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ABSTRACT

A general spproach to the solution of pulse scattering by
finite obstacles is formulated. The essential feature of this
approach is the identification and separate treatment of the indi-
vidual terms in a wavefront expansion of the transforms of the
field vectors. It is demonstrated that the dispersive effect of
g finite conductivity in the scattering obstacle can be neglected
| for all metals but that it may be significant for poorly conduct-
ing materials such as dry earth. The wavefront technique.is
empioyed to solve the problems of the transmission of a delta
pulsé through a conducting dielectric slab and the reflection and
diffraction of a delta pulse from a perfectly conducting sphere.
The transmission problem results provide a convenient example of
the usefulness of the wavefront approach. The results fof the
sphere problem indicate that the nature of the waves observed at a
given spatial point change in time. It is shown that the penumbra
and the caustic region in the vicinity of the focal line © = =
are initially of zero extent. The rates of expansion of these
regions with increasing time are obtained by a consideration of the
error terms in the asymptotic expansions of the fields. The temporal
behavior of the near and far field zones is obtained in a similar

manner.
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I. INTRODUCTION

Electromagnetic waves are seldom of a completely monochromatic
character. The signals generated in the laboratory and by natural
causes are predominantly of a transient nature. Quite often it is
possible to adequately describe the interaction of these waves with
matter by a steady state analysis. Sometimes, however, the departure
from equilibrium may be significant. It might also be desired to
employ a transient analysis in order to obtain more information than
is available from a steady state theory. The distortion of a pulse
returned from a scattering obstacle might possibly yield some addi-
tional information pertaining to the properties of the scatterer. The
behavior of the leading edge of a scattered pulse usually indicates
something about the composition of the body. The behavior of the
trailing edge of a scattered pulse is related to the shape of the bedy
and its radii of curvature. |

In addition to the fact that practical problems are seldom of a
steady state nature, there is a much more fundamental reason for the-
interest in transient electromagnetic theory. The pulse solution of
a scattering problem yields a better understanding of the physics of
the steady state problem. The existence of the generalized rays of
geometric optics is easily demonstrated from a consideration of the
transient scattering problem for a finite obstacle. Likewise, the
coefficients in the familiar Kline-Iuneberg expansion of steady state
diffraction theory are intimately related to the solution of the cor-

responding pulse problem.



One of the earliest works related to solution of transient electro-
magnetic problems was written by Hadamard [l903]. In his book Lecons

sur -la propagation des ondes, Hadamard demonstrated that pulse fronts

are characteristics of the wave equation. In subsequent papers a
favorite topic was the scattering of pulses by a half plane or wedge.
This problem was first considered by Sommerfeld [1901] and Lamb [1910].
Some more recent investigations of this problem have been performed by
Friedlander [1941], Keller and Blank [1951], and Kay [1953]. Friedlander
has made a rather comprehensive study of transient sound problems. in

his book,  Sound Pulses [1958], he discusses the solution of the scalar

wave equation for waves reflected and diffracted by wedges, cylinders,
and spheres. -Friedlander's results are valid,; however, only in the
immediate vicinity of the wavefronts. .The results obtained for the
sphere and the cylinder do not include those for the transitional region
between the shadow and the illuminated region. The transient.problem
for the sphere has also been considered by Levy and Keller [1957] and
Weston (12)[1959]. ILevy and Keller considered the propagation of a
pulse around the surface of the earth. The results which they obtained
are valid for short times after the arrival of the wavefront. Weston
solved the problem of the backscattering of a pulse by a smooth sphere.
His results are valld for all times but the solution is in such a form
that the large time behavior is not at all evident.

The literature summarized in the above paragraph provides an ex-
cellent basis for the understanding of most of the fundamental aspects
of transient electromagnetic theory. There are some problems, however,

which merit additional attention. -There is a need for the formulation

of a general approach to the solution of pulse scattering from finite
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obstacles. -Quite often the straightforward obvious method does not yield
results which are easily interpreted. In the present paper, the physics
of the scattering process is employed to suggest a technique which
should sinplify the solution of these problems. It is also felt that
sonme usefui information can be obtained from a more detalled and sys-
tematic approach to ﬁhe problem of pulse scattering by a sphere. The
previous results for this problem have been restricted to particular
“time and spatial domains. This makes it very difficult to obtain a
general over-all feeling for the physics of the transient scattering 7
phenomensa. -The géheral method discussed in the initial portions of this
paper will be employed to obtain the desired solution of the spherer
problem. |

The texf of this paper is divided into four parts. Chapter IT
is devoted to a diﬁcussion of a general technique of solution for tran-
sient electromagnetic scattering problems of the type mentioned above.
The crucial part of this technique involves the identification and
separate consideration of the terms in the field transforms which cor-
respond to the various rays in the generalized theory of diffraction.
-The dispersive effect of a finite conductivity in the scattering
obstacle is investigated in Chapter III. The results for the reflection
of a delta pulse from a semi-infinite conducting dielectric are employed
to obtain some genersal conclusions about the significance of the signal
distortion due tq a finite conductivity. A simple example of the appli-
cation of the technique developed 1ﬁ Chapter'II is given in Chapter IV.
The superiority of the wavefront approach is demonstrated by contrasting
the solutions to the problem of the transmission of a delta pulse through

a conducting slab obtained by the wavefront approach and by the conventional
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approach. The results for the transmission problem are also of some
practical significance. They are relevant to the problem of shielding
equipment from non-monochromatic signals.

A very comprehensive investigation of “the scattering of a delta
pulse by & sphere is made in Chapter V . Results are obtained for all
regions of space and for both large and small times. The change in
the time behavior -of the waves as the observer proceeds from the deep
shadow to the penumbra to the illuminated region is demonstrated. In
the process of obtaining these results, an asymptotic expansion of
fields in the illuminated region was obtained by a saddle point inte-
gration. These results are valid in the near zone as well as the far
zone. Analytic continuation of these results will provide an expansion

which is useful in the steady state problem of near zone scattering.
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IT. A GENERAL APPROACH TO THE PROBLEM OF PULSE DIFFRACTION

2.1 The Laplace Transform of Maxwell's Equations and the Boundary Con-
ditions.

The solutioﬁ of non steady state problems in electromagnetic theory
is facilitated if a transform type approach is employed. There is some
latitude in the choice of the particular transform method to be used in a
given problem. -In some problems a‘Fourier transform is particularly con-
vénient, whereas, in btﬁers,-a Laplace transform must be employed. Since
the laplace transform is defined for a wider class of functions than the
Fourier transform, it will be employed throughout this paper. Actually,
since this paper is concerned with sources which have a delta function
time dependence, the Fourier transform method could be used just as easily
as the Laplace method. It is felt, however, that a Laplace transform for-
mulation lends itsélf to an extension to more complicated source
dependence better than the Fourier transform.

The Laeplace transform of a function F(t) is defined by the relation
(os)
: —B't
tE1=f wo) e = I (2.1)
0

The inversion from the s domain to the t domain is accomplished by

means of the relation
A+ 1o
i

L3 = Bal F(s) P as (2.2)

A-1io
where A is chosen such that F(s) is analytic for Re(s) = A . The

n
transform of T (t) is given by

i 1
B3) - 3 & 21 pk(o) (2.3)
£=0

)

[FH(t)]
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In a region free of charge the electromagnetic field vectors

satisfy the system of equations

V x E(r,t) = - 57 Blz,t) (2.3)
vV x H(r,t) = % D(r,t) + J(r,t) (2.4)
v« B(r,t) = O (2.5)
V - D(r,t) = O (2.6)
B(r,t) = p H(r,t) , D(z,t) = € B(r,t) . (2.7)

In all of the work which follows it will be assumed that the medium in
which the field vectors are defined is homogeneous, isotropic and non-
dispersive. Aiso the current {(E,t) will be assumed to be an induced
conduction current o E(r,t). The Laplace transform of the set of equa-
tions which pertains to a medium of the type described above is given in
the gét of equations 2.8~ 2.12. 'In these equations the Ldplace transform

of a field vector is denoted by a script letter.

V xE(r,e) = - us®(zr,s) +p H(z,0) , (2.8)
v x H(x,s) = (o +.es) E(z,s) - € E(x,0) (2.9)
V - H(r,s) = 0 (2.10)
v . _g(;‘_,s) = 0 {2.21)
Blz,s) = wtlr,s) ,Dz,s) = ¢ £ (x,8) . (2.12)

A vector wave equation can be derived from the relations 2.8, 2.9

by taking the curl of these equations. The result is simplified by using
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equations 2.3 and 2.4 to express the curl of the initial values. The

vector wave equation satisfied by the transformed field vector E;(E!S)

is given by
: 52 » 13
vV xVxE(r,s)+ —2(l+€°'—s)g(£,s) = —-é(l"'{'s') E(r,0) $=g = E(r,0)
' c

c Cc

where pe = lﬁ . The equation for the transformed magnetic field
vector }iﬂz,s? is given by 2.13 with g replaced by # and E re-
placed by H . If the quantity of interest is the scattered field, it

is always possible to define the time origin such that the initial

values of the scattered field are zero everywhere in space. Consequently,
the transform of the field vector of the scattered electric field satis-

fies the homogeneous vector wave equation

2 Q
VxVx §°(£,s) + i"—2(1 + é—) £ (r,s) = 0 (2.1k4)
c .

where the superscript 2 denotes the scattered component of the field
vector.

The boundary conditions satisfied by the electromagnetié field vec-
tors at the interface of two medla are given by the familiar relations

a) Both media of finite conductivity:

n x (B (x,t) - E_l(}‘_:t)) 0 (2.15)

i

0 . .(2.16)

1

n x (Ey(r,t) - H (zx,t))

b) Medium 1 being a perfect conductor:

0 (2.17)

Il

n x E,(zr,t)-

Il

n xvﬂe(z,t) K(r,t) = surface current density. (2.18)

In these equations the vector n 1is & unit vector normal to the interface
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and‘directed from medium 1 into 2. When the Laplace transform of these
equations is taken they assume the form

a) Both media finite conductivity:
x (£(z,8) - £, (z,8))
n x (4#,(r,8) - #,(z,8))

) (2.19)

I=

0 . (2.20)

b) Medium 1 being a perfect conductor:

i

n x £ (x,s) 0 (2.21)

K(r,s) (2.22)

3 % &E(E’S)

The application of the spproximste Leontovitch boundary conditlons,
n x E(r,t) = 2 n x H(r,t) where Z = surface impedance, to the problem of
pulse diffraction must be apprqached with care. The error introduced by
the application of the Leontovitch conditions in the sclution of the dif-
fraction of a monochromatic wave of wave number k by a curved obstacle of
curvature p and refractive index n is of the order (nkp)-:L (7). An
analytic continuation of this result into the s plane indicates that the
error introduced in the determination of the transformed field quantities
by a Ieontovitch boundary condition wili be of the order (n %?)“l .  It
will presently be shown that the behavior of the scattered fields in the
viecinity of the wavefronts is related to the asymptotic behavior of the
transformed field quantities for ‘large values of the transform variasble s.
It appears that the application of a Leontovitch type boundary condition
introduces negligible error if the fields are desired in the vicinity of
the wavefronts. The behavior of the fields a long time after the arrival
of the wavefront, however, is related to the behavior of transform field
guantities for small values of the transform variable s; Consequently,
it appears that the application of a Leontovitch type boundary condition
will lead to erroneous results for the field vectors when the time mea-

sured from the arrival of the wavefront is large.
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2.2 Expression of the Transformed Field Quantities as a Series of Terms

Determined by the Optical Wavefronts

In steady state electromagnetic theory it has been shown that the
field scattered from an obstacle can be obtained by summing the contribu-
tion due to the various optical rays associated with the obstacle (8).
When kp >> 1 , where k 1is the wave number -of the incident field and
p 1is the minimum value of the radius of curvature of obstacle, the
series of optical contributions converges very rapidly. In this theory
it is necessary to accept the existence of some rather unusual optical
rays in addition to the conventional rays of geometric optics. - The addi-
tional rays satisfy an extension of Fermat's principle. In order to
gimplify the discussion of these rays consider the ray system depicted
in Figure 2.1, The ray o' is the conventional geometric optics result
where the position of the specular point T 1s determined by the |
requirement that the optical distance measured from the reference plane
to the obstacle to P(x,y;z) is a minimum. The additional rays which
appear in the generalized theory of geometrical optics are the rays Slm
and SZm o« These rays originate at the shadow boundaries Sl and 82
and travel along the surface of the obstacle and leave the surface at the
points T, and T, determined by the two tangents from P(x,y,z) to

th o
the surface of the obstacle. The m term in the sum E: S (i= 1,2)

n=0
is associated with the ray which undergoes m complete circulations

im

around the obstacle and then travels to P(x,y,z) . The path on the
obstacle taken by each of these fays is determined by the condition that
the optical distance be a minirmum.

It is known that the wavefronts of non-monochromatic waves satisfy

geometrical optics. -This fact, in conjunction with the above description
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of the diffraction process, leads to the ﬁypothesis that the solution of
the pulse diffraction problem will be facilitated if the terms corres-
ponding to the various monochromatic optical rays are identified and
treated separately. A reasonable indication of the credibility of this
hypothesis is the fact that at a finite time T after the arrival of
‘the first signal at P(x,y,z) there are only a finite number of pos-
sible optical ray contributions to the field. All of the rays which
have time delays greater than T are absent. A direct inversion of the
Laplace transform without taking the physics of the rays into considera-
tion, will yield a correct answer. The work involved in decipheriﬁg the
meaning of the result, however, will be considerable. The result
usually is expressed in the form_of an infinite sum §f residue contribu-
tions and branch cut integrations. -These individual contributions must
then be summed in a manner such that the rays §? Sim (i=1,2) are
absent for t < Tn -« ‘In all but the simplest ofmz?ffraction problems,
this is a very difficult thing to accomplish. Consequently, it seems
that the solution of the pulse diffraction problem can be handleé most
efficiently by treating each term in a wavefront expansion separately.
The solution of the vector wave equation 2.1k4 is obtained in the
same manner as the solution of the vector wave equation for monochroma-
tic fields. - The transform of the field vector gb(z,s) can be expressed
as the result of some vector operations on two scalar functions which are
solutions of a scalar wave equation. Consequently, in discussing the
decomposition of the field into its optical components, it will suffice
to investigate the behavior of a scalar function 3(r,s) which satis-

fies the scalar wave equation

2
¥ 3z,8) - 2 1+ )3 (ze) = 0. (2.23)
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It is desired to write the solution of 2.23 in the form of a sum of terms
which can be identified with the optical wave fronts. The requirement
that each of the terms be zero for time delays less than some specified

minimum time necessitates that 3 (r,s) be expressible in the form

)1/2

g
00 -s(1+ =) (2) @
€S —
I(z,8) = 2, U, (z,8) e BE = § I Ans] s (2.24)
- n=0 m=0 :
When equation 2.24 is substituted in 2.23 the following relation is
obtained

2
> [v7-S0e D] 3 = 0, (2.25)
m=0 c

and this requires that each term in the sum vanish separately. If the
operator in the brackets in 2.25 is applied to 3 m(_x_'_,s) and the result
equated to zero, it ie found that the functions um(g,s) must satisfy

the relation

52(1 +—€g§) UVTIOn |2~ ';lé] U-m(z’s)

(4, G412 o 2,0 2 _
- s(1+2) [2vum VI +U Y Tm] +V U (r,8) = O . (2.26)
In order to insure that the division given by equation 2.24 will yield
waves whose fronts travel along the surfaces determined by geometric
optics, we must choose the T;(E) such that they satisfy the Eikonal

equation

2 i
|VT;(£)| = = - (2.27)
c

The functions Um(z,s) then satisfy the equation
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2 , o 2 o
VU (z,8) - 81+ = [2vum VT + YV Tm} = 0. (2.28)

If s 1is replaced by -iwm and o is equated to zero, equation 2.28 is
identical with the equation satisfied by amplitudes of the geometrical

optics waves in the asymptotic theory of diffraction.

2.3 Behavior of the Fields in the Vicinity of the Wavefronts

In this section it will be shown that the fields in the vielnity
of the wavefronts can be obtained by considering the asymptotic‘behévior
of the transform of the fieid vectors for  large values of the compiex
frequenéy 8 o _The Tauberian theorem which 1s employed to justify this
procedure is obtained in an admittedly non-rigorous fashion from an Abel
type theorem given in reference (9).

The Abel type theorem given in the above reference is stated in
the following forﬁ: |

Theorem: If a one-sided original is represented asymptoti-
cally as t - O+ by some power series of nof
necessarily integral exponents exceeding -1, then
the s series obtained by transposing the ori-
ginal term by term represents the image asympto-
tically as s - 00 .

In this theorem the term original refers to the time function and
the term image refers to the Laplace transform of the function. The in-
verse of this theorem, if it exists, will enable cne to determine the
asymptotic behavior of the original time function ags t -» 0+ from the
asymptotic representation of the image function as s - oo . It is not
true in general that the inverse of an Abel theorem yields a correct

Tauberian theorem. The conditions for the validity of a Tauberian theoren
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are always more severe than those which guarantee the validity of‘an
Abel theorem.

In order to Justify the use of the Tauberian theorem which is
inverse to the above Abel theorem, something must be said about the
nature of the time functions which are likely to result from the in-
version of the asymptotic representation of the image. A time function

of the form

£(t) = 8(t-t)) + U(t—to) Y at % (2.29)

has a Taplace transform if « > -1 . Formally applying the Laplace
transform operator to both sides of 2.29 yields the result

-8t

3(3,5)_: g 2 1% g% Dn-o+1)

b e BTl } ; a>-=1. (2.30)
s

In the solution df pulse diffraction problems, the transform of the field
vectors is obtained as a solution of a vector wave equation. There is
no question about the existence of the Laplace transform when it is
obtained in this manner. This implies that the inverse of the transform
of a field vector must be representable in the form given in equation
2.29 in the vicinity of a wavefront. An application of the Abel theorem
from (9) then indicates that the transform is representable in an asymp-
totic series for large s . Consequently, since we know that the inverse
of the transform of the field vectors will yield a time function of the
type 2.29, it is reasonable to assert that the asymptotic representation
of the inverse of these transforms can be obtained by a term by term -
inversion of their asymptotic representation for large s .

With the assistance of the above Tauberian theorem, it is easily
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demonstrated that the amplitudes of the ﬁaves at the wavefronts are
determined by the lawsr of geometrical optics. As discussed in the pre-
ceding section, the solutions for the vector fields are derived from
two scalar functions which satisfy the scalar wave equation 2.23. A
solution of this equation was given in 2.24. For large values of s
this equation can be written

lim F(r,s) = ). lim Y (r 5) exp[—s(l+§ E' ('—) +°°°)Tn01(£)]
s > 1 m=0 s >1

(2.31)

The time function which corresponds to the m#h term in 2.31 will be zero
for t 4 T;(E) . Since T;(E) was chosen such that it satisfies the.
Eikonal equation, the equation t = TZKE) describes the arrival of the
mth wavefront at r . The amplitude of the disturbance associated with
this wavefront is given by slimbgj m(E,s)_. The function 1&m(£,s)

e

satisfies the equation 2.28 and when 8 - @ this equation can be

approximated by the relation
o 2.0
avum VTm+’UlmV Tm = 0 . (2.32)
The relation 2.32, however, is the equation satisfied by the amplitude
of waves determined by geometrical optics (10). As a result, it is

apparent that in pulse diffraction problems the amplitudes of the waves

at the wavefronts are determined by geometrical optics.

O
2.4 Behavior of the Fields when t - Tp(r) >>1

th "
The inversion integral for the m  term in the wavefront expansion

given in 2.24k can be written
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A+ico bton To(r))
L) = om [ Ugme e T e, _
A-1c0

where it has been assumed that o = O . The fact that t - T;(E) is large
suggests that it might be worthwhile to investigate the possibility of
deforming the contour -of integrationvin 2.33 into the left half plane
where Re(s) < 0 . A typical amplitude function 1jm(£,s) will in

general have both poles and branch points in the region Re(s) < A .

Figure 2.2 illustrates the deformation of the original contour into the
left half plane for a typical distribution of singularities of llm(z,s) .

If t - T;(E) is large)the most significant contribution to the
value of the inversion iﬁtegral is the one which results from the singu-
larity which has the maximum real part. In the case depicted in Figure
2.2 the pole along the imaginary axis and the branch point at s = 0 are
the significant singularities. The contribution from the pcle on the
imaginary axis is easily obtained by Cauchy's residue theorem. This will
yield the steady state behavior of the time function associated with
3m(£,s) . The contribution which is obtained from the integration around
the branch‘poin£ st 8= B Wil Seseeibe Hik Geviation of c[-l[3}n(£,s)]
from its steady state value.

An asymptotic expansion of the value of the integral around the
branch point at s = O can be obtained by expanding the function limﬁg,s)
in a Laurent series about this point. The integrals which result from
this procedure can, in principle, be solved. If the radius of éonvergence

,R, of the Taylor series expansion of llm(g,s) about s = 0 is large
enough that [t - T;ﬁg)]R >> 1 , it is not necessary to worry about the

effect of the other singularities on the expansion of 'LLm(E,s) about the
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branch point. Ih this case the evaluastion of the branch point inﬁegral
with U (r,s) replaced by a Taylor series representation will yield an
o

adequate asymptotic representation.
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III. THE DISPERSIVE EFFECT OF A FINITE CONDUCTIVITY

3.1 Introduction

Although the constituent parameters .., €, and o have been
assumed to be individually of a non-dispersive nature, the fact that
o # 0 introduces a dispersive effect. This is easily demonstrated if

equation 2.9 is written in the form

v xﬂ(zis) = €'s E_:_(EJS) = E (E;O) ) (3'1)

where the effective dielectric constant €' 1s defined by the relation

et = e(l+—€%) ¥ . (3.2)

In pulse diffraction problems the'propagation process is of a secondary
interest so that we will be concerned with situations in which a wave
propagating in a non~-conducting medium is scattered by a conducting
obstacle. The question which naturally arises is, how significant is
the dispersive effect predicted by equation 3.2%

. The task of investigating the dispersion introduced by 3.2 is
greatly simplified if we limit ourselves to a study of a problem in which
the only source of dispersion is the fact that the scattering obstacle
has a finite conductivity. The reflection of a pulse from a semi-
“infinite imperfect dielectric is a problem of this nature. This problem

is solved in Section 3.2

It is apparent from equation 3.2 that 1lim €' = € . This fact,
S = O
in conjunction with the knowledge that the behavior of a wave solution in
the vicinity of its wavefront is determined by the 1limit of the transform

of the field vector as s - oo, indicates that even a good conductor acts
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like a dielectric in the immediate vicihity of the wavefronts. That
is, at the wavefronts the reflection coefficient is determined by the
dielectric constant of the metal and not by its conductivity. The length
of time over which this dispersive effect is significant will be deduced
from the results of the pulse reflection problem solved in Section 3.2.

