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5.1 Abstract   

Nitric oxide synthases (NOS) are a family of enzymes responsible for the 

production of the signaling molecule nitric oxide (NO). The rate at which NO is released 

by each enzyme varies greatly among isoforms and species, over nearly two orders of 

magnitude. One residue (an isoleucine located above the heme in bacterial enzymes) 

involved in the gating of NO release has been previously identified by Stuehr. However, 

this single residue does not account for the entirety of the differences among the forms of 

NOS. Another residue, a histidine at position 134 in NOS from Geobacillus 

stearothermophilus (gsNOS), was hypothesized to also participate in gating NO release 

based on an observed correlation between rates of NO release and the bulk of side chains 

at this position. Each single point mutation, H134S and I223V, and the double mutant 

were expressed in gsNOS and their reactivity toward the diatomic molecules CO and NO 

were studied. CO rebinding was investigated using laser flash photolysis and NO release 

using stopped flow UV-visible spectroscopy. The presence of both monomer and dimer 

was observed in solution and position 134 was shown to be another key residue in gating 

NO release. Wild type gsNOS contains both the bulkier Ile223 and His134 and has the 

slowest measured NO release (0.039 s-1) of all NOS enzymes. Each single mutation 

increased NO release substantially, while the double mutant has a rate constant of 1.0 s-1, 

nearly as fast as mammalian iNOS at 2.3 s-1, identifying position 134 as another 

important factor determining rate constants for NO release.   
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5.2 Introduction  

Nitric oxide synthases (NOS) are found in all eukaryotes, as well as a selection of 

prokaryotes, and are responsible for biological production of nitric oxide (NO).1-2 In 

mammals, various isoforms of NOS are involved in processes such as neurotransmission 

and vasodilation.3 Interestingly, the immune system uses high levels of NO to kill 

invading bacterial cells. Given this function of NO, the discovery of NOS-like enzymes 

in bacteria was unexpected. The role of NO in these bacteria is still under debate, 

although it has been proposed to be a method to combat host immune responses.4-6 

Different functions most likely require different rates of NO release in cells. This can be 

controlled through several methods such as regulation of protein expression within a cell 

(as is the case for mammalian inducible NOS found in macrophages) or on the molecular 

level within the enzyme. These studies focus on the latter, namely the manner in which 

the enzyme itself regulates NO release.  

Nitric oxide synthases contain a thiolate-ligated heme active site, very similar to 

that found in cytochromes P450.7-8 This superfamily of enzymes carries out a vast array 

of biological oxidations, using the heme cofactor to activate dioxygen.9 NOS, on the 

other hand, catalyzes only the oxidation of arginine to produce NO in two turnovers 

(through the enzyme-bound intermediate N-hydroxy-L-arginine). The first turnover 

involves a two-electron oxidation of substrate like cytochromes P450, while the second is 

formally a three-electron oxidation and is unique in biology.10-11 What is known of the 

catalytic cycle is shown in Scheme 5.1 colored black. The two species in blue are 

intermediates from the cycle of cytochromes P450 used to fill in gaps in our knowledge 
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corroborated.12) However, multiple groups have demonstrated ferric-NO formation and 

its decay to release the radical species. In mammals, a series of complex steps has 

evolved in order to regulate enzyme function and keep tight control on each step, such as 

delivery of electrons and the tuning of redox potentials.13 It is not fully understood how 

the protein matrix controls NO release and what factors cause this rate to vary among 

forms of NOS enzymes, nor how NO production is controlled in bacterial systems.   

In order to study NO release, stopped flow UV-visible spectroscopy has been 

employed. The unique spectroscopic features of heme enzymes allow for the 

differentiation of various species during catalysis. Single turnover experiments, where the 

fully-reduced, substrate-bound enzyme is held in de-oxygenated buffer and then mixed 

rapidly with buffer that is saturated in oxygen, have allowed the determination of rates of 

NO release in many NOS enzymes.14-17  

It was observed in such stopped flow measurements that while the mammalian 

NOS isoforms release NO on the order of 2 to 5 s-1, many bacterial enzymes release NO 

about one order of magnitude slower.16 Crystallographic studies reveal a valine residue in 

mammalian forms which is replaced with an isoleucine in many bacterial forms.18-20 This 

isoleucine is within Van der Waals contact of any diatomic bound at the iron center. 

