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3.1 Abstract 

 All heme thiolate enzymes have conserved hydrogen bonding networks 

surrounding the axial thiolate ligand. In order to understand the role of this proximal 

hydrogen bonding network in nitric oxide synthases, three mutants of the NOS enzyme 

from Geobacillus stearothermophilus were expressed and characterized. The wild type 

enzyme has a tryptophan residue at position 70 that π-stacks with the porphyrin ring and 

donates a long hydrogen-bonding interaction to the thiolate ligand of the heme iron. The 

native Trp was replaced with His, Phe, and Tyr. These three residues were selected to 

investigate the two effects of the Trp, H-bonding and π-stacking. Several different 

spectroscopic techniques were used to investigate the stability and properties of these 

mutant enzymes. The identity of each mutant was confirmed by mass spectrometry. Both 

UV-visible absorption and circular dichroism spectroscopies were used to assess the 

stability of the new proteins. It was shown using binding assays, generation of the 

ferrous-CO species, and redox titrations that the σ-donating abilities of the thiolate are 

increased after removal of the hydrogen bonding group in the Trp. Finally, electron 

paramagnetic resonance spectroscopy and Evans method nuclear magnetic resonance 

spectroscopy were used to characterize the spin state of the iron center in each mutant, 

reflecting the increased σ-donating capabilities of the thiolate upon removal of the 

hydrogen bonding group. The reduction potential of wild type and W70H were 

determined by chemical titration to be -362 and -339 mV vs. NHE, respectively. This is 

the first report of the reduction potential of any bacterial nitric oxide synthase.  
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3.2 Introduction 

 Heme-thiolate enzymes play important roles in human physiology such as drug 

metathesis and in the production of signaling molecules involved in processes such as 

neurotransmission.1-2 Cytochromes P450 (cyt. P450) are a super-family of these 

interesting heme enzymes and many different forms are found in mammals.3 They carry 

out a broad array of biological transformations from epoxidation of alkenes to 

isomerizations and many different oxidation and reduction reactions. They are most 

famous for their ability to hydroxylate unactivated carbon-hydrogen bonds. It would take 

a unique and highly reactive complex to afford such difficult and varied reactions.  

 There are only a small number of heme-thiolate enzymes (counting cyt. P450 as a 

single entity).3 Joining cyt. P450 are the nitric oxide synthases (NOS) and 

chloroperoxidase (CPO). CPO carries out the typical peroxidase and catalase activities of 

any standard peroxidase enzyme.4 It is unique among peroxidases, however, in its ability 

to use hydrogen peroxide to oxidize the halogens iodide, bromide, and chloride, and use 

them to form carbon-halogen bonds on substrates.  

   The family of enzymes called nitric oxide synthases (NOSs) is responsible for 

biological production of NO.5 This family includes three isoforms named for the tissues 

in which they are found: endothelial NOS (eNOS), neuronal (nNOS), and an inducible 

form found in macrophages (iNOS).  The function of eNOS and nNOS is regulated by 

calcium ions and a calmodulin linker, while the inducible isoform is calcium ion 

independent.6  NOSs catalyze the oxidation of L-arginine (Arg) to L-citrulline in two 

turnovers, with Nω-hydroxy-L-arginine (NOHA) as an intermediate (the product of the 

first turnover).7  The overall reaction is shown in Scheme 3.1. 
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(characteristic absorbance of metalloporphyrins, 421 nm for substrate- and pterin-free 

iNOS)17 as well as the spin-state (from low- to high-spin ferric).18 The Soret of pterin- 

and arginine-loaded iNOS occurs at 390 nm.  This is followed by a one-electron 

reduction of the iron to ferrous. Ferrous heme readily binds oxygen, forming a ferrous-

oxy species (equivalent to ferric-superoxide),8 the last observed intermediate in the 

catalytic cycle.8, 19   

The role pterin has been extensively investigated.11, 16, 20 This molecule binds in a 

pocket alongside the heme, forming hydrogen bonds with a carboxylate group on the 

heme directly coupling it to the iron active site.13 It is known that a pterin-based radical 

forms and is reduced during the cycle (Scheme 3.2), as determined by rapid-freeze 

electron paramagnetic resonance experiments.12, 21 The current hypothesis is that proton-

coupled electron transfer from pterin aids in formation of the hydroxylating species.10, 20 

No turnover has ever been observed without the pterin cofactor bound.22 The pterin 

cofactor is thought to be essential for producing the active hydroxylating species through 

proton-coupled electron transfer. The efforts of this study focus on characterizing the iron 

active site. 

The known mechanistic data and overall reaction bear many similarities to 

cytochrome P450s (CYP450).  The CYP450s contain cysteine-ligated hemes and 

hydroxylate their substrates via a two-electron oxidation.23-24  Their mechanism also 

begins with substrate binding and is followed by reduction, dioxygen binding, and 

another reduction step leading to the formation of high-valent iron-oxo species which are 

very reactive and hydroxylate the nearby substrate.24  Separate enzymes serve as 

reductases for CYP450s, but they too can hydroxylate substrate when supplied with an 
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oxide synthases is too fast to catch all of the intermediate steps. Using this technique, the 

final observable species before product formation is the ferrous-oxy (or ferric-superoxo 

depending on formal placement of the electron).6 In the first turnover, the next species 

observed is the resting ferric state and in the second turnover it is the ferric-NO complex, 

which slowly releases NO to finish the cycle. No other intermediates can be seen by 

stopped-flow, presumably due to the speed with which they react.  

