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Chapter 5

Hamiltonian Mechanics and Single
Particle Motion

Chapters 4 discusses the process of two parallel plasma loops merging together. Considering this

process from the perspective of individual particle orbits, the particles must transition from being

localized to one loop to orbiting symmetrically among the two loops. An analogous transition

happens on the Spheromak Experiment as the individual spider legs merge into an axisymmetric

plasma jet. To study the orbits and transitions, we have employed the Hamiltonian formalism and

report here a general theorem of Hamiltonian mechanics that evolved out of studies of charged

particle motion. The theorem states that the action integral of the fastest periodic coordinate serves

as an effective Hamiltonian for the reduced or orbit-averaged system. Stated alternatively, the

action integral encodes the average evolution of the system such that the average evolution of the

remaining non-periodic coordinates can all be extracted from this single quantity. Being rooted in

Hamiltonian mechanics, the theorem is quite general and, in essence, extends concepts from guiding

center theory to a broad class of Hamiltonian systems. Moreover, the theorem provides a unified

framework for obtaining the averaged evolution without having to average the individual equations

of motion, which can lead to a substantial reduction in the number of computations.

This chapter is organized in the following fashion. Sec. 5.1 will state and prove the theorem

formally in two stages. First, we prove the theorem in a restricted setting in which coordinates

other than the periodic one are ignorable. Examples such Kepler orbits and the relativistic E ×B

drift are provided; in the latter example, we demonstrate the relativistic coupling between orthogonal

Cartesian directions and an unexpected non-uniform motion parallel to the magnetic field. Sec. 5.1.8

then generalizes the theorem to the adiabatic case, where the action integral is then identified as

a Hamiltonian for the reduced system. The exposition of Sec. 5.1 parallels that of Ref. [91] but

includes more details and examples. Sec. 5.2 explicitly shows the connection between the general

theory and guiding center motion, rederiving the drift equations using the first adiabatic invariant µ

as an effective Hamiltonian. These drifts include the grad-B drift, the magnetic mirror force, and the
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E×B drift; finite Larmor radius effects are also computed for the latter. Sec. 5.2.5 then shows how

the magnetic flux enclosed by a gyro-orbit can be computed from the action integral, and Sec. 5.2.6

presents a formula that ties together different calculations presented throughout the chapter. The

application of the theorem to the merging of plasma loops is tackled in Chapter 6.

A comprehensive exposition of mechanics can, of course, be found in the classic texts [34, 92].

For charged particle motion through magnetic fields, Northrop provides a detailed exposition [35],

but more intuitive texts are available [93, 2]. Finally, more mathematical treatments of Hamiltonian

dynamics rooted in differential geometry are available [94, 95].

5.1 A Theorem on the Action Integral of Periodic Motion

The theory presented here hinges on the action integral of periodic motion, defined for a periodic

coordinate Q as

J =

∮
PQdQ, (5.1)

where PQ is the canonical momentum associated with Q, and the symbol
∮

refers to integration

over one full period [92, 94, 34]. Action integrals are adiabatic invariants [34, pg. 154] [94, pg.

297] and play an important role in perturbation theory [94, ch. 10] [92, ch. 12]. A brief review of

action integrals in the context of action-angle variables and canonical transformations is given in

Appendix C, but canonical transformations will not be needed in this chapter.

The crux of this section is that the action integral of the fastest periodic coordinate in a system

acts as an effective Hamiltonian for the reduced or orbit-averaged system. Sec. 5.1.1 explains the

meaning of “reduced” or “orbit-averaged” by analogy to a wall clock. In Sec. 5.1.2, a preliminary

version of the theorem is stated and proved. Several examples such as Kepler motion and rela-

tivistic E×B drifts make the meaning of the theorem concrete and also demonstrate applications.

Sec. 5.1.7 shows how the drifts of guiding center generalize to any Hamiltonian system with a pe-

riodic component. Sec. 5.1.8 then generalizes the preliminary theorem to the adiabatic case. This

section concludes by applying the theorem to a mechanical system which exhibits the phenomenon

of magnetic mirroring without any magnetic field.

5.1.1 A Clock Analogy

The context for this theorem will be Hamiltonian systems in which one coordinate undergoes periodic

motion while the other coordinates are ignorable, but the essence of the theorem can be described

by analogy to a wall clock. As the minute hand makes a full revolution and returns to its original

position, say 12:00, the hour hand does not return to its original position but instead increments

forward one hour or 30 degrees. One part of the system returns its starting point, but another part
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does not. Let us now imagine a peculiar clock whose hour hand does not move at a constant pace;

perhaps it moves faster in the beginning of the hour and slower down towards the end or perhaps

even moves backwards at times. The only condition we place on the hour hand is that, when the

minute hand returns to 12:00, the hour hand has moved its obligatory 30 degrees. Such an hour

hand would not be very useful for estimating time in between hours even though it faithfully tells

the correct time on the hour and in the long run moves at the correct average rate.

Analogously, many Hamiltonian systems have a periodic coordinate that acts like the minute

hand and other coordinates that increment with every period. An example is shown in Fig. 5.1

where an electron undergoes planar motion in the magnetic field of a straight wire; the radial

coordinate is periodic but the axial position increments with every gyration. Like the peculiar hour

hand, the z position does not change at a steady pace but moves faster, slower, and even backwards

depending on the phase of the motion. The crux of Sec. 5.1.2 is to compute the net displacements of

the other coordinates by taking partial derivatives of the action integral of the periodic coordinate.

Section 5.1.7 then devises an averaged system in which the evolution of these other coordinates is

steady, uniform, and free of peculiar non-uniformities.

Figure 5.1: (a) An electron orbiting a current-carrying wire has periodic radial motion but displaces
itself a net distance ∆z with every gyration. (b) Plotting the axial position z as function of time
shows the oscillatory motion superimposed over a net drift.
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5.1.2 Net Displacements and Differentiating the Action Variable

We now state the theorem formally. Consider a two-dimensional time-independent Hamiltonian

system where one coordinate, say η, is ignorable:

H = H(ξ, Pξ, Pη). (5.2)

Suppose that the ξ motion is periodic, that is, ξ(t + ∆t) = ξ(t) for some time interval ∆t. The

evolution of Pη is trivial:

Ṗη =
∂H

∂η
= 0, (5.3)

but the evolution of η is in general non-trivial. For instance, in a central force problem, the canonical

angular momentum Pφ is constant, but φ̇ = Pφ/mr
2 varies with r. Returning to the general setting,

over the time interval ∆t, η undergoes a net displacement ∆η: η(t + ∆t) = η(t) + ∆η. We claim

that

∆η = − ∂J

∂Pη
, (5.4)

where J is the action integral associated with ξ,

J(H,Pη) =

∮
Pξ(H, η, Pη)dξ. (5.5)

In Eq. (5.5), Pξ(H, η, Pη) is obtained by solving the Hamiltonian in Eq. (5.2) for Pξ. Eq. (5.4)

states that if J is known then the net change of η during one period of ξ can be calculated without

integrating the potentially complicated form of η̇.

Figure 5.2: (a) The trajectory, in phase space, is helical because of the periodic motion in the ξPξ
plane and the net displacement, or drift, in the η motion. (b) Projecting the trajectory onto the ξPξ
plane produces a closed trajectory. The area of this curve is J . Also labeled are the turning points
ξ± and the two branches of Pξ along a trajectory: the upper and lower branch denoted P±ξ .