Stuehr and coworkers showed that installation of an isoleucine at this position in the 

mammalian inducible NOS slows the rate of NO release, while removal of this methyl 

group through mutation to a valine in the bacterial NOS from Bacillus subtilus increases 

its rate of NO release.16 While this is an important finding, the rate constants do not 

change by the full order of magnitude that separates them (in iNOS, 2.3 s-1 slows to 0.77 
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and in bsNOS 0.23 increases to 0.82). Clearly additional factors modulate the rates of NO 

release.    

Flash photolysis is another technique commonly used to study the interactions of 

diatomic molecules with proteins.21-23 Most heme centers form stable complexes with 

carbon monoxide (CO) in the ferrous state.7, 24 While indefinitely stable in the dark, when 

exposed to visible (green) light the iron-carbon bond of the ferrous-CO species is broken, 

liberating CO and transiently generating a five coordinate ferrous heme. Under an 

atmosphere of CO, the six-coordinate species is reformed.25 Due to large differences 

between the absorbance spectra of the five- and six-coordinate heme species, transient 

absorption spectroscopy is again an ideal technique for observing reactivity.25-26 CO is 

used preferentially over NO and O2 because it alone is redox inactive. Exposure of 

reduced enzyme immediately leads to oxidation of the iron center. The lifetime of a 

ferrous-oxy species is incredibly short (milliseconds to seconds at best). Nature has been 

forced to take steps to prevent this reaction in order to prevent the release of superoxide 

into cells. If the protein is reduced when substrate and cofactor are not present, 

superoxide will certainly be released, leading to cellular damage. NO also undergoes 

redox chemistry with the ferrous iron to oxidize it. CO is the closest mimic that will not 

undergo the same chemical reactions. The interactions of CO with myoglobin,27-30 

microperoxidase-8,31 human myeloperoxidase,32 and cytochrome P45033-35 have been 

previously studied extensively. It was found that CO is a good mimic for the study of 

oxygen binding to these biologically important proteins.24, 29  

Both flash photolysis and stopped flow coupled with transient UV-visible 

spectroscopy were used to study the interactions of diatomics with the nitric oxide 
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synthase from Geobacillus stearothermophilus (gsNOS).36-37 The wild type enzyme, with 

isoleucine in position 223 (gsNOS numbering) directly above the heme as is commonly 

found in bacterial enzymes, as well as three other mutant species were studied by both 

techniques. Site-directed mutagenesis was used to insert a valine at position 223, as 

previously demonstrated in bsNOS to increase the rate of NO release. Mutations were 

also made at position 134.  

We have observed a correlation between reported rate constants of NO release in 

the literature with residues found at this position. We will call these two positions gates. 

bsNOS has a histidine residue at this alternate position and has a particularly small rate 

constant of 0.23 s-1, while the NOS from Deinococcus radiodurans, also bacteria, has a 

larger release rate constant of 0.50 s-1 and a smaller alanine residue at this second gate.38 

Both bacterial enzymes have an isoleucine in the first gate, keeping the overall rate 

smaller than mammalian forms. The NOS from mammalian neurons,39 however, has a 

larger release rate constant of 5 s-1 and both gating positions contain smaller residues, 

valine near the heme and a serine corresponding to position 134 in gsNOS. The enzyme 

with the fastest recorded release rate constant comes from the bacterium Sorangium 

cellulosum17 which has a valine above the heme and glycine at the second gate, and 

releases NO at a rate of 7–10 s-1. Clearly, smaller residues at these two positions correlate 

with faster release of NO, while bulkier groups at 134 and 223 slow down NO release.  

A series of four variants of gsNOS were expressed: wild type, I223V, H134S, and 

the double mutant H134S/I223V. The wild type enzyme with the bulkier side chains was 

found to have the slowest reported NO release rate of 0.039 s-1 by stopped flow 

spectroscopy. Each single mutant increased this rate constant substantially, I223V to 0.30 
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s-1 and H134S to 0.16 s-1. The double mutant increased the rate of NO release to 1.0 s-1, 

nearly the same as the mammalian isoforms. These data show that position 134 is in fact 

another residue key to enzymatic regulation of NO release, along with the known 

valine/isoleucine mutation. These results, together with CO flash photolysis studies 

provide a clear picture of the interactions of both NO and CO with this biologically 

important enzyme. 