3.2 The Reflection of a Delta Pulse from a Semi-Infinite Imperfect
Dielectric

The problem which will be considered in this section is plictori-
ally described in Figure 3.1l. The incident field is chosen to be propa-
gating in a direction normal to the surface of the dielectric. The case
of non-normsl incidence can also be solved but the solution of this
problem is slightly more complicated and it does not add anything to the
understanding of the dispersion phenomena. -The transforms of the field
vectors are obtained in a manner which is completely analogous to the
procedure employed in the steady state problem. The crucial poiht in
this procedure is the identification of the various types of wave solu-
tions which exist in free space and in the dielectric. In the fransient
problem, it is useful to identify the exponential factors in the wave
solutions with a time delay. A knowledge of the time delay associated
with the reflected and transmitted signals enables one to correctly choose

the proper form of the transform solutions.

3.2.1 Derivation of the transforms of the field vectors. The
incident signal is assumed to be a delta pulse which moves through space
as a plane wave. The wavefront of the incident signal is defined by the

‘=0 . If the electric field of this pulse is oriented

olm

condition t +

in the x direction, the incident fields can be written

E(z,t) = a 8(t+2) (3-3)
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H(z,8) = - Ew,"lzﬁ'a(t + =), : (3.4)

where a, denotes a unit vector in the 1th direction. When the Iaplace

1
transform operstor defined by equation 2.1 is applied to the incident

fields specified above, the following transform functions are obtained

Elze) = 8 Y U2) , (3.5)
e - ay e UG (3.6

The function U(-z) which appears in these eqﬁations is a Heaﬁiside unit
fﬁnction which is zero for z > 0 , uwnity for z < 0 , and equal to the
value 1/2 for =z =0 . The presence of this unit function necessitates
that we apply the boundary conditions at the plane =z = 0- . An informal
Justification for considering the boundary value of the transform to be
its limit as =z approaches the.boundary from the right can be obtained by
appealing to the properties of the inversion integral 2.2 . When the
Laplace transform of a funetion f(t) is inverted the result is equal to
£(t) when t >0 , zero when t <O , and % f(0) at t =0 . Thus the
inversion of the transform does not yield the true value of f(t) at

t =0 . At the plane 2z = 0 the incident signal gpecified by equations
3.3 and 3.4 is zero except at the time +t = 0 . But the time + =0 is
just exactly the time at Which the inversion integral does not give the
correct value for f(t). For this reason, it is expected that a straight-
forward application of the transformed boundarj conditions at z = 0 will
not give a correct answer., At the plané z = 0- the incident signal is

zero except at the time t =0+ . In this case, however, the inversion of

the Iaplace transform of the incident signal yields the correct answer
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since t >0 .
The time delay of the incident signal is t + % , that of the

reflected signal t - % , and that of the transmitted signal + + z_
2

where s is the effective phase velocity in medium 2 . Since the

incident signal has an exponential factor involving + % , the above

information about the time delays suggests that the transform of the

reflected signal should involve a factor e—sz/c and the transform of
+sz/cp

the transmitted signal a factor e . The transforms of the re-

flected and transmitted fields are thus written in the form

£'z,8) = a R(s) e° (3.7)

E%2,8) = (1 +R(s)] /2 (3.8)

Wee) = 5, 755 R (@) L (3.9)

B'(2,8) = - 2y 5= [1 4 R(s)] /2 (3.10)
where

%; = wll + Eis)l/ S me (E;)l/ 2 - index of refraction of 2.

(3.11)

The g; vectors have been chosen such that the boundary condition on
the tangential components of total ¢ (z,t) is automatically satis-
fied. The tt vectors in equations 3.9 and 3.10 are obtained by a
direct application of the curl relation 2.8 to the g; vectors in 3.7
and 3.8. The condition that sz,tt(z,t) be continuous yields the

relation

-Jl—c [-1 +R(s)] = - ul (1 +R(s)1,

c
o o 2
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which, upon solving for R (s) , cen be written

(o]
Log dealseSH"
R(s) = = = T (3.12)
1+ E; 1L+ n(l + EE)

The function R (s) is interpreted as the reflection coéfficient in
the s domain.

It will suffice to consider only the inversioﬁ of the reflected
electric field transform. The other field guantities can easily be
obtained in the same manner. When the value 3.12 for the reflection
coefficient R (8) is substituted in 3.7 and the inversion integral
2.2 applied to the result, we obtain the following integral expression

for the reflected electric field E (z,t)

A+icéo Z
a _ g:1/2 g(t - 2)
—x 1 -n(1 + ts) | ¢’y

E (z,t) = Bl

s . (3-13)

Aoty L % Bl 4 _é%)l/e

3.2.2 Evaluation of the inversion integral for the reflected

electric field. The integral expression for E (E’t) can be evaluated

asymptotically in the manner described in Sections 2.3 and 2.hk. It is
possible, hoWever, to transform this integral into a form which will
yield both of the asymptotic limits without making use of the Tauberian
theorem given in Section 2.3. This proﬁides a convenlent check on the
validity of this theorem. The approach to be employed here is also nice
in that it yields an exact answer for the case n =1 .

The only singularities of the integrand in the integral 3.13 are
the branch points at s =0, -c/e i Figure 3.2a illustrates the original

contour and the choice of a branch cut along the negative real axis from
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0 to -c/e . Before deforming the contour of 3.13 into the left half
plene, we must investigate the behavior of its integrand on the infinite

arc in the left half plane.

1-01+ Y2 st -3 | s(t-3
1lim TIE e = T wn e . (3.1k)

s> 1+n(l+Z)

The integrand vanishes on the infinite arc if t - % >0 . If

t = % = 0 , however, the integrand does not disappear. In order to avoid

this difficulty divide the integrand into two parts.

1-n( s Y2 1-(1+ Y2
f - T2 2 2 (3.15)
1 +n(l + é%)l/z sk Le® 4 4 n(l + é%)lfe

The first term in 3.15 will yield a delta function return and the second
term now vanishes on the infinite arc for all (t - %) 20 . When 3.15
is substituted in 3.13 the following expression is obtained for E (z,t).

A&ico

: a 1/2
. l-n(1 + =) Z
- st~ =
Blad) ma o Bl =D 4 o8 i e 8 il c)ds
- =< 1l+n ¢ —~x i 1l +n 0,1/2
o Tan(l + <=
A-ico €S

{2.18)

The integral in the second term of 3.16 will be designated as I
in the calculations which follow. Since the integrand of I disappears
on the infinite arc in the left half plane for all t - % 20, it is
possible to deform its contour into a new contour which surrounds the
branch cut from s = 0 +to —a/e . This contour is depicted in Figure
3.2b. If the variable s is replaced by 0/e wéiiﬂ (the plus sign is
taken on the top side of the cut and the minus sign on the bottom side of
the cut) and the results for the integration along the top dnd bottom side

AP +ha At ave added. it is found that T can be written
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1
2ic 1 wl/z(l- /2 gy z
T=- 1% 1n£ L(L%ﬁf'e wifEegd e - 24D

vhere V = %(t ’ -2—) . -To the best of the writer's knowledge this inte-
gral cannot be solved exactly with the exception of the case n = 1 .
When n = 1 the integral in 3.17 assumes the form of an integral

representation of a confluent hypergeometric function.
1 /
1/2 1/2 -yw 7t 3...
.[ w?’ (1 - w) e v = g F (2,3,W) . (3.18)
0

The confluent hypergeometric function in 3.18 can be shown to be equal to

the following combination of well-known functions.

FGzw = 2P, (3.19)

where Il denotes a modified Bessel function of order one. Thus when

n =1, the exact expression for the reflected electric field can be

written 5 . 5 .
Il(ggg(t - z)) i 2@; (t"z .
E {as5) = -8 e Ult-=) .

The behavior -of equation 3.20 is plotted in Figure 3.3 .

If n # 1, asymptotic approximations to T can be obtained for
‘the two extremes Vv << 1 , and ¥ >> 1 . In the case Yy << 1l an
;asymptotic 'expansion can be obtéined by expanding the exponential func-

tion e VY in a Taylor series about Yw = 0 .

1

1/2 1/2 2
2i0 L+n | w’/(1L-w) v« .2 CEZy
hodm 'n_[ i [l— WW-F?? W+ ---}dwll(tn c) »

lim T ~

¥ << 1
0 (3.21)
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vhere r=1 - % . This procedure yields the following series expansion

valid in the vicinity of Vv~ 0 .

N
I~-22 1R 7 o () VUG- D), (3.22)
m=0 -
where
B.m —£ l g av = W EFl(l’T, n+33r) e, (3‘23)

The asymptotic expansion of E (z,t) has also been calculated using the

Tauberian theorem given in Section 2.3. The results from these two
methods coincide. A point in favor of the Taubefian theorem results is
the fact that they do not require the evaluation of complicated coeffi-
cients such ag 3.23.

The asymptotic approximation to I for the case V¥ >> 1 can be
obtained by expanding the integrand in 3,17 about w =0 . It is also
agsymptotically correct to replace the upper integration limit by o .

When these things are done we obtain

@

lime-E—iql+nf l/2(1--—1.1 %w2+ o--)(l+rw+r2w2+ o)
y>1 0 ' -y Z
X e dwzl(t--a)

1/2 | '
. 20 1en 3/ [1+3(r -V R g—-%)w'%@w‘%]wt- 2.

€ n

(3.24)

3.3 Some General Conclusions about the Dispersive Effect of a Finite
Conductivity

The physical process which causes a conductor to be dispersive is

the exeltation of eddy currents. If o = 0 there cannot be any current
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flow so there is ﬁo dispersion. Tt appears that a significant parametér
in the assessment of the magnitude of the @isﬁersive effect is the relaxa-
tiph time (o/ej-l of the material of which the scaﬁtering obstacle is
cpinijosedn When 6 = ® the relaxation tiqe is zero. This implies that
the currents induced in & perfect conductor attain fheir equilibrium
vélué iﬁstantaneoﬁsly. Consequently, it shoﬁld be expected that a per-
fect conductor ﬁd#ld be nbﬁ-diépersiVe. This, of course, is true.
Anotﬁer-im@ortanﬁ consideration in the assessment of the sighifi-
cance of the dispérsive effect is the bandwldth of the incident signal.
It is obvious @h&t & nérrow-band signal is distorted much less than a
ﬁideubéﬁd signal! The bandwidth of & signal with a delta functioﬁ time
dependence is infinite. -Consequently the dispersive effect of a finite
conductivity can be maximized by considering the solution of a delta
source problem. It is reasonable to assume that if the dispersion is
negligible for a delta source, it will be negligible for all signals.
The conditions in the problem solved in fhe preceding section
were chosen such that the only source of dispersionlwas the fact that
o # 0 . The distortion of the reflected signal can thus be attributeq
solely to the dispersive effect of a finite cénductivity. Also the
incident signal has a delta function time dependencé so that, according
to the reasoning given above, we should expect that the distortion in
the reflected signal will be maximized. The exact results for the case
n = 1 provide a convenient means of estimating the significance of the
effect when o # 0 . The plot of the time behavior of the reflected
signai given in Figure 3.3 indicates‘that the signal rapidly approaches
its steady state value in a few relaxation periods (G/E)_l . This is

physically reasonable since, as mentioned above, the dispersion is caused
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by the flow of eddy currents in the scatterer and it is known that these
currents decay in a time of the order of a few relaxation periods.’ Thus
it appears that a sufficient criterion for neglecting the dispersive
effect due to a finite conductivity is the condition o/e >> £, + The
frequency fm is determined by the high frequency cutoff of the equip-
ment which is employed to detect the scattered signal. If U/E >»>»fm
the distortion in a received signal is undetectable.

Almost all metallic conductors satisfy the condition c/e > lOl8a
This corresponds to a frequency which is many times larger than the upper
limit of the best receilvers available at the present time and in the
fgyeseeable future. Consequéntly it is reasonable to neglect the disper-
sive effect of a finite conductivity when the scattering obstacle is
composed of a metallic material. There can be a significant detectable
distortion due to a finite conductivity when a signal is scattered by
an obstacle whose composition is somewhat like dry earth. 1In this case
0/€'~ 107 and this frequency is well within the upper cutoff frequency
of a good receiver. It is reasonable to expect, for instance, that a
signal scattered by one of the planets or our moon would be distorted as

a result of their finite conductivity.
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IV. A SIMPLE EXAMPLE OF THE METHOD OF SOLUTION WHEN MORE THAN ONE
OPTICAL RAY IS PRESENT: THE TRANSMISSION OF A DELTA PUISE

THROUGH A CONDUCTING DIELECTRIC SLAB

4.1 Introduction

The virtues of the method of solution for pulse scattering problems
which was described in Chapter II are not readily obvious until the method
has been.tested on a typlcal problem. The choice of a particular problem
to illustrate the method is influenced by two factors. First, the physics
of the problem should predict the presence of more than one optical ray at
the observation point. This is a rather obvious requirement since the
crux of the wavefront approach is the fact that pulse scattering problems
are'501Ved most efficiently if the effects of the various wavefronts are
considered seﬁarately. If there is only one wavefront, the method of
Chépter'II and the conventional approach are identical. Secondly, the
solution of the problem which is chosen should be simple enough tﬁat the
value of the pulse scattering method is readily apparent. If the problem
were not of a simple nature, the advantages of the wavefront approach
might be masked by the complexity of the solution. For these reasons it
was decided to use the problem of the transmission of a delta pulse
through a conductiné dielectric slab as an example of the wavefront expan-
sion technique.

‘The problem which is sol&ed in this chapter is actually slightly
more complicated than it need be to demonstrate the solution technique.
For the purposes of the demonstration, it would have been sufficient to
congider the transmission through & nonconducting slab. ‘It is felt, how;
ever, that the added complexity is compensated by the fact that the solu-

tion to the problem with non-zero conductivity is of reasonable practical
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significance. The results of this problem are relevant to the problem

of shielding equipment from uwnwented non-monochromatic signals.

L4L.,2 Derivetion of the Transforms of the Field Vectors

The scattering problem which will be solved in this chapter is
depicted in Figure 4.1. The media in regions 1 and 3 are assumed to be
vacuums and the magnetic permeability of medium 2 is taken to be the
same as that in 1 and 3. -The incldent field is again chosen to be a
plane delta wave which moves in the negative 2z direction with a wave-
front determined by the condition t + z/c = 0 . The orientation of the
incident field vectors is iﬁdicated in Figure L4.1. The equations which
describe the incident field and its laplace transform are_identical with
equations 3.3-3.6 of Chapter III. For the sake of convenience, those

equations are repeated below:

Ez,t) = & 8(t+D) (4.1)
i " z

Hl(z,‘b) = - EY a? 8(t + (—:') 3 (li».2)

eXz8) = 8.C Y2 (4.3)
i P esz/c T

H(ne) = -8 ot Ut-=) (1)

where a; denotes a unit vector in the ith direction.

The appropriate forms for the vector field transforms of the ref-
lected and transmitted signals are obtained in the same way by the same
technique, that was employed in the solution of the problem in Chapter III.
The exponent of the exponential factor in the transform of a field vector
is determined by a consideration of the time delay associated with the

field vector. The reflected signals have time delays of the form
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t - :—i (i = 1,2,3) and the delay for a transmitted signal is of the
form t + iz— (1 = 1,2,3) . ‘This indicates that the transforms of the
i

reflected and transmltted fields can be written

: g_”l(z,s) = gxﬂ_l(s) oB%/c (4.5)
8_2(2,5) - 2}([32(5) esz/cz +R2(s) e-sz/CE] , (4.6)
Eo(z9) = 8.1(s) 7 (1.7)
H(zs) = & =2 R (s) o-52/¢ (4.8)

(o]
H(zs) = 8 —L[ -3,0 /2 iR (0) <, (g

L= - =y B, Co 2 2 ] o (B9
Hy(ze) = -8 2t e SV | (1.10)

o]
where
—E-; = n(l + E"g)l/ 2 . & = infer of rePraction of 2 . (4.11)

The continuity of the tangential components of the transformed
vector fields at the boundaries =z = 0,-£ yields a set of four equations
involving the quantities Rl(s), ) 2(5), ’RE(S), and ) (8) . These

equations can be represented conveniently by the matrix relation

[l 1 1 o | (R 1(8)] (1]
o , e-Sﬂ/CQ esz/c:g _e-sz/cg s g
- - (k.12)
0 l+cfep 1-cfey 0 RE(S) 2 .
. =stfep ¢ spfep _-stfc :
A = © L) L°)
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Each of the coefficients which appear in equations 4.5 - 4.10 can easily
be obtained from the abové matrix equation. The result for the trans-

mission coefficient 3 (s) can be written

y & oS4/
c
H(e) = = (4.13)
2 /c s -spfc ’ :
(l+§— e = l--z—) e -
2

An integral representation of the transmitted electric field §3(z,t)
can now be obtained by applying the inversion operator defined in 2.2

' to equation 4.7 with ] (s) replaced by 4.13.

(v+25
c c
A+ioo M-EP e
1 2
53(z,t) =B 35 ds .

‘ 2 o =8f/c
A=ico (l+£—) esz/c2 s {lete) T /o2
‘2 -

(b.1k)

4,3 A Discussion of the Alternative Methods Available for the Solution

of the Inversion Integral

The integrand of the integral in 4.1k is a single-valued function
of s . This is not immediately obvious since the function c/c2 is a
multiplie-valued function with branch points at s = O, -cr/e . It is
noted, however, that the integrand is unchenged if c/c2 is replaced by

-»c:/c2 . Consequently, even though c/c'

o changes sign as s passes from

the top side of its branch cut to the bottom side, the integrand remains
unchanged. It is also apparent that the integrand in k.14 has an
infinite number of poles in the left half of the s plane. These poles

are located at the values of s which satisfy the relation




~35-

aj 2—‘2+l
= | See] R AEK 7 m=0,1,2,°*+ . (k.15)
c
g = -1
Co

An obvious way to evaluate §3(z,t) is to apply Cauchy's residue theorem
and express the integral in 4.1k as an infinite sum of residue terms.

The method which has been expounded in this paper involves a
degomposition of the field ga(z,t) into a series of terms which afe
determined by the optical wavefronts. An approach which is, in general,
qﬁite successful in thé determination of the desired wavefront expansion
is to investigate the behavior of the transform of the field vector on
the infinite arc in the right half of the s plane. When the transform
is expanded in an asymptotic series, it is usually found that the wave-
front terms are easily recognized. An asymptotic expansion of the

integrand in 4.1L4 for large values of s where Re(s) > 0 yields the

result
. s(b+Zth
L — e &
i~
1im e N
8> 1 () c,2 es’z/ce - (1-892 e'”/‘ze
Re(s) > 0 e’ =
z+£
% 1.2m ; s(t +—=) =(2m+ l)
~ ). i 5 (n+1 . [l+®(s l)] e . (k.16)
m=0 (n+l)

The quentity (t + Ei& - (2m+l}—-) which appears in the exponent of each

term in 4.16 can bé interpreted as the time delay associated with a wave

which has been intérnally reflected 2m times inside of the dielectric

Ln n- l)2m
(n+l)2 n+1

slab. Likewise, the coefficient is the transmission
coefficient of a wave which is internally reflected 2m times in a dielec-
tric slab whose refractive index i8 n . The expansion 4.16 was obtained

by expanding the denominator on the left hand side in a geometric series
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and then taking the limit as s >> 1 . As a result, it appears that the
desired wavefront expansibn of the field gs(z,t) can be obtained by
expanding the denominator of the integrand in 4.14% in a geometric series.
The geometric series obtained in this‘way i1s convergent everywhere to the
right of the singularities of the integrand. The field §3(z,t) can

thus be written in the form

A+ico L s ~n
5 c/c, ey
§3(Z’t) T x W mz—oj (J.+-<-:---)2 1 o s
T Y A-1i00 c c
2 2
s(t +2H - (2mi1) 2y
(& C
Xxe 2 ds

(4.17)

The task of comparing the relative merits of the two approaches
discussed in the preceding two paragraphs is considerably simplified if
we restrict ourselves to the case o =0 . This choice makes the solution
of 4.17 almost trivial since the function 0/02 is then equal to the
constant value n . The integrals which remain are easily shown to be
expressible in the form of delta functions. The result for '§3(z,t)

can be written

es)
Ey(2,t) = a ¥

n-l)2m
—X 2
(n+l)" m=0

n+1l

8(t +_Z%€ " (am+1):”'c£) . (4.18)

The answer given in 4.18 is exactly that which is predicted by the physics
of the problem. The transmitted signal is expressed in the form of a
series of discrete delta signals received at time delays which correspond
to the optical wavefronts. The magnitude of each signal is also in

accordance with the physical interpretation.
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When o = 0 +the locations of the poles in the integrand of 4.1k

are given by the relation

" Eﬁ - . En(n+-1
m

c

) e dmx , W= 0184 & (4.19)

The integral along the contour Re(s) = A 1is equal to 2ni times the
sum of the residues at these poles if the integrand of 4.14 vanishes on
the infinite arc in the left half plane. The asymptotic limit of the

integrand as s - o with Re(s) <0 is given by

(t_’_Z;l s(t.;...z-ﬂ + L2
S,limm hn em/ - v /N & le = © . (4.20)
i 8 -8 ’
RE(8) <0 (ntl)? "V L(na1)® & PHVC

Z+ 2

Therefore, if (t + =& m) > 0 , the integrand of 4.14 vanishes on the

infinite arc in the left half plane. It is also known, from a considera-

tion of the behavior of the integrand in the right half plane, that the

Z+ 4

z+4 fIn
= ——J >0

integral in 4.14 is zero for (t + - %?) < 0 . When (t-+——— -
the condition obtained from 4.20 is satisfied and we can then express the
integral in 4.14 as a sum of residue terms. The expression which is

obtained for ‘§3(z,t) can be written

(@)Y 2 ws(1-7)

® (z,t) = a u(r- 1) , (4.21)
3 =X (n+l)2 2rT ...
where
-1 ﬂr z+4
e 2+1; T . %-; T;t+'c y

The result given in 4.21 shows little resemblance to the wavefront expan-
sion given in 4.18. As a matter of fact, it is not even apparent that

return is of the discrete nature indicated by physical reasoning.
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The equivalence of equations 4.21 and 4.18 can be demonstrated

if the following relation is employed (11)

oo oo}
-%E Y. eim:tz/u = Y., 8(z - 2mu) . (k.22)
m=-c0 mM=~00

With the assistance of 4.22 the product of the summation and the unit

function in 4.21 can be written in the form

T
OZO eim:t(l - —":)U.(T-T) 2 OZO 8(1 - ET[,:' "Em)'U(T‘T)
m=-00 e

= or jVj 8(T -(2m+1)T) . (k.23)
nm=0o

If 4.23 is substituted in L4.21 and it is recognized that

2m+1
r

/7 8T - (2mi)r) = 8(T - (2mil)T) ,

the expressions in 4.21 and 4.18 can be shown to 5e equivalent. The
important point to be noted here is that in order to obtain each term
in the result predicted by the physics of the problem an infinite num-
ber of residue terms must be summed. In the above example this did not
cause too much hardship since the residue series could be summed
exactly. ‘It is not always so simple. The sum of the residue series

obtained from 4.14 when o # O 'is not so easily obtained.

