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Abstract 

The uncertainties related to the modeling of the dynamic behavior of a 

structure are analyzed using a probabilistic approach. 

First, the case of preliminary design is addressed, where the structure has 

not yet been built. A new efficient and accurate numerical method is proposed 

to investigate the resulting uncertainties in the structural response due to uncer­

tainties in the modeling process, where engineering judgement is used to quantify 

the latter uncertajnties. 

Second, the case where records of measured structural response are available 

to reduce the uncertainties in the structural models is addressed. The posterior 

probability distribution of the uncertain parameters is found to be very peaked 

at the values of some optimal parameters. These optimal parameters can be ob­

tained by minimizing a positive-definite measure-of-fit function. A new efficient 

minimization algorithm is proposed to resolve difficulties in convergence of ex­

isting methods. The identifiability of the optimal parameters is also addressed. 

The problem of finding the whole set of the optimal models that have the same 

output at the observed degrees of freedom is resolved for the first time, by pre­

senting an algorithm which methodically and efficiently searches the parameter 

space. 



-v-

Table of Contents 

Acknowledgements 

Abstract 

Table of Contents 

List of Figures 

List of Tables 

1: Introduction 

1.1 Motivation and Objectives 

1.2 Outline of this Work 

2: Structural Uncertainties in Preliminary Design 

2.1 Introduction 

2.2 Modeling of a Structure 

2.3 Probability Logic 

2.4 Probabilistic Modeling of Structural Model Uncertainties 

2.5 Evaluation of Existing Techniques 

2.5.1 Second Moment Approach 

2.5.2 An Application Using SMA 

2.5.3 Numerical Example and Evaluation of SMA 

2.6 A Class of Linear Structural Models 

lJl 

iv 

v 

xiv 

xiv 

1 

1 

4 

9 

9 

9 

11 

13 

17 

18 

20 

21 

23 

2.6.1 Uncertainty and Allowable Values of the ~v1odel Parameters 24 



- VI-

2.6.2 Modal Analysis 26 

2.7 Probabilistic Modeling of Original Uncertain Parameters 31 

2.8 Probabilistic Modeling of Uncertain Modal Parameters 33 

2.9 SDOF Oscillator with Uncertain Frequency and Damping Ratio 39 

2.10 MDOF Structural Model With Uncertain Parameters 48 

2.10.1 Statistics of q~r)(t) 48 

2.10.2 Statistics of qi(t) 54 

2.11 Summary and Conclusions 59 

3: Improving Response Predictions Utilizing Dynamic Testing 81 

3.1 Introduction 81 

3.2 Some Definitions and Notation 82 

3.3 Output-Error Approach 84 

3.4 Posterior pdf of Uncertain Parameters 88 

3.5 Posterior Predictive Probability 95 

3.6 Definitions of Model and System Identifiability 100 

3.7 Identifiability of Some Modal Parameters 104 

3.8 A Combined Set of Modal and Structural Parameters 107 

3.9 Recovery of Optimal Parameters 108 

3.9.1 Comments on the Performance of Existing Minimization 

Algorithms when Applied to Minimizing l(ft,.o 
3.10 A Useful Transformation of Variables 

110 

116 



- Vll -

3.10.1 An Example: Two Degree of Freedom Shear Ivlodel 118 

3.11 Proposed Algorithm to Minimize J(fl.,~) 124 

3.11.1 Minimization of J(ft.) 124 

3.11.2 Minimization of J(ft) Along the Curve Ck(ft;fts,k-l) 126 

3.11.3 Some Comments Regarding the One-Di.mensi.onal Mi.ni.-

mization Algorithm 130 

3.11.4 Minimization Algorithm when No # N m 131 

3.11.5 Minimization of J(ft,D 132 

~ ~ 

3.12 Identifiability of the Optimal Parameters ft and f 133 

3.12.1 Proposed Methodology for Finding SoPt(~.; ZI,N) 134 

3.12.2 Proposed Algorithm for Finding en 135 

3.12.3 A Simplified Expression for the Weighting Coeffiient Wk 137 

3.12.4 Identifiability of ft: Some Test Results 139 

3.13 Summary and Conclusions 140 

4: Conclusions 157 

References 162 

Appendix A 166 

Appendix B 168 

Appendix C 170 

Appendix D 173 

Appendix E 174 



- Vlll -

List of Figures 

Figure 1.1 Uncertainties in the modeling ofthe dynamic behavior of a structural 

system. The input I is assumed known. Each parameter Q specifies 

a particular model in the class M with corresponding model output 

history Q. X denotes the system output history, and E denotes 

the model error history. The sets S and Q do not overlap because 

of the existence of model error. For some optimal model(s) corre­

sponding to some optimal parameter(s) Q, the model error reaches 

its minimum. The parameter uncertainty is concerned with estimat­

ing the optimal parameters, and the uncertainty due to model error 

is concerned with quantifying its "magnitude." 

Figure 2.1 Schematic representation of the steps leading to the probabilistic 

modeling of a structural response. 

Figure 2.2 SDOF linear model of one-story building structure excited by ground 

acceleration. 

Figure 2.3 El Centro SOOE acceleration record of the Imperial Valley Earth­

quake. IvIay 18. 1940. This "El Centro record" is the applied base 

excitation in all numerical applications of this thesis. 

Figure 2.4 Expected response ij(t), of a SDOF oscillator with fixed damping 

ratio ( = 0.05, and uncertain natural frequency w, uniformly dis­

tributed over the interval n = [1.77r,2.37rl~~~ eEl Centro record). 

Two methods are used to obtain ij(t): (1) numerical integration 

(solid curve) and (2) SMA (dashed-dotted curve). 

Figure 2.5 Standard deviation of the response aq(t) for the SDOF oscillator of 

Figure 2.4. The solid curve is obtained using numerical integration, 



- IX-

while the dashed-dotted curve is obtained using SMA. 

Figure 2.6 Response q( t; w) at fixed time t = to = 5 sec, against the natural 

frequency W in Hz for the SDOF oscillator of Figure 2.4. The solid 

curve is exact, while the dashed-dotted parabola corresponds to the 

trurJcated Taylor series expansion given by the right hand side of 

(2.5.8). 

Figure 2.7 Expected response ij( t) and its corresponding standard deviation 

O"q(t), for a SDOF oscillator with fixed damping ratio ( = 0.05 and 

uncertain natural frequency (EI Centro record). The solid curve cor­

responds to w being uniformly distributed over the interval [0.85, 1.15jHz. 

resulting in (w, Q,.,) = (lHz,8.66%), while the dashed-dotted curve 

corresponds to w being Gamma distributed with the same two first 

moments as in the previous case. 

Figure 2.8 (a) Gamma distribution of an uncertain parameter aj with iij = 1 

and Q aj = 0.10 (Paj = 100, Vaj = 100). 

(b) Gamma distribution of an uncertain parameter aj with iij = 0.05 

and QQj = 0.20 (Paj = 500, Vaj = 25). 

Figure 2.9 Multi-story planar shear building structure excited by a ground ac­

celeration. 

Figure 2.10 Modal frequencies wr(fD, r = 1,2,3 against ai, i = 1,2,3 for a three­

story planar shear building with uniform mass mi = mo and inter­

story stiffness k i = koa;, i = 1,2,3 (ko = 2000mosec 2
); while each 

a; is varied, the remaining aj -=f ai are kept constant, equal to unity. 

Figure 2.11 Effective participation factors at the different floors Pkr
) (fl.), k = 



-x-

1,2,3, against Bi,i = 1,2,3, for the different modes 'T' = 1,2,3, of 

the three-story planar shear building of Figure 2.10; while each Bi is 

varied, the remaining Bj =fi Bi are kept constant, equal to unity. 

Figure 2.11 Continued. 

Figure 2.12 Points fi i) chosen to interpolate quadratic approximations in f!.. to 

various modal quantities, which are functions of f!.., as discussed in 

Section 2.8. In this case, N8 = 3, resulting in N/ = 10 required 

points f!..{ i) . 

Figure 2.13 Normalized pdfs of the modal frequencies Wr, 'T' = 1,2,3, for the 

three-story planar shear building of Figure 2.10. Each B; = 1,2,3 

is assumed to be independently Gamma distributed with (ai, CY.8;) = 
(1., .10). The solid curve is obtained using the approximations in 

Section 2.8, while the dashed-dotted curve is obtained using simula­

tions. 

Figure 2.14 Expected response ij(t) of a SDOF oscillator with independently 

Gamma distributed damping ratio ( and frequency w; w = 1Hz, 

Q w = 0.10. ( = 0.05. Q( = 0.20 eEl Centro record). The solid curve is 

obtained using numerical integration, while the dashed-dotted curve 

is obtained using the approximations of Section 2.9. 

Figure 2.15 Standard deviation aq(t) for the SDOF oscillator of Figure 2.14. 

The solid curve is obtained using numerical integration, while the 

dashed-dotted curve is obtained using the approximations of Section 

2.9. 

Figure 2.16 E[,8;l)lwtl for a three-story shear building with uniform mass m; := 

mo and interstory stiffness k; = koB;, i = 1,2,3 (ko = 2000mosec-2
). 



- Xl-

Each f)i, i = 1,2,3 is assumed independently Gamma distributed 

with (ei , C/o;) = (1., .10). The solid curve is obtained using sim­

ulations, while the dashed-dotted curve is obtained using the lin­

ear approximation (2.10.11). The dashed curve corresponds to the 

marginal pdf of Wl, appropriately scaled. 

Figure 2.17 E[q~l)(t)l for a three-story shear building with uniform mass mj = 

rno and interstory stiffness k; = koOj, i = 1,2,3 (ko = 2000mosec-2 ). 

Each Oi, i = 1,2,3 and each damping ratio (n r = 1,2,3 are as­

sumed independently Gamma distributed with (ei, C/o;) = (1., .10) 

and (Cr, C/Cr) = (0.05, .20) (El Centro record). The solid curve is ob­

tained using numerical integration, while the dashed-dotted curve is 

obtained using the methodology of Section 2.10.1. 

Figure 2.18 0" (l)et) for the same three-story shear building as in Figure 2.17. 
q$ 

The solid curve is obtained using numerical integration, while the 

dashed-dotted curve is obtained using the methodology of Section 

2.10.1. 

Fig;ure 2.19 E[q3(t)] for the three-story shear building of Figure 2.17. The solid 

curw is obtained using numerical integration, while the dashed­

dotted curve is obtained using the methodology of Section 2.10. 

Figure 2.20 O"qs(t) for the three-story shear building of Figure 2.17. The solid 

curve is obtained using numerical integration, while the dashed­

dotted curve is obtained using the methodology of Section 2.10. 

Figure 3.1 (a) Successive minimizations along coordinate directions in a long, 

narrow "valley." Unless the valley is optimally oriented, this method 

is extremely inefficient, requiring many steps to get to the minimum. 



- Xll -

(b) Magnified view of a 1-D minimization step. 

Figure 3.2 Contour map of J( 81 ,82 ), appropriately normalized, for the exam­

ple of Section 3.10.1, where simulated data corresponding to the 

response at the roof of a uniform two-story planar shear structure 

are used. (Lack of smoothness in some of the controls is due to the 

finite resolution of the grid used.) 

Figure 3.3 (a) Space SUD for the example of Section 3.10.1. 

(b) Space S(>!L) for the same example. Each point W E S I( w) is the 

image of two points in S(l1), one belonging in the region 8 1 and the 

other in the region 8 2 , while each point in the boundary SB(W) is 

the image of only one point in SUD, belonging in the straight line 

SBUD separating 8 1 and 8 2 • 

Figure 3.4 Curves in the fl-space along which WI is constant, for the case of the 

two degree of freedom shear model of Section 3.10.1. 

Figure 3.5 (a) Contour map of J(wI81 ) = J(f:!L182 ), appropriately normalized. 

for the example used in Figure 3.2. 

(b) Magnified view of the contour map of Figure 3.5( a) in the neigh­

borhood of w(~) = (27.64,72.36) rad/sec. 

Figure 3.6 Contour map of J( 81 ,82 ), appropriately normalized, for the exam­

ple of Section 3.10.1, where simulated data corresponding to the 

response at the first floor of a uniform two-story planar shear struc­

ture are used. 

Figure 3.7 (a) Contour map of J(w\81) (left) and J(,,-,\82 ) (right) for the ex-



- XlII -

ample used in Figure 3.6. 

(b) Magnified views of the contour map of J(f:!l181 ) (left) and 

J(~182) (right), in the neighborhood of w(~) = (27.64,72.36) 

rad/sec for the example used in Figure 3.6. 

Figure 3.8 Path followed by the minimization algorithm proposed in Section 

3.11 for the t"I,YO-story shear building of Section 3.10.1. Two modal 

sweeps are sufficient to reach the optimal solution ~1 = [1.0,1.0f. 

(R = eO,o P = eO,l p. = eO,2 = e1,o p = e1,l p = e1 ,,2 = e = 0_,1 _,2 __ ,3 _,4 __ 

Figure 3.9 Schematic representation of the algorithm proposed in Section 3.12 

to investigate the mode1 identifiability of the stiffness parameters fZ. 

for the two-story shear building example of Section 3.10.1. 

Figure 3.10 Effective participation factors J3;T) corresponding to the six-story 

shear buildings with parameters fl. given by the equivalent fl. param­

eters shown in Table 3.3. The values of J3rT) are plotted against the 

floor number i = 1, ... ,6 and for all modes r = 1, ... ,6. 



- xiv-

List of Tables 

Table 3.1 Comparison of convergence of different minimization algorithms us­

ing simulated data corresponding to a four-story uniform shear 

building. flO is the chosen starting point and fl* is the point to which 

each algorithm converged. The values of J have been normalized by 
N 

dividing it with L: xO(n)2. 
n=l 

Table 3.2 Number of "output-equivalent" stiffness distributions of an Nd-story 

uniform planar shear building, when the only observed degree of 

freedom is the one corresponding to the roof. 

Table 3.3 "Output-equivalent" stiffness distributions ft for a six-story uniform 

planar shear building, when the only observed degree of freedom is 

the one corresponding to the roof. Wk(%) is the weighting factor of 
~ (k) 
ft ,k = 1, ... ,8, calculated through (3.12.11) and (3.12.12). 



-1-

Chapter 1 

Introduction 

1.1 Motivation and Objectives 

Uncertainties are inherent when investigating any engmeermg or physi­

cal problem. The principle of uncertainty of quantum mechanics, formulated by 

Heisenberg, states that the accurate measurement of either of two related quanti­

ties, such as position and momentum or energy and time, produces uncertainties 

in the measurement of the other. Uncertainty in this context is the inaccuracy of 

measurements, and accounts for possible differences between the measured value 

and the unknown true value of a quantity. Uncertainty is not only associated 

with a measured quantity, but also with quantities whose values are predicted 

using empirical or mathematical models. In this case, uncertainty reflects the 

inaccuracy involved in predicting the value of a quantity, and accounts for possi­

ble differences between a predicted value based on existing relevant information, 

and the unknown true value of this quantity. Because the uncertainty can take 

on various values over a range, it is treated as a random variable, that is, a vari­

able whose possible values have an associated probability distribution describing 

how plausible each value is for the uncertain quantity, on the basis of the given 

information. 

In structural dynamics, the uncertainties involved can be divided into two 

major categories: 

1. Uncertainties m the specification of the applied external loads. Many of 
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the structural excitations encountered in practice are uncertain before their 

occurence. Some examples are: seismic excitations, blast loadings on struc­

tures, water wave excitations, wind excitations, aerodynamic turbulences, 

etc. The terminology "random vibration" analysis is often used to designate 

the particular category of problems dealing with the response of determin­

istic systems to uncertain loads. There exists an extensive body of work in 

this area, which is well reviewed by Benaroya and Rehak [1988]. Random 

vibration analysis is not the principal subject of this work. 

2. Uncertainties related to modeling the structure itself. Figure 1.1 helps to 

visualize the uncertainties introduced during such a modeling. It is assumed 

that a class of models is specified by choosing the general mathematical 

form which is expected to describe the essential features of the input-output 

relation of the system. There are two types of uncertainty introduced when 

modeling the structural behavior with a model of the specified class. The 

first type of uncertainty is concerned with which model in the class is the 

most appropriate to model the system. This type of uncertainty will be 

referred to as "parameter uncertainty," since certain parameters must be 

assigned unique values in order to specify a particular model within the 

given class; therefore, uncertainty in the specification of the most appropriate 

model wi thin t.he class can be viewed as uncertainty in the specification 

of its parameter values. For example, there is uncertainty when choosing 

the stiffness or damping parameters of a finite element model, caused by 

variations in material properties, manufacturing and assembly techniques, 

uncertainties in measurements due to testing errors, variation of the physical 

properties with the passage of time as a result of wear and tear, etc. The 

second type of uncertainty is concerned with how well the class of models 

approximates the behavior of the system, and is due to the inaccuracies 

and assumptions introduced in the mathematical modeling of the structure, 

such as lack of understanding of the materials' constitutive behavior, inexact 
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modeling of boundary conditions and simplifications introduced in order to 

make the model computationally feasible. This second type of uncertainty, 

which stems from the fact that no mathematical model is good enough to 

exactly represent the behavior of a real system, is the cause of what will be 

referred to as "model error." 

If we introduce probability to describe the parameter uncertainties, they 

may be mathematically modeled as random variables, as stochastic processes in 

space, or as stochastic processes in time. Systems with uncertain parameters 

fluctuating in time, constitute the field of "parameter random vibrations," and 

are well reviewed by Ibrahim [1983], but this subject is not of direct interest in 

this work. In some instances, such as shrinkage and creep, the system evolves as a 

time-dependent stochastic process [Bazant and Wang, 1984; Bazant 1986J. Time­

dependent, uncertain parameters will not be considered in this work. The terms 

"stochastic field" or "random field" are often used to denote stochastic processes 

in space. Simulation and perturbation techniques are often used [Shinozuka 1987; 

Shinozuka and Deodatis, 1988; Vanmarcke et al., 1986J to obtain the statistical 

properties of the response of systems with probabilistically-modeled spatial dis­

tribution of material properties. This work will focus on discrete, time-invariant 

systems, and, therefore, the uncertain parameters will be modeled as random 

variables. To describe the model error probabilistically, an appropriate probabil­

ity model will be adopted. Here, this probabilistic formulation will be based on 

an output-error approach. 

The uncertainty of structural characteristics has a direct relationship to the 

reliability of many engineering structures. The degree of sensitivity of structural 

response to a possible variation of a structural parameter is of great importance 

during a reliability analysis, especially if a small perturbation can result in sig­

nificant changes of the free or forced response amplitudes. For example, this 

sensitivity analysis is of great concern to those who are involved in the control 

of large flexible space structures [Meirovitch et al., 1983], since when a control 
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system is designed for natural frequencies whose values are assumed to be exact, 

the model errors and structural parameter uncertainties may deteriorate the per­

formance of the control loop, and may even make the controlled system unstable. 

The property of robustness is therefore desirable, that is, the control system's 

performance is desired to be relatively insensitive to model errors and structural 

parameter uncertainties. 

1.2 Outline of This Work 

It is the objective of this dissertation to analyze the uncertainties of a 

structural model, and to present techniques to account for them when calculating 

the structural response to a given excitation. Although the motivation stems 

from an interest in the analysis of the response of structural systems, such as 

buildings, bridges, and dams, to earthquake excitations, most of the discussion 

and results presented are general and can easily be extended to other applications 

of structural dynamics. It will be assumed that the structural model lies within a 

class of parametric models, and that the statistical uncertainties of the model are 

described by the uncertainties of its parameters and the model error for the class. 

The model parameters will be assumed to be time-invariant but uncertain, and, 

therefore, a time-independent joint probability density function will be assigned 

to them. Probability will be used in the Bayesian context, that is, probability 

is treated as a multi-valued logic for plausible reasoning, and not as a relative 

frequency of events in the "long run." 

Two different approaches are used in modeling the dynamics of a structure 

and analyzing the uncertainties associated with the chosen model, depending on 

whether test data is available or not. In Chapter 2, the problem addressed is 

updating of the description of model uncertainties when no records of measured 

response of the structure are available. This is particularly the case during de­

sign, when the structure has not yet been built. In this case, the structural 
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model can either be based on empirical code-type formulas, or it can be synthe­

sized from the structural drawings using finite element techniques, supplemented 

by empirical methods in order to estimate parameters, such as those describing 

structural damping, which are difficult to determine by synthesis. The uncer­

tainties of the model parameters, as well as the uncertainty due to model error, 

are quantified using any available information and the engineer's judgement and 

expenence. The joint probability density function assigned to the uncertain 

parameters corresponds to an a priori probability density function within the 

context of Bayesian probability. 

An extensive number of publications demonstrating various methods of es­

timating the statistics of the uncertain model response given the statistics of the 

parameter uncertainties are available. Some publications used simulation meth­

ods to investigate the effects of uncertainties in structural properties [Shinozuka 

1972; Shinozuka and Jan, 1972], while others used perturbation methods to com­

pute first and second moment statistics of response quantities [Chen and Saroka, 

1973, 1974; Contreras 1980; Hisada and Nakagiri, 1981, 1982; Vanmarcke and 

Grigoriou, 1983; Branstetter and Paez, 1986; Liu et al., 1988b; Liu et al., 1987]. 

Simulation techniques are quite powerful but, in general, are very costly and 

time consuming, since they require a large number of numerical solutions. This 

disadvantage becomes evident when one deals with large or even medium-sized 

systems, where numerical simulation becomes unrealistic on conventional digital 

computers. In addition, simulations provide limited insight into the behavior and 

sensitivity of the system under different parameter uncertainties. Perturbation 

techniques, on the other hand, are easily integrated into existing computer codes 

of deterministic structural dynamics, but they suffer from inaccuracy and ques­

tions of convergence when dynamic, particularly transient, and wave propagation 

problems are considered. Liu et al. [1988a] came across these problems when 

using the second moment approach method, based on a truncated Taylor series 

expansion of the model response with respect to the uncertain model parameters. 
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Beck and Katafyg,iotis [1989] showed that much better results are obtained using 

a truncated Fourier series expansion of the model response with respect to the 

uncertain model parameters. Jensen [1989] extended this idea to more general 

orthogonal series expansions. In Chapter 2 anew, efficient approximate method 

is presented to investigate the uncertainties in the structural response due to 

uncertainties in the modeling process. 

In Chapter 3, the problem addressed is updating of the description of model 

uncertainties when records of structural response are available. In this case, struc­

tural information contained in the available records is extracted, and is used to 

update the initial estimates of parameter uncertainty, and the uncertainty of the 

model error. The probability density function modeling the uncertainties of the 

parameters and the model error, after the updating, is also referred to as the pos­

terior probability density function. The posterior probability density function is 

usually very peaked at the values of some "optimal" parameters. These param­

eters optimize, within the framework of an "output-error" approach, the match 

between the recorded and the corresponding model responses. It is asymptoti­

cally correct for large sample sizes to use only the models corresponding to these 

optimal parameters. when the model response and its associated uncertainty is 

calculated for structural response predictions [Beck 1990]. 

It is shown that conventional minimization algorithms used during the opti­

mization are inefficient and time consuming. At the same time, they suffer from 

severe convergence difficulties, which prevent them from reaching the global op­

timal parameters. A new algorithm is presented to overcome these difficulties. 

Furthermore, in Chapter 3, the issue of identifiability of the optimal param­

eters is explored. The optimal parameters are said to be identifiable if they can 

be determined uniquely from the given input and output of the system. Explor­

ing identifiability in the case of real data is a very difficult task, because of the 

presence of model error and measurement noise. Even for the case of simulated 
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data with zero model error, the issue of identifiability has not been completely 

resolved. Uniqueness of the optimal parameters reached by means of an optimiza­

tion algorithm is often assumed. In other instances, although theoretical analysis 

shows that uniqueness is rather unlikely [Udwadia et al., 1978a; Udwadia et al., 

1978bj, no tool is given to assist in a systematic search for finding; all sets of 

optimal parameters. A new methodology is presented to search the parameter 

space for "output equivalent" sets of parameters, that is, for sets of parameters 

corresponding to models having exactly the same response at the observed de­

g;rees of freedom when subjected to the same input. In the case of noise-free data 

and no model error, this methodology resolves the identifiability issue. In the 

case of real data, there is no guarantee that all optimal solutions are "output 

equivalent" to each other. Therefore, in the case of real data, the task of finding 

all optimal solutions becomes extremely difficult, especially because there may no 

longer be a finite number. Although it is still not within reach to guarantee that 

all possible sets of optimal parameters have been found, the set of all "output 

equivalent" optimal parameters is at least a first step toward accounting for the 

identinability of the optimal parameters in the predictive response. 
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CLASS OF DYNAMIC 
STRUCTURAL MODELS 

S SE'I' OF SYSTEM OUTPUT 
BlstClUES 

Q' SET Of MODEL OUTPUT 
HISTORIES 

Figure 1.1 Uncertainties in the modeling ofthe dynamic behavior of a structural 

system. The input I is assumed known. Each parameter Q specifies 

a particular model in the class M with corresponding model output 

history Q. X denotes the system output history, and E denotes 

the model error history. The sets S and Q do not overlap because 

of the existence of model error. For some optimal model(s) corre­

sponding to some optimal parameter( s) i!, the model error reaches 

its minimum. The parameter uncertainty is concerned with estimat­

ing the optimal parameters, and the uncertainty due to model error 

is concerned with quantifying its "magnitude." 
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Chapter 2 

Structural Uncertainties in Preliminary Design 

2.1 Introduction 

This chapter deals with uncertainties in the mathematical modeling of a 

structure when no records of measured response of the structure are available. It 

is assumed that a parametric model has been chosen to represent the input-output 

relationship of the structure. The uncertainties associated with the choice of the 

mathematical model, and the techniques used to account for these uncertainties 

when calculating the structural response, will be the focus of this chapter. The 

goal is to provide the engineer doing dynamic design with a tool to go beyond 

checking the nominal dynamic response to specified excitations for a preliminary 

design; the engineer will be able to examine the associated uncertainty in the 

response, due to the fact that the completed structure will not have precisely 

the model parameter values that were assumed, and also due to the fact that no 

model gives an exact description of a structure's dynamics. A brief discussion of 

the mathematical modeling of a structure follows, based on Beck [1978]. 

2.2 Modeling of a Structure 

A structural model is defined here to be a mathematical representation 

which approximates the relation between the input and output of a structural 

system. The terms input and output are used here in the technical sense; in the 

case of existing data, they refer to the observed portions of the excitation and 

the response, while in the case where no data exists, they refer to the assumed 
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excitation and the response quantities which are to be predicted. 

The models that can be employed are classified into two principal categories, 

parametric and non-parametric. At the preliminary design stage, only paramet­

ric models are available, since non-parametric models must be identified from 

records of structural response; they cannot be derived directly by theory. A 

parametric model consists of a particular mathematical fonn chosen to describe 

the essential features of the input-output relation of the system under study, but 

certain parameters must be assigned values before the model is completely spec­

ified. When referring to the general mathematical fonn describing the internal 

structure of a system, the term "theoretical model" will be used. A useful in­

terpretation of a theoretical model is that it is a generic form defining a whole 

class of models M. Let Q denote the parameters which are needed to com­

pletely specify a parametric model, then a particular model is specified by the 

pair (M,Q). To illustrate this, consider a one-story building subjected to base 

excitation represented by the single-degree of freedom (SDOF) linear model of 

Figure 2.2. This model is mathematically expressed in the time domain by the 

differential equation: 

mij + cq + kq = -mz(t) ; q(O) = qo, q(O) = qo (2.2.1) 

where q(t) 1S the relative displacement of the model and z(t) 1S the base ac­

celeration; the mass m, the viscous damping c, and the stiffness k, are the 

physical parameters, which, along with the initial displacement qo and the ini­

tial velocity qO, constitute the set of parameters to be specified. Therefore, 

Q = [m, c, k, qo, qo]T. 

Equation (2.2.1) can be rewritten using alternative parameters: 

ij + 2(wq + w2q = -z(t) ; q(O) = qo, q(O) = qo (2.2.2) 

where w, the fundamental frequency of oscillation, and (, the damping ratio, are 

now the model parameters, which, along with the initial conditions qo and go, 

constitute the set of parameters to be specified. Therefore, Q == [w, (, qo, qojT. 
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The parameters g can be chosen from empirical code-type formulas, using the 

engineer's judgement and experience, or can be constructed by synthesis, using 

structural drawings. For example, the mass or stiffness elements can be derived 

from the properties of the structural subcomponents and their interactions, using 

a finite element discretization, while the damping ratios cannot be constructed 

by synthesis; their values must be assigned empirically from experience obtained 

from existing similar structures. 

It is obvious that when parameters are to be chosen from empirical code­

type formulas. there is an uncertainty as to which value corresponds to the model 

which will more realistically represent the real structure's behavior. Yet even for 

the parameters which are evaluated by structural synthesis, there is a great deal 

of uncertainty when estimating them, due to uncertainties associated with the 

properties of structural and nonstructural components and their interconnec­

tions, and due to the simplifications and assumptions necessary to ensure that 

the model is computationally feasible. If deterministic values are assigned to the 

model parameters g, these uncertainties are not accounted for, and the computed 

structural response will represent only one result in a spectrum of possibilities. 

To treat the parameter uncertainties when evaluating the structural response, a 

probabilistic approach can be followed. A probabilistic approach can also be fol­

lowed to account for model error, that is, the errors caused by the inability of any 

model within the particular class to represent the real structural behavior. The 

probabilistic modeling of the structural model uncertainties will be addressed, 

but first, the concepts of Bayesian probability are defined in the following sec­

tion. 