The proof of Eq. (5.4) is surprisingly neat. First, we note that, in Eq. (5.4), there is no con-
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tribution from differentiating the integral bounds because the ξ motion is periodic. To make this

statement concrete, suppose that Pξ is a double-valued function of ξ with value Pξ+ along the upper

branch and Pξ− along the lower branch as suggested in Fig. 5.2. Then

∮
Pξdξ =

∫ ξ2

ξ1

Pξ+dξ +

∫ ξ1

ξ2

Pξ−dξ, (5.6)

where ξ1 and ξ2 are the turning points of motion. By continuity, Pξ+(ξ = ξ1) = Pξ−(ξ = ξ1) and

similarly at ξ = ξ2. Differentiating Eq. (5.6), one must differentiate the integral bounds in addition

to the integrand:

∂J

∂Pη
=

[∫ ξ2

ξ1

∂Pξ+
∂Pη

dξ +

∫ ξ1

ξ2

∂Pξ−
∂Pη

dξ

]
+ (5.7)

∂ξ1
∂Pη

[Pξ−(ξ1)− Pξ+(ξ1)] +
∂ξ2
∂Pη

[Pξ+(ξ2)− Pξ−(ξ2)] . (5.8)

However, the boundary terms then cancel by continuity of Pξ at the turning points1. Hence,

∂J

∂Pη
=

∮
∂Pξ(H, ξ, Pξ)

∂Pη
dξ. (5.9)

Second, the Pξ that appears in Eq. (5.9) is obtained by solving the Hamiltonian H = H(ξ, Pξ, Pη) for

Pξ along this particular trajectory. Furthermore, we can relate the ∂Pξ/∂Pη to partial derivatives

of H as follows. The differential of H = H(ξ, Pξ, Pη) is

dH =
∂H

∂ξ
dξ +

∂H

∂Pξ
dPξ +

∂H

∂Pη
dPη. (5.10)

In Eq. (5.9), we hold ξ and H fixed, so we set dξ = dH = 0 in Eq. (5.10) and obtain

∂Pξ
∂Pη

= −∂H/∂Pη
∂H/∂Pξ

. (5.11)

Using Eq. (5.11) and Hamilton’s equations in Eq. (5.9) gives

∂J

∂Pη
= −

∮
∂H/∂Pη
∂H/∂Pξ

dξ = −
∮
dη/dt

dξ/dt
dξ = −∆η. (5.12)

This result is exact and no assumption of slowness is needed. It applies whether ∆η is small and

the trajectory is nearly closed or whether ∆η is large and the trajectory is decidedly not closed. If

there are extra ignorable coordinates in the system, Eq. (5.4), suitably adjusted, applies to each of

them.

Eq. (5.4) generalizes the theorem [92, pg. 461] [34, pg. 156] that the period of motion is given

1Differential geometry provides a more general framework for such proofs; see Ref. [94, pg. 197], for instance.
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by a partial derivative of J with respect to H,

∆t =
∂J

∂H
. (5.13)

The resemblance between Eq. (5.4) and Eq. (5.13) is due to the fact that (t,−H) can be considered

a pair of canonical coordinates in extended phase space [96, pg. 15], so Eq. (5.13) can be considered

a special case of the theorem presented.

5.1.3 Example: The Trivial Case

Our first example will be the trivial case in Cartesian coordinates in which the two dimensions are

completely uncoupled:

H =
P 2
x

2m
+
P 2
y

2m
+ V (x). (5.14)

There are no forces in the y direction, so y evolves linearly, ẏ = Py/m, and we anticipate ∆y =

ẏ∆t = (Py/m)∆t. This is indeed obtained, for

J(H,Py) =

∮ √
2mH − P 2

y − V (x) dx, (5.15)

so

− ∂J

∂Py
=

∮
Py√

2mH − P 2
y − V (x)

dx. (5.16)

However, ∆t = ∂J/∂H, and

∂J

∂H
=

∮
m√

2mH − P 2
y − V (x)

dx. (5.17)

Therefore, −∂J/∂Py = (Py/m)∆t as expected. This result is rather boring but illustrates that,

for non-trivial examples to exist, there must be some coupling between the periodic and ignorable

coordinate. In the following examples, we will see that this coupling can occur either through the

expression for kinetic energy or through the introduction of a magnetic field.

5.1.4 Example: Kepler Motion

It is well-known that the bounded trajectories of Kepler orbits are ellipses. We therefore know, a

priori, that ∆φ = ±2π, where φ is the polar angle in the plane of motion and the radial coordinate r

is taken as the periodic coordinate. Kepler motion thus provides a non-trivial check of Eq. (5.4) and

provides an example where the periodic and ignorable coordinates are coupled via the expression for

kinetic energy.
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The Hamiltonian for Kepler motion is

H =
P 2
r

2m
+

P 2
φ

2mr2
− mMG

r
, (5.18)

where m is the mass of the object in orbit, M is the central mass, and G is the gravitational constant.

Pφ is the canonical angular momentum, Pφ = mφ̇r2, which is conserved along trajectories. The φ

coordinate is ignorable, but the evolution of φ is coupled to the radial coordinate, since φ̇ = Pφ/mr
2.

The action variable,

J =

∮ √
2mH − P 2

φ/r
2 + 2m

mMG

r
dr, (5.19)

can be efficiently evaluated by contour integration [92, pg. 468] [97, Appendix II] in the complex

r-plane:

J = −2π |Pφ|+ 2π
m2MG√

2m |H|
. (5.20)

∆φ and ∆t can now be found by applying Eq. (5.4) to Eq. (5.20),

∆φ = − ∂J

∂Pφ
= ±2π, (5.21)

∆t =
∂J

∂H
= π

m2MG√
2m |H|3

. (5.22)

The first equation tells us that φ always changes by 2π over a radial cycle no matter the energy

or angular momentum; the ± sign is determined by the sign of Pφ, i.e., the direction of rotation.

This neatly proves that all Kepler orbits are closed and degenerate.2 The second equation is the

well-known formula for the period of a Kepler orbit.

Kepler orbits demonstrate how the periodic and ignorable coordinates can couple through the

expression for kinetic energy. In Cartesian coordinates, kinetic energy takes a simple form:

T =
m

2

(
ẋ2 + ẏ2 + ż2

)
, (5.23)

for which there is no coupling. In a more general coordinate system, however, the kinetic energy

must be expressed in terms of a position-dependent metric:

T =
1

2
mgij(q)q̇

iq̇j . (5.24)

2Degeneracy, in the setting of classical mechanics, is when the frequencies of two coordinates are not independent
of each other [92, pg. 465].
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For instance, in the polar coordinate system used for Kepler orbits,

T =
1

2
m
(
ṙ φ̇

) 1 0

0 r2

 ṙ

φ̇

 . (5.25)

If the Lagrangian is of the form L = T − U = (1/2)gij(q)q̇
iq̇j − U(q), then the canonical momenta

are Pi = mgij(q)q̇
j , and one can solve for the velocities q̇i as

q̇i =
1

m
gij(q)Pj , (5.26)

where gij is the inverse matrix of the metric. It is the q dependence of gij that couples the periodic

variable to the ignorable coordinate’s velocity. In Kepler motion, φ̇ = Pφ/mr
2, so that the evolution

of φ is coupled to the motion in the radial direction.

5.1.5 Example: Vector Potentials and Charged Particles

The coordinates may couple through the vector potential term of the Lagrangian for a charged

particle in a magnetic field:

L =
m

2
v2 + qv ·A. (5.27)

In Cartesian coordinates, the expression for the canonical momenta is Pi = mvi + qAi, so

vi =
Pi − qAi(r)

m
. (5.28)

The vector potential depends on the periodic variable and can thus couple the periodic motion to

the ignorable coordinate’s velocity. Particle motion in magnetic fields is not the only instance of

such terms in the Lagrangian that are proportional to velocity. For instance, the transformation to

a non-inertial frame introduces similar terms [34, sec. 39], and the Coriolis force 2mv ×Ω, where

Ω is the angular velocity of the non-inertial frame, has a form suggestive of the magnetic Lorentz

force qv ×B.

5.1.6 Example: Relativistic Mechanics and Relativistic E×B Drift

As a final example, coupling can occur in relativistic expression for kinetic energy. For a velocity-

independent potential, the relativistic Lagrangian [92, Ch. 7.9] is

L = −mc2
√

1− β2 − V (x) = −mc
2

γ
− V (x), (5.29)
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where β = v/c and γ =
(
1− β2

)−1/2
. The canonical momenta, in Cartesian coordinates, are

Pi =
∂L

∂vi
= −mc2 1

2

−2vi√
1− v2/c2

= γmc2vi. (5.30)

Since γ depends on the magnitude of velocity, the relationship between vi and Pi for any Cartesian

direction also involves the velocities in the other directions. Suppose that z is ignorable, so Pz is

conserved. The z velocity,

ż =
Pz
γmc2

, (5.31)

is not necessarily constant because changes in vx and vy will change γ and hence vz. Thus, the

motion in different Cartesian directions can be coupled.

As an example of this coupling, we study the relativistic motion of a charged particle in crossed

electric and magnetic fields. We find that the motion along the magnetic field is not constant but

rather is modulated at the cyclotron frequency. Let E = Ex̂ and B = Bẑ with E/B < c; Fig. 5.3

shows the configuration of the fields and a sample trajectory. Recall that in the non-relativistic

case [2, Sec. 3.5.1] [93, Sec. 2.2.2], the particle drifts in the −ŷ direction with a velocity vE×B

independent of its charge or mass,

vE×B =
E×B

B2
= −E

B
ŷ. (5.32)

Furthermore, the velocity in the z direction is uniform and independent of the motion is the xy plane.