Evidence supporting that the hydroperoxo species (in blue) is the active oxidant in 

the second turnover comes mainly from the ENDOR (electron-nuclear double resonance 

spectroscopy) studies conducted on the NOS from Geobacillus stearothermophilus 

(gsNOS) by Brian Hoffman and Roman Davydov.28-29 These experiments show cleavage 

of the O-O bond prior to reaction with substrate in the first turnover, supporting the 

formation of Compound I or a similar species. In the second turnover, however, no 

cleavage of the O-O bond is observed prior to attack on substrate. They hypothesize that 

the presence of the hydroxyl group in NOHA makes the substrate easier to oxidize. The 

hydroperoxo heme complex might have enough oxidizing power to react with NOHA but 

not the arginine, requiring Compound I in the first turnover.  

 It is the O-O bond cleavage event that is vital to the reactivity of NOS and cyt. 

P450. Without this, Compound I cannot form and the active site will fail to produce a 

species with sufficient oxidizing power to react with substrates such as unactivated 

alkanes. It has been hypothesized that the role of the thiolate ligand is to promote this 

cleavage.30 The strong σ-donating ability of the anionic ligand pushes more electron 

density into the iron and therefore also into the iron-oxygen bond and weakening the O-O 

bond. This has been dubbed the “thiolate push”.31 
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 Upon closer inspection of the environment around the thiolate ligand, one finds a 

collection of three hydrogen bond (H-bond) donors all directed toward the thiolate. 

Comparison of gsNOS with other NOS enzymes reveals that these three hydrogen bond 

donors are universally conserved, with not a single exception.32 This high level of 

conservation underscores their potential importance. Not only are they conserved in nitric 

oxide synthases, but the crystal structures of other heme thiolate enzymes reveal similarly 

conserved hydrogen bond donors in all. Cytochrome P450s (cyt. P450) all contain three 

H-bond donors; chloroperoxidase (CPO) contains only two such donors.3 

When analyzing these polypeptide chains, one finds that in cyt. P450 and CPO all 

three donors in the proximal heme environment come not from amino acid side-chains 

but from amide protons in the backbone of the polypeptide chain. In NOS alone one and 

only one of the H-bond donors comes not from an amide but from the N-H of a 

tryptophan’s indole ring, Figure 3.1. The universality of these H-bond donors pointing 

right at the axial thiolate ligand provokes questions of their function in the reactivity or 

stability or electronic tuning of these enzymes.  

 



 

F
hy
b
re
 

cy

pr

th

al

th

b

T

b

p

Figure 3.1. C
ydrogen bon
ackbone (2.
esidue at pos

Other

yt. P450.33-3

roline forces

he glutamine

lso removes

he cysteine 

ackbone resu

The work su

ond) shifts t

otential mor

Close-up view
nd donors. T
9 and 3.3 Å
sition 70 (ve

s have attem

35 The repla

s a kink in th

e backbone w

 a hydrogen

residue. The

ulting from 

uggests, how

the reduction

re negative b

w of the hem
The middle 
Å) while the
ery long at 3.

mpted to inve

acement of a

he loop belo

with a N-C 

n bond from 

e combinati

introduction

wever, that th

n potential o

by about 40 

me center in 
and the righ

e long H-bon
.7 Å) (PDB f

estigate the p

a glutamine

ow the heme

bond, incap

the side cha

ion of these

n of a prolin

his H-bond 

f the heme b

mV).34 Reso

a nitric oxid
ht are from 
nd on the le
file 2FLQ).

possible role

e that provid

 and obviou

pable of part

ain of the G

e two effects

e makes resu

donor (not 

by about +40

onance Ram

de synthase s
amide group
eft comes fr

es of these H

des one ami

usly replaces

ticipating in 

Gln to the ca

s as well as

ults difficult

even a legi

0 mV (remo

man suggests

showing the 
ps on the pr
rom a trypto

H-bond dono

ide group w

 the N-H bo

H-bonding.

arbonyl moie

s the shift i

t to deconvo

itimate hydr

ving it make

s that this H-

77 

 

three 
rotein 
ophan 

ors in 

with a 

ond in 

 This 

ety of 

n the 

olude. 

rogen 

es the 

-bond 



78 
 

donor decreases the σ-donating ability of the thiolate significantly; its removal 

strengthens the iron-sulfur bond.33 They “conclude that the functions of the proximal 

hydrogen bonding network in P450cam are to stabilize the heme-thiolate coordination, and 

to regulate the redox potential of the heme iron”.35 While these conclusions seem 

reasonable, it is difficult to say the effect of a particular H-bond when several things are 

affected at once.  