2.3 Probability Logic 

We employ probability to quantify the uncertainties involved, but we use a 

"Bayesian" interpretation. that is, we treat probability as a multi-valued logic for 
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plausible reasoning subject to certain axioms [Beck 1990; Jaynes 1968, Jeffreys 

1961]. Specifically, the probability of a given b, P(alb) denotes a measure of the 

plausibility of the proposition a given the information stated in proposition b. 

The propositions may refer to observations or measurements, or they may refer 

to hypotheses about probability models, for example. Note that for most of the 

applications of interest in this study, the common interpretation of probability 

as a relative frequency of occurences in the long run does not make sense. 

The calculus of probability logic is defined by the axioms of mathematical 

(Boolean) logic together with three additional axioms: 

1) 0 $ P(alb) $ 1 and P(ala) = 1, 2) P(alb) + P(not alb) = 1 

and 3) P( a, ble) = P( alb, e)P(bIc) 

where "," represents the propositional conjunction "and." It has been shown 

[Cox 1961], that the content of axioms 2) and 3) is a necessary consequence of 

the requirement of consistency with mathematical logic, although the form of all 

three axioms is conventional. The axioms lead to esssentially the same calculus 

as the Kolmogorov axioms of "mathematical" probability, except that all proba­

bilities are "conditional" in the sense of Kolmogorov, because the plausibility of 

a proposition clearly depends on the information available. 

At this point, Bayes' theorem is stated: 

P( Ib ) = P(bla,c)P(alc) 
a , c P(blc) (2.3.1) 

Bayes' theorem is a consequence of the above stated axioms of probability logic 

and can be applied to data to extract information about the values of a parameter 

set of a model [Beck 1990; Box and Tiao, 1973; Peterka 1981]. This will become 

evident in Chapter 3, where it is assumed that structural response data are 

available. 
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2.4 Probabilistic Modeling of Structural Model Uncertainties 

Often the uncertainties associated wi th some of the model parameters are 

considered negligible compared with the uncertainties of the other parameters, 

and, therefore, these parameters are treated as deterministic. For example, the 

initial conditions are often treated as deterministic because the system is as­

sumed to start from rest, or the masses associated with the different degrees of 

freedom (dof) of a structure are often assumed known accurately enough from 

the structural drawings, so that they can be considered fixed. These param­

eters will be treated as an inseparable part of the theoretical model so that the 

parameters Q needed to specify a particular model within the class refer to the 

uncertain parameters only. Figure 2.1 helps to visualize the procedure leading to 

the probabilistic modeling of the structural response. 

Consider a theoretical model At! with uncertain parameters Q E RNa. To 

account for the initial parameter uncertainties, M is assumed to specify a joint 

probability distribution 1T .!!.(Q) so that p(QIM) = 1T.!!.(Q). This joint probability 

density function (pdf) 1T.!!.(Q), assigned without using test data from the struc­

ture, is often called the "prior" distribution, and it is chosen subjectively based 

on past experience dealing with similar structures. Usually, a convenient mathe­

matical form is chosen which is roughly consistent with the engineer's judgement 

regarding the relative plausibilites of different values of Q. Often, knowing one 

parameter aj does not influence judgement of the plausibilities of values of the 

other parameters, so the parameters are mutually irrelevant to one another and 

their pdf's can be specified independently. In the case of correlated uncertain 

parameters, the fact that the associated covariance matrix can be diagonalized 

can be utilized to obtain a new transformed set of uncorrelated parameters [Liu 

et al., 1986; Dias et al., 1986]. Therefore, without loss of generality, it will be 
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assumed that the joint pdf can be expressed as the product of the separate pdf's: 

Na 

7I"l!.(Q) = II 7I"aj (aj) (2.4.1) 
j=l 

Let !l( t; Q, I, j\lf) E RNR be the deterministic response at time t of a particular 

model M = M( M, Q) to an input I. Let J<.( tj I) denote the response that would be 

observed if the real structure was subjected to the same input. In the following, 

for the sake of brevity, the symbols t and I will often be assumed without being 

explicitly written. For example, J<. = J<.( t) = J<.( t; I). If discrete times are being 

used, then J<.n = J<.(tn) = J<.(tnj I). Also, often when the parameters Q of a 

theoretical model M are referenced, the symbol j\lf is assumed. For example, 

As mentioned earlier, because of the simplifications and assumptions used in 

choosing the particular class of models M, there is an uncertainty concerning how 

accurately the response of any of its members M can predict the real response. 

To account for this model error, a class of probability models j\lf p parameterized 

by [QT,Q:T]T E RNa+N" is introduced, that is, J\lf p prescribes a function f giving 

the probability of the system output: 

(2.4.2) 

The dependence on the input I has been suppressed in the notation at both 

sides of (2.4.2), and will remain suppressed throughout this chapter. Mp is also 

specifying the prior pdf 7I".!!.£:(Q, 0"), so that p(Q,.([IMp) = 71" .!!.£:(Q,Q:). Assuming 

Q and Q: to be independent leads to 7I".!!,£:(Q, a) = 7I"l!.(Q)7I"£.(Q:). The pdf 7I"£.(a) is 

chosen subjectively, as was done for 7I"a(Q). It will be assumed that f(sr;Q, a) is a 

joint Gaussian distribution with mean !l(Q) and covariance matrix 2:( a) so that: 

f(sr; Q, a) = G(J<.j !l(g) , 2:( a» 

= N 1 exp (-~[sr - q(Q)f2:-1 (a )[sr - q(Q)]) 
(271")712:(a)l! 2 - -

(2.4.3) 
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If the uncertainties for each of the elements x j Of;L are assumed independent 

of each other, then the covariance matrix is diagonal with elements a]. In this 

case: 
Nn 

!(;L;Q,J2:.) = II G(Xj;qj(Q),a]) (2.4.4) 
j=l 

where 

(2.4.5) 

Under the additional assumption that all ai's are equal to a, (2.4.4) becomes: 

(2.4.6) 

Denote by SeQ) ~ RN• and S(.12:) ~ RNu the set of allowable values of Q and 

a. The pdf p(.1:IMp) of the response .1:(t), based on the axioms of probability 

logic and assuming that Q and a are independently distributed, can be expressed 

as: 

p(.1:IMp) = J J p(.1:IQ,a,Mp)p(QIMp)p(aIMp)dQda 

S(,g) S(~ 

= J J !(.1:; Q, Q}7r .!!.(Q)7r ~(a )dQda 

S(!!.) S(~ 

(2.4.7) 

The first two moments of the above distribution, assuming !(.1:; Q, a) is given by 

(2.4.3), are proved in Appendix A to be: 

.f - E[.1:IM p] = J lJ.(Q)7r .!!.(Q)dQ 

sW 

(2.4.8) 

Cov(.1:) = J lJ.(Q)lJ.(Qf 7r.!!.(Q)dQ - xxT + J ~(a)7r~(Q)da (2.4.9) 

S(!!) Sw 
Under the additional assumption of uncorrelated uncertainties of the elements 

Xj of ;L, which is the assumption that led to expression (2.4.4), the expressions 

for the first two moments of x j become: 

Xj = E[xjIMp] = J qj(Q)7r.!!.(Q)dQ 

S(.!!) 

(2.4.10) 
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Var(Xj) = J q~(g}rr.a(g)dg - x~ + E[a;] 
S(!!J 

or, if the additional assumption of equal variances aj = a is employed: 

Var(Xj)= J qJ(Q)7r.a(Q)dQ-x~+E[a2] 
S(!!J 

By noting that: 

iii = E[qjJM] = J qj(g)p(QJM)dQ 

s(!!J 

= J qj(g)7r.a(Q)dg 

S(!!J 

equation (2.4.10) implies that: 

(2.4.110) 

(2.4.11b) 

(2.4.12) 

(2.4.13) 

that is, the expected structural response is the mean model response. Also by 

noting that: 

Var(qj) = Var(qjJM) = = J (qj(g) - Qj)2p(QJM)dg 

S(!!,) 

= J q~(Q)7r!!(g)dQ - Q; 
S(!!J 

equations (2.4.11a) and (2.4.11b) imply that: 

or 

(2.4.14) 

(2.4.150) 

(2.4.15b) 

Hence, the variance of the structural response is equal to the variance of the 

model response due to the uncertain parameters, plus the mean variance of the 

model error. 
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The rest of this chapter focuses on the evaluation of the first two moments of 

the qj's given by (2.4.12) and (2.4.14) and is an extension of the work presented 

in Beck and Katafygiotis [1989J. The first two moments of the x /s are then 

given by (2.4.13) and (2.4.15a) or (2.4.15b). In the following section, some of the 

techniques most used to evaluate the first two moments of the qj'S are reviewed 

and evaluated. 

2.5 Evaluation of Existing Techniques 

It can be seen from expressions (2.4.12) and (2.4.14) that the evaluation 

of the first two moments of the qj's requires integration over an Na-dimensional 

space. This, and the fact that the model response !l(g.) does not depend linearly 

on Q, make this problem difficult. Analytical evaluation of these high-dimensional 

integrals is generally not possible, except for very specific cases where particular 

choices of Q and 7r a (Q) are assumed. The particular case of a SD OF oscilla­

tor, where its frequency and damping ratio are uncertain and probabilistically 

modeled by independent Gamma distributions, is a specific example that can be 

treated analytically and will be addressed later in Section 2.9. Therefore, numer­

ical techniques have been developed to evaluate approximations of the above 

integrals. These methods can be broadly classified into two major categories: 

(1) methods u,;iug a statistical approach and (2) methods using a non-statistical 

approach. The first category consists of simulation techniques, among which 

the Monte Carlo method is the most prevalent one. Simulations can become 

computationally prohibitive, since their accuracy depends on the sample size, in 

accordance with the "Weak Law of Large Numbers"[Larson 1979J. Numerical 

integration methods and perturbation methods belong to the second category. 

Numerical integration methods suffer from the same disadvantage as simulation 

methods, in that they, too, can become prohibitively expensive, since the number 

of response solutions to be evaluated increases exponentially with the dimension 

Na of the integrals to be approximated. In addition, both simulation and numer-
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ical integration methods provide limited insight into the behavior and sensitivity 

of the system under different parameter uncertainties. Perturbation techniques, 

on the other hand, have been very attractive because of their computational effi­

ciency, and also because they are easily integrated into existing computer codes 

of deterministic structural dynamics. The most severe drawback of perturbation 

methods is that they can become very inaccurate when the assumed parameter 

uncertainties are not sufficiently "small" [Liu et al., 1988aJ. This disadvantage 

becomes particularly significant when problems of dynamic nature are analyzed, 

as will be shown in the next section, where the most commonly employed per­

turbation method, known as the second moment approach, is presented. 

2.5.1 Second Moment Approach 

The second moment approach (SMA) is an approximate perturbation 

method often used to evaluate the first two moments of a function of uncertain 

variables. It is based on a truncated Taylor series expansion of the function about 

the expected value of its uncertain variables; only terms up to second order are 

retained [Ditlevsen 1981]. This function approximation is used later to derive 

its first two moments. To clarify ideas, consider the particular case where the 

first two moments of qj are desired. Expanding qj(gJ in a Taylor series about 

the expected value Ii of its uncertain parameter vector Q, and retaining the first 

three terms only, we obtain: 

(2.5.1) 

By replacing qj(!l) in (2.4.12) and (2.4.14) with the above approximation, the 

SMA approximate expressions for the expected value and the variance of qj are 
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obtained: 

(2.5.2) 

Var(qj) ~ t, ~ (a~~~) I!!=s a~~~) I!!=s Cov(ak, a1») (2.5.3) 

Under the assumptions of (2.4.1): 

(2.5.4 ) 

where tiki is the Kronecker delta function. Therefore, Equations (2.5.2) and 

(2.5.3) can be simplified: 

(2.5.5) 

~ (aq'(a) I ) 2 
Var(qj) '" ~ 8a; !!=s Var(ak) (2.5.6) 

It is important to note that all that is required by the SMA method for calculation 

of the first two moments of a function of uncertain variables is the mean value and 

the covariance matrix of the uncertain parameters. In contrast, both simulation 

and numerical integration methods require knowledge of the joint probability 

density function iT.!!.(g). The accuracy of the SMA method is controlled by the 

variance of its uncertain parameters; the smaller these variances, the better the 

accuracy, since the approximation of qj(Q) by the truncated Taylor series expan­

sion of (2.5.1) becomes more accurate as IQ - ill becomes smaller. The important 

question of how "small" the parameter variances have to be in order to obtain 

acceptable accuracy using SMA has not yet been fully resolved. 

In the next section, an application using SMA is illustrated. It will be 

shown that even for the case of "reasonable" parameter uncertainty, viewed from 

a preliminary design standpoint, SiVIA can lead to very inaccurate results when 

applied to problems of structural dynamics. 
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2.5.2 An Application Using SMA 

Consider a one-story building subjected to base excitation and repre­

sented by the viscously damped SDOF linear model of Figure 2.2. Assuming 

zero initial conditions, this model can be expressed mathematically by the dif­

ferential equation: 

ij + 2(wq + w2q = -z(t) ; q(O) = 0, q(O) = 0 (2.5.7) 

where w = # is the natural frequency of oscillation and ( - -2 C is the 
mw 

damping ratio. Assume, for illustrative purposes, that the damping ratio ( is 

deterministically known, while the frequency w is uncertain, with a mean value 

E[w] = wand a variance Var(w) = O"~. This is a case of a single uncertain 

parameter, Q::::= [w]. The truncated Taylor expansion of (2.5.1) becomes: 

where 

_ . _ _ 8q(t;w) \ _ f}2q(t;w) \ 
qo(t) = q(t,w), ql(t) = ow w=wand q2(t) = ow? w=w 

The differential equations for qo(t), ql(t) and q2(t) are given by: 

iiI + 2(wlll +W'2ql = -2(qo - 2wqo ; ql(O) = 0, ql(O) = 0 

i12 + 2(wq2 + w2q2 = -4(ql - 4wql - 2qo ; q2(0) = 0 , q2(0) = 0 

(2.5.8) 

(2.5.9) 

(2.5.10) 

(2.5.11) 

(2.5.12) 

Equations (2.5.11) and (2.5.12) are obtained through two consecutive differen­

tiations of (2.5.7), with respect to w, followed by the replacement of w with w. 

Note that the differential equations (2.5.10), (2.5.11), and (2.5.12) governing the 

terms of the Taylor series are identical, except for the nonhomogenous terms. 

The first two moments of q(t) are given according to (2.5.5) and (2.5.6) by: 

(2.5.13) 
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and 

Var(q(t» ~ qi(t)Var(w) (2.5.14) 

To evaluate the accuracy of the SMA method, a specific numerical example is 

examined in the next section. 

2.5.3 Numerical Example and Evaluation of SMA 

Let ( = 0.05 be the fixed value of the damping ratio, and let the 

uncertain natural frequency w be uniformly distributed over the interval 11 = 
[1.77r.2.371"jrad. The resulting expected frequency is w = 271"~ = 1.0 Hz, and 

sec sec 

the standard deviation is a w = 0.173271" rad = 0.0866 Hz. To quantifv the un-see '" 

certainty of a parameter, its coefficient of variation is often used; in this case 

Q w = ~ = 8.66%. The base acceleration is taken to be the 1940 EI Centro earth-w 

quake record, NS component, shown in Figure 2.3. The mean model response 

ij(t) and its coefficient of variation ag(t) = Var(q(t»t are calculated by using 

both the SMA method and the numerical integTation method, and are presented 

in Figure 2.4 and Figure 2.5. The results of the numerical integration method 

are assumed to be accurate, since convergence was monitored and achieved. It 

becomes obvious by viewing these last two figures that the SMA method per­

forms very poorly, although the given coefficient of variation Q w corresponds to 

reasonable levels of expected uncertainty for the preliminary design stage. 

In Figure 2.6, the cause of the previous poor approximations is depicted. 

The model response at t = 5 sec is plotted against the model's natural frequency 

w, over part of the frequency range 11; the solid curve corresponds to the exact 

case representing the left hand side of (2.5.8), while the dashed-dotted parabola 

corresponds to the approximation assumed by the truncated Taylor series expan­

sion given by the right hand side of (2.5.8). It can be seen that the truncated 

Taylor series cannot follow the oscillatory character of q( t; w). To overcome this 

weakness of the SMA method, a new method under the name Fourier Series Ap-
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proach has been developed [Beck and Kataiygiotis, 1989]. This method is based 

on the expansion of the model response in a tnmcated Fourier series rather than 

a truncated Taylor series, as done in the SMA method. 

Figure 2.7 examines the dependence of the expected model response and 

its coefficient of variation on the particular probability distribution assumed for 

the uncertain frequency w. The solid curves correspond to the earlier assumed 

uniform distribution for w, while the dashed-dotted curves correspond to w being 

Gamma distributed with the same first two moments as in the uniform case. 

Both sets of curves are obtained using the numerical integration method. By 

comparing these two sets of curves, it can be concluded that knowledge of the 

first two moments of the uncertain parameter are adequate to approximate the 

first two moments of the uncertain response. 

It can be concluded from the results obtained for the numerical example 

studied in this section that the SMA method, when applied to problems of dyna­

mic response can be quite inaccurate, even for medium or small parameter un­

certainties; nevertheless, this should not diminish the value of the SMA method 

when applied to problems of non-oscillatory character. The need for the devel­

opment of a new approximate method to calculate the statistics of the dynamic 

response of a structural system with uncertain parameters is evident. The desired 

method should be accurate and efficient, and able to account for multi-degree of 

freedom systems. Such a method has been developed and is presented in the rest 

of this chapter for the class of linear, classically damped, multi-degree of freedom 

models with uncertain parameters; in the next section, this class of models is 

defined and some of its primary features are reviewed. 
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2.6 A Class of Linear Structural Models 

Consider the class /VINd of Nd-degree of freedom linear structural models, 

defined by the following equation of motion: 

(2.6.1) 

This mathematical model can be viewed as an idealization of a structural sys­

tem which consists of a distribution of lumped masses linked by linear, massless 

springs and dashpots, sitting on a rigid base which is moving in only one direction, 

with an acceleration z(t). The Nd x Nd matrices Nl, C, and K are the mass, the 

damping and the stiffness matrix, respectively. The vector !1 = [ql, q2, ... , qNJT 

consists of the generalized displacements relative to the base of each degree of free-

dom. while 

!1 + 12Z represent the corresponding total or absolute generalized displacements. 

The components of the vector 12 = [bl , b2 , . .• ,bNdlT are called pseudo-static in­

fluence coefficients, and they are known from the prescribed geometry of the 

structural model. 

The theoretical model given by Equation (2.6.1) is often used as a planar 

model for buildings. In this case, all degrees of freedom represent horizontal 

displacements parallel to a fixed \·ertical plane at points in the structure, and i 

is taken to be the horizontal component of the base acceleration parallel to this 

fixed plane; in this case all the components of 12 are unity: 

12 = [1, 1, ... , If (2.6.2) 

The parameters of the theoretical model given by Equation (2.6.1) are the 

elements of AI, C, and K, and the components of the initial conditions qo and q . - ~ 

The following section reviews certain restrictions and the uncertainties regarding 

the choice of the values of these parameters. 
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2.6.1 Uncertainty and Allowable Values of the Model Parameters 

There are certain physical properties that must be reflected by the the­

oretical model of (2.6.1) which impose restrictions on the allowable values of its 

parameters. In the case of uncertain parameters, these restrictions also affect the 

choice of the corresponding probability density function; for example, the pdf 

7Ta; (aj) of an uncertain parameter aj, which is restricted to remain positive has 

to satisfy: 

(2.6.3) 

Also, there are different degrees of uncertainty associated with the different 

parameters for the class j\;fNd' so that the uncertainties associated with some of 

the parameters can be neglected, and the corresponding parameters are treated 

as being deterministic. 

1) Mass Matrix The mass matrix M is assumed to be diagonal and positive 

definite: 

[m' 
0 0 

M~ ~ 
m2 0 : 1; mi > 0 (2.6.4 ) 

0 mNd 

There is much less uncertainty when estimating the values of the lumped masses 

mi, using the stmctural drawings, than when estimating the values of the ele­

ments of the damping or the stiffness matrix. Therefore, the elements mi of !VI 

are usually assumed to be deterministic. 

2)Damping Matrix The damping matrix C = [c;j] is required to be symmet­

ric and positive semi-definite: 

C=CT (2.6.5 ) 

and 

(2.6.6) 

It is assumed that classically damped modes exist, which means that the mode­

shapes are assumed to be the same in the damped and undamped case. Con-
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sequently, the modeshapes must be generalized eigenvectors of both K and C 

with respect to !If, which is equivalent to requiring J11- 1 ]( and M- 1C to be 

commutative (Caughey and O'Kelly, 1965): 

(2.6.7) 

The values of the damping elements Cij cannot be constructed by synthesis 

from the structural drawings; instead, their values can be recovered from the em­

pirically estimated values of the modal damping ratios. Therefore, uncertainties 

concerning the damping of a structural model will be accounted for by regard­

ing uncertainties of the more "physically meaningful" modal damping ratios (;, 

rather than uncertainties of the elements Cij. 

3) Stiffness ~'Iatrix The stiffness matrix K := (k ij1 is required to be symmetric 

and positive definite: 

(2.6.8) 

and 

(2.6.9) 

There are uncertainties associated with estimating the values of each of the kij's. 

Instead of modeling the possibly large number of uncertain parameters k ij , which 

are possibly correlated to each other, the stiffness matrix will be parameterized 

by introducing the parameters ei , i = 1, ... ,No, so that: 

No 

K =](0 + 2: ei K ; (2.6.10) 
;=1 

The new uncertain dimensionless parameter 8i scales the stiffness contribution Ki 

of a certain substructure to the total stiffness matrix; Ko accounts for the stiffness 

contributions of the substructures with deterministic stiffnesses. It is assumed 

that the Kj,i = Q,l, ...• No are all symmetric positive semi-definite Nd x Nd 

matrices. Each 8i , i = 1,2, ... , No is assumed to take nonnegative values, and 
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therefore its corresponding pdf must satisfy: 

7f'9;(8 i )=0 for 8;<Oj i=1,2, ... ,N9 (2.6.11) 

The expected value of the scaling parameters is usually taken to be unity: 

8; = E[e;] = 1 i = 1,2, ... ,N9 (2.6.12) 

which assumes that each of the ](;'s is the expected contribution of a given 

substructure to the total stiffness matrix. The](i's might be based on a finite­

element model of the structure, for example. 

4) Initial Conditions The initial conditions !1.o and t will be treated as being 

deterministically known. Usually, it will be assumed that the system starts from 

restj in this case, !l.o = t = Q. 

It is convenient to rewrite Equation (2.6.1) using a modal formulation, since 

the equations of motion obtained are uncoupled. 

2.6.2 Modal Analysis 

Let q, = [<,b(l), cj>(2), • •• , cj>(Nd)jT denote the modeshape matrix, whose 

columns are the generalized eigenvectors of ](, so that: 

r = 1, ... ,IVa (2.6.13a) 

or 

(2.6.13b) 

where 

w~, 1 [~ o 

o 

and Wr > 0, r = 1,2, ... , Na are the modal frequencies in an ascending orderj 

that is: Wr :S Ws for r < s. If Wr =I- w s , it is easy to show that: 

(2.6.14) 
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In the case of repeated modal frequencies, when Wr = w s , the t(r) and ¢(s) can 

still be chosen so that (2.6.14) holds. Therefore, the modeshape matrix eIl can be 

assumed to be orthogonal with respect to the mass matrix M: 

o 1] (2.6.15) 

The diagonal matrix iiI is the so-called generalized mass matrix. Furthermore, 

the modeshapes can be normalized so that they constitute an orthonormal basis 

for RNd with respect to !vI: 

(2.6.16a) 

or 
Nd 

Lmi¢~r)¢ls) = Drs (2.6.16b) 
;=1 

where I is the identity matrix of order Nd. Because of the assumption that 

classically damped modes exist, it can be shown that the columns of eIl are also 

generalized eigenvectors of C, so: 

Cd}r} = drMd)r) 7'=1,2, ... ,Nd (2.6.17a) - -

or 

CeIl = MeIlD (2.6.17b) 

where 

o 
The modal damping ratios are defined by: 

7' = 1, 2, ... , N d (2.6.18) 
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Since C is positive semi-definite, dr :;:: 0 and hence, (r:;:: 0, r = 1,2, ... ,Nd. 

Premultiplying Equations (2.6.13b) and (2.6.17b) by t1>T, and using Equation 

(2.6.15), we obtain: 

(2.6.19) 

and 

(2.6.20) 

Since the eigenvectors 1!..(r) form a basis for the Nd-dimensional space RNd, the 

generalized displacement vector function !let) in Equation (2.6.1) can be written 

as: 
Nd 

!let) = t1>{(t) = L ~r(t)¢(r) (2.6.21 ) 
r=l 

where {(t) is the vector of coordinates of !let) with respect to the basis formed 

by the eigenvectors ¢(r), r = 1,2, ... Nd. Substituting (2.6.21) into (2.6.1) we 

obtain: 

Mt1>{ + Ct1>{ + J(t1>{ = -MQE(t) (2.6.22) 

Premultiplying (2.6.22) by t1>T, and using Equations (2.6.15), (2.6.19), and 

(2.6.20), we obtain: 

(2.6.23) 

where Q is the vector of modal participation factors given by: 

(2.6.24) 

The initial conditions for Equation (2.6.23) are given by: 

(2.6.25) 

In component form (2.6.23) becomes: 

r=1,2, ... ,lVd (2.6.26) 
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Define q\r)(t), the contribution to qi from the rth mode, by: 

(2.6.27) 

so that (2.6.21) may be rewritten: 

No 

qi(t) = L qVJct) i = 1,2, ... ,Nd (2.6.28) 
r=l 

Equation (2.6.26) leads to: 

(2.6.29) 

where 

(2.6.30) 

The parameter j3}r) is called the "effective participation factor" for the rth mode 

at the ith degTee-of-freedom, and it is independent of the normalization chosen 

for ¢)r), such as that given by Equation (2.6.16b) [Beck 1978J. Let B denote 

the matrix of effective participation factors, that is, [BJij = j3}j). Since the 

rth column of B corresonds to the rth modeshape appropriately scaled, B can 

be viewed as a particular choice of the modeshape matrix <P. Notice that the 

effective participation factors satisfy the following constraints, which follow from 

(2.6.24) and (2.6.30): 

No Nd 

L ,6~r) = L rf>\r) a r = (<pa)i = bi (2.6.31 ) 
r=1 r=1 

Assuming a model in MNd with known mass, damping and stiffness matrix leads, 

by solving the corresponding eigenvalue problem, to a unique set of modal param­

eters {Wr'(r,j3~r);i,r = 1, ... ,Nd}. Conversely, it can be shown that knowing 

the above set of modal parameters, and for a given mass matrix M, a unique 

stiffness and damping matrix can be determined, given by: 

(2.6.32a) 
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and 

(2.6.32b) 

In component form, these equations become: 

(2.6.33a) 

and 

(2.6.33b) 

The initial conditions for (2.6.29) are given by: 

(2.6.34) 

where ~r(O) and er(O) are given by (2.6.25). 

Often, when the dynamic response of models with large numbers of de­

grees of freedom is examined, the contribution of the higher modes is negligible. 

Therefore, assuming that only the contribution of the first Nm ~ Nd modes is 

considered, the sum in Equation (2.6.28) is approximated by: 

Nm 

qi(t) '" L q~r)(t) (2.6.35 ) 
r=l 

Equation (2.6.35), along with Equations (2.6.29) and (2.6.30), constitute 

the main steps of a modal analysis to solve for the dynamic response fJ.( t) of 

the theoretical model of (2.6.1). The parameters involved in solving for the 

response qi(t) at the ith degree of freedom, using this modal formulation, are: 

{Wr'(r,,8~r),qlr)(O),qlr)(O): r = 1,2, ... ,Nm}. Of these parameters, the initial 

conditions q}r)(O), q)r)(O) will be considered deterministically known, according 

to the discussion in Section 2.6.1. According to the same discussion, the un­

certainty in the damping forces is introduced as uncertainty in the values of 

the modal damping ratios (n rather than as uncertainty in the elements of the 
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damping matrix. Finally, the modal frequencies Wr and the effective participation 

factors J3Jr) are functions of the uncertain parameters fl involved in estimating 

the stiffness matrix K [see Equation (2.6.10)]; therefore, their uncertainties will 

be estimated from the uncertainties of the 8i 's. 

From the above, it can be concluded that the vector of the original uncertain 

parameters Q involved in the analysis of the Nd-degree of freedom structural 

model of (2.6.1) consists of the vector of the uncertain stiffness parameters fl = 

[fh,82, ... ,8No]T and the vector of the uncertain modal damping ratios {. = 
[(1, (2, ... , (NJT . The domain of each of the (;'s and 8i 's must be a subset of 

the non-negative real axis: {. E S({.) S; [0, co )N-m and fl E S(fl) ~ [0, co )No , where 

seD, S(fl) are the domains of i and fl, respectively. 

Often, the additional constraint of the existence of "oscillatory modes" IS 

assumed, which means that each mode is less than critically damped; in this 

case, {. E S({.) S; [0, 1 )Nm • In the following section, the probabilistic modeling 

of the original uncertain parameters Q is addressed. This will be followed by a 

discussion on the evaluation of the uncertainties of parameters dependent on fl, 

such as the modal frequencies Wr = wr(fl), and the effective participation factors 

Orr) = J3)r)(!l). 