Relativistic effects, however, couple the motion in the z direction to the motion in the xy plane so

that vz modulates at the cyclotron frequency, as shown in Fig. 5.4. This modulation contains a net

drift that is computable with the Hamiltonian formalism. The full Lagrangian is

L = −mc2
√

1− v2/c2 − qφ+ qv ·A (5.33)

= −mc2
√

1− v2/c2 + qEx+ qvyBx, (5.34)

where φ = −Ex and A = Bxŷ are the appropriate potentials for the fields. The relativistic canonical

momenta are the same as Eq. (5.30) with the addition of the vector potential term: Pi = mγvi+qAi.

The relativistic Hamiltonian can be found by performing the Legendre transform:

H = c

√
(P− qA)

2
+m2c2 + qV = c

√
P 2
x + P 2

z + (Py − qBx)
2

+m2c2 − qEx. (5.35)

The x action,

J =

∮
Pxdx =

∮ √
(H + qEx)2

c2
− (Py − qBx)

2 − P 2
z −m2c2 dx, (5.36)
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can be evaluated in closed form by expanding the quadratics and completing the square in x:

J =

∮ √(
H2

c2
− P 2

y − P 2
z −m2c2

)
+ 2q

(
EH

c2
+BPy

)
x− q2

(
B2 − E2

c2

)
x2 dx (5.37)

=

∮ √
c2 − a2 (x− b)2

dx, (5.38)

where

a = q
√
B2 − E2/c2, (5.39)

b =
1

q

EH/c2 +BPy
B2 − E2/c2

, (5.40)

c2 =
H2

c2
− P 2

y − P 2
z −m2c2 +

(
EH/c2 +BPy

)2
B2 − E2/c2

. (5.41)

This integral represents the area of an ellipse of half-height c and half-width c/a. The area of the

ellipse is πc2/a, so the action is

J = π

[
H2/c2 − P 2

y − P 2
z −m2c2

q
√
B2 − E2/c2

+

(
EH/c2 +BPy

)2
q(B2 − E2/c2)3/2

]
. (5.42)

From this somewhat gruesome expression, the quantities ∆t and ∆z follow by partial differentiation:

∆t =
∂J

∂H
(5.43)

= π

(
B2 − E2/c2

) (
2H/c2

)
+ 2

(
EH/c2 + PyB

)
E/c2

q (B2 − E2/c2)
3/2

(5.44)

= 2π
PyBE/c

2 +B2H/c2

q (B2 − E2/c2)
3/2

(5.45)

∆z = − ∂J

∂Pz
=

2π

q
√
B2 − E2/c2

Pz. (5.46)

Together, these two quantities give the parallel drift:

∆z

∆t
=

B2 − E2/c2

PyBE/c2 +B2H/c2
Pz. (5.47)

Eq. (5.47) simplifies by writing Py, Pz, and H in terms of initial conditions:

Py = mγ0vy0 + qBx0, (5.48)

Pz = mγ0vz0, (5.49)

H = γ0mc
2 − qEx0. (5.50)
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Substitution into Eq. (5.47) gives

∆z

∆t
=

B2 − E2/c2

(mγ0vy0 + qBx0)BE/c2 +B2(γ0mc2 − qEx0)/c2
Pz (5.51)

=
B2 − E2/c2

(mγ0vy0)BE/c2 +B2(γ0mc2)/c2
Pz (5.52)

=
B2 − E2/c2

vy0BE/c2 +B2
vz0, (5.53)

a simplified form of Eq. (5.47). The x0 dependence has canceled out as expected. Also, taking the

non-relativistic limit by letting c→∞, we recover the non-relativistic result ∆z/∆t = vz0.

Figure 5.3: In a uniform electric and magnetic field, a charged particle will execute cycloid motion in
the plane normal to B and also move parallel to B. Here, the solid blue line is the actual trajectory,
and the dashed line is the projection of this trajectory, showing the cycloid motion. What is not
apparent in this plot, though, is the fact that the velocity along B is not uniform.

This unexpected modulation of the parallel velocity can be understood from Lorentz transfor-

mations. In the non-relativistic case, the E×B drift velocity is the velocity of a frame in which the

electric field is transformed to zero, leaving only a magnetic field. In this frame, kinetic energy is
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thus conserved, and the charged particle undergoes simple Larmor motion. The cycloid trajectory

observed in the lab frame is a superposition of the uniform E × B drift and the circular Larmor

motion. In the relativistic case, kinetic energy is likewise conserved in the E×B drift frame with no

modulation of γ and hence no modulation of vz. However, the transformation back to the lab frame

involves a non-linear transformation of time, resulting in the modulation of the parallel velocity.

To see this effect, we first note that a Lorentz boost with velocity vd along the y direction

transforms the electric and magnetic fields as [98, Eq. (12.108)]

E′x = γd(Ex + vdBz), (5.54)

B′z = γd(Bz +
vd
c2
Ex), (5.55)

where γd =
(
1− (vd/c)

2
)−1/2

. Since E/B < c, we can choose vd = −E/B so that the electric field

vanishes in the boosted frame: E′x = 0. The magnetic field becomes

B′z = γd

(
B − E2

Bc2

)
=

B − E2/(Bc2)√
1− E2/B2c2

=
√
B2 − E2/c2. (5.56)

Without an electric field, the particle undergoes simple cyclotron motion, and the trajectory will

look something like 
ct′

x′(t′)

y′(t′)

z′(t′)

 =


ct′

r0 cos Ωt′

r0 sin Ωt′

v′z0t
′

 , (5.57)

with Ω = qB′z/mγd the cyclotron frequency in the drift frame [92, Eq. (7.154)]. We transform this

solution back to the lab frame with the inverse Lorentz boost:
ct

x

y

z

 =


γd 0 γdβd 0

0 1 0 0

γdβd 0 γd 0

0 0 0 1




ct′

r0 cos Ωt′

r0 sin Ωt′

v′z0t
′

 (5.58)

=


γd(ct

′ + βdr0 sin Ωt′)

r0 cos Ωt′

γd(βdt
′ + r0 sin Ωt′)

v′z0t
′

 (5.59)

The z velocity is not uniform because we have to express z as a function of t rather than t′, which
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is achieved by inverting the zeroth component of the above transformation:

ct = γd (ct′ + βdr0 sin Ωt′) . (5.60)

It is interesting to note that z evolves linearly with t′ but not with t. We shall return to this curious

fact in Sec. 5.1.7.

5.1.7 Drifts and Averaged Coordinates

The quantity ∆η is the net change in η over the course of a ξ cycle. In general, η may have oscillated

greatly over this cycle, but, whatever the particulars of its motion, it ends up changing by ∆η. This

allows us to define an averaged η velocity, or drift, as

∆η

∆t
= − ∂J/∂Pη

∂J/∂H
. (5.61)

This velocity is constant and equal to limt→∞ η(t)/t. It captures the net rate of change of η without

the details of the η evolution. Equation (5.61) generalizes the particle drifts associated with guiding

center theory.

The velocity in Eq. (5.61) can be derived from Hamilton’s equations by writing H as a function

of J . That is, the functional form J = J(H,Pη) can be inverted for H as a function of Pη and J :

H = H(J, Pη). Then, the differential of J = J(H,Pη),

dJ =
∂J

∂H
dH +

∂J

∂Pη
dPη, (5.62)

implies that, by setting dJ = 0,

∂H(J, Pη)

∂Pη
= −∂J/∂Pη

∂J/∂H
=

∆η

∆t
. (5.63)

Equation (5.63) has a form suggestive of Hamilton’s equation: an η velocity was obtained by differ-

entiation of the Hamiltonian with respect to Pη. However, the velocity obtained is the average one,

where as Hamilton’s equations applied to the original system H = H(ξ, Pξ, Pη) gives the instanta-

neous η velocity:
∂H(ξ, Pξ, Pη)

∂Pη
= η̇ 6= ∆η

∆t
=
∂H(J, Pη)

∂Pη
. (5.64)

Thus, when H is written as a function of J in place of ξ and Pξ, the velocity furnished by Hamilton’s

equations is the average or drift velocity. This result is discussed in Appendix C where it is seen

that a canonical transformation from (ξ, Pξ) to action-angle coordinates simultaneously transforms

η to its average version.
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Let us recall the peculiar hour hand of Sec. 5.1.1 that has a non-uniform speed even though it

moves the requisite 30 degrees every hour. This hour hand is analogous to the ignorable coordinate

η, whose evolution is likewise not necessarily uniform. We have seen that writing H = H(J, Pη)

instead of H = H(ξ, Pξ, Pη) transforms the ignorable coordinate into its averaged form; continuing

the analogy, this is like transforming the peculiar hour hand into a well-behaved version that moves

at a uniform rate and is much more reliable for reading time, as suggested by Fig. 5.5. Similarly,

the relativistic example in Sec. 5.1.6 shows that boosting to the drift frame causes the z coordinate

to evolve linearly in drift frame time whereas its evolution in lab frame time is non-uniform. In

general, replacing the periodic coordinates ξ and Pξ with the constant of motion J eliminates the

oscillatory components of η.

