step input can
be obtained, and again the various approximations can be compared. This
permits an easy and accurate method of determining the regions in which
the approximations are valid, and how much they differ from the more
precise solution.

Using the results of the computer, an optimization has been
achieved, and because the expressions in this work have been put in
dimensionless form, the results can be applied to general problems.

The physical arrangement that is discussed in this work is that of
a tube connecting the point at which the measurement is to be made, to a
volume associated with the transducer, (fig. 1). It is assumed that the
motions of the diaphragm of the transducer are sufficiently small so that
they do not affect the size of the instrument volume.

More complicated systems are considered by Taback (2), and Reid
and Kops (8) that may be used to obtain the damping necessary for
optimization. However, these systems are beyond the scope of this work

and empirical data must be used in designs involving them.
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II. ANALYSIS

The analysis is broken down into three sections. Section One
presents a simple theory to give a feel for the concepts involved in the
problem and the sort of results to be expected. In the simple theory,
the momentum equation is obtained by an intuitive treatment of the forces
on the fluid. The continuity equation considers only the average velocity
across the tube. The pressure is assumed constant over a cross section.
The effects of heat conduction in the tube are incorporated by the
stratagem of considering the process in the tube as being polytropic. Two
approximate solutions are obtained for the extreme cases by taking a two
term expansion of the general solution.

In Section Two, a more precise derivation is presented. The
starting point is the equations of fluid mechanics in their most general
form. The results are made manageable, so that useful engineering in-
formation can be obtained, by imposing restrictions on the solutions. A
detailed analysis is given of the effects of these restrictions. It is shown
that the assumptions of Section One are justified. In fact, the more
precise solution obtained here reduces to the general solution obtained
before if the tube is made of an insulating material.

The end results of Sections One and Two are the Laplace transforms
of the pressure at the end of the tube. Section Three presents and
compares the methods used to obtain the time solutions from these ex-

pressions.



SECTION ONE

SIMPLE THEORY

A first approximation to the problem of sound propagating in a

small diameter tube is obtained under the assumptions:

L.

The medium through which the sound is propagating is a perfect
gas.

The ratio of the particle velocity to the velocity of sound is small.
The pressure variation is independent of the radius r, i.e., it is

a function only of time and axial position along the tube.

. The radial velocity is zero.

The problem is axially symmetric, i.e., there is no dependence

—

. The process in the tube is polytropic. The velocity of sound

associated with the polytropic constant is c In the limits,

T

if ¢, = ¢, the process is adiabatic; if ¢c,, = b, the process is

ol T

isothermal.
The process in the instrument volume is polytropic. The velocity
of sound associated with this polytropic constant is Cye In

general q would not equal Cr because of the different geometries.
The pressure is uniform throughout the instrument volume, and

therefore a function only of time.

The assumptions 3 and 4 will be justified in Section Two. A precise

definition of '""small" will also be given.



Momentum Equation

In order to derive the proper form of the momentum equation
consistent with the above assumptions, a tubular element of fluid is

considered, (fig. 2). The mass of the tube is

dm = /OZﬂrdrdx
The net pressure force is

f . op dx 2nrdr

px ox

The net force acting in the x direction on the cylindrical surfaces of the

tube, due to viscous friction is
) ov
foo = 27 fi5z (T 3y | drdx
Setting the forces equal to the mass times the acceleration produces

1-8 0 1 9 e
95 P5Elmm Bt o

1 8 [~ov ap v

—_— | ==t Y {1.1)

e 3;) ox y/a'l'
by the substitutions:

r=r/R

~ 2

V= ch/‘y/b

p = (p-p,)/p,

Y= RZCT/VL

T = tcT/L

%A= x/L

The Laplace transform of equation 1.1 is formed by multiplying both sides

by e® Td?.' and integrating from zero to infinity. The Laplace transform
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of a variable is denoted by an asterisk

~ QY D*
12 (2% g wbj az
r 9r 9T
Integrating by parts,
@ (e}
~ OV% Bk W, i
%% raL):iI;T +’¢ vesrt -f -sve E‘Td?." (1.2)
r dr or 7=0 0
and assuming the tube is initially quiescent, i.e., ¥(r,%,0) = 0, and
making the substitution Ws = §, equation 1.2 becomes
% v D%
OV + 1 BT v (1.3)
o A g %
or £ -9

Since by assumption 3, p* is independent of the radius r, the solution of
equation 1.3 is

v = CI[VE'E) + CKo[VEF) -

;, ‘igf" (1.4)

where C, and C, are constants to be determined by the boundary conditions.
The boundary conditions are

v*(0, ¥ , 7) finite
ve(l, x, 7)=0

The first boundary condition requires that
el

and the second, when applied to equation 1.4, gives

dp*
o= cpVF)-4 42

L
M

hence
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. 1 dp*
= dx
’510( Ve
Upon substitution of these values for the constants, equation 1.4 becomes
o(v ')

The detailed velocity profile is not important in this problem in

C

{1.5)

light of the assumption that the pressure is independent of the radius T.
Therefore in the discussion that follows, the average velocity across the

tube is used.

1 1
* f V¥ 29rdT = - %f T - rIO(\F ) d¥
o o L LIVE)

[=1]
"
A=

uh| v

Carrying out the integration,

2 e[z Vs 1
£ LT Y

evaluating at the limits and rearranging produces

e = - Su* (1. 6)

e bl LH¥)
VS (V)

or, to simplify the notation,

S s TN v P

where




Y

The quantity § is a specific acoustic impedance per unit length, in
dimensionless form, Since S= st/v, if s is replaced by iw, it is
permissible to speak about equation 1.8 in terms of frequency. Three
cases will be considered in this work. If the frequencies of interest are
low, € will be small and the Bessel functions can be expanded in a power
series. If the frequencies of interest are high, ¥ will be large and the
Bessel functions can be expanded in an asymptotic series. In the more
general case, where the frequencies of interest cover the whole spectrum,
the complete full-frequency expression of equation 1.8 must be used. The

results of these approximations are as follows:

fL=8+%§ §<1
e 3 s (1.9)

1 el LV
Ve 1[VY)

e B VY € =100

These three cases are compared in figures 3 and 4. The curves are
plotted as a function of §, for ¥ purely imaginary, the real part of §

in figure 3, the imaginary part of ¥ in figure 4.

Continuity Equation

The continuity equation can be derived by considering a cylindrical
element of fluid, dx in length, (fig. 5). In this analysis, the average

velocity across the tube is used.
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The rate of increase of mass in the element is equal to the net rate at

which mass flows into the element.
-a%tedx [[IO+3LO-dxHu+ dx] /ou}

Since u and 8/0/8): are small quantities, their product can be neglected

compared to the other terms.

00 _ du _ 90 9p
£=-pe -?/g-ét— (1.10)

The assumed process equation,

cTzle
p= C/O

implies that,

op _ 2

%" °T
so equation 1.10 becomes

op _ 2 9u

3t "LP°T =x (1.11)

Writing equation 1.11 in a dimensionless form,

ap >
Vax

and taking the Laplace transform, along with the initial condition

p(x, 0) = 0, produces
. (1.12)
s

5 = —> p* (1.13)

The solution of equation 1.13 is



=1B6s

N e (1.14)

where

The real and imaginary parts of p are plotted, for the three different $'s,
in figures 6 and 7, respectively. The independent variable is a purely
imaginary §, and ¥ is set equal to unity.
The constants C1 and CZ in equation 1.14 are determined by the
boundary conditions on the tube.
plo, T*) = H{ T) (1.15)

where

H( 7') is the Heaviside step function.

The Laplace transform of equation 1.15 is

5*(03 £l ) = (1' 16)

Wl |-

At x=1the mass flow rate into the terminal volume equals the rate of

mass increase within the volume.

pau= V£ (1.17)
The assumed process equation,
CIZ/bZ
p=0Cp
implies that
By o e®
ap 1
so that equation 1.17 becomes
e ,
u = _Td_t (l. 18)

Py
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Equation 1.18 is written in dimensionless form,

dp

o, 1.
u—y/ -

and then Laplace transformed to give

Uk = ‘%j- p* (1.19)

In order to obtain a more convenient form, equation 1.7 is combined with

equation 1.19.