We wish to determine the role of these H-bond donors and support or refute the 

previous findings,36 but particularly to study their effects in NOS. This family of enzymes 

provides a unique opportunity, given that one of the H-bond donors comes not from the 

backbone but from a side chain, allowing for facile and systematic variation using site-

directed mutagenesis. Several such mutations have previously been made in NOS and 

characterized by resonance Raman.37-38 These studies show that removal of this H-bond 

donor strengthens the Fe-S bond. No further characterization has been reported.  

One other mutant of interest replaced the tryptophan with a histidine, preserving 

and possibly increasing the H-bond donating ability of the group. In this mutant, 

researchers actually saw a slower kinetics profile and possibly a new intermediate by 

stopped-flow spectroscopy.39 No further characterization was reported, and this new 

intermediate was suggested to be Compound I, based solely upon the position of the 

Soret band (Scheme 3.2, the ferryl complex in blue).  The lifetime of this new 

intermediate is on the order of a couple seconds before decaying to product. Compound I 

is formally a Fe(V) complex, with a ferryl and another radical cation sometimes found on 

the porphyrin ring. The likelihood of such a species living for that length of time is 
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incredibly low as it will be very reactive, making its assignment as Compound I 

doubtful.40 No other investigations into the role of this H-bond donor have been made.  

We investigated the role of these H-bond donors by systematically varying the 

functional groups on this side chain in question through the use of site-directed 

mutagenesis. The native tryptophan was replaced with histidine, phenylalanine, or 

tyrosine. Histidine can also participate in hydrogen bonding, but lacks the ability to π-

stack with the porphyrin ring. Phenylalanine complements the histidine mutation in that it 

can π-stack but cannot hydrogen bond. The tyrosine can also π-stack, but the electronics 

should be significantly altered due to the presence of the hydroxyl group on the aryl ring, 

which is at an angle that should prohibit hydrogen bonding with the thiolate. These three 

mutants have been expressed and thoroughly characterized using the tools of modern 

bioinorganic chemistry to investigate the thermodynamics of the resulting active site 

(EPR, electrochemistry, etc.). These studies provide valuable insight into the specific role 

of these hydrogen bond donors and their purpose in NOS and other heme thiolate 

enzymes. 

 All studies were conducted using the nitric oxide synthase from the thermophilic 

bacterium Geobacillus stearothermophilus. This particular organism spends its entire 

existence at elevated temperatures, forcing the optimization of the function of its 

enzymes to this elevated temperature range (a thermal melting curve for the wild type 

enzyme gsNOS is shown in Figure 3.2). Due to this, the NOS from G. bacillus (gsNOS) 

functions optimally at temperatures well above other NOSs and shows a remarkably 

slowed kinetics profile at standard laboratory temperatures (such as 4 and 10 °C). 

Researchers conducted single turnover experiments with this enzyme and found it to form 
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 The wild type enzyme has a tryptophan residue at position 70 which hydrogen 

bonds with the thiolate ligand and π-stacks with the porphyrin ring of the heme. This Trp 

was replaced systematically by His, Tyr, and Phe. The wild type and these three mutant 

enzymes were studied by several techniques to characterize the thermodynamics of the 

active site. It was found that while these mutations do not greatly alter the stability of the 

protein or its overall fold, they do tune the electronics of the active site, shifting the spin 

state and altering the potential of the site.  

 

3.3 Materials and Methods 

General 

 The plasmid for the nitric oxide synthase from Geobacillus stearothermophilus 

was a gift from the lab of Brian Crane. This enzyme was expressed as previously 

described by Sudhamsu and Crane with no significant deviations in procedure.41 The 

enzyme was overexpressed in Escherichia coli BL21 (DE3) cells. Cells were grown to an 

optical density of approximately 1.0–1.4 and induced by adding a solution containing 

iron(III) chloride, IPTG, and δ-aminolevulinic acid (Aldrich) to final concentrations of 

125 mg/L, 100 µM, and 50 mg/L, respectively, in milliQ water. The pETDuet vector 

(Novagen) coded for a C-terminal cleavable His6-tag so samples were purified using 

metal affinity chromatography. (This vector also confers chloramphenicol resistance to 

the cells, so 34 µg/mL of this antibiotic were added to all cultures in Luria broth.) The 

His6-tag was then cleaved using bovine thrombin (Calbiochem). Both thrombin and the 

His-tag were removed using size exclusion chromatography. Sample purity and Soret 

band epsilon values were determined through use of the Hemochromagen Assay.  
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 A QuikChange site-directed mutagenesis kit from Stratagene was used to make 

the desired mutations in the amino acid chain. Primers were designed according to the 

guidelines outlined by the QuikChange kit manual. Unless otherwise noted, protein 

solutions were made in the following buffer: 50 mM Tris (2-amino-2-hydroxymethyl-

propane-1,3-diol), 150 mM NaCl, pH 7.5 (the same buffer used for size exclusion 

chromatography).  

Circular Dichroism Spectroscopy 

 Circular dichroism spectroscopy was used to determine the stability of each 

protein sample. Chiral objects interact with circularly polarized light in such a way as to 

turn or distort the polarization of the light.43 This is measured as ellipticity. Chiral 

features in macromolecules such as alpha helices or beta sheets are associated with 

particular signals by circular dichroism. Due to the size of the protein samples in question 

(gsNOS contains 375 residues with significant contributions from both alpha helices and 

beta sheets) the concentration of NOS in each cuvette was kept below 2 µM. Samples 

with greater concentrations gave signals too large for the spectrometer to resolve. Alpha 

helices give characteristic ellipticity at 222 nm, to the red of the part of the spectrum 

where buffer would begin to affect the signal. For this reason, the standard Tris buffer 

was still used for these measurements. Spectra were collected scanning from 210 nm to 

260 nm, stepping every one nm, to record the elliptical properties of the enzyme sample. 