5.1.8 Adiabatic Evolution and Reduced Systems

Eq. (5.4) is proved under the assumption that η is ignorable. Here, we relax the requirement that η

is ignorable and instead allow the oscillations to evolve adiabatically. By adiabatic, we mean that

the orbits with η dependence resemble the orbits of the ignorable case but that the orbit parameters

slowly change over the course of many periods. This relaxation of assumptions not only allows a

broader class of systems to be studied but also yields a new result: the action integral J serves as

an effective Hamiltonian for a reduced system in which all the remaining non-periodic coordinates

are replaced by their averaged versions.

We proceed by adding η dependence to the Hamiltonian, H = H(ξ, Pξ, η, Pη), but regard (η, Pη)

as slowly varying parameters of the ξ oscillation. This assumption allows the action integral J to be

defined3, in which case it will be an adiabatic invariant [34, pg. 154] [94, pg. 297]. To make these

statements precise, we separate H into two parts:

H(ξ, Pξ, η, Pη) = Hloc(ξ, Pξ, η, Pη) +Hext(η, Pη). (5.65)

Hloc is a local Hamiltonian that describes the ξ oscillations; because Hloc contains all the ξ and Pξ

dependence, the ξ and Pξ evolution depend only on Hloc

dξ

dt
=
∂Hloc

∂Pξ

dPξ
dt

= −∂Hloc

∂ξ
. (5.66)

We presume that η and Pη play the role of slowly varying parameters in Hloc; that is, over the

course of a single ξ period, η and Pη can be held fixed to good approximation. The evolution of

3Arbitrary η dependence could result in large variations over a single ξ period to the point where ξ is no longer
periodic. In such cases, the action integral, or any first integral of motion, will not exist, and such systems are
termed non-integrable. The transition from an integrable system to an non-integrable system through introduction of
a perturbation, such as the η dependence described here, is the topic of KAM theory [94, Appendix 8] [96, Sec. 1.4].
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these “parametric coordinates” is determined by both the local and the external Hamiltonian Hext:

dη

dt
=
∂H

∂Pη

dPη
dt

= −∂H
∂η

(5.67)

In essence, then, Hext describes the way in which the ξ oscillations interact with the outside world

by influencing the evolution of the oscillation parameters. This scheme, by construction, ensures

the existence and adiabatic invariance of J , defined as in Eq. (6.20) but now with η dependence,

as follows. Traditionally, the adiabatic invariance of the action integral is demonstrated by adding

a time-dependent parameter, say λ(t), to a Hamiltonian system, H = H(ξ, Pξ;λ(t)) [34, pg. 154].

Here, we treat η and Pη as the slowly varying parameters of the ξ oscillation and thereby effectively

reduce the present system H = H(ξ, Pξ, η, Pη) to the traditional case H = H(ξ, Pξ;λ(t)). As

in Ref. [34, pg. 154], we assume it is a good approximation to hold the parametric coordinates

η and Pη fixed while evaluating the ξ action integral. However, an important distinction of our

treatment is that Eq. (5.65) is time-independent and thus conservative, whereas the Hamiltonian

H = H(ξ, Pξ;λ(t)) is time-dependent and hence not conservative. Of course, the local and external

systems exchange energy but the total energy, E = Eloc(t) + Eext(t), is conserved.

The added η dependence in J allows the derivation of ∆Pη, the net change in the previously

conserved canonical momentum, in addition to ∆η. Indeed,

∂J

∂η
=

∮
∂Pξ
∂η

dξ = −
∮

∂H/∂η

∂H/∂J
dξ = −

∮
− Ṗη
ξ̇
dξ = ∆Pη (5.68)

Equation (5.68) together with Eq. (5.4) yields the following system of equations:

∂J

∂η
= ∆Pη,

∂J

∂Pη
= −∆η. (5.69)

Equations (5.69) have the makings of a Hamiltonian system with −J serving as the Hamiltonian.

They are precisely Hamiltonian as follows. We define discretized derivatives dη/dt = ∆η/∆t and

dPη/dt = ∆Pη/∆t that capture the net rates of change of η and Pη. Upon invocation of a rescaled

time τ normalized by the ξ period:

dτ =
dt

∆t
, (5.70)

Eqs. (5.69) become

dη

dτ
=

∂

∂Pη
(−J) , (5.71)

dPη
dτ

= − ∂

∂η
(−J) . (5.72)

This system of equations is Hamiltonian with −J playing the role of the Hamiltonian and τ playing
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the role of time. We note that τ is the angle variable conjugate to J ; it evolves linearly in time and

increments by one for every cycle.

We show that ∆η and ∆Pη can both be split into two terms, local and external. This observation

is not needed for the proof that J is a Hamiltonian for the reduced system but does offer some insight.

We evaluate J =
∮
Pξdξ by first solving for Pξ in the Eq. (5.65); this means inverting the equation

Hloc(ξ, Pξ, η, Pη) = H − Hext(η, Pη). In this equation, H and Hext appear in the combination

H −Hext, so Pξ and J depend only on H −Hext, which is just Hloc. In a more intuitive sense, J

depends only on Hloc because Hloc is sufficient to prescribe the ξ dynamics. Up to now, we have

written J as J = J(H, η, Pη), but the above discussion suggests that J is rather a function of Hloc:

J = J(H, η, Pη) = J̃(Hloc(η, Pη), η, Pη) = J̃(H −Hext(η, Pη), η, Pη). (5.73)

The symbol J̃(Hloc, η, Pη) is used simply to denote the difference in functional dependence from

J(H, η, Pη). This distinction may appear to be a matter of semantics, but we note that J̃(Hloc, η, Pη)

depends on η and Pη both implicitly through Hext and also explicitly. Accordingly, ∆η and ∆Pη

have two terms: one term comes from the explicit dependence and one from the implicit dependence.

The former is the drift of the system, e.g., the displacements suffered by η and Pη as a result of the

ξ motion completing a full cycle, while the latter is the slow change of η and Pη due to Hext. In the

example provided in Sec. 5.1.9, these two terms will be computed explicitly.

We obtain a Hamiltonian for the averaged system in regular time in which partial differentiation

of H, written as a function of J , gives the discretized derivatives defined above. To see this, we use

the differential of J = J(H, η, Pη),

dJ =
∂J

∂H
dH +

∂J

∂η
dη +

∂J

∂Pη
dPη, (5.74)

to evaluate partial derivatives of H(J, η, Pη):

∂H

∂Pη
= −∂J/∂Pη

∂J/∂H
=

∆η

∆t
=

dη

dt
(5.75)

−∂H
∂η

= − ∂J/∂η

∂J/∂H
=

∆Pη
∆t

=
dPη
dt

, (5.76)

giving the discretized derivatives. As in Sec. 5.1.7, writing H as a function of J rather than (ξ, Pξ)

turns the velocities given by Hamilton’s equations into the drift velocities. We can further refine H =

H(J, η, Pη) into local and external parts by solving Eq. (5.73) for Hloc, i.e., Hloc = Hloc(J, η, Pη).