(o

- .
R (1.20)

%=l

Substituting the boundary condition equations 1.16 and 1.20 into equation
1.14,

p*(0,8) = C, + C, =

2

W |

1

p#(1,5) = CeP + ceP = - T}E [Cleﬁ-cze‘ﬁ}

and solving for C1 and C2 gives:

C. = 1 e-p('l-vﬁ)
b [Pasrup) + e Pa-up)
-
_1 (1+p)
By o e v

5 [eﬁ(l'fvﬁ) + eqi(l-vm]

The pressure at the end of the tube is

2

D% 1_, ~) =
i s [eﬁ(l-ﬂlﬁ) : 3 e-ﬁtl-vﬁ)]




=20~

or
1
s [coshﬁ + UP sinh ﬁ]

p*(1, 8) = (1.21)

The frequency response is found by substituting iw for s in the expression,

Sl il 1
P % coshP + uP sinh P

(1.22)

where

B is a complex function of w.
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SECTION TWO

THEORY INCLUDING HEAT CONDUCTION

In this section a more precise formulation of the problem is con-
sidered. Heat conduction is also included. The only restriction on the
motion of the fluid is that the ratio of the particle velocity to the velocity
of sound be small compared to unity so that the square of this quantity
can be neglected. This implies that the variations in the pressure,
density and temperature are also small, compared to their static values,
so that products of these terms can be neglected. The physical properties
of the medium are functions of the temperature and pressure, but since
the variation of these quantities is small, it is assumed that the
properties are constant,

The analysis given here from equation 2.1l through equation 2.46
follows very closely the derivation given in Rayleigh (10), sections 348 and
350. It is reproduced here for continuity. Changes have been made in
the notation (see Table 1) to make it consistent with other parts of this
work. The first part of the analysis is carried out using general vector
notation so that the results are independent of the coordinate system chosen.

The equations of motion of the fluid are derived, starting with the
equations of fluid mechanics in their most general form (11) consistent

with the above assumptions.

Continuity Equation

A4S
"

\lb
d
<

where



.

Table 1
Rayleigh This Work
o [
s A
u v
u? vh
1
q 9,
a 1/ T0
B b2 /c
M v
}Ln VO
v K
A n
L A
a ¢
s
P F

Other symbols are the same in both works.
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Let /O-—- /oo(1+,d ). Then, since 4 and ¥ are small so that second order
terms can be neglected, and dividing by /Oo’

8.4 _

5—;--\7.? (2'1)

Momentum Equation

Dv 1 e 2 o
PoE=LR-vptigut ) olv. P+ uv ¥ (2.2)
It is assumed in this equation that « and /u' are constants. For the
problem under consideration in this work, the body force X can be set

equal to zero. Using the above assumption and equation 2.1, equation

2.2 becomes

v _ 5 9.4 o ;
-ﬁ—-—vp-( v+v)v-5t—+vvv 12.3)

Po

Energy Equation

P%% = -pv. ¥+ $+kVET (2.4)

where é is called the dissipation function. It is a quadratic term in the
velocities and so may be neglected compared with the other terms in the

equation. Substituting into equation 2.4 the equation for the internal

energy,
E=c T
v
and equation 2.1, gives
ST  _ 04 :
v oﬁf—_poat"-kv’r (2.5)

Let 0 equal the temperature excess, then equation 2.5 becomes

84, _k g2 (2.6)
o Vv



s Dl i

Equation of State

p=/0ﬁT (2.7)

In differential form equation (2.7) is

dp _dp _ dT
=r - b e
P 75 T

then rearranging terms and applying the small variation assumptions

8]
gy = po( ¥ i )
but »
P=p,tdp
therefore
P =P, 1+A+—T9— (2.8)
o
Let =
0=—Y 10
HZ
then equation 2,6 becomes
90 _ 94 2=
5 "5 T KV 8 (2.9)
where
_ k
T One
oV
and with the substitution
bZ . P, % B ty-1)
T ¢ _7{)/0 T ¢ T re ¥eT
oV O o v v

equation 2.8 becomes

p=p,[L+a+(¥-1) 7] (2.10)



.

Combining equations 2.3, 2.9 and 2.10 gives

o+ 274+ (c2-b%) ¥ = vl vOg 24 (2.11)

where

v°=(§lv+v')

Rayleigh, following arguments by Stokes, set v' equal to zero. Quantum

mechanics indicates that v' should not, in general, be set equal to zero (12).

Equations 2.1, 2.9 and 2.1l are Laplace transformed assuming the

initial conditions:

0(0) =0
F(0) = 0
4(0)=0
thus:
X
BA¥®E 7, ¥ (2. 12)
2, =% *
(s- xV )0 =354 (2.13)
Sk 3 ~ 3 B B
¥ 2T A TD 2 e e - s (2.14)

where the Laplace transform of a variable is indicated by an asterisk.

Let
* S ~3%

=% + %) 4" + &25)0 (2.15)

so equation 2,14 can be written in a simpler form.
T *

sV —sz'\'? = —VF* (2.16)

s
Using equation 2,13 to eliminate .4 from equations 2.12 and 2.15,

2~*_ =

X
4
e
I
d
<k

(2.17)
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- ~ 3 ~ K
B8 o s X v?)8% + (°-b5) 8 (2.18)

and by rearranging terms, equation 2.18 becomes

s ~ % ~ %
= (c2+vos) 0 - —;(- (b2+vos) VZ 0 (2. 19)
Taking the divergence of equation 2.16,
% % *
sV.V -vV. (VZV )=-V2F (2.20)

using the identity,
- 2 -
V. (v W) = vi(w. W)

and substituting equations 2.17 and 2.19 into equation 2.20 gives:

(s-v VZ){S— HVZ) ﬁ* = \72 {(cz+vos) - TH (’bz+vos) VZ] 5*

or

%

+ 2

% [b2+s(v+vo)] o U ‘s [c2+s(v+vo+H)] 7“9 +s8“0 =0 (2.21)

The solution of equation 2.21 can be written in the form

~ %
0 = A1Q1 + 4,0, (2.22)
where
2
v = 9
(2.23)
2~ _
AV Qz = QZQZ

and where A1 and AZ are arbitrary constants to be determined by the

boundary conditions, and Q 1 and 7 5 are the roots of the equation

32- [c2+s(*|/+vo+ H’)]fz + _5(_ [b2+s(v+vo)] IZ “ 0 (2.24)
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Assume for the VelOCitY, the solution
* ) ) '
P ( 171 22 ( . )

%
where B1 and B2 are constants and ir‘p is a particular solution. Sub-

stituting this in equation 2.17 gives
VZ(BQ+BQ)+(S-HVZ)(:A +A;Q.)=0
e Bl e Sl s

then by equation 2,23

B 7,9, + B, 2,9, * (s- K7))AQ + (s- KP,)A,Q, =0
and solving for B1 and B,:

B1=A1( > B, = A, (H-i) (2.26)

4
1 72

Equations 2.25 and 2.26 provide a particular solution to equation 2.16,
The part of the velocity corresponding to the homogeneous solution,

e . i " i :
denoted by Vs is the solution of equation 2.16 with the right-hand side

set equal to zero.

3k %k
o2 W :% Y (2.27)

Therefore, the total velocity is given by

"og, +v(BQ +B,Q,) (2.28)

<k

By substituting equation 2,28 into equation 2.17 and then making use of

equation 2.26, it is seen that

.V = 0 (2.29)
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The above equations have been derived in a form applicable to any
coordinate system by the use of general vector notation. Their solution
is now obtained for the special case of a cylindrical tube. The method of
separation of variables can be applied to equation 2,23, When this is
done, it is desirable to change the notation so that the Q's represent the
r-dependent function, and the x dependence is given by e)\x, where A is
a complex coefficient to be determined presently. In the following dis-

cussion, p and 0 will likewise represent the r-dependent part of the

solution.,
8201 B "
2 T EE (7- A Q $2.30)
atn, » 4 ot 2
r

Let v* represent to total particle velocity in the x direction, and vh,°= the
homogeneous part, corresponding to ‘\‘r‘h*, of that velocity. Similarly, let
q,°= represent the total velocity, and qh* the homogeneous part of that
velocity, in the radial direction.