In all cases the mximum signal was observed between 220 and 225 nm. To record the 

effects of temperature on each sample, the detector was fixed at 222 nm and the 

temperature was increased slowly, by steps of 2 °C, from 25 to 95 °C.  
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UV-Visible Absorption Spectroscopy  

UV-visible absorption spectroscopy is a particularly useful technique for 

characterizing heme proteins, as the position and shape of the Soret absorption band of 

the heme center is extremely sensitive to both the oxidation state of the iron and the 

coordination sphere around that iron. The maximum absorption of the Soret band can 

shift tens of Ångstroms due to simple additions of coordinating molecules such as 

imidazole or carbon monoxide.44 UV-visible absorption spectra were acquired on an 

Agilent 8453 UV-visible spectrophotometer with a 2 nm resolution. 

A common method for characterizing heme-thiolate enzymes and assessing their 

stability is by forming the ferrous-CO complex.37 It is the strong, sharp absorption of this 

band at 450 nm that gives cytochrome P450 its name. The Soret band of ferrous-CO NOS 

typically lies to the blue of cyt. P450 at 446 nm. Samples were brought into an anaerobic 

glove box and reduced using dithionite. Excess dithionite was then removed using a PD-

10 desalting column (although removal is not necessary in all situations). The samples are 

then sealed by Köntes valve in a quartz cuvette and brought out of the box. The 

headspace of this special cuvette was then connected to a tank of carbon monoxide and 

this gas was bubbled over the headspace, replacing the atmosphere. As CO diffuses into 

solution, the ferrous-CO complex is rapidly formed. The cuvette was then re-sealed and 

UV-vis spectra collected.      

Hemochromagen Assay 

 The heme center with its Soret absorption band provides a particularly useful 

handle for determining protein concentration as well. The Hemochromagen Assay allows 

researchers to characterize the molar absorptivities of heme centers in protein samples to 
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a degree that is far more accurate than the standard Bradford Assay.45 In this method, the 

protein is denatured using strong base to liberate the heme center and pyridine is added in 

large excess to force coordination of the heme. This five-coordinate pyridine-heme is 

then reduced with dithionite to yield a ferrous complex (called a hemochrome) with a 

known and distinct absorption in the Q-band region. This new complex has two sharp Q-

bands, the lower energy of which has a larger molar absorptivity of 34,640 M-1cm-1.45 As 

long as the original spectrum of the fully-oxidized resting state of the enzyme is recorded 

first, the hemochrome can then be generated and the concentration of the sample can be 

calculated based on heme concentration using the known epsilon value of the 

hemochrome.  

 Samples of wild type gsNOS and all three mutants were made with absorbances 

between 0.3 and 1.0 (to keep the % transmittance within the best working range of the 

spectrophotometer. Each sample was prepared in a specialized cuvette (Figure 3.4), 

allowing the sealing of the sample from atmosphere, or its connection to a Schlenk line, 

all while in a quartz cuvette allowing for measurement of the UV-visible absorption 

spectrum. A spectrum of each protein sample was collected initially, before any additions 

or degassing; each sample was exactly 1 mL of approximately 4–10 µM enzyme. Then 

125 µL of each pyridine and 1 M NaOH were added to the sample. The spectrum was 

again recorded to verify denaturation of the protein. Samples then had to be very 

thoroughly degassed through at least 30 rounds of gentle pump/purge to remove oxygen 

from the atmosphere and allow equilibration of the argon atmosphere with solution. 

Several crystals of solid dithionite were placed in the bulb, while the sample was kept 

anaerobic, and then the atmosphere above the diothionite was exchanged for argon again 
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Binding Assays  

 The interaction of substrates with the active site can be characterized 

spectroscopically using UV-visible absorption spectroscopy. With heme proteins, the 

introduction of substrates or inhibitors to the binding pocket often shifts the position and 

shape of the Soret band in a characteristic manner.46 Here, the substrate is arginine and 

the inhibitor is imidazole. The relationship between the concentration of 

substrate/inhibitor added and the resulting spectral shift has been calculated as follows in 

Equation 3.1,  

ଵ

௱ை஽
ൌ ݉	 ଵ

ሾ௜௠௜ௗሿ
െ	 ଵ

௄ೞ
      (3.1) 

where ΔOD is the change in absorbance due to the presence of the substrate or inhibitor 

and m is the slope of the resulting line, [imid] is the concentration of analyte added (in 

this case, imidazole).47 This simple linear relationship allows for the calculation of a 

dissociation constant, KS, through facile spectroscopic characterization by UV-vis (the 

symbol KS is used to distinguish this term as a spectral dissociation constant rather than a 

traditional dissociation constant, KD. This technique requires a large shift in absorbance 

to give reliable results. In some cases, a competition assay was required in order to see 

significant shifts in the Soret band (the protein was pre-loaded with imidazole of a known 

concentration and then arginine was added to that sample to displace the imidazole).  