Since Hloc = H −Hext,

H = Hloc(J, η, Pη) +Hext(η, Pη). (5.77)

The term Hloc(J, η, Pη) is an adiabatic potential [99] and is, in essence, the residue of averaging the
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periodic ξ motion. In fact, for systems approximating a harmonic oscillator, J = 2πHloc/ω(η, Pη),

so the adiabatic potential is Hloc = Jω/(2π), showing that J acts like an electrostatic charge and

ω(η, Pη) acts like an electrostatic potential. The magnitude of this effective “J charge” depends on

the amplitude of the ξ oscillation. The use of −J as a Hamiltonian with normalized time τ and the

use of H, written as a function of J , with regular time are entirely equivalent4. Practically, though,

there are techniques to evaluate J directly [97, Appendix II], so using −J as the Hamiltonian spares

one from inverting J for H, which might not be analytically feasible, as will be in the case in Sec. 6.1.

5.1.9 Example: Particle in a Groove

The following system was proposed by Prof. Bellan as a mechanical analog of magnetic mirroring [2,

Sec. 3.5.6] [93, pg. 29], a phenomenon where charged particles are reflected from regions of strong

magnetic field strength. It is well-known that µ-invariance is responsible for this mirroring phe-

nomenon: as the field strength increases, the energy of the particle’s Larmor motion also increases

as per Eq. (1.10) to the point when the Larmor energy equals the particle’s total kinetic energy.

The particle then has no kinetic energy left to move along the field line and is thus reflected. We

shall show that this principle is not restricted to charged particles in magnetic fields.

Consider a marble in a long groove where the steepness of the groove varies with position, as

shown in Fig. 5.6. The height h of the groove can be expressed as a function of x and y, where y is

the distance along the groove and x is the distance across the groove,

h(x, y) =
1

2
κx2

(
1 + αy2

)
+

1

2
λy2. (5.78)

The concavity and steepness of the groove is determined by the curvature λ in the y direction and κ in

the x direction. α couples the steepness of the x direction to the y coordinate. The exact Lagrangian

and Hamiltonian for a marble in such a groove is not trivial5, but, in the same approximation in

which a pendulum can be considered a harmonic oscillator, the Hamiltonian for this system is

H =
P 2
x

2m
+
P 2
y

2m
+

1

2
mgκx2

(
1 + αy2

)
+

1

2
mgλy2. (5.80)

Presuming that the particle’s y position changes slowly relative to the oscillations across the groove

4In fact, in Hamiltonian mechanics, one can use any momentum as a Hamiltonian for the system so long as the
associated coordinate is used as the “time,” or orbit parameter [96, pg. 15][100].

5The exact Lagrangian equals the Lagrangian for a particle in gravitational field with the constraint that the
particle remain on the groove. Using the Lagrange multiplier Λ to enforce the constraint:

L =
m

2

(
ẋ2 + ẏ2 + ż2

)
−mgz + Λ (z − h(x, y)) , (5.79)

for which the z equation of motion is mz̈ = −mg+ Λ. The approximation used here, like approximating a pendulum
as a simple harmonic oscillator, ignores the acceleration in the z direction, so Λ = mg. Using this value of Λ in the
exact Lagrangian gives the approximate Hamiltonian in Eq. (5.80).
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(i.e., |α| and |λ| are small compared to κ), the y-dependent frequency of x oscillation is

ω(y) =
√
gκ
√

1 + αy2. (5.81)

We identify Hloc = P 2
x/2m+mω2x2/2, the energy of x oscillations. The x action is then that of a

harmonic oscillator, J = 2πHloc/ω(y), and Eq. (5.77) becomes

H(J, y, Py) =
P 2
y

2m
+

1

2
mgλy2 + 2πω(y)J. (5.82)

Equation (5.76) gives

Ṗy = −∂H(J, y, Py)

∂y
= −mgλy + 2π

dω(y)

dy
J. (5.83)

The first term in Eq. (5.83) is the average force of the external Hamiltonian, in this case the pull of

gravity along the groove. The second term, though, comes from differentiating the local Hamiltonian

and is due to the adiabatic invariance of J . This average force in the y direction is due to the change

in x-oscillation energy as the particle finds itself in a narrower or wider groove.

The adiabatic term in Eq. (5.83) can oppose the pull of gravity, leading to surprising behavior.

Suppose that λ is negative so that the groove is concave down along in the y direction. Intuition

dictates that a marble placed in such a groove will rattle its way down the groove with increasing

velocity, as shown in Fig. 5.7. However, with the right choice of initial conditions, the adiabatic

force can have a negative value, meaning it acts as a restoring force in the y direction and, if

sufficiently strong, can overwhelm the contribution from λ and give oscillatory y motion! This is

the mechanical analog of a magnetic mirror and has been verified by direct numerical integration as

shown in Fig. 5.8.

For oscillatory y motion, Eq. (5.82) admits an action integral in the y direction. Denote this

second action by K, which can be considered a new Hamiltonian for the x averaged system. This is

an example of a two-tier heirachy of action variables, or a wheel within a wheel [91]. For the reduced

system, J plays the role of a conserved quantity, so we develop an analog of Eq. (5.4):

∂K

∂J
=

∮
∂Py(H,J, y)

∂J
dy =

∮
1

∂J/∂Py
dy (5.84)

=

∮
−1

dy/dτ
dy = −∆τ, (5.85)

where Eq. (5.74) has been used to evaluate ∂Py/∂J and Eq. (5.72) has been used to evaluate ∂J/∂Py.

Since τ counts x cycles, −∂K/∂J gives the number of x cycles per y cycle. If this quantity is rational,

then the trajectory is closed, which is of interest when quantizing the system, as there is sometimes

a one-to-one correspondence between periodic classical trajectories and quantum energy levels [101].
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5.2 Charged Particle Motion in a Magnetic Field

Having discussed at length the general theory, we now focus on charged particle motion in magnetic

fields. Sec. 5.2.1 shows that, in the guiding center approximation, the action integral J reduces to

the first adiabatic invariant µ. Since J acts as a Hamiltonian for the reduced system, it follows that

µ is a Hamiltonian for the guiding center drifts, and we shall explicitly recover several of the guiding

center drifts from the general theory. Sec. 5.2.5 show an unexpected application of the theory:

computing the magnetic flux enclosed by a particle’s orbit by differentiating the action variable with

respect to the particle’s charge. We finally conclude the chapter with a theorem that relates these

various partial derivatives of J .

5.2.1 The Connection Between J and µ

The action integral J is clearly important but often difficult to evaluate in closed form. In the same

limit as the guiding center approximation, however, the integral for J can be approximated and is

proportional to µ, the first adiabatic invariant [33, p. 16]. This approximation also shows that the

guiding center limit is really a harmonic-oscillator approximation to the full problem.

Consider a magnetic field in the z direction and with x dependence: B = Bz(x)ẑ. A charged

particle will drift in the y direction due to the gradient in the magnetic field strength [2, Sec.

3.5.2] [93, Sec. 2.3] and will move freely in the z direction. The action J can be written in integral

form using the vector potential

A = Ay(x)ŷ =

(∫ x

x0

Bz(x
′)dx′

)
ŷ, (5.86)

and Hamiltonian

H =
P 2
x

2m
+

(Py − qAy(x))2

2m
+
P 2
z

2m
, (5.87)

from which

J(H,Py, Pz) =

∮
Pxdx =

∮ √
2mH − P 2

z − (Py − qAy(x))2dx. (5.88)

To help with notation, let us define H⊥ as the kinetic energy in the Larmor motion (e.g. not in the

z direction):

H⊥ = H − P 2
z

2m
. (5.89)

We evaluate J by first defining the guiding center position xgc and then performing a Taylor

expansion about this point. Let xgc be the x location where the y velocity vanishes:

0 = mẏ(xgc) = Py − qAy(xgc). (5.90)
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If the orbit were perfectly circular, as is assumed in guiding center theory, then xgc would coincide

with the center of the circle. xgc is a function of Py, and, for future reference, a partial differentiation

of Eq. (5.90) with respect to Py gives

∂xgc

∂Py
=

1

qBz(xgc)
. (5.91)

We now perform a Taylor expansion of Ay around xgc:

Ay(x) ≈ Ay(xgc) +
dAy
dx

∣∣∣∣
xgc

(x− xgc) (5.92)

= Ay(xgc) +Bz(xgc)(x− xgc). (5.93)

This expansion allows us to approximate J . Letting x′ = x− xgc,

J ≈
∮ √

2mH⊥ −
(
qBz(xgc)x′

)2
dx′ (5.94)

=
∣∣qBz(xgc)

∣∣ ∮ √ 2mH⊥
q2Bz(xgc)2

− (x′)2dx′ (5.95)

The integral now represents the area enclosed by a circle of radius
√

2mH⊥/ |qB|, so

J ≈ π
2mH⊥∣∣qBz(xgc)

∣∣ = 2π
m

|q|

(
mv2

L

2
∣∣Bz(xgc)

∣∣
)

= 2π
m

|q|
µ, (5.96)

where µ is defined as in Eq. (1.10). Thus, J is proportional to, but not equal to, µ in the guiding

center limit. The importance of this derivation is the functional dependence of B on xgc and hence

on Py; this dependence is key in deriving the grad-B drift below. Note that the absolute value of q

guarantees that the action J is positive6 for both positively and negatively charged particles.