Writing equation 2,27 explicitly gives,

82 = ] s
v v
h 1 h _|s V.5 *
or
82 " aq*
q
h 1 9 | s 2} * .
i b Syl etk G
or
and equation 2.29 becomes
5 * %
x* %9y 9

)\vh e =0 (2.34)
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These equations can be solved by first differentiating equation 2.34 with

respect to r, and then subtracting the result from equation 2.33

sk
ov
%* - A h -
q, = 5 kz 5 {2.35)
v
Assume a solution of the form
&
Vi = AQfr)
so that equation 2,32 becomes
3 .1 a0 -
— = +_r.___a = ;_?\ )Q (2.36)
ar
Combining equations 2.26, 2.28 and 2.35 gives
AQA)\ ) _— - )Q £2.37)
1
aQ
%* =X A 2
AA 80 S__H) (_-K) = (2. 38)

(2.39)

~%
For one boundary condition, it is assumed that v ; q and 8 are finite at

This boundary condition, along with equations 2.30, 2.3l and 2.36

r=0.
gives
Q=1I,|r %- 2 )
Q =Io|x\/ 7= A° ) (2. 40)
Q,=1I,|r n,- a* )




3 0=
For the second boundary condition, it is assumed that v*= q*= 6*: 0
at the wall, r = R, since the velocity is zero and the temperature remains
constant., This condition requires that the determinant of the coefficients
of the A's in equations 2.37, 2.38 and 2.39 must vanish when the functions
Q, Ql and QZ’ and their derivatives, are evaluated at r = R, Multiplying

out the determinant and dividing by _QIQZQ3 gives

0

=0

s ) 1 1 _.( s ) 1

G e B R

r=R
(2.41)

Equation 2,41 determines A, the two f7's being determined by equation

2.24 and the Q's given by equation 2,40,
By using the second boundary condition, the three constants in

equations 2.37, 2.38 and 2,39 can be reduced to one, From equation 2,39

A5Q,(R) = —AIQICR) (2.42)

From equations 2.37 and 2.42,

0 = AQ(R)-A A (qil - K )Ql(R) + A Q(R)A (;—2- H)

and solving for A,Q,(R)

(2. 43)

Let B = AIQI(R)' and then using the above results

1 1 (r) Q(r) s ) Z‘r)]
"=B["S"r7;'77:)6rr "(m'” o * A7 K gm
(2.44)
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e} 0Q
2 1 1 0Q s Ql 2
* A (71_ ’?2) r ('71 _K) or ’72_H or
qg=8B & - (2.45)
T a7
v

(2.46)

n Qtr) Q)
Mt v -7 Wy ‘o—(—r

The pressure is found by taking the Laplace transform of equation

2.10, along with the initial condition p(0) = 0, Using the dimensionless

notation
CEORS o
P= P,
~ %
p = 4 +fr-1) 0 (2.47)
By equation 2,13,
* 21 ~%
4= 1 v
~ %
where 0 is given in equation 2,46, but from equation 2,23,
via = p
1 IQI
24 -
so that
Q. (r) Q, (1")
~ % K 1
¢ =A (""?’71)QT)‘1R - (-5 o iFaA8)

Up to this point the only restrictions that have been made are:

1. The fractional pressure variation p is small compared to unity.

In this context, a small quantity is taken to be on the order of 104, or less.



i

This number was chosen because a fractional pressure variation of this
value is usually taken as the limit of classical acoustics, and it is also
of the same order as terms neglected later.

2. The ratio of the particle velocity to the velocity of sound is small
compared to unity,

3. The condensation .4 is small compared to unity.

4., The medium can be described by parameters that are constants

with respect to time and position.

Although the above restrictions are listed separately to be more explicit,
they are all consequences of the general restriction that only small
amplitude waves are being considered.

The two 7‘3 can be determined from equation 2.24 exactly. In
principle, equation 2.4l can be solved for A, to any desired degree of
accuracy, by an iteration procedure. However, such an approach would
completely obscure the effects of the physical processes that occur in the
tube.

In order to make the above equations manageable, the following

restrictions are made:

%] - lg(I;_C)Z| = o (10" (2.49)
c
T g,3/4| = 0 (0% (2.50)

where for the purpose of evaluating the restrictions it is assumed that the

tube has a radius of 0.1 inch, so that,

e B0 (10'5)

a (2.51)
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Combining inequality 2.5] with restriction 2.50 gives

€ = o (10% (2.52)

The specific orders of magnitude are given so that the effect of the
restrictions on the various equations can be seen, and so that a consistant
set of approximations can be made. Since v, v0 and K are all the same
size, and c2 is the same order of magnitude as bz, expressions similar
to restriction 2,49 also hold for these quantities,

The limitation on the size of s, or equivalently §, means that it is
impossible to get a wave-front expansion while observing these restrictions.
However, under normal circumstances, (i.e., with Y less than about 30)
the solutions to the transient response problem, obtained by the methods

developed here, differ from the exact solutions, near the wave front, by

an amount that cannot be plotted on the scale used in this work,

It should be noted that the form of restriction 2.50 differs from, but
is not incompatible with, the form stated by Iberall. (See ref. 6 equation
76. (The line above equation 76 should read, "Equations 74 and 75...) .)
As the necessity for restrictions 2.49 and 2.50 is developed in the following
equations, it will be seen that the form of restriction 2.50 given here is
the more directly applicable.

The solution of equation 2.24 is
( )

e [1 — (v+v°+ K )] 48 KbZ [1+ = (v+vo)]
= {1+ - =

n ¥ R.53)

C4[1 +-—52- (v+vo+ H)] .

) 2Hb2[1+§z(v+v°)] -
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The smaller /is denoted by 71 the larger by 75 Applying restriction
2.49 to equation 2.53, taking the minus sign, and using the first three
terms in the expansion of the square root produces
2
71=5 [1-% [v+v°+ (3-1)%]] (2.54)
c

C

Taking the plus sign, and only the first two terms of the square

root expansion gives

7= 4 [1- % 0 [0 4] 2.55)

c
Both restrictions 2.49 and 2.50 are used in the determination of A.

Equation 2.4l is repeated here for convenience.

e 164 ) 1 8Q ,[a 1 29 (s ) 1 99 ‘
. s e B |l e i, B =0 (2.56)
_3__ >\2 ’?1 72 Q Br f71 -QI or l?z 62 or .

Since for plane waves traveling in free space A2=52/c2, it is assumed
here that the value of A determined from equation 2.56 is of this order of
magnitude. Using the above assumption and restriction 2.49, the following

substitutions can be made:

s Z__8 apy -8
= >\~v(1'c—z]~:
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Q=1 |[r E-A2)~10 r'\/’%—l)

Z
Q1=10r n AZ ":—‘:.Ior -S-—Z—- 2)
QZ—IO r\/QZ-AZ )ZIO( l;?—)

To first order, n- >\Z = 0 so it will be assumed that

2 o e
‘ijfyl-% =0 (107°)
so that
~ ] & 1 o
IO(R 71-}\ )~1
and
1 an ~ —l—R s_2 _ P\Z
Gl or = cZ
r=R

(2.57)

(2.58)

(2.59)

The validity of assumption 2.57 will have to be verified after A has

been determined. Making the above substitutions, and using the above

assumptions, equation 2,30 becomes

g5 A2)++;‘cx-1)
Cc

nnE)
" Io(R\/?)

(2. 60)
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and solving for o gives

s” 2y LRV E) }

2501+ : ;
52 o = Ry ¥ Io(R'\/YTS (2. 61)

o a3
SO

To simplify the verification of the restriction 2.57, equation 2,61 is put

1

in dimensionless form. Making the substitutions:

e Bl
5= ,R =
g o 8
e T ¥
where
i ch
V- vL
and
¥ -
where

¢ is Prandtl's number,

equation 2,61 is written

‘§2 |:1+ 2(¥-1) 11( /¥ ) J
. Vet LT
s el 5 bl | (2. 62)

R - 2 11('\/.?1):,
YIVE Lo
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In dimensionless form, inequality 2.57 becomes

x 2 x
R % 2.2 -l
I -f‘:T-- XLe | = 0 @™ (2. 63)

Using the above substitutions plus

. aX
L‘W_Rc

inequality 2,63 is, when written out explicitly,

2(3-1) L(\/= %)
\/ o W )
=S - F_To¥ivs = 0 (107% (2. 64)

Wl 5 L]
VELHE)

An order of magnitude estimate of the quantity in the radical is

i 2

obtained by setting Prandtl's number equal to unity. For § small
compared to unity, the Bessel functions are expanded in power series,

and inequality 2. 64 becomes,

[+tr-na - £ )]

v =
[Rc]g’ L . = 0 (1079 (2. 65)
85
or by keeping only the most important terms
v 1/2 -2 ,
“Rc)g |_<_o(10 ) (2. 66)

Since by inequality 2.51

) = 0w
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and ¥ was, by assumption, small compared to unity, inequality 2.66 is
obviously satisfied for small ¥ .