2.7 Probabilistic Modeling of Original Uncertain Parameters 

As discussed in the previous section, it is assumed that the original uncer­

tain parameters are: Q = [81,82, ... , 8No , (1, (2,"" (NmjT. The uncertainties of 

the other modal parameters controlling the dynamic response will be evaluated 

in terms of the uncertainties of these N a = N m + N (} parameters. It is assumed 

that knowing one parameter aj does not influence judgement of the plausibilities 

of the values of the remaining parameters, so the parameters are mutually irrel­

evant to one another, and their pdf's can be specified independently. Therefore, 

t.he joint pdf;T !!.(nJ can be expressed according to Equation (2.-1.1) as a product of 
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the separate pdf's 7r aj (aj), j = 1,2, ... ,N a. Since each of the aj's is defined only 

for nonnegative values, the choice of 7ra; must satisfy (2.6.3). Such a probability 

density function is given by the Gamma distribution g( aj; Pal , Vaj ) defined by: 

VQj 

( ) 
pal vo;-l -I-' .a· 

7raj (aj) = 9 aj;Pai'Vaj = r(Va;)a j e 0,' 

= 0 ; aj < 0 

a' > 0 J -

where va; > 0, Pal > 0 and r( va;) is the Gamma function defined by: 

00 

r(va;) = J e-tt"o; -ldt ; va; > -1 

o 

(2.7.1) 

(2.7.2) 

The closed form solutions of the following broad class of integrals will prove 

important throughout the rest of this chapter: 

00 J a~e-"'Ia;sin(6aj)g(aj;Paj,va)daj 
o 

00 J a~ e--yaj cos( oaj )g( ar Pal , va; )daj 

o 

where j3 > -(va; + 1) and '"Y > -Pa;· 

The expected value and the variance of aj are given by: 

00 

iij = E[aj] = J ajg(aj; Pai' va; )daj 

o 
Va' --' 

(2.7.3a) 

(2.7.3b) 

(2.7.4) 
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co 

a;; = VarCaj) = E [Caj - aj )2] = j(aj - aj )2 g(aj; J.lai' vaJdaj 

o 
Va-=-t 
J.la; 

(2.7.5) 

Given the expected value aj and the standard deviation aa;, the parameters 

J.la;, va] defining the corresponding Gamma distribution are given according to 

(2.7.4) and (2.7.5) by: 

(2.7.6) 

where Q aj = U;j , is the coefficient of variation of aj. , 

In Figure 2.8a, the Gamma distribution of an uncertain variable aj cor­

responding to one of the Bj's is plotted, assuming aj = 1 and Q aj = .10; the 

corresponding values of the distribution parameters are (J.la;, va;) = (100.,100.). 

In Figure 2.8b, the Gamma distribution is plotted for some typical values, as­

suming a j corresponds to an uncertain damping ratio (i; in this case, the as­

sumed values are aj = .05 and Q a; = .20, with corresponding parameters 

(/la; , va;) = (500.,25.). In the following, Gamma distributions are chosen to 

represent each of the independent pdf's 11" aj (aj). For the aj's which correspond 

to the uncertain damping ratios (i'S, an additional condition is required to ensure 

existence of oscillatory modes: 

(2.7.7) 

This last condition is practically satisfied for typical values of ( and Q(, as can 

be seen in Figure 2.8b. 

2.8 Probabilistic Modeling of Uncertain Modal Parameters 

Equation (2.6.28) and (2.6.29) play an important role in the analysis of 

the dynamic response of multi-degree of freedom linear structures. It can be 
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seen, by looking at Equation (2.6.29), that the uncertain parameters involved 

in calculating the response!l. are: the damping ratios ~ = [(1, (2,"" (Nml T , the 

natural frequencies l:!:!. = [WI, W2, ••. W N m V, and the effective participation factors 

a _ [a(l) a(Nrn) a(l) a(Nm ) a(Nrn)lT A t' d l' d 
I-' - 1-'1 ,···,1-'1 ,1-'2 ,···,1-'2 ,···,I-'Nd . S men lone earler, W an 

{3 are functions of the uncertain parameters fl.. Although the uncertainties in 

the fJj'S are assumed uncorrelated, this is not true for the elements of W and (3; 

therefore, the joint pdf 7r !:l..!!Jl:!:!., (3) cannot be written as a product of indepen­

dent pdf's of the elements of l:!:!. and (J. On the other hand, since ~ and fl. were 

assumed uncorrelated, so are ~ and [wT,{JTlT. Several publications [Scheidt and 

Purkert, 1983; Collins and Thomson, 1969; Schiff and Bogdanoff, 1972a,bl inves-

tigated the uncertainties in the eigenvalues and eigenvectors due to uncertainties 

in the elements of the mass and stiffness matrices, using perturbation methods. 

Perturbation techniques perform well when analyzing eigenvalue problems with 

uncertain mass or stiffness parameters, since the eigenvalues and the eigenvector 

components are smooth functions of these parameters. To illustrate this, con­

sider a linear three-story planar shear building, as shown in Figure 2.9 for the 

general N d-story case, with uniform mass mi = mo , i = 1,2,3, and interstory 

stiffnesses ki = kofJ j , i = 1,2,3, where ko = 2000mosec-2
; in this particular case 

No = N d • It is assumed here that E[fJ;] = 1 , i = 1,2,3, so that the expected 

stiffness distribution is a uniform one. Figure 2.10 shows the variation of the 

modal frequencies when each one of the ej's is, in turn, varied up to 50% from 

its expected value of unity, while all other fJj's, j =f. i are kept equal to unity. 

Similarly, Figure 2.11 shows the variation of the effective participation factors 

at each story for the different modes. As can be seen from these plots, all the 

corresponding curves are smooth, and can be approximated well by symmetric 

quadratic polynomials of the fJj's: 

No No No 

;..)r(fl.) "'-J cO,wr + L Cj,wrfJj + L L Cjj,wrfJjfJj r = 1,2, ... , .Ym (2.8.1a) 
;=1 ;=1 j=l 
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where 

Cij,w,. = Cji,wr (2.8.1b) 

and 
N9 

,air) UD ~ Co a(r) + '"' c. ,,(r) 8; 
,Pk ~ 1'''''''k 

;=1 

where 

N9 N9 

+ '"' '"' C .. Q(r)8;8j ~ LJ 'l],/Jk 
r = 1,2, ... ,lVm , k = 1,2, ... ,lVd 

;=1 j=1 

(2.8.2a) 

C .. ,,(r) = C .. ,,(r) 
1J,I-"]: J'l,}Jk 

(2.8.2b) 

In order to approximate a function fUD with a quadratic polynomial of the above 

form, the following vector of coefficients has to be evaluated: 

(2.8.3) 
•. N9(N9+1) N 2 +3N9 +2 ( ) The length of thIs vector IS lVl = 1 + lV 8 + 2 =. 2 If f fl. is 

expanded in a Taylor series about 8, it is easy to evaluate each of the elements 

of fJ in terms of the coefficients of this Taylor expansion, that is, in terms of 

f(8), HI8=,h afl8; 18=0' There exist analytical expressions for evaluating the 

first and second order partial derivatives of the frequencies Wr, and the modeshape 

components <p; r), with respect to the components of fl.. The analytical expression 

for ~~; is derived in Appendix B, and it will be used widely in Chapter 3. It 

is desirable, however, that the sought quadratic polynomial approximates f(fl.) 

well over the whole domain of interest of fl.'s, rather than only locally, in the 

neighborhood of the expected value ft. The domain of interest for the fl.'s extends 

about the expected value §" and a few standard deviations 0'8; away in each 8i 

direction. Therefore, the coefficients £J are obtained by requiring the quadratic 

approximation to pass through lVl points (fl.(i),fCfl.(i));i = 1, ... ,lVl. This 

requirement can be expressed as: 

(2.8.4) 
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where!lf is given by (2.8.3), J is a vector of length N/: 

(2.8.5) 

and A is a N/ x N/ matrix given by: 

A= (2.8.6) 

-(i) 
where fl. is a vector of length N/: 

e
-(i) _ [1 ee,) eli) eli) e(i)2 e(i)o(i) o(i)e(i) e(i)2 e(i)e(;) . e(i)2] T 
- - , 1 ' 2 , ... , No' 1 , 1 2' ... , 1 No' 2 , 2 3' ... , No 

(2.8.7) 

The remaining point of discussion for implementing the quadratic approximation 

for fUD is regarding the choice of the points ~(i), i = 1,2, ... , N/. One point is 

chosen to be the expected value ft. Next, for each direction ei , two points are 
- - - - T 

chosen at distance ±1'0"0; about~; that is: fl. = [e1 ,···,e; ± ~fO"o;, ... ,eNol . 

The remaining N9(~9-1) points are chosen to be about ft, at distances +1'0"0; 

and +I'O"Oj along the directions ei and ej , respectively, and for each possible 

combination of i and j: that is: ~ = [81,"" 8j + 1'0"0;,"" 8j + "fO"(}j"'" 8No ]T. 

Such a choice of points fl.(i), i = 1,2, ... , N/, is schematically shown in Figure 

2.12, for the case where No = 3. A good value for the parameter I' as shown in 

Appendix C is I' = v'3. 

Let ft = ft(fl.) denote the following vector function: 

(2.8.8) 

The quadratic approximation of f(~) can then be expressed as: 

(2.8.9) 
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The expected value of f(fD is approximated by: 

where 

ft= E@fD] 

where 

and for i =f. j 

8-~ = E[8?] = E[8if + u~; 

E[8;8j] = E[8;]E[8j] = eJjj 

i = 1, ... , No 

since the 8; 's are assumed to be independent distributed. 

Similarly, f( ef is approximated utilizing a quadratic polynomial: 

(2.8.10) 

(2.8.11) 

(2.8.12) 

(2.8.13) 

where the coefficients S;;p are given by Equations (2.8.4) and (2.8.5), modified as 

follows: 

(2.8.14) 

where 

(2.8.15) 

The approximation for the expected value of f(ftf is given, according to (2.8.10), 

by: 

(2.8.16) 

Finally, the variance of f(ft) is approximated by combining (2.8.10) and (2.8.16): 

u} = Var(f(fi» = E [(f(fi) - fCfi»2] 

= E [J(fi)2] - fCfi)2 

= QJ2~ - (QJ~) 2 

(2.8.17) 
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By applying the above steps to each modal frequency Wr = wr(fl), approxi­

mations for its expected value wr and its standard deviation a Wr can be obtained. 

Furthermore, it is assumed that the marginal pdf of Wr can be approximated well 

by the Gamma distribution g(w r ; /-lw r , VWr )' where the parameters /-lw r , VWr are 

chosen to correspond to wnaWr ' according to (2.7.6). Figure 2.13 compares the 

marginal pdf for each modal frequency using the above discussed gamma distri­

bution approximation, with the marginal pdf obtained through simulations, for 

the three-story shear model mentioned earlier in this section. Each Bi in this ex­

ample is assumed to be gamma distributed with (8i , QO;) = (l.0, 0.1); i = 1,2,3. 

It can be seen that the two curves compare very well. 

'When there are two closely spaced modes, it may occur that for differ­

ent values of fl the modal frequencies corresponding to two different modes of 

vibration switch order. This should be accounted for when the coefficients of 

the quadratic polynomials in (2.8.1a) and (2.8.2a) are sought, using (2.8.4) and 

(2.8.5). Specincally, the elements of the vector 1 in (2.8.5), as well as the el­

ements of the row vectors of A given by (2.8.7), where f might represent Wr 

or ,Bir ) , must correspond to the same physical mode of vibration, rather than 

to modes corresponding to frequencies with the same position in a sequence of 

ascending order. 

It should be noted that the computational effort required to obtain a 

quadratic approximation of all the needed modal quantities amounts to solv­

ing for and storing the eigenvalues and eigenvectors corresponding to the nrst 

N m modes of N/ eigenvalue problems, and to factorizing the matrix A given by 

(2.8.6). These calculations can be done rather efficiently. 

The expected value and the variance of the effective participation factors 

,Bir ) can be evaluated similarly. The quadratic approximation (2.8.2a) for ,Bkr>c.~) 

performs well unless the curvature of Bir)(fl) changes sharply. This may occur 

in the case of "almost" periodic structures where the "mode localization" phe-
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nomenon occurs [Hodges 1982; Bendiksen 1986]. However, the required statistical 

information regarding the effective participation factors will be addressed in later 

sections. 

2.9 SDOF Oscillator with Uncertain Frequency and Damping 
Ratio 

Consider the differential equation (2.5.7) of a SDOF classically damped 

structural model with zero initial conditions. The solution of (2.5.7) is given by: 

t 

q(t;w, () = - J h(ri w, 03i(t - r)dr (2.9.1) 

o 

where h( r; w, 0 is the impulse response function: 

(2.9.2) 

and Wd is the damped frequency: 

(2.9.3) 

The expected value of q(t) is given according to (2.4.12) by: 

q(t) = E[q(t)] = -II [J h(rjw,03i(t - T)dr]7l"w,((W,OdWd( 
o 0 0 

t 
(2.9.4) 

= - J h(r)3i(t - r)dr 
o 

where h( r) is the expected impulse response function: 

00 00 

her) = J J h(r;w,07l"w,(w,Odwd( (2.9.5) 

o 0 

Evaluating the two-dimensional integral (2.9.5) analytically, assuming that wand 

( are uncorrelated, is generally not possible. If ( is assumed fixed, then (2.9.5) 
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becomes a one-dimensional integral which can be evaluated analytically for par­

ticular choices of 11"w(w); such choices for 11"w(w), for example, are a truncated 

uniform or a Gamma distribution. In accordance with the previous two sec­

tions, it is assumed that the uncertain parameters w and (, with known expected 

values and coefficients of variations, are probabilistically modeled by independent 

Gamma distributions, according to (2.7.1) and (2.7.6), so: 

(2.9.6) 

Equation (2.9.5) cannot be evaluated analytically for this choice of 11"(w, (), since 

it does not fall within the category prescribed by (2.7.3a or b). 

The first step toward reaching a form which is amenable to analytical solu­

tion is dealing with the term VI - (2 appearing in Wd. Approximating Vl- (2 

with the first two contributing terms of its Taylor expansion leads to: 

(2.9.7) 

It can be seen that approximations for its expected value and variance are: 

(2.9.8) 

and 

(2.9.9) 

Substituting into the above equation some typical values of uncertainty for (, 

it can be seen that the coefficient of variation of VI - (2 is much smaller than 

the coefficient of variation of (; for example, the values of Figure 2.8b (( = 
0.05, a( = 0.20), with corresponding parameters (P(, vr:) = (500.,25.), result in 

Eh!l - (2] ~ 0.9987 and Q Ji-<2 ~ 0.000526. Therefore, VI - (2 can be con­

sidered as deterministic with value VI - E[(2]. As a result of this observation, 
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it can be concluded that the parameters a1 = wd = wJ1 - (2 and a2 = ( Jl-(2 
can also be treated as independent with the following statistics: 

(a1,Ciat ) = (wJ1- E[(2],Ciw ) 

(a2,Ci aJ = (UJ1- E[(2],ac) 

(2.9.10) 

(2.9.11) 

Furthermore, it can be shown that the pdf's corresponding to the transformed 

parameters aI, a2 are still Gamma distributions (see Appendix D). Substituting 

(2.9.2) into (2.9.5) and using the transformed parameters a1, a2 we obtain: 

00 00 

h(T) = J J :1 e-Uta2Tsin(a1T)g(a1;Jl.at,Vat)g(a2;,ua2,vaJda1da2 

o 0 

(2.9.12) 

The coupling term e-ata2T appearing in the above integral prohibits expressing 

(2.9.12) as a product of two one-dimensional integTals involving a1 and a2, re­

spectively. By expanding e-ata2T in a Taylor series about (aI, (2), and by keeping 

only terms up to second order, we obtain: 

= Coo + ClOal + cOla2 + c20ai + cllala2 + C02a~ 
2 2-; 

= L L cijala~ 
;=0 j=O 

Substituting this approximation for e-ata2T into (2.9.12) leads to: 

where 

2 2-; 

h(T) ~ L L c;)i1,i(T) h2 ,j(T) 
;=0 j=O 

00 

171,i(T) = J a~-lsin(a1T)g(al;,uat,vaJdal 
o 

(2.9.13) 

(2.9.14) 

(2.9.15) 
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00 

h2,j(T) = J a~g(a2;J1a2,lIa2)da2 
a 

(2.9.16) 

Notice that h1,;(T) and h2,j(T) can be evaluated analytically according to (2.7.3a 

or b). 

An alternative approximate evaluation of h( T), requiring less computational 

effort than that required by employing the approximation (2.9.14), is described 

next. A new parameter a3 = a1 a2 = w( is introduced, and, as an approximation, 

it is assumed that it is Gamma distributed with the following first two moments: 

(2.9.17) 

Furthermore, as an additional approximation, it will be assumed that the trans­

formed parameters a1 and a3 are uncorrelated. Equation (2.9.12) can be approx­

imated using these parameters: 

where h1 ,0(T) is given by (2.9.15) and h3(T) is given by: 

00 

h.3(T) = J e-a:STg(a3;J1aa,lIaa)da3 

a 

(2.9.18) 

(2.9.19) 

Both h1 ,0(T) and h3(T) can be expressed analytically using (2.7.3a or b). 

Figure 2.14 compares q(t) calculated from (2.9.4), using the approximation 

for h( T) given by (2.9.18), and q( t) calculated using numerical integration of 

(2.9.4) and (2.9.5), for a SDOF oscillator with independent Gamma distribu­

tions for wand (, with (w,aw ) = (1Hz, 10%), and ((,ac) = (0.05,20%). The 

curves corresponding to the approximate and exact solutions are almost indis­

tinguishable. 
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The expected value of q2(t) is given by: 

where 

X 11' w,(( w, Odwd( 
t t 

= J J h(71,72)Z(t - 71)Z(t -72)drl d72 

o 0 

DC DC 

h(7b 72) = J J h(T1;W,()h(72;W,()7rw ,dw,()dwd( 

o 0 

(2.9.20) 

(2.9.21 ) 

In order to obtain an analytical expression of (2.9.21), a transformation of the 

variables (w,() to (al,a2) or (a1.a3) is utilized as before. The computational 

effort required to approximate hC T1 , 72) is less if the set of variables (aI, a3) i.s 

used: 

(2.9.22) 

where 

(2.9.23) 

and 
DC 

h- ( ) J -aa(Tl+T2) (. )d 3 71,72 = e 9 a3,fl,a3'Va3 a3 (2.9.24) 

o 

Although only the evaluation of h1 ,o is required in (2.9.22), a general formula is 

given which will prove useful later. Notice that hl,i(71,72) and h3 (71,7Z) can be 

expressed analytically using (2.7.3a or b). 

Equation (2.9.20) can be evaluated using the Fourier Transform (FT) and 

the Convolution Theorem. The FT of a function of two variables Ie t 1 , t z) is given 
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by: 
00 00 

F(6,6) = J J J(tl,t2)e-i(F.ltl+F.2t2)dtldt2 (2.9.25) 
-00 -00 

while the Inverse Fourier Transfonn (1FT) is given by: 

00 00 

J(t1 , t2) = 4~2 J J F(el,6)ei(F.l t l+F.2h)d6 de2 (2.9.26) 
-00-00 

The Convolution Theorem for a function of two variables is expressed as follows: 

00 00 

If g(tl,t2) = J J h(Tl,T2)fz(tl-Tl,t2-T2)dTldT2 
-co -co 

(2.9.27) 

In order to use the Convolution Theorem (2.9.27), Equation (2.9.20) is rewritten: 

where 

t1 t2 

E[q(t1)q(tz)] = J J h(Tl,TZ)Z(t1 - Tl)Z(tZ - TZ)dTl dT2 
o 0 

00 00 

= J J h('Tl,T2)Z«tl-Tl),(t2-Tz»dTldT2 
-00 -00 

and it is assumed that: 

(2.9.28) 

(2.9.29) 

(2.9.30) 

Applying the Convolution Theorem of (2.9.27) and using the 1FT of (2.9.26), 

Equation (2.9.28) leads to: 

00 00 

E[q(tl)q(t2)] = 4~Z J J H(6,6)Z(6,6)ei(F.l tl+F.2 t2)d6d6 (2.9.31) 

-00 -00 

where H(6,6) IS the FT of h(tl,t2), and Z(6,6) IS the FT of 

z(tI, t2) = Z(tl)Z(t2) 
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It is important to notice that: 

(2.9.32) 

where Z is the one-dimensional (I-D) FT of E(t). Also, since only E[q2(t)] is of 

interest here, Equation (2.9.31) may be rewritten as follows: 

00 00 

E[q2(t)] = 4!2 J J iI(6'~2)Z(6,6)ei(~lH2)td6d6 
-co -00 

(2.9.33) 

-00 

where 
00 

Q(7]) = 2~ J iI(6,7]-6)Z(6,7]-6)d6 (2.9.34) 
-00 

Equation (2.9.33) states that Q(7]) is the 1-D FT of E[q2(t)]. The last two 

observations lead to the conclusion that in order to obtain E[q2(t)] using FT, 

only one 2-D FT is needed and that is to obtain iI(6, 6). 

In practice, the Fourier Transform is evaluated by numerical integration 

using a finite number of its sampled points. Suppose that an e\'en number ~V of 

consecutive sampled values of a function of one variable Jet) is given: 

fn = f(tn) , tn = nllt ; n = 0,1, ... , N - 1 (2.9.35) 

The Fourier Transform F( e) is estimated at the following N discrete frequencies: 

2nn 
en = N b.t n = 0,1,2, ... ,N - 1 (2.9.36) 

The one-dimensional Fourier Transform F( 0 can then be approximated at these 

discrete frequencies by the discrete sum: 

N-l N-l 

Fn == F(en) ~ i:!.t L Jke-i~ntk = i:!.t L ike- h~nk (2.9.31) 
k=O k=O 
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The Inverse Fourier Transform is then approximated by: 

(2.9.38) 

Using the values of a function of two variables J(tl, t 2 ) over a two-dimensional 

grid: 

nbn2 = O,I, ... ,N-l (2.9.39) 

the two-dimensional Fourier Transform Fe 6,6) is approximated at the discrete 

values of a two-dimensional grid of frequencies by the sum: 

(
27Tnl 27Tn2) 2 ~ ~ 2 .. i(n,k,+noko) 

Fn, •n2 = F ND.t' ND.t ~ D.t ~ ~ ik,.k2e N 

k , =O k 2 =O (2.9.40) 

nl,n2 = 0,1,2, ... ,N - 1 

The inverse 2-D Fourier Transform is approximated by: 

(2.9.41) 

The above sums can be evaluated using the Fast Fourier Transform (FFT). 

The computational effort required for a I-D FFT is of order Nlog2N, while 

the one required for a 2-D FFT, assuming a grid of N Z sampled points, is of 

order (NlogzN)2. Aside from this increased computational effort, 2-D FFT's 

also require much larger memory space. Assume that a convolution-type integral 
t 

of the form Jet) = J h (T) h (t - T )dT , t E [0, T] has to be evaluated at discrete 
o 

points spaced by D.t. Then the I-D FFT's of h(t) and h(t) are calculated 

using discrete points h (tn) and h(tn), tn = nD.t , n = 0,1,2, ... ,Nl - 1; Nl 

is chosen to have the form Nl = k2A and to satisfy Tl = NlD.t ~ 2T, while 

h(tn) and h(tn) are assigned zero values for tn ~ T. Adding these zeros is 

necessary to avoid wraparound problems; the possible values for k are k = 2 or 

k = 3, depending on the particular version of I-D FFT program used [Hall 19S2j. 

Similarly, if 2-D FFT's are used to evaluate integrals of the form gUI, t 2 ) = 
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11 12 

J J91(Tl,T2)92(t1 - Tl,tZ - T2)dT1dTZ , (tl,t2) E [O,T] x [O,T], at a grid of 
o 0 
discrete points spaced by D..t, then the 2-D FFT's of 91(t1,t2) and 92(t1,tZ) are 

calculated using discrete points 9l(in,tm ) and 92(tn,tm ), with tn == nD..t, tm == 

mD..t ; n, m == 0,1,2, ... , Nl - 1. NI is chosen as before in the I-D case, and 

h(tn' t m) == h(tn, tm) == ° if tn > T or tm 2 T. So a 2-D FFT requires the 

storing of a N1 x Nl complex-valued matrix, while a I-D FFT requires only the 

storing of a complex-valued array of length N l . 

From the above, it becomes obvious that 2-D FFT's should be avoided if 

possible. As discussed earlier in this section, in order to obtain E[q2(t)] using FT, 

only one 2-D FT is needed, and that is to obtain H(6, 6). This is accomplished 

by using (2.9.32) to evaluate Z(6,6), and by evaluating Q(17), the 1-D FT of 

E[q2(t)], by means of (2.9.34). The form of the above equations, where discrete 

data are employed, is discussed next. 

.. .... .. T .. 
Let Z == [Zo, Z1," . ,ZNt-l] , where Zn - Z(en), be the discrete FT of 

z(t), when N1 discrete sampled points z(tn) , n == 0,1, ... , Nl -1 are used; Z is 

then a complex-valued array of length N I . The Nl x Nl complex-valued matrix 

Z = [Znm] corresponding to the discrete FT of Z(T1,T2) = Z(Tl)Z(T2) when the 

discrete values z( Tn, T m) ; n, m == 0,1, ... , N1 - 1 are employed, is given by: 

- .... T 
Z= ZZ (2.9.42) 

Equation (2.9.42) is the discrete form of (2.9.32). Let H = [Hnm] be the Nl x 

NI complex-valued matrix, obtained through a 2-D FFT of the discrete values 
- - -- - T -
h(tn' tm) ; n, m == 0,1, ... , NI -1. Let Q = [Qo, Ql,"" QNt-l] ,where Qn == 

Q(en), be the 1-D discrete FT of E[qZ(t)]. Qn can be obtained from: 

N1-l N1-l 
- 1 ~ ~ - -
Qn = ? N D.. L.. L.. HijZii!U; i, n) ; n = 0,1, ... , Nl - 1 

~7r It. ,=0 j=o 

where 
lU; i, n) == 1 if i + j = n or i + j == n + Nl 

== 0 otherwise 

(2.9.43) 

(2.9.44) 
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Equation (2.9.43) is the discrete form of (2.9.34). 

The variance of q(t) is given by: 

(2.9.45) 

Throughout this chapter q(t) is calculated from (2.9.4), using the approximation 

of (2.9.18), and E[q(t)2] is calculated from (2.9.20), utilizing FFT's as discussed 

in this section and the approximation (2.9.22). Figure 2.15 compares aq(t), cal­

culated as above, and aq(t) obtained using numerical integrations in (2.9.20) and 

(2.9.21); the same data is used as in Figure 2.14. It can be seen that the dis­

crepancies between the curves for the approximate and exact solutions are very 

small. 

2.10 MDOF Structural Model With Uncertain Parameters 

The response qi(t) ofthe i lh degree offreedom (dof) of an Nd dof structural 

model is given by (2.6.35), when only the contribution of the first N m :S Nd 

modes is considered. The contribution of each mode qir' is given by (2.6.29) 

along with (2.6.34). The uncertainties assumed initially are associated with the 

parameters Q = [ftT,~TV = [01 , O2 , ... , ON9 , (1, (2, ... , (NmV and their modeling 

was discussed in Section 2.7. The resulting uncertainties of the modal parameters 

w(rl,j3~rl ; T" = 1,2, ... ,Nm' were discussed in Section 2.8. In Section 2.9, the 

statistics of the uncertain response of a SDOF oscillator were calculated. In the 

next section the issue of calculating the statistics of a single modal contribution 

q~r)(t) is addressed. 

2.10.1 Statistics of qir)(t) 

By comparing Equations (2.6.29) and (2.5.7), it can be seen that the 

equation for q~ r) (t; ft, (r) is given by the equation of a SDOF oscillator with 

frequency wr(fD and damping ratio (r, and with forcing function _j3~r)(ft)z(t) 
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instead of just -3i(t). The solution of (2.6.29) IS therefore given by (2.9.1), 

modified as follows: 

t 

qIr)(t;fl, (r) = - J g}r)(r;wr(fl), Cr)z(t - r)dr (2.10.1) 

o 

where 

(2.10.2) 

and h(r;wr(fl),Cr) is given by (2.9.2). The expected value of q)r)(t) is given by: 

where 

t 

q)r)(t) = - J g~r)(r)z(t - r)dr 

o 

00 

g)r\r) = J J g)r)(r;wr(fl),(r)7I"~(fl)1l"C.c(r)dfld(r 
scm 0 

00 

= J J h( r; wr(fl), Cr ),BV) (fl)1l"~(fl)1l" Cr (Cr )dfldCr 

scm 0 

(2.10.3) 

(2.10.4) 

Note that while a 2-D integration is needed to evaluate her) in the SDOF case, 

integration over a ( No + 1 )-dimensional space is required to evaluate g) r) (t) in the 

MDOF case. If numerical integration is used to calculate (2.10.4), the computa­

tional effort will grow exponentially with (No + 1). It is obvious that this amount 

of calculation may become prohibitive for a large, or even for a medium, number 

No of uncertain parameters. To overcome this difficulty, a transformation of the 

variables fl is introduced. Assume a new set of variables fI(r) = [wr, (:z.(r)T]T, 

where !J..{ r) is a vector of length No - 1, such that each fl is uniquely mapped into 

a vector of transformed variables fI( r). Assume also that this mapping between 

fl's and fI(r),s is one-to-one, that is, each fI(r) is also uniquely mapped into a fl 

in the space S(fl). The functional relationship fI(r) = fI(r)(fl) is specified only 

for the first element of fI(r) , that is, iJir) = wr(fl); the functional relationship 
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for the remaining elements of !l(r), that is, !l(r) = !l(r)(!D is not specified here, 

but is assumed to be such that the overall mapping !l(r) = !l(r)UD is one-to-one. 