In reducing J to µ, we have used the same approximations that reduce any potential well to a

harmonic oscillator. To see this, note that the Hamiltonian in Eq. (5.87) can be viewed as a one-

dimensional system with an effective potential energy Ueff = (Py − qAy(x))2/2m = (m/2)vy(x)2 [2,

pg. 119]. That is, the effective potential is equal to the kinetic energy in the y direction, and xgc is

clearly the location of the minimum of this potential well. As any potential well can be approximated

as a harmonic oscillator by performing a second-order Taylor expansion of the potential around the

minimum, Eq. (5.94) is equivalent to the action integral for a harmonic oscillator. The action for

a harmonic oscillator is J = 2πωH, and, indeed, the Eq. (1.10) is proportional7 to 2πωH with ω

equal to the gyrofrequency. The guiding center limit is thus a harmonic-oscillator approximation.

6J must be positive for such systems because J =
∮
Pxdx and Px = mẋ. Therefore, the contour of integration for

J is clockwise in the rPr plane, corresponding to a positive value of J , regardless of the particle charge.
7The constant of proportionality between between J and µ is m/ |q|, which is suggestive of the gyromagnetic ratio

which related the angular momentum of a charged rotating rigid body to its magnetic moment [98, pg. 252].
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Section 5.1.8 shows that the action J can be used as a Hamiltonian for the reduced system.

Having shown that J reduces to µ in the guiding center limit, we expect that µ will serve as a

Hamiltonian for the guiding center motion. Section 5.2.2 shows that Eq. (5.94) for µ does indeed

contain the grad-B drift of guiding center theory thanks to the definition of xgc in Eq. (5.90).

Sec. 5.2.3 extends the analysis to include parallel dynamics and the magnetic mirror force, and

Sec. 5.2.4 adds an electrostatic field to study the E×B drift.

5.2.2 The Grad-B Drift

For the magnetic fields used in the previous section, a charged particle will drift in the y direction

due to the gradient in field strength. We show that this grad-B drift, which is well-established in

guiding center theory, can be computed using the Hamiltonian formalism . ∆t is given by Eq. (5.13)

and (5.96),
∂J

∂H
= 2π

m

|q|Bz(xgc)
= ∆t, (5.97)

and is the usual gyroperiod. ∆y is given by a partial derivative with respect to Py:

∆y = − ∂J

∂Py
= 2πm

H⊥
|q|Bz(xgc)2

∂Bz
∂x

dxgc

dPy
(5.98)

= 2πm
H⊥

|q|Bz(xgc)2

∂Bz
∂x

(
1

qBz(xgc)

)
, (5.99)

where Eq. (5.91) was used to evaluate dxgc/dPy. The drift velocity in the y direction, computed

through the Hamiltonian formalism, is

∆y

∆t
=

H⊥
qBz(xgc)2

∂Bz
∂x

. (5.100)

Let us compare Eq. (5.100) to the grad-B drift [2, eq. 3.89] from the guiding center approximation:

v∇B = −H⊥
qB3
∇B ×B (5.101)

= −H⊥
qB3

(
∂Bz
∂x

x̂

)
× (Bz ẑ) (5.102)

=
H⊥
qB2

z

∂Bz
∂x

ŷ, (5.103)

which is in perfect agreement with Eq. (5.100).

5.2.3 Parallel Dynamics: The Magnetic Mirror Force

We now consider a magnetic field whose strength slowly changes in the z direction as well as in the

x direction. The parallel dynamics become non-trivial: the gyrofrequency changes with the field
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strength, the parallel motion can slow down, and magnetic mirroring can occur. We show that µ

serves as a Hamiltonian for both the parallel dynamics in addition to the grad-B drift discussed

above.

We first make some assumptions on the magnetic field. Because ∂zBz 6= 0, there must be a

second component of B to ensure ∇ · B = 0. We therefore allow Bx to be non-zero. Since the z

dependence of Bz is mild, Bx must be small. All of this can be encapsulated by the vector potential

A = Ay(x, z)ŷ = Ã(x, εz)ŷ; (5.104)

that is, the vector potential is some function of x and εz. The ε in the z dependence allows us to

keep track of the relative magnitudes of terms. For instance, the magnetic field components are

Bz =
∂Ay
∂x

, Bx = −∂Ay
∂z

, (5.105)

so that Bz is zeroth order but Bx is small to first order. Likewise, ∂zBz is first order, and ∂zBx is

second order. We shall only work to first order. In this limit, the magnitude of the magnetic field is

B =
√
B2
z +B2

x ≈ Bz, (5.106)

and the unit vector of B is

B̂ =
Bz ẑ +Bxx̂

B
≈ ẑ +

Bx
Bz

x̂. (5.107)

To proceed with the Hamiltonian formalism, we modify our definition of xgc to be a function of

both Py and z defined by

0 = ẏ
(
xgc(Py, z)

)
= Py − qAy

(
xgc(Py, z), z

)
. (5.108)

Implicit differentiation gives a modified version of Eq. (5.91):

∂xgc

∂Py
=

1

qBz
, (5.109)

∂xgc

∂z
= −∂Ay/∂z

∂Ay/∂x
=
Bx
Bz

. (5.110)

The form of J remains the same,

J = 2π
m

|q|
H⊥

Bz(xgc(Py, z), z)
, (5.111)

but there is now z dependence both in the magnetic field and also in the guiding center position.

Neither ∂J/∂H nor ∂J/∂Py change in form except for the z dependence added to Bz, so the grad-
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B drift is the same as Eq. (5.100). The calculation of ∆Pz, however, becomes interesting, as the

evaluation of ∂J/∂z must include differentiation of the z dependence of both Bz and also xgc. Using

Eqs. (5.109) and (5.110), we get

∂J

∂z
= −2π

m

|q|
H⊥
B2
z

dBz(xgc, z)

dz
(5.112)

= −2π
m

|q|
H⊥
B2
z

[
∂Bz
∂x

∂xgc

∂z
+
∂Bz
∂z

]
(5.113)

= −2π
m

|q|
H⊥
B2
z

[
∂Bz
∂x

Bx
Bz

+
∂Bz
∂z

]
(5.114)

= −2π
m

|q|
H⊥
B2
z

[
Bx
Bz

∂

∂x
+

∂

∂z

]
Bz (5.115)

= −2π
m

|q|
µ

Bz
B̂ · ∇Bz. (5.116)

Then
∆Pz
∆t

=
∂J/∂z

∂J/∂H
= −µB̂ · ∇Bz. (5.117)

We can work out the dynamics as predicted by the guiding center approximation and compare

them with the conclusions of the previous paragraph. We start with the ∇B drift and show that it is

unaltered by the added z dependence. While the gradient of the magnetic field strength is modified

to first order ε:

∇B ≈ ∇Bz =
∂Bz
∂x

x̂+
∂Bz
∂z

ẑ, (5.118)

the grad-B drift remains the same as Eq. (5.103) to first order:

v∇B = −H⊥
qB3
∇B ×B (5.119)

= −H⊥
qB3

(
∂Bz
∂x

x̂+
∂Bz
∂z

ẑ

)
× (Bxx̂+Bz ẑ) (5.120)

=
H⊥
qB2

∂Bz
∂x

ŷ. (5.121)

The term Bx · ∂zBz is second order ε and thus is dropped. Guiding center theory predicts a second

drift, the curvature drift [2, Sec. 3.5.2] [93, Sec. 2.3.2], but this is zero to first order:

vc = −
mv2
‖

qB2
B̂ · ∇B̂ ×B (5.122)

= −
mv2
‖

qB2
z

[(
∂

∂z
+
Bx
Bz

∂

∂x

)(
ẑ +

Bx
Bz

x̂

)]
× (Bz ẑ +Bxx̂) , (5.123)

because the term in square brackets is second order ε. The parallel dynamics comes from µ conser-
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vation:

µB = H − P 2
z /2m. (5.124)

Taking a total time derivative of both sides,

µvd · ∇B = −PzṖz/m, (5.125)

where vd is the drift velocity. Since B does not vary in the y-direction, vd ·∇B = ż∂zB, and dividing

by Eq. (5.125) by ż = Pz/m gives

µB̂ · ∇B = −Ṗz, (5.126)

which agrees with Eq. (5.117).