For ¥ large, the Bessel functions are expanded in the asymptotic

series., Inequality 2.64 then gives

(R‘(’: ]‘5‘ s " il = 0 (1079 (2. 67)
Ve’

or, since 2/7\/¥ 1is small compared to unity, inequality 2.67 can be

reduced to

|z $ \/ I-HV%] = o0 (1079
or simply
|(£c1§3/4, = 0 (107%) (2. 68)

Clearly, any difficulty that might be encountered would be for large ¥, so
that inequality 2. 68, which is just a repeat of inequality 2.50, is the ex-
pression that should be taken for the second restriction. Combining in-

equalities 2,50 and 2.51 gives inequality 2,52,
= o (10
If the tube is made of an insulating material, the boundary condition

at the wall is l

For the purpose of evaluating the determinant to obtain an expression

analogous to equation 2.4l, equation 2.39 is replaced by

~ % BQl 0Q
80 _ 2
ar A1 Br T &y ar (2. 69)
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Multiplying out the determinant of equations 2,37, 2,38 and 2,69, and

dividing by
a0 29 9%
g 9or ar

2 Q] Q
1 1 Q A s s 2 .
0—1'72) 0 tE 2 {( pl'H)?arol—‘(Tz' )a—oj} = BT
or v T g o
r e r=R

Equation 2,70 can be put in a more convenient form by making the same

approximations as before, and rearranging terms.,

2
EZ gk - 23 II(R\/_%-‘)

= (2.71)

R e RN LYY

2
s 2 K
)
c czh’ e Il(R /%)

2
1

It is desirable to obtain an order of magnitude estimate of the second
term of the denominator on the left hand side to see if it is significant.

Using the previous solution it is clear that

Considering the factor

b 5 2% Io(R\/?)
II[R\/?)

for s small

for s large
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The limit of large s will provide the greater contribution. Using these

approximations, the second term becomes,

22 AFE

Ay bty gt
c ¥
then the substitution ¢ = v ¥/ K gives

ﬂ)z ty-1) Vo¥
2 2

2
c

a
Assuming ¢ =1, and inserting the restrictions listed earlier, this term
takes on a value of 10—10, or less, which certainly can be neglected

compared to unity,

Then the solution of equation 2,71, using dimensionless notation,is

- 7.3
ol s = (2.72)

w2 o2 LoV
VI Vs

where the P is the one given in Section One when the full-frequency approxi-

mation is used and S is set equal to ¢, the Laplace velocity of sound.
Considerable simplification occurs when the above restrictions are
applied to equation 2,48 which is repeated here for convenience.

%k K Qltr) K Qz(r)
p =B [Xﬂ-—y-gql)m— Y(l-?; ’72)_0_2@] £2. 73)
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By substituting the previously determined values of //, and taking both
terms in the approximation to ,72’ this equation becomes

N Q,(r)
P = ¥YB ( - ——) m —2- (Y 1)(‘V+V - —) m (2. 74)

Applying restrictions 2.49 and 2.50 makes the first term equal to unity.
The second term can be neglected compared to the first if it can be shown
that the ratio of the Bessel functions is of order unity, or less, in all
parts of the ¥ plane where expressions that are derived from equation
2.74 are evaluated. This assumption is written explicitly, using re-
striction 2.49 and the notation,
teees
as
L (g V¥ )
Lh/t)

For £ along the imaginary axis, as would be the case in evaluating the

= 0 (1) (2.75)

frequency response, inequality 2.75 is valid. Normally, along the pole
locus, i.e., the path the poles move along as a function of Va (see
Section Three), inequality 2.75 is also valid. Trouble would be anticipated
only as € approached a zero of the denominator. This would occur only
in the rare case where ¢ approaches unity and the residue is evaluated
at the pole farther from the origin when <a is small. However, the con-
tribution of this residue becomes negligible faster than the violation of
inequality 2.75 becomes significant.

Making the assumption that the second term can be neglected,

equation 2. 73 reduces to
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5* = '¥B (2.76)

Since the fractional pressure variation p was small by assumption, B is
small compared to unity. Equation 2.76 shows that p is independent of
the radius r, as was assumed in Section One,

When restrictions 2.49 and 2.50 are applied to equation 2, 44,
repeated here for convenience,
s QZ(T)

%*

—I 72) SR - A(—'-;_I-K) %ﬁy

it becomes

i BlVE 2 Bl E
Lry/5) "% ° I (R\/W)

and then by the same arguments that lead to equation 2. 75, equation 2.78
2 I r1/£
&
o AC Bl1- 0 ( v ]
[s
To {R v ]

It should be noted that to a first approximation

(2. 78)

is reduced to

RE . wa (2.79)

Since B is small compared to unity, v is also small compared to c, as
stated earlier.

Whenever the volume flow is considered, the average velocity

*lg /2
A

across the tube is used.

sk
u:

dr {2.80)

W‘“I“
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Which, when integrated and evaluated at the limits becomes

2 2 1, R/ 2]
% Ac 1
u =-B5— |1- L (2.81)
s s
SYERNEVED
If equation 2.45, the equation for q*, is evaluated at r = R, the
resulting expression is just that from which )\2 was determined.
2 1 | s s
sl - %) sq, [ -]
an U T W N e WA L 9Q, -
(% B )\2] Q(R) or QI(R) ar QZ(R) ar

Using the same approximations that were used in determining }\z,

equation 2.82 becomes

* 3 y* s 5 (r-\/?) Reif o
v

1 2
9 =B | Xy =y gy = X

] Iy (R\/?] d

(/%] .
To (R'\/l?s)

Considering only the middle term in equation 2.83, and putting it in a

K ¢ ¥S
+—7(Y"‘1) w

more useful form, it becomes

N e a4 e kil B
C C

In accordance with the derivation of inequality 2. 68 from 2.63, equation

2.84 can be replaced, at least to an order of magnitude, by



i

2l 2 2 7
) O 2 l ¢ ¢ v 3/2 :
7”?3'””‘7}7?1&‘) g (2.85)

and using the substitution,

ngs

equation 2,84 becomes
2

C
B
S

2

fz-f)m(%%\/?) (2.86)

k|
2

o

Using equation 2.86 and taking the first approximation )\2 = 8—2 s
c
equation 2. 83 becomes

q=B :%Rg)) +0(3 & o)+ ty- 1)‘\/*7‘ L [= \/_I}) (2.87)

The two ratios of Bessel functions are of order unity, or less, except

near zeros of the denominator. The only place, involved in the present

analysis, where a zero occurs is for the pole farther from the origin
when Ja = 0. Since the contribution to the transient response is negligible

near this point, it can be assumed that

1 =/ ) h (rﬁ)
NLVEN 1o (/%)

are all of order unity, or less.

r
K

Applying these results to equation 2,87

=0 (B-\/W‘) (2.88)

% x®
and then comparing q withu :
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q*
T:O
u

Section One.
~ %
Including the x dependence in p explicitly,

5 W
P Bl

the derivative with respect to x is

a5 A
B =B Y™
dx

Combining equation 2,90 with equation 2.8l gives

s
dp = su /bz

- o B 1 (Ry/2]
R\/? IO(R.\/_%‘)

or writing this in dimensionless form,

% -

dp . b
o , LA
VS /€D

where
X
o
_ il
€= R%2
i ¥ L *
it _ _uc
& _pR y/bz
o
which is just
iz 9B
- wmB E"

23 - of 7] ove

Equation 2,89 justifies the assumption of zero radial velocity made in

(2.89)

(2.90)

(2.91)
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where
fl-" is the full-frequency expression for the specific acoustic
impedance per unit length as defined in Section One.