4.4 TInversion of the First Term in the Wavefront Expansion when o # 0

The results for the transmission of a delta pulse through & con=-
ducting slab are of interest i1f 1t is desired to assess the ability of a
thin sheet to shield a region from unwanted transient signals. The

shielding properties of a metallic sheet are easily obtained if the
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dincident signal has a very narrow spectrum. In this case,. the steady
state behavior of the signal transmitted at the frequency corresponding
to the maximum in the incident signal spectrum will yield a very good
Indicatlion of the over-all shielding capabilities. When the signal

has a relatively wide bandwidth, however, the steady state theory may
not yleld a result which is sufficiently accurate. In this case it is
useful to appeal to the impulse response results given in this section.
The signal transmitted when the incident signal has an arbitrary time
dependence can be obtained from the impulse response by means of the
convolution integral.

‘It will suffice to consider the inversion of the first term in
the wavefront expansion since magnitudes of the higher order terms are
significantly reduced because of the attenuating effect of the conduc-
tivity of the slab. If it should prove necessary to include the higher
order terms in a particular problem, they can be evaluated in the same
manner as the first term. The various terms in the wavefront expansion
are represented in integral form in equation k,17. If the first term

is designated by E3O(z,t), we can write

s(t + z+k _ 4

AM+ioo c/c
¢
2 c 2 s

2
Ey(zt) =2, &
A—.

. (L.2k)
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The magnitude of the field in the vicinity of the wavefront will be
obtained by applying-the Tauberian theorem given in Chapter II, Section
2.3. This requires that the integrand of 4.24 be expanded in an asymp-
totic series ﬁalid for s - o0 . -The‘asymptotic-expansibns of the

factors in the integrand are given below
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where T, = (t + _z%-_z = -FicE = time measured from the (4.27)
arrival of the wavefront. '

When equations 4.25 and 4.26 are substituted in L4.24 and the result
inverted term by term, the following expression is obtained for the

transmitted electric field in the vicinity of the first wavefront
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It is apparent that 4,28 is valid when E T, << 1 . In other words, the
expression obtained above ylelds an asymptotic estimate of 'E.BO(Z,’G) for
times much smaller than the relaxation time ,(0/ <~:)-'l:L of material of

which the slsb is composed. The exponential factor ‘in 4.28 describes
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the attenuation sustained by the incident signal in passing through the
slab. It is rather interesting to equate this attenuation to that which
a monochromatic signal would experience in passing through the same slab.
It is found that a monochromatic signal of angular frequency o/2e sat-
isfies the above condition.

.The value of E3O(z,t) for large values of TO will be obtained
by deforming the contour of integration in 4.24 into a new contour
which surrounds the branch cut connecting the points s = 0, -cr/e » The
information pertinent to this contour deformation is contained in
Figure 3.2. In order to insure that the contour ‘deformation is valid
for T = 0 , the integrand of 4,24 must be expressed as the sum of two
terms. The first term is the asymptotic limit of the integrand on the
infinite arc in the left half plane, and the second term is the remainder
of the integrand. When this split is performed the integral expression

for '§3O(z,t) assumes the form

o , nt
In “Te g 2n
E.(z,t) = & e 8T ) +a —  I(z,t) (4.29)
3o = (n+l)2 © = ni(n+l)2
where
BHE g sl )1+ y/2_ 121 +Z) (T - 21+ Z 2 y1/2y
I(Z}t) = e ° ds
’ 1/2 2
A-ico 1+ n{l +— eB
' ng ,
TO = TO + c - (""'30)

The integrand of the integral I(z,t) vanishes on the infinite arc in

the left half plane for T, 2 0 . Consequently the path of integration
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along the line Re(s) = A can be deformed into the path C wﬁich is
indicated in Figure 3.2b. On C it is convenient to replace the
variable s Dy éizlﬂ % W . When this is done and the contributions
from the top and bottom sides of the cut are added, the following

expression is obtained for the integral in 4.29

1
b} = 2ig T n2~ (l+n2)w + :L(l+112)1r1'l/‘2(l-w)’]'/2
Hzpt) = - == Im| =5 NV PN i~
g H = (L+n")w - i2nw” “(1-w)
-QW+ iﬁwl/e(l-w) 1/2
e aw , (k.31)
where
S -9 . nf
a = = TO 2 B=-é' o ’

and TIm signifies that the.imaginary part of the integral is to be
taken.

The integral given in 4.31 can be solved asymptotically for large
values of & by expanding the integrand in a Taylor series about the
origin. This expansion is divergent at w = 1 but the results will be
asymptotically correct if «a 1is sufficiently large. The appropriate

expansions are

n2— (l+n2)w + i(l+n2)wl g(l-w)l/2 B

2
7 (1)~ _1/2

=1 +
n®_ (1n%)w - iEnWl/E(l‘W)l/E ”
_ 2(1m)® v G2y, (k.32)
w?
- | 2
e:LBWl/e(l-W)l/g ) eiBWl/ {1+@(W3/2)] o (4.33)

The integral which results when 4.32 and 4.33 are substituted in L4.31

can be solved by completing the square in the exponent. If a new
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variable v = wl/ & . i -2% is iIntroduced, this integral assumes the form
g2 1-3:E
big - 20 - 2 2
lim I(Z,t)N - —-e-— e LLO! ImJ, e o [(v+—2j'—2)+i-(—]-'-+_2)—-(v+i2—5-022_
a>>1 L B n |
2a

.-
= 8 —__(1:2) (v+_i~é§)3+6(vh)] av.
(k.3k)

The values of three integrals required in the solution of L4.34 are given

in the following equations

v B
1 -1 o 5 g
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j e 4y =(2—’;)l/ +i-§a+6(i—2) 3 (4.35)
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v

These integrals are evaluated by changing the contour as indicated in
Pigure 4.2 and solving the integrals along Hl, R o and H3 separately.
When 4.35-4.37 are substituted in L4.34, an asymptotic expansion of
I(z,t) 1is obtained. The result for the transmitted electric field can

then be written
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V. A COMPLICATED EXAMPLE OF THE METHOD OF SOLUTION WHEN MORE THAN
ONE OPTICAL RAY IS PRESENT: @REFLECTION AND DIFFRACTION OF A
DELTA PULSE BY A PERFECTLY CONDUCTING SPHERE

The approach to the solution'of pulse scattering problems
which is discussed in the earlier portions of this paper was evolved
in an attempt to obtain a satisfactory solution to the problem of
pulse scattering from a sphere. The idea of treating each wavefront
term separately was conceived in the process of interpreting some of
the results of V. H. Weston on the backscattering from a sphere (12).
Weston obtains results for the large time behavior of the fields
scattered when a square wave‘modulated carrier signal strikes a
sphere. These results are expressed in the form of an infinite sum
of residues. The leading term in the residue series is the steady
state behavior and the other terms are those associated with the
transient behavior. It is found that the transient portion of the
residue series does not converge rapidly when ka >> 1 . This dif-
ficulty can be interpreted as resulting from the fact that, at a
finite time T , the wavefronts with delays greater than T are
absent. C(onsequently, the sum of the transient terms must be large
enough to eliminate those terms from the steady state term. This
leads to the hypothesis that a more desirable formulation of the prob-
lem can be obtained by separately considering each term in the

wavefront expansion of the transforms of the field vectors.
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The wavefront expansion for the problem of pulse scattering by
a sphere is obtained with the same technique as was employed in the
problem discussed in Chapter IV. - -The behavior -of the transforms of
the field vectors in the right half of the z plane is investigated
for large values of s . ‘It is well known from the work in steady
atate diffraction theory, that the harmonic series converges very
slowly when 8 >> 1 ; One of the most important contributions of the
researches in steady state diffraction theory performed in the first
half of this century was the evolution of a technique by which a
slowly convergent harmonic series can be transformed to a rapidly
convergent representation of the field vector transforms when
s > 1 . When the field vector transforms are expressed in this
form, the identification of the various terms in the wavefront expan-
sion is easily obtained by noting the time delay associated with each
term.

The technique employed for‘theeﬁaluation of the various terms in
the wavefront expansion is dependent upon the time at which the signal
is desired and the region in space at which the observation is made.
The wave behavior in the vicinity of the wavefronts isobtained by ap-
plying the Tauberian theorem given in Chapter II; Section 2.3. The
integral expressions for the asymptotic values of the field transforms are

then treated differently depending on the angular domain within which the

observation point is located. The wavefront terms which correspond to
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the diffracted rays can be evaluated by the Watson residue series tech-
nigque. The first term in the wavefront expansion, however, cannot slways
be evaluated in this manner. The residue series expansion of the first
term is adequate in the deep shadow zcone. This region is defined by the
interior of the cone generated by the tangents to the sphere at the
points (r,0,8) = (a, % + (%)1/3, @) . In the illuminated region the
appropriate technique of solution is the saddle point method. This region
is defined by the tangents to the surface of the sphere.at the points
(r,0,8) = (a, g - (%)_1/3, #) . TIn correspondence with the steady state
theory, the transition region between the deep shadow and the illuminsated
region is termed the penumbra. The asymptotic values of the field trans-
forms in this region are obtained by expressing the integral representa-
tion in a form which contains Fok type integrals. These integrals are
tabulated by Logan (13). The behavior of the waves at large times is

obtained in essentially the same manner for all of the wavefront terms.

5.2 Derivation of the Transforms of the Field Vectors

The scattering problem which will be considered in this chapter is
depicted in Figure 5.1. The incident wave is a delta pulse which moves
along the plane wavefront defined by the condition + + E%E =0 . The
time delay of the incident field is chosen such that the initial values

of the scattered field are zero. The incident field vectors and their

Laplace transforms can be written

Ez,t) = oa 8(t e D, (5.1)
. L _
EIL(Z,'t) = - Ey E—c B(t + E—c—a') 3 (5.2)

o]
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Elze) = ae® Ty (aa) o, (5.3)
Z(z-a)
H(z,8) = - gya-l-g e’ U(a-z) . (5.4)
o

The transforms of incident field can be written in a more useful
form by referring to the work of Stratton which pertains to the
expansion of a steady state vector plane wave in spherical coordinates
(14). An analytic continuation of the complex conjugate of Stratton's

plane wave results yields the expressions

- = envl [ (1), (1
fram = © T (P aey [Ep@er )] Ul
mel (5.5)
Hi(,e) =-Le g Y o(eyP 2 Loy sy (26| Ulanz)
- s UOC n=1 m —eln =7 “oln =?
(5.6)
where
1
P (cos @)
Ec()l)l(r,s) =+ J,(iR) B—p— 0% § 8 - 3, (1R) _2_9 Pl (cos 0) 512 pag
C (5.7)
n(z,6) = 5(—"1‘—'3'"-3-“1 Jo(iR) PL(cos 6) 810 g 5 4 L{iR] (1R)]"
(o]
In
e

1
9 Pn(cos °) cos

1 5 g
% Pn(cos o] cos ¢ B 2 1R[j'};{‘]n(j'R):I sin e sin E¢

(5.8)

isr

and the prime denotes a differentiation with respect to —_— iR .
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The transforms of the scattered fields satisfy the vector wave

equation 2.14 with o = 0 . This equation becomes identical with the

steady state vector wave equation If s is.replaced by =-ik , where
k 1is the wave number of a steady state wave. This indicates that the
transforms of the scattered field vectors can also be obtained from

Stratton's results on plane wave scattering by analytic continuation.

The transforms of the scattered electromagnetic fields obtained in this

way are
- (3) (

~2 _ ¢ A0 2n+l s (3 a _(3)

_E; (r,8) = e nZl(_l) ala+1) [a.n E‘Oln(f:s) +ib Eeln(f’s)] (5.9)
sa

i o n 2n+l (3) (3)
~ucH (r,8) = e nzgl(-i) n(n+l) [ ~eln (r,s) - (r,sﬂ (5.10)
where m(3) and n(3) are the same respectively as the superscript (1)

"o o
ln p ! (1)
quantities, except that ¥ (iR) is replaced by h (iR) throughout.

For a perfectly conducting sphere

i 3 (ir) (531
8 = - - P -
- hﬁlj(ip)

[1pd, (ip)]1" .05
(o0t (101"

where %?PE o . The explicit forms of the transverse components of the

transforms of the electric field scattered by a perfectly conducting

sphere are
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5.3 Investigation of the Properties of the Transforms for s >>»l,Re(s):>O

The form of the wavefront expansion for the scattering from a
sphere 1s not at all obvious from the results derived in the last section.
-In order to discover the correct way to decompose the field, we must
appeal to the approach employed in the simple problem of Chapter IV. It
has been shown that the behavior of a scattered wave in the vicinity of
its wavefronts can be obtalned by considering the asymptotic behavior of
‘its transform in the right half of the s plane. Consequently, it is
reasonable to assume that an investigation of the asymptotic behavior of

Eq

in which these transforms should be written in order to accbmplish the

and 5f¢ in the right half plane will give an indication of the way

deslired wavefront expansion.

5.3.1 The transformation from the harmonic series to an equiva-

lent integral form. When s >> 1 the harmonic series representations

given in Section 5.2 do not converge very rapidly. Basically, the reason

for the poor convergence is the fact that the Bessel function jn(ip) has
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ité maximum vglué in the vicinity of n~ip. Consequently, when

é > 1 é lérge humber of terms must be included when the harmonic
series aﬁe summed. A reQBOnaﬁlylaccﬁrate result can be obtained if
‘thé number of ‘terms retained is of the order ép(ls). The slow con-
vergence of the Harmonic series was a major hurdle to the developﬁént
qf'fﬁe tkeory,qfithe diffraction of‘ﬁonOchromatic weves by a sphere.
This difficulty was e&eﬁtuélly circuﬁvented‘by the application of &
summation techhifjue in which tﬂe harmonic seriés wag transformed into
a new series which was rapidly convergent for large ka . One of ;he
first papers on:ﬁhis transforﬁatioﬁ of £he harﬁonic series was written
by Watson (16). As a result, the ﬁransformation of a harmonic series:
to a new serieg which is more rapidly convergent is Quite often termed
a Wetson transformation. -The Watson transformation is accomplished by
transforming the harmonic series into an equivalent integral represen=-
tation and then evaluating the integral by the calculus of residues.
The result of this operation is commonly referred to as a Watson
residue series. -In the present section we will perform the first part
of & Watson transformation. The harmonic series representations of
the transverse fields will be transformed into equivalent integral
representations.

In the attempt to uncover the proper decomposition of the trans~
forms of the field vectors, it is convenient to consider the total fieid
rather than the scattered field alone. It also simplifies matters if
the transforms of the transverse components are defined in terms of two

scalar functions -Vi(z,s) and V2(£,s) . These functions will be de-

fined by the following equations:




-53-

% o n Ewl e gy 1
B = 307 2y (4,0 - 7 ()| E(cos o
(5:15)
o | [ipd (ip)]"
(z,8) == (YR L [ iR] (iR)]' - —% 1gnY (1R Jx
Vol IR R ng;]- ) a(n+l) [ n( )] _{IEEEITZEE;]F ey (iR)]

% Pi'(cos o).
(5.16)

In terms of these functions, the transverse electric filelds are given by

the relations

- —r V.(r,s)

Eé(g,s) =p = ['%ﬁﬁfﬁ_ + g% V2(£,s)} cos @ (5.17)
- B8 V,(r,s)

€¢(£,S) =-e c [% Vl(E,S) +._§-f;_9:| sin¢ . (5-}_8)

The transverse components of the transforms of the field vectors are
obviously completely determined by the scalar functions Vl(ﬁfs) and
Vz(g,s) . The radial field quantities are not determined by the same

functions but instead by the function

[ipd (1p)1'
‘v3(£,s) = % OZD (-1)*(2n+1) [jn(iR) - - hlgl)(iR)}x
a=t (1en(M (10)1"
xPi(cos e) . . (5.19)

The trensform of the radial electric field is given by the relation
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sa

E;(E,s) =e °© V3(£,s) cos @ . | (5.20)

In the work which follows we will consider only the functions Vl(s,s)
and V2(£,s) since the transverse fields are usually the quantities of
physical interest. Also the resulte for 'Ve(g,s) will be deduced from
those derived for V1<E:S) .

The series representation of Vl(z,s) can be changed into an
equivalent integral form by means of a "trick" often employed in problems
of this type. Consider ﬁhe value of an integral with respect to a vari-
able T whose integrand is equal to the product of the nth term in 5.15
with n replaced by T , the function (sin ﬁT)-l, and an, as yet,

unspecified function B(T) .

J_(ip) h(l)

T 27+1 [jT(iR)- T .
Vl(z,s) = | (-1)" 7(7+D) hili(ip) 0 (iﬁﬂ

C T
1 (-1)"™8(r)
"PT(-COS Q) —é-iﬁ-'r_— ar . (5.21)
The contour 'C dis illustrated in Figure 5.2. In writing 5.21, the

relation

n+l Pl

Pi(cos e = (=1) n(-cos e) (5.22)

is employed. This is necessitated by the fact that the associated

Legendre function of non-integral order, Pi(co§ @) 1is singular along

the 1ine © = x . Since it is desired to obtain a representation which
is valid along this line, the relation 5.22 is employed. A rather con-
fusing point about the representation given in 5.21 is the fact that, in

its final form when the wavefront terms have been separated, the results
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obtained aloné the line ©-= O are correct. This is not predicted by
the form of 5.21 since Pi(-cos 8) is singular along the ;ine. When

Cauchy's residue theorem is applied to 5.21 and the result is equated

to the series 5.15, it is found that B(7) = 1/21 .

The integral representation of Vl(g,s) derived above is not
yet in a form in which the wavefront terms are evident. The direction
in which to proceed at this point, however, is 1lndicated by the results
from steady state diffraction theory. In the steady state theory the
integral representation of the field for short wavelength involves an
integral of the type given in 5.21 but the path usually runs along a
straight line gbove or below the real axis from -co to oo . - The
result 5.21 can be put in this form by first replacing the varisble 7
by a new variable v ~ % . When this is done, it is found that the
integrand of the new integral is an even function of v ."The lower
portion of the path € can then be replaced by a path along the top of
the negative real axis. This path is obtained by a reflection of the
lower power of 'C ‘through the origin. The resultant contour of inte-
gration 'Do' is illustrated in PFigure 5.3a. This is still not quite
what is required, since a continuous path from =~o00 to oo 1is desired.
The path DO is equal to a continuous path D plus a short path BE
running froﬁ Vs to ¥ where % <‘vO < % . It can be shown that the
contribution to the transverse fields from the path E 1is zero. This
is not true for the individual functions Vl(z,s) and Ve(g,s) . When
equations 5.17 and 5.18 are employed to calculate E‘O and £¢ , how-
ever, it is found that the portion of Vl(z,s) which is due to the

integration along E is canceled by the like portion of Ve(z,s)u -As
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a result, it is convenient to define a new set of functions Ilﬁz,s)

and Ig(g,s) which do not involve the integral along & .

| 13%
I,(z,8) = e Tj(-i)v 2
D

[3,- 5(1R) -

1
P (-cos @)

J = --(ip) (l) V"'Je:' ]

- -T"i L (2p) hv‘ l(iRﬂ cos vx = (5-23)
v

M (1)
I (r,s) =S| ()Y 5 [g[:LRh ;] @R)1" -
D V o E V-E

[4p-d 4 (10)]" P' (- cos ©)

- 7 [iRh(l)l (1R)] "] 'Te dv .
[ip h(l)l_(ié)]f v-3 COs v X

V--é' (5-2)4—)

.The transverse electric fields can be expreésed in terms of these func-
tions by equations which are identieal with 5;17 and 5.18 except Vl(E'S)
and V2(£,s) are replaced by 11(3’5) and Ig(z,s) respectively. The
equations 5.23 and 5.24 are the desired integral‘representatiOns of the

original harmonic series.