Electron Paramagnetic Resonance Spectroscopy (EPR) 

 One unique feature of heme-thiolate systems is related to the spin state of the iron. 

The electronics of these systems is poised just so that the pairing energy (the energetic 

cost of placing two electrons in the same orbital due to their mutual repulsion) and 

ΔOctahedral (the splitting between the Eg and T2g states of the metal center) are nearly 
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identical. Under different conditions both high spin and low spin states can be observed, 

and often a mixture of the two states is seen. With Fe(III), high spin complexes have a 

spin of S = 5/2 and low spin complexes have a spin of S = 1/2.   

 EPR requires the glassing of frozen samples and the random alignment of all 

paramagnetic species. In order to ensure glass formation, high glycerol concentrations are 

used. Samples were prepared with the following conditions: 20 µM NOS, 20% by 

volume glycerol, 50 mM NaCl, 50 mM Tris at pH 7.5. Samples containing arginine had 

an Arg concentration of 300 µM in order to ensure full formation of the arginine-bound 

complex, and all were pre-frozen by rapid immersion in liquid nitrogen. Spectra were 

collected using a Bruker EMX Biospin instrument with a Gunn diode microwave source. 

Liquid helium was used to cool the instrument and sample and spectra were collected at 

20 K. EPR parameters were simulated using the software package SPINCOUNT.48  

Evans Method NMR 

 To determine the spin state of samples at room temperature, Evans method 

nuclear magnetic resonance spectroscopy (NMR) was applied. With this method, one can 

determine the spin state of a sample by the paramagnet’s affect on the surrounding 

solvent.49 Samples were prepared with 1 mM protein sample inside of a capillary-like 

insert (Wilmad, part number WGS-5BL). These inserts are designed to fit inside of a 

standard NMR tube, with buffer in the surrounding space. This allowed the use of less 

than 100 µL of protein sample, reducing the total amount of protein required. The 

presence of the paramagnetic iron center in the protein shifts the NMR peak of the water 

in the buffer. The magnitude of this shift is directly related to the concentration of the 

paramagnet and the number of unpaired electrons in that species (Equations 3.2, 3.3, and 
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3.4, specifically for a 600 MHz NMR spectrometer, from the manual for Chemistry 3b at 

Caltech). Samples were prepared with the standard buffer (50 mM Tris, 150 mM NaCl, 

pH 7.5) but with 20% D2O and 80% H2O rather than 100% H2O as an internal standard to 

allow for proper tuning of the magnet.   

௚ܺ ൌ ቀ
ଷ

ସగ
ቁ	ቀ

∆ఔ

ఔ
ቁ	ቀ

ଵ

௠
ቁ ൅	ܺ଴                               (3.2) 

In the above equation, Xg is the gram susceptibility of the sample, ν is the measured 

frequency of the NMR signal, m is the mass of the paramagnetic material in 1 mL of 

solution, and X0 is the gram susceptibility of the pure solvent (water being -7.203 × 10-7 

cm3g-1). This gram susceptibility is then used in Equation 3.3 to determine the number of 

unpaired electrons in the paramagnetic sample.  

ܺெ ൌ 	 ௚ܺ(3.3)                       ܯ 

ߤ ൌ 	2.84ඥܺெܶ ൌ 	ඥ݊ሺ݊ ൅ 2ሻ     (3.4) 

XM is the molar susceptibility of the sample in question, M is its molecular weight, and T 

is the temperature in Kelvin. These equations allow one to calculate the number of 

unpaired electrons in a given system as long as the two solvent peaks (with and without 

the paramagnetic species) can be resolved.   

Redox Titrations 

 In order to measure the reduction potential of each protein sample, redox titrations 

were carried out. In this technique, a chemical oxidant or reductant is added to the protein 

sample. This chemical reactant should have a reduction potential close to that of the 

protein being studied (± 100 mV) in order to observe equilibrium between oxidized and 

reduced forms from sub-stoichiometric reaction with the protein sample. The reduction 
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potential of other NOSs has been measured previously and found to typically lie in the 

range of -250 to -300 mV vs. NHE.16, 39 Ru3+(acac)3 was chosen as a chemical oxidant 

because it has a reversible reduction potential at -275 mV. The protein was reduced under 

inert atmosphere in a glove bag (experiments were carried out in the lab of Michael 

Marletta at UC Berkeley) and sealed in a cuvette along with the Ru(acac)3 sample (in the 

syringe) of a specialized apparatus for this reaction shown in Figure 3.5. Small aliquots 

of ruthenium complex were added at a time, the sample was mixed and the resulting 

spectrum collected. This technique relies on the absorption of the oxidized and reduced 

species of one of the two reactants to be well resolved. From the UV-vis spectrum, the 

concentrations of the oxidized and reduced form of each of the two reactants can be 

calculated given the molar absorptivities and the Nernst Equation applied to give the 

reduction potential of the protein.  