Writing the full expression for the pressure in dimensionless form gives

5 = 0a $OE (2.92)

where Cl and C2 are constants determined by the boundary conditions on

the tube, and

= ‘s"2 . | ¢ 202-1) L&6eE)
¥ bonm . AeEd Vog' Ihrs)
VE 1,0/

or in simpler notation

2 = > (2.93)

where

2 _[,,2(x-n LE/E)
VT 10T

is the factor that contains the effects of the heat conduction.

r

Note that equation 2.92 is of the same form as equation 1.14, Section
One, but with B replaced by B[ . Equation 2.9l is identical to equation
1.7, Section One, when the full-frequency form of § is used.

Because of the similarity of the expressions here to those in Section
One, only the main points of the following analysis will be included,

As before, the boundary conditions are
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~ % ~ 1
p (0,8)== (2.94)
s
%
dp 2 %
x=1
Because the P in the exponent is now replaced by Bl , the expression
analogous to equation 1.22 is:
o W o i 2
p (1,8) =
s [eBP[1+——5V] -I-e-ﬁrI (1 ______ﬁV)
r r
or
~ % e 1
p (1,5) =— oy o (2.95)
s [coshﬁr' +—|—_-‘— sinh ™ ]

The frequency response can be found by substituting iw for s in the
expression

s 1 :

P {lw) = en (2.96)

coshpl” +——|_-_‘— sinh ™

where B and [ are complex functions of w,
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SECTION THREE

INVERSION OF THE LAPLACE TRANSFORMS

In Sections One and Two the Laplace transform of the pressure at
the end of the tube was derived for several approximations. In this
section the methods used to invert these Laplace transforms, to obtain
the pressure as a function of time, are described. Two techniques were
used and the results compared to ensure accuracy. The method that
turned out to be more useful centered on the evaluation of the residues.
The second method was a direct numerical evaluation of the inversion

integral.

Residue Theory

In the simple application of the residue theorem to the inversion of
Laplace transforms, the path of integration consists of the Bromwich
contour, and closure is by means of a semicircle in the left half plane,
This simple contour is not applicable to all the approximations considered
in this work, and must be modified for some cases. The modifications
required will be discussed later in this section. However, the general
process for the finding of the poles and the evaluation of the residues is
essentially the same for all approximations., The initial discussion of the
residues will pertain to the theory of Section One, and then the extensions
that must be made to include heat conduction will be described.

Using the residue theorem, the part of the pressure at the end of
the tube due to the contribution of the residues, takes on a relatively simple

form,
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BMLZ)=) [—— | e (3.1
n g’(S) n
where
L -3%
g(s)

and the prime indicates the derivative with respect to §. The expression
1/g"'(8) is to be evaluated at each of the poles of '}3*(1, s), which are denoted
byn=0,1,..., and then summed.

The poles of ﬁ*(’l, s) are found where

g(s) = s(coshpB + vp sinhPB) = 0 (3.2)

Obviously one solution of this equation is § = 0, which gives, by equation
3.1, the value unity for the first term of the summation., Attention is now
restricted to the other poles, which are determined by

coshp + VP sinhp =0 .3)

Let B = ia, where a is a real number. Then equation 3.3 becomes

or

thus

cota = va (3.4)
An approximate solution of equation 3.4 can be found by plotting the
functions on each side and finding their intersections, (fig. 8). More pre-
cise solutions can be found by numerical iterations, The variation of the
first root as a function of v is shown in figure 9. The ratio of higher roots

to this first root is also given.
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Figure 9. Alpha Ratios as a Function of Volume
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With the a corresponding to each pole determined, the poles are
found by solving the equation
P=ia (3.5)

Since

VS

= 7
P=v

equation 3.5 can be written

NEE = iYa (3. 6)

and the poles found as a function of the single parameter y/n.. For every
a which is a solution of equation 3,4, there is another solution, ~a. In
general, equation 3.6 is solved by squaring both sides to eliminate the
square root., When this is done, each value of a gives two solutions,
either complex conjugates or two roots along the negative real s axis. The
value -a gives the same two solutions. Therefore, only the positive values
of a will be considered here.
If the heat conduction theory is being studied, equation 3.2 must be
slightly modified.
g= E(coshﬁr'+-1"rl—ﬁsinhﬁr‘) (3.7)
As before, the poles of 5* are found by setting g = 0.
If B is set to ia, where a is real, in analogy with the earlier
procedure, the equation corresponding to equation 3.4 is
cot uz—v—z-o. (3.8)
However, [_'2 is a function of the complex variable §, so solutions of

this equation can be found with real a only when V= 0. In that case,
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a=;_-’(2n-1) PR - 7 TR (3.9)

The motion of the poles as a function of +/a is shown in figures 10
and 1l. In figure 10, the motion near the origin is given. Figure 1l covers
a larger range of Wa. These curves are referred to as pole loci. Both
figures include the solutions for the three ¥'s and also the case including
heat conduction. Figure 12 shows the result of varying ¥ and ¢ .,

When heat conduction is considered and v is not equal to zero, the
ia substitution is not useful; then the solution of equation 3.7 must be found
by an iteration procedure. The information obtained by this method can
be displayed best by plotting the case v = 0 as a starting curve, and then
indicating the variation with v by branches off this main curve for
particular 's and for various n's, (fig. 13).

The motion of the poles along the negative real ¥§-axis as a
function of 3a is shown in figure 14 for the case including heat conduction
and the cases of B calculated using the low-frequency and the full-frequency
expressions for ¥§.

Iberall (6) has pointed out that for low frequencies the expression

for A including heat conduction reduces to the expression found by taking
the low-frequency approximation of B and considering the polytropic pro-
cess in the tube as being isothermal. This is achieved by setting Cp = b
in the definition of '!70. Or, alternatively, the isothermal 7 is obtained

by multiplying the adiabatic 3 by the ratio of b/c.

_‘/jls * }I/A bfe



Figure 10.

Pole Locus - Near Origin
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To determine the validity of Iberall's approximation along the
negative real ¥-axis, a curve that was calculated using the low-frequency
B and 7//13 is plotted in figure 14 as a function of Yple

When evaluated at a pole, except the one at the origin, the first

term in the denominator of equation 3.1,

g' = (coshp + vp sinhB) + S(sinhP + vsinhf + UP coshﬁ)gp—
ds

is equal to zero. In the second term, it is more convenient to substitute

peet.,

g' = ‘g[(1+ Vv)sinhp + VB coshﬁ] g—% (3.10)
where
ap __1 as
T {S+§d,§] (3.11)
Let
§=93
then

pE= |2 —= (3. 12)

Combining equations 3.1, 3.10 and 3.1l and substitution f = ia, produces

2ia '!)UZ exp(EE ¥ )
B0, T) =1 +Z = ¥
§,[(+Vsinhia +iva coshia | [ + 5, 5, )

a n
n




w5~

or
5n
2
2 ¥
2a e
B, 7) =1 +Z n ¥ (3.13)
., fn [(1+'u)sin a +va cos un] [ fn - §’n gn]
< v N
If heat conduction is included, i
% : vp dpr
gl = g[mnhﬁr' +—-‘—_|— coshﬁr'] d<
; dp g.4al’ .
+T1'_"-31nhﬂr‘ a-g --—‘,;,—“a-g (3.14)
where
ar® _ty-1 5 = g il & +Il(”a_§) (3.15)

s (a8 I,0/cE) | Ves 1,008

In dimensionless form, the contribution of the residues to the pressure at
the end of a tube resulting from the application of a pressure step at the

other end is,

€ i
'13(1,7):1+Z b ev; s e (3.16)
> n
n gn [s1nh Bn |"'n + m coshﬁn r‘n] i< )n
+—2- ginhp [ dp _Erl_ dar
r‘n n n dg’n |""n dg =
n=l,.2, w5

Other Contributions

The simple theory just outlined suffices for the low-frequency
approximation, and the sum of the residues gives the total contribution

to the pressure.



. m

In the high-frequency approximation, branch character is introduced
because the Bessel functions are replaced by a simple expression con-
taining a square root.