5.3.2 TIdentification of the various terms in the wavefront

expansion. It has been indicated that a hint as to the form of the
wavefront expansion can be obtained from an investigation of the behavior
of the field transforms for large values of s . In order to simplify
matters, the investigation will be limited to a discussion of the asymp-

totic behavior of the scalar quantity Ij(r,s) which is defined in the
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preceding section. The behavior of IE(E,S) 2 EQ(E,S) and g¢(£,s)
will be deduced from that of Il(s,s)

An idea of asymptotic form of Il(z,s) can be obtained by con-
sidering the behavior of its integrand for large s . The integrand
behaves in exactly the same manner as the terms in the original
harmonic series did for large s . The significant regions of the v
plane are determined by those values of v for which v ~ ip . The

asymptotic form of I E’S) for large s i1is therefore very closely

1(
related to the asymptotic value of the integrand of 5.23 for large v .
This provides a very important clue as to the nature of the desired
decomposition of Il(E’S) . Rach term in the wayefront expansion has
an exponent which accounts for the time delay associated with that term.
Consequently, the wavefront expansion should involve a series of terms
each of which has a different asymptotic exponent. It is not possible

to express the Bessel and Hankel functions in a series of terms of the

1
form indicated above. The angular function P (-cos ©)/cos vx ,
, v -

however, does possess such an asymptotic expansion. A complete decom-
position of this function into a series of terms, each of which has a
different asymptotic exponent, can be obtained from equations A-3.2
and A-3.8 of Appendix III. -The proposed expansion of the angular fﬁnc-

tion is given by the relation

Q l(cos 6 -1i0)+
b
5§ & p QY (cos o+ 10)+ @ _ (cos ©- 10)} gt ERRY
+= 3 (-1 [v-l L, .1
p=1 z , 2
(5.25)
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The asymptotlc behavior -of the function Ql l(cos Q;tio) is obtained
V==

as indicated in equation A-3.9. Tt is noted Ehat each term in 5.25 has

a different asymptotic exponent.

The discussion in the preceding paragraph leads to the conclusion
that the wavefront expansion of the fields scattered by a sphere can be
obtained by replacing the angular function which appears in the integral
representatioms 5.23 and 5.24 by the expansion defined in equation 5.25.

The proposed wavefront expansion of Il(E,s) can be written

fo's) ®
I,(x,8) = . ('l)mI (r,s=) + ("‘l)mI (r,s,+) (5.26)
e n2;c> L= n?;J. lm.£ o
where
X
T = - 2 [ (0¥ Sty [, 10m) -
D VoL
J l(ip)
- B (1) iemgy 1 .
m hv _%(iR)} e Qv_%(cos 9+ i0)dv (5.27)
s B2
2

It will be demonstrated in the subsequent portions of this paper that the
expansion defined by equations 5.26 and 5.27 is the required wavefront

expansion.

5.4 Derivation of the Asymptotic Estimates of the Transforms for Large s

The Tauberian theorem given in Chapter II, Section 2.3, will be em-
ployed to simplify the problem of inverting the transforms of the field

vectors in the vieinity of the wavefronts. This will necessitate an
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explicit knowledge of the asymptotic form of these transforms for large
s . It will be sufficient to consider the behavior of Il(z,s) gince
the results for 'Iz(g,s) can be deduced from those for Il(z,s) "

The dependence of I.(r,s) on the variable s 1is entirely con-

1(
tained in the bracketed gquantity in 5.27. -The asymptotic behavior of
this quantity can be determined from the results of Appendix I. The
calculation of the asymptotic expansion of ‘Ilm(g,s,:) for large s 1is
simplified 1f it is assumed that arg s = O . On the path of integra-
tion in the s plane arg s # 0 , but the asymptotic expansion of
Imﬁz,s,i) obtained along the line arg s = 0 can be analytically con-
tinued on to the path of integration (Re s > 0) . The analytic
continuétion is legitimate since thé asymptotic expansions employed for
the Hankel and Bessel functions in 5.27 are valid in the entire angular
domain —%‘< arg s < g .

It will be shown that the asymptotic expansion of the functions
Ilmﬂz,shi) s I % O , can be obtained by evaluating equation 5.27 by the
calculus of residues. It is demonstrated that these terms correspoﬁd
to the diffracted rays of a generalized geometricél optics. The beha-
vior of the m = 0 +term of the wavefront expansion is dependent upon
the position of the observer. In the deep shadow zone the asymptotic
expansion of ‘Iio(z,s,—) is obtained in the same way as the higher
order wavefront terms. In the illuminated region the residue series
expression for 'Ilo(z,s,-) converges extremely slowly. The appropriate
technique of evaluation in this region is the saddle point method. It

is found that the function Ilo(z,s,w) can be divided into two wave-

front terms in the illuminated region. One of these terms corresponds
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to the incident wavefront and the other describes the geometrically
reflected field. In the transitional region between the deep shadow
and the illuminated region Ilo(z,s,-) is again expressed as the sum
of two terms. One of these terms corresponds to a conventional knife
edge type diffraction phenomena and the other is a correction term

" which accounts for the non~zero radius of curvéture of the sphere at

the shadow boundary.

5.4.1 The deep shadow region. The integrand of the integral in

equation 5.27 vanishes on the infinite arc in the upper half of the v
plane. This behavior is insured by the parﬁicular.combination of Bessel
and Hankel functions which appear in the integrand. It was for this
reason that we chose to consider the transforms of the total field
rather than the scattered field alone. Since the integrands of the
integral expressions for the wavefront term Ilm(g,s,i) vanish on the
infinite arc, the contour D can be deformed into a new contour which
encircles thge singularities of the integrands in the upper half plane.
‘The only singularities of Ilm(z,s,i) in the upper half of the v
plane are the simple poles associated with the zeros of the Hankel
function Hi(ip) . Figure 5.4 illustrates the location of these zeros
and the deformation of the contour D into a new contour A which
encircles the zeros of ’Hi(ip) in the upper half plane.
A straightforward evaluation of the integral around the contour

A Dby Cauchy's theorem ylelds the following residue series expression

for the wavefront terms Ilm(f’s) .
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3n (8} £s
i v, Vv ;7 (15)
I, (r,s,%) = 2e % E: (-1) 2.23 Vi (l) (ip) »

A V’g VE— % a H(l)(i ) ﬂ- =
5;; v, p 2
iEmﬂvE 1 ]

xe Q 1 (cos @ + 10) (5.28)
Vo 2

where v, is the Eth zero of the Hankel function H(l)l(ip) s A
; 4

2
slightly more useful form of this equation can be obtained by applying

the Wronskian relation

B0 12 ) - B 10) B8P 0) - - £ (5.29)

When 5.29 is employed to eliminate the Hankel function of the second

kind in 5.28, we obtain

3 ,
i .
n v, v dv, /3(ip)
8e £ T2 L (L) oy
I, (x,8,4) = ——— ) (-i) ' R (iR)x
bl =P vy (VE— %[Hé;)(ip)]z vj’%
i2msy
e 'q"  (wsoxi0)  (5.30)

ol

s

The residue series expression which is given in equation 5.30 is
exact. An asymptotic expansion of this series for large values of =
1) ' 1
can be obtained if the quantities v, , HS ) (ip) and Qq l(cos o+ 10)
£ V<3
are replaced by their asymptotic expansions. The necessary expansions

can be obtained from Appendices I and ITI.
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@3, g™ (5.31)

lim

s > 1

i ?o'.e

/3c . 3) 1+d(p-2/3)

(5.32)

vral Ty PR

1- g2 1/h 13
£
b

un B (1) = b
£

5> 1 géz

1im gt L (cos 0+ 10) = (m—2—

7T
1‘[1/ )1/2 1vz@—i’I [
s> 1 vy~ 2_

5 81n9 l+6(p sing)] (5.33)

’“’z 1/2 e+iv o - iT

lim Ql 1(0089" 10) =( [l Cj(p Sing)]

58>>1 vg-3 £ g (5.34)
where
ZE = i-'e ’
e
a, = £ B sero of the Airy function Ai(—a)
1/2
o 3/2 1+ (1- 25) 2,1/2
3 Cz/ = gn( = ) - (1 - 2y / s

£

and a prime indicates a differentiation with respect to the argument of
the primed quantity. When the expansions given in 5.31 - 5.34 are sub-

stituted in 5.30, the following asymptotic estimates are obtained

| i%’f . iv£(2m:t +0 -g)
lim "I (r,s,-) = s s x
s>>1 " 2(—2-)1/6(1: sin 0)Y? (4 (-a))1°
D r) [1+ 034 (o s 0)7Y)] (5.35)
Ml

£ 2
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. D ; 7
i iv (2mr~6--=)
i Ilmﬁ£1s’+) _ e I e £ _ 2
8> 1 ° 2(%)1/6(11 gin @)1/2 a, [Ai(—az)]
X h](,l) (1R) [1 + @{p-e/3+ (p sin 0)™] (5.36)

.
173

Iikewise the asymptotic estimates for the functions I2mﬁ£,s,i) are

given by
( | e-i% : eivP(Emﬂ~bQ-%)
1im I, (r,s,-) =
g, ' EQE)iyé(ﬂ siﬁne)l/2 By ﬁP[Ai(-ﬁp)]g
[iRhE'l) 1 AR)1" 7
PT = - -
X —Eé;' [l +-d[p2/3+ (p 8in ©) lﬂ (5.37)
( - ei{'{ | eiv (2met- 6 - %)
im I, (X,8,+) = — - i3
Pm‘~ 5
s> 1 | 2(%)1/6(11_5111 oy1/2 6, BoL4; (-B)]
[1gn(L) . (1R)]"
, .-
X L2 L+op™ 3 (peme ] (5.3

where gp is the pth zero of the Airy function A{(-B) . The first

- 'l A/ 4 . t - o
fifty.51x values of a, Ai(‘ag) " BP 3 Ai( Bp) have been tabulated
by Logan (5). These tables are given in Appendix II. A number of
‘observations concerning the properties of the expansions 5.35=-5.38 are

made in the following sub-sections.
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5.4,1a Near Field

In the near field (r ~ a) the argument of the Hankel function

(l) (iR) is of the same order as the order v, The appropriate
‘e-
E
asymptotic form is then given by the Airy function approximation

L
T
h;zz %(iR) = (%¥)1/2 %%;175 Ai(—azr) [l +45(p—4/3)] : (5.39)

The parameter '« 'ls defined by the relation

ir

_ R 1/3 1 2 R1/3 -1
v, =1 [R+a,(D7° +5 Er( 377 +0E® )] . (5.10)
If the two expressions for vy given in equations 5.31 and 5.40 are

equated, the parameter o can be expressed in terms of ‘ozl,1 . It is

ir
found that
@, = a2 =B 4.(5(9'2/3) . (5.41)
£r ) p\1/3
(3) |
‘Consequently, the form of the asymptotic estimate of hl l(iR) which
" Vv, =
£ 3
is appropriate in the near field can be written -
3%
(1) 2n,1/2 e -2/3
= : 1+ 42
LR = (P R L (3)1/3 a,|[1+0(e™3]  (5.42)
5 2

Likewise, the estimate for [iRhs;) l(iR)]'/Il can be written

e
gg 142 eiﬁ%
7 et i )1/3

unl™  (1m)17/8 -

1 . p)[l+ @(0-2/3)] (5.43)
Yem5
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Substitution of equations 5.42 and 5.43 in equations 5.35-5.38 will
yield asymptotic estimates of the functions Ilmﬁz,s,i) s Izm(i,s,i)

in the near field.

5.4.1b Far Field

The far field will be defined as that region of space in which the
Debye type asymptotic expansions given in equations A-1.50- A-1.59 are

valid. The Debye approximation ylelds the relation

37

-1

h(l) (1R) = e eiR[_El'.’th v=v cosh 7] [1+ J (R sinh T)-l]
Yoo R(-1 sinh 1)/2

(5.44)

where 'y 1s defined such that v = iR cosh y . The necessity of employ-
-ing the more accurate Airy functipn estimate in the near field is now
evident. In the near field the parameter 'y - 0 . - Consequently the
error term in 5.4 becomes very large. An idea of the extent of the

near field region can be obtained by defining this region as extending
out to the point at which R sin y = p2/3 . At this point the error in
the Debye form and the Alry integral form is equal. The transition is

1/3

found to occur when R ~ p + constant x p .

A econvenient form of the relation 5.4k is

132 2 2 “
- -(R™- pz)l/ - iv, cos s L/3
nH) (1R) = e . T [L+6(E0)]
(5.45)
. v,
This equation is obtailned by using the relation cosh y = ir with vy

being glven by equation 5.31. Similarly, the following asymptotic
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estimate of [iRhsl) 1 (iR)]'/R can be obtained

y/
.7
T B gifs . -1 a
(1) ; e -(R™- p%) ™7 "= iv, cos™ " =
[iRhVE_ %(iR)l /R = W)lﬂ"' e £ r
/3
1+ 05 (5.16)
R

Substitution of equations 5.45 and 5.46 in equations 5.35 =5.38 will
yield asymptotic estimates of the functions Ilm(f-’s’i) 5 IEm(_r_,s,i—_)

in the far field.

5.4.1c Fields in the Vicinity of the
Focal Line © ==

‘In the asymptotic expansions 5.35 - 5.38 the order of the error is
given by the quantity (9'2/ 3 (p sin O)-lJ. It is noted, the second ‘term
in this expréssion becomes very large when © ~ wm . Consequently the
expansions 5.35 =5.38 are not useful in the region ©~x . It will sub-
sequently be demonstrated that equations 5.35 -5.38 describe the ampli-
tude of the waves which travel along the rays of a generalized geometric
optics. The difficulty in the region © ~ x 1is related to the presence
of a caustic of the ray system along the line © = = .

The asymptotic expansions which are appropriate in the vicinity of
the caustic can be obtained by writing the angular function in Il(g,s)

and 12(3,5) in the form

1 :
P 1 (-cos @)
Ve

e | | eos ©) OZD ()™ Ji(2m+l)ay

V=3 m=0 BT

Cos v
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The wavefront expansion of"Il(z,s) is then written in the form

a
Il(zys) = mz=o (-n™ 17,(z8) (5.48)
where
138
ISee) = 2o ¢ [ ()Y -t [s () -
D ¥ e R V=3
o, B —
e RO L)y y
ey hvy ;(13)] e Pv-i(-cos Q)dv  (5.49)
1!-%% 2 2

ity expaniton mst be employed in the veglan i @ € 53703 se1e 1s

desired that the order of the error term in the asymptotic estimates

2/3

for the wavefront terms be less than p .

The wavefront terms Iim(a,s) can be evaluated by the calculus

of residues in exactly the same way as the terms Ilm(E,S,i) were
evaluated. Two asymptotic expansions which are quite useful in the

region x - 8 < p-l/3 are (17)

V-

2] 2 |
pt (-cos Q) = = —~ 5 Jl(2v cos 5) + O(x - 9) (5.50)
v-2Xl Sin—é '
2
9 Pl (=c¢os @) = v2 J (2v cos E) = L4 J.(2y cos 9)+.
38 1 ) 2 2 1 )

e e
> 2 sin 5 cos 3

+ O(x - 8)% (5.51)
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The explicit forms of the residue series for = - 6 < p—1/3 are given

by the relations

i—‘?’f- iv£(2m+%-)1t )
1$ (z,8) = & > S 't (10) B* (-cos 6)
L 2(—2—)2/3 @, [A{(-Ot‘,;)]2 "z“% - %
x[l +%§(p—2/3+(ﬂ - 9)2)} (5.52)

.:ﬂf. 1, 1
1° (z,s) e ¥ y N [iBhvp' 5 o
on' =%/ T T5VET3 : 2 "

2(5) C B, B [Ai("ap)] R

xPi‘_l(-cos Q) [l +C5(p2/3+ (ﬂ-g)e,l
. {5.53)

5.4.14 A Physical Interpretation of the Residue Series

It was stated in Section 5.3.2 that each of the terms Ilm(—I:’S) in
the expansion of I,(r,s) corresponded to a particular wavefront term
in a ray representation of the diffractibn process. The validity of
this statement is easily established by an investigation of the asymp-
totic expansions given in etiuations 5.35 =5.38. Consider the quantity

Ilm(E,s,—) . In the far field the exponent of the zth term in the

residue series 5.35 is given by

2 2,1/2 % -1
_(R—p)/ +1iv, {2m:r+9-(%+cos %)]

= o m(e,) - [0, @3 £ E®) 3 e 0667 (55w
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where
T (r,-) == (2 AY2 4 a 8]
m'=’ c m I

8 = f2mr+0 - (2 + cos™ L
m 2

%) : (5.56)
The function Tm(£") ‘is readily interpreted as the time delay for a
wave which encircles the sphere m times in a clockwise direction and
then leaves the sphere at the point defined by the tangent line from
(r,6,8) +to the sphere. The quantity (aﬁ;) is equal to the distance
that the wave travels on the surface of the sphere. The quantity
(E)l/3+ L ae(g)-l/3]6; describes the dispersion of the wave as it

£'2 60 "£'2 :
travels on the surface of the sphere. The exponent of the quantity

[

Ilm(z,s,+) can be interpreted in a similar manner. It is found that
this function yields a wave with a time delay and dispersion which cor-
respond to a wave which has encircled the sphere m-1 times in a counter-
clockwise direction. Figure 5.5 illustrates the ray system determined
from the functions Ilm(E’S’i) ;

The directional properties of the vector field transforms derived
from the functions Ilm(g,s,i) and I2m(£,s,i) lend further support
to the ray interpretation. The vector field transforms derived from
these functions are contained in the plane transverse to the ray
direction. As an example consider the far fields derived from Ilm(z,s,-),
Iemﬁz,s,-) and I3m(£,s,-) . The scalar function I3m(£’S’-) is
included here because the contribution of E;mﬂg,s,—) to the net field

must be taken into account. The @ component of the vector field
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transform is wholly contained in the transverse plane so we need consider
only the vector addition of Egm(ﬁ:sx-) and Erm(E,S,-) « These field

quantitlies are given by the relations

E Gm(E:B.)-) e™? [ Ilm('x_',s,-) 9

e = Igm(z,s,-)] cos ¢ (5.57)

il

Erm(f_:s;") e P I3m(£JS:") cos § . (5.58)
It can easily be shown that the asymptotic estimate of I3m(r,s,-) is
given by the relation
lim I%(E’S;‘) = - % Lim ’g—' IE‘m(E’s’") (5.59)
s8> 1 s > 1. o :
The relations 5.35 and 5.37 also reveal that the asymptotic form of
Egmﬁz,s,—) is given by
s -0 ) a ) -1
lim Ebmﬂz,s,-) = e lim <5 IEm(E’S’-) [l +0(p ﬂ (5.60)
s> 1 g > 1 ) :
The component of the field transform no;mal to the transverse plane is

given by

£ (ms,0) =2 € (x8,0) + Elxss-) [140(DHF]  (5.61)

When relations 5.58-5.60 are substituted in the above equation, it is
found that, to the accuracy of our calculations, the normal component of
the vector field derived from Iim(z,s,—) (i= 1,2,3) ie zero. Thus the

fields derived from the scalar functions Iim(z)s’“) (i=1,2,3) not only
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have the proper time delay but they also satisfy the condition that
they be contained in the plane transverse to the ray direction. This,

.of course, implies that the Poynting vector is in the ray direction.

5.h.le Convergence of the Residue Series

The convergence of 'the residue series 5.35 -5.38 is governed by
the exponential factors exp[-(%)l/3 a, Si] and exp[-(_g-)l/3 Bp Sij §
Since the zeros of the Airy functions are of the order unity or
greater, the magnitude of 'the bracketed term in these exponentials is
of “{lid ppdien (%)1/3 si . -Consequently, unlésa Bi ~ 0 , the residue
series will converge quite rapidly when 8 >> 1 . It was noted in the
‘previous section that si is the angular distance traveled on the
sphere by the mth wavefront. As a result, it is obvious that the resi-
due series expansions for lim Ilm(g,s,i) and lim Izmﬁz,s,i)

s > 1 8 >>1
will always converge rapidly if m # 0 . Actually, the quantity Sz
is also large enough to insure a rapid convergence for zero plus terms.
The deep shadow is defined as the region in which the quantity 5; for
the zero minus wave is large enough to insure convergence.

The specification of a particular minimum value of '8; for ‘which
the residue series converges sufficiently rapidly is rather arbitrary.

A reasonable choice is

5 «1/3
&), ~ @3, (5.62)

At this angular‘distanée the ratio of the magnitude of the tenth and the

first terms in the residue series is
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2
' _ -(a, -~ ) [Al(-a)
tenth term/first term = e © 1 | 1 17
Al (-a )
_ . =D
= 1l.12 x 10 3 (5.63)

for the series 'Ilo(z’s’-)’ and

2
Bgm ) By [Ay0B) ~

B
10 Ai(-Blo)

tenth term/first term

]

3.02 x 107° (5.6k4)

for the series 'IEO(E,B,-) . Consequently, if '5; > (%)'1/3, an ac-

2 is obtained by summing ten terms.

curacy of one part in 10
The condition 5;-& (%)'1/3 defines a conical region which will
henceforth be termed the deep shadow. This region is showh in Figure
5.8 which also illustrates the other regions of interest in this prob-
lem. A.simple trigoﬁometrical calculation reveals that the vertex of
the conical shadow zone is located at the point (r,9) = ((—‘23)1/3 a,7) .
- It is rather interesting that the deep shadow zone as defined here from
rigorous diffraction theory is of much smaller extent than the like
region defined on the basis of physical optics. Brillouin has consi-
dered the extent of the shadow region in the steady state scattering
by a sphere (18). He employed physical optiecs approximations and
obtained a vertex distance of the order (ka)a . The present.results
are consigstent, however, with work of Fok pertaining to the width of
the penumbra region in steady state problems (19). -Fok obtains a
ﬁenumbra width of the order (ka/2)ql/3a which implies a vertex dis-

tance of the order (ka/2)Y/3a.
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5.4.2 The illuminated region. The illuminated region can be some-

what loosely defined as the angular‘domain defined by the condition

6; < 0 . In this region the residue series representations of

lim Ilo(i,s,—) and 1lim IEO(E’S’") converge very slowly. The
£ > 1 8> 1
Pphysical reason for this slow convergence of the residue serles represen-
tatlon is related to the fact that the nature of the waves described by
the scalar functions IlO(E’S") aﬁd Iéo(g,s,—) changes as the obser-
vation point i1s moved from the deep shadow to the illuminated region.
In the deep shadow the waves result from a diffraction process. The
residue serles representation is appropriate for waves which arise from
diffraction. The waves in the illuminated region, however, can also
.originate from the incldent signal and a reflection of the incident
signal. It will be shown in this section that the portions of IlO(E,B,-)
and 120(5,8,-) which yield the incident wave can be identified. When
thié is done, the remaining portlons of 'Ilo(z,s,-) and IEO(E,S,—)

will be evaluated by the saddle point method.