Although the pdf 7r!!.UD can be written as a product of the independent pdf's 

7r1J0(8j ) = g(8;·;J.l1J0,1I1J0), this is not any more true for 7r1/-(rl(1j(r». The marginal ) J ) _ _ 

distribution of the first element of!l( r) , given by the (N IJ -1 )-dimensional integral: 

7rWr (W r) = J 7r1(r 1(!l(r)d'!l.(r) = J 7r1(r 1(Wr,!l(r»d'!1.(r) (2.10.5) 

S(!l.(r 1) S(!l.(rl) 

can be approximated according to Section 2.8, with a Gamma distribution: 

(2.10.6) 

Notice also the following relation stemming from the third axiom of Section 2.3: 

Equation (2.10.4) can be rewritten using the new set of variables as: 

00 

gVl(r) = J J h(r;wr, (r),B}TlC!l(r»7rll(rl(!l(r»7rCr((r)d!l(rld(r 

selle r 1) 0 

Substitute (2.10.7) into (2.10.8): 

-(rlc ) g; T = 
00 00 

J J J h(T;Wr,(r),B}r)(!l(r»7r2.(rllwr(!l(r)lwr) 

S(!l.(r») 0 0 

7r Wr (wr)7r (r ((r )d!l.(r) dwrd(r 

(2.10.7) 

(2.10.8) 

(2.10.9) 

where fi;r\wr ) is the conditional expected value of ,Bi r), when Wr is kept fixed: 

fi;r)(wr ) = E[,B)rllwr] = J ,B~r)(!l(r»7r2.(rllwr(!l.(r)lwr)d!l.(r) 
S(!l.(r» 

J a(r)( (r») (rll)d (rl 
o ;wr.!l 71"2.(r)! .. o,!l Wr !l 

S(!l.(r 1) 

(2.10.10) 
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Assuming .8ir
)(wr ) is calculated, Equation (2.10.9) implies that only a 2-D inte­

gration is required to obtain g~ r) (T). Instead of evaluating .8t) (wr ) by calculating 

the (N9 -I)-dimensional integral of (2.10.10), an approximate polynomial expres­

sion for .8; r) (wr ) is assumed. Retaining only terms up to first order we obtain: 

f3-(r) ( ) (r) (r) 
i Wr ~ ci,O + c;,l Wr (2.10.11) 

The coefficients c~r~ and c;r; can be evaluated as follows. , , Utilizing Equations 

(2.10.10) and (2.10.7) we obtain: 

ex> 00 J .8~r)(Wr)7rwr(wr)dwr = J J f3;r) (wr, !Z(r»7r.1(r)/wr (!Z(r) !wr )7rwr (wr)d!Z(r)dwr 

o 5(.1(r» 0 

J f3t)(ft»7r1(r) (lZ(r»dlZ(r) 

5(1(r» 

(2.10.12) 

Multiplying both sides of (2.10.11) with 7rwr (wr ), integrating with respect to Wr, 

and utilizing (2.10.12) we obtain: 

E[f3( r)] rv (r) + (r)_ 
i - ci,o Ci,l Wr (2.10.13) 

The value of E[8;r)] can be approximated according to the discussion of Section 

2.8, by: 

E[f3; r)] ~ £~~r)ft 
, 

(2.10.14) 

Similarly, multiplying both sides of (2.10.11) with W r 7r Wr (w r ) and integrating with 

respect to Wr we obtain: 

E[ f3 (r)] (r) - (r) -2 
Wr i ~ Ci,OWr + Cj,l Wr (2.10.15) 

where w; = E[w;] and E[wrf3;r)] can be approximated by: 

(2.10.16) 
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The elements of £wrl3\r) are the coefficients of a quadratic approximation of , 

wrUD.Brrl(fl), according to the discussion of Section 2.8. Equations (2.10.13) 

and (2.10.15) can be solved to obtain c;~J and c;~2: 

(2.10.17) 

Figure 2.16 compares the conditional expected values of the effective partici­

pation factors of the first mode of a three-story shear building structure when the 

corresponding modal frequency WI is kept fixed, that is, i3Fl(wt) = E[.BFl IWI], i = 
1,2,3, using two different approaches. The first approach uses simulations while 

the second uses the linear approximation (2.10.11), with the coefficients c{lol, dIll 
1, 1, 

evaluated through (2.10.17), as discussed above. In this particular example, a 

uniform mass distribution mj = mo, i = 1,2,3 and an interstory stiffness dis­

tribution kj = ko8;, i = 1,2,3, where ko = 2000mosec-2 , are assumed. Each 8i 

is assumed to be Gamma distributed with (gi, Q9J = (1., .10). It can be seen 

from Figure 2.16 that the linear approximation is very good over the frequency 

range for which 7rwtCwl) would produce a significant contribution to an integral 

like (2.10.9). 

Substituting i3l rl (wr ) with its linear approximation (2.10.11) into Equation 

(2.10.9) leads to: 

g{rl(T) = c(rlg(rl(T) + c(rlg(r)(T) 
I 1,0 0 1,1 1 (2.10.18) 

where 
00 00 

gfrJer) = J J h(r;wr,Cr·)w~7rwr(Wr)7r(r((r)dwrd(r; 1 = 0,1 (2.10.19) 

o 0 

As in Section 2.9, the above 2-D integrals may be approximated by integrals 

accepting a closed form solution if the transformed variables 

(a~rl, a~rl) = (wrV1 - E[(~J ,wr(r) are employed: 

_(r)( ) 1 h(r)( )h(rl ( ) 
gl r ~ (VI _ E[(;))I 1,1 r 3 r 1= 0, 1 (2.10.20) 
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where JitlCT) and h~r)CT) are given by C2.9.15) and (2.9.19), respectively. The 

superscript (r) implies that the variables aI, a3 are replaced by air) , a~r) in these 

equations. 

The expected value of q~ r) (t? is given by: 

where 

t t 

E[q~r)(t)2) = J J g}r,r)CTl,T2)Z(t - Tl)Z(t - T2) dTl dT2 

o 0 

00 

(2.10.21) 

g~r,r)h,T2) = J J h(Tl;Wr(fl),(r)h(T2;Wr(fl)'(r)flfr)(~i7rfLCfl)7r(,((r)dfld(r 
5(f) 0 

(2.10.22) 

Following the same steps as earlier for g~r)( t), Equation (2.10.22) can be rewritten 

as: 
00 00 

g~r,r)(Tl,T2) = J J h(Tl;Wr,(r)h(T2;Wr,(r)E[Cfl}r)ilwr)7rwr(Wr)7r(,((r)dwrd(r 

0 0 

where 

E [(flrr)?lwr] = J fl}r)(wn !2(r» 27r!L(r)lwJ!2(r)lwr)d!2(r) 

5(!L(r) 

As earlier. E[(fl; r) )21i.Vr l is linearly approximated: 

E[Cfl(r»2Iw ] rv c(r,r) + c(r,r)w 
'I r - 1,0 1,1 r 

(2.10.23) 

(2.10.24) 

(2.10.25) 

where the coefficients c;~or) and c;~t) may be recovered, in a similar way as before, 

from: 

(2.10.26) 

where E[Cfl}r»2] and E[wr(fl~r»21 can be evaluated as before, utilizing quadratic 

approximations for fl}r) (fl? and wr(fl)f3}r) (fl)2, according to the discussion of 

Section 2.8. Substituting (2.10.25) into (2.10.23) leads to: 

(2.10.27) 
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where 

00 00 

il}r,r) (71 , 72) = J J hh;wr, (r)h(72;Wn (r)W~7rwr(Wr)7r'r((r)dwrd(r ; 1= 0,1 

o 0 

(2.10.28) 

Using the transformed variables (a~r), a~r), the following approximations are 

derived: 

(2.10.29) 

where hir] (71,72) and h~r) (71,72) are given by (2.9.23) and (2.9.24), respectively. 

The superscript (T) implies that the variables aI, a3 are replaced by a~r), a~r) in 

these equations. 

Figure 2.17 compares the expected value of the contribution of the first mode 

to the response of the third floor of a three-story shear building structure for two 

different approaches: numerical integration (solid curve) and the methodology 

discussed in this section (dashed-dotted curve). In this particular example, it is 

assumed that there is a uniform mass distribution mi = rno , i = 1,2,3, and an 

interstory stiffness distribution k; = kO()i , i == 1,2,3 where ko = 2000mosec-2
; 

each ()i is Gamma distributed with (if;, ne;) = (1, .10) and the damping ratios are 

also independently Gamma distributed with ((r, OCr) = (0.05, .20) , T = 1,2,3. It 

can be seen that the two curves representing the approximate and exact solutions 

are almost indistinguishable. Figure 2.18 makes the same comparison for the 

corresponding standard deviation. It can be seen that the two curves compare 

well. 

2.10.2 Statistics of qi(t) 

The response qi(t) of the ith dof of an Nd-dof structural model, when 

only the contribution of the first N m modes is considered, is given by (2.6.35). 
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The expected value of q;(t) is therefore given by: 

Nm 

q;(t) = E[q;(t)] ~ I: q)r)(t) (2.10.30) 
r=l 

where the evaluation of the q~r) (t )'s was discussed in Section 2.10.1. The expected 

value of q;(t? is given by: 

N m Nm 

E[qj(t)2] ~ I: I: E [qt)(t)q1 s)(t)] 
r=18=1 

(2.10.31) 

In Section 2.10.1, the evaluation of E[q~r)(t)21 was discussed. Therefore, the 

remaining issue for discussion is the evaluation of the terms E [qV)(t)q~8)(t)] 
when r =i- s. It can be seen that: 

t t 

E [q)r\t)q)8)(t)] = J J .!J)r,s)(71, 72)Z(t - 71)Z(t - 72)d71d72 

o 0 

where 
00 00 

.!J~r,s)(71,72) = J J Jh(71jWr(fl.)'(r)h(72;WS(fl.),(s){3~r)(fl.){3)S)(fl.) 
s(g) 0 0 

(2.10.32) 

(2.10.33) 

The task is to evaluate this (NII+2)-dimensional integral. Assume a transformed 

set of variables !l( r.s) = [wr• ,,-'s, ZZ( r,s)]T, where ZZ(r,s) is a vector of length No - 2. 

such that there is a one-to-one mapping between fl.'s and fl.(r,s) 'so 

The joint marginal distribution 7I'w.,w, (wnws) is defined as: 

7I'wr,w,(Wr ,Ws) = J 7I'llr.,)(!l(r,s»dZZ(r,s) = J 
S(,2(r.,» S(,2(r.,» 

(2.10.34) 

Notice that 7I'w.,w, (wr , ws) is not the product of the marginal distributions 71' Wr (wr ) 

and 7I'w, (ws), each of which, as discussed previously, may be adequately described 

by a Gamma distribution. However, the following relation holds: 

(2.10.35) 



- 56-

The following relation follows from the third axiom of Section 2.3: 

(2.10.36) 

The conditional expected value of ,afr) ,afs) when Wr and Ws are kept fixed is: 

E [,a}r) ,a}s) /Wr, ws] = J ,B}r) (iZ(r,s»,a~s) CiZ(r,s) )7I",2(r")lw.,w. (!l(r,s) /wr , ws)d!l(r.s) 

S(,2(r .• ) ) 

(2.10.37) 

Equation (2.10.33) can be rewritten using these transformed variables: 
00 00 

g}r,s)(Tl,/2) = J 
s(~(r .• » 

J j hh; Wr, (r )h( 1'2; WS , (s),afr'ciZ(r,s) ),a~s) (iZ(r,s» 

o 0 

X 7I"2(r .• ) (ii( r,s»7I" (r ((r)7I" C. ((s )dii(r.s) d(rd(s 

(2.10.38) 

Integrating out the variables ?l(r,s) by utilizing Equations (2.10.36) and (2.10.37) 

leads to: 
00 co 00 00 

g~r,s)h,T2) = J J J j hh;wr,(r)h(T2;WS ,(s)E [,afr),a}S)/wr,ws] 

DOD 0 

X 7I"w.,w. (wr, Wg )7I"(r ((r )71"(. ((s)dwrdwsd(rd(s 
(2.10.39) 

As before, instead of calculating the (No - 2)-dimensional integral of (2.10.37), 

a polynomial approximation of two variables Wr, Ws is assumed. It is sufficient, 

as will be seen later with an example, if only the zeroth order term is retained: 

E [
(.I(r) (.I\s) / ] = (r,s) 
1-', 1-', Wr, Ws c"D (2.10.40) 

The value of c)~s) is chosen so that: . 
(2.10.41) 

The value of E [,a~r) ,a~s)] is evaluated utilizing quadratic approximations for 

,afr) (~)J1}s) (~), according to the discusion of Section 2.8. The conditional marginal 

distribution 7I"",.lwr(ws /wr ) is assumed to be Gamma distributed: 

(2.10.42) 
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where Jl~o (w r ), v~,(Wr) are specified according to (2.7.6) from the expected value 

E[wBlwrl and the variance Var[wBlwrl; the values of these quantities are evaluated 

using the following polynomial approximations: 

(2.10.43) 

and 

E[ 21 1 _(r,B) + _(r,8) 
W B Wr = Co C1 Wr (2.10.44) 

The expressions for the coefficients [c~r'B), Cir,B)jT and [c~r,s), cir,s)jT are similar 

to these of Equations (2.10.17) and (2.10.26): 

(2.10.45) 

and 

(2.10.46) 

In order to further simplify the calculation of the 4-dimensional integral of 

(2.10.39), the transformed variables air) = wrVl - E( en a~r) = Wren ais) = 
Ws VI - E( en and a~B) = wses are introduced. As before, the additional ap­

proximation is adopted, namely, that all the pairs of the above variables, except 

for the pair (air), ala» are independently distributed. As far as the joint pdf 

7r (r) (0) (air), ais
» is concerned, it follows from (2.10.35) and (2.10.42) that: 

at ,at 

(2.10.47) 

Equation (2.10.39) can be rewritten using (2.10.40) and the above transformed 

variables as: 

-(r,sl( ) (r,8)_(,.,8)( ) gj 7"11 7"2 ~ C;,o gj 7"1,7"2 (2.10.48) 
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where 

co 00 00 00 

g-{r,s)(r T) = J J J J h('1" . a{r) a{r»h(T . a{s) a(S» , 1, 2 1, 1 '3 2, 1 , 3 

o 0 0 0 

( (r) (a» (r» (S»d {r)d (s)d (r)d (a) 
X 7r (r) (.) a 1 ,a1 7r (r) a3 7r (.) a 3 a 1 a 1 a 3 a 3 at ,at aa aa 

_ (r,s)h(r)( )h(S)( ) 
- Ci,O 3 '1"1 3 '1"2 

00 

J (r)-t . (r) )h-(s)( (r» ( (r) (r) 
X a 1 sma1 '1"1 10 72;a1 gal ;p(r),V(r»da1 , at at 

o 
(2.10.49) 

where h~r)('1"1) and h~8)('1"2) are given by (2.9.19), with the superscript (r) or (8) 

appropriately carried over to a3, and h~:&(72;air» is given by: 

(2.10.50) 

Equations (2.10.48) and (2.10.49) imply that in order to evaluate g)r,8) (71, '1"2) 

for given 71 and '1"2, only a one-dimensional integral needs to be calculated us­

ing numerical integration, since h~r) ('1"1)' h~S) (72) and h~:&( 1"2; air» can be ex­

pressed analytically using (2.7.3a or b). Finally, E[q~r)(t)q~s)(t)l is evaluated 

from (2.10.32), using FFT's according to the discussion of Section 2.9. 

Figure :2.19 compares the expected value of the response, due to all three 

modes of vibration, at the third floor of a three-story shear building structure for 

two different approaches: numerical integration and the methodology discussed in 

this section. The same data is used as in Figures 2.17 and 2.18 of the example of 

the previous section. It can be seen that the curves representing the approximate 

and exact solutions are almost indistinguishable. Figure 2.20 makes the same 

comparison for the corresponding standard deviation. It can be seen that the 

two curves compare well. 
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2.11 Summary and Conclusions 

The primary steps of the procedure presented in this chapter, to approx­

imate the statistics of the dynamic response of an uncertain N d-dof model of a 

structure, are reviewed here. Also, for the steps involving a substantial amount 

of computations, the order of computations involved is given. 

1) A number of N/ = (N~ + 3No + 2)/2 eigenvalue problems are solved. The 

amount of computation involved is O(N/ X NJ). 

2) The N/ x N/ matrix A of (2.8.6) is formed and factorized. The computational 

effort is O(Nt). 

3) By solving (2.8.4), the coefficients ofthe quadratic approximation (2.8.9) are 

obtained for the following functions of ft: wr(ft), w;(ft), wr(ft)ws(ft), 

wr(ft)w;(ft), ,a;r) (ft), ,a}r) (ft)2, wr(ft),a}r) (fl), wr(ft),a}r) (ft)2, ,a;r) (fl),a}s) (fl), 

where T = 1, ... , Nm , S = 1, ... , T - 1 and i = the dof's where the response 

statistics are to be computed. The expected values of the above quantities 

are computed through (2.8.10). 

4) The coefficients c;~? and c)1 r
) , 1 = 0,1 are computed through (2.10.17) and 

(2.10.26), respectively, and <os) is computed from (2.10.41). The values of 

T, sand i are the same as in Step 3. 

5) Let Tf = NTilt be the length of the time interval over which the statistics of 

the response are to be calculated. The functions g}r)(T), 1 = 0,1 are evalu­

ated through (2.10.20) at the discrete points Tn = nilt, n = 0,1 ... , NT' 

Similarly, the functions g}r,r)(Tl,T2),1 = 0,1 and g(r,s)(Tl,T2) are evalu­

ated through (2.10.29) and (2.10.49), respectively, at the discrete points 

(Tn' Tm) = (nilt, milt) , n, m = 0, ... , NT - 1. The values of T, s are the 

same as in Step 3. The computational effort of this step is O(N;'NT). 
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6) The final expression for E[qi(t)] is given by: 

Nrn 2 

E[qi(t)] = L L c)~)qt)(t) 
r=l 1=1 

t 

where _(r)(t) - J _(r)( )··(t )d ql - - gl 7 Z - 7 7 

o 

The final expression for E[q[(t)] is given by: 

where 

r=1 1=1 r=28=1 

t t 

_(r.r) (t) J J _(r,r) ( ) ··(t ) ··Ct )d d ql = - gl 71,72 Z - 71 Z - 72 71 72 

o 0 

t t 

ij(r.8)(t) = - J J g(r,8)(71,72)Z(t - Tdz(t - T2)d71dT2 

o 0 

(2.11.1) 

(2.11.2) 

(2.11.3) 

(2.11.4) 

(2.11.5) 

The integrals in (2.11.2), (2.11.4) and (2.11.5) are evaluated using FFT's. 

Most of the computational effort required is used to evaluate the discrete 

2-D FT's of g}r.r)(71, 72) and g(r.8)(71, T2). If TV1 = 2INT(log2NT)+2, then the 

leading term of the amount of calculations involved in this step is O(Nf N!). 

This amount of calculations is generally larger than that involved in any of 

the previous steps. Finally, the expressions for E[Xi(t)] and Var(xi(t» are 

given by (2.4.13) and (2.4.15a). 

The following conclusions can be drawn from the results presented in this 

chapter: 

1) The leading term of the amount of calculations required by the approximate 

method presented in this chapter is O( NI TV!). 

2) This leading term does not involve the parameter count No. 
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3) The extra computational effort required to evaluate the statistics of the 

response at a different dof is minimal, since only the coefficients cl~?, ciT), 
cl~os) have to be evaluated for each additional dof, while the time functions 

q/(t), qjr,r)(t), q(r,s)(t) remain the same. 

4,) Steps very similar to the ones described in this chapter can be followed if, 

instead of displacements, other output response quantities are of interest, 

e.g., accelerations or internal forces. For a structural system with uncertain 

parameters, knowledge of the first moments of the quantities describing the 

state of the system is not sufficient to calculate the first moments of all 

possible output quantities. For example, the uncertain internal forces of a 

structural element are a function of the uncertain stiffness of the element and 

of the resulting uncertain generalized displacements of the element; since 

the uncertainties in the stiffness and the uncertainties in the generalized 

displacements are not independent, knowledge of their first two moments 

alone is not enough to calculate the first two moments of the uncertain 

internal forces. 

The value of the proposed approximate method is established by comparing 

the amount of calculations it requires, which is O( N? N;,,), to the amount of calcu­

lations required by the numerical integration method, which is O(NT d(N9+Nm », 

where d is the number of discrete points chosen along the direction of each un­

certain parameter: the latter number of calculations may become prohibitive for 

modeling structural systems. Furthermore, the results obtained using the pro­

posed approximate method are very close to the ones obtained by simulations or 

by numerical integration, as was shown with a specific example in Figures 2.19 

and 2.20. It is concluded from the above that the proposed method is an efficient 

and accurate method to calculate the uncertainties of the dynamic response of a 

structural system with uncertain parameters. The method provides a tool for the 

engineer during design of a structure to investigate the resulting uncertainties in 

the structural response due to uncertainties in the modeling process. 
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Figure 2.1 Schematic representation of the steps leading to the probabilistic 

modeling of a structural response. 
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Figure 2.2 SDOF linear model of one-story building structure excited by ground 

acceleration. 

t (sec) 

Figure 2.3 El Centro SOOE acceleration record of the Imperial Valley Earth­

quake. May 18, 1940. This "El Centro record" is the applied base 

excitation in all numerical applications of this thesis. 
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Figure 2.4 Expected response q(t), of a SDOF oscillator with fixed damping 

ratio ( = 0.05, and tmcertain natural frequency w, uniformly dis­

tributed over the interval n = [1. 77r, 2.37r] ~~~ (El Centro record). 

Two methods are used to obtain q(t): (1) numerical integration 

(solid curve) and (2) SMA (dashed-dotted curve). 
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t (sec) 

Figure 2.5 Standard deviation of the response O"q(t) for the SDOF oscillator of 

Figure 2.4. The solid curve is obtained using numerical integration, 

while the dashed-dotted curve is obtained using SMA. 
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Figure 2.6 Response q( t; w) at fixed time t = to = 5 sec, against the natural 

frequency w in Hz for the SDOF oscillator of Figure 2.4. The solid 

curve is exact, while the dashed-dotted parabola corresponds to the 

truncated Taylor series expansion given by the right hand side of 

(2.5.8). 
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Figure 2.7 Expected response q( t) and its corresponding standard deviation 

O"q(t), for a SDOF oscillator with fixed damping ratio ( = 0.05 and 

uncertain natural frequency (El Centro record). The solid curve cor­

responds to w being unifonnly distributed over the interval [0.85, 1.15]Hz, 

resulting in (w, tlw) = (1Hz,8.66%), whjle the dashed-dotted curve 

corresponds to w being Gamma distributed with the same two first 

moments as in the previous case. 
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Figure 2.8 (a) Gamma distribution of an uncertain parameter aj with iij = 1 

and Q aj = 0.10 (}.Laj = 100, Vaj = 100). 

(b) Gamma distribution of an uncertain parameter aj with D.j = 0.05 

and Q aj = 0.20 (}.Laj = 500, Vaj = 25). 
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Figure 2.9 Multi-story planar shear building structure excited by a ground ac­

celeration. 
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Figure 2.10 Modal frequencies wr(fl), 7' = 1,2,3 against (Ji, i = 1,2,3 for a three­

story planar shear building with uniform mass m; = mo and inter-
4 

story stiffness k; = koBj,i = 1,2,3 (ko = 2000mosec-2
); while each 

(Ji is varieci, the remaining (Jj :j:; 8; are kept constant, equal to unity. 
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Figure 2.11 Effective participation factors at the different floors .sir)Cfl), k = 

1,2,3, against 8;,i = 1,2,3, for the different modes T = 1,2,3, of 

the three-story planar shear building of Figure 2.10; while each OJ is 

varied, the remaining f)j -:f f)i are kept constant, equal to unity. 
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Figure 2.11 Continued. 
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Figure 2.12 Points flY) chosen to interpolate quadratic approximations in ft to 

various modal quantities, which are functions of ft, as discussed in 

Section 2.8. In this case, l'>to = 3, resulting in N/ = 10 required 

points fl i) . 
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Figure 2.13 Normalized pdfs of the modal frequencies W r , r = 1,2,3, for the 

three-story planar shear building of Figure 2.10. Each Bi = 1,2,3 

is assumed to be independently Gamma distributed with (Bi' i.l/};) = 

(1., .10). The solid curve is obtained_using the approximations in 

Section 2.8, while the dashed-dotted curve is obtained using simula-

tions. 
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Figure 2_14 Expected response q(t) of a SDOF oscillator with independently 

Gamma distributed damping ratio ( and frequency w; w = 1Hz, 

Ow = 0.10" = 0.05, at; = 0.20 (El Centro record). The solid curve is 

obtained using numerical integration, while the dashed-dotted curve 

is obtained using the approximations of Section 2.9. 
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Figure 2.15 Standard deviation t7q(t) for the SDOF oscillator of Figure 2.14. 

The solid curve is obtained using numerical integration, while the 

dashed-dotted curve is obtained using the approximations of Section 

2.9. 
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Figure 2.16 E[,sil)lwIJ for a three-story shear building with uniform mass mi = 

mo and interstory stiffness k i = ko8;, i = 1,2,3 (ko = 2000mosec-2 ). 

Each ();, i = 1,2,3 is assumed independently Gamma distributed 

with (Bi,GO;) = (1.,.10). The solid curve is obtained using sim­

ulations, while the dashed-dotted curve is obtained using the lin­

ear approximation (2.10.11). The dashed curve corresponds to the 

marginal pdf of WI, appropriately scaled. 
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E[q~l)(t)l for a three-story snear building with uniform mass mi = 

mo and interstory stiffness k; = koe j , i = 1,2.3 (ko = 2000mosec-2
). 

Each ei , i = 1,2,3 and each damping ratio (r, r = 1,2.3 are as­

sumed independently Gamma distributed with (e;, 09;) = (10' .10) 

and ((r, 0C. ) = (0.05 •. 20) (El Centro record). The solid curve is ob­

tained using numerical integration. while the dashed-dotted curve is 

obtained using the methodology of Section 2.10.1. 
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Figure 2.18 (J' (1) (t) for the same three-story shear building as in Figure 2.17. 
qs 

The solid curve is obtained using numerical integration, while the 

dashed-dotted curve is obtained using the methodology of Section 

2.10.1. 
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Figure 2.19 E[q3(t)] for the three-story shear building of Figure 2.17. The solid 

curve is obtained using numerical integration, while the dashed­

dotted curve is obtained using the methodology of Section 2.10. 
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Figure 2.20 a q3 (t) for the three-story shear building of Figure 2.17. The solid 

rurw is obt.ained Clsing numerical integration, while the uashed-

dotted curve is obtained using the methodology of Section 2.10. 
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Chapter 3 

Improving Response Predictions 

Utilizing Dynamic Testing 

3.1 Introduction 

This chapter is concerned 'with the updating of a mathematical model of 

a structure by using existing records of structural response. The initial uncer­

tainties of the model parameters, as well as the initial uncertainty of the model 

error, are updated by extracting the structural information contained in the 

available records. The probability density function modeling the uncertainties 

of the parameters and the model error, after the updating, is also referred to as 

the posterior probability density function. The degrees of freedom where instru­

mentation allowed for output measurements will be referred to as observed or 

measured dof. Usually, the recorded output consists of the acceleration histories 

at these dof: in this case. the updated posterior pdf is evaluated by utilizing these 

recorded acceleration records directly rather than utilizing velocity or displace­

ment histories obtained through integration of the acceleration histories, since 

such an integration process accentuates long-period errors in the digitized data. 

The goals of this chapter are the following: 

1) To evaluate the posterior pdf's of the uncertain parameters and the model 

error by utilizing the recorded output histories at the measured degrees of 

freedom of the structure for a given excitation. 

2) To utilize this updated posterior pdf to predict: (a) the statistics of the 

uncertain unobserved output quantities of interest for the above given exci-
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tation or (b) the statistics of all the uncertain output quantities of interest, 

at both observed and unobserved dof, for a different excitation. 

The problem of evaluating the posterior pdf of the uncertain parameters and 

the model error is essentially the problem of Bayesian statistical system identi­

fication [Beck 1990]. Aside from predictions, the posterior pdf of the uncertain 

parameters may be used for the purpose of monitoring the structure's health or 

for applying effective control strategies for the structure. In the next section, 

some definitions and notation are introduced to mathematically formulate the 

whole problem of interest. 

3.2 Some Definitions and Notation 

Let ZI,N = {i.(n) E RNJ : n = 1,2, ... ,N} andXI,N = ttO(n) E RNo : n = 
1,2, ... , N} be the sampled observed input and output histories for a structural 

system with a sampling interval of f1t. Assume that an Nd-degree of freedom 

theoretical model )\.1 has been chosen to describe the input-output behavior of 

the system and let Q be the vector of the model's uncertain parameters with an 

associated joint prior pdf 71'.!!.(Q). M provides a functional relationship between 

the model output vector of quantities of interest !l( n; g.) E RNR at time t n = nf1t 

and the system input Z1.n: 

(3.2.1) 

Throughout this chapter, the dependence of !l(n;Q) on the input Zl,n and the 

theoretical model J\Il will be suppressed in the notation. Also, define the vec­

tor L(n) E RNR consisting of all svstem output quantities of interest at time 

tn = nf1t corresponding to !len), including the No observed output quantities. 