2 EW S 2
-~ € large
Ve aRiEy VY

The branch cut is taken along the negative real ¥ -axis and the inte-

gration contour is distorted so that it does not cross the branch cut,
(fig. 15). The contribution along the segments 3, 4 and 5 must be evaluated
numerically. Si‘nce the modified contour cuts out the pole at the origin,
whose contribution has already been included in the summation of the
residues, it is necessary to subtract the value 1. 0 from the integration
results before they are added to the contribution of the residues. The
integration contributions are small (see Table 2), but are non-vanishing
for all the ¥ 's and for all the 7°'s considered in this work.
In the full-frequency and heat conduction approximations, a different

difficulty arises, If B, or BI" , is evaluated along the negative real
¥ -axis, there are regions where it becomes imaginary, (see Table 3). In
these regions, it is possible to find solutions to the equation

B=ia or Br' = ia (3.17)

respectively. The function B, or B’ , takes on the value i-zero at the end

of the region farther from the origin, and the value i-infinity at the end
nearer the origin. Since a can take on an infinite number of values, there
are an infinite number of solutions to equation 3.17, and therefore, an
infinite number of poles in each region. The residue theorem requires a

finite number of poles within the contour, so the contour must be distorted
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Figure 15. Integration Contour - High-frequency Approximation
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Table 2

Contribution from the integration path segments 3, 4 and 5, (fig. 15).

WiE 10
T = -
2" 1 T= 16
5 1,0532 1.0019
10 1.0384 1.0014
30 11,0225 1.0008
V= 0,5
-V/ T: l ?’—' 16
5 1.0758 1,0038
10 1, 0554 1.0027
30 1.0328 1.0016

The value 1. 0 must be subtracted from these listings before they are

added to the summation of the residues obtained earlier, (see text).
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Table 3

Regions along the negative real €-axis containing an infinite number of

poles.

P pr
-8.2 - 10.2
-26.4 - 30.5 -26.4 - 30,5
-43.0 - 45.2
-70.8 - 74.9 -70.8 - 74.9

-105.8 - 108.0
~135.0 = 139.1 ~138.0 -~ 139.1
-196.4 - 198.6
-218.9 - 222.9 -218.9 - 222.9

=314:.9 -~ 3171
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to eliminate these regions, (fig. 16). The contribution along the segments
3, 4 and 5 were not significant for all 'l//, nor for all 7, (see Table 4).
When the contributions along these path segments are added to the sum of

the residues, the total pressure is obtained.

Integration

The numerical integration was carried out using the Gaussian
integration formula. The infinite integral was broken down into small
intervals which were integrated and then summed. As a check on the
accuracy of the numerical evaluation, each interval was first integrated
with a nine-point approximation, and then with an eight-point approxi-
mation, and the two answers compared. If the difference was greater than
a given number, the size of the interval was cut; if smaller than a smaller
number, the next interval was increased in size., The integration was
truncated if the contribution of the absolute value of the integrand over a
specified interval was less than a given amount. All of the above oper-
ations were performed automatically with the given numbers supplied as
input that could be varied in an attempt to optimize the procedure. The
path of integration was either a straight line parallel to the imaginary axis,
or it took a jog to the left to take advantage of the exponential character of
the integrand,(fig. 17). Since the integrand evaluated at a point in the
lower half plane is the complex conjugate of the integrand evaluated at the
conjugate point in the upper half plane, only one half of this path had to be
integrated. The starting point along the real <€-axis was determined by

the minimum of the integrand along the real axis as long as that minimum



-66-

¢
o —
A
|
Regions containing £
g E -
an infinite number of poles
I
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Conduction
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Table 4

Contribution from the integration path segments 3, 4 and 5, (fig. 16).

full-frequency

% __50 x Contribution 7= Contribution
0 10 1.0 0.0010 2.0 0. 0000
0 30 1.0 0.0156 5.0 0.0004
05 10 1.8 0.0004 1 0. 0000
0.5 30 1.0 0.0178 5.0 0. 0004
heat conduction
2 ¥ r Contribution T Contribution
0 5 1.0 0.0133 3.0 0.0003
0 10 1:'0 0.0172 6.0 0.0002
0 30 1.0 0.0234 9.0 0.0004
0.5 5 1.0 0.0070 3.0 0.0002
0.5 10 1.8 0.0130 5.0 00,0004

0.5 30 1.0 0.0231 9.0 0.0004
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was located at §= 3.0, or less. For small ¥ and large 7 this minimum
became very sharp. The jog was taken at the point where the integrand had
passed through three-fourths of a cycle. The path to the left of the
imaginary axis was chosen to be as far left as possible and still avoid the
irregularities introduced into the integrand by the poles,

The results of this integration were compared with the results of
the residue theory at three points on each curve, 7 =2, 8 and 14, In all
cases, except for the low-frequency approximation, the agreement was
within = 0, 0001l. In the low-frequency approximation, the pole locus is
parallel to the imaginary axis. This means that the contribution of the
more distant poles is far greater than for any of the other approximations.
Consequently, the integration (and the evaluation of the residues, see

Results) must be carried out much farther than in the other cases, This

meant it was far more difficult to adjust the parameters in the integration

scheme to get accurate answers. In spite of this, the deviation from the

residue theory was never large enough to be plotted on the scale used in
this work,

Comparing the two methods for determining the pressure, it is
found that the residue theory produces answers much faster than the
integration method. Although the residue theory includes some integration,
it is not required for all 1, nor all 7T, and since the integration path is
off to the left at a 45 degree angle, the computation can be truncated very
quickly because of the exponential character of the integrand. A rough

estimate would say that, if it took two hours for the computer to find the
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poles, evaluate the residues, and the integration contribution where
necessary, it would probably take 80 hours to obtain the same data by
direct integration, The above estimate is, of necessity, rough because

of the very wide variation in the integrating time required as a function

of Y and 7,
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III, RESULTS

The calculation procedures outlined in the Analysis were pro-
grammed for a high speed digital computer. The computer results,
comparing the various approximations for several values of the parameters,
are given here., The values of the parameters were chosen in an attempt
to illustrate the range of validity of the different approximate theories.

All of the curves of this section have been drawn using the following

representations to distinguish the curves obtained by using the various

approximations.

low-frequency approximation (LF)

full-frequency approximation (FF) e
high-frequency approximation HF) —m - — — — — — — — — — — —

theory with heat conduction (HC)

modified low-frequency

approximation (see text) {MLF)

Frequency Response

Although the transient response curves were considered the more
fundamentally useful, a few samples of frequency response curves are
included for completeness, Figure 18 compares the various approxi-
mations for W= 2.5 which is the optirnum* value for the low-frequency
and the full-frequency approximations. In order to compare the various

approximations for a tube with less damping, curves for ¥ =10 and

See Notation for the definition of optinum response.
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volumes on the end of 0.0 and 0.5 are plotted in figures 19 and 20. It
should be noted in figure 19 that for the low-frequency case the resonant
peaks all have the same magnitude; this is because all the poles are
located the same distance from the imaginary axis. Some further ex-

amples of frequency response curves are located in Appendix B.

Transient Response

The response of a highly damped tube is shown in figure 21. The
low-frequency approximation curve falls on top of the full-frequency curve
for almost the full time span. The only difference is caused by the jump
character, typical of the low-frequency approximation with v= 0,

Iberall has pointed out that for low frequencies, the process in the
tube can be considered isothermal. Therefore, in figure 21 where curves
for Y =1 are plotted, there is also given the low-frequency approximation
for Y= 0,84464. This is the Y that results from considering the same
tube as was used for the curves where 3 =1, but taking Cp = b instead of
equal to c. Rather than plotting this case as a function of 7= cTt/L, as
is the usual practice, it is plotted as a function of ct/L so that it can be
compared directly with the theory including heat conduction. This pro-
cedure produces the modified low-frequency approximation. A similar
comparison is made for the cases v=0, ¥ = 2.5 and75.0, (figs. 22 and
23)5

It should be pointed out, at this time, that the figures showing the

pressure as a function of ¥ = cTt/L are somewhat misleading. The fact

that Cr is used, means that a polytropic process can be considered that
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ranges from isothermal to adiabatic. However, if Crp # c the various
curves cannot be compared directly with the case including heat conduction
since the abscissa are different functions of time. When cr is set equal
to ¢, as is implied by the curves plotted here, the results represent sound
propagating in a tube made of an insulating material,

The values = 0and W= 2.5 were chosen because they produce
the optimum response* for the low-frequency and the full-frequency
approximations. The corresponding optimum for the theory including heat
conduction is v=0, W¥= 3.20. The 99% level is reached for 7= 4.0.

