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4.1 Abstract 

The heme-thiolate enzymes cytochromes P450, chloroperoxidase, and nitric oxide 

synthase all activate dioxygen to oxidize substrates. In each of these enzymes, there is a 

conserved hydrogen bonding network around the proximal thiolate ligand. These 

hydrogen bond donors come predominantly from backbone amide groups and help to 

tune the electronics of the heme center. However, in nitric oxide synthase one of these 

three hydrogen-bond donating groups comes from the side chain of a tryptophan residue, 

making nitric oxide synthases unique. Three mutant forms of the nitric oxide synthase 

from Geobacillus stearothermophilus were expressed in E. coli. These mutants each have 

a single point mutation, converting this native tryptophan residue to a histidine, 

phenylalanine, or tyrosine. The reactivity of each the wild type enzyme and the three new 

mutants were tested using stopped-flow mixing coupled with UV-visible absorption 

spectroscopy and the Griess Assay. Autoxidation rates measured by stopped-flow suggest 

that the Tyr and Phe mutants do indeed have significantly more negative reduction 

potentials, but that the His mutant is particularly slow to oxidize. The Griess Assays 

showed that all four enzymes produce nitrite in solution, when provided with substrate, 

cofactor, and hydrogen peroxide (as a source of reducing equivalents). In single turnover 

experiments, however, only three of the four enzymes showed evidence of ferric-NO 

production. The His mutant showed no intermediate absorbance near 440 nm (which 

would be indicative of ferric-NO formation), suggesting that it releases NO- rather than 

the radical species NO·.  
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4.2 Introduction 

As stated previously, nitric oxide synthases are the family of enzymes responsible 

for production of the signaling molecule NO.1-2 It was shown by Moncado3 that the active 

biological signaling molecule is in fact NO· and not any other NOx species. It is this 

molecule that induces relaxation of the cells lining the walls of blood vessels, thus 

regulating blood flow in mammals. Since that time, the field of NO signaling has grown 

rapidly and it is now known that nitric oxide is also involved in neurotransmission, the 

immune response, and apoptosis.1-2, 4  

This family of enzymes makes NO from arginine (Arg) in two turnovers, through 

the enzyme-bound intermediate N-hydroxyarginine (NOHA) (Scheme 4.1).5-6 Much of 

what is known about its catalytic cycle is similar to the well-studied cytochrome P450.7-8 

The observed intermediates (as well as probable intermediates in blue) are shown in the 

cycle in Scheme. 4.2.  

The resting state of the enzyme is a ferric heme with a loosely coordinated water 

molecule.9 This is displaced sterically when substrate binds within the enzyme, forcing a 

five-coordinate complex and shifting the iron to the high spin state. The heme is then 

reduced (in mammalian systems, reducing equivalents come from a dedicated reductase 

domain fused into the same polypeptide chain) to form a ferrous-heme complex. Reduced 

iron species readily bind dioxygen in biological systems. The ferric-oxy species (or 

ferric-superoxo depending on assignment of electrons, as shown by the equilibrium at the 

bottom of the cycle in Scheme 4.2) in cytochrome P450 is reduced by another electron 

from the reductase domain. NOS is unique in that this electron comes from a redox active 

cofactor called tetrahydrobiopterin (pterin) (Scheme 4.3). After this event, the next 
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Another common method used to characterize NO production is called a Griess 

Assay. In aqueous solution, nitric oxide rapidly reacts to form nitrite and other NOx 

species.6 Reagents were developed to react specifically with nitrite, again in aqueous 

solution, in order to spectroscopically characterize in vivo NO production (Scheme 4.4).15 

Reagent B reacts with NO2
- (nitrite) to form a diazonium salt, which then reacts with 

Reagent A to form an azo dye with an intense visible absorption band at 540 nm. The 

molar absorptivity of this band is known so it can be used to determine the amount of 

nitrite in solution.  

