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ABSTRACT: Nitric oxide synthase (NOS) catalyzes the production of nitric oxide from L-

arginine and dioxygen at a thiolate-ligated heme active site.  Although many of the reaction 

intermediates are as yet unidentified, it is well established that the catalytic cycle begins with 

substrate binding and rate-limiting electron transfer to the heme.  Here we show that Ru(II)-

diimine and Re(I)-diimine electron tunneling wires trigger nanosecond photoreduction of the 

active-site heme in the enzyme.  Very rapid generation of a reduced thiolate-ligated heme opens 

the way for direct observation of short-lived intermediates in the NOS reaction cycle.   

 

INTRODUCTION 

 Salvador Moncada and colleagues reported  in 1987 that the molecule responsible for 

relaxation of blood vessels is nitric oxide (NO).1  This publication marked the beginning of a new 

area of chemical and biological research, with thousands of articles published each year. Long 

known as a cytotoxic agent in pathological processes,2 NO now is recognized as a key signaling 

molecule in the cardiovascular, immune, and nervous systems.3  

 Nitric oxide synthases (NOSs) are responsible for the production of NO in living 

systems.4  The three (mammalian) isoforms of the enzyme are named for the tissues in which they 

are found: endothelial NOS (eNOS), neuronal (nNOS), and an inducible form found in 

macrophages (iNOS).  The functions of eNOS and nNOS are regulated by calcium ions and a 
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both the Soret absorption maximum and the heme spin state.7, 17  One-electron reduction of the 

NOS:substrate complex gives a five-coordinate ferrous that readily binds dioxygen, forming a 

ferrous-oxy species (equivalent to ferric superoxide),8 the last observed intermediate in the 

catalytic cycle.8, 18   

The role of pterin has been extensively investigated.11, 16, 19  This molecule binds in a 

pocket alongside the heme, forming hydrogen bonds with a P-IX carboxylate, thereby coupling it 

to the active site.13  It is known that a pterin-based radical forms and is reduced during the 

catalytic cycle, as determined by analysis of results from rapid-freeze EPR experiments.12, 20  

Turnover has never been observed without fully reduced pterin cofactor.21    

The NOS reaction cycle bears many similarities to that of P450s.  P450s contain thiolate-

heme active sites and hydroxylate substrates via two-electron oxidation processes.22, 23  The P450 

cycle also begins with substrate binding followed by heme reduction, dioxygen binding, and 

another reduction step leading to the formation of a high-valent iron-oxo complex (Compound I) 

that hydroxylates the substrate (Scheme 2).23  Separate enzymes serve as reductases for P450s, 

but substrate hydroxylation can be driven using external sources of electrons.24  Owing to these 

similarities, the mechanism of the first turnover of NOS is postulated to be the same as that of 

P450s.25  However, the second turnover, a three-electron oxidation, is thought to employ a unique 

mechanism.26  It has been suggested that a protonated ferric hydroperoxide may act as the 

nucleophile in the second turnover18 rather than Compound I, which is a ferryl P-IX radical 

cation.8   
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Scheme 2: Proposed NOS catalytic cycle; active-site intermediates that have not been observed are shown 
in red. 
 

Steps in the mechanistic cycle borrowed from P450 are shown in Scheme 2.  Although 

several intermediates in the P450 cycle already have been observed, there can be no doubt that 

“the hunt for an unambiguous experimental identification of the ephemeral active oxygen species 

will most certainly continue.”22  If that is the case for P450, then we may conclude that work on 

the NOS catalytic cycle is just beginning.  

A long-standing goal in our group is the development of methods to generate and observe 

high-valent iron-oxo complexes that are believed to play key roles as intermediates in the 

catalytic cycles of heme enzymes.27  Direct observation during turnover would allow definitive 

identification of the active oxidant.  Drawing on studies of similar enzymes and using EPR under 

cryogenic conditions and X-ray crystallography, investigators have amassed a large body of 

evidence that strongly indicates that Compound I (Scheme 2, the ferryl P-IX racial cation shown 

in red) is the active species.28  The steps leading to formation of this highly reactive species are 

slow, making its observation problematic, as at best it is present in very low concentrations 

during catalysis.   
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We have investigated the redox photochemistry of two heme enzymes, microperoxidase-

8 (MP-8, a heme octapeptide fragment of cytochrome c) and horseradish peroxidase (HRP).29  

Visible excitation of Ru(bpy)3
2+ (bpy is 2,2’-bipyridine) in the presence of oxidative quenchers in 

solution generates a powerful Ru(III)-diimine oxidant, which reacts rapidly with P-IX to form the 

P-IX radical cation, which then oxidizes Fe(III) to give high-valent iron-oxo complexes of MP-8 

and HRP.29, 30  Attempts to generate high-valent hemes in P450s in reactions with uncomplexed 

photogenerated oxidants were not successful so we changed course, as discussed in the following 

section.   

 

CHANNEL-BINDING WIRES 

Since 1999 we have developed sensitizer-linked electron tunneling wires that are able to 

deliver electrons and holes rapidly to and from deeply buried active sites of heme enzymes.31, 32  

Attaching the photosensitizer to the substrate promotes a close interaction between the two, and 

increases the probability of ET (Figure 1).   A selection of such molecules developed for the 

oxygenase domain of iNOS is shown in Chart 1. 

 

Figure 1: Substrates linked to sensitizers target active-site channels of enzymes. 
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CONCLUSIONS 

 We have developed a system in which the heme of inducible nitric oxide synthase can be 

photoreduced rapidly without interfering with substrate or cofactor binding.  Employing flash-

quench experiments with a surface-binding Ru-diimine wire in combination with reductive 

quenchers, we observed ET to the imidazole-bound heme of iNOSoxy fully seven orders of 

magnitude faster than the natural reduction.  This finding represents an important step toward our 

goal of identifying reactive intermediates in the catalytic cycles of heme oxotransferases.   
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