ܩ∆ ൌ 	െ݊ܧܨ ൌ 	െܴ݈ܶ݊ܭ௘௤     (3.5) 

ܧ ൌ ଴ܧ	 െ	ோ்
௡ி
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 The thermal denaturation data collected show a somewhat remarkable result: none 

of the mutant enzymes shows a marked decrease in stability toward temperature. Given 

the two roles of this residue at position 70, it was hypothesized that these roles were vital 

to the fold of the protein. The fact that all four enzymes are stable to 60 °C and show 

similar behavior to the wild type above that temperature proves this hypothesis to be 

false. The His mutant (shown in yellow in Figure 3.6) may begin to unfold at slightly 

lower temperatures than wild type, consistent with the π-stacking of the Trp being 

important for positioning the heme in the enzyme. However, this effect is very small. The 

Tyr and Phe mutants, if anything, show increased stability over the wild type. Again, this 

is consistent with the hypothesis, as these two residues preserve the π-stacking function. 

They cannot provide a hydrogen bond to the thiolate (the hydroxyl group of the tyrosine 

side chain is pointed at an unfavorable angle, away from the thiolate), but the data show 

that this does not destabilize the enzyme.  

 Another common method for determining the stability of heme-thiolate enzymes 

involves the generation of the ferrous-CO complex. It is this form of the enzyme that 

absorbs strongly near 450 nm, giving cytochromes P450 their name. This tests 

specifically the stability of the heme center and the iron-thiolate bond. Cyt. P450s and 

NOSs are known to form an inactive form called P420 under some conditions.52 This has 

been proposed to be either loss of axial thiolate coordination or protonation of the axial 

thiolate to make a neutral thiol ligand. In the case of NOS, it has even been shown to be 

reversible inactivation of the enzyme, but without the proper thiolate ligation the enzyme 

cannot produce NO.35, 52  
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 Upon formation of the ferrous-CO complex, the wild type gsNOS shows stable 

formation of the six-coordinate complex with maximum absorption at 446 nm as 

expected (Figure 3.7). The W70H mutant also shows stable formation of this complex, 

however with a blue-shifted Soret band at 440 nm. The reason for this blue shift is 

unknown, but may arise from altered tuning of the porphyrin ring. The two remaining 

mutant enzymes, W70Y and W70F, both remove hydrogen bonding capabilities. Over the 

course of 24 hours, both mutants show near complete formation of the P420 species 

(Figure 3.8). Removal of this one H-bond donor may increase interactions with the other 

two donors and increase the σ-donating ability of the thiolate ligand to the iron center. 

The data suggest that this third, distant (3.7 Å) H-bond donor stabilizes the enzyme in the 

active form by either decreasing the thiolate ligand’s σ-donating ability or by preventing 

any one H-bond from being too strong in order to reduce the risk of protonation of the 

thiolate, or some combination thereof.  

 In the catalytic cycle of NOS, a similar ferrous-O2 complex must form and remain 

stable on the timescale of catalysis in order for the enzyme to productively form NO. The 

electron density on the iron must be tuned in order to stabilize that six-coordinate species, 

yet still allow for ligand dissociation from the ferric-NO species formed in the last step of 

catalysis (Scheme 3.2). This unique requirement, the release of NO, may be the reason 

for the differences between the NOS and cyt. P450 proximal H-bonding network. In cyt. 

P450 all three H-bonds come from the amide backbone, while only two come from the 

backbone in NOS, the third coming from this Trp residue. Cyt. P450 has a separate 

phenylalanine residue for π-stacking with the porphyin ring, rather than combining these 

two functions in a single Trp residue.38 
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Table 3.1. Spectral dissociation 
constants of imidazole and arginine. 

 (µM)  K
s
 (arg) K

s
 (imid) 

WT 4.0 38 

W70H  4.5 88 

W70F  3.2 130 

W70Y  4.3 210 
 

It is clear from the values in Table 3.1 that while the interaction of imidazole with 

the heme is greatly affected by mutations at position 70, the dissociation constant of 

arginine remains unaffected. This can be explained by the manner in which each 

substance binds. Arginine is positioned in the binding pocket above the heme, without 

directly ligating the iron. It is held in place by hydrogen bonds and hydrophobic contacts 

within the substrate channel.13, 53 A high spin five-coordinate complex is formed; arginine 

merely kicks out the water molecule that weakly coordinates the iron. Imidazole, on the 

other hand, directly coordinates the iron, forming a bond between the iron and nitrogen of 

the ring. As the hydrogen bond donating group is removed, the thiolate becomes a better 

donor to the iron. This increases the electron density on the iron. The direct ligation of the 

imidazole forces even more electron density into the iron, which is disfavored, so as the 

thiolate becomes a better donor, the imidazole binds less tightly.  