5.2.4 E×B Drifts

This section incorporates an electrostatic field E(x, y) = −∇V (x, y) in addition to a magnetic field

of the form B = Bz(x)ẑ. The Hamiltonian becomes

H =
P 2
x

2m
+

(Py − qAy(x))2

2m
+ qV (x, y), (5.127)

and the action integral is

J(H, y, Py) =

∮ √
2m(H − qV (x, y))− (Py − qAy(x))2 dx. (5.128)

We would like to approximate this integral and express the result in a form similar to the action J0

for the purely magnetic case:

J0(H,Py) =

∮ √
2mH − (Py − qAy(x))2 dx ≈ π 2mH

|q|Bz(xgc)
. (5.129)

The coarsest approximation to Eq. (5.128) is sufficient to recover the E×B drift [2, ch. 3.5.1] [93,

Sec. 2.2.2] in addition to the grad-B drift. More accurate approximations of Eq. (5.128) produce

higher-order corrections to the E × B velocity. We relate one such higher-order correction to a

finite Larmor radius effect. In Appendix D, we relate a second such higher-order correction with a

pondermotive-like force induced by the cyclotron motion.

The coarsest approximation to Eq. (5.128) is to assume that, over the course of a gyro-orbit,

V (x, y) can be approximated by its value at the guiding center, V (x, y) ≈ V (xgc, y). With this

approximation,

J(H, y, Py) ≈ J0(H − qV (xgc, y), Py), (5.130)
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The period ∆t is the same as with no potential, but ∆y has a new term that comes from the Py

dependence of xgc in V:

∆y = − ∂J

∂Py
= −∂J0

∂H

∂

∂Py
(H − qV )− ∂J0

∂Py
=
∂J0

∂H

∂xV

Bz
− ∂J0

∂Py
, (5.131)

where Eq. (5.91) has been used. The drift in the y direction is thus

∆y

∆t
=
∂xV

Bz
− ∂J0/∂Py
∂J0/∂H

. (5.132)

The second term is the grad-B drift discussed in Sec. 5.2.2, and we denote this quantity as v∇B .

The first term, ∂xV/B, is readily identified as the y component of the E×B drift:

(
E×B

B2

)
y

=
(Exx̂)× (Bz ẑ)

B2
z

=
∂xV

Bz
. (5.133)

The x component of the E×B drift is also contained in the Hamiltonian formalism and can be com-

puted by taking ∆xgc and using the definition of xgc from Eq. (5.90) to obtain ∆Py = qBz(xgc)∆xgc.

Then, since

∆Py =
∂J

∂y
=
∂J0

∂H

(
−q ∂V

∂y

)
, (5.134)

the drift in the x direction is
∆xgc

∆t
= −∂yV

Bz
. (5.135)

We can retain the two next higher-order terms of the expansion of V to yield more accurate

forms of the action integral. We proceed by using the expansion V (x, y) ≈ V (xgc, y) + ∂xV δx in the

integrand of Eq. (5.128) and then completing the square in δx:

J ≈
∮ √

2m(H − qV − ∂xV δx)− (qBzδx)2 dx (5.136)

=

∮ √√√√2m

(
H − qV +

m

2

(
∂xV

Bz

)2
)
− q2B2

z

(
δx+

m∂xV

qB2
z

)2

dx. (5.137)

This integral for J resembles Eq. (5.128) but with two modifications. First, the oscillation center

is shifted by the amount m∂xV/qB
2
z . As discussed in Appendix D, this shift occurs because our

definition of guiding center no longer minimizes the effective potential once a potential has been

added. However, in evaluating Eq. (5.137), this shift will have no bearing on the value of the action

integral8. The second modification is the addition of a new potential term (m/2)(∂xV/Bz)
2, which

is the kinetic energy of the E × B drift. In Appendix D, this new potential is proposed to be a

8Put succinctly, J is the phase space area enclosed by the trajectory in the xPx plane and thus is clearly not
changed by an offset.
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pondermotive-like potential induced by the cyclotron motion. Eq. (5.137) allows us to express J in

terms of J0:

J(H,Py) = J0

(
H − qV (xgc, y, t) +

m

2

(
∂xV

Bz

)2

, Py

)
, (5.138)

which serves as a Hamiltonian for the guiding center motion. The effect of the new potential term

on the drift will be discussed shortly.

If the potential V (x, y) is expanded one term further, V (x, y) ≈ V (xgc, y)+∂xV δx+(1/2)∂xxV (δx)2,

then the second-order term effectively modifies the magnetic field strength:

J ≈
∮ √

2m

(
H − qV − ∂xV δx−

1

2
q∂xxV δx2

)
− (qBzδx)2 dx (5.139)

=
√

2m (H − qV − ∂xV δx)− (q2B2
z +mq∂xxV )(δx)2 dx (5.140)

=
√

2m (H − qV − ∂xV δx)− (qB∗zδx)2 dx, (5.141)

where B∗z is

B∗z =

√
B2
z +

m

q
∂xxV . (5.142)

One can then proceed as before and obtain Eq. (5.138) with Bz replaced with B∗z .

J(H,Py) = J0

(
H − qV (xgc, y, t) +

m

2

(
∂xV

B∗z

)2

, Py

)
, (5.143)

This is the most accurate approximation of the action integral and has many instances of implicit

Py dependence through xgc in V and B∗z .

The added potential term in Eq. (5.138) contributes a new term to ∆y, leading to a higher-order

drift. The new term in ∆y is obtained by differentiating the (m/2)(∂xV/Bz)
2 in Eq. (5.138) with

respect to Py. To organize the growing number of terms, we write ∆y = (∆y)0 + (∆y)1, where

(∆y)0 consists of the terms from Eq. (5.131) and (∆y)1 is the new higher-order term. Then

(∆y)1 = −∂J0

∂H

∂

∂Py

(
m

2

(
∂xV

Bz

)2
)

(5.144)

= −∂J0

∂H

(
∂xV

Bz

)
∂

∂Py

(
m
∂xV

Bz

)
(5.145)

= −∂J0

∂H

(
∂xV

Bz

)
dxgc

dPy

∂

∂x

(
m
∂xV

Bz

)
. (5.146)

We then rewrite ∂xV/Bz as vE×B and also use Eq. (5.91) to write dxgc/dPy = 1/qBz. Then

(∆y)1 = −∂J0

∂H
vE×B

m

qBz

∂

∂x
(vE×B) . (5.147)
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This new term in ∆y leads to new terms in the drift velocity ∆y/∆t. Combining Eq. (5.131) with

Eq. (5.147) gives

vd = v∇B + vE×B − vE×B
m

qBz

∂

∂x
(vE×B) . (5.148)

Since the higher-order drift involves a gradient of vE×B , one might regard it as a “grad-E” drift.

However, in Appendix D.1 we show that the existence of this higher-order drift really depends on

how one defines the guiding center.

Finally, we show that Eq. (5.143) can be used to derive a finite Larmor radius effect discussed

by Chen in [93, sec. 2.4]. A finite Larmor radius effect is a higher-order correction to guiding center

theory due to the fact that the particle’s orbit has non-zero size. Following Chen, we assume that

the magnetic field is uniform and work in the guiding center limit so that J0 is given by Eq. (5.96)

with the modified field strength B∗. Then

J(H,Py) = 2πm
H − qV (xgc) + (m/2)(∂xV/Bz)

2

|q|B∗z
. (5.149)

We have already computed the contribution to ∆y from differentiation of both qV and (m/2)(∂xV/Bz)
2.