To illustrate the response and the applicability of the various
approximations for tubes with less damping, curves for W= 5, 10 and 30
are included (figs. 23, 24 and 25). The high-frequency approximation does
not represent the more precise solution well for % less than 30. However,
if Y is greater than 30, the restriction § = 104 starts to make itself
felt. Then the pressure can no longer be considered to be constant over
a cross section, among other difficulties.

All but two of the curves plotted in this section observe the restriction
.= 104 derived in Section Two. The two exceptions are for the low-
frequency approximation for v = 0 and ‘5// = 5 and 10 (figs. 23 and 24).
Since it is obvious that the low-frequency approximation does not closely
follow the more precise theory, it was decided to drop the restriction on

€ , and take sufficient terms in the summation to precisely delineate the
jump character associated with this approximation when there is zero

volume on the end of the tube. As many as 5000 terms (each term includes

See Notation for the definition of optimum response.
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a pole and its complex conjugate) were summed, which involves
€=1.36 x 10° for =10, and ¥=6.80x10* for 3= 5. However, at
the worst, the difference between the 5000-term summation and the case
restricting ¥ to 104 was just barely plottable on the scale used here.
When ~ # 0 the low-frequency approximation no longer displays jump
character.

The effect of adding a volume is shown by the curves where v =0.5,
(figs. 26, 27 and 28). This is a relatively small volume compared to
those Iberall (5) considered, but it still has a large effect on the shape of
the curves, The larger the volume, the simpler the computation because
fewer terms must be included in the summation of the residues for a given
degree of accuracy.

Any volume on the end of the tube is detrimental from the point of
view of optimizing the system. A simple illustration of this is given by

using the two term approximation for the pressure

So o

5, T)=isda Y

where, for optimum response, the first pole must be at a definite position,
thereby fixing €, which is denoted by ‘§O.
It is the response in real time that is of interest. Making the

substitutions:

the pressure becomes



<86=

; offe

e

R

pll,t)=1+Ae

The minimum time constant is obtained when the absolute value of
R2/ '§°Rv is a minimum, Only the real part of 'go must be included in
the determination of the time constant. Since goR was previously fixed,
and presumably v cannot be changed, R is the parameter that determines
the response time. The smaller R is, the better the response. The
limitations on how small R can be made are the requirement that "'50 be
held constant, and how small LL can be made within the restrictions of the

physical layout. Any volume on the end of the tube requires an increase

in R to keep Ya, and consequently go, constant, thereby degrading the

response.
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IVv. CONCLUSIONS

A knowledge of the volume at the end of the tube and the tube
parameters is sufficient to predict the behavior of the system response.
The pole loci play an important role in making this possible. Although
the first residue gives a good idea of the response of the tube, a detailed
evaluation of the wave shape requires a large number of terms. This is
particularly true near the wave front if 3/ is large, and for the low-
frequency approximation with its jump character.

Optimum response* is achieved with zero volume on the end of the
tube and the tube parameters chosen so that ¥ = 2.5 if the tube is made
out of an insulating material, or W = 3.2 if the tube is made of a good
heat conductor. If there is a volume on the end of the tube, the response
is degraded.

The high-frequency approximation does not provide a good represen-
tation of the more precise theory except for tubes with so little damping
that the theory presented here is of questionable value. In particular, the
pressure is no longer constant over a cross section of the tube. If the
tube has no volume on the end, better results are obtained more easily by
using the procedure outlined in Appendix A.

Except for the jump phenomenon exhibited when wv= 0, the low-
frequency approximation represents the more precise theory very well for
Y up to about 3.5. The low-frequency approximation can be used to
describe the cases of an insulating tube or a conducting tube by equating

Cr to the values b or c, respectively.

See Notation for the definition of optimum response.
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If the tube is made out of an insulating material, the theory
including heat conduction reduces to the full-frequency approximation
with Cp set equal to c.

The residue theory is, in general, by far the best method of
obtaining the transient response, both from the point of view of ease of
application and the speed of obtaining results. As the volume at the end
of the tube is increased, the number of terms required to achieve a
desired accuracy is decreased. The difference between the low-frequency
approximation, the full-frequency approximation and the theory including
heat conduction is also decreased. This implies that the volume, instead
of the tube, becomes the major factor controlling the response of the

system.,
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APPENDIX A

TRAVELING WAVE SOLUTION

There is another, and simpler, method of inverting the Laplace

transform of the pressure

B = 2 (A-1)
S{coshp + vp sinhB)

in the case where <wv= 0, and it is appropriate to use the high frequency

approximation. In this case equation A-1 reduces to

o B 1
T (A-2)

s coshp
The P that is used here is obtained by taking the first two terms in the

high-frequency expansion of the full-frequency B,

Byt = 1’—2— [g’ﬂf?] (A-3)

where the prime on the subscript indicates that this approximation is the
one appropriate to the discussion in this appendix. (A comparison of the
method used here, to that of Section One, will be given later.) An ex-
pression for B analogous to equation A-3, differing in not being dimension-
less, is derived by Mason (13), Chapter 4, Section 3.

The pressure as a function of time is found by substituting equation

A-2 into the standard Laplace inversion formula.

1 d
p(7) = T—j e = (A-4)
Br s cosh ﬁH'
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where the integration is along the Bromwich contour (14). Applying the

expansion
o]
1 L n -z(2n+l)
cosh z ~ . Z (-1 e (A-5)
n=0
where
Real z =0

and writing ﬁH' explicitly, equation A-4 becomes

o o)
pl{7) =§%j Z %(-l)n - e  ds (A-6)
Br, n=0 °
1
Since the series is absolutely convergent, the order of the operations of
integration and summation can be reversed. The nth term of equation

A-6 can be written

_ -{2n+1) -\/?
~ ‘lmj % (-1)" e-(2n+1)s R YR"% 3743 (A-7)
Brl

Pha=72 2

The factor
e-(2n+1)§

represents a shift in the time origin so that the function given by the rest
of the integral is delayed by an amount
T= 2n+l

where

~

PECT=10 (A-8)

n
for
0= T < 2n+l.
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The inversion

-(2n+1) _\/-\/%

e§ [T—(Zn+1)] -+

B .(7) = 2(-1° —l—j

W) |~
[¢]

is listed by Bateman (15), pg. 177 (it is also derived, in great detail,

by Weber (7) pages 321-330) as:

1 (2n+1)

7\/\—VV 7-(2n+l)

B (7) = 2(-1)" erfc (A-9)

where

Reals =0

and
(‘Zr:rl-l)Z
al —m—

3V

The first restriction is satisfied along the inversion contour, and

=0

Re

consequently, so is the restriction on equation A-5. Since 1// is a positive
real constant the second restriction is also satisfied.
The total pressure as a function of time is given by the summation

of the terms given in equation A-9.

2ntl < T > |
plT) = Z Z(-l)n erfc \/ (2nt1) (A-10)
4y [T-(2n+1)]

n=0

The upper limit on the summation takes the form given here in order to
satisfy equation A-8. The solution obtained from A-10 is compared with

the high frequency approximation of Section One in figures A-1 and A-2,
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Comparison with Section One

In Section One, the high-frequency approximation was obtained by

taking the two term expansion of the full-frequency ¥.

S, =5+2/¥¢’ {A-11)

The high-frequency approximation for p was determined by using this

fH in the expression

b= VS, (a-12)

The B thus determined was used to find the pole locus, the position of the
poles of equation A-1 as a function of VYa.