 

5.3 Experimental Methods 

Sample Preparation  

The plasmid for the nitric oxide synthase from Geobacillus stearothermophilus 

was a gift from the lab of Brian Crane. This enzyme was expressed as previously 

described by Sudhamsu and Crane with no significant deviations in procedure.36 The 

enzyme was overexpressed in Escherichia coli BL21 (DE3) cells. Cells were grown to an 

optical density of approximately 1.0–1.4 and induced by adding a solution containing 

iron(III) chloride, IPTG, and δ-aminolevulinic acid (Aldrich) to final concentrations of 

125 mg/L, 100 µM, and 50 mg/L, respectively, in milliQ water. The pETDuet vector 

(Novagen) coded for a C-terminal cleavable His6-tag so samples were purified using 

metal affinity chromatography. (This vector also confers chloramphenicol resistance to 

the cells, so 34 µg/mL of this antibiotic were added to all cultures in Luria broth.) The 

His6-tag was then cleaved using bovine thrombin (Calbiochem). Both thrombin and the 

His-tag were removed using size exclusion chromatography. Sample purity and Soret 

band epsilon values were determined through use of the hemochromagen assay.  
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A QuikChange site-directed mutagenesis kit from Stratagene was used to make 

the desired mutations in the amino acid backbone. Primers were designed according to 

the guidelines outlined by the QuikChange kit manual. Unless otherwise noted, protein 

solutions were made in the following buffer: 50 mM Tris (2-amino-2-hydroxymethyl-

propane-1,3-diol), 150 mM NaCl, pH 7.5 (the same buffer used for size exclusion 

chromatography). Steady-state UV-visible spectra were collected on an Agilent HP 8452 

diode array spectrophotometer.  

For laser experiments, oxygen-free samples were pumped into an anaerobic 

chamber (with an atmosphere of 100% N2) and reduced under excess dithionite. A small 

excess of dithionite was left in samples in order to ensure that the heme center remained 

in the reduced, ferrous state throughout the entirety of the experiment. Samples were then 

placed in a quartz cuvette (Starna Cells) with a graded seal connecting the cuvette to a 

Köntes valve, enabling the secure sealing of the cuvette from atmosphere. The cuvettes 

were then sealed and removed from the anaerobic chamber. The side arm of the cuvette 

was attached to a Schlenk line and evacuated and backfilled with carbon monoxide 

(100% or 20% with 80% N2) three times. Once the side arm was under the desired 

atmosphere of CO, the Köntes valve was opened to the side arm. The headspace of the 

cuvette, above the protein solution, was evacuated and back-filled with CO from the 

Schlenk line three times and sealed under this new atmosphere. The sample was gently 

shaken over night, in the dark, at 4 °C to allow for full equilibration of the atmosphere 

with the solution. Inadequate equilibration time resulted in irreproducibility between 

samples.   
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Formation of the ferrous-CO complex was confirmed using its characteristic 

absorption band at 446 nm. The stability of the sample was monitored by UV-visible 

spectroscopy after its generation, and immediately before and after laser irradiation. No 

samples showed significant degradation after irradiation by the laser.  

Nanosecond Transient Absorption Spectroscopy 

All transient UV-visible spectroscopic measurements for CO flash-photolysis 

experiments were conducted at the Beckman Institute Laser Resource Center at Caltech. 

For time-resolved measurements, a 10 Hz Q-switched Nd:YAG pulsed laser was used to 

provide 8 ns pulses of irradiation (Spectra-Physics Quanta-Ray PRO-Series). This laser 

was used to pump an optical parametric oscillator, which allows tuning pulses from the 

laser (355 nm output) in the visible region, between 400 and 650 nm (Spectra-Physics 

Quanta-Ray MOPO-700). The details of this setup have been previously described.40 All 

samples were excited with 560 nm laser pulses and exposed to less than 5 mJ/pulse of 

power. All traces are an average of 500 laser shots using 1 nm slits.        