Without loss of generality, the elements of ~(n) and !len) are assumed arranged 

so that the first No of them correspond to the observed, and the remaining 

N" = N R - No to the unobserved, output quantities of interest. For example, 

,r.( n) = [~O(n)T,~U(n)T1T, where ~O(n) E RNo and If''(n) E RNu . Assuming that 
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for modern instrumentation the measurement noise is negligible compared with 

the model error, it follows that !lC°(n) = .;r°(n) and ~(n) = ken) for n :S N. 

To account for model error, the class of models M is extended to a class 

of probability models }v/p, parameterized by Q = [gT, 17T JT E RNa+N,. )\ltp 

prescribes a function gM, or equivalently g:11' describing the joint pdf of the 

system's output history given the input history as follows: 

= g~(Xf,M,Xf,M;Q, ZI,M) 
(3.2.2) 

where Xf.M = {!lC°(n) E RNo; n = 1,2, ... , M} and Xi,M = {!lCU(n) E RNu; n = 
1,2, ... , M}. :\ltp is also specifying the prior pdf, so that: 

(3.2.3) 

Let S(Xi'"y1) and S(Xf,M) denote the space formed by the range of Xf,M and 

Xf,M' respectively: 

p(Xf,;\1IQ, Zl,M, j\lt p) = J P(XI ,A'IIQ, ZI,M, Mp )d!lCu (1) . .. d!lCU(lvJ) 

S(X:'.M) 

and 

J g~(Xf,M' Xf,M;Q, ZI,M )d!lCU (l) ... d!lCU(M) 

S(X:',M) 

- fXl(Xf,;\I;Q, ZUI) 
(3.2.4) 

J 
S(Xf,M) 

J 
S(Xi,M) 

= fM(Xf,M;Q,ZI,M) 
(3.2.5) 

Different choices in modeling the model error, such as the equation-error or 

the output-error approach, lead to different probability models )\ltp. 'Vhile the 
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equation-eITor approach is appropriate to account for model eITor due to mea­

surement eITors in the input data, it does not account properly for model eITor 

introduced due to more important factors, such as nonlinearities in the real sys­

tem not accounted for by the theoretical model. An output-error approach, on 

the other hand, is appropriate to account for both model error and measurement 

noise. The probabilistic formulation in this chapter is based on an output er­

ror approach as presented in the next section, and follows closely Beck [1990]. 

Here, this approach is extended to treat predictions of unobserved output quan­

tities of interest by including the parameters QU and Q.u, which are not locally 

identifiable. Also, computationally feasible numerical algorithms are developed 

to evaluate the optimal observed parameters in both the globally and locally 

identifiable cases. 

3.3 Output-Error Approach 

The output eITor ~(n) is defined to be the difference between the system 

output and the model output, so: 

.;l;,(n) = ,q,(n;Q) + ~(n) (3.3.1 ) 

where as mentioned earlier, the dependence of,q, on the input and the theoret­

ical model, as stated in (3.2.1), has been suppressed in the notation. Also, the 

dependence of .;l;,(n) on the input Zl,n has been suppressed in the notation. A 

class of probability models P is selected, parameterized by ()' ERN" prescribing 

a function hjH to describe the joint pdf of the output eITor, so: 

(3.3.2) 

By specifying the classes jVf and P, the class jVfp is specified. The function gM 

in (3.2.2) is specified as: 
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where Q. = [i?, aTJT. Defining E1,M = {~(l), ... &(M)} , notice that: 

p(E1,MI!l, P) = p(~(M)IEl,M-l' a, P)p(E1,M-l)I!l, P) 

= p(~(M)IEl,M-l,!l, P)p(~(M - 1)IE1,M-2,!l, P)p(E1,M-21!l, P) 

M 

= II p(~(n)IE1,n-l,!l, P) 
n=l 

(3.3.4) 

where E1,D is the null statement. Equation (3.3.4) implies that the function hM 

can be prescribed equivalently by specifying the function h~: 

h~(~(n); E1,n-l, a) = p(dn)I~(l), ... ,~(n -l),g, P) (3.3.5) 

since then: 

(3.3.6) 

If the sequence {~(n)} is modeled by an ARMA model of order k, then 

h~(~(n); E1,n-l, a) = h~(~(n); En-k,n-l,!l). The higher k, the more compli­

cated the analysis becomes, without significant improvement in the amount of 

structural information extracted from the available records. Assuming that the 

sequence {~( n)} is a zero-mean stationary Gaussian white-noise sequence leads 

to the standard output-error approach. The white-noise assumption implies tem­

poral statistical independence, that is, the error ~(n) is statistically independent 

of the errors ~(1), ... ,~(n -1), so: 

(3.3.7) 

where G(.Q, ~(!l» is a joint Gaussian distribution with zero mean and a time 

independent NR x NR covariance matrix ~(a). Substituting (3.3.7) into (3.3.6) 

leads to: 

(3.3.8) 
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From (3.3.8) and (3.3.3): 

_ 1 
9M(X1,M;g, Zl,M) = 2!..!!.Ii 1:1 

(271") 2 I~(O")I 2 

( 
1 JH ) 

exp -'2 ~(L(n) - ~(n;g)?~-l(O")(L(n) - ~(n;g» 

(3.3.9) 

Additionally, spatial statistical independence is assumed between all elements 

of ~(n), that is, each model error e;(n) is assumed independently Gaussian dis­

tributed with zero mean and variance depending only on the corresponding phys­

ical quantity. For example, all model errors corresponding to accelerations at 

different dof are assumed independently Gaussian distributed with zero mean 

and variance u~, while, for example, all errors corresponding to displacements 

at different dof are also assumed independently Gaussian distributed with zero 

mean, but with variance u3. This assumption leads to a diagonal ~c.([). Since 

all observed quantities generally represent the same physical quantity, usually 

accelerations at different dof, it will be assumed that: 

(3.3.10) 

where ~O(uO) is a No x No diagonal matrix with identical diagonal elements 

(uo)2, that is. [~O( UO )]ij = (uo)2 0;j, and the covariance matrix for the unobserved 

output ~u(.~O is a Nu x Nu diagonal matrix, with its diagonal terms being squares 

of elements of 0". Let 0" = [O"0,QuT]T, and!!:. = [gOT ,guT]T, where gO is such 

that qi(n;g)::= q;(n;gO),i = 1,2, ... ,No, that is, gO contains the parameters 

controlling the model output at the observed dof. The vector g U is defined 

as consisting of the remaining elements of g; notice however, that the model 

output at the unobserved degrees of freedom may depend on all parameters in 

g, not just g", so in general qi(n; g) ::j:. qi(n; gU), i = No + 1, ... ,No + N u. The 

parameter vectors gO,gU are defined by the theoretical model )\11 and the choice 

of the observed output quantities. along with the choice of the unobserved output 

quantities of interest. For example, consider a theoretical model based on a modal 
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approach and assume that the output quantities of interest are the accelerations 

at all dof, while the observed output consists only of accelerations at specific 

dof; in this case, the modal participation factors at the unobserved dof are not 

needed in specifying the model response at the observed dof and therefore do 

not belong in the vector fJ.D, while they are needed to specify the model response 

at the unobserved dof and, therefore, belong in the vector fJ. U • If, instead, a 

theoretical model based on a finite element approach is employed in the above 

example, as discussed in Section 2.6, then the complete vector fJ., consisting of 

the stiffness parameter vector ~ and the damping ratio vector ~, is needed to 

specify the model response at the observed dof. Therefore fJ.0 = fJ.. 

For the sake of brevity in the notations, the following vectors are introduced: 

aO = [aO
T 

ao)T aU = [aUT auT)T eDen' aO) = xD(n)-qO(n' aO) ERN. ellen' a) == - -, , - - ,- ,- ,- - - ,- ,- ,-

;fU(n) - ~t(n;fJ.) E RNu, ~O(n;fJ.°) - ,iD(n) - gO(n;fJ.D) E RNo. 

If E(a) is given by (3.3.10), Equation (3.3.9) becomes: 

x 
1 

( 
1 M Nu U(. )2) e, n, fJ. 

(2 )~ I'" ( )I M exp -:) L L ["'u(a)] 7r 2 ~u!L 2 -- n=l i=l .:-J _ 11 

(3.3.11) 

Substituting (3.3.11) into (3.2.4) leads to: 

(3.3.12) 

which implies that: 

(3.3.13) 
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Similarly, substituting (3.3.11) into (3.2.5) leads to: 

(3.3.14) 

P(X1,Mlii, Zl,M, j\.1p) = 9M(X1,M;.Q, Zl,M) 

= fM(Xf,Mliio, ZI,M )fM(X~,Mlii, Zl,M) (3.3.15) 

= p(Xf,MI.Q°, Zl,M, Mp )p(X~,Mlii, Zl,M, j\.1p) 

that is, Xf,M and Xf,M are independently distributed when the parameters .Q 

are gIVen. 

3.4 Posterior pdf of Uncertain Parameters 

Let VN denote the set of observed data, consisting of the observed input 

history ZI,N and output history XI,N. As in Section 3.2, it is assumed that for 

modern instrumentation the measurement noise is negligible compared with the 

model error. Therefore, the observed input and output histories are assumed to 

be identical with the corresponding svstem input and output histories, respec­

tively. The updated, or "posterior," joint pdf of {ii} is given by Bayes' Theorem 

(2.3.1): 

(-IV M ) -_ P(XI ,Nlii,Zl,N,Mp)p(iiIA1lp) 
p Q N, P A A 

P(XI,NIZl,N, J\t1p) 

= kp(X1,Nlii, ZI,N, Mp )p(QIMp) 
(3.4.1) 

= kf'N(X1,N;tt)7ra(ii) 

where 

(3.4.2) 
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SO is defined to be the domain of the quantity in the parenthesis. The prior 

joint pdf p(QIM p) can be rewritten: 

where 

p(QOIMp) = J p(QIMp)dQu = 1r~o(QO) 
S@U) 

Substituting (3.4.3) into (3.4.1) and integrating out QU leads to: 

p(QOI'DN,Mp) = kp(X1,NIQo, ZI,N, Mp)p(QoIMp) 

= kfN(XI,N;Qo,ZI,N)1r~o(QO) 

(3.4.3) 

(3.4.4) 

(3.4.5) 

Similarly, by substituting (3.4.3) into (3.4.2) and integrating out QU, an alterna­

tive expression for k- 1 is obtained: 

k-1 =P(XI,NIZI,N,Mp) = J P(XI,NIQo,ZI,N,Mp)p(QoIMp)dQo (3.4.6) 
S@O) 

Equation (3.4.1) may be rewritten using (3.4.3) and (3.4.5): 

(3.4.7) 

The last equation implies that: 

(3.4.8) 

which is simply stating that the observations provide no information to update 

the conditional pdf of the parameters QU, given QO. The updated marginal pdf 

p(Qul'DN,Mp) is: 

P(QUI'DN, A1p) = J p(QuIQo, 'DN, ivlp )P(Qol'DN, Mp )dQO 

S@o) 

= J p(QuIQo,Mp)p(Qol'D./Il,j\l1p)dQo 

S(~O) 

(3.4.9) 
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Notice from the last equation that the data does provide information to update 

the marginal distribution of g u, unless the parameters g U and gO are assumed 

independently distributed a priori. 

As can be seen from (3.4.5), the effect of utilizing the available records to 

update the pdf of the observed model parameters and the observed model-error 

parameter is contained in the term kf'N(XI,N;gO, ZI,N), where k serves as a nor­

malizing constant. Assume that f'N(XI,N;gO, ZI,N), given by (3.3.12), attains its 

global maximum at a unique set of parameters {~o} = {It, aO
}; these parameters 

are also referred to as the "optimal" parameters. If a noninformative prior pdf 

7riio (gO) is assumed locally [Box and Tiao, 1973], in the neighborhood of the opti­

mal parameters, the parameters ~o = [gOT,aojT maximizing f'N(XI,N;gO,ZI,N) 

are also maximizing p(gOI'VN,)\ltP), as can be seen by viewing (3.4.5). In this 
-0 

case, the optimal parameters g correspond to the most probable model within 

the class j\lt p . The assumption of a locally noninformative prior pdf, in the 

neighborhood of the optimal parameters, mathematically means that the prior 

distribution is constant over a neighborhood of radius O( N-I ). Therefore, for 

a slowly varying prior distribution and a large number of data points N, this 

condition is practically always satisfied (see Appendix E). Equation (3.4.5) can 

be rewritten: 

(3.4.10) 

where from (3.3.12): 

1 N No 

I f o (X" . -0 z" ) - NN I ° '\" '\" "O( . 0)2 n N I,N.JI, I,N - -c - ° nO' - 2(0'0)2 ~ ~ ei n,Q (3.4.11) 

and c = - N;'eln(27r). Maximizing f'N(XI,N;gO, ZI,N), with respect to gO, is 

equivalent to maximizing InfKr(XI,Njgo, ZI,N)' At gO = ~o the following condi­

tions hold: 
alnf~,(-t1.N: gO. Z1"") I = 0 

agO lio=~o l3.4.12) 
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This shows how the most probable variance &0(,g0)2, for given,g°, depends on the 

choice of the model parameters ,go. Obviously, the condition for the overall most 

probable variance (&0)2 is given by (3.4.13) when,g° = gO. Substituting (3.4.13) 

into (3.4.11): 

(3.4.14) 

Thus gO is given by minimizing &O(,g0) or, equivalently, minimizing: 

N No 
J(fJ.0

) = N No&O(,g0)2 = L L (xi(n) - qi(n;,go»2 (3.4.15) 
n=1 ;=1 

where the dependence of J(,g0) on the input ZI,N has been suppressed in the 

notation. Also, from (3.4.10) and (3.4.14): 

1 (p(,go,&O(,gO)IVN,Mp») = NNol (&0(~r)2») +1 (1Tj!O,(70(,g0,&0(,g0») 
n p(gO,&0(it)IVN,Mp) 2 n &0(,g0)2 n 1Tj!o,(7o(gO,&o(Q0» 

(3.4.16) 

where 1T!!..o,(7o(j/,&O) = 1T.ii0Cr). Equation (3.4.16) may be rewritten: 

(3.4.17) 

The posterior pdf pUt IV N, j\l1 p) can be approximated locally, in the neighbor­

hood of l/, with a multi-dimensional Gaussian distribution with mean l/ and an 

(No + 1) x (No + 1) covariance matrix Aj\/(~o) (see Appendix E): 

1 

(-01'1'1 1..1) (,"° 1'1'1 1..1) (J. [-0 '"alTA (,"°)[_0 ,"0]) p,g VN,JVIP ~p,g VN,jvIP exp -'2,g -,g N,g,g-,g (3.4.18) 
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(3.4.19) 

The elements of AN are O(N) and, therefore, for a large number N of avail­

able data points, which is usually the case with dynamic tests or earthquake 

records of structural response, the pdf p(gO I TIN , )\11 p) becomes very peaked at 
AO 

the optimal parameters g ; this result can also be concluded by viewing Equation 

(3.4.17). Since the posterior pdf is so peaked at the values of the optimal param­

eters, predictions can be made using the corresponding most probable model 

based on the data, assuming it is globally identifiable [Beck 1990]. The prop­

erty of global identifiability will be explored in Section 3.6, but for now it is 

understood as the existence of a unique set of optimal parameters. 

Consider the case where the optimal parameters are not globally, but locally 

identifiable; that is, where fNCXI,N; gO, ZI,N) attains its global maximum at a 

finite number of parameter sets {Q:; k = 1,2, ... ,K} = fGk' a-Z; k = 1,2, ... ,K}, 

where: 

(3.4.20) 

Following the same steps as in the globally identifiable case, it can be shown that 

the set of the optimal parameter vectors 11k , k = 1,2, ... ,K are all the solutions 

of: 

J(11k) = ~~~) J(flO) ; k = 1, ... ,K (3.4.21) 

Equation (3.4.21) along with (3.4.15) implies that: 

( AO)2_ 1 'J(0)-(AO)2'k-12 K ak - N N illln fl = a , -" ... , 
o 

(3.4.22) 

that is, the optimal variances corresponding to the different optimal parameters 

11k are all equal. If a uniform, noninformative prior pdf 7ry,0 is assumed over the 
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whole domain Se!i.°), then the above solutions g~ = [!i.'(, a-0T1 T , k = 1, .... ]( 

also form the set of solutions that globally maximize pun 'D N , A1 p ). For a 

nonuniform prior, however, it is asymptotically correct that the above solutions 

are all local maxima of pCltl'DN, Mp) (see Appendix E), while the global maxi­

mum is attained only by the solutions Q; = [gf , a-°1T , such that: 

(3.4.23) 

As before, the pdf p(ilol'DN, Mp) can be approximated in the neighborhood 

of each of the optimal parameters Q~ with a scaled multi-dimensional Gaussian 

distribution with mean Q~ and a covariance matrix Aj\/(Q~), in accordance with 

(3.4.18). For large N, the pdf P(!tl'DN,Mp) collapses to a few peaks located 
-0 

at the optimal parameters lh , k = 1, ... ,K. Consequently, it is asymptotically 

correct for prediction purposes to use, out of the class J'v1p, only the probabil-
-0 

ity models corresponding to the optimal parameters ilk , k = 1, ... , K. Each 

of these models is weighted proportionally to the volume of the posterior pdf 

p(ilol'DN,J'v1p) under its Gaussian-shaped peak positioned at the corresponding 

optimal parameters. The mathematical expression for the weighting coefficient 

Wk corresponding to the kth vector of optimal parameters g~ is (see Appendix 

E): 
Wi _ k 

Wk - K 
I':k=l w~ 

(3.4.24) 

where 

(3.4.25) 

The elements of AN(Q~) can be evaluated numerically through (3.4.19). Numeri­

cal examples have shown that these calculations can be very sensitive to roundoff 

errors if the vector of the observed model parameters gO does not consist of modal 

quantities exclusively. In addition, independent of the choice of g,.o, the matrix 
-0 

ANCih) is often ill-conditioned, which results in numerical errors when calcu-

lating IAj\/(Q~)I. Thus, the weighting effect of IANl(Q~)lt cannot be estimated 
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reliably in general by calculating it directly. A reliable alternative expression is 

presented later in Section 3.12.3 to overcome this difficulty. Notice that the prior 

pdf 7r~o(iiO) does not need to be specified over the whole domain SWO). Instead, 
-0 

only the relative values for the optimal parameters iik need to be specified. 

Summarizing the above results, the posterior pdf p(iiol'DN, )\l1p) for a large 

number N of data points and for the locally or globally identifiable case is given 

by: 
K 

p(iiOIDN,Mp) ~ LWkG (iiO;g~,A;\?C.G~») 
"'=1 

(3.4.26) 

( 

_0 1 _0 ) 
where G iio;ih,AjV (iik ) is a multi-dimensional Gaussian distribution for ft, 

with mean g: and covariance matrix AjVl(g:), and Wk is given by (3.4.24). In 

the globally identifiable case, K = 1 and WI = 1. 

Equation (3.4.7), along with (3.4.26) is used to obtain p(iiIDN, J\It p). It is 

asymptotically correct that: 

K 

P(QjDN,.Mp) = L WkG (iiO;g:, AjVl(g:») p(iiUlg:,Mp) (3.4.27) 
k=1 

or integrating out iio: 

K 

p(iiU ID.v,.-\It p) = L wkP(.iiulg:, .Mp) (3.4.28) 
1:=1 

Assuming that g and !L are independently distributed a priori: 

(3.4.29) 

-0 
the conditional prior pdf p(ii U lih, M p ) in the last two equations can be expressed 

as: 

(3.4.30) 
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3.5 Posterior Predictive Probability 

The pdf P(XI,MIZI,M,Mp), before any of the information contained in 

the data }(I,N is employed, is given by: 

P(XI,MIZI,M,Mp) = J P(X1,Mlii,ZI,M,Mp)p(g'\J\I!p)dii 

s@ 

= J 9M(XI,M;ii, ZI,M }7l"~(ii)dii 
s@ 

where 9M(X1,M;ii,Zl,iu) is given by (3.3.11). Also: 

and 

P(Xf,MIZl,M,)\I!P) = J p(Xf,Mliio,ZI,M,Mp)p(iioIJ\I!p)diiO 

s@o) 

= J fM(Xf,M;iiO,Zl,M)lI'~o(iiO)diiO 
s@o) 

p(X~,MIZl,M,Mp) = J p(X~,MIQ,Zl,M,Mp)p(QIMp)dQ 
s@ 

= J fXl(Xf,M;Q,ZI,M)lI'~(ii)dii 
s@ 

(3.5.1) 

(3.5.2) 

(3.5.3) 

where iXl(X'l,MiQo,Zl,M) and iXl(Xf,M;Q,ZI,lVl) are given by (3.3.12) and 

(3.3.14), respectively. Notice, however, that Xf,M and Xf,M are no longer inde­

pendently distributed, in contrast to the case where Q is given: 

(3.5.4) 

The first two moments of the elements If( n) can be evaluated according to 

Equations (2.4.8) and (2.4.9), where the explicit dependence of If and !1. on n has 

been omitted. The high dimensional integrals in these equations can be evaluated 

using the methodology proposed in Chapter 2. 
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Utilizing the available data XI,N, the posterior pdf p(iil'DN,j\llP) is ob­

tained, as discussed in the previous section. This updated pdf can be used to 

evaluate either (a) P(Xi,NI'DN,M p ), the posterior pdf of the unobserved out­

put quantities for the given excitation, or (b) p(XN+1,MI'DN, ZN+l,M, j\llp), the 

posterior predictive pdf of both observed and unobserved output quantities for a 

future excitation ZN+l,M, which is assumed to be specified. 

(a) For the former case, P(Xi,NI'DN,Mp) is given by: 

P(Xi.NI'DN,Mp) = J P(Xi,Nlii,'DN,Mp)pCQI'DN,Mp)dii 

S@ 

Notice that: 

From (3.3.15), it follows that: 

(3.5.5) 

P(X1,N,Xi,N Iii, Zl,N,j\llP) = P(Xl,Nlii, Zl,N,Mp )P(Xi,Nlii, ZI,N, Mp) 

(3.5.7) 

Combining (3.5.6) and (3.5.7) leads to: 

P(Xi,Nlii, V"" "\IIp) = P(Xi,N Iii, ZI,N, ;\IIp) 

= fN(Xi,N;ii,ZI,N) 

Substituting (3.5.8) into (3.5.5) leads to: 

P(Xi,NI'DN,Mp) = J fN(XtN;ii, ZI,N)P(QIVN, Mp)dQ 

s@ 

(3.5.8) 

(3.5.9) 

Utilizing (3.4.27), along with Equation (3.5.9), the following expression, which is 

asymptotically correct for large N, is obtained: 

K 

P(Xi,N IV,,-,. \,1 p) ~ L wkP(Xi,N I~~, Zuv-,.\II p) (3.5.10) 
k=1 
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p(X~,NIQ~, DNMp) = J fN(X~,N; Q~,Qu, ZI,N) 

S(i") (3.5.11) 

Equation (3.4.30) can be employed to describe 7l"i" liO' if Q and a are independently 

distributed a priori. This equation shows that integration only over the space 

of the unobserved parameters is required in order to calculate p(Xi',NIDN, Mp), 

while p(X~,NIZl,N' Mp) required integration over the space of all observed and 

unobserved parameters. The integration over the space of the observed param­

eters is replaced in the former pdf by a discrete sum over all optimal solutions 

{Q~ , k = 1, ... , X}. In the special case where Q = QO and!l. = {aO}, Equation 

(3.5.10) can be written as: 

J( 

p(X~,NIDN,Mp) ~ 2:,WdN(X~,N;Q:,Zl,N) (3.5.12) 
k=1 

The expressions for the first two moments of ;f U (n) after the updating, as­

suming Q and a are independently distributed, are given by: 

J( 

E[;fU(n)IDN, Mp] = 2:, Wk J !t(n;Qk,QU)7l".!!"I.!!o (Qu;Qk)dQu 
k=l S(a") 

(3.5.13) 

and 

J( 

Cov[;fU(n)IDN,lv/p] = 2:,Wk 
k=l 

J U( -0 U) uTe ~o ll) ( u ~O)d u !1 n;QbQ!J. n;QbQ 7l".!!"I.!!O Q ;Qk Q 

S(.!!" ) 

- E[;fU(n)IDN, Mp]E[;fU(n)IDN,Mp]T 
J( 

+ 2:,Wk J ~U(a-°,aU)7l".e."It7o(au;a-O)daU 
k=l S(z.") 

(3.5.14) 

If the model output qi(n) corresponding to an unobserved output quantity 

xi(n), i = 1, ... ,Nu depends only on QO, that is qi(n;Q) = qi(n;QO), then 
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Equations (3.5.13) and (3.5.14) reduce to: 

and 

K 

E[xi(n)IVN,Mpj = L W kqi(n;l1k) 
k=l 

K 

Var[xi(n)IVN,J\ltP] = L wkqi(n;11k)2 - E[xi(n)IVN,Mpj2 
k=l 

K 00 

+ L Wk J(aD27rt7ilt7o(a~laO)da: 
k=l 0 

(3.5.15) 

(3.5.16) 

where (aD2 = [I:u(.Q:)jii. The last term in the right hand side of (3.5.16) can be 

written as E[( aD2laOj. Additionally, if O'l = 0'0, this term reduces to (ao)2. 

(b) The expressions for the posterior predictive pdf of the unobserved output 

quantities P(XJV+l,MIVN,ZN+l,M,J\ltP) are obtained through the expres­

sion for P(Xf,NIVN,J\ltP) by replacing Xf,N with XJV+l,M and 

fJV(Xf,N;g, ZI,N) with fJV+I,M (XJV+1,M; g, ZI,N, ZN+I,M) given by: 

r (X" '0. Z Z ) = fM(Xf,M;g,ZI,N~ZN+1,M) 
N+I,M N+I,M,-, I,N, N+I,M fU (X" . 0. Z ) 

N I,N'-' I,N 
1 

The expressions (3.5.13) through (3.5.16) remain the same, only n is assumed 

to belong in the set {N +1, ... , M}. As done all along, the dependence of qi(n;g) 

and ei(n;Q) on the input {ZI,N, ZN+I,n} and the theoretical model M, has been 

suppressed in the notation. The expression for the posterior predictive pdf at 

the observed dof is: 

P(XiV+I,MIVN,ZN+1,M,Mp) = J P(XN+I,Mlgo,VN,ZN+I,M,Mp) 

S(1!°) 

(3.5.18) 



- 99-

Notice that: 

= fN+I,M(XN+I,MjgO, ZI,N, ZN+l,M) 

= P(XN+I,M/gO, ZI,N,ZN+I,M,Mp) 
(3.5.19) 

where 

f o (XO . -0 Z Z ) _ 1 N+I,M N+I,jW,Q, I,N, N+I,M = (M-N)No 

(27T(U°)2) 2 

Substituting (3.5.19) into (3.5.18), we obtain: 

P(XN+I,M/'VN,ZN+l,M,Mp) = J fN+l,M(XN+I,MjgOZI,N,ZN+I,M) 
S(iO) 

P(g°/'DN, JV!p )dgO 
(3.5.21) 

Utilizing (3.4.26), the above equation leads to the following approximate expres­

sion, which is asymptotically correct for large N: 
J( 

P(XN+I,M/'VN,ZN+I,M,Mp) ~ L WdN+l,M(XN+l,MjQ.~,Zl,N,ZN+I,M) 
R=l 

(3.5.22) 

which is equivalent to the expression given by Beck [1990J. The expected value 

and the variance of xiCn) , n = N + 1, ... ,M are given by: 
J( 

E[xiCn)/'VN, ZN+l,M,MpJ = L wkqiCnjQ%) (3.5.23) 
k=l 

and 
J( 

Var[xiCn)/'VN, ZN+l,M, MpJ = L wkQiCnjQ%)2 + (0-0)2 
k=l 

(3.5.24) 

- E[xiCn)/'VN, ZN+l,M,MpJ2 
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Note that in the globally identifiable case, that is K = 1, the above equations 

reduce to: 

E[xiCn)I'DN,ZN+1,M,Mpj = ql'(n;gO) 

Var[xiCn)I'DN, ZN+l,M, Mpj = (&0)2 

3.6 Definitions of Model and System Identifiability 

(3.5.25) 

(3.5.26) 

Let M be a theoretical parametric model, where a particular choice of the 

values of its parameters g = [gOT ,guT]T E S(gO) x S(gU) = Seg) is assumed 

to specify a unique model M(g) within the class M = {M(g) : g E S(g)}. 

Assume that the sampled input Zl,N = {Z(n) E RNJ : n = 1,2, ... N} and 

output X1,N = {iO(n) E RNo : n = 1,2, ... N} histories for a structural system 

are given, then the basic problem of interest in this section is whether the given 

input and output specify a unique model within the class M. 

Let Q'l,N(g;Zl,N) = {~O(n;gO,Zl,N,M) E RNo : n = 1,2, ... ,N} denote 

the model output history which corresponds to the observed quantities for the 

given input Zl,N and for a model Meg) E ;\'1, and let S(QtN; Zl,N) denote 

the space formed by the range of Q'l,N(g; Zl,N) as g ranges over S(g). There 

is a natural mapping of the models in the class M onto S(QtN; Zl,N), but it 

may happen that several models in /\11 get mapped into the same output under 

the specified input, making the inverse problem non-unique for that input and 

output. 

First, consider the case where X1,N E S(QtN; Zl,N), that is, the observed 

output is the output of one of the models in the class M. Define an optimal 

model M(g) to be any model in M such that: 

(3.6.1) 

The stated hypothesis implies that there is at least one optimal model. If there is 

more than one optimal model in M, then all such models are "output-equivalent" 
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for the given input and are therefore indistinguishable on the basis of that input 

and output alone. 

