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ABSTRACT 

 Noncanonical amino acids are tools for expanding and altering the chemical 

functionalities available within proteins. Much recent work has focused on developing 

biosynthetic means for incorporating noncanonical amino acids into proteins, and 

applications of noncanonical amino acids to many problems in science and engineering are 

emerging. The first portion of this thesis describes established methods to incorporate 

noncanonical amino acids into proteins and efforts to exploit the properties of noncanonical 

amino acids in areas such as protein structure determination, protein and organism 

evolution, modulation of the immune system, and proteomics. Researchers’ creative and 

successful use of this growing toolkit suggests that noncanonical amino acids will continue 

to be a valuable asset for dissecting biological problems and imparting proteins with new 

chemical and physical properties. 

 Biophysical studies with noncanonical amino acids provide a platform for studying 

the effects of atom-by-atom manipulations of amino acid side chains on protein properties. 

The middle portions of this thesis describe work to better understand how protein 

properties are affected by subtle amino acid side chain manipulations. This work was aided 

greatly by the establishment of homoisoleucine as a translationally active analog of leucine 

in bacterial cells. The small side chain differences between leucine, homoisoleucine, and 

the fluorinated amino acid trifluoroleucine allow for detailed studies on how amino acid 

side chain size and fluorination affect protein stability and hydration dynamics. 

Replacement of leucine by homoisoleucine in coiled-coil peptides stabilizes these proteins, 

as shown by elevation of the coiled coil thermal denaturation temperature. The stabilization 

observed when homoisoleucine replaces leucine in the peptides is greater than when 
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trifluoroleucine replaces leucine, suggesting that expansion of side chain volume may play 

a role in protein stabilization irrespective of hydrocarbon or fluorocarbon character. 

 Studies of water-protein interactions using designed coiled coils containing surface-

exposed leucine, homoisoleucine, or trifluoroleucine residues enabled systematic 

examination of the roles that side chain size and fluorination play in dictating solvation 

dynamics. Fluorinated side chains appear to exert a large electrostatic drag on nearby water 

molecules. These results have important implications for the design and engineering of 

fluorinated proteins due to the critical role water-protein interactions play in many protein 

properties and functions. 

 The final portion of this thesis details efforts to engineer the binding properties and 

chemical reactivity of antibody fragments with noncanonical amino acids. The properties 

of the single chain variable fragment form of a model anti-digoxin antibody have been 

studied after replacement of the protein’s methionine residues with methionine analogs 

containing alkyne, azide, and aliphatic side chains. Experiments with antibody fragments 

displayed on the surface of Escherichia coli cells revealed that replacement of the 

methionine residues of the fragment with an analog containing an alkyne side chain 

reduced the fluorescence levels of cells treated with a fluorescently labeled antigen to 

background levels, indicating loss of binding function. Replacement of methionine with 

analogs containing aliphatic and azide side chains left the fluorescence of cells unchanged 

and reduced by a factor of 0.6, respectively. Fluorescence-activated cell sorting of libraries 

of cell surface-displayed antibody fragments enabled the isolation of clones functional in 

multiple amino acid contexts. Cells displaying variants containing alkyne, azide, and 

aliphatic analogs and treated with fluorescently labeled antigen were more fluorescent than 
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cells displaying the methionine form of the parent antibody fragment by factors of roughly 

1.7, 3.5, and 1.3, respectively. Furthermore, the amino acid context used during high-

throughput screening experiments appears to affect the frequencies of mutations occurring 

at various positions within the antibody fragment construct. High-throughput sequencing 

revealed that populations isolated in different amino acid contexts exhibit mutational rates 

differing by greater than twenty percent at some residues in the protein. 

 Characterization of soluble fragments indicated that each noncanonical amino acid 

used in this study modulates the binding kinetics of antibody fragments in a distinct 

fashion. Perhaps most interestingly, fragments containing the azide-containing analog 

azidohomoalanine exhibit improved binding kinetics relative to their methionine-

containing counterparts. Replacement of methionine by azidohomoalanine in several 

variants lowers the dissociation constant of the fragment by up to a factor of two. Chemical 

conjugation of azide-containing fragments to fluorescent dyes and biotin proved facile with 

strain-promoted cycloaddition reactions. Quantifications of the extent of reaction using 

fluorescent dyes revealed that approximately 0.4 dyes had been conjugated per protein, and 

the resulting conjugates were found to retain their binding function in kinetic and Western 

blotting assays. Experiments in which azide-containing fragments were displayed on the 

surface of Escherichia coli cells and subjected to strain-promoted cycloadditions 

demonstrated that the extent of chemical modification and antigen binding can be 

monitored simultaneously and used to isolate cells displaying functional, modified proteins. 

These experiments demonstrate how noncanonical amino acids can be used to modulate 

multiple properties of antibody fragments and illustrate the feasibility of developing and 
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screening libraries of chemically modified proteins. Evolved, functional bioconjugates may 

be applicable to a variety of outstanding diagnostic and therapeutic problems. 
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