Stopped Flow UV-Visible Spectroscopy   

Samples were prepared anaerobically and transferred to an anaerobic tonometer 

with 1.5 equivalents of dithionite to scavenge any residual oxygen. Dithionite was used to 

scavenge oxygen from the stopped flow spectrophotometer (HiTech Scientific) syringes 

and excess dithionite was removed by repeated washing with anaerobic buffer. Protein 

samples (4–6 µM gsNOS, 60 µM H4B, and 200 µM N-hydroxy-L-arginine) were rapidly 

mixed with air saturated buffer at 4 °C. The formation and release of NO was monitored 

using a diode array detector and the rates fit globally using SpecFit32 (HiTech 
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Scientific). Measured rates were independent of protein concentration under these 

experimental conditions.  

Data Analysis  

Transient absorption traces were converted to optical density using Equation 5.1 

and fit using Igor-Pro graphing software. All data were fit to a double exponential decay 

function, with residuals less than 1% of the signal.  

 

5.4 Results 

Steady-State Spectroscopy  

UV-visible spectroscopy was used to characterize the resting state and to verify 

the formation of the ferrous-carbonyl species of each mutant sample. This technique is 

particularly useful given the sensitivity of heme absorption bands to their environment, 

ligation, and oxidation state. Each enzyme displayed a single Soret peak with an 

absorbance maximum at 446 nm as is typical for nitric oxide synthases and close to that 

of the related cytochromes P450, named for the sharp absorption of their ferrous-carbonyl 

species at 450 nm.7 The spectra of several such forms of the wild type enzyme are shown 

in Figure 5.1. 
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We also analyzed the effect of these mutations on the pre-exponential factor of 

each rate from the double exponential fit. By introducing these small changes, we appear 

to be altering significantly the amount of the fast and slow phase, relative to one another. 

By introducing a single serine residue near the surface of the enzyme, the ratio of A1 to 

A2 is shifted from 2:1 to 1:2.  

Table 5.2. Relative percentages of each rate constant by mutant. 

100% CO WT I223V H134S H134S/I223V

A1 (t1) 66% 46% 36% 43% 

A2 (t2)  34% 54% 64% 57% 

 
Stopped-Flow UV-Visible Spectroscopy  

NO release rates were measured for each protein sample using single turnover 

experiments. The enzyme was loaded with the redox active cofactor, tetrahydrobiopterin, 

and the substrate N-hydroxyarginine and then reduced using sodium dithionite. These 

samples were prepared anaerobically, sealed in a gas-tight syringe, and mixed with fully 

aerated buffer ([O2] ≈ 258 µM) to initiate turnover. Catalysis was monitored using UV-

visible spectroscopy between 370 and 710 nm, with spectra taken at regular intervals over 

millisecond to second timescales. On faster timescales, the five-coordinate ferrous heme 

complex can be observed in the initial trace due to the excess dithionite present. Nearly 

immediately (within 5 ms, the dead time of the mixer), the ferrous-oxy species is formed; 

this formation is too rapid for stopped-flow spectroscopy to characterize the rate. (Note: 

dithionite reacts with oxygen several orders of magnitude faster than the enzymes under 

study and is therefore completely reacted before the second trace is collected.) The 

ferrous-oxy subsequently forms an intermediate complex, which finally decays to the 

resting ferric state of the enzyme (Scheme 5.2). In all cases, the first trace is discarded, as 
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Further, the amplitudes of each exponential component of the fits are significant, with no 

one component accounting for less than 30% of the signal (Table 5.2). We hypothesized, 

given what is known about nitric oxide synthases and how they differ from other systems 

studied by this method, that we might be observing both the monomer and dimer in 

solution. It is known that NOS functions only as a dimer in mammals and disrupting 

dimerization shuts down catalysis.1 During purification, bands for both monomer and 

dimer were observed on a size exclusion column in the same buffer with the same ionic 

strength. To test this hypothesis, samples were made with varying concentrations and we 

monitored the amplitude of both the faster and slower processes. Table 5.4 shows the 

clear effect of concentration on the amplitudes of the faster and slower signals, consistent 

with the presence of monomer and dimer. Further, the two rate constants are similar in 

magnitude and both on the millisecond timescales, which agrees with both processes 

being second-order recombination with slightly different barriers. Introducing the 

presence of both monomer and dimer would account for the observed behavior of all 

samples.   

Table 5.4. Effects of concentration 
on the relative proportion of the two 
processes. Concentration in µM. 
 