5.4.28 Separation of the Incident Field

The portion of 'Iléz,s) which is associated with the incident wave

can be identified by the writing of this function in the form
. ; i s ‘
I]'_O(-E’ﬁ’-) = Ivlo(f_:s:") & I’lO(E"s’_) (5=65)

where

|
i
almo

i ' Lﬁ v v 1
Ilo(z’s’")‘_ = -[-(i) 5 J i (iR) Q 1 (cos @~ i0)dv
Dy ¥EE "vg v-3

1
Al

, ) at
"'2"" v

{ (cos @ ~--10)dv
2 (5.66)

%
] ) oty
D2 v = H v
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iE J_V 1 {p) o
2 2 . 1) . 1
Ilo(z,s,-) ==e j (1) 2‘/ - h(l) ™ hv_i(lR) Qv _i(cose - 10)dv
: By ol ) 5
2
o 4 j Jv___l(ip) 0 "
r=e Ef(-l)" 71 b (1R & (cose- 10)av .
e D v-Th (ip) v~-= v-%
2 v-% e (5.67)

The contour D, is that portion of D for which Re(v) < 0 and the
contour D, 1is the portion for which Re(v) > 0 . The term ‘Ii‘_o(_x_',s,-)
is related to the incident field. This relationship is revealed if the

"angular function Q,l (cos ©=10) 1is replaced by an expression

g
obteined from AppendingII
P (-cos 8)
1 T v-.%:. mol . ’eiwt
Q (cos 6 - 10) = oo =iges wanh -2-'P (cos ©) ' o (5.58)
V- L : V= 1 COS vt

2 2

When 5.68 is substituted in 5.66 and v is replaced by =-v in the

integral over D, which contains pt l(-cos @) , the function

1 -
1 2
IlO(E’S”) assumes the form
43 2 (-cos 8)
h I 1% 14 ' % -
Ilo(}::s:") = & (-1) S0 J l(iR) 2 dv +
o v-§ v-3F cos VX
13- ivn
+ e 4 ()Y —— 3 (iR) Pt (cos ©) = dv +
2 1 - v -k cos vt
D ¥ L 2
L
i% v v 1 eiv:n:
: - —_— cos © d .6
+e f (-1) vg_lavml(ia) Pv-i( } T, (5.69)
D n 5 2
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The first term in 5.69 is the exact integral representation of the portion
of the incident field derived from Ilo(f_,s,-—) . An asymptotic evaluation
of the second and third terms in 5.69 has revealed that their contribution
to the asymptotiec expansion Bli;i " Ilo(z,s,~) is negligible in comparison
with the incident field terms and the contribution from Ilo(lf-’s =) . As
a result, it appears that the function Ilo(f_,s ;=) can be interpreted as
being associated with the wave reflected from the surface of the sphere.

The function 120(3_,5,-) cen be divided in the same manner with the por-

tion Igo(_z_'_,s,-) being given by

ok (43 (10)]"
oy 2e "2 1 ,
Io(mes=) = = f(i)v ve‘_’ e : firn _)_l_(iR)]
D T [iph l(ip)] V-3
1 v-%
¥ Ql (cos@ = i0)dv +
V._.:I_-
2
i{—: [ipd l(ip)]'
v-n
+ E:R f(*i)v ‘2v ] (l')é [iRh(l)l(iR)] . Q,l l(cosO-iO)dv .
5, voiien Do vl ve3

Vo=

(5.70)

. Q
5.4.2b Expression of IfO(E,S,-) and IQO(E:S:-)

in a Form Suitable for Saddle Point Integration

When 8 is véry large the integral representations. of the functlions
I;g(z,s,-) and I;O(E,s,-) can be evaluated by the saddle point method.
The asymptotic expansions of the Bessel and Hankel functions which are
given in Appendix I are useful in the conversion of equations 5.67 and

5.70 into forms which are suitable for saddle point integration. The

appropriate expansions are:
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a) ( 1) (ip) s l_iph (ip)]' ; along all portions of Dl and D2 y
v -—-2- -5
] : Tt
h(l) (1p) = ( )1/2 I, .eip[Sinh ¥ - ycoshy] - if
" _% 2ip i vl zanh 7)1/2
2
1 (1 _ 5cothy g o

[l TV emb v 3 el G(VEgB)] ’ (5.71)

' . ip[sinh v - v cosh T]-iﬂ
[1ph(l) (ip)] - (nig)l/z ‘8inh v - n
e (- vl tanh ) 1/2

v ’E =
1 5 _ 5 cothey
[1 *J tenh v (8- “=¢ +2 _— T)+(§( 2g3)J (5.72)
) 3 (p), ﬁpj l(ip)] ; along D, j
v-3 v -3 :
= A 1/2 d -ip[sinh y -y cosh"r]+iﬂ
25 (1p) = ( —'2“{5) AT R o
v-1 ) (- m——m—1)
2 2
(l - cothgr _ »
[l - = = + 04 213)J (5.73)
v tanh y voe
.37
- (10) ' (:rrip)l/E sinh 7 —ip[sinh*r - ycoshy]- i
[ 5 119]_ 2 vx tanh y\1/2 ©
Vo= - __75____)
2
5 _ 5 coth2y 1

[1 (g 3 T ety “ (%)J . (5.7h)
v tanh y v ¢
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c) " | l(lp) s € ipd (1pﬂ ; along D

V-3 V-3

1 these expansions

are ildentical with those given respectively in equations 5.73 and

5¢7h.

In all of the above equations the parameter y is defined by the rela-

tions

ip cosh y (5.75)

<
I

B +ix, oO<a<m=x, -0 < B< ™ .

Y

The expansions for the Hankel functions of argument iR can be obtained
from equations 5.71 and 5.72 if p 1is replaced by R and y by Tb

The parameter ‘Yb is defined by

iR cosh y_ . (5.76)

<
1]

-2
1

BO 705 3 < A T, a0 < Bo < 7

The asymptotic expansions of Ilg(z,s,—) and Iéb(g,s,-) are
obtained by replacing the Bessel and Hankel functions in their integrands
with the asymptotic expansions given in 5.71-5.74. When

Ql l(cos 8- i0) is written in the form given in A-3.9, we obtain

<

_3 3%
by -2pU
W e
lim I,7(x,8,-) = = 1/2 f ) Iz ©
8 >>1 R(2x sin @) (-i sinh v )
D,+ Dp °

< jp

¥ Pj-r3C0E 8 1 . g T
( l(Y’To’ ) b B & +d (v2;3 ) v (5 )

L
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. 3w
iy 1/2 i2pU
1im 1. (x,s,-) = — J[ (-1 sinh vy )™ wW(v,0)e "
20\ = —— g)1/2 o
s >> 1 R(2n sin D.+ D
B 2
1 i3 cos © _ i 1
[l + '; (?2(T:YO’G) ™ "B eos © )-l-) 5 (V2C3):| dv (5'78)
where ( l) "
Mv-= i
2 3 1 ie
W(v,8) = ——— F (3, -5 ; v+l - ——nr 5.7
¥l r(v) 212" 2 2 sin © (379}
U(v,8) = sinhy- (T--ww—zrwchosh:rw EE(Sinh T~ Y,cosh Yo) (5.80)
1 5 1 5
?l(r,YE,G)— 4 tanh1'+ 12 tanhdy ' B tann Yb- 2l tanh3y ¥
(@)
22 oo8
o (5.80a)
YQ(T;Y69)= & 2 2 o EEBILY + 2 -

+
4 tanh v 7 12 tann3y sinh3y 8 tanh v,

5 cosh v, , 13cos ©

= # .80b
24 tanh3rb 2 sinh3ro' 8 sin © (5 )

5.4.2¢c Determination of the Saddle Points

For large values of the parameter p , the behavior of the integrals
5.77 and 5.78 is very closely related to the variation of the function
U(v,;0) along the contour of integration. The first step in the saddle
point method of integration is to investigate the topography of
ImWU(v,9) in the complex v plane. U (v,8) is an analytic function
everywhere in the finite v plane and as a result its real and imaginary

parts have no maximums or minimums. The points at which %;lj(v,@) =0
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are saddle points and the real and imaginary parts of U(v,8) at
neighboring points increase 6r‘decrea5e depending upon the location of
these points relative to the saddle point. There is a path on which
ImU(v,8) decreases at a maximum rate. This path is called the path
of steepest descent. It will subsequently be shown that the steepest
paths are defined by the condition Rell(v,0) = constant. The general
idea of the saddle point method is to deform the original contour of
integration into a new contour which traverses the saddle points on the
paths of steepest descent.

The derivative of 1A(v,@) is given by the expression

SUGE) = - g for-r - uG -] (5.81)

It is convenient to express the variable T in the form
¥ =1 cos'l(E cosh y) = i [Z - sin‘l(E coeh 1)1 .« (5.82)
o R 2 R

When 5.82 is substituted in 5.81 and the result equated to zerc, the

following relation is obtained for the saddle point Ry = ip cosh W

2y, =1 [k - & - sin_l(% cosh ¥) ] . (5.83)

The determination of the values of y and Ty at which
g;ll(v,G) vanishes is facilitated if the physical meaning of the
exponent in equations 5.77 and 5.78 is recalled. This exponent is
related to the time delay of the reflected wave. Consequently, if the

function U (v,8) is evaluated at the point where %;lk(v,@) = 0 , the
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time delay for the reflected wave is minimized. In order for the time
delay to be a‘minimum, the reflected wave must travel along the ray
paths determined by_optics. Consider the ray system depicted in Figure
5.7. The incident ray strikes the sphere at an angle ¢ +to the normal
and is reflected at the surface such that the angle'of incidence and
reflection are equal. Tt is intultively obvious that the parameters Vs
and are related in some way to the angles defined by the ray
system in Figure 5.7. A clue to the nature of this correspondence can

be obtained by considering the far-field limit of egquation 5.83.

T -0
=)

limy, = i(
R- o
If this result is interpreted in light of the geometric optics path
shown in Figure 5.7, it appears that —irs is the angular distance from
e = g to the point at which the incident ray strikes the reflecting

surface. In terms of the angle of incidence ¢ , the above condition

ylelds

v, = 3-8 . (5.84)

The validity of equation 5.84 can be ascertained by checking %o
see if the expression given for Yy satisfies equafion 5.83. When this

is done the following equation is obtained.

R sin (2¢ - 8) = p sin ¢ . (5.85)

The ray system depicted in Figure 5.7 does satisfy 5.85. -Consequently

the relation 5.84 is the desired solution for ¥, + The value of Bis
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is easily obtained from 5.81 and 5.84.

iy = 2- (2t -0) = Fé-a . (5.86)

0os

3

5.4.24 The Path of Steepest Descent

The location of the path of steepest descent (or ascent) can
easily be determined if the basic definition of an analytic function
is recalled. An analytic function of a complex variable has a unique
derivative at a point independent of the direction along which the
derivative is taken. Consider the derivative of U(v,8) in an arbi-

trary direction h .

%ﬁ U(v,e) = % [ReU(v,0) + i ImU(v,0)] . (5.87)

The absolute value of T%; ll(v,@) is given by
) 2 ) 2 ) 2
|SFUM) | = |55 ReU(v,0)) + [ mU@,0))° = ¢ (5.89)

where C is independent of the direction h . In view of equation
5.88, it is apparent that the rate of chenge of ImU(v,9) is maximized
if the direction h is chosen such that %ﬂ Re?)(v,g) =@ , A,
Re U (v,0) = a constant. The real part of 1f(v,0) can be obtained from

equation 5.80

B
Re U(v,0) = cos ofsinh B - (B -75) cosh B]

7
a = - e

+ sin & sinh B [O - 7; & (——5——)] - é% sinh BO cos 0%
(5.89)
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At the saddle point defined by equations 5.84 and 5.86, the real part
of U(v,8) is zero. Consequently, the path of steep descent (or

ascent) is defined by the condition

- " a -9
cos & [sinh B~ (B-?)cosh Bl +8in a sinh B[a-?-( 5 )] -
- 3 sinh B cos o = O (5.90)
2p o] o ' °

The above relation is far too involved to obtain a point by point des-
cription of the steepest descent contour. The general characteristics
of this curve, however, are easily determined. For large positivé

values of P and BO s equation 5.90 can be written

BO cos o
Re U(v,8) ~ cosh B [:COS a(l - ﬁ+—-2— - m)

7
0] E'-Q

+ 8in o (a-jg-- ( = ))] T o (5.91)

It is evident from equation 5.91 that as B goes to plus infinity orn
the path of steepest descent, @ approaches the value g - 0 . Like-
wise, it car be shown that « approaches the value g - 0 when B

- goes to minus infinity. The line o = -(% - 0) also satisfies the
condition 5.90 when B 1s large. The integration in equations 5.77
and 5.79 is performed, however, on the sheet 0 < & < xm of the mul-
tiple-valued function U (v,8) . Conéequently the steepest curve

which is asymptotic to « = -(= - Q) is not acceptable.
2

It can also be shown that the path of steepest descent deces not

g. On the line o = =

lie below the line « = 5 the real part of

U(v,8) is given by
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Re U(v,8) = %sinh B g (5.92)

In order for the path of descent to be below the line « = % there must

be at least two zeros on this line. (It was shown above that the path
is asymptotic to «a = g -0 for B large). The only zero of 5.92,

however, is the one at B = 0 . Thus the path of steepest descent is
X
5

In the above discussion, the contour which satisfies 5.90 and

located in the region 0 < a <

which is asymptotic to a = g - 0 when B 1is large has been rather
loosely called a path of steepest descent. This is not entirely obvious
since the condition ReU(v,0) = 0 simply defines the steepest curves,
descent and ascent. The path of steepest descent is defined by the
additional condition

lim Im U(v,0) = -o0 .
p -+ 00

The quantity ImWU(v,9) is given by the expression

B
ImU(v,8) = sin « [cosh B - (B - _.g-) sinh 5) "
a,  Z-9 R
-~ cos & cosh B ‘a - 1? - (‘2r‘))" %5 sin @ _cosh B_. (5.93)

When P becomes a large positive number, equation 5.93 can be written

ﬁo sin a,

2 T 2 sin «

1im  ImWU(v,8) ~ cosh B [sin a (1- B+
B>>1 :
L

- cos @ (a - :? - (23?—”] . (5.94)
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It is readily apparent from 5.94 that 1lim ImU(v,8) = -co when
’ B -
@=3-0 . Likewise, it can easily be shown that the condition for

large negative values of B is also satisfied when « = % -0 . Con-
sequently, the path which passes through the point s and is asymp-
totic to the line «a = % - 0 when B -» + oo 1is the required path of

steepest descent.

5.4.2¢e A Limitation on the Applicability of the
Saddle Point Method

The asymptotic expansions of the Bessel and Hankel functions 5.71
through 5.7h,which were employed to obtain the integral representations

of lim Ii;(z;s;-) and 1im I;O(E,s,—) have an error term of the
s> 1 s>>1

order '(v2t3)-l

. The parameter f ‘is small when v ~ ip . The portion
of 'the steepest descent path which is closest tothis region is that in
the vicinity of v = By o Consequently a reasonable criteria for judging
the accuracy of the asymptotic expansions obtained from the saddle point
calculatibn is the magnitude of the quantity vigf/e. The error certainly
will be considerable if vigg £ O(1) . The physical significance of the
above condition can be obtained by considering the expansion of ¢ for

v ~ ip « The following expansion is obtained from A-1.4 by writing ¢

as a power series in (1 - ip/v) and equating the terms on each side of

the equation

t = 21/3 [(l-—ip/v) + f%(l-—ip/v)2+ %%g(l-ip/v)3+ "’] . (5.95)

The guantity L8 ‘is approximately equal to ip when §S ~ 0 . The

order relation vigg £ (J(1) +then implies that A (j(p"2/3) . When ¢
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in equation 5.95 is replaced by C)(p”2/3) , the following relation is

obtained for Yy

Vg & i [p - Cj(pl/sﬂ . (5.96)

The position of the saddle point Ve is given by equation 5.75 with
T = i(% - t) where ¢ dis the angle of incidence. When the magnitude
of ‘vs determined in this way is substituted in 5.96, it is found that

the angle of incidence must satisfy the condition

E < 3 - CICRL (5.97)

Physically, the above condition implies that the saddle point method
will be highly inaccurate for rays which are reflected at grazing
incidence.

The illuminated region will be defined as the exterior of the cone
generated by the tangents to the surface of the sphere at the specular
point defined by the condition & = % ~F(o"Y/3) . The specular point
defined by this condition is given by © = % - I Y3) . Tnis result
is consistent with the steady state work of V. A. Fok who predicts a
region of transition between the illuminated region and the shadow
region of width (%?)-l/3a (19) . In the transition region fhe currents
on the scattering obJject are not given by the geometrical optics current.
Since the saddle point calculation is simply a higher order geometrical
optics approximation, it is reasonable to expect the results of this
method to be highly inaccurate in the transition region. The geometry

of the illuminated region is depicted in Figure 5.6.
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5.4.2f A New Variable of Integration

If the path of steepest descent satisfies the conditions discussed
in thé previous section, 1t is possible to replace the original contour
.+ D, by the steepest path. On the steepest path the function U(v,0)
is a purely imaginary function. The evaluation of the integral along

D.+ D

the path of steepest descent is facilitated if the variable of integra-
tion v 1is replaced by a new variable which is real on this path.

Consider the variable T defined by the relation

~it(v) = U(v,9) - U(VS,O) : (5.98)

Since U(v,9) is purely imaginary on the path of steepest descent, it
is apparent that the variable 7(v) is real on this path. Also it is
obvious that T(‘Vs) =0 and T+ ®) =+ ®.

In order to express the integrands of the integrals 5.77 and 5.78
in terms of the new variable 7(v) , it is necessary to know the inverse
function v(T) . The first step in the determination of v(t) is %o
express the function 7(v) in a power series in powers of (v - vs).

This expansion can be obtained by expanding l(v,8) in a Taylor series

about v = v_ -
=]
Y 3 e T o @as
2it(v) = ay(u-n)” +aglu-n)” + g (u-p )" + ’ (5.99)
where
o= v/ip (5.100)
1 1 L
a, = ~ = (5.101) .
2 sinh 7 R _; e 5
8 2 = sinh - r sinh ; 2 sinh T
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cosh-yS 1 cosh Toi
a3 = - 3 + R 2 3 » (5 -102)
3 sinh™y 6(3) sinh™Y_
2 2
1+ 2 cosh T 1 1+ 2 cosh Yo
% = 5 " o3 5 ’ (2103}
12 sinh’y, 2 (-5) sinh’y_ |
3 3
3 cosh e 2 cosh Tg 1 3 cosh Tsat 2 cosh Tog
8.5 = =- 7 + R 1|- 7 N . (5010“‘)
20 sinh v, hO(E) sinh'y__

Equation 5.99 can be inverted to obtain a power series expansion of
(p - '“s) in powers of + (EiT/az)l/e. The plus and minus signs are
associated with the fact that (v - vs) is a multivalued function of T .
The integration along the path of steepest descent in the v plane is
transformed into an integration around a branch cut in the T plane.
This branch cut is located on the positive real axis in the T plane.
The square root is taken plus on one side of the cut and minus on the

other. The following expansion is obtained for (p - “s) ‘when the

square root is taken plus

2
Woepg = W= bW+ (2‘0]2_-- 1:)2)»13 + (5blb2- b3-5b:-°f)wlL - JRL L (5.105)
where
W o= (217/.512)1/2 s ' . (5.108)
®3
by = 5 (5.107)
2
a a 2
L 1; .3
b2 = - @) {5108)
a a.a a_ 3
5 34 1.3
b, = — - + 5(5==) . (5.109)
3 2&.2 hg, 2 2 28.2
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On the other side of the branch cut pn - Mg is given by 5.105 with
w replaced by =-w..
‘In terms of the new variable T , each of the integrals 5.77 and

. 5.78 is of the type
o0
vy )8y 1 6207
1= (03 - P ] ar, (5.110)
0

where the (+) refers to the topside of the cut and the (-) refers
to the bottom side. -The integral in 5.110 18 of the Laplace type and
its asymptotic expansion for large values of p is.well known (20).
An asymptotic expansion of 5.110 can be obtained by expanding the
bracketed function in a power series about the point T =0 . In this
region the function W(v,8) which appears in the integrands of 5.77
and 5.78, can be replaced by its asymptotic expansion for large v .
When this is done, it is found that the evaluation of 5.77 and 5.78 by

the above procedure will require a knowledge of the expansions of

1 1
= %
v .2'%¥ and (-1isin Tb) 2 in terms of the variable T .
= % dv .
The expansion of v e can be obtained from 5.87 by a compli-

cated inversion procedure. The results are

1

= iv
2 dvy _ s \1/2 B

(v E;Q+ = ip(EE;;) P.+ e W+ e W+ ] 5 (5.111)
-1/2 dy, _ 1 ifa 2 .