Both stopped-flow UV-vis spectroscopy and the Griess Assay were used to 

investigate the kinetics and reactivity of a series of mutant enzymes of nitric oxide 

synthase. The NOS used in these studies is that from Geobacillus stearothermophilus 

(gsNOS).16-17 This particular organism is a bacterial thermophile, and therefore its 

enzymes have been optimized to function at elevated termperatures. This adds to the 

stability of their fold,15 a notorious problem for the mammalian nitric oxide synthases. 

This enzyme, gsNOS, has a particularly stable ferrous-oxy intermediate. In the absence of 

substrate, rate constant for its decay is less than 0.1 s-1. This has led to its use in other 

studies, such as the experiments conducted by Davydov and Hoffman which give the 

only evidence for both of the blue intermediates shown in Scheme 4.2.12-13  

The mutants investigated in the studies presented here have been introduced 

previously (see Chapters 1 and 3, Figure 4.1). The role(s) of the proximal hydrogen 

bonding network involving the axial thiolate ligand were investigated. Three mutant 

enzymes, W70H, W70F, and W70Y, were expressed and their reactivity (along with the 

wild type enzyme) was investigated by stopped-flow UV-visible absorption spectroscopy 
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4.3 Materials and Methods 

Sample Preparation 

The plasmid for the nitric oxide synthase from Geobacillus stearothermophilus 

was a gift from the lab of Brian Crane. This enzyme was expressed as previously 

described by Sudhamsu and Crane with no significant deviations in procedure.15 The 

enzyme was overexpressed in Escherichia coli BL21 (DE3) cells. Cells were grown to an 

optical density of approximately 1.0–1.4 and induced by adding a solution containing 

iron(III) chloride, IPTG, and δ-aminolevulinic acid (Aldrich) to final concentrations of 

125 mg/L, 100 µM, and 50 mg/L, respectively, in milliQ water. The pETDuet vector 

(Novagen) coded for a C-terminal cleavable His6-tag so samples were purified using 

metal affinity chromatography. (This vector also confers chloramphenicol resistance to 

the cells, so 34 µg/mL of this antibiotic were added to all cultures in Luria broth.) The 

His6-tag was then cleaved using bovine thrombin (Calbiochem). Both thrombin and the 

His-tag were removed using size exclusion chromatography. Sample purity and Soret 

band epsilon values were determined through use of the hemochromagen assay.  

A QuikChange site-directed mutagenesis kit from Stratagene was used to make 

the desired mutations in the amino acid backbone. Primers were designed according to 

the guidelines outlined by the QuikChange kit manual. Unless otherwise noted, protein 

solutions were made in the following buffer: 50 mM Tris (2-amino-2-hydroxymethyl-

propane-1,3-diol), 150 mM NaCl, pH 7.5 (the same buffer used for size exclusion 

chromatography). Steady-state UV-visible spectra were collected on an Agilent HP 8452 

diode array spectrophotometer.  
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Stopped Flow UV-Visible Spectroscopy   

Samples were prepared anaerobically and transferred to an anaerobic tonometer 

with 1.5 equivalents of dithionite to scavenge any residual oxygen. Dithionite was used to 

scavenge oxygen from the stopped flow spectrophotometer (HiTech Scientific) syringes 

and excess dithionite was removed by repeated washing with anaerobic buffer. For 

autoxidation rates, samples of reduced protein (4–6 µM gsNOS) free of substrate and 

pterin cofactor were mixed with aerated buffer. Autoxidation rates were also measured in 

the presence of 2.5 mM Arg and 15 µM pterin. Protein samples for single turnover 

experiments (4–6 µM gsNOS loaded with, 60 µM H4B and 200 µM N-hydroxy-L-

arginine) were rapidly mixed with air-saturated buffer. All experiments were conducted 

at 4 °C. The formation and release of NO in the single turnover experiments was 

monitored using a diode array detector and the rates fit globally using SpecFit32 (HiTech 

Scientific). Measured rates were independent of protein concentration under experimental 

conditions and all measurements were repeated at least six times before averaging. 