[NOS] A
1
 A

2
 

6.1 64% 36% 

9.9 58% 42% 

27 35% 65% 

 
 

Another possibility exists, however, as explanation for two observed millisecond 

processes. In proteins such as hemoglobin, a phenomenon called cooperativity is 
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observed.43-44 When laser irradiation hits the sample, because of the large quantum yield 

for this photochemical process, a high percentage of photodissociation is observed. One 

can imagine a case where the protein exists completely as a dimer in solution and when 

irradiated either one or both bound CO molecules are librated. If cooperativity (or anti-

cooperativity) is a contributing factor, dimers with a single CO molecule still bound 

would have a higher recombination rate constant than those where both are dissociated 

due to changes in protein conformation. In such a situation, the proportion of CO that is 

released from the protein will vary with laser intensity according to a standard power 

dependence and the proportion of the faster rate should decrease. A tenfold increase in 

laser power did not alter the proportion of the two rates observed, it merely increased the 

overall signal strength (Table 5.5).  

 
Table 5.5. Power dependence of the relative amplitudes of each signal. 

Power at sample (mJ/pulse) invτ1 (s
-1) invτ2  (s

-1) A1 A2 

0.6 91 9.9 x 102 58% 42% 

0.7 91 1.0 x 103 57% 43% 

2.8 88 9.6 x 102 59% 41% 

6.4 87 9.4 x 102 59% 41% 

7.0 87 9.4 x 102 59% 41% 

 

From all these results we conclude that we are in fact observing both the 

monomer and dimer forms of the enzyme under experimental conditions, that both react 

with CO to give a rebinding rate constant on the order of 105 M-1 s-1 as has been found in 

other proteins, and propose the following kinetics model, Scheme 5.4.  
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NO Formation and Release  

In order to determine the effect of these mutations on the NO release rate 

constant, we conducted single turnover experiments in the lab of Prof. Michael Marletta 

at UC Berkeley with the assistance of Dr. Emily Weinert. This allows for the direct 

comparison of our mutations with previously published rates of NO release. The wild 

type enzyme was found to release NO with a rate constant of 0.039 s-1, which closely 

matches the rate constant previously published by Crane and Sudhamsu of 0.04 s-1, under 

the same experimental conditions.36 This enzyme has the smallest reported rate constant 

of all NOS enzymes. Each single mutation (H134S and I223V) increases the rate 

significantly, while the double mutant brings the rate to 1.0 s-1, close to the higher rates 

found in mammalian enzymes (which were measured at a slightly higher temperature). 

The ability of a mutation at position 134 to both increase the rate on its own and to 

further increase the rate beyond the single mutation already known at position 223 (Table 

5.3) confirms that it is in fact another key residue gating NO release.  

Transient Spectra Generated by Modeling 

During the fitting procedure, it was observed that the spectrum generated for the 

intermediate ferric-NO complex is not always consistent. For the fastest mutant, 

H134S/I223V, the ferric-NO species is nearly cleanly resolved, showing a peak near 440 

nm (Figure 5.8). The slower mutants and the wild type enzyme showed a mixture of 

Soret bands (Figure 5.9). The observation of multiple bands like this clearly indicates 

that the model is incomplete — what is being fitted as a single intermediate is actually a 

mixture of species. This has been observed before in both a bacterial NOS and a slower 

mutant of a mammalian enzyme.16 It has been proposed that the presence of the Ile near 
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Table 5.6. Full kinetics details of fitting model for each of the four enzymes including a 
comparison of the NO release rate with the three-state model. 
Enzyme Process Rate Constant 3-State Model’s Fit 
Wild Type A > B 8.1 × 10-2  
 B > B1 1.5 × 105  
 B1 > B 8.2 × 104  
 B > B2 1.5 × 103  
 B2 > B 2.9 × 103  
 B > C 0.10 0.04 
    
H134S A > B 1.7 × 102  
 B > B1 1.1 × 106  
 B1 > B 1.4 × 106  
 B > B2 1.6 × 103  
 B2 > B 6.7 × 105  
 B > C 0.31 0.16 
    
I223V A > B 1.0 × 101  
 B > B1 4.9 × 104  
 B1 > B 8.9 × 104  
 B > B2 1.2 × 101  
 B2 > B 1.6 × 103  
 B > C 0.51 0.30 
    
H134S/I223V A > B 1.6 × 101  
 B > B1 1.8 × 104  
 B1 > B 4.1 × 100  
 B > B2 1.4 × 103  
 B2 > B 1.9 × 100  
 B > C 1.9 1.0 
 