(v d+)+ = p(§;;55?) [1 + AW+ AW+ } - (5.112)
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where
1
e; = 5;; -2, (5.113)
3b :
2 1 1
02 = 3(21)1 be) - —2-E - -8—§ 3 (s-llh-)
H'B
i Iy ‘
dl = - Eﬁ; - Ebl ) (5'115)
3b
2 1 3
d, = T <« B.) + == S ~ (5.116)
2 17 %2 T, g

1
+
On the underside of the branch cut (v~ 2 %{) are given by 5.111 and
5.:112 with the coefficient of the even powers of w replaced by their

negatives.
5
The expansion of (~-i sinh Yb) 2 can be obtained if the function

sinh Yb is written in the form
1/2
2 1/2 V2
i = h L2 l = i - > .
sinh ¥ (cos p 2 ) [(iR) l] (5.117)

When 5.105 is employed in conjunction with 5.117, the following series

* 3/2
are obtained for (-i sinh v ) / p
o]

2 1/2 . 1/2 2 . ...
(-i sinh rb)+ = (-i sinh Tbs) [l + eV e W + ] (5.118)
(-1 sinh )’l/2 = (-i sinh )'l/2 [1 N T ] (5.119)
LS 5 ¥ 17" "2 )
where
2“5
el = ———-2 ) (5‘]-20)



2
e 2 21
ey =-—p +55 (L-2ud) (5.121)
N N
2p
" I - S (5.122)
1 2
N
lOpi ; '
N N
with N defined by the relation
2R sinh Tos ,

The expansions on the underside of the branch cut can be obtalned by re-

blacing W by -w in equations 5.118 and 5.119.

The coefficients Yi('r,‘ro,e)(i = 1,2) of the terms in v'l in
equations 5.77 and 5.78 can be replaced by their values at the saddle
point v = Ve » -This is legitimate since the higher order terms in the

expansion of these coefficients about T = 0 yield terms of the order

or less than the order of the error term (J (_1'3') .

v2g
When written in the form 5.110, the integrals 5.77 and 5.78

become
A D(&,9,a,r) -R cos(2t -0)+ 2pcos t
1im Ilo(‘l"‘,s’-)= - " e Ml(a,G,s)
s >> 1 p sin ¢ cos(2t- Q)
(5.125)
-R cos (2t -0)+ 2p cos ¢
1im I (r,s,-)= M - Mz(a,G,s)

20
s >>1 p 8in € (5.126)
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©
9 (a & s) _ 29)1/2 2pT Y (TS’YOS,O) 4
1 1% = —T vs
+ (d + £+ 4 F ) T +(5(( ;3)‘1 2] ar (5.127)
@
M.(a,0,8) = (gg)l/e o T 1+ *(¥a1 Vo) ¥
pyVRITIRS = Ny Tl72 iy
0
21 ; 2 -1 2
* (ag+ et dyey)e 7+ Oftvet D7 +7% Jar (5.128)
2 . 1/2
D(¢t,0,8,r) = AR = geometrical optics divergence
2r L sin © factor for a sphere (5.129)
L = r cos (25-—0)-% cos ¢ = distance from the caustic

of the geometrical optics (5.130)
ray system .

The physical interpretation of these equations is quite obvious. The
time delay in 5.125 and 5.126 corresponds to the delay associated with

a wave which is reflected from the sphere at the specular point. - Fur-
thermore, the factor D(%,9,a,r) which appears in these equations is the
divergence factor for rays which are reflected from a sphere. -The expli-
cit evaluation of 'Ml(a,Q,s) and Me(a,Q,s) can be easily obtained to

yield the relations

¥ (y.,7. 50) i{d. .+ £+ d,%)
1 e e 2" et kL 1
M, (8,0,8) = 1 + I Y 5 + O — (5.131)
Vs G p cos g
: Y (y.,v. ,0) i(d.+ e+ d.e;)
2Mg?lgg?™? 27 Y27 171 1
M, (a,0,8) = 1 + : + - + O(—=—F5) - (5.132)
w Ys 2pa, 0Zeos® ¢
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The asymptotic expansions of I{B(E,s,-) and Iéb(g,s,-) giveﬁ in
this section will yield valid representations of both the near and far
field values of the transforms of the field vectors in the illuminated
région. |

5.4.3 The penumbra,. In the transitional region between the

deep shadow and the illuminated region, the asymptotic expansions of
the functions :lo(_r_,s,-) and :{20(;_,3,-) cannot be obtained by
either of the methods discussed in the preceding sections. The physical
reason for this is the fact that the waves in the penumbra are of a
different nature than those in either of the other two regions. The
waves in the penumbra are excited by the currents in the vieinity of
the shadow boundary. -The fields which result from these currents are
similar in nature to those which occur in the knife edge diffraction
problem. It will be found that each of the scalar functions I,,(z,s,-)
and IEO(E’S’_) can be divided into two terms. -The asymptotic expan-
sion of one of these terms yields a result which can be interpreted in
terms of the conventional knife edge diffraction phenomena. The asymp-
totic expansion of the other term yields a result which can be
interpreted as a background correction to the knife edge field. The
origin of this term is the non-zero radius of curvature of the sphere
at the shadow boundary.

The saddle point analysis of the asymptotic form of integral
r,s,-) has demonstrafed that

representations of I s,-) and I

]
20;
the value of these integrals in the illuminated region is related to

2
10(Z

the behavior of their integrands in the vicinity of the point

v ~ ip s8in ¢-. This indicates that the asymptotic value of these
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integrals in the penumbra (& ~ %) is related to the behavior of their
‘integrands in the region v ~ ip . The contour D will therefore be
deformed into a path which passes through the point v = ip . A suitable
choice for this new contour is the path A which was employed in the
residue series calculation. Asymptotic expansions of IlO(E’S’_) and
120(5,5,-) will be obtained by expanding their integrands about the
‘point Vv = ip . The results obtained in this fashion will be reasonably
accurate since the most significant contribution to the original inte-
grals comes from the region v~ ip .

The asymptotic approximations appropriate to the region v ~ ip
.can be obtained from Appendices I and ITII. A summary of these results
follows:

3 e)  [ipg  q(ip)1¢

8.) V""2' v-§ ‘
53 5 1in the right half of the v plane

n') (15)  [2eatY) (1p)]°
v"-% v “%

these functions can be represented in the form given in equations

A-1.20 through A-1.23.

3 J(ip) 4m
, 1 1= 2/3
i e 3 AGTE) -4/3
- 1+30(7) P (5.133)
V__é S
[ipjv_%éép)]' -i% Ai(V2/3§) y
- , 1+ O™ Y .. (5.3
[iph(llfip)]' 2 A{(V2/3Ceieﬁ/3) [ P ]
",
7

In the left half of the v ©plane, the appropriate approximations

are obtained from A-1.24- A-1.27.
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J (ip) x
. "% ] 1 3 'Ai(v"2/3§) e }
) (1) BB ) 5%/ 3¢ e 153) [l + 0677 (5.135)
mﬂ-% Ti
p v-3 . 1 e Ai'(v-a/3;) 1o -2/3)] P
- : + 0 (p ’
v=29

b) h(l)l(iR)', [iRh(l)l(iR)]' ; it will be assumed in the present calcu-
V-'é v--é i
lation that r >> a . The asymptotic expansions in the near field can

be obtained from a calculation similar to that employed By’Fok in the
steady state problem (21). The approximations given in equations
5.45 and 5.46 will be adequate for the portions of I,,(x,s,-) and
Ieo(g_,s,-) which involve the Airy functions in 5.133-5.136. In the
integrals which result from the factor 1/2 in 5.135 and 5.136,

however, .the more accurate Debye approximations must be employed.

c) Ql l( cos © - i0) ; the angular function will be replaced by the first
V‘_—-
term in its asymptotic expansion for large values of v . The expli-

cit form of this term can be obtained from equation A-3.9.

When the above asymptotic expansions are substituted in the integral rep-

resentations of  110(£,5,-) and IEO(E’S") we obtain

31 .
: i== 8 g2 -
k e ,4- _(R G ] p ) - pﬁo .b
lim IlO(‘:E"S’-) = IlO(E’S") + ] 173 e Ilo(_r_;s,v")
s> 1 R(2x sin ©)

(5.137)
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: i -(R®-p") 7 "~ pb
limI(J:'-)=Ik(::') = € Ob(,,-)
B> 1 B 201 %% +R(21tsin9)l/2 =
(5.138)
where
iﬁ i
I]io(_z_'.,s,-) I T f (-1)" h(l) L(R) ot ,(cos 8- 10)av
ol =y v-g v-d y =g
° (5.139)
P ( ) { ig-j’ —8;w Ai(v2/3§) -l/ed 7
I'yS,~ = e . e . b
e A, a, (PR 3
j_.E 2/3§)
-e 3 A d} (1+0(p7%/3))
[ 4 (V 2/3,; -ien/3) ¥ ¥ P
t (5.140)
T (s, = 22 (RS (ne) (1 0@F) (5.240)

2/3 ‘
-i- v AV
b 1 -1/2
Too(Zsss-) = [ f a3 (123 VR a
1

iz -8"w A (v2/3g)
SI e © T ?2/'3; -12%/3, V2 dV} (l+@(p'2/3))-
v e
¢ (5.142)

The variable W in equations 5.140 and 5.142 is defined by the relation
= i(p + W) . The superscript k terms in equations 5.137 and 5.138
yield the knife edge type diffraction results whereas the superscript b

terms yield the background correction to the knife edge terms.
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5.4.3a Evaluation of the Knife Edge Type Diffraction Terms:

The integral in 5.139 will be evaluated by a saddle point calcula-
tion. In this calculation the function h(l)l(iR) will be replaced by

v.---
the following Debye approximation in the enti%e range of integration.

-R[sin @ - o cos Q] - i%%

(1) e .
h (1R) = (1 + J(R sin @) (5.143)
V- % ) R( sin a) 1/2 ' )
where
v = iR 'cos a .

This is a valid approximation if ¥ >> a . When this is done and

1 .
Q l(cos 6 -10) is replaced by the first term in its asymptotic
VYV =—= «
2
expansion Iic(z,s,—) assumes the form

-i-E i
e - AT, . _ F— (v sin a)-l/z e-Rh(a,G)dv
e L \1/2
R(2x sin ©) i
(5.144)
where
h(e,8) = sin a - (a- (gq_g)) cos Q@ . (5.145)

The function h(,0) has a saddle point at o = 6 - % . An expansion

of the integrand of 5.144 about this point yields the result

0]

R cos © 2
k e -1/2 -v (5.1k46)
e Tl Y
-V
where
_vo = (%)1/2 r sin @ - a . (5,1)4-7)

(~2r cos @)172
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The result expressed in equations 5.146 and 5.1L47 is easily interpreted
as a knife edge type diffraction phenomena. The parameter s is a
measure of the distance from the shadow boundary. When v, >> 1 the

l/ @ and the resultant

integral in 5.146 is approximately equal to =
value of Iio(f_,s ;=) is readily shown to be equivalent to the portion
of the incident field derivable from Il(E,S) . In the vicinity of
the shadow boundary vo is small and the Fresnel integral in 5.116
oscillates rapidly. The value of II{O(E’S ,-) at the geometrical
shadow boundary is equal to one-half of the incident field derivable
from Il(z,s) . The explicit form of I]‘l{O(E,s,-) in these two cases

is

R cos e exp I:
1

(Rsme-p)z} ( |

k - 2R cos © 2R cos ©
TolEs-)~ g5 o 5m1/2 r 5in 6 - a Le Gp = 2
vo>>1 A=) 1/2 (Ritn &= )
- (-2r cos ©) :
(5.148)
X f 8O M) 51/ rsine-a (R sin© - p)°
Lo(Ee) ~ s |2+ @ 720"
(=2mr cos @) s 9
O<<vb <1l

(5.149)

In the reglon -v_ >>1 the function Ilio(_x_',s,—) is given by

the second term in 5.148.

5.4.3b Evaluation of the Background Terms:

- The integrals in I?_O(g,s,-) and Igo(_r_,s,-) are evaluated in a
manner which is quite similar to a saddle point calculation. The

contours A2 and Al are deformed into new contours which are chosen
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such that the most significant contribution to the resultant integrals
comes from the region v ~ ip . The original paths are not of this
type since the integrands have an infinite number of poles in the
immediate vicinity of ‘A, and Ay .
requirement are defined by the conditions arg v2/ 3§ = 0 and

The paths which satisfy the

arg v'2/3§ = 0 . On these contours the magnitude of the integrands
decreases at a maximum rate for large values of u = v2/3§ or v'2/3§
(rate ofrdegrea.se ~ exp(- % u3/ 2)). The integrals are then evaluated
by expanding their integrands in power series about u = 0 and inte-
grating term by term.

The integrand of ‘I:O(E'_,s-,-) can be expa.ndeci in a power series

about u =0 if it is noted that for v ~ ip

w- @3 3002 303, neo@ 03 (5.150)

where the + sign is taken on the path obtained from A, and the - sign

1

on the ;Sath obtained from A, . With'the assistance of this expression

2
we can write I?.O(-E’s ;=) in the form

b eg py-1/6 3 : 'i% . A :
IlO(E’S’-)=2T§ (-5) [J; exp[- Ee u]Ai(ueie’f 3) du +
= iX A, (u) 7
- 3 1 -1/3
+£exp [ E e u] A_(ue"ie’t/B) du] (L+ O(p )) (5.151)

i
where

e = @Y3 8 . (5.152)
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It is noted that the second integral in 5.151 is the complex conjugate

of the first. Consequently, it is possible to write

I§£(£’s") =2 ‘e (E) 7 REI exp [-g e u}:(—u-ei—&ag)du(l+ d(p ))
| ° ' (5.153)

In the penumbra region the parameter ¢ 1s small. -An asymptotic esti-
b

mate of -Ilo(z’s’h) for small ¢ can be obtained by replacing the

exponential factor in 5.153 by its Taylor series expansion about u =0 .

This ylelds the result

B (0,0) - 92 WO e > o, HEVTE (o)
Ee
(5.154)
Where
; 2
&, = :oun :%g du + 1Z0un i}%ﬂ du (5.155)

Fo(u) = a5 (w) +3§(u_) :

The integrals in 5.155 have been calculated numerically for n =1 to 20
' b

to five significant figures (22). The function IEO(E,S,-) can be

evaluated in a similar manner. The asymptotic estimate of this function

for small ¢ is



18 (z,8,-) 03/2 i% (p)-l/s i g% o, e1(211-1)- g? (14000 1/3))
° (5.156)
where
Q, = [ o Aie(u) du + iJ[>u (u) - b du (5.157)

PP = af(w) + 3% .

The integrals in QEn have also been tabulated in reference (22). For

‘future reference the values of ‘ﬂio and. Q, (i = 1,2) are given below

Q) = -092361 + 1.30900 , Q.. = .029547 + 1.17071 ,

= .15095 + i.ko1k9 , Q 058235 + 1.23627 . (5.158)

20 21

5.5 Behavior of the Fields in the Vicinity of the Wavefronts

In this section asymptotic estimates of the fiélds in the viecinity
of the wavefronts will be cobtained by a term by-termrinversion of the
asymptotic expansion of the field transforms. These results will then
be employedvto indicate the time variation of the scattering'procesées.
-It is shown that the types of waves observed at a stationary point in
space change as time progresses. The penumbra and the caustic region
~in the vicinity of the line © = n are initially of zero extent. These
reglons expand with increasing time. An indication of the rate of this
growth is obtained by a consideration of the error terms in the asymp-

totic expansions of the fields.
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5.5.1 The initial behavior of the fields in the deep shadow.

Asymptotic expansions of the transforms of the transverse fields can be
obtained from equations 5.17, 5.18 and 5.35 -5.37 . If the far-field
approximations for the Hankel functions are employed, the © component of

the transform of the m = 0 +term in the wavefront expansion can be

written
| '(R2-02)l/2— p(8 + 1)
lim g tr,ae) = o a cos ¢ " - x
g>>1, rfa>>1 6o Pr(s 5in 0) % (p/2)1/6
-(%)1/3 B & | |
e z o [1+.®(p-l/35;+_(p s 9)"14.(32_ p2)-l/2)]
a, ﬁP[Ai(-ﬁp)]

(5.159)

The time function associated with this transform can be obtained by
applying the inversion opératbr defined in equation 2.2. The inversion
integrals which result from the operation can be evaluated by the
saddle point method. Friedlander has obtained a rather general result

for integrals of this type (23).

v 1
+1lco+A (én-1) 1 1
g T(3- 6 (6n-
5%{ g eXP(TS-asl/3)ds _3 e &E( n) o n-s)
~iloo+A 217
‘ 2(/3) 32 A2 |
U(T) exp [— T{é—] [ B O(oﬁﬁ)] . {5,803

With the assistance of this equation, the inversion of 5.159 can be

written in the form
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" - 3(5;)1/2 : .
m E_(r,t) = - ) U ¥E 8
77 small o0 bnr(sin 9)1/2 ol T (BP 0*To) o8 p
(5.161)
where
2 _2,1/2 .
" = b - ) - a(80 # 3 _ time measured from the arrival
o = c of the wavefront (5.162)
2(s; p,/3)Y/°
\F(B )6-;T;) = Z 1/2 & ) exp. {"' 5 } [ +
o By By (A (-8)] (ecr’ /a)Y
2¢T_ 1/2 2T~ 3/2
+ @[} 0) ( (5-)_3/2 + 5") + o= 0) ( L %
% 2 o g ' 8 sine
o
] o

In the earlier portions of this‘chapter, it was shown that a change in
the rate of convergence of a particular mathematical representation of
a wave phenomena indicated that the wave process itself was changing.
In view of this, the result expressed in equations 5.161- 5.163 yields
the following facts about the wave behavior in the shadow.

(a) The form of the exponential factor in Y(BP,S;,T;) indicates

that the representation given in 5.161 converges slowly for

e -
. &1(80)3. This suggests that the wave processes associated

a
with the shadow region are contained within a cone generated
by the tangents to the surface of the sphere at the points
cTq L
(r,0,8) = (a, %-+Cj(—59)1/3,¢). At T = O the shadow region ob-

viously occupies the entire geometrical shadow.
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(b) The order of the error terms in 5.163 also yields some information

about the wave phenomena in the region behind the sphere. The
2eT; 1/2 _ -3/2
)/5

behavior of the order term ( X

merely substan-
tiates the conclusions of (a). Some additional information,
however, can be obtained from the terms involving the factor

2eTy 3/2 -
= ) . The term in (sin ©) indicates that the extent

of the caustic region in the vicinity of the ray @ = n is of

2cT 3/

the order n -0 < O ( s 5 . Likewise, the extent of

the far-field zone is indicated by the order of the term in

a/(re_ o2 1/2°

It is found that the far field can be defined

2eT_ 3/2
/8 2

e TLTTICU o g )1/ /a> O oz

- The above discussion indicates that the nature of the waves observed at
a given point behind the sphere changes with time. A point (r,;0,8)
which is initially in the far-field portion of the shadow might eventu-

ally be in the near-field portion of the caustic region.

5.5.2 The initial behavior of the fields in the illuminated

region. Asymptotic expansions of the transverse field transforms in
the illuminated region can be cobtained from the results of Section
5.4.2f. In the far field, the © component of the field transform

assumes the form

. (2]
-R+2p cos ==-p
A a cos @ 2
lim G (s8,7) = - =L e { 1 =

s > 1,r/a>> 1

- e, & C)(pecos6 g)'l} . (5.164)
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The analytic continuation of this result into the real frequency domain
(p - ika) yields a result which is identical with the steady state cal-
culation of Logan (24). This provides a convenient check on the
correctness of the more general results of Section 5.4.2f.

Application of the inversion operator 2.2 to equation 5.164
yields the following asymptotic estimate of the small time behavior of
Eg (x,8) .

" a , 2 8,-1
lm By (z,t) = - acosp {5(1*;) - (B2 cos? P U(TY) +

2r
7" small
o
T~
c o -6
4+ O (; ~— co8 ¢ )] 5 (5.165)
where
r + a -~ 2a cos g
Py 2 "
T o= t- - ’ (5.166)

The order term in 5.165 indicates that the extent of the illuminated
region at small t:i.ﬁes is approximately given by the relation

' e’ 1/6 _
o2 4n-0 (-;0-) , (& = angle of incidence) .

5.5.3 The initial behavior of the fi_elds in the penumbra. The

transforms of the fields in the vicinity of the geometrical shadow can
be obtained from the results of Section 5.4.3. The far-field values of

the transforms of the © component of the field are given by the rela-

tions
" R cos 6-p = _v2
lim Ego(g,s,-) =.cos 0 cos § e f e dv
s > L,r/fa>1

-V
© (5.167)
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s > 1,r/a>>1

where

v
(o]

is defined by equation 5.147.