UV-Visible Characterization of the Resting State 

 As stated previously, electronic absorption spectroscopy is a useful tool for 

characterizing heme enzymes. The Hemochromagen Assay is used to determine protein 

concentration based on heme concentration. This assumes the presence of one heme unit 

per polypeptide chain. All measurements made herein depend on signal changes in the 
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paramagnetic spin state. NMR experiments can be carried out at room temperature, 

allowing for a more direct comparison with UV-vis. The presence of paramagnetic 

compounds in high concentrations shifts the resonance of the solvent peak. This shift is 

related to the number of unpaired electrons in the complex by the Equations 3.2, 3.3, and 

3.4. Table 3.4 shows results of these measurements. Strengthening the H-bonding 

capabilities of the residue at position 70 decreases the number of unpaired electrons 

relative to wild type, while removing that H-bond increases the number of unpaired 

electrons and shifts the sample further towards high spin. These results agree with those 

from UV-vis and together confirm that the enzyme is predominantly high spin in 

character at room temperature (low spin would have one unpaired electron, high spin 

would have five).  

Table 3.4. Unpaired electrons for each mutant as determined by Evans method.  

Sample  delta, ppm [NOS], mM n (unpaired e) 

WT  0.041 1.00 3.9 

His  0.040 1.26 3.3 

Phe  0.057 1.16 4.4 

Tyr  0.062 1.38 4.1 

 

Redox Titrations 

 In order to fully characterize the electronics of the ground state of each enzyme’s 

active site, a measurement of the heme (Fe3+/2+) reduction potential is necessary. 

Determination of the reduction potential of a redox active center is not always 

straightforward, particularly when the complex of interest is buried within a protein 
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scaffold. The backbone of a protein is made mostly from insulating C-C and C-N bonds 

and is designed to discourage random electron transfer reactions in favor of one particular 

function of the enzyme. Nature must find the balance between discouraging deleterious 

redox reactions and promoting productive reactions. The presence of the protein scaffold 

buries the active site and in most cases prevents communication with electrodes, 

rendering standard electrochemical techniques useless. Small molecules, however, which 

can freely diffuse through solution, can still react with most metal sites within proteins. 

For this reason, chemical redox titrations are the method of choice for measuring 

reduction potentials.  

For chemical redox titrations no electrodes or potentiostats are required; however, 

spectroscopic handles are necessary to indicate that a redox process has occurred. Many 

metalloproteins have absorption bands in the visible region, making them amenable to 

characterization by UV-visible spectroscopy. Provided there are wavelengths where the 

two redox forms show characteristic absorption bands, relative protein concentration can 

be measured. A chemical oxidant/reductant is employed with a known reduction potential 

near (within ±100 mV) the expected potential of the protein under analysis, in this case 

Ru(acac)3 with a Ru3+/2+ reduction potential of -275 mV vs. NHE. This feature is required 

for the measurement of a precise equilibrium constant in Equation 3.6 as sub-

stoichiometric reactions will be observed. A small molecule chemical titrant must be 

designed to have desirable UV-visible absorption properties so as not to obscure the 

changes taking place with the enzyme as well as a potential close to that of the sample in 

order to observe equilibrium between the two. However, if the titrant has clear optical 

changes upon change in oxidation state, it too can be used to calculate the concentration 



105 
 

of each species in solution. Equation 3.6 is employed, where E is the difference between 

the reduction potential of the titrant and the protein, and E0 is the reduction potential of 

the titrant itself.  

First, the optical spectra of Ru(acac)3 were recorded at various potentials using a 

standard spectroelectrochemical cell (CH Instruments) (Figure 3.15). A solution of 95 

µM Ru(acac)3 in 150 mM NaCl, 50 mM Tris, pH 7.5 was made and degassed to remove 

oxygen from solution. The potential was held at -400 mV vs. the Ag/AgCl reference 

electrode (about -200 vs. NHE) for a few minutes to allow full equilibration and the first 

spectrum (in red) was recorded. The potential was then stepped in 20 mV increments (10 

mV when nearing the reduction potential of the compound) to the negative, each time 

several minutes were allowed for full equilibration of the solution before a UV-vis 

spectrum was recorded. This was continued until no further optical changes were 

detected (the final spectrum is shown in purple). These data confirm the reported 

reduction potential of -275mV and identify isosbestic points at 290 and 398 nm.  

 



 

F
O
 
 

en

an

in

co

th

pr

ce

Figure 3.15. 
Oxidized, Ru

This r

nzyme. Sam

nd excess re

n a specializ

omplex was

he way (Fig

resence of a

enter. Any le

Spectroelect
u(III), red. Re

ruthenium c

mples of five-

eductant was

zed cuvette (

 then added

gures 3.16 a

any oxygen, 

eak would ca

trochemical 
educed, Ru(I

complex wa

-coordinate 

s removed u

(Figure 3.5)

d in a stepwi

and 3.17). T

as it reacts 

ause large de

characteriza
II), purple. 

as then used

ferrous enzy

sing desaltin

) with Ru(II

ise manner a

These measu

rapidly and 

eviations in 

ation of Ru(

d to oxidize

yme were m

ng columns. 

II)(acac)3 in 

and UV-vis 

urements ar

stoichiomet

observed sp

acac)3, 95 µ

e the reduce

made in an an

 The sample

the syringe

spectra wer

re extremely

trically with 

pectra.  

µM in Tris bu

ed form of

naerobic cha

e was then s

e. This ruthe

re recorded a

y sensitive t

the reduced

106 

 

uffer. 

each 

amber 

sealed 

enium 

along 

to the 

d iron 



 

F
sh
(b
 

F
fr
 
 

p

Figure 3.16.
howing a sh
blue).  