Let Sopt(lvI(ft); ZI,N) c M denote the set of all optimal models which are 

output-equivalent to model lvI(ft) under input ZI,N' Let Sopt(ft; ZI,N) c SeQ) 

denote the set of all corresponding optimal parameters. The following definitions 

are introduced: 

Ml. A parameter aj of Q E SeQ) is globally M -identifiable ("model identifiable") 

at ft for the input ZI,N if Sopt(ft; ZI,N) contains only one optimal parameter 

or, if not, then for any two optimal parameters ft(ll and g}2l in Sopt(fti Zl,N) 

the following holds: 

(3.6.2) 

Definition Ml implies that aj is uniquely specified by Zl,N and X1,N = 

Q'l,N(fti Zl,N). 

M2. A parameter Qj of Q E SeQ) is locally lvI-identifiable at ft for the input Zl,N 

if there exists a positive number Ej such that for any two optimal parameters 

ft(Il and g}2l in Sopt(.ffi Zl,N) the following holds: 

(3.6.3) 

Definition 1\12 implies that aj is uniquely specified within a neighborhood 

of each of its possible values by ZI,N and XI,N = Ql,N(fti ZI,N), and that 

if SeQ) is a closed-bounded parameter set, there are only a finite number of 

possible values for aj under the given input and output. Note that if aj is 

globally M-identifiable at ft, then it is also locally lvI-identifiable at ii. 

M3. A parameter aj of Q E SeQ) is lvI-identifiable at ii for the input ZI,N if it 

is either locally or globally M-identifiable. For example, the elements of QU 

T T 
are not M-identifiable at any point ft = [ft° ,ftu F if the range S(Qu) is 

a dense, non-null set, since, by definition, the model output Qr.N (iii Z1,lv) 

does not depend on Q U • 
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The above definitions can be extended as follows: 

The parameter vector Q, or a portion of it, is globally (locally) M-identifiable 

at g if all its elements are globally (locally) M-identifiable at g. The parameter 

vector Q is not M-identifiable at g if at least one of its elements is not M­

identifiable at g. 

If Q is globally M-identifiable at g, then Sopt(gi Zl,N) = {g}, that is, M(g) 

is the only optimal model corresponding to Zl,N and X1,N = Ql,N(gi Zl,N)' In 

this case, the model M(g) is said to be globally identifiable for the input Zl,N' 

If Q is locally M-identifiable at g, then Sopt(gi Zl,N) consists of a countable 

number of optimal parameters, that is, Sopt(jli Z},N) = {g(k) : k = 1,2, ... }. If 

the parameter space SeQ) is closed and bounded, then Sopt(gi Zl,N) will actually 

consist of a finite number K of optimal parameters, that is, Sopt(g; Zl,N) = 
{g(k) : k = 1,2, ... , K}. In this case, each model M(g(k) is said to be locally 

identifiable fer the input Zl,N' 

If Q is not M-identifiable at g, then Sopt(gi Zl,N) is a dense set, so there 

IS an infinite number of optimal parameters. Each model in the infinite set 

Sopt(M(g); Zl,N) is said to be unidentifiable for the input Z} ,N. 

The above definitions of identifiability can be extended for the case of real 

data DN = {Zl,lv,-Y1,N}, where j'l,N tJ. S(Q'l,NiZl,N), that is, the case where 

the observed system output is not the output of any of the models in the class j\!1 

because of the existence of model-error and measurement noise. In this case, the 

class M is extended to a class of probability models Mp, as discussed in Section 

3.2, where a particular choice of its parameters Q = [QT, aTjT E SeQ) x S(g..) = 
seQ) is assumed to specify a unique probability model Mp(Q) within the class 

j\!1p. As discussed in Section 3.2, Mp prescribes, among others, a function IN 
such that: 

(3.6.4) 

that is, it prescribes the probability for all possible observable output histories 
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for given probability model parameters Q. It was also shown that iN depends 

only on the parameters f/ = [QoT, l1 o jT, that is: 

(3.6.5) 

An optimal model Mp(l!) for given data VN is defined to be any model in Mp 

such that: 

iNO(X1N;l!,ZlN)= max iN°(X1N;Q,ZlN) (3.6.6) , . iESm ' , 

where the parameters l! = [I{, a-T]T are called optimal parameters. Let 

Sopt(Mp(l!);VN) ~ Mp denote the set of all optimal models in the class j\lfp 

and Sopt(l!; VN) ~ SeQ) denote the set of all corresponding optimal parameters. 

All the earlier definitions of identifiability can be generalized simply by extending 

the parameter vector Q to l! as follows: 

81. A parameter iij of g E SeQ) is globally S-identifiable ("system identifiable") 

at l! for the input and output data V N if Sopt(l!; VN) contains only one 

optimal parameter, or, if not, then: 

(3.6.7) 

82. A parameter iij of Q is locally S -identifiable at l! for data VN if there exists 

a positive number Ej such that: 

(3.6.8) 

83. A parameter iij of Q is not S-identifiable at l! for data VN if it is not locally 

S-identifiable. 

As was shown in Section 3.4 and 3.5, it is of particular importance to in­

vestigate the identifiability of the optimal observed parameter vector gO based 

on input and output data from the structural system. IT flO is globally or lo­

cally S-identifiable, simplified expressions hold for calculating the posterior pdf 
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of the uncertain parameters or the posterior predictive probability of the output 

quantities of interest, when the sample size N is large. 

A major complication in the case of real data is the following. \¥bile in 

the case of M-identifiability all optimal models M(g.) E Sopt(M(fl); Zl,N) have, 

by definition, the same model output Q~ N(fl; Zl,N), this is not necessarily true , 

when identifying the optimal models Mp(fl) E Sopt(Mp(g); 'DN) in the case of 

real data. That is: 

:.(1) _ [~(l)T ~(l)TJT E S (~.".,.,) d :.(2) - [~(2)T ~(2)TJT E S (~.".,., ) Q - Q ,f!.. opt Q, v N an Q - Q , !l. opt Q, v N 

-"- QO (~(l). Z~ ) QO (~(2). Z~ ) 
1"" 1,N Q , 1,N = 1,N Q , 1,N 

(3.6.9) 

It is true, however, that given a model M p (fl, &) in the class M p, all other models 

M(Q*) E Sopt(Mtfl); Zl,N), if any, having the same observed model output as 

M(fl), correspond to an optimal model Mp(Q*, &) E Sopt(Mp(fl, a); 'DN) in the 

class Mp. That is: 

(3.6.10) 

Another way of looking at this result is that if the parameter vector Q is not 

globally M-identifiable at fl, then Q cannot be globally S-identifiable at [flT, &TjT. 

Furthermore. the number of optimal probability models in Sopd AI peg, ft); 'DN) e 
jlltp must be at least as large as the number of optimal models in Sopt(M(fl); Zl,N) 

eM. 

In the next section, some M-identifiability results presented by Beck [1978J 

for the class JlltNd of Nd-degree of freedom linear structural models are reviewed. 

A modal form of the theoretical model is studied. 

3.7 Identifiability of Some Modal Parameters 

Assume the modal form of the theoretical model defining the class Jilt Nd 

of N d-degree-of-freedom (dof) linear structural models (see Section 2.6). The 
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parameters of this theoretical model, assuming zero initial conditions, are the 

modal frequencies Wn the damping ratios (n and the effective participation fac­

tors ,a~r) where i, r = 1,2, ... , Nd. Let.e° and .eu denote the set of integers 

corresponding to the observed and unobserved degrees of freedom, respectively. 

The two sets are related as follows: 

.eu = {1,2, ... ,Nd} _.eo (3.7.1) 

It has been shown [Beck 1978] that the parameters {wr, (r, ,af r
), r = 1,2, ... , Nd, 

i E .eO} which comprise the elements of gO are globally M-identifiable from the 

input and output if the following conditions are met: (a) the model has no 

repeated modes, that is, no two modes have the same modal frequencies and 

damping ratios, (b) there are no modes with a zero participation factor, and 

(c) no mode has a node at each coordinate at which the response is measured. 

Conditions (b) and (c) can be stated as follows: for each mode r = 1,2, ... , N d, 

there exists at least one i E .eo, such that ,air) # O. Notice that if this condition 

is not satisfied, that is, if ,af r) = 0 for each i E .eo, the rth mode will be missing 

from the output and hence Wr and (r will not be able to be determined from the 

input and output. 

A practical way of obtaining the globally identifiable optimal vector gO has 

been developed [Beck 1978]. In the case ofreal data, the existence of model error 

and measurement noise does not allow for global S-identifiability of the modal 

parameters in QO corresponding to the higher modes. However, these higher 

modes do not have an important contribution when predicting the structural 

response at the observed degrees of freedom for a future excitation of similar 

spectral content. 

The property of global M-identifiability of the elements of QO and the ef­

ficiency of the above-referenced numerical algorithm for obtaining the optimal 

parameters makes it very convenient to apply this modal identification. How­

ever, there are also several drawbacks associated with it. 
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The first drawback associated with the modal identification becomes ap­

parent if the class of linear models considered is a subclass of the class iv'tNd 

of linear classically-damped Nd-dof structural models. Notice that in the case 

where the whole class lvtNd is considered, the space of permissible values SeQ) 

for the modal parameters Q is regular and well defined, since the only constraints 

are 0 < W r , Ws S; Wr for s < r, 0 S; (r < 1, and ~;:l ,8~r) = bi. The condition 

Ws S; Wr for s < r is imposed by defining the rth mode to be the mode whose 

corresponding modal frequency is the rth of the modal frequencies when they . 
are placed in an ascending order. Consider now a subclass of lvtNd specified by 

imposing certain constraints on the stiffness matrix ](. For example, the class of 

planar shear structural models constitutes a subclass of MNd with the stiffness 

matrix of its models having a specific tridiagonal structure. For such a sub­

class of models, the space S(QO) of permissible values for QO is no longer regular 

shaped, but instead can become very irregular and difficult to define. Therefore, 

an optimization algorithm searching for the optimal parameters in S(QO) can be­

come extremely cumbersome. Thus, although usually the lack of need to specify 

a structural model other than it be linear is a major advantage of the modal 

identification approach, it becomes a drawback when it is desirable to use more 

detailed information about the structural system. 

Another closely related drawback is that when applying the modal identi­

fication, no information is extracted from the available data to directly update 

the remaining uno bserved modal parameters {,8) r) , r = 1, ... , N, i E .c u }, which 

comprise the elements in QU. The elements of QU are updated through (3.4.28), 

which for the special case where ]( = 1 gives: 

(3.7.2) 

In the case where the whole class MNd is considered, the elements of QU remain 

unidentifiable after using the available data, since the domain of permissible 

values for the elements of QU given f/ is a whole continuum restricted only by 
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the constraints I:~=l f3I r) = bj,i E Cu. This unidentifiability can result in large 

uncertainties when predicting the values of output quantities at the unobserved 

degrees of freedom. On the other hand, if a particular subclass of MNd is consid­

ered, then the domain of permissible values for flU given [{ might consist of one 

or a finite set of isolated points, in which case flU is globally or locally identifiable, 

respectively. These questions of identifiability of flU cannot be answered directly 

by using modal identification alone without reference to the particular structure 

of the considered subclass. Another situation where unidentifiability might be 

avoided by utilizing the particular structure of the subclass of consideration is 

the case where some of the conditions for global identifiability, stated earlier, are 

violated, resulting in unidentifiability of some of the elements of flO when modal 

identification is utilized alone. 

Another drawback of modal identification is that it does not provide informa­

tion regarding the identifiability and the optimal values of structural properties, 

such as stiffnesses, which can be of great interest to the engineer, unless a subse­

quent stage of identification is performed using the identified modal parameters. 

To overcome these wealmesses of modal identification, the identification of 

a different set of parameters, not all modal, will be addressed. 

3.8 A Combined Set of Modal and Structural Parameters 

Consider again the class iI/INa oflinear, classically damped structural mod­

els. Assume that the mass matrix M is known, while the stiffness matrix J( and 

the damping matrix C are unknown. Let the stiffness matrix be parameterized by 

a set of dimensionless parameters {ej , i = 1, ... , No}, as prescribed by (2.6.10), 

where each ej scales the stiffness contribution J(j of a certain substructure to the 

total stiffness matrix. The set of permissible values for each ej is S(ei ) = [0, co). 

Notice that if I( has a particular structure, such as' being tridiagonal, this struc­

ture is preserved and J{ remains physically interpretable and consistent through 
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such a parameterization. The damping matrix C is assumed to be specified by 

using the set of its modal damping ratios {(n r = 1, ... , N d } and the set of the 

stiffness parameters fl.. This becomes possible by utilizing (2.6.33b), where the 

vector of modal frequencies ~ and the matrix B of the effective participation 

factors can be obtained for the given fl. by solving the appropriate eigenvalue 

problem involving the resulting stiffness matrix K and the known mass ma­

trix M, as discussed in Section 2.6.2. Therefore, the resulting parameter vector 

Q = [fl.T,~T1T, consisting of the structural parameters fl. and the modal param­

eters ~, completely parameterizes the class or subclass of /vtNd of interest, and 

will be the target of identification. It is interesting to note that this choice of 

parameters leads to QO = Q, that is, all parameters in Q become involved in any 

observed output, and, therefore, all parameters in Q will be updated directly from 

any observed data. This is due to the fact that the output at the ith degree of 

freedom depends on the set of modal quantities {wr , (r, fif r
) , r = 1, ... , Nd}, out 

of which the set {(r, r = 1, ... ,N d} is directly contained in Q and the remaining 

set {wr , fit), r = 1, ... ,Nd } is directly dependent on the remaining parameters 

fl.. 

According to the discussion of Section 3.7, the parameters ~ = [(1, ... , (NdJT 

are globally .lVI-identifiable if certain conditions are met. Therefore, the problem 

of model identifiability of the optimal parameters reduces to the model identifia­

bility of fl.. The goals of the remaining sections of this chapter are: (a) to present 

an efficient algorithm for obtaining the optimal parameters (ft,~) by minimizing 

a function J(fl., D and (b) to investigate the model identifiability of the optimal 

parameters fl.. 

3.9 Recovery of Optimal Parameters 

By definition, the optimal parameters globally maximize the function 

rvCXl,lV;Qo, 0'0, Zl.N). It was shown in Section 3.4 that the optimal parameters 
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f/ globally minimize J(g,.o) , given by (3.4.15), where the dependence of J(QO
) 

on the input and output data and the theoretical model is suppressed in the 

notation. Notice that J(QO) is a nonlinear function in the parameters QO. This 

is because flo is a honlinear function of QO, even if the model is linear in the 

parameters. The task of finding all the global minima of a nonlinear function of 

one or more variables, subject to possible constraints, is extremely difficult. The 

difficulties encountered are associated with the following two steps: 

1. Choosing an algorithm that will converge to at least a true local minimum 

of J. In addition, the desired algorithm is required to be computationally 

efficient, that is, converge to the minimum quickly without using too much 

memory. The choice of an appropriate algorithm clearly depends on the 

function to be minimized. An inappropriate algorithm may not converge at 

all, or may exhibit premature convergence, that is, it may indicate that con­

vergence has been achieved before a local minimum has been reached. This 

is often the case if the function to be minimized is very slowly varying along 

some twisted "valley floor" in the multi-dimensional parameter space. The 

property of computational efficiency is equally important as the property of 

convergence. since a theoretically converging, but very slow algorithm, may 

require an unrealistic amount of time and computational cost, so that it has 

to be \'iewed as practically non-converging. 

2. Examining if the attained minimum of J is a global one or just a local mini­

mum, and if it is global, examining its uniqueness. In the case of nonunique­

ness, the additional task of finding all global minima is required. Virtually 

nothing is available for finding all global extrema of non-convex functions. 

The approach usually followed is to find the local minima reached by starting 

from widely varying starting values of the independent variables and then 

to pick the most extreme of these. There is no systematic way of assuring 

that all global minima have been reached other than an exhaustive search 

through the whole parameter space, which is computationally prohibitive in 
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most applications in higher dimensions. 

In the nex't sections, an efficient algorithm for finding all global minima of 

J(gO) will be presented for a particular case where gO = g = [tt,~TJT. 

3.9.1 Comments on the Performance of Existing Minimization 
Algorithms when Applied to Minimizing JW,~) 

A review of well-established minimization algorithms can be found in 

[Press H.W. et al., 1989J. The performance of these algorithms when applied to 

minimize J(ft,O is evaluated in this section. 

As a first step, it is important to realize the amount of calculations involved 

in evaluating J(ft, ~), given by: 

N No 

J(ft,Q = I: I:(xi(n) - qf(n;ft,~»2 (3.9.1) 
n=1 ;=1 

The dependence of J and qf on the input has been suppressed in the nota­

tion. In order to evaluate the model response qf, the necessary modal quantities 

have to be calculated first by solving the appropriate eigenvalue problem. Next, 

the histories of each of the modal contributions {qi(r>c n; wr(ft), ,Bt) (ft), (r), n = 
1,2, ... , N}, T' = 1, ... , Nd must be calculated. If qf represents a displacement 

quantity, that is achieved by numerically solving (2.6.29). If qi represents ve­

locity or acceleration, it is calculated through appropriate differentiation of the 

corresponding displacement. Finally, qf is calculated as a superposition of its 

modal contributions by (2.6.28). Hence, it follows that evaluating the function 

J(ft,~) is computationally expensive and, therefore, it is desirable to evaluate it 

as few times as possible. 

All minimization algorithms perform a sequence of one-dimensional min­

imizations. The difference between the various methods lies in the choice of 

the directions along which the one-dimensional minimizations are performed. In 

choosing the directions of I-D minimizations, some of the methods require only 
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evaluation of the function to be minimized, while others also require evaluation 

of its gTadient. Independent of whether or not derivative information is used, an 

algorithm may b~come very inefficient for certain configurations of contour maps, 

if no information accumulated during the preceding one-dimensional minimiza­

tions is utilized to influence the choice of the future directions. An example of an 

inefficient algorithm without the use of derivative information is demonstrated 

in Figure 3.1, where the convergence path followed by successive minimizations 

along the coordinate directions for a function with a contour map containing 

a long, narrow valley is depicted. Unless the valley is optimally oriented, this 

method is extremely inefficient, taking many steps to get to the minimum. On 

the other hand, the method of steepest descent is an example of an algorithm 

using derivative information, which is very inefficient for obtaining the minimum 

in the case of the function of Figure 3.1. Actually, in the case of a function of two 

variables, the method of successive minimizations along the coordinate directions 

is equivalent to the method of steepest descent after the first 1-D minimization 

has been performed [Beck 1978J. 

Among the best-established categories of algorithms that include updating 

of the directions along which 1-D minimizations are to be performed, using in­

formation extracted from the preceding 1-D minimizations, are the following: 

a) The direction-set methods among which Powell's method is the prototype. 

This is a method not requiring calculation of derivatives. 

b) The conjugate gradient methods, which require derivative calculations. The 

best known members of this family are the Fletcher-Reeves algorithm and 

the closely related Polak-Ribiere algorithm. 

c) The quasi-Newton or variable metric methods, which also require derivative 

information. The best known algorithms in this category are the Davidon­

Fletcher-Powell (DFP) algorithm, and the closely related Broyden- Fletcher­

Goldfarb-Sharma (BFCS) algorithm. 
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For the case where a method requiring derivative information is chosen, it 

is important to emphasize that numerically approximating the derivatives g~ 

using a central difference method does not allow for reliable estimates due to 

significant numerical errors. Instead, the derivatives ought to be calculated by 

using the analytical expression: 

aJ Na aJ a Na N No a o{r)(. (B) ) _ = ~_~ = _2~~~('0( )_ "( .e f»~ q; n,Wr - ,(r 
all. ~ a all. ~ ~ ~ x, n q, n,_,.::. a 

171 Wr (71. Wr 
r=l r=1 n=l ,=1 

where ~~~ is calculated analytically by (See Appendix B): 

aWr = _l_q}r)T K;¢(r) 
aei 2wr - -

(3.9.2) 

(3.9.3) 

o{r) 

and aqj (n:wr (1J}'(r) is calculated by solving an appropriate differential equation, aW r 

analogous to (2.5.11), if qi represents displacement. The additional computa­

tional cost for calculating the derivatives of J is usually not compensated for by 

a proportional increase in the performance of the algori thms making use of them. 

All three categories of algorithms mentioned earlier were tested using simu­

lated data. The input was chosen to be the 1940 El Centro earthquake record, 

NS component. The observed output was chosen to be the response at the roof 

of a Nd-dof planar shear structural model with uniform distribution of mass, 

m; = rna, i = 1, ... ,Nd, and interstory stiffness, k; = ko, i = 1,2, ... Nd, and 

equal modal damping ratios, (r = (0' 7' = 1 ... Nd. Assuming the damping ratios 

to be known and fixed, the function J to be minimized becomes only a function 

of the parameters fl, that is, J = J(fl.) , where B; is assumed to scale the ith 

interstory stiffness, that is, k; = B;ko • Obviously, in this case of ideal data, the 

minimum value that J(fl.) attains is zero. Also, it is known that ~ = [1,1, ... , If 
is an optimal vector. The convergence of each algorithm was tested for different 

numbers of degrees of freedom Nd, varying from two to six, and using different 

starting points in each case. The values for k" and (0 were chosen arbitrarily to 
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be ko = 2000mosec-2 and (0 = 0.05. Table 3.1 shows some of the results ob­

tained for a small representative sampling of this numerical testing for the case 

where Nd = 4. The point ~o corresponds to the chosen starting point, while the 

point ~* corresponds to the point to which each algorithm converged. It can be 
N No 

seen that although the values of J(~*), normalized by 2:::: 2:::: xi( n?, are small, 
n=1 ;=1 

the values of the final estimates 8i are up to 20% different from the exact opti-

mal values 8; = 1. In the following, the conclusions drawn from these numerical 

studies are summarized. 

The most important and general conclusion is that none of the applied al­

gorithms guaranteed convergence to the real local minimum, especially as cases 

with a higher number Nd of dof were considered. Although Powell's method con­

verged slightly faster, in general, than the methods using derivative information, 

all algorithms reached their convergence criterion of a relative change in J being 

below a prescribed threshold taken to be 10-4 , before reaching the optimal solu­

tion ft = [1,1, ... , l]T. However, the corresponding minimum value of J achieved 

was close to zero. The fact that a value of J so close to zero is achieved without 

reaching the optimal solution, where J reaches its global minimum value of zero, 

implies that the contour-map of J contains a very "flat valley floor" on which 

the reached solutions, as well as the targeted optimal solution, lie. The solution 

in the neighborhood of~, to which each algorithm converged, was dependent on 

the starting point, which usually was chosen to be relatively close to the targeted 

optimal solution, and on the algorithm used. However, the larger the number Nd 

of degrees of freedom considered, the farther the obtained solution was from the 

optimal solution in general. In some cases, where the starting point was chosen 

to be far apart from the optimal solution, the convergence criterion was reached 

at a point distant from the optimal solution ~ = [1,1, ... , IV, but with a corre­

sponding value for J still close to zero. The explanation for this is that in these 

cases the algorithm converged to a solution close to another global minimum. 

However, since the algorithms proved to be converging prematurely, the exact 
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value of the corresponding optimal solution is not known. 

Figure 3.2 depi<;ts the contour-map of J(f1), corresponding to the particu­

lar case of the above-described numerical studies where a two-story planar shear 

structure is considered. J(fl) has been normalized by dividing it with 

2::~=1 2::~1 xH n? This figure is instructive in understanding the reasons that 

cause difficulty in convergence, although it must be kept in mind that these 

reasons become much more pronounced when dealing with higher-dimensional 

problems. It can be verified by looking at this figure that there really exists, as 

expected, a very flat valley floor. The topology of this valley floor, being very flat 

along some curving direction, while being very steep along the perpendicular di­

rection, is the reason for the difficulty of convergence that all the above algorithms 

exhibit. All of the algorithms, designed to exhibit quadratic convergence, have 

difficulty following this twisting valley floor. The reason for this is that at any 

point along this floor a quadratic approximation of the J function is acceptably 

valid only over a very small neighborhood of this point. As a result, the con­

vergence criterion of J changing below a prescribed tolerance is satisfied when a 

one-dimensional minimization along a straight direction is performed, even ifthis 

direction is the best direction based on a quadratic approximation. Decreasing 

the threshold for the convergence criterion helps reach a slightly closer solution, 

but convergence becomes prohibitively slow. It can also be seen by looking at 

Figure 3.2 that there exists another global minimum, which can be proven to be 

located at ft2 = [2.0,0.5jT. If a starting point is chosen closer to this optimal 

solution, then the minimum reached will lie in the neighborhood of ft2' and not 

in the neighborhood of ftl = [1.0,1.0jT. 

From the above discussion it can be concluded that the available minimiza­

tion algorithms are incapable of guaranteeing convergence to a local minimum 

of J(fi} Instead, they prematurely converge to a solution lying on a twisted 

and almost flat valley floor on the corresponding contour map. This premature 

convergence can be interpreted as the inability of these algorithms to follow a 
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very slowly descending path along this twisting valley floor all the way to the 

optimal solution. The solutions at which these algorithms prematurely converge 

might differ quite significantly from the targeted optimal solutions, although the 

corresponding values ·of JUi.) might differ only slightly in absolute value. Recall 

from (3.4.17) that the ratio of posterior probabilities of two sets of parameters 

is proportional to the inverse ratio of their corresponding J values, raised to a 

power proportional to the number of available data points. This result implies 

that a reached solution f2. is relatively very improbable compared to the optimal 

solution ~, unless the relative difference of their corresponding J values, defined 

as J(9j~(iJ), is below a certain threshold. For example, assume that 20 sec of 

output sampled at 0.02 sec is used, and that only one output quantity is observed. 

In this case, N = 1000, No = 1 and, assuming a noninformative prior distribu­

tion, it follows that a solution is 100 times more improbable than the optimal 

solution if the relative difference of their J values is rv 9.25 X 10-3 , while it is 10 

times more improbable if the relative difference of their J values is'" 4.62 X 10-3 . 

Such a criterion would be a rational criterion for judging covergence to an op­

timal solution. Note that in the particular case where J(~) = 0, any solution 

f2. =j:. ~ has a relatively small probability compared to the probability of the opti­

mal solution ~, and therefore convergence under such a criterion is not achieved 

unless the actual optimal vector fl. is reached. However, since the extremal value 

of J(fl.) is in general not known a priori, applying such a criterion is not possible. 

Instead, the criterion for convergence used by the above algorithms, defined as 

the relative change in J during one iteration being below a certain threshold, is 

a rational criterion for judging convergence, but, at the same time, it does not 

guarantee convergence to an optimal solution as desired. 

One of the objectives of this chapter is to present an efficient algorithm which 

is capable of converging to an optimal solution. Such an algorithm was developed 

and is presented in Section 3.11, based on a transformation of variables discussed 

next. 
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3.10 A Useful Transformation of Variables 

Consider an Nd-degree of freedom theoretical model Jvt ~ JvtNd , param­

eterized by Q = [ftT, ,e] T, where ft E S(ft) = [0, (0)N9 and.s. E SeQ = [O,l]Nd • 

Assuming that the mass matrix Jvt and the stiffness matrices K i , i = 0,1, ... ,No 

of (2.6.10) are known, each ft E S(ft) uniquely specifies the vector of modal fre­

quencies ~ = ~(ft) E S(~) C [0,00 )Nd, where its elements W r , r = 1, ... , Nd 

are assumed to be in ascending order, that is, Ws ~ Wr for s < T' ~ Nd. It is 

shown with a particular example, in Section 3.10.1, that such a transformation 

fl - w(fl) leads to an "almost ellipsoidal contour map for J, with the principal 

directions aligned almost along the straight coordinate directions of the trans­

formed variables w. Such a property is very important, since it provides a tool 

for dealing with the highly complex contour map of J(fl;.s.) in a straightforward 

manner. To provide better insight into this powerful mapping, some definitions 

and properties concerned with this transformation fl- ~(ft) are highlighted. 

The space S(i<l) is the image of S(fl) under the mapping fl - w(fl). The 

conditions 0 < Wr and Ws < W r , 1 ~ s < T' ~ Nd alone are generally not enough 

to specify the boundaries of Sew), since more restrictions, whose explicit form is 

not always easily determined, are imposed by the particular theoretical model M 

considered. Although each fl E SW) is uniquely mapped into an w E Sew), the 

converse is not necessarily true, that is, there might be more than one fl E S(fl) 

corresponding to the same w E S(i<l). Assume from now on, unless otherwise 

specified, the particular case where No = Nd, that is, the case where the dimen­

sion of the vector ft is equal to the number of degrees of freedom of the theoretical 

model. The cases where No < Nd and Nf) > Nd will also be addressed later in 

Section 3.11.4. 

A sufficient condition for the mapping of a subspace e C S(fl) onto the 

subspace n ~ S( w) to be locally one-to-one is: 

(3.10.1) 



where 

OW 
'Vw(~) = o~ = 
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(3.10.2) 

Note that the above matrix is a square matrix, since it was assumed that No = 
Nd. If at a point ~ E S(~) the above defined Jacobian :J(ff.> is nonzero, then 

there exists a neighborhood }{(~;~, E) = {I~ - ~I < E,~ E S(~); E > O} , such that 

no two points of this neighborhood correspond to the same w. The condition, of 

the Jacobian being nonzero for such a neighborhood to exist, is only a sufficient 

and not a necessary condition. Let 51 C S(~) denote the set of all such points ~ 

for which the transformation ~ -> w(~) is locally invertible. 