Griess Assay 

In order to quantify turnover in each of the enzymes, NO production was 

monitored using the Griess Assay. Reagents A and B were purchased from Cayman 

Chemicals. Solutions were made containing of 100 µL of 30 µM NOS and 1 mM 

arginine in 150 mM NaCl, 50 mM Tris buffer at pH 7.5. To these solutions, 2 µL of 1M 

H2O2 was added to a final concentration of 20 mM. The solution was allowed to react for 

three minutes before addition of Reagent B, which stops the reaction and denatures the 

protein. The sample must be allowed to sit for ten minutes before addition of Reagent A 

in order to allow formation of nitrite from aqueous nitric oxide. The UV-visible 
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Calculated rate constants for conversion of the ferrous-oxy intermediate to the ferric 

resting state (from SpecFit software) are shown in Table 4.1.  

 

Table 4.1. Rate constants for oxidation of each mutant 
enzyme, with and without substrate/cofactor. 

Sample  Oxidation rate,  s-1  With substrate, s-1  

WT  0.096 0.51 

His  0.0098 0.19 

Phe  0.23 2.6 

Tyr  0.62 4.3 

 

 The effect of the presence of arginine and the pterin cofactor is apparent from 

Table 4.1.  The rate constant for oxidation of the wild type enzyme is increased by the 

smallest amount among the four enzymes, a factor of approximately 5, while the W70H 

mutant oxidizes faster in the presence of these two additional substances by a factor of 

nearly 20. This is a remarkable increase. The data show that the ferrous-oxy species of 

the W70H mutant is much more stable than the others, by an order of magnitude or more, 

but this effect is lessened under catalytic conditions where reactivity of the enzyme 

toward substrate dominates the kinetics rather than simple oxidation of the iron center.  

 Assuming that all four samples interact with dioxygen in the same manner, the 

rates of autoxidation of the heme should correlate with the reduction potentials. This is 

consistent with results from Chapter 3 showing that the reduction potential of the Phe and 

Tyr mutants are significantly more negative than wild type and W70H. The presence of 

this single, long hydrogen bonding interaction brings the reduction potential more 
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positive. The potential of the W70F and W70Y mutants is most likely too negative to 

allow reduction by a reductase enzyme in vivo.   

Griess Assay 

 The function of nitric oxide synthases is to produce nitric oxide. This radical 

species reacts rapidly in aqueous solution, making it difficult to quantify NO production. 

One of the compounds that NO forms in buffered solutions is NO2
-, nitrite. A 

colorimetric assay for this species has been developed and patented, allowing for the 

facile determination of nitrite concentrations in solution. This should be proportional to 

the amount of NO originally formed by the enzyme.  

 

Table 4.2. Nitrite production rates by gsNOS mutants.  

Sample  NO2
- production, heme-1  min-1  x 100  

WT  10.7 ± 0.6 

His  13.9 ± 0.7 

Phe  4.3 ± 0.1 

Tyr  3.4 ± 0.1 

 

 With wild type as a benchmark, W70H shows increased nitrite production while 

W70F and W70Y show a marked decrease in production. This decrease could be caused 

by any of several things. First, if a mutant produces NO at a decreased rate, this would 

lead to decreased consumption of reducing equivalents from the hydrogen peroxide and 

less nitrite in the solution. Alternatively, if the electronics of the system have been 

unbalanced, a decrease in quantity of nitrite could mean similar or even increased 

consumption of reducing equivalents, but with uncoupling of this from NO production. 

The enzyme would instead release superoxide or other compounds, or even oxidize parts 
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of the protein itself leading to degradation. Unfortunately, the Griess Assay can tell us 

only the amount of nitrite in any given aqueous solution.  

Hydrogen peroxide has sufficient driving force to reduce all four of these protein 

samples (-680 mV). Upon mixture with the enzyme, a ferric-hydroperoxo species is 

formed (the first complex in blue in Scheme 4.2). Due to their more negative reduction 

potentials, the Tyr and Phe mutant enzymes autoxidize very rapidly. This means that their 

rate of consumption of reducing equivalents should be equal or even increased compared 

with wild type regardless of catalytic activity. Without this conserved hydrogen bond, the 

hydroperoxo complex may react too quickly to release reactive oxygen species and the 

ferric enzyme without reacting with the substrate. Alternatively, with a better donating 