Here, we will focus on the contribution from differentiating B∗z :

(∆y)2 = − ∂J

∂Py
= 2πm

H − qV (xgc)

|q|B∗2z
∂B∗z
∂Py

. (5.150)

Using the definition of B∗z from Eq. (5.142) and bearing in mind that Bz is constant, we have

∂B∗z
∂Py

=
1

2B∗2z

m

q

∂(∂xxV )

∂Py
(5.151)

=
m

2qB∗z

∂3V

∂x3

∂xgc

∂Py
(5.152)

=
m

2q2B∗zBz

∂3V

∂x3
, (5.153)

where Eq. (5.91) has been used to evaluate ∂xgc/∂Py. At this point, we take B∗z ≈ Bz and evaluate

the resulting drift:
(∆y)2

∆t
=
H − qV (xgc)

|q|B∗2
m

2qBz

∂3V

∂x3
. (5.154)

Since Bz is constant and H − qV = (m/2)v2
⊥, we can write

∆y

∆t
=

m2v2
⊥

|q|B∗2
1

4qB∗
∂2

∂x2

(
Ex
Bz

)
(5.155)

=
1

4
r2
L

∂2

∂x2

(
Ex
Bz

)
, (5.156)

which is equal to the finite Larmor radius correction to the E×B drift given in Ref. [93, sec. 2.4].
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5.2.5 Magnetic Flux Enclosed by a Gyro-Orbit

Here, we show that the action integral J can be used to compute the magnetic flux enclosed by a

gyro-orbit. As magnetic flux is only defined through a closed surface and charged particle trajectories

are typically not closed, we evaluate the flux using the orbit in the drift frame. We give an alternate

derivation of the same formula in Appendix C.

For any orbit in an electromagnetic field for which one coordinate, say ξ, is periodic, we have

∂J

∂q
=

∮
∂Pξ
∂q

dξ =

∮
∂H(r,P; q)/∂q

∂H(r,P; q)/∂Pξ
dξ (5.157)

= −
∮ [
−p− qA

m
·A + V

]
dξ

ξ̇
(5.158)

= −
∫ t0+∆t

t0

[−v ·A + V ] dt (5.159)

=

∫
A · dl−

∫ t0+∆t

t0

V dt. (5.160)

The line integral of A is over one period of motion; since the motion is in general not periodic, we

cannot identify this integral as the magnetic flux enclosed by the orbit. However, in the drift frame,

the orbit is closed by definition, and the integral of A over the orbit in the drift would indeed yield

a well-defined flux. We extract this integral from Eq. (5.159) by writing the lab frame velocity as

v = v′ + vd, where vd is the drift velocity and v′ is the particle velocity as seen in the drift frame.

We then have

∂J

∂q
= −

∫ t0+∆t

t0

[− (v′ + vd) ·A + V ] dt (5.161)

=

∮
A · dl′ +

∫ t0+∆t

t0

vd ·Adt−
∫ t0+∆t

t0

V dt. (5.162)

The first term is the flux, which we denote by Φ. The second term9 can be rewritten using qA =

P−mv. As the drift is in a direction of symmetry, the component of P along the drift is conserved.

We then obtain

∂J

∂q
= Φ +

1

q
(P−mvd) ·∆r−

∫ t0+∆t

t0

V dt, (5.163)

showing the relationship between ∂J/∂q and Φ. If there is a non-zero potential V , then its average

over one period must be computed.

We mention in passing that
∮

A · dl is related to the phase shift due to the Aharonov-Bohm

effect [102], so the quantity ∂J/∂q, when no potential is present, could be of particular value in

9We note that, if one had formally boosted to the drift frame in the non-relativistic limit, then the potential V
would be transformed precisely by the amount −vd ·A while the vector potential would not be transformed. This
can be seen by boosting the four-vector (−V, cA) in the non-relativistic limit.
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quantum systems.

5.2.6 Drift, Action, and Euler’s Formula

We conclude this chapter with a formula that relates the various partial derivatives of J . The

derivation here utilizes Euler’s formula for homogenous functions. An alternate derivation that

integrates the action over special phase space contours is included in Appendix D.5; the derivation

there uses a technique developed by Montgomery in the case of rigid body dynamics [103].

Suppose that, for a charged particle in a magnetic field, the x coordinate is periodic and the

y and z coordinates are ignorable. We write H, which is kinetic energy, as (m/2)v2. Then J is a

homogenous function of degree one in the variables v, Py, Pz, and q:

J =

∮ √
m2v2 − (Py − qAy)2 − (Pz − qAz)2dx. (5.164)

Applying Euler’s theorem of homogenous functions to J , we obtain

J(v, Py, Pz; q) = v
∂J

∂v
+ q

∂J

∂q
+ Py

∂J

∂Py
+ Pz

∂J

∂Pz
, (5.165)

or

J(H,Py, q) = 2H∆t+ q
∂J

∂q
+ Py

∂J

∂Py
+ Pz

∂J

∂Pz
. (5.166)

The flux enclosed by a gyro-orbit is given by Eq. (D.26), which can be rewritten as

qΦ = q
∂J

∂q
+ Py

∂J

∂Py
+ Pz

∂J

∂Pz
+mv2

d

∂J

∂H
. (5.167)

Using Eq. (5.167) in Eq. (5.165),

J = qΦ + 2

(
H − 1

2
mv2

d

)
∆t. (5.168)

This formula ties together the action integral, the flux, and the period, and the drift velocity. As

discussed in Sec. 5.2.1, J becomes proportional to µ in the guiding center limit. In the same limit,

the drift-velocity energy is negligible compared to the total energy H, so

2π
m

|q|
µ = qΦ + 2H∆t. (5.169)

5.3 Conclusions

We have shown that, in any Hamiltonian system where one coordinate undergoes periodic evolution,

the action integral for that coordinate encodes the evolution of the system once the periodic motion
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has been averaged over. In fact, this action integral acts as a Hamiltonian for the reduced system

and provides the averaged equations of motion provided that time is measured in periods of motion.

This formalism can be used to rederive the drifts of the guiding center approximation using µ as a

Hamiltonian and can even be used to derive the flux enclosed by a gyro-orbit, but the scope of the

results goes far beyond charged particle motion in magnetic field.

In regards to future work, the curvature drift from guiding center theory has not yet been derived

from the Hamiltonian formalism, and this could a very interesting problem. As the curvature drift

involves motion along curved field lines, one approach would be to rotate the coordinate system to

align with the magnetic field after each period of motion. It is conceivable that the Hamiltonian

formalism could be used to compute the required rotation matrix; this framework is reminiscent

of an SO3 fiber bundle [104, ch. 1] over the ξPξ plane. Another application would be to situa-

tions where the guiding center approximation breaks down. Guiding center theory is essentially a

harmonic-oscillator approximation, but the Hamiltonian theory depends on periodic motion that

is not necessarily harmonic. Therefore, the latter is more robust and may supplant guiding center

theory in cases of large orbit sizes or vanishing magnetic fields. Indeed, the beginnings of such work

are seen in the next chapter.



133

Figure 5.4: The top plot shows the cycloid motion in the xy plane. γ is large at the top of the cycloid,
where the electric field has accelerated the particle to relativistic velocities. γ is approximately one
at the bottom of the cycloid where the particle is nearly at rest. The middle plot shows the z velocity
as a function of time. When γ is large, vz is small in accordance with Eq. (5.28), but when γ ≈ 1
vz is large. The bottom plot show the effects of this modulated velocity on z position, draw with a
solid red line. The dashed line is the theoretical drift value predicted by Eq. (5.47); the agreement
is perfect.
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Figure 5.5: A peculiar hour hand with a non-uniform rate is plotted in red; it is analogous to
the η motion. Although the hour hand moves at the correct average rate, the dashed black line,
representative of the drift ∆η/∆t, is much more convenient for reading time.

Figure 5.6: A side view of the groove. The green line runs along the spine of the groove which is
in the y direction; you can clearly see that the groove is concave down in this direction. The red
parabola is a cross-section of the groove at its apex where the groove is widest. The pink parabolas
are cross-sections further down the groove and are steeper and more narrow than the red one.
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Figure 5.7: Intuition dictates that a particle placed in a saddle-like groove will eventually roll down
the groove with increasing velocity. Indeed, this is observed in this numerical simulation. y the
direction along the groove, and z the vertical direction. The Hamiltonian is given by Eq. (5.80)
with m = 1, κ = 1, α = 1 and λ = −0.01, and particle starts at x = y = 0 with vx(0) = 0.1 and
vy(0) = −0.004.
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Figure 5.8: With the right initial conditions, a particle in a thin saddle-like groove can undergo
oscillatory motion due to the narrowing of the groove. x is the direction across the groove, y the
direction along the groove, and z the vertical direction. The Hamiltonian is given by Eq. (5.80)
with m = 1, κ = 1, α = 1 and λ = −0.01, and particle starts at x = y = 0 with vx(0) = 0.25 and
vy(0) = −0.1.