 In this model, A is the ferrous-oxy complex as before. Again, the spectrum of this 

species is well known and can be used to verify the accuracy and chemical 

reasonableness of the model and fit. The spectrum of B is specified as the ferric-NO 

spectrum with a maximum absorbance at 441 nm (courtesy of Dr. Joshua Woodward 

from the Marletta group), which is known to form during turnover. The spectrum of C is 

the final resting state of the enzyme, the five-coordinate ferric species. The spectrum 
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generated for one of the two new intermediates is essentially identical to that of the ferric 

resting state. This is consistent with an equilibrium between rapid release and rebinding 

of NO trapped in the binding pocket, which would be very fast when compared with the 

other processes occurring. It is also consistent that this would be seen to the greatest 

extent in the two enzymes with the Ile residue present near the heme. The methyl group 

of this residue is right at Van der Waals contact distance from any diatomoics bound to 

the iron and clearly blocks any exit from the binding pocket (as is clear from the crystal 

structure, PDB file 2FLQ).   

The identity of the other intermediate is less obvious, but at least one reasonable 

possibility exists. The species is clearly formed after the majority of catalysis, being in 

equilibrium with the ferric-NO species. Several other models were applied, but the only 

one that fits the collected data is one where this species is in rapid equilibrium with the 

ferric-NO complex. As seen in Figure 5.10, this species has a Soret maximum near 420 

nm. A species with a similar absorbance has been previously observed under catalytic 

conditions for the first turnover (Arg rather than NOHA was used as substrate).15 This is 

also a slower enzyme, with a Trp to His mutation as discussed in Chapters 3 and 4, but 

made in the mammalian inducible NOS isoform. In this study, the authors proposed that 

this newly characterized species is Compound I.  
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second turnover.45 The observed species may be the product heme complex before 

electron transfer to the pterin. The spectrum is nearly identical (simply 4 nm blue-shifted) 

of the spectrum of HNO-myoglobin.46 However, this cannot be the species observed in 

the study of mammalian NOS, as they were probing the first turnover. An alternative 

explanation is that this 420 nm species is analogous to the P420 species (Chapter 3) 

where the thiolate ligand is protonated and/or dissociates. We may be observing the 

equilibrium between two protonation states of this ligand. Identification of a species 

based solely on a single UV-visible spectrum is difficult at best, but further attempts are 

being made to understand the origin of this spectrum.  

 

5.6 Conclusions 

First, CO is a valuable diatomic mimic for the more reactive dioxygen and nitric 

oxide, however with a caveat. One must remember the conditions under which 

experiments are performed. For CO photolysis, systems are under saturating conditions 

with large excesses of carbon monoxide. This is a good system for comparison with 

oxygen binding to hemoglobin in the lungs. Nitric oxide formation, on the contrary, 

involves the production of a single molecule of NO per protein, far from saturating 

conditions. Further, NO reacts rapidly in aerated aqueous solution, further preventing its 

buildup and keeping the system from reaching equilibrium. Also, the driving force 

ultimately behind each of these processes involves formation or cleavage of two distinct 

bonds. CO is very similar to NO, but on a fundamental level an Fe-N bond is not an Fe-C 

bond. While experiments with CO provide a wealth of information about the overall 
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kinetics model for reactivity with diatomics, for an NO release rate one must perform the 

single turnover experiments.  

With these experiments, we have confirmed that the isoleucine residue at position 

223 does gate NO release in gsNOS, slowing the decay of the ferric-NO species. We 

have also demonstrated that position 134, occupied by a histidine in wild type gsNOS, 

also gates NO release, with smaller residues at this position corresponding to faster 

release rates. Together, these two positions can account for the majority of the differences 

in rate between any two NOS enzymes. 

Further, we have used a new, more accurate model to fit our data, showing rapid 

equilibrium between the bound and unbound NO, and another unidentified species. This 

species has been previously observed. It was called Compound I. The Compound I in 

cytochromes P450 has a much more blue-shifted Soret band with a maximum near 365 

nm and it reacts much more quickly. It is of note that this species with absorbance at 420 

nm has now been observed in both turnovers. Unfortunately, its identity remains a 

mystery.  
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