thiolate ligand, O-O bond cleavage may occur incredibly rapidly. This would form 

Compound I (second species in blue in Scheme 4.2) and facilitate the first turnover, but 

perhaps not provide enough time for the ferric-hydroperoxo to react with NOHA in the 

second turnover, preventing NO formation. Catalysis using hydrogen peroxide as 

reductant and the source of dioxygen has been shown to produce cyano-ornithine in 

mammalian inducible NOS rather than citrulline (and NO).19  

Single Turnover Experiments 

 To observe turnover of the enzyme, stopped-flow mixing was employed coupled 

with UV-visible absorption spectroscopy for detection of intermediates. The resting state 

of the enzyme, with substrate and cofactor bound, has a Soret band with a maximum 

absorption at 396 nm. The position of this band is very consistent across isoforms, while 

the substrate and cofactor-free forms can vary from 400 (gsNOS)15 to 421 nm 

(mammalian iNOS).19-20 The ferrous-oxy complex, formed immediately after mixing the 



 

en

on

fe

re

st

fu

fe

U

m

te

fo

st

 

S
te
 
 

sp

(w

an

nzyme with 

n isoform.14 

erric heme c

egenerate th

topped-flow 

unctions. Th

errous enzym

Unfortunately

much too qu

echnique, thu

ormation.22 C

topped-flow 

    

cheme 4.6
etrahydrobio

For fi

pecies and f

which correl

nd fourth co

aerated buf

This is the l

complex, wi

he resting st

and resolve

his reaction 

me introduc

y, the active 

uickly to bu

us k1 is ultim

Compound I

in a thermo

. Reaction 
opterin is pre

itting purpos

finishing wi

lates with th

omplex show

ffer, has a m

last intermed

ith a maxim

ate of the e

ed by UV-vi

scheme is s

ced in one 

oxidant (Co

uild up to 

mately a mix

I has only b

philic cytoch

of reduce
esent, showin

ses, a three-

ith formation

he ferric-NO

wn in Schem

maximum abs

diate observe

mum absorpti

enzyme. Eac

is, allowing 

shown in Sc

syringe, to

ompound I o

any apprec

xture of sever

been cleanly 

hrome P450

d NOS wi
ng the releas

state model 

n of the res

O complex).

me 4.6, with t

sorption aro

ed before the

ion near 440

ch of these 

researchers 

cheme 4.6, d

o the produc

or the hydrop

ciable level 

ral elementa

generated a

0.23   

ith oxygen
se of NO.  

is used, beg

sting state th

 These corr

the software

und 428–43

e formation 

0 nm.21 Thi

species can

to literally 

detailing the

ction of cit

peroxo-heme

and be ob

ary steps lead

and characte

nated buffer

ginning with

hrough anot

respond to t

e fitting two 

30 nm, depen

of the NO-b

s releases N

n be observe

watch NOS

e steps from

trulline and 

e complex) r

servable by

ding to ferric

erized recent

r, provided 

h the ferrous

ther interme

the second, 

rate constan

133 

nding 

bound 

NO to 

ed by 

S as it 

m  the 

NO. 

reacts 

y this 

c-NO 

tly by 

 

that 

s-oxy 

ediate 

third, 

nts, k1 



134 
 

and k2. Despite k1 incorporating many elementary steps, this model for fitting the kinetics 

data fits all spectra well using the SpecFit software.  

In all cases the first trace shows the five-coordinate ferrous species, prior to 

formation of the ferrous-oxy. This arises due to the use of excess reductant, which is 

necessary to ensure that the enzyme remains fully reduced in the syringe. The reductant, 

sodium dithionite, reacts several orders of magnitude more rapidly with oxygen than the 

enzyme.24 Thus, the small excess of dithionite (less than 1 equivalent of the enzyme so as 

not to greatly alter the initial concentration of oxygen in solution) will react completely 

before the other chemical reactions occur. Typical traces for the wild type enzyme are 

shown in Figure 4.4 below. The ferrous complex can be seen in the first (and only the 

first) trace, red. The second trace, in green, corresponds well with formation of the 

ferrous-oxy complex. This formation is complete before the second trace can be 

collected, thus the rate is too fast to be calculated accurately from these data. For all 

kinetics analyses the first spectrum is discarded, as this is the only spectrum where the 

ferrous-unligated complex is visible. In every case the spectra first red-shift (relative to 

the five-coordinate ferrous starting material) before blue shifting to the ferric species.  
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some NOx at a rate actually increased relative to wild type. These data together suggest 

that the W70H mutant enzyme does not release NO· but rather NO- from the heme center. 