Ego(_l_'_)s:‘) = =
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2a cos @ e

-(8°- SPPE, p(B + 1)

r(n sin 9)1/2

(o/2)/®

1

l - —
%?.h2316 - 0.17528 &, (%)l/3+ O((§35;)2+p 3)] (5.168)

These transforms can easily

be inverted to obtain the following asymptotic estimates of the ©

component of the field

14

1

h< L,rsine~-a >0

lim B
h>> 1

where

lim

k
(27}

(el

Elggo(g,t) = cos © cos @ [&(t . - ; 2y -
’U(TS) c "]2: (-2r cos 9)1/2
2w (;E rsin o - a [l'+ d(hﬂ]

(_I_'ﬁ t) =

2

k
(L)

o

L cos 0 cos @ {S(t +

Cc

zZ - a
)

r sin 6 -a

o (CT];)372 (-2r cos 9)1/2

1}(T§)

k
. EGo(-]-:'-’t) = ¢cos © cos @ r——
h<<l,rsine-a<oO

t +

Z - a

(-2r cos 9)1/2

a-r sin ©

(r sin © - a)2

c

2r cos ©

[1+ d(h'l)]]

1/2
()
e

o

(L + 0(n))

(5.169)

(5.170)

(5.171)

(5.172)
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k
CTOr cos ©
h =

= ’ (5.173)
(r sin 6 -8) -

and

A aan 5
P(s)a COi/Z § 1J(TS)( a )6 { 0.42316 +

b
lim EQO(E,t) = -

T small r(x sin@) o
2eT”
. 1/3 0, 1/3
+0 (60(2;;3_) 13 iy )} (5.174)

where T; is defined by equation 5.162. The error terms again indicate
that the wave processes observe@ at a particular point in space change
in time. The knife edge terms can be interprefed as cylindr;cal waves
whereas all of the other waves are spherical. The error term in 5.174

" indicates that the background type filelds exist only when

2eT 1/3 _
( ao) > 50 . This implies that the width of the penumbra is of the
2eT5,1/3 -
order (_g__) at T . ‘The penumbral width determined here is in

accord with the results of Section 5.5.1 concerning the extent of the

shadow.
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5.6 Large Time Behavior of the Fields

It was originally planned to evaluate the large time behavior of
the field vectors by means of a term by term inversion of the wavefront
expansion. The results obtained in this manner, however, have recently
been found to be unsatisfactory. One of the reasons for this difficulty
is probably associated with the fact that the large time behavior of the
impulse response 1s related to the low frequency characteristics of the
scatterer. The appropriate mathemstical description of the low fre-
© quency wave behavior is the harmonic series representation and not the
wavefront éxpansién.

The inversion of the transforms of the transverse field components
_can be obtained by a term by term inversion of the harmonic series
representations given in equations 5.13 and 5.14%. The nth terms in
these series have poles at the zeros of the Hankel functions hﬁl)(ip)
and [iphél)(ip)]' . The first few zeros of these Henkel functions are

given in the following table (25)

(i 5 . N - PR
n h " (ipy) =0 [1oehn (1o )1" =0
215
1 =1 e 3
. - 1.60
- =1 *-40.06 - 0.70 x 11.81
; -2.26 - 2.17 * 10.87
-1.87 +11.75 - 0.83 % 12.77

It is noted that the real part of the zeros becomes more negative as

the order n increases. Consequently, the higher order terms in the
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residue series expansion of EO(E,t) and E¢(_1_',t) can be neglected

when t >> 1 . The explicit form of the residue series expansion of

E (x,t) is
o n ct
E (r,t) = + 3= L (-1)* -2l ) epn‘(—‘;-l)
g =’ a e n=1 E_(_H-ET m=1

Pl(cos Q)
; - WA

m sin @

'jn(ipm) h( 1)

(1<p
b 2 N1t a
[h, ™" (1e)] .

—~

ICETIN
a e - - Pi'(cos e)| cos @ .

ct B 1 E
ntl p (FF-1) [e d (ip)]1" [i 7 ek
e <)

+ =
=L 1o n Mo )1 e
pe n pe

oiss

(5.175)

When t >> 1 equation 5.175 can be approximated by the residue at the

+ i2x/3
pole p =e

Ly This yields

2 cos © cos @ ‘e-cT/Qa

T
%—T > 1 c
eT | =«
e+1( 3 5+ %) . -1 2—3’5 ap - 1*3“ f 0 5
x Re L Tl+;e ()" e ] +0(e )
o (5.176)
vhere T =t - r—;f-%- . {5:177)

Although there has been insufficient time to fully investigate the

wavefront treatment of a pulse modulated carrier signal, it is felt that
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this problem can be handled most efficiently by a wavefrént expansion
gpproach when ka >> 1 . In this problem the large time behavior of

the scattered fields is predominately of an optical nature and the wave-
front expansion should adequately describe the fields. The wavefront
expansion for this problem can be obtalned from the results of equation
5.27. ‘The inversion of each term in this expansion can be obtained at
large times by deforming the contour Re(s) = A into the left half
plane. Aside from any singularities associated with the source function,
the singularities of a typlcal wavefront term are depicted in Figure 5.8.
The branch cut B0 along the negative real axis accounts for the fact
that the Bessel and Hankel functions in the integrands of Iim(z,s,i)

(i = 1,2) are multiple valued in the s plane. The curved branch cuts

B ' Ej (j = 1,2,+++) result from the fact that the integrands of the

wavefront integrals are singular along these lines. These lines are the

loci of the zeros of the Hankel functions h(l)l(ip) and [iph(l) (ip) 1"
V- V=
2

ol

as v varles from - to oo along the real axis in the v plane. It
can be shown that the singularities which result in the wavefront terms
are of a logarithmic nature. At large times the significant contribution
to inversion of 'Iim(z,s,i) comes from the branch point integration
along the negative real axis. -Consequently, it should be possible to
obtain an asymptotic expansion of the time behavior of the fields by
expanding the transform functions Iim(z,s,i) in the viecinity of the

branch point s = 0 and integrating the results term by term.
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Vi SUMMARY AND CONCLUSIONS

A general technique for the solution of pulse scattering from
finite obstacles 1s formulated. The essential feature of this formula-
tion is the identification and separate consideration of the individual
terms in a wavefront expansion of the field transforms. Each wavefront
term is associated with a particular ray of a generalized geometrical
optics. An estimate of the behavior of the fields in the vicinity of
the wavefronts is obtained by means of a Tauberian theorem. The wave
behavior at a large times after the arrival of the wavefront is
obtained by deforming the contour of Laplace transform inversion inte-
gral into the left half of the s planeal The most significant contribu-
tion on the deformed ﬁath is the one which originates from the
singularity closest to the imaginary axis. In general this singularity
can be either a pole or a branch point.

The reflection of a delta pulse from a semi-infinite conducting
dielectric is considered. The results of this problem are employed to
determine the significance of the dispersive effect of a finite conduc-
tivity in a scattering obstacle. It is found that the wave distortion
is negligible for all metallic conductors. A significant distortion
may result, however, when a signal is scattered.by an obstacle whose
compésition is somewhat like dry earth. It is reasonable to expect,
for instance, that a sigﬁal scattered by one of the planets or the moon
would be distorted as a result of their finite conductivity.

The transmission of a delta pulse through a conducting dielectric

gslab is considered. . This problem demonstrates the usefulness of the
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wavefront expansion technique. The results are pertinent to problems
of shielding by thin sheets. Estimates of the large and small time
behavior of the impulse response are given. If a more complete descrip-
tion of the transmitted fileld is desired, the integral representation
of this quantity can easily be evaluated by numerical methods.

The scattering of a delta pulse by a smooth sphere is treated
in considerable detail. The individual wavefront terms are identified
and considered separately. The error terms in the asymptotic expansions
of the fileld quantitles are employed to indicate the general time
behavior -of wave phenomena. It is found that the nature of the waves
changes in time. This is particularly true in the vicinity of the
shadow boundary. Initially the penumbra is of zero extent. It subtends
an angular region of the order (gﬁg)l/3 at a time T after the arrival
of the diffracted wavefront. The rates of growth of the caustic region
in the vicinity of the focal line © = n and the néar field zone are
also obtained by an interpretation of the error terms. The saddle point
calculation of asymptotic behavior of the field transforms in the
illuminated region can be analytically continued info the real frequency
domain (p - ika) +to yleld a result which is useful in the steady state
scattering problem. The asymptotic expansion of the reflected fields
obtained in this way is valid in both the near and the far field regions.

Some difficulty was experienced in the attempt to obtain the large
time behavior of the impulse response of the sphere by a separate consi-~
deration of each term in the wavefront expansion. This problem is

undoubtedly associated with the fact that the large time behavior of the

impulse response is related to the low frequency characteristics of the



<135«

sphere. The appropriate mathematical formulation of the low freguency
wave ﬁehavior is the harmonlc series and not the optical expansion. It
appears that the wavefront expansion technique must be restricted to
those problems whose steady state behavior‘is‘predqminantly of an
opticael nature. The transmission problem considered in Chapter IV is
of this type. A problem which merits additional attention is the
scattering of a c.w, wave with a unit step function envelope. When the
carrier wavelength is large compared to the radius of the sphere, the
steady state résponse to this signal is optical in nature. A wavefront
analysis should simplify the task of interpreting the results of this

problem in a physically meaningful way.
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AFPPENDIX I

ASYMPTOTIC EXPANSIONS OF THE HANKEL FUNCTIONS Hsl’a)(ip)

The evaluation of the integrals which result from the transformation
of the harmonic serles representation of the fields scattered from a
sphere to the equivalent integral representations requires a knowledge
of the behavior of the Hankel functions Hil’z)(ip) in the complex v
plane. -OQur task is considerably simplified since we shall be satisfied
with an asymptotic solution of the field integrals for large values of
‘the quantity |1p] « 'In this case, a knowledge of the asymptotic beha-.
"~ vior of the Hankel functions for large vaiues of |v| is sufficient.
In the following section the asymptotic expansions of Olver will be em-

ployed to obtain the necessary approximations (1,2). We will restrict

the discussion to the case where arg p =0 .

Olver Approximation

The Hankel functions Hil’g)(ip) satisfy the differential equation

2 (1,2) ) 2
Hvapz (1p) +%_H_v§5_(_i"_)_ - (1 + 2 BB (10) = 0 (A-1.0)
_ - o

If p is replaced by pz , where p 1is defined by the relation v=ip
the above equation assumes the form

azﬂil,z)(vz) . BH(l’Q)(vz)

— + = + v (1 —5) H51’2)(vz) = 0. (A-1.1)

oz

The solution of A-l.1 is given by Olver in terms of the Airy integrals
2/3 15 2/3 -5 1)
ﬁi(V t(z) e 5) and Ai(v t(z) e 3 ) respectively for H, (vz)

‘ Tt T
and H( )(vz) » In the angular domaln - > <arg v< T e <argz <«

he obtains the results
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ixn
(1), . 2 3 Mb(z) 1/k 2/3 i= o Al
H (vz) 31/3 (l- ZE) { Ai(v E(z) e ) sé;o —%EE— Es
1%; A3'_(v2/3§-(z)ei%1£) o BB(Q)
+ e ;E73 52;0 55 } P (A-1.2)
ixn 2x
(2) 28 = ht(z)\1/k /3, i3 @ AL
B (vz) ~ 173 (1.- z2) { A (v ob(z)e ) SZ=O _:?. %
2 .1, 2/3 "1'235 |
_i'—g Ai(v E(z) e ) g? BS(Q) } (A -
+ e . 1.
Vuf3 8=0 v 8

The prime in the above equations indicates adifferentiation with respect
to the argument of the primed quantity. The functions &(z), AS(C.) , and

BS(Q) are defined as follows:

£(z2) (%2 = 1 ;22 . (A-1.1)

AL = 1, . (a-1.5)

B (L) = %E']’/Qf t'l/z[f(t) a_(%) —'A;(t)] at (A-1.6)
0

a @ =-1m8) +% ff(i;) B_(L) &b , (A-1.7)

L) = - h_:i + 242 ._?:_z'é (5‘1/2) , oz = %Z : (A-1.8)

It is evident that the set of equationé A-1.4 - A-1.8 forms a:recursive
system, which in theory, will yield all of the coefficients appearing in
the asymptotic expansions A-1.2 and A-1.3.

The asymptqtic-expansions for -Hsl’2)'(vz) can be obtained by 4if-

ferentiating equations A-1.2 and A-1.3 term by term with respect to vz .
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The equations which result are

ix 2/3, 12% -
' o A(v’2te 3) oo cC(t)
(1) ool 3 - S 8
HV (VZ) 2e W(C){ vu_/S ego *-':Ea— o
12%
12 00 Bte 3) ® (0
re 3 LI Y " (A-1.9)
v/3 8=0 vs
2/3 -
7 3
-i2%
A e 3) o Ds(g)}
+ .y - A-1.10
© veﬁ 8=0 ‘vzs ( )
wheré
c )= (@A) +A) +EB ) (A-1.12)
D(£) = A(t) + X(t) B, () +3B!_(£), (A-1.12)
x@) = 28 gy = (B 282 ()
1) - z at
: 2
v(t) = =1(3) ‘ (A-1.14)
Asymptotic expansions which are valid in the angular range
'%‘< arg v <'%; can be obtained from equations for A-1.2, 1:3, 1.9, and

1.10 by applying the appropriate continuation formulas for the Hankel
functions. The desired continuation formulas are obtained from the fol-

lowing relations quoted by Watson (3).
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H£2)(uémni) - szgﬁm:i)ﬂ H&a)(u) . olve s;?nmt: Hil)(u) , (A_l'ls),
‘ gse)(u) 5 g HEE)(u) , (A-1.16)
7 (w) = g Jv(ueim“) " (A-1.27

If m=-1, u= vz , and v' = e ™y , the first two of the above equations

yield the relation
Hi(vZ) = - Hi?)(v'z) . (A-1.18)

Likewise, equation A-1.17 in conjunction with the definition of the Hankel

functions yields
Hie)(vz) - 27 ,(v'z) + BT HE?)(V'Z) . (A-1.19)

Equations A-1.2, 1.3, 1.9, 1.10, 1.18 and 1.19 define the Hankel func-

tions in the entire v plane.

Explicit Form of the Asymptotic Approximations in the Various Regions of
the v Plane

The. agymptotic evaluation of the diffraction integrals becomes quite
unwieldy if a large number of terms are required in the expansion.
Luckily, however, the first two terms in this expansion will be sufficient
for our purposes. Consequently, it is necessary to retain only the first
two terms in the asymptotic approximations given in the pfevious section.
When this is done the following expressions are obtained for the various

Hankel functions



-120-

_135 2% , 2/3 3
3 i— & )B (E)
E_,I(},;L)(VZ) _ (_L_"g_)l/)*{A (v 2/3 t e 3) + e ,3 i ;E]: +
+ O3 } ; (A-1.20)
i; _1.2..’£
HSE)(VZ) = _7' ('—L_))l/h{A ("’2/3; (z)e 3)
v
T
A2 0 (e D) (1)
o & —73 = +0(v-2)}
(A-1.21)
_1% L 420
i) (va) = _EW%_(;—) {e 3 Ay /3§e )+
.2
| | A (v2/3 d 1—3_)
. 573 - c (&) + @(v'z)} (A-1.22)
v
{5 2,1 2x
: 3 =
H1(,2) (va) = - 2 27\1;(@){6 A ( /3§ ¢ %)+
_{2n
A (v2/3§e 3)00(§) -2 :
$ 373 + G (v )} . (A-1.23)

The above equations are valid, of course, only in the angular range
- -g < ang v <-12‘E . Similar approximations valid in the remainder of the v
plane can be obtained from A-1.20 - 1.23 by means of the continuation

formulas Al1.18, 1.19 . The resulting asymptotic expansions are
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T

i— 2n
i 5
17 - - Z 5 )l/”{ a3y 3y
P
2x ,,0..2/3 3
=1= Al (¥ B (¢)
+e 3 1 i f/; 2, + @(v-e)} (A-1.24)
vl
i— L. jex ‘
5,9 () = 22 (-$—>l/”{ o 3 a3 ) f2Ry (23 e 3 4
R : 21‘
) [e 3 A1(1,.2/3,;)+ KT 3 Al(v! 2/3p o 3)] B,(£) o (V_E)}
| U
(A-1.25)
+i~ 2n 21
r 3 o -i—
1" (ve) = - B L) V»_;_"g@) { e 3w ge 3) .
_1*_
a0 3ee 3y e (1) "
+ 573 + O(v )} (A-1.28)
; 45 _12%
Hig) (vz) = EW(2}3 { Ai(v'2/3ﬁ) b e 3 elEVﬂ A{(v'2/3c e 3) 4
v! ‘
‘ . 31X g 2K
[Ai(v'2/3§) +-e12 Teld Ai(v'2/3ge 3)}‘CO(§) 2
+ 273 + O (v )k

{&=1:27)

The coefficients Bo(g) and co(g) which appear in equations A-1.20
through A-1.27 can be obtained from the recursion relations A-1.4 - A-1.8.

These coefficients are given by the relations
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c (t) = X(&) +¢ B (L) (A-1.28)

B (t) =~ l+85g2 . le.fz% - 5;2) P | (A-1.29)
where v= (1 - 22)°l/2 R

-If‘tﬁe distance from the point v = ip (¢ = 0) 1is sufficiently
large, the Airy functions in equations A-1.24 - A-1.27 can be replaced by
their asymptotic expansions. These expansions are summarized in Appendix
II. It is noted that the explicit form of the approximétions depend upon
the angular domain within which the arguments of the Airy functions are
located. -Consequently, it is necessary to ascertain the behavior of
arg (v2/3 t) in the v plane.

The function ¢(z) is defined by the relation given in equation

A-1.4. Olver has integrated this equation to obtain the result

L ) |
% CS/E = In l—t—zl——z - V1 - 22 . (A-1.30)

The logarithm in equation Al.1l1l is defined on the z plane cut in the

manner shown in Figure A-1.0.

Almz
&= qrq -3

> Re 2

Fig. A-1.0. Branch Cut Configuration in the z Plane

If the variable =z 1s replaced by sech ¢ , equation A-1.30 assumes the
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form

%gye = _ gt dalll , (A-1.31)

z = sech o , 0= Gr + idi »
In this transformation the domain O < arg z < m is mapped conformally
on the half strip -=n < g < 0, Ur >0 , and the domain -n<argz< O

is mapped on the half strip O < Gi <7, Gr >0 . In order to facili-
tate a comparison with Debye's asymptotic series, it is necessary to define

v by means of the relations

v = 1ip cosh v (A-1.32)

A comparison of this definition of v and that cbtained by the relation
v = ip/z reveals that o = v if Re(v) >0, and o=~ if
Re(v) < O . Consequently, in terms of Debye's variable ~ , the function

v2/3§ is representable in the form

v2/3C = [3%8 (sinh'r -7 cosk17=) J 2/3 ’
for Re(v) > 0 and (A-1.33)
v2/3§ = {; E%E (sinh'v - ¥ cosh T)] 2/3

for Re(v) < 0 . These equations can be used to obtain the behavior of

2/3§)

arg(v in the v plane. The results obtained in this manner are
summarized in Figure A-1.2. In the left half plane, the function
arg(v2/3§) varies continuously from n/3 along the line o =0 to

-2ﬁ/3 along the line B = 0 . Likewise, in the right half plane
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arg (v2/ 3 t) varies continuously from =n/3 along Q=0 to Un/3 along
a=0,B=0.

The above results on the behavior of 'arg(ve/ 3 ¢) in the v plane,
in conjunction with the asymptotic expansions A-2.9 - A-2.12, yleld the
followlng expressions for the Airy functions which appear in equations

A-1.20 - A-1.27.

27
i— ..
a/3 Th 1 ip(sinh~ = v cosh r) 2 .3/2
AL e 7)) - onl/ 2,376 (1K ixfE L™ )
(A-1.3k)
2/3 i%ﬂ' 1/6 ;l/l‘ ei% ip(sinh~ - 4 coshv) 2  3/2
MG e ) = - % 172 g o M(zv £ 0)
. (-1.35)
2/3 ‘ng 1 o2 ,3/2 LX
Ai.(V fote ) = ﬁl/-?vl/sglﬁkeiﬂﬁe [cos(p[sinhwr-'vcosh"r]dr H)P(_§VC3 e2)
o in
- sin(p[sinh* -+ cosh~r] + )T-:-) Q(§V QE/Ee?)}
(A~1.36)
217 48 n
-i= 1/6,1/h “12 iz
@i(vg/gge 3) = 2 Ql/ge [cos(p[sinh*r-*r cosh‘r]+-3§) R(%v§3/2e 2) »
:r
1 X
- sin(p[sinhY - + cosh v+ %)S(—%VCB/QE 2)]
(A=1.37)
where
2 .3/2y _ ' 5 i
L5 ) =1 + 55 Tp[SinhT =~ Cosh v] +Cj(:§g§) (A-1.38)
2 .3/2 7 1
M('§VC Y=1=55 ip[sinh~ -~ cosh ] d(??) (8-1.39)
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3 X .
P(§v§3/2e 2) = 1+ @(_2_1..) 5 (A-1.40)
v C.3
2 ,3/2 112‘- | 5 i
3
Q'(-§VE ) & = 72p[8inhy =~ cash 7] + 0 V3.c972) L4 (A-1.h1)

R(

1 X
—§'v§3/2e 2) 1+ d(:]-é—-g) ’ (A-1.k2)

i
s(§vg3/2e 2y _ 7

1
= ¥ TZp[einh - v cosh ] + O 3¢9 5) s (A-1.43)

31

b1
- < arg V<—2—

2
the Airy function approximations are of the form

2

end it is assumed that |arg v| < =

. In the angular range

21

ASR
A ( ' 2/3 = A 2/3 3 - 1 "
f (V) = A (VTP Le 7)) o1/ 2 16 (I in/E

. e—ip[sinhwr -y cosh v] L(%—v §3/2)’ .(:A-loll‘)‘l')

25 ' -1%
A= 1/6 ,1/% ~76 -
A_-;"(1/2/3 ¥ e 3) o B Qlfze e-ip[slnh"r-'\r cosh'r].M(§ vC3/2)
= (A-1.45)
2n by
W ot oY Bl
23 5o 0.8 T B 1
a7 T)=plTte ) - (/2,176 (1/% T/ "

X
-y
x[COS(p[Sinh‘Y -~ cosh v]+ -E) P(%v §3/2e 2)

o9
- sin(p[sinh+ -~ cosh v ]+ -E) Q(—23-v t 3/2 e 12)J (A-1.48)
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gt -1 L3
-i— 1/6 ,1/b 713 -i=
A{iy2/3§'e 3) =Y il/2e [cos(p[sinhv —w'coshw*]+%F)R(§v§3/2e 2)-
- sin(p[8inh v -+ cosh v]+ 3“)S(gv§3/2e-i§)
T3
(A-1.47)
where
2.¢3/2y 4 . 5 A y
L(Sv_c et 72ip[sinh~y -+ cosh v] * G(E) ’ RS
2 .3/2, 5 1 )
M(3VC ) = 1+721p[sinhfr--frcosh ] * 6(‘,2;3) ? (4-1.45)

and the functions P,Q,R and S are identical with the definitions given
in equétions A-1.40 - A-1.43.
When the above equations are substituted in equations A-1.20 - A-1.27

the following asymptotic expansions are obtained for the Hankel functions.