If there does not exist any E > 0, such that the neighborhood 7-{(~; ft, E) has 

the property of being mapped one-to-one under the mapping Ii -> w(~), then the 

corresponding Jacobian :J(i..) is zero. Let SB(Ii) C S(~) denote the set of all 

such points ~ for which the transformation ~ --+ w(~) is locally non-invertible. It 

follows from the above definition that: 

(3.10.3) 

Also. the above definitions imply that: 

(3.10.4) 

The continuity of the mapping ~ -> wCfD implies that if the set SB(~) is empty, 

then the overall mapping S(~) -> S( w) is one-to-one. Conversely, if the latter 

overall mapping is not one-to-one, then the set SB(~) is not empty, but defines 

the boundaries separating the space S1W) into different subregions 8 i ~ S1(~) C 

S(~), i = 1, ... , Ne. These subregions satisfy the following three properties: 

Ne 

1) U 8i = SI(Ii) 
. , . 
IT] 

;=1 
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i # j is a non-connected set, 

where i,j E {I, 2, ... , Ne}. The subregions 8 j , i = 1, ... , Ne should be viewed as 

the largest connected subsets of SI(fl), so that any connected subset of SI(fl) is a 

subset of one of the above subregions 8 j • The boundary set SB(fl), separating the 

above subregions 8j from each other, consists of continuous (No -1 )-dimensional 

surfaces. At a point fl of SB(fl), where the nullity (dimension of the null space) of 

the corresponding matrix \7w(fl) is equal to one, only one such surface is passing . 
through. If, on the other hand, the nullity is N n > 1, then this point has to be 

viewed as the intersection of N n of these (No - I)-dimensional surfaces. 

Define the multiplicity N}J = N JA (w) of a point W E S( w) to be the number of 

elements contained in the set {fl E S(fl) : w(fl) = w}. Obviously, the multiplicity 

of any point w E S(w) is smaller or equal to the number Ne of the subregions 8i. 

The multiplicity of a point w belonging in the set SB(W) = {~(fl),fl E SB(fl)} c 
S(!:!:!.) is generally smaller than that of a point belonging in the set SI(!:!:!.) = 
{w(fl),fl E SI(fl)} c Sew). For the points fl E SB (fl) , the larger the nullity of 

the matrix \7Yd..(~) is, or equivalently, the smaller its rank is, the smaller the 

multiplicity of the corresponding w = w(fl) E SB(W). It can also be shown that 

the eigenvectors corresponding to the nonzero eigenvalues of \7w(fl),fl E SB(fl) 

form a basis spanning locally. in the neighborhood of w(fl), the space SB(fl). The 

higher the rank of \7w(fl), the higher the dimension of the space SB(~)' 

In order to clarify ideas, the above concepts will be demonstrated using a 

particular example. 

3.10.1 An Example: Two Degree of Freedom Shear Model 

Consider the theoretical model of a two degree of freedom planar shear 

building. Such a structure is shown for the gene~al N-dof case in Figure 2.7. 

Assume a known uniform mass distribution, ml = m2 = mo. Let the stiffness 

matrix K be parameterized by fl = [01 , O2 ] T such that the interstory stiffnesses 
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are given by kl - 81 ko and k2 = 82 ko. The mass and stiffness matrix are, 

therefore: 

(3.10.5) 

The eigenfrequencies Wr and the eigenvectors ¢}r), r = 1,2 are found by solving 

the eigenvalue problem: 

r = 1,2 (3.10.6) 

where I is a 2 x 2 identity matrix. The solutions for w;, r = 1,2, obtained by 

requiring INI- 1 J( - w;II to be zero, lead to the vector of modal frequencies !:!L: 

w = [WI 1 =/!£ [J 81 + 28
2 

- J 8r + 48~ 1 
W2 J8l + 282 + J8i + 48i 

(3.10.7) 

and the modeshape matrix q;, normalized so that rP~r) = 1, r = 1, 2: 

[ 

81 + V 8r + 48~ 
q; = 282 

1 

81 - v8i + 48~] [ ). + J).2 + 4 
282 = 2 

1 1 

A- vrH] 
(3.10.8) 

where). = ~. The resulting vector of modal participation factors for this choice 

of q; is: 

[

1 2-). 1 = '2(1 + ";).2 + 4) 
Q 1 2 _ ). (3.10.9) 

'2(1- ";).2 + 4) 

Finally, the matrix of effective participation factors B, which is independent of 

the normalization chosen for q;, is: 

(3.10.10) 
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The set of allowable values forft is S(ft) = (0, co)x(O, co]. For each fl. E S(fl.), a 

unique vectorw = (WI,W2V is specified through (3.10.7). The space Sew), defined 

as the image of S(ft) under the mapping ft -4 w(ft) , must satisfy the constraint: 

o :s WI < W2. However, this general constraint alone proves to be inadequate to 

determine the boundaries of Sew), since there are additional constraints imposed 

by the particular class of models M considered. To determine any additional 

constraint, consjder the inverse mapping!:!l -4 ft(w) by solving Equation (3.10.7) 

for ft, given w. There are generally two such solutions, fl.1 and fl.2 , proving that 

the mapping !:!l -4 !:!left) is not one-to-one, given by: 

(3.10.11) 

For the solutions given by (3.10.11) to be real, the following constraint must be 

satisfied: 

(3.10.12) 

The latter inequality implies that Wz lies outside the roots of the quadratic 

wf - VSWI W2 + w~ = 0, that is: 

(3.10.13a) 

or 

(3.10.13b) 

Inequality (3.10.13a) contradicts the general requirement W2 2: WI; therefore, the 

only constraint left is (3.10.13b). The space Sew), being the subspace of R2 

satisfying the constraints WI 2: 0 and W2 2: WI (V2 + 1), is schematically shown 

in Figure 3.3b. It can be seen from (3.10.11) that for each wE S(!:!l) , such that 

W2 > WI( V2+ 1), there exist two different solutions corresponding to this w, and, 

therefore, the multiplicity of each such w is equal to two. In the special case 

where W2 = wI(V2 + 1), the two solutions fll and fl2 collapse to one, that is, 
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fl.l = fl.2 with a corresponding ratio ).1 = ).2 == 2. Therefore, the multiplicity of 

the points w E S( w) with W2 = WI ( J2 + 1) is equal to one. It can be observed 

from (3.10.11) that the two solutions fl.1 and fl.z satisfy the following relationship: 

(3.10.14) 

Equation (3.10.14) implies that: 

(3.10.15) 

By substituting (3.10.15) into (3.10.10) it can be seen that the two solutions 

fl.;, i = 1,2, corresponding to the same vector l:!L, have the same effective partici­

pation factors for each mode at the second floor, that is: 

(.I(r)(8 ) = (.I(r)(8 ). r = 1 2 
1-'2 -1 1-'2 -2' , (3.10.16u) 

At the first floor, the effective participation factors for each mode corresponding 

to the two solutions are not equal, but switch order, namely, the effective par­

ticipation factors for the first and second mode corresponding to fl.1 are equal to 

the effective participation factors for the second and first mode corresponding to 

fl.2 , respectively: 

The matrix \lw(fl.) is given by: 

8w 
"w(B) = -= = c v_ - 8ft. 

je~ +48~ - 81 

Jel + 2e2 - jei + 4e~ 
je~ + 4e~ + e1 

(3.10.16b) 

Je l + 282 - j8i + 4B~ 
2j8i + 4B~ + 482 

J B1 + 282 + jBi + 48~ 
(3.10.17) 

where c = ~ J 2;:;0 JIJ2~41J2· The Jacobian :IUD is then: 
I 2 

(3.10.18) 
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The condition .:TUt) f. 0 is satisfied everywhere in Sen.) except for the points flfor 

which 81 = 282 , For any neighborhood H(n.j, E) of ~ = [28*, f}*jT, there exist at 

least two points corresponding to the same i;!. Such points, for example, are the 

points n.1 = [28* + 0.5E, 8*) and ft2 = [28*, 8* + 0.25E), since they satisfy (3.10.14). 

Hence, all solutions ft such that .:Tefl) = 0 belong, according to the definitions of 

the previous section, to the set of boundary points SB(ft): 

(3.1O.19a) 

while all the remaining points of S(fl.), where .:T(ft) is nonzero, and the transfor­

mation is locally invertible, belong to the set Sl(ft): 

Sl(ft) = {ft E S(ft) , B1 f. 2B2 } (3.1O.19b) 

Figure 3.3a schematically shows SB(fl) and the two regions 8 1 and 82, in which 

it separates the remaining space Sl(B). The corresponding sets SB(W) and Sl(!:!d.), 

shown schematically in Figure 3.3b, are: 

(3.10.20a) 

(3.10.20b) 

The multiplicity of the points of SB(W) is equal to one, while the multiplicity of 

the points of Sl(!:!d.) is equal to two. Of the t>vo solutions ft., i = 1,2, satisfying 

W(Bi) = W* E Sl(!:!d.), one belongs in the region 8 1 , and the other in the region 

8 2 , At a point fl.} E SB(ft) corresponding to w} E SB(W), the matrix 'V!:!d.(ftl) of 

(3.10.17) becomes singular. The eigenvector corresponding to the zero eigenvalue 

of 'V!:!d.(ft}) is 6fl.l = [+2, -ljT. This eigenvector corresponds to the common 

tangent of the curves Wl (ft) = w~ and W2 (ft) = w~ at the point fl.}. The eigenvector 

corresponding to the nonzero eigenvalue is 6ftz = [1, (1 + v2»). Notice that this 

eigenvector spans the space SE(W) given by (3.10.20). 

It is important to note, by comparing Figure 3.2 with Figure 3.4, that the 

contour curves of J(fl.) of Figure 3.2 look extremely similar to the curves W = Wl 
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of Figure 3.4. This observation suggests that the long and narrow curved valley 

floor of J(fl), when plotted in the WI - W2 plane, should correspond to a long and 

narrow but straight valley floor along the W2 coordinate direction. The function 

J(!=L) = J(fl(w»,!=L E S(!=L) is generally multi-valued, since the function fl = flew) is 

multi-valued, with solutions fli = flew) , i = 1, ... , Np(w) generally corresponding 

to different values of J. The function J(!=L),!=L E Sew) can become single-valued 

if a subr,egion 8i is specified, since then for a given point !=LOO with multiplicity 

Np(!=L*) > 1, for which the mapping fl = fl(w*) is multi-valued, the uniquely 

defined point fl; E 8i, satisfying !:!l(fl.;) = woo, can be used to evaluate a single value 

for J, that is, J(W*18i) = J(fli ). However, in the particular example of Figure 3.2, 

the so specified single-valued functions J(w*18d and J(!:!l* 182 ) are identical, since 

the two solutions fll E 8 1 and fl2 E 8 2 , corresponding to the same wand given 

by (3.10.11), have also, according to (3.10.16a), the same effective participation 

factors at the second floor, which results in identical modal responses at that 

floor, that is, q2(t;fl1) = Q2(tjfl2), therefore leading to J(fl1) = J(fl2). Figure 

3.5(a) and (b) show the contour map of this function J(!=L181 ) = J(wI8 z). As 

expected, the contour map of J(!:!l18;), i = 1,2 consists of ellipse-like contour 

curves, with a long axis oriented along the w2-coordinate direction and a much 

shorter axis oriented along the wI-coordinate direction. The global minimum is 

attained at a unique point :;; in this ""I -""2 plot. This point :;;, when vie"wed as the 

minimum of J(wI81 ), corresponds to the optimal solution ~l = [1.0, 1.0]T, while 

when viewed as the minimum of J(!:!l182 ), corresponds to the optimal solution 
A T 
fl2 = [2.0,0.5] . 

To illustrate a case where J(!=L18d ::j:. J(!:!l18z), assume that in the example 

of Figure 3.2 the observed data consists of the response at the first floor instead 

of the response at the second floor. Figure 3.6 depicts the contour map of J(fl) 

for this case. It can be seen that, in this case, there exists a unique global 

minimum located at ~ = [1.0,1.0]T. Figure 3. 7( 8.) uses the WI - W2 plane to 

Jepict the contour maps of J(wI8 I J and J(!=Li82 ). Figure 3.7(b) provides a 
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magnified view of these contour maps in the neighborhood of w(~). These two 

functions are no longer identical, since the modal effective participation factors 

at the first floor, corresponding to the fl solutions with the same f;t, are not equal, 

as stated in (3.10.16b). It can be seen that only J(wl8d contains close contour 

curves enclosing a global minimum corresponding to the unique optimal solution 

~ = [1.0,1.0lT E 8 1 , Again, the axes of these curves are oriented along the . 
w-coordinate directions, the longer one along the Wz coordinate and the shorter 

one along the WI coordinate. The contour map of J(f;t18 2 ) does not contain any 

closed contour curves enclosing a local minimum, and, therefore, there exists no 

optimal solution belonging in 8 2 , However, it can be seen that there exists a 

long and narrow valley floor oriented along the W2 direction. The property of 

the valley floors being oriented along one of the w-coordinate directions is what 

makes the mapping fl-> weft.) so powerful. 

3.11 Proposed Algorithm to Minimize J(fl,f) 

A new method is proposed to minimize the function J(fl,f) to overcome 

the difficulties in convergence of the existing algorithms. This new algorithm will 

be presented in two steps. In the first step, it will be assumed that the parameter 

vector f is fixed and known, reducing the problem to the minimization of J(fl). 

The second step is a natural extension of the first step, where the parameter 

vector f will be assumed unknown and will, therefore, be included in the argument 

of J. 

3.11.1 Minimization of J(fl) 

Assume that the length No of the uncertain parameter vector fl is equal 

to the number of modes N m included in the model response. The idea behind 

the new minimization algorithm is to perform a series of one-dimensional curve 

minimizations in t.he fl.-space. which in the ~-~Tmce correspond to a series of 
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one-dimensional straight line minimizations in the w-coordinate directions. 

Let Ck(fl.;fl.*) denote a one-dimensional curve in the space S(fl.), passing 

through a point fl.*, with the property that along this curve all of the first N m 

modal frequencies remain fixed except for the kth modal frequency, which is 

allowed to 'vary, that is: 

Ck(fl.;fl.*) =the largest connected subset of 

{fl E S(fl) : wr(fl) = wr(fl*); r = 1, ... , k - 1, k + 1, ... , N m} 

containing fl.* 
(3.11.1) 

Performing a one-dimensional curve minimization in the fl.-space along the curve 

Ck(fl.; fl.'"), starting at fl.*, corresponds to a one-dimensional minimization in the 

~-space along a straight line parallel to the wk-coordinate direction and passing 

through the point w(fl.'"). 

The proposed minimization algorithm consists of successive sweeps of the 

modal frequencies. Each modal sweep consists of a sequence of N m one-dimen­

sional minimizations in the fl.-space, along curves ck(fl; fl.s ,k-1), k = 1 ... , N m. 

The superscript s denotes the number of modal sweeps already performed. Each 

one-dimensional minimization along the curve ck(fl;flS ,k-1) starts at the point 

fls ,k-1, which is the point where the minimum was attained during the previous 

one-dimensional minimization along the curve Ck-1 (fl.; fls,k-2). The point fls,NTn 

corresponding to the minimum of J during the last one-dimensional minimization 

of the (s + 1 )th sweep, that is, when minimizing along CN
Tn 

(fl.; fl.s,Nm -1), serves as 

a starting point for the next sweep, that is: 

c (e· e8 +1,0) = C (e· es,NTn
) 1_,_ 1_,_ (3.11.2) 

According to this general description, the alggrithm works as follows. Let 

flo,o denote the starting point of the minimization algorithm. The first modal 

sweep starts with a one-dimensional minimization of J(fl), performed along the 



- 126-

curve cl(fl;flo,o), and starting at flo,o. Let flO,1 denote the point of cl(fl;flo,o) 

at which a local minimum is attained. This point serves as a starting point 

for the second one-dimensional minimization of J(fl), performed along the curve 

c2(fl;flo,1), an"d starting at flo,I. The minimum of this second one-dimensional 

minimization is denoted by {l0,2, and serves as a starting point for the one­

dimensional minimization along the curve c3(fl;flo,2). This procedure is repeated 

until the last minimization of the first sweep along the curve CN
m 

(fl; flO,Nm -1) is 

performed, with a minimum attained at a point flO,N m
• This completes the first 

modal sweep. The last point flO,Nm serves as a starting point for the first one­

dimensional minimization along the curve Cl (fl; flI,o) of the second modal sweep, 

that is, fll,o = flO,Nm
• The second modal sweep is performed by applying Nm 

successive one-dimensional curve minimizations in a similar manner as was done 

during the first modal sweep. Modal sweeps are continued similarly until the 

function J(fl) is unable to decrease during a modal sweep more than a prescribed 

fractional tolerance, in which case convergence is achieved. 

Figure 3.8 shows schematically the minimization path followed in the fl­

space, when this proposed algorithm is employed, for the two-degree of freedom 

shear building example of Section 3.10.1. In this example, two modal sweeps are 

sufficient to reach the optimal solution ftl = [1.0, 1.0jT. 

The key step of the proposed minimization algorithm is performing the one­

dimensional minimizations along the curves ck(fl;flS,k-l). This step is described 

next. 

3.11.2 Minimization of J(fl) Along the Curve ck(fl;flS,k-l) 

The point fls,k-l, obtained during the last performed one-dimensional 

curve minimization, is assumed known. If the algorithm is in its beginning and 

none of the one-dimensional curve minimizations have been performed, then the 

starting point. f!.0,o for the first one-dimensional minimization along CI (fl; flo,o) 
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is chosen to be the most probable point in the space SUD, based on the prior 

probability distribution. The task here is, starting at ft s,k-1, to follow the curve 

Ck(ft; fts,k-1); along which all but the kth modal frequency remain constant, that 

IS: 

j = 1, ... , k -1, k + 1, ... , N m , (3.l1.3) 

The curve Ck(ft; fts,k-1) must be followed in the direction of decreasing vaues of J 

until the point fts,k is reached, where a local minimum of J is attained. In order 

to do so, the following steps are taken. 

The curve ckCfl.; fts,k-1) is followed through a sequence of points ft', i 

O 1 ') h ao as k-1 E h . t ai t l' th Thi , , _, ... , were _ = _ ' . ac pOln _ mus Ie on e curve Ck. s 

requirement is, however, relaxed to: 

j = 1, ... ,k - 1,k+ 1, ... ,Nm (3.11.4) 

The fractional frequency tolerance € controls how close to the curve Ck the points 

lie. A direction parameter I is introduced controlling the direction in which 

Ck must be followed to decrease J. Initially, I is chosen arbitrarily to +1, but 

during the one-dimensional minimization it might switch several times between 

its possible values of ±1. A fractional frequency step Q specifies the desired 

change in the value of Wk from one point ft' to the next point fti+1. Given the 
. -i+1 

point ft', a point ft is obtained through: 

(3.11.5) 

The vector 6"fl.' is calculated from the following linear algebraic system: 

(3.11.6) 

where 

(3.11.7) 



with \]w(~) given in (3.10.2), and 

6wj =Wj(~8,k-l) _ Wj(~i) 

. k 1 6wl, = ICiWk(~8, - ) 
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j = 1, ... , k -1, k + 1, ... ,Nm 
(3.11.8) 

Equation (3.11.6) is solved using the singular value decomposition technique, 

since this method gives satisfactory results even when \]Wi is almost singular. 

To avoid large steps in the fl-space, 6~i is required to satisfy: 

(3.11.9) 

where d is the selected maximum step size. IT the vector 6D.
i 

obtained from solving 

(3.11.6) does not satisfy the constraint (3.11.9), then it is scaled appropriately 

so that 6t = d. After 6D.
i 

is calculated, and if i > 0, that is, if at least one point 

has been found along Ck with corresponding J value smaller than that of J(~O), 

the following condition is checked: 

(3.11.10) 

This constraint helps avoid an undesired change in the direction in which Ck 

is followed. Such an undesired change might occur when Ck is followed in an 

established direction, in which J is decreasing, and when the value of Wk passes 
. . 

through an extremum. IT (3.11.10) is not satisfied, then 8~' is set equal to _6~' 

and the sign of the direction parameter I is changed. After 6D.' satisfying both 

constraints (3.11.9) and (3.11.10) has been established, t+1 is calculated through 

(3.11.5). Next, it is checked if t+1 satisfies the constraints imposed by (3.11.4), 

that is: 

j=1, ... ,k-1,k+1, ... ,Nm (3.11.11) 

IT (3.11.11) is satisfed, then ~i+1 = t+1. IT (3.11.11) is not satisfied, which means 

h 0-;+1. 1 h h h O-i+1. d d 1 t at _ IS not c ose enoug to t e curve Ck, t ~n _ IS a juste proper y 

through: 

Oi+! = 0* 68* - - + - (3.11.12) 
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where 6ft is oqtained by solving the following linear system: 

( iJwti) I ..... ) T 6ft' ~ wi(~O) - wi(~') 
(ft - fti)6ft = 0 

j = 1, ... ,k- 1,k+ l"'.,.~m 

(3.11.13) 

Steps (3.11.12) and (3.11.13) are repeated, if necessary, until the adjusted point 
-;+1 "+1 -.+1 
ft satisfies (3.11.11), in which case fl' = ft , as already mentioned. Finally, 

6ft' is calculated by: 

(3.11.14) 

After the point fti+l has been determined, its corresponding J value is cal­

culated and it is checked if: 

(3.11.15) 

If (3.11.15) is satisfied, then the curve Ck continues to be followed in the same 

direction, using the same steps to determine the next point fti+2 as those followed 

earlier to determine the point fl.i+l. On the other hand, if (3.11.15) is not satisfied, 

then two different cases must be considered, depending on whether i is greater 

than or equal to zero. If i = 0, then the condition J(ftl) > J(ft°) suggests to start 

looking in the opposite direction by changing the sign of the direction parameter 

'Y. If the new point fll, obtained by following the opposite direction, still does not 

satisfy (3.11.15), it can be concluded that the minimum of J is attained at a point 

within the segment of Ck specified by the two points fl1 lying on opposite sides of 

fl. In this case, one of the two fll points is renamed to fl- 1 and the minimization 

algorithm is restarted at the same flo, but with a reduced fractional frequency 

step (x, in a way similar to that discussed next, for the case where i =f. O. 

If i =f. 0 and the condition (3.11.15) is not satisfied, it can be concluded that 

a minimum of J is attained at a point lying within the segment of the curve 

Ck specified by the points fti -
1 and fl.;+1 and containing fl.'. In this case. fl.; is 

set equal to ft°, and the one-dimensional minimization algorithm is restarted at 
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this new point flo using a reduced fractional frequency step a, dictated by the 

fractional difference of wkUli) and wk' where wi. is the estimated value of Wk at 

the point where the minimum of J is attained. The value of wk is approximated 

by interpolating a parabola for J through the values of Wk corresponding to the 

last three points fli- 1 ,fli,!l.i+l. However, it is recommended that: 

~(ei+l) _ w(!l.i-l) 

a < 2(~(!l.i+l) + w(!l.i-l» (3.11.16) 

Convergence of this one-dimensional minimization is achieved when starting 

at the current point !l.0, and, using a fractional frequency step a smaller than 

the fractional frequency tolerance E, the value of J is unable to decrease when 

following the curve Ck in either direction. In this case, this current !l.0 corresponds 

to the sought point !l.8,k, from which a new one-dimensional minimization will 

start along the new curve CHi (!l.; !l.3,k). 

3.11.3 Some Comments Regarding the One-Dimensional 
Minimization Algorithm 

The computational effort of the proposed one-dimensional minimization 

is mainly due to the following steps: 

a) Solving an eigenvalue problem at each point !l.'. This step must be taken 

even when a straight line minimization is performed. 

b) Evaluating the value of J(!l.'). The proposed one-dimensional curve min­

imizations are computationally superior to straight line minimizations be­

cause of their efficiency in performing these function evaluations. The key 

point here is that the modal contributions to the output, corresponding to 

all modal frequencies except the kth one, do not need to be calculated from 

scratch at every new point along the curve Ck, but need only to be scaled 

proportionally to the corresponding current effective participation factors, 

if zero initial conditions are assumed. This is because gIrl, the rth modal 

contribution to the response at the ith degree of freedom, is then equal to the 
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response of a SDOF oscillator with frequency W,.(fl.), scaled by the effective 

participation factor .B;r>Cft). The stated result becomes obvious by noticing 

that the valu~ of Wr remains constant along the curve c"" when r =1= k. 

c) Forming and solving the equations involving \lw. This step is performed 

efficiently, since the elements ~~; can be calculated analytically through 

(3.9.3). 

The computational efficiency when performing these one-dimensional curve 

minimizations, along with the fact that these curved minimizations are much 

more powerful than any straight line minimization performed in the ft-space, are 

the reasons for the superiority of the proposed minimization algorithm. 

3.11.4 Minimization Algorithm when No =1= Nm 

It was assumed, when presenting the proposed minimization algorithm 

for J(ft), that No = Nm. This assumption allowed for the intersection of the 

(Nm -1) hypersurfaces wr(ft) = constant, r = 1, ... , k -1, k + 1, ... ,Nm to be 

a one-dimensional curve Ck (along which one-dimensional minimizations can be 

performed as was shown). If No =1= Nm , then the approach taken to obtain such 

curves, along which one-dimensional minimizations can be performed, must be 

modified appropriately. 

Consider first the case where No < N m . In this case, only the first No modal 

frequencies are included to define the curves Ck, k = 1, ... , No. Along each such 

curve, all first Nf} modal frequencies, except the kth one, are kept fixed, while the 

kth modal frequency, as well as the last (Nm -No) modal frequencies, are allowed 

to vary. Therefore, when a one-dimensional minimization along Ck is performed, 

the modal contributions of the kth mode and of the (Nm - No) last modes must 

be calculated from scratch at each new point. 

In the case where N f} > N m, the intersection of the (N m - 1) hypersurfaces 

wAft) = constant, r = 1, ... , k-1, k+1, ... , N m is an (Nf}-Nm + I)-dimensional 
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surface in the space S(fl.). Let ft denote a vector consisting of (No -Nm ) elements . 
of fl.. The proposed minimization algorithm searches the space S(fl.) by performing 

sweeps, each consisting of No one-dimensional minimizations. N m of these one­

dimensional minimizations are performed along the curves Ck where the vector 

ft, as well as all N m modal frequencies except the kth one, remain constant. The 

remaining ( No - N m) one-dimensional minimizations are performed along curves 

where all modal frequencies, as well as all elements of ft except one, are kept fixed. 

During these last ( No - N m) minimizations, none of the modal contributions needs 

to be calculated from scratch. 

3.11.5 Minimization of J(fl.,~) 

Including the parameter vector ~ in the argument of J increases the 

dimension of the minimization problem by N m' The most efficient way of per­

forming the minimization of J in the augmented parameter space S(fl.) X SeQ is 

the following. Vvhile the one-dimensional curve Ck is followed, none of the modal 

damping ratios (r,7' = 1, ... , k - 1, k + 1, ... , N m is allowed to vary. This way, 

only the kth modal contribution to the observed output needs to be calculated 

from scratch along Ck, thus preserving the computational efficiency of the algo­

rithm performing the one-dimensional curve minimizations. The minimization of 

J with respect to (k as the curve Ck is followed is not performed at every point of 

the curve. It is only performed when the tracking of the curve in an established 

direction is finally interrupted after a point fl.;, where J(ft-1
) > J(fl.i) < J(fl.i+l). 

In this case, before the fractional frequency step n is reduced, a one-dimensional 

minimization with respect to (k is performed at fl. = fl.i , keeping the remaining 

modal damping ratios fixed at their current values. This is done hoping that 

after optimizing (k, the curve Ck can be followed further keeping the same frac­

tional frequency step n; it is only if this is not possible that the step n is reduced 

according to the discussion in Section 3.11.3. 



- 133-

The proposed algorithm was tested using simulated data for both cases, 

where the damping 1 is kept fixed and where it is not, and it was found to 

always converge to the known minimum. Table 3.1 compares the results obtained 

using the proposed method to the ones obtained using existing methods, when 

simulated data corresponding to the response measured at the roof of a four-story 

uniform shear building excited by the 1940 El Centro NS record are utilized. The 

damping ratios ( , r = 1, ... ,4 are assumed fixed at 5% in this example. It can 
-r 

be seen that the proposed algorithm reaches the optimal point ~ = [1,1,1, If, 

while both Powell and Fletcher-Reeves algorithms were unable to do so. 

- -3.12 Identifiability of the Optimal Parameters f!.. and f 

It has been shown in the earlier sections of this chapter that the system 

identifiability of the optimal parameters from the available data DN is a very 

important issue that needs to be resolved. In Section 3.6, it was shown that a 

first step for resolving this problem is to resolve the model identifiablity of the 

optimal parameters under the given input, that is, to find all models in the class 

M that have identical output at the observed degrees of freedom under the given 

input. Finding all the corresponding "output-equivalent" optimal parameters is 

the subject of this section. 

It was shown in Section 3.8 that the problem of the model identifiability 

of the optimal parameters is reduced to finding if the parameter vector fi is 

M-identifiable at ~ under the given input ZI,N, since the parameter vector f 
is known to be globally identifiable at ~ under this input. In the case where 

the parameters fi are only locally M-identifiable at ~ under the input ZI,N, the 
. - - -(k) 

whole set of optImal parameters Sopt(f!..; ZI,N) = {f!.. : k = 1,2, ... , K} needs 
- (k) -

to be evaluated. The models lvI(f!.. ,f); k = 1,2, ... , K are then all "output-

equivalent" models in the class lilt under the given input. Here it is assumed 

that a closed. bounded region of S(f!..) is selected as the subset consisting of 
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possible values of fl., so there is only a finite number of optimal solutions. 