In this appendix, ¥ does not enter into the problem, so the high-
frequency approximation to B was found directly by taking the two term
expansion of the full-frequency B. If this ﬁH, is substituted into equation

A-12, the corresponding fH' is

e L 2\/f+1 (A-13)

An analytic expression can be found for the pole locus when ﬁH‘ is
set equal to ia.
1 N i _
Equation A-14 can be represented geometrically. Expressing ¥ in polar
form, let
S=4 ¥

then equation A-14 is given in figure A-3. By the law of sines,

A VA

R4 D : _
sin;fz " cos@/Z = -cosg@ $raS)
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where fora =0

o<
FEFE

and for a < 0, @ is replaced by - @¢ . Upon substituting the half-angle

identities, equation A-15 becomes,

VA

= 4 _
= Y - = ; =ik (A-16)
:!:'\[7 (1-cos @) \ / Vi (l+cos @)

where the * sign on the first term depends on whether @ is %,

respectively. The radius 4 is found by squaring the first and third

terms in equation A-16 and multiplying by cos2 Q.

2 2
ry th?l)_cgg%fv (A-17)

This expression is then substituted into the second term of equation A-16

to produce the equation

Ya . 1 (ya) cosz¢
= T 1
ﬂ:‘\[—é- (1-cos @) ‘\/% (ltcos @) Z (l-cos @)

By multiplying both sides by the denominator of the right-hand side, this

becomes,
1/2

1 2 Z
+ [Z (l1-cos™@ )} = ya cos @
then using trigonometric identities it reduces to

% sin@ = Ya cosz¢= Ya (l-sinzgp ) (A-18)

Equation A-18 is just the quadratic equation



oy

sin2 @ +

1 : v,
27 sin@ -1=0

for which the solution is

sin¢ =;% [-1 \ \’ 1% ‘4 'lpu,)z ] (A-19)

The solution that would have resulted from taking a negative-sign in front
of the square root symbol, was thrown out since it produces a sine of less
than -1, which is clearly inadmissible.

The procedure used here produces a pole locus that differs from
the one determined in Section Three, This difference is shown in figure
A-4, A comparison of the contributions due to the branch cut is given in
Table A-1.

The results of this appendix were checked against the results of
both the direct numerical evaluation of the inversion integral, and the
residue theory calculations using the gH given by equation A-13 and the
pole locus determined by equations A-17 and A-19. The transient response
was computed at 7°= 2, 8 and 14 for the cases Y= 5, 10 and 30. The

agreement was within * 0.0001 at each of these points.
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Table A-1

Contributions from the integration path segments 3, 4 and 5 (see fig. 15,

Section Three).

High-frequency approximation - Appendix A

b =1 7= 16

5 1.0577 1.0020
10 1.0400 1.0014
30 1.0228 1. 0008

High-frequency approximation - Section One

v 7= 7= 16
5 1. 0532 1.0019
10 1.0384 1.0014
30 1. 0225 1. 0008

The value 1,0 must be subtracted from these listings before they

are added to the contribution of the residues as obtained in Section Three,
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APPENDIX B

COMMENTS ON IBERALL'S RESULTS

One of the results of the present study is a set of frequency
response curves comparing the various approximate solutions for several
values of the parameter 7. Upon checking these results against the
published data of Iberall (5), several discrepancies were found. In this
appendix the frequency response curves of this work, for the theory
which includes heat conduction, are compared with Iberall's results, as
shown in figures 4 and 5 of his paper.

Iberall's expression for the frequency response of a volume-

terminated tube is, {using his notation),

g = (B'l)
0 chosh 77[/T + 'i,UI sinh VT
and the corresponding expression given in Section Two is
e B - 1 ,
P (1, ) = ? (B—Z)
coshpl™ +lJr—_,- sinh B
Equations B-1 and B-2 agree if:
8"
W g (B-4)
it Yo

Equations B-3 and B-4 hold if the velocity of sound in the tube Co is set

equal to the Laplace velocity of sound c, as it should be for the approxi-
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mation considered here, and if

e R
where

Y XTO
and

'§= iz
where the terms on the left-hand side of these expressions are written
using the notation of the present work, and terms on the right-hand side
use Iberall's notation.
It should first be noted that Iberall's figures 4 and 5 are not
frequency response curves, although they are plotted '""as a function of a
parameter proportional to frequency ( XTO)". They are plotted for a

value of the parameter z = 6.25, where

wDZ

o

Zz =

If the diameter of the tube and the medium through which the sound is
propagating are fixed, then the frequency is fixed. In this case, the
curves are plotted as a function of the length of the tube squared. On
each curve, the volume at the end of the tube is changing in such a manner

that, as the length varies, XIO/ XTO remains constant.

Iberall's figures 4 and 5 are reproduced here, for convenience, in
figures B-1 and B-2. The true frequency response curves are given in
figures B-3 and B-4. (The value of ¥/ = 5,65 was chosen so that the

resonant peak for the case ¥ =1, v= 0, would have the same maximum
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value as Iberall's curve. The volume parameter in figures B-3 and B-4
is v rather than XIO/—X'TO since the former is the more logical
parameter when the curves are plotted as a function of wL/c.)

Figures B-1 and B-2 are not copies of Iberall's figures 4 and 5, but
are from independent calculations using his equations. However, when
Iberall's equation 116 was programmed for the computer, the results did

not check with his curves fc_>r the cases where ¥ = 2 and XIO/ xTO = 49

or 3.
e B 1/2
gOL _ 2
b ¥ o :
0 cosh ch + cos Zc2 + 2c3 sinh ch
-2.c4 sin .?.c2 + (c32+c42)(cosh ch—cos ZCZ)
tanh ¢ tan <, + c3 tan c, + Cy tanh <
tan So o 1+ c, tanh c,-c, tan c (Ib-116)
3 1 "4 Z
where
ial % 1/2
=|1l-sin c IO F
o N o T2 | 1|
c.=}l1l+ain c TOI F
2 5 2 i
¥ y 142 =, " 1/2
¢y = (cos ¢ [1-51n c5] -sin c6[1+s1n c5] )

X 1/2
Ty

1%y T;O;]in
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1/2

Cy = (cos e [1 + sin CS]

F1= fl +‘g1_]

F2=f2+g2_]

+ sin C6 [l-sin c

X Uz, %
TO 10
['  w |F1] “Forcs | Fy|

N

5
CcOos C5 = |F1|
: 8
sin C5 = |Fll
)
cos ¢ :‘I_T-ZI—
A g2
sSin C6= IFZI
1+2(¥-1)J1(h%) (h_g)z
) D 3
hy Jo(h7] S B
] ¥ i ZJI(hZR) 3
n7 bz
: D
1+ (¥-1) a3

hZR.TO(h

z

(Ib-105)
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. (Ib-102)

D
a>

I
—
—
1
L =
—
o
.
l:’

where j = '\/—II .

Iberall's equation 116 is reproduced here except that the error in
the sign in front of the sin Cy term in the expression for Cy has been
corrected. This error appears to be typographical since it does not
account for the discrepancy between his curves and the computer results.
The computer results were checked against the completely independent
program used to calculate the frequency response curves, figures 18 to
20 in this work, with perfect agreement.

By multiplying the volume by a number between 1.64 and 1. 66,
curves are produced, for the case ¥ = 2, that cannot be distinguished
from Iberall's curves. This range is permitted by the limited resolution
of the published curves. For values of 1.63 and 1.67 or beyond, the
agreement is somewhat degraded.

It can be easily shown that for a tube with a volume ratio as large
as 49, the curves plotted by Iberall should be independent of ¥ ., For the
range of values of XTO plotted, B/" 1is small compared to unity. There-
fore only the first two terms in the expansion of equation B-2 need be

considered.
- 1

- 2
1+———Z—Cﬁr) +-uﬁ2

or by rearranging

5 = 5 ) ('B"5)

1+ g2 (vt 5
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Making the substitutions:

2 1%

B e i XTO

3 XXIO
XT0

where § is fixed when z is held constant, equation B-5 becomes

P 1
A b (XIO X )
. Xpo 27¥
where
g—i = )5 for Wi=z.1
= 0,4054-10, 0944 foit' ¥ =2,

The difference between these two values is 0.0946-i 0.0944, which is
negligible when compared with 49. Therefore, the curves could have

been plotted using the simplified expression

1

X10 ) o
XTO TO

l) = .g
i
1+—8 (

which is independent of ¥.

In all fairness to Mr. Iberall, it should be pointed out that for the
type of problem he gives in his example calculations, the curves he
plotted, as corrected here, are easier to use than the true frequency

response curves.
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