The other three enzymes, however, clearly form ferric-NO complexes, as observed by 

stopped-flow.   

 

4.5 Conclusions 

 Stopped-flow coupled with UV-visible spectroscopy was employed to 

characterize wild type gsNOS and these three new mutant enzymes. It was shown that 

their autoxidation rates correlate with reduction potential data discussed in Chapter 3. 

The histidine mutant has an elevated reduction potential and the slowest autoxidation rate 

relative to the other three. The wild type is more negative by approximately 20 mV with a 

potential of -362 mV vs. NHE. This reduction potential is similar to that of mammalian 

inducible NOS, but these two are then more negative than other NOS enzymes by 100 

mV.26 The reason for this behavior in gsNOS is unknown, but in iNOS the presence of 

the substrate sterically excludes a water molecule that coordinates the heme and this 

binding event shifts the reduction potential into the normal range for NOSs. The two 

mutants lacking this conserved hydrogen bond, W70F and W70Y, have significantly 

more negative potentials and were found to have very fast rate constants for autoxidation, 

consistent with more negative potentials. 

 The production of NOx species of all four enzymes was characterized by the 

Griess Assay. The wild type produces nitrogen oxide species at a rate similar to other 

NOSs. The W70H mutant has an elevated rate of NOx release/formation. The two 

mutants without this hydrogen bond have significantly decreased rates of NOx 
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production. Clearly this hydrogen bond plays a role in the rate of NO release from the 

enzyme or the speed with which it is formed (as all four should react sufficiently rapidly 

with hydrogen peroxide for reduction not to be a factor).  

 Finally, stopped-flow was once again employed in order to determine if the Griess 

Assay was indeed detecting NO· or rather NO- which are indistinguishable by that 

method. The ferric-NO complex, the immediate precursor to the nitric oxide product, was 

observed for three of the four enzymes. Interestingly, this could not be observed for the 

W70H mutant. This mutant most likely releases NO-.  

 The conserved proximal hydrogen bond donating group found near the axial 

thiolate ligand in all nitric oxide synthases plays a key role in tuning the electronics of the 

active site. This is a uniquely long hydrogen bonding interaction between this tryptophan 

and the thiolate, at just 3.7 Å. Without this interaction, the enzyme is still capable of 

producing NO, as found for both the W70F and W70Y mutants by single turnover 

experiments. Their reduction potentials, however, are incredibly negative and most likely 

fall far below the biologically relevant window. The replacement of this tryptophan with 

a histidine results in an enzyme with a more elevated potential, however it cannot release 

NO radical. The histidine residue, lacking the aryl ring, most likely cannot π-stack with 

the porphyrin ring, giving it more flexibility. This may allow it to move closer to the 

thiolate to improve this hydrogen bonding interaction. If this interaction is too strong, 

NO- is released.  

In the second turnover of the catalytic cycle, an electron from the heme center 

must be shuttled back into the tetrahydrobiopterin cofactor to re-reduce it. The potentials 

of both the heme and the pterin must be tuned perfectly to allow forward electron transfer 
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into the ferrous-oxy complex followed by back electron transfer into the pterin. This back 

electron transfer allows release of NO· and not NO-.27 If the potential of the heme center 

is too high, this back electron transfer cannot occur, preventing NO· release. Thus, the 

hydrogen bonding interaction is necessary for tuning the reduction potential high enough 

for the reduction of the heme by a reductase domain/enzyme. However, when too strong, 

the potential is tuned too high to send an electron back into the pterin after catalysis, 

which is necessary for formation of the product NO.  
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