Figure 3.17. 
rom reduced

Accur

otentials in 

. Redox titr
hift from red

Titration us
d NOS (green

rate measure

question are

ration using
duced NOS (

sing Ru(acac
n) to oxidize

ement of red

e very negat

g Ru(acac)3

(green) to o

c)3 to oxidiz
ed protein plu

duction pote

tive of 0 vs

to oxidize 
oxidized prot

ze W70F ferr
us excess Ru

entials is pa

. NHE and 

wild type 
tein plus exc

rous gsNOS
u complex (b

articularly d

reactions ar

ferrous gsN
cess Ru com

S, showing a
blue).  

ifficult whe

re slow, as i

107 

 

NOS, 
mplex 

 

a shift 

n the 

is the 



108 
 

case here. Reliable potentials were determined for wild type (-362 ±5 mV) and W70H (-

339 ±5 mV). These numbers are both within 100 mV of the potential of the chemical 

titratrant, Ru(acac)3. The other two mutant enzymes, however, should have significantly 

lower potentials as the thiolate ligand becomes a better donor to the iron as literature 

suggests.38 This would lead to stoichiometric reaction with the Ru complex. If 

equilibrium cannot be observed, the potential of the iron site cannot be determined. This 

was in fact the case, as only stoichiometric oxidation of the iron was observed and no 

measure of the Keq could be obtained for W70F and W70Y. It is sufficient to conclude 

that removal of this strategic hydrogen bond donor substantially decreases the reduction 

potential of the center, consistent with the lack of stability in the ferrous-CO complexes 

of these two mutants.  

 It is also of note that the potentials measured for wild type and W70H are not as 

expected from previous work.58 The potential of most NOS enzymes falls between -240 

and -270 mV vs. NHE. One exception to this is mammalian inducible NOS which has a 

potential near -350 mV without substrate present.16 This is too negative to be reduced by 

the flavins in the NOS reductase domain. Upon introduction of the substrate, the potential 

shifts up toward -250 mV and the iron center can now be reduced by the flavins. In other 

mammalian forms, the presence of calcium ions regulates electron transfer between the 

two domains. In its absence, the oxygenase domain and reductase domain are too far 

separated for electron transfer to occur. In inducible NOS, the activity of which is 

independent of calcium ion concentration, it is this redox switch that most likely prevents 

deleterious side reactions. (If the heme center is reduced without substrate present, 

reactive oxygen species are formed which can damage the cell. However, if the heme is 
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only reduced when the substrate is present, this unproductive reduction event is avoided.) 

This is the first measurement of the reduction potential of any bacterial NOS. These 

enzymes may be regulated in a manner similar to inducible NOS, which is fitting in light 

of their lack of dedicated reductase domain.  

 The potential of the histidine-containing mutant lies positive of the wild type 

enzyme. This same effect was seen in inducible NOS, where the corresponding mutation 

(W188H) shifts the potential positive by 88 mV (as opposed to only 20 mV as seen here). 

It may be that the tighter fold of gsNOS alters this interaction relative to inducible NOS. 

The histidine may not come into as close contact as the tryptophan, or the electronics of 

the porphyrin ring may be affected in a unique way. A crystal structure of these mutant 

enzymes would aid in this discussion. Samples have been sent to the lab of Brian Crane 

at Cornell, however crystals of NOS are notoriously difficult and slow-growing. Efforts 

to determine the structure of these three new mutants are ongoing.  

 

3.5 Conclusions 

 The thermodynamics of wild type and three mutants of gsNOS were characterized 

by various methods. Data from circular dichroism spectroscopy show that mutations at 

position 70 do not decrease the overall stability of the protein fold. The evidence from 

multiple techniques is clear, however, that these mutations significantly affect the 

electronics of the heme center. It was shown using binding assays, generation of the 

ferrous-CO species, and redox titrations that the σ-donating abilities of the thiolate are 

increased after removal of the hydrogen bonding group in the Trp. Both chemical redox 

titrations and instability of ferrous-CO complexes of the two mutants lacking this key 
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hydrogen bond (W70F and W70Y) suggest that they have more negative reduction 

potentials that the two mutants with this hydrogen bond (wild type and W70H). Evans 

methods NMR was used to confirm the results of UV-visible spectroscopy which suggest 

that removal of this hydrogen bond shifts the heme center toward the high-spin state due 

to strengthening of the Fe-S bond, as seen in the binding assays.  

 It can be concluded that this universally-conserved tryptophan residue serves 

several roles, but positioning of the heme within the protein (as has been suggested for 

cyt. P450s) is not one of them. In order to produce NO the electronics of the heme center 

must be tuned in such as way as to stabilize high-valent iron species for the oxidation of 

substrate. During catalysis, the site must also be tuned not only to support six-coordinate 

ferrous-oxy complex, but promote release of NO· from the heme in the end. If the 3/2+ 

reduction potential of the site is too negative, the ferrous-oxy may be unstable or the 

high-valent iron species too stable to perform the desired reactivity. If too negative, 

release of NO will be disfavored and decrease the rate of release to undesirable levels. 

The reactivity of these mutants will shed further light on the role of this key hydrogen-

bond donating group.  
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