(1) _ 1 1p[sinhy -+ cosh v]- il
B (ve) = (- YEL tanh v 172 = *
- “*“ET"‘)
. 1 (1 5 cothar) ( 1 ) (A-1.50)
1 vEemy B a0t 953 e
in/2
HS,E)'(VZ) 1 ieti tanh v, 1/2 {GOS(pisinh*'-”“'COShﬂ )t
B
2
(1 3 coth<V)
T g - L
+ i sin(p[sinhy - v cosh v] + f)- v tanh ’ ®(u2§3)]

(A-1.51)
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. in
(l)c( 2) - ginh ip[sinh+v -~ cosh ]~ T

val tanh v 1/2

| 2
1 1 5 th
,‘[l.,____.....__(..s.._ Cgu '*'+281 2r)+ 6(—2-5-)}

y tanh
(A-1.52)
(2) 2 sinh~ _ 3
H,™ (vz) -( oy T)l/E cos(p[sinhv - cosh v]+ ) +
A T
2
(%_.5 coth~r+ ol 2)
+1sin(p[sinh~y =¥ cosh v]+ —35’;) 2% 2 sinh®v’ @(_é_)}
3
v tanh v

(A-1.53)

where it is assumed that O < arg v < X The analogous expansions which

2

are valid in the angular range -g< arg v < ® are

Hil)(vz) = tar21h "\")l/2 [cos(p[sinhﬁ’ - v cosh v ]+ -E) +
2
( _ 5 'COthz"Y‘)
+1sin(p[sinh~ =~ cosh v]+ ';{-) 8 g + (j( 3 } (A-1.54)
v tanh ¥ g
if §< arg(v?/3t) < 7, and
(l)(v y = 1 eip[sinh'v -~ cosh Y]+ ;E
(wri tanh "r)l/2
2

2 ,
1l 5 coth'wr 1
x[l + v tanh_’\" ( ) + O(;Egg—)] (A-1.55)



-128-

when x < arg(v2/3§) < Eg-t

(2) 2eivﬂ ”
‘Hv (vz) = = (vni =% «r)l[E [cos(p[sinhv-‘\’ cosh ]+ vat + E) +
2
2
%_5 coth )
+isin(p[sinh'~r~- ~ cosh v]+ vr +1¥) ” tinih"\' i @(;—é-?)] °
(A-1.586)
in
‘ 2e — sinh v
(o _ . 3=
By v =~ (r_tamh v)1/2 SR =YL Sy ¥
2
(i 5, coth2'~r i 1 )
. 3n, 87 2k 2 sinhey 3
+isi hy =~ h vl+ +0\——=
-1sin(p[sin cosh v]+ 47) e O(vg 3)]
(A-1.57)
if ’—; < arg(v2/3§) < w  and
(1) i, ip[s&inh v -~ cosh ~ ]+ %
B,™ {vz} = s /3 ©
, (= ptoae)
2
1 1 5 cothr 1 1
[1 trEEEy B TF  traaat © ‘j@)] (4-1:56)
by

vhen = < arg(v2/3§) 2 3
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ive

(2) _ 2ie sinh v : 3n

H, (vz) = (vui tanh*w)l/z cos(p[#inh v - ¥ cosh v]+ vﬂf+7:) +
2
. 2
(l 5 coth T_F 1 )
- -
+ 1isin(p[sinh~+ -+ cosh v]+ vﬂ'+§[:£) 8 24 2 sinh®r’ g é 3)]
v tanh ¥ ve

(A-1.59)

The asymptotic expansions of the Hankel functions valid in the region

Im(v) < O are easily obtained from the above relations by means of the

continuation formulas

Eil)(u) . @ F Hil)(u) (A-1.60)

‘ H(e)(u) v Hie)(u) . . (A-1.61)

It

As v approaches the value ip , that is, { ~ O , the error term
“ Y Q-%—§) in the asymptotic expansions A-1.50 - A-1.59 rapidly increases.
v
Conskequently, the more exact approximations A-1.20 -A-1.27 must be

employed in this region.

Cqmplex Zeros of the Hankel Functions of Argument ip

The aSymptotic expansions of the preceding section provide a con-
venient means of investigating the location of the zeros of the Hankel
functiogs of fixed argument in the complex v plané. If the argument ip
is very large, a good approximation to the location of the zeros can be
obtained by neglecting all but the leading terms in the expansions
A~1.20 - A-1.27 . The zeros of the Hankel functions are then given by

the zeros of the Airy integrals which appear in the leading terms.
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The zeros of the Airy integrals are all real and less than zero.
Consequently, it is a rather simple matter to determine the contours on
which the zeros of the Hankel functions are located. It is easily
deduced froﬁ equations A-1.20 = A-1.27 that the zeros of the Hankel func-
tions of the first kind are located on the contour described by the
condition arg(v2/3§) = n/3 . Reference to Figure A-1.2 reveals that
this contour is defined by the portions of the imaginary axis for which
|v] > p - The location of the zeros of the Hankel functions of the

second kind are also easily determined. In the angular region
L 5
2 2
condition arg(v2/3§) = - n/3 . Likewise, in the angular region

%-< arg v <-%; the zeros are located on the image of the above contour

obtained by reflection through the origin.

<argy < these zeros are situated on the contour defined by the

For the diffraction problém,‘the zeros of greateét interest are
the zeros of the Hankel functions of the first kind in ﬁhe'vicinity of
the point v = ip . In this region the parameter { can Ee expanded
in a power series in (1l-2z) . The coefficients of this series can be
obtained from the definition of § given in equation A-1.4. Inversion

of this series yields the following expansion of 2z in powers of § .

2= 1-2Y3, -1% 2=3/3¢2 '7'%6 3, toen) . (A-1.62)

Define the parameters o ,B ,u_; and Em by the relations

m’"m’"m 5/3
Ai(wqm) =0, Ai(-ﬁm) =0 ,‘u$/3§ = s and Em. ¢= B, - In terms

of these parameters, equation A-1.62 yields the relation
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m m "
o (m1/3 3 R2lmy-1/3 1 3Mmy-1 4/3
bp~ P = %) - 5 o - Thoo %lm) T+ T, ' 7)  (A-1.63)

and a similar relation with Em and Bm in place of = and a -

Equation A-1.63 can be inverted to obtain by OT Em in a power ‘series
-2
in p/3.

-0+ a (@3 E PR3 om0 3@+ 9™ L (are)

s 60 m

m

‘The values of the first fifty-six roots of Ai(-a) and Ai(-B) have
been tabulated in reference (5) and these tables are repeated in Appendix

IT.
The zeros of large magnitude can easily be obtained if the Airy

functions are replaced by thelr trigonometric approximations. In this
case, equations A-1.50 - A-1.59 are the appropriate Hankel function
approximations. The zeros of the Hankel function -Hil)(ip) are situasted

along the imaginary axis at the points where the argument of the trigono-

R

metric function is an odd multipile of 5 .
n _ (omHl)x
p(sinh p - B cosh Bm) g - 5 3 (A-1.65)

where

<
]

ip cosh'rm = ip cosh Bm ¥

=
]

a large positive integer.

If Iva >> p these zeros are given approximately by

(m + B)ﬂ
£ pn

PR B . el
m (m+2) 5
‘en——-.?)L

ep

* ' (A-1.66)
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t
Likewise the large zeros of Hil) (ip) are approximately given by the

relation

.(m+%ﬂ
m (m+g-):t

In s

(A-1.67)



-134-

APPENDIX II

ATRY INTEGRAILS

The asymptotic approximations for the Hankel functions contain
Airy functions of complex argument. In order to facilitate the under-
standing of the asymptotic behavior of the Hankel functions, the
properties of these Airy functions will be discussed. The material
contained in this section is taken primarily from the work of Olver
(1,2), Miller (1), and Logan (5). | |

The Airy integral arises as the solution of the second order ‘dif-

ferential equation

~—m = = Q. (A-2.0)

In the notation of Miller, the two independent solutions of this equa-

tion are written

L 1
Ai(z) i Jr exp(§ u - zu)du , (A-2.1)
L3l
Bi(z) = --2}; { f exp(% w - zu)du +f exp(;,;-u3- zu)du]
Loy Log
(A-2.2)

where the Li is a contour originating at i and terminating at J .

J

These contours are illustrated in Figure A-2.0.

The integral representations given in A-2.1, A-2.2 can be used to

derive the following useful relations
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o3
el?

\ > Reu

“Sa &
3
z
Fig. A-2.0. The Contburs Lij
2n T
i xi=
: 9 =
A(ze  3) = e 3 [Ai(z) T :I_Bi(z):l (A-2.3)
21 7
+ 1= + i
) - 3\ _ _J_-. =75 ' T sant ’ =
al(ze 3) = e R HO (A-2.k)

" The solutions of equation A-2.0 can also be written in terms of
the Bessel functions of order one-third. The relation of the Airy
integrals to these Bessel functions is summsrized in the following set

of equations.

@ -2, (a-2.5)
/3
Al(z) = Ky l(8) | (a-2.6)
i 55 /3
1/2 ; 1% A2
a2 == e P m (e ve ° RN (a-2.7)

2 3
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_1_
Ay (- 50 () + R 1(2) (¢)

- \/_ By Hy /3 . (A-2.8)

where :

2 3/2

E = 3 z .
Olver has used the above relations, in conjunction with the well-

known asymptotic expansidns of Bessel functions of large argument, to

obtain asymptotic expansions for the Airy integrals. These expansions

are repeated here.

rAi(Z) A~ i2L- rt_l/glz'l/tL 5" L(-¢) (A-2.9)

(larg z| < =)

Ai(z)fw o % ﬂ—l/2 zl/,+ e_g M(-¢)
Ai(-z)w n'l/g z-l/h [cos(g, -E) P(e) + sin(g--E) Q(g)} : (A-2.11)
_. (larg z|<-EE
. 1/2 1/ 3 3 :
Al (-2) ~ [cos(g -3 R(g)+ Sin(é--n-)s(g)] (a-2.12)
Bi(z) - n'l/e ‘z'l/h ef L(&) | (A-2.13)
_ (larg z| <=
B:'L(z) ~ n’l/e zl/l* et M(E) (A-2.14)
B, (-2) a2 Y [eos(e+ ) B(8)+ stn(s +Dale) (a-2.15)

(|arg z|<$%;)
B; (-2)~ o2 1 [cos(g-g-) R(¢) +sin(t- ) s(g)] (a-2.16)
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+i£ & Lo
-3 ”(E)l/E'é‘ & -l/ [cos E (A-2.17)

l_l

2im 2)P(t) + stn(s- £ T 2 1n 2)a(e)

no.
n

{ (lave 2| <)

#13 +1
Bi(ze 3)A,C§)l/2 o D -1/k kos(g-&%
-;—‘»izn 2)R(e) +sin(E+F 7 %izn z)s(g)} (A-2.18)

The functions L,M,P,Q;R, and S which appear in the above equations are
asymptotic expansions in terms of the variable ¢ . The explicit forms of

these expansions are

©  u ' co
L(g) = Z " P(¢) = Z (-1) ’
8=0 ¢ s=0
00 v a v
R = Y, ((DP-E, me=y =2,
5=0 E s=0 ¢§
a u, ao v ;
ae) = 3, (-1)° ;2-?% s(e) =y (-1)° 52, (4-2.19)
S = = g

where the parameters uS and vs are defined by the relations

(25+l)(23+3)(25+5)'"-(6s l) _ 68+l
s = s!l(216)8 s~ " 6s-1 s

The location of the zeros of the Alry functions is also of interest.
Olver proves that all possible zeros of the functions Ai(Z) and A{(z)
are located along the negative real axis in the z plane. The pésition of
the first fifty-six of these zeros and the turning values at these points
are given to>fifteen decimal places by Iogan (5). ILogan's tables are re-

peated here in Tables A-T and A-II.
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B-22/17
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AlY(- as)

elie B0 Se M B SN S

2. 33810 74104 59767
4. 08794 94441 30971
5. 52055 98280 95551
6. 78670 80900 71759
7.94413 35871 20853
9. 02265 08533 40980
10. 04017 43415 58086

11, 00852 43037 33263

11. 93601 55632 36263
12. 82877 67528 65757
13..69148 90352 10718
14. 52782 99517 75335
15. 34075 51359 .77997
16. 13268 51589 45771
16, 90563 39974 29943
17, 66130 01056 97057
18, 40113 25992 07115
19. 12638 04742 46952
19. 83812 98917 21500
20. 33733 29076 77567
21, 22482 99436 42097
21. 90136 75955 85131
22, 56761 29174 96503
23. 22416 50011 21681
23, 87156 44555 35918
24, 51030 12365 89678
25. 14082 11661 48964
25, 76353 14009 82756
26. 37880 50521 37232
26. 98698 51116 06368
27. 58838 78098 82445
28. 18330 55026 326453
28. 77200 91652 37435
29, 35475 05587 66288
29. 93176 41190 86556
30. 50326 86114 18505
31. 06946 85851 83756
31. 63055 56580 12659
32, 188670 96529 52051

32. 73805 96090 00269 .

33. 28488 46819 01402
33, 82721 49495 08652
34. 36523 21338 63659
34. 89907 02503 45312
35. 42885 61927 47888
35, 95471 02618 98629
36. 47674 66443 74809
36G. 99507 38469 94501
37. 530979 50920 05016
38. 02100 86772 55254
38, 52880 83050 94249
39. 03328 33832 72514
39, 53451 93007 23018
40, 03259 76807 54176
40. 52759 66138 89718
41. 01959 08723 32490

. 70121 08227 20691
. 80311 13696 54864
. 86520 40258 94152
. 91085 07370 49602

94733 57094 41568

. 97792 28085 69499
. 00437 01226 60312

02773 86888 20786

. 04872 06485 88189
. 06779 38591 57428
. 08530 28313 50700
. 10150 45702 77497
. 11659 61779 32656
. 13073 23104 93188
. 14403 66732 73553

15660 98491 16566
16853 47844 87525

. 17988 07298 70146
. 19070 61311 58776
. 20106 07915 19823
. 21098 75148 68287

22052 33738 97260

. 22970 07015 09681
. 23854 78753 29632
. 24708 99452 59407

25534 91404 75735
26334 52827 50799

. 27109 61262 18604
. 27861 76388 24258
. 28592 42371 22704
. 20302 89834 49956
. 29994 37525 11048
. 30667 93729 32094

31324 57481 80648

. 31965 19603 77514
. 32590 63598 38441
. 33201 66426 47702
. 33798 99181 42291
. 34383 27678 48983

34555 12971 47445

. 35515 11807 15907
. 36063 77026 40532
. 36601 57919 26784

37129 00540 34239

. 37646 47989 60084
. 38154 40663 17105
. 38653 16477 85955

39143 11072 66471
39624 57990 06725
40097 88839 49769

. 40563 33445 05322
. 41021 19979 25998
. 41471 75084 44110
. 41915 23983 05068

42351 90578 16189
42781 97545 15052

TABLE T - Roots and turning values of Ai(-a)
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B

8

Al(-B,)

DooO-ID U W+

1. 01879 29716 47471

3. 24819 75821 79837

4, 82009 92111 78736

6. 16330 73556 39487

7. 37217 72550 47770

8, 48848 67340 19722

9. 53544 90524 33547
10, 52766 03969 57407
11, 47505 66334 80245
12, 38478 83718 45747
13. 26221 89616 65210
14. 11150 19704 62995
14, 93593 71967 20517
15, 73820 13736 92538
16. 52050 38254 33794
17, 28469 50502 16437
18. 03234 46225 04393
18, 76479 84376 65955
19, 48322 16565 67231
20. 18863 15094 63373
20, 88192 27555 16738
21. 56388 77231 98975
22. 23523 22853 48913
22. 89658 87388 74619
23. 54852 62959 28802
24, 19155 97095 26354
24. 82615 64259 21155
25. 45274 25617 77650
26. 07170 79351 73912

26. 68341 03283 22450

27. 28817 91215 23985
27, 88631.84087 68461
28, 47810 96831 02278
29, 06381 41626 38199
29, 64367 48146 32016
30. 21791 81244 68575
30. 78675 56480 12503
31. 35038 53790 83035
31. 90899 29584 30463
32, 46275 27462 38480
33, 01182 87766 34287
33, 55637 56097 89422
34, 09653 90948 09138
34. 63245 70546 35866
35. 16425 99025 53408
35. 69207 11985 10469
36. 21600 81523 35199
36. 73618 20799 46803
37. 25269 88178 54148
37. 76565 91005 38871
38, 27515 89047 30879
38, 78128 97640 80369
39, 28413 90572 98596
39, 78379 02724 68233
40. 28032 32499 03719
40, 77381 44056 64866

+0, 53565 66560 15700
-0, 41901 54780 32564
+0. 38040 64686 28153
-0, 35790 79437 12282
+0. 34230 12444 11624
-0, 33047 62291 47967
+0. 32102 22881 94716
-0, 31318 53909 78682
+0. 30651 72938 82777
-0. 30073 08293 22645
+0. 29563 14810 01913
-0, 29108 16772 03539
+0. 28698 07069 99202
-0, 28325 27361 25021
+0. 27983 93053 60411
-0, 27669 44450 68930
+0. 27378 13856 46685
-0. 27107 02785 76971
+0. 26853 65782 82176
-0, 26615 98682 15709
+0. 26392 29929 60829
-0. 26181 14056 94794
+0. 25981 26701 51466
-0. 25791 60753 32572
+0. 25611 23337 79654
- 0. 25439 33426 46825
+0. 25275 19925 76574
-0. 25118 20133 88409
+0. 24967 78484 21125
-0. 24823 45513 98365
+0. 24684 77011 60296
-0. 24551 33306 87119

+0. 24422 78676 45060
-0. 24298 80842 90143
+0. 24179 10550 23721
- 0. 24063 41202 44844
+0. 23951 48554 15564
-0. 23843 10444 66267
+0. 23738 06568 33468
-0. 23636 18275 53143
+0, 23537 28399 36488
-0, 23441 21104 38024
+0. 23347 81753 92842
- 0. 23256 96793 53833
+0. 23168 53648 03788
-0. 23082 40630 53231
+0. 22998 46861 64426
-0. 22916 62197 66428
+0. 22836 77166 46281
-0, 22758 82910 18357
+0. 22682 71133 87890
-0. 22608 34059 36628
+0, 22535 64383 68475
- 0. 22464 55241 61432
+0, 22395 00171 79277
-0, 22326 93086 02552

TABIE ITI - Roots and turning values of Ai'(-ﬁ)
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APPENDIX IIT

ASYMPTOTIC EXPANSION OF THE ANGULAR FUNCTION Pi 1 (-cos @)
' o

The evaluation of the integral representations of the fields
scattered by a sphere requires a knowledge of the asymptotic form of
the associated Legendre function Pt(—cos ©) for large values of the

ofder v . In obtaining this expansion, the following formulas taken

from (6) are useful.

= 1
n  1/2 T(vptl) e+1{§4‘(V+§)9]

“ipm ‘ .
e Q (cos ©.+£10) = (—=r—=) —=
v A 12 sin @ r(y + %)
' Fie
1 1 . 3 tie :
2Fl(§~+“’ BTHIVES TEIm O) (#-3.1)
, _E%E - gipx :

1 e pH(x) = - [¢ © (x+10)-e L @ (x - 10)] (A-3.2)
oe M Q‘:(x) = [e = Q‘:(x+ 10) + e Q*;(x-,io)] (4-3.3)
u i
Fo(-x) = p*:(x) cos n(v +p) - % & (x) sin (v +p) (A-3.4)

where

Lalar)p(ph) 22
v(vy+1l) 2%

op z
E?l(a,ﬁ,r,z) = Hypergeometric function = 1 +-7F IT

If u 1is set equal to unity and the result is divided by cos vx ,

equation A-3.4 becomes
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ph " (-x)
v - '}
2 1 gin vt 1, 2 |ix _1 1
= P 1y 2 |in o
cos vt — | (x)(COSVW 1) T [2 v-i(X)+“Qv-l(x4
2 2 Z
(A-3.5)

The bracketed term in A-3.5 can be evaluated with the assistance of equa-

tions A-3.2 and A-3.3.

=P l(X) g l(X) = e Q! l(x - AB) (A-3.6)
V'tz V-‘E V-E

Also, if Im(v) > 0 , the factor (tan vx - i) can be expanded in powers

{2
of el vt .
(s 9] . ]
tan vr - 1 = i2 ¥ (-1)" g T { K5}
m=1 :
P (-%)
Y
Thus the function 2 can be written in the form
cOos8 vVTI
Pl (~x)
vez 1 & m ifmmy 2i 1
el o 4B E (%) Y {-1)7 e r=aq (x-10)  (A-3.8)
cos v v—% m=1 v-%

where it is assumed that Im(v) > O .
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The explicit forms of the angular functions which appear inA3.8 can be

obtained from A-3.1 and A-3.2. The functions Ql l(cos @ +10) , from

'V -
2
which all of angular functions can be derived, are given by

: 3 5t
=g (cos 6 +10) = (:r T e
X paid I'(v+ 1)
& F ig
é - l. » i ie L
2F1(2’ gF v S5 9) ) (A-3.9)

The hypergeometric function JFy (a,B;v;2z) converges for |z| <1 .
Consequently, the expression defined by A-3.9 is a convergent representa-

" 7 51t
tion of Ql (cos 8 + 10) as long as z < ® <% . For other values
Yo e

of @ , A-3.9 is an asymptotic representation which is valid for large

values of v sin 6 .
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