Resolving the model identifiability of the optimal parameters li. is a problem 

that had not been fully solved. Udwadia [lg78a] has shown that the stiffness 

distri bution of an N d-degree of freedom planar shear building model with known 

mass distribution and modal damping ratios, cannot be identified uniquely from 

the data, if that data consist of the input at the base and the model response at a 

degree of freedom other than the first floor. If the base input and the response at 

the roof only are known, an upper bound of (N d!) is given for the number of pos­

sible stiffness distribution solutions. However, addressing the problem of finding 

the exact number, as well as the values of these "output-equivalent" stiffness dis­

tribution solutions, seemed hopeless, since it required an exhaustive search of the 

stiffness parameter space, which for high dimensions becomes computationally 

prohibitive. 

A new methodology has been developed to make such an exhaustive search of 

the high-dimensional space S(fl.), for finding all elements in SoPt(~; ZI,N), feasible. 

3.12.1 Proposed Methodology for Finding SoPt(li.; ZI,N) 

,(k) , -(k) , , 
All models M(fl. ,D; k = 1,2, ... , K, where fl. E Sopt(fl.; ZI,N) 

are by definition "output equivalent." Therefore. as discussed in Section 3.7, 

they all have identical corresponding modal frequenices, damping ratios, and 

effective modal participation factors for the set Co of observed degrees offreedom. 

Let {wr , en s}r) , T' = 1, ... , N m , i E .cO} denote these common optimal modal 
,(k) , , 

parameters. It is obvious that every fl. E Sopt(fl.; ZI,N), k E {k, ... , K} satisfies: 

T' = 1, ... , lVm k E {k, ... , K} (3.12.1) 

k E {k, ... , K} (3.12.2) 

-(k) 
Let en denote the set of all parameters fl. E S(fl.) with corresponding modal 
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frequencies W1" r = 1, ... , N m, that is: 

(3.12.3) 

It is obvious from the definition of en that it is a superset of SoPt(~, ZI,N): 

(3.12.4) 

The methodology for finding the set SoPt(~; ZI,N) consists of two steps. First, the 

parameter space SUD is searched methodically, using a new proposed algorithm, 

to find all elements of en. After en has been found, the second step is taken, 

consisting of an elimination process, to determine which elements of en satisfy 

(3.12.2), belonging, therefore, in the desired set SoPt(~, ZI,N)' 

3.12.2 Proposed Algorithm for Finding en 

Utilizing the minimization algorithm proposed earlier, an optimal 

parameter ~ == tIl is obtained with corresponding modal frequencies W = ~(~). 
The goal of this section is to present an algorithm that searches the parameter 

space SUD to find the whole set en of all "modal frequency equivalent" param-
-til . -til -(i). . 

eters ft E S(ft), that IS, en == {ft E S(ft) : wr(ft ) = Wr ; r = 1,2, ... , N m, Z = 
1. 2, ... ,En}, where En ;:: E. 

Assuming that N B = N m, an approach similar to the one used in the pro­

posed minimizat.ion algorit.hm for J(ft) is followed. The basic idea is to follow the 

different curves Ck(ft;~) , k ::: 1,2, ... , Nm, and monitor when the value of the 

freed modal frequency Wk becomes equal to Wk· Every point ft* E Ck(ft;~), satisfy­

ing Wk(ft*) = Wk, belongs in en, since it also satisfies wr(ft*) = wr(ft) = Wr, r /; k, 

the latter, by definition. being the property of all points of Ck(ft;~). 

The algorithm for following the curves Ck is very similar to the one described 

in 3.11.2. The only differences are: (a) instead of checking when J goes through 

a minimum, it is checked when (Wk(ft) - Wk) changes sign, and (b) instead of 
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stopping when a desired point ~* = ~(il is found, the curve Ck continues to be 
. .. -( i+1l 

followed, searching for another POSSl ble pomt fl , and then another, and so 

on. 

If the curve Ck is closed, it is followed all the way around to its starting point 

ft. If the curve Ck is open, it is followed in both directions, starting always from ft, 
and only up to a specified distance from~. The reason for this is that if the curve 

Ck is open, its length is infinite, and, therefore, its tracking must be confined over 

a finite length for the algorithm to converge. This finite length is, in effect, set 

by the chosen closed, bounded subset of all possible parameter values. 

It is important to notice that following only one of the curves Ck (flJ.) does 

not provide the whole set Gn. The reason for this is that the set: 

(3.12.5) 

might be a non-connected set, while the curve q(fljft) ~ Gk is by its definition 

in (3.11.1), the largest connected subset of Gk containing ft. Although it is 

obvious from the above definitions that Gn C Gk, implying that if the whole set 

ek is searched, the whole set en can be recovered, thi.s search is not possible 

when ck(flJ) i= Gk, since the proposed algorithm is based on the tracking of the 

continuous curve Ck, and it has no direct way of jumping to the portions of ek 

that are not connected to q(flj ft). 

However, there is an indirect way of finding any other curves belonging in 

Gk different than Ck(~jft). This is done by requiring all curves ck(flj.t\ k = 
-(i) 

1,2, ... , N m, passing through all found points fl E en' to be followed. For 
-til -

example, assume that a point Ii E Gn is found by following the curve cr(fl; fl.), 

while at the same time it is not found when the curve ck(fl; ft) is followed. Then, 
-til - -til 

the curve ck(fl;fl ), satisfying ck(fljfl) n ck(fljfl ) = {0}, is another subset of 

Gk, and must, therefore, be followed. 

-til 
Notice that although the above methodology requires all curves Ck(~;~ ), 

Z = 1,2, ... , K, k = 1,2, ... , Nm to be followed, the total number of curves 
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followed is much smaller than K N m' This is because, for all points ftC i) lying on 

. ul (8 8-(j) h di (B B-(i). 'd . al a partIe ar curve Ck _; _ ,t e correspon ng curve Ck _; _ IS 1 entlc to 
-(j) 

Ck(fl.; fl. ) and, therefore, it needs to be followed only once. 

Figure 3.9 demonstrates the proposed algorithm for the two-story building 

example of Section 3.10.1. Starting at the point'll) = [1.0, 1. of and following 
A(l) A(1) -(1) -(2) 

the curves CI (Ii.; fl. ) and C2(ft; ft ), the set en = {ft , ft } is found, where 
-(1) A(I) -(2) T A A 
fl. = fl. and ft = [2.0,0.5] . In order to evaluate the set Sopt(fl.; ZI,N), it is 

checked if t 2
) satisfies (3.12.2), that is, if it has the same effective participation 

factors at the observed degrees of freedom as ft(l). This is true in the case 

where the only observed degree of freedom corresponds to the roof, resulting in 
• A A(I) A(2) A(2) -(2) 

Sopt(fl.; ZI,N) = {fl. ,fl. }, where fl. = fl. . In the case where the observed 
-(2) 

degree of freedom corresponds to the first floor, the solution fl does not satisfy 

(3.12.2), and, therefore, it is not included in the set SoPtc.~; ZI,N), which is left 
A(l) A(l) 

with only one element {fl }, proving that the parameter fl is, in this case, 

globally M-identifiable. 

3.12.3 A Simplified Expression for the Weighting Coeffiient Wk 

At this point, an alternative expression for the weighting coefficient Wkl 

weighting the optimal parameter 'ft(k), is given for the case where No = N m , 

simplifying the earlier expression given by (3.4.24) and (3.4.25). The difficulty 

in these earlier expressions is due to the term IA!~;I(ii~)lt, which requires large 

computational effort to be evaluated, while at the same time it is vulnerable to 

numerical errors, especially when the matrix A:~/(a~) is ill-conditioned, which 

is often the case in practice. The introduced simplification stems from the fact 
AO 

that the matrix AN(ak), given by (3.4.19), can be rewritten as follows, if the 

transformed variables 12 = [WI"'" W N=, (1, ... , (N"" (7°V are employed instead 



-138 -

where 

b = [wT (8{k» ;.T (joJT 
-k - - ,~, (3.12.7) 

and 

ok _ [OW 0 1 
jOl-O - ofl 
UQ 0 I 

(3.12.8) 

where lis an (Nm + 1) x (Nm + 1) identity matrix. Utilizing (3.12.6) and (3.12.8), 

and recognizing that 1k = 1/, V k, I E {I, 2, ... ,K}, it can be seen that: 

where 

IA;~/(~~)It 
IA;\;1(~~)lt 

Jet» 
Jci k

» 
(3.12.9) 

e3.12.10) 

is the Jacobian of the transformation fl ~ w(fl) at the optimal parameter ~(k). 
The elements ofthe matrix \If;l.Cfl(k)) can be calculated easily utilizing the analytic 

expression (3.9.3). Employing (3.12.9), the resulting simplified expression for Wk 

IS 

w' 
W - k 

k - K 
Ek=l w~ 

(3.12.11) 

where 

(3.12.12) 

Notice (3.12.11) is identical to (3.4.24), and (3.12.12) is a simplified version of 
1 -0 1 -(k)-o 

(3.4.25), where IAN Uh)12 has been replaced by J-l(fl ) and r.!i0 (ih) has been 

replaced by r.flJ~\k). The latter is possible because all parameters in QO, except 
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for the parameters fL, that is, the parameters ~ and (10, are globally identifiable, 

while at the same time, the parameters fL and the parameters i and (10 are 

assumed to be independently distributed. It is interesting to notice that the 

weighting coefficient Wk, given by the expressions (3.12.11) and (3.12.12), does 

not depend explicitly on the measured output. This is surprising at first, since 

the term IA~~/(~~)It in the earlier expression (3.4.25) for w k clearly depended on 

the measured output. 

3.12.4 Identifiability of fL: Some Test Results 

The proposed algorithm for investigating the model identifiability of 

the parameters fL was tested extensively, and some of the results obtained are 

presented in this section. 

Table 3.2 shows the number of stiffness distribution solutions 'ft(i) that are 

obtained for planar shear buildings with different degrees of freedom Nd, when 

the observed degree of freedom is the one corresponding to the roof. The mass 

distribution is assumed to be uniform and known. It can be seen that the number 

K of "output-equivalent" solutions that were found is much smaller than the 

upper bound of (Nd!) placed by Udwadia [1978a]. For the tested cases, this 

number is given by K = 2INT( ~) . 

Table 3.3 shows the eight "'output-equivalent" solutions for a six-story 

(Nd = 6) uniform shear building, when the observed degree of freedom is the 

one corresponding to the roof. Figure 3.10 shows all the effective participation 

factors of the different modes at the different floor levels corresponding to all the 

different solutions ii), i = 1, ... ,8, shown in Table 3.3. It can be seen that while 

all these different solutions have the exact same effective participation factors 

at the observed degree of freedom corresponding to the roof, their values at the 

lower degrees of freedom become increasingly scattered. It can be concluded that 

;f nrprJ; "t;ons <lre to be madp cot t he r~~f 'h~'l ~~ .. o· 'llese ~"'·:mal solutl'ons l'S ~ ... l ....... '- .... ~ .. '-~' .. ... c .... ' ...... ,-.:...,,, .......... .&. ....... ".J..L, VJ.J.\.....l UJ.J..l .1. u vyv.l.J..1 
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going to give the same results, while if the response at a lower degree of freedom 

is to be predicted, all optimal models must be included, appropriately weighted 

through the coefficients Wk. The weighting factors Wk for each model are given 

in the last column of Table 3.3, based on (3.12.11) and (3.12.12), and under the 

assumption that the models are equally plausible a priori, so that the factors 
A(k) 

7r!L(fl ) can be omitted. 

3.13 Summary and Conclusions 

The problems of model updating when records of measured input and 

output are available, and the use of the updated model to predict the uncertain­

ties in the structural response during a future excitation, have been discussed in 

this chapter. 

Using a Bayesian probabilistic approach, the problem of model updating 

translates into calculating the posterior probability distribution of the uncertain 

model parameters g, and the model-error parameters fl.. It has been shown that 

only the parameters gO and a O
, associated with the observed output quantities, 

are directly updated using the available data 1) N. The posterior pdf of these 

observed parameters gO and aO is found to be very peaked at the values of some 

optimal values Ut, &0) E Sopt([/, &0; 1)N)' An asymptotic result [Beck 1990J has 

been extended to calculate the uncertainties in the predictive response at both 

the observed and the unobserved degrees of freedom. This result states that if 

the number of available data points is large, the uncertainties in the predictive 

response can be calculated by considering only the optimal models wi th param­

eters (Qo, &0) belonging in the set Sopt(Qo, &0; 1)N). If the number of the optimal 

parameters contained in this set is finite, then the pdf of the predictive response 

at the observed degrees of freedom is given by the sum of the pdf's correspond­

ing to each of these optimal parameters, each being appropriately weighted. This 

result. assuming the set of optimal parameters Sopt(Qo, aD: 1).11/) is known. is very 
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significant, since it simplifies the response prediction problem by replacing the re­

quired high-dimensional integrations over the domain of the observed parameters 

g,0 and a O with a finite sum. The pdf of the predictive response at the unobserved 

degrees of freedom is given by a similar sum expression, where each of the terms 

in the sum, corresponding to one of the optimal observed parameters, involves 

integrations over the space of the "unobserved" parameters g,u and aU. In this 

case, the simplification amounts to reducing the originally required integrations 

over the space of all parameters g, and !!.. to integrations over the reduced space 

of the unobserved parameters. The implementation of these asymptotic results 

assumes that the set of all optimal parameters Sopt([iO , aO; 'DN) has been found. 

It was shown that the optimal value aO is globally identifiable, reducing the 

problem to finding all optimal observed model parameters fdo E Sopt(fdO; 'DN). 

The definitions of model and system identifiability are introduced. Resolving 

the system identifiability of the optimal parameters fdo is a very difficult prob­

lem, and amounts to finding the whole set Sopt(fdO; 'DN). Resolving the model 

identifiability of the optimal parameters fdo amounts to finding if there are other 

models in the class, corresponding to different values of fdo, and having identical 

output at the observed degrees of freedom under the given input as the optimal 

model corresponding to fda. It was shown that the set Sopt(fdO; ZI,N) of the opti­

mal paranleters fdo corresponding to all such "output-equivalent" optimal models 

satisfies Sopt(Jlo; ZI,N) ~ Sopt(fdO; 'DN), implying that resolving the model iden­

tifiability of the optimal parameters is a first step towards resolving the system 

identifiabili ty. 

The optimal paranleters ft globally minimize a positive-definite measure-of­

fit function J(g,0). For the case where g,0 = g, = [ftT,~TJT, a new minimization 

algorithm has been presented to obtain an optimal set of paranleters ~ and ~ 

by minimizing the corresponding function J(ft,D. This algorithm was developed 

to overcome problems of convergence that the existing algorithms were found 

to exhibit, and it is based on performing a series of one-dimensional curve min-
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imizations. It was shown that the proposed minimization algorithm not only 

converges to a minimum of J, but it does so very efficiently. 

- -The model identifiability of the optimal parameters fl. and ~, obtained us-

ing the proposed minimization algorithm, was addressed. The modal damping 

ratios ~ are globally M -identifiable [Beck 1978), and, therefore, only the model 

identifiability of the parameters fl. remains to be resolved, that is, finding the 

set Sopt(ft, ZI.N) of all "output-equivalent" fl.-distributions. This problem has 

been solved here, for the first time, by presenting a new algorithm that effi­

ciently and systematically searches the parameter space S(fl.) to find all elements 

ft E SoPt(~; Zl,N). A simplified expression for the weighting coefficients corre­

sponding to these optimal "output-equivalent" parameters is also derived to be 

used in the asymptotic expression for the pdf for the predictive response. 
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(a) 

(b) 

Figure 3.1 (a) Successive minimizations along coordinate directions in a long, 

narrow "valley." Unless the valley is optimally oriented, this method 

is extremely inefficient, requiring many steps to get to the minimum. 

(b) Magnified view of a 1-D minimization step. 
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Figure 3.2 Contour map of J(9t, 92 ), appropriately normalized, for the exam­

ple of Section 3.10.1, where simulated data corresponding to the 

response at the roof of a uniform tw.o-story planar shear structure 

are used. (Lack of smoothness in some of the contours is due to the 

finite resolution of the grid used.) 
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Figure 3.3 (a) Space ~(D..) for the example of Section 3.10.1. 

(b) Space S(~) for the same example. Each point ~ E SleW) is the 

image of two points in SUi.), one belonging in the region 8 1 and the 

other in the region 8 2 , while each point)n the boundary ~B(W) is 

the image of only one point in S(D..), belonging on the straight line 

SB(D..) separating 8 1 and 8 2 • 
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Figure 3.4 Curves in the fl-space along which WI is constant, for the case of the 

two degree of freedom shear model of Section 3.10.1. 
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Figure 3.5(a) Contour map of .J(f:l.161 ) = .J(f:l.162 ), appropriately normalized, for 

the example used in Figure 3.2. 
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Figure 3.5(b) Magnified view of the contour map of Figure 3.5( a) in the neighbor­

hood of w(~) = (27.64,72.36) rad/sec. 
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Figure 3.6 Contour map of J(91'£)2). appropriately normalized. for the exam­

ple of Section 3.10.1. where simulated data corresponding to the 

response at the first floor of a uniform two-story planar shear struc­

ture are used. 
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Figure 3.7(a) Contour map of J(!:!L18I ) (left) and J(wI82 ) (right) for the example 

used in Figure 3. G. 
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Figure 3.7(b) Magnified views of the contour map of J(~lel) (left) and J(~le2) 

(right), in the neighborhood of ~(~) ...: (27.64,72.36) rad/secror the 

pxample used in Figure 3.6. 
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3r-----,---1i~------r_----~----~----~ 

Figure 3.8 Path followed by the minimization algorithm proposed in Section 

3.11 for the two-story shear building of Section 3.10.1. Two modal 

sweeps are sufficient to reach the optimal solution ftl = [1.0,1.0f· 

(Po = flO, ° , PI = flo•l , Pz = flD,z = !i1,D,.p3 = fll,l, P4 = fl1"z = ft = 

[l,ljT.) 
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Figure 3.9 Schematic representation of the algorithm proposed in Section 3.12 

to investigate the model identifiability of the stiffness parameters fl. 

for the two-story shear building example of Section 3.10.1. 
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Figure 3.10 Effective participation factors ,e;r) corresponding to the six-story 

shear buildings with parameters fl given by the equivalent ft param­

eters shown in Table 3.3. The values 01,ef r
) are plotted against the 

Baor r!C!mber i = 1, ... , G a.nd for all modes r = 1, ... ,D. 
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ALGORlTHM 0° I 0° , og 0° • I 0" I I 0; I 0; I 0" 4 I J(1") I 
POWELL 1.2 1.2 1.2 1.2 0.85 1.20 1.17 0.95 3.94 x 10-3 

POWELL 1.2 1.0 0.8 0.6 1.11 0.96 0.86 1.06 5.96 x 10-' 
FLETCHER-REEVES 1.2 1.2 1.2 1.2 0.96 1.06 0.98 1.04 1.71 x 10-3 

FLETCHER-REEVES 1.2 1.0 O.S 0.6 1.20 0.90 0.83 1.04 1.94 x to-3 

PROPOSED 1.2 1.2 1.2 1.2 1.00 1.00 1.00 1.00 1.76 X 10-5 

PROPOSED 1.2 1.0 0.8 0.6 1.00 1.00 1.00 1.00 1.42 x 10-' 

Table 3.1 Comparison of convergence of different minimization algorithms us­

ing simulated data corresponding to a four-story uniform shear 

building. flO is the chosen starting point and fl.* is the point to which 

each algorithm converged. The values of J have been normalized by 
N 

dividing it with 2: xO(n)2. 
n=l 
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No. of Stories No. of Equiv. Soln. 

2 2 
3 2 
4 4 
5 4 
6 8 
7 8 
8 16 

Table 3.2 Number of "output-equivalent" stiffness distributions of an Nd-story 

uniform planar shear building, when the only observed degree of 

freedom is the one corresponding to the roof. 

No. (h O2 03 04 I Os I 06 I Wk(%) I 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 21.35 
2 1.5848 0.6963 1.2875 0.7574 1.1766 0.7898 13.49 
3 1.9970 0.7980 0.7095 1.3848 0.7113 0.8980 4.91 
4 2.0000 1.0000 1.0000 0.5000 1.0000 1.0000 21.35 
5 2.0932 1.0476 0.7240 0.7374 0.6705 1.2738 17.07 
6 2.2911 0.6304 0.9321 1.1774 0.9515 0.6631 6.46 
7 2.4913 0.8777 0.6514 1.1106 0.6672 0.9475 7.40 
8 2.8252 0.6753 0.8826 0.9021 0.8753 0.7520 7.97 

Table 3.3 "Output-equivalent" stiffness distributions ~ for a six-story uniform 

planar shear building, when the only observed degree of freedom is 

the one corresponding to the roof. Wk(%) is the weighting factor of 

f)~(k) 1 1 n 1 ul t d;.'" h (3' .... '" . 'n.n •. -" "," = _." ... :l. ca..c a e our-oug. ~ oJ • .:..J.J.j CUIO ~,).l..::.L~). 
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Chapter 4 

Conclusions 

The uncertainties related to the modeling of the dynamic behavior of a struc­

ture have been studied in this dissertation. Two major categories of uncertainties 

are encountered in such a modelling; (a) uncertainties in the model parameters 

specifying a particular model in a chosen class and (b) uncertainties in the model 

error parameters quantifying the model error, which refers to the discrepancies 

between the model and real system responses. A Bayesian probablistic approach 

has been followed to analyze these parameter uncertainties and to account for 

them when investigating the resulting uncertainties in the predictive structural 

response. Two different cases have been addressed, depending on whether or not 

records of structural response are available. 

In Chapter 2, the case of preliminary design has been studied, where the 

structure has not yet been built, or, more generally, where no records of struc­

tural response are available. In this case, the uncertainties in the structural model 

parameters, as well as in the model-error parameters, are estimated subjectively, 

based on any information available and on the engineer's past experience in 

dealing with similar structures. Calculating the statistics of the resulting uncer­

tainties in the structural response due to the uncertainties in the model and the 

model-error parameters is a conceptually easy problem, and can be formulated 

mathematically as an integral over the domain of all the uncertain parameters. 

The difficulty of the problem lies in the evaluation of these high-dimensional in­

tegrals. which cannot be done analytically, in general. The existing numerical 

methods for approximating these integrals can either become computationally 



- 158-

prohibitive (simulations, numerical integTations), or are shown to be potentially 

very inaccurate ("second moment" approach). A new, efficient and accurate ap­

proximate method has been presented to overcome the difficulties of the existing 

methods. Most of the computational effort required by this new method depends 

only on the number of modes included in the model response and on the time 

length over which the response statistics are to be calculated, and is independent 

of the number of uncertain parameters involved. This is in contrast to the numer­

ical integration method, where the computational effort grows exponentially with 

the dimension of the integrals to be calculated, being specified by the number 

of the uncertain parameters. The new method provides the engineer with a tool 

to go beyond checking the nominal dynamic response to specified excitations for 

a preliminary design by examining the resulting uncertainties in the structural 

response due to uncertainties in the modeling process. 

In Chapter 3, the case where records of the input and the corresponding 

output of a structural system are available was considered. The output is as­

sumed to be measured only at certain "observed" degrees of freedom. Using 

Bayes' Theorem, the information contained in the available data is extracted 

and used to update the initial estimates of the uncertainties of the structural 

model parameters and the model-error parameters. It was shown that only the 

"observed" portions of the uncertain parameters are updated directly from the 

data, and that the corresponding updated posterior probability density function 

of these observed parameters is very peaked at the values of some optimal param­

eters. The larger the number of available data, the more peaked the posterior 

probability distribution becomes at the values of the optimal parameters. An 

asymptotic result [Beck 1990] can be applied in an extended form, allowing for 

any integrations over the domain of the observed parameters to be replaced by a 

weighted sum over all optimal observed parameters, assuming their number is fi­

nite. This result is very important, since the high-dimensional integrations can be 

completely osoiueu when caicuiating the uncertainties m the predictIve response 
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at the observed degrees of freedom. It also means that only integrations over 

the lower-dimensional space of the "unobserved" parameters is necessary when 

calculating the uncertainties in the predictive response at the unobserved degrees 

of freedom. 

However, the implementation of these asymptotic results assumes that the 

problem of finding the set of all optimal observed parameters has been solved. 

The optimal observed parameters can be recovered by solving a minimization 

problem of a positive-definite measure-of-fit function of the observed model 

parameters. It was shown that the optimal observed model-error parameter 

depends only on the global minimum value of this function, and is therefore 

specified uniquely, while the optimal observed structural model parameters cor­

respond to all the points in the observed model parameter space at which this 

global minimum is attained. Solving this minimization problem is extremely dif­

ficult because the observed model parameter space is high-dimensional and the 

function to be minimized is not convex, so that its global minimum cannot be 

guaranteed to be attained only at a unique point. Therefore, a minimization 

algorithm capable of converging to the minimum at the values of some optimal 

parameters is needed, along with a tool to investigate the identifiability of the 

calculated optimal parameters. 

The existing minimization algorithms were tested and were found to spuri­

ously indicate convergence before reaching a local minimum. The reasons for this 

behavior were shown, and a new minimization algorithm was proposed to over­

come this convergence difficulty. The proposed algorithm, based on performing 

a series of minimizations along one-dimensional curves in the parameter space 

and not straight lines as usually done, was tested for cases where the number of 

uncertain parameters is equal to the number of modes included in the response, 

and was found to efficiently converge to the minimum. 

The concepts of model and system identifiability were introduced to inves-
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tigate the uniqueness of the reached optimal parameters. It was shown that re­

solving the model identifiability, that is, finding all optimal models with identical 

output at the observed degrees of freedom under the given input, is an important 

first step toward reaching the final goal of resolving the system identifiability. In 

the case of no model error and measurement noise, the problems of system and 

model identifiability are identical. The problem of model identifiability had been 

previously solved for "shear-building" mdels up to the point of finding upper 

bounds regarding the number of "output-equivalent" optimal parameters. An 

algorithm was proposed in this work to search the high-dimensional parameter 

space systematically and efficiently by following certrun curves in the space to 

find the whole set of these "output-equivalent" optimal parameters. Although 

it has not been proven theoretically that the proposed algorithm guarantees the 

recovery of all "output-equivalent" optimal parameters, there is confidence that 

it does so in practice. The case where the number of uncertain parameters is 

equal to the number of modes included in the response was treated. Also, a 

simplified expression was derived in this case, giving the weighting coefficients of 

each of these optimal parameters to be used in the asymptotic expression for the 

pdf for the predictive response. The algorithm was tested extensively to identify 

the stiffness distributions of "shear-building" models having identical response 

at various specified degrees of freedom. It was found that the existing theoretical 

upper bounds for the number of optimal solutions being "output equivalent," 

when the response is measured only at the roof, are extremely conservative when 

the number of stories is large. 

The work presented in Chapter 3 is the first step toward properly updat­

ing a probabilistic model for the dynamic behavior of a structural system using 

avrulable data. This problem, also referred to as statistical system identification 

Beck [1990J, is extremely important, with applications in response predictions, 

structural control. and "damage detection" or "health monitoring" of structures. 

~~ utice that, unliKe ueterministic system identification which usually produces a 



- 161-

single optimal model without a clear picture of the associated modeling uncer­

tainties, the results obtained using statistical system identification quantify these 

uncertainties in a way which can be easily interpreted. For example, the value 

of the measure-of-fit function is related to the observed model-error parameter, 

describing how large the model error of the observed output quantities is, and, 

therefore it comments on the reliability of the response predictions by the model. 

Since the study of statistical system identification within the Bayesian frame­

work used here is a relatively new area of research, there is still a lot of work 

that needs to be devoted to this subject. In continuing the work presented in 

this dissertation, future research should be focused in the following directions. 

The proposed minimization algorithm should be tested using simulated data for 

the case where the number of uncertain parameters is different from the num­

ber of modes included in the response. Also, this algorithm needs to be tested 

extensively using real data. The algorithm that was proposed to investigate the 

model identifiability of the optimal stiffness parameters, as well as the derived 

expressions for the corresponding weighting factors, needs to be extended and 

tested for the case where the number of uncertain parameters is different from 

the number of modes included in the response. Finally, a methodology must be 

developed to explore the system identifiability of the optimal parameters. 

Because of the difficulty of the problems encountered, the task of resolving 

the problem of statistical system identification is a very challenging one. The 

work presented in this dissertation constitutes an important step towards resolv­

ing this problem. and reinforces that the Bayesian approach is a profitable one 

for future work in this area. The potential rewards of resolving this problem are 

tremendous, due to the many practical applications. 
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Appendix A: Proof of Equations (2.4.8) and (2.4.9) 

Let S(·) denote the domain of the quantity in the parenthesis. The pdf 

p(~llvfp) of the response ~(t), based on the axioms of probability logic, is ex­

pressed as: 

p(~IMp) = J J f(~;Q,fl.)7r!!.(gJ7rI!..(fl.)dQda 
S(J!} S(~ 

where f(~; Q, fl.) is assumed to be given by: 

f(~; Q, fl.) = !!..a
1 

.1. exp [--21 [~ - q(Q)f~-l (fl.)[~ - q(Q)l] 
(27r) 2 1~(fl.)12 - -

The expected value if of the response is given by: 

if = E[~IMpl == J Y(~IMp )dx 

SInce 

S(£J 

= J J J ~f(~;Q,fl.)7r!!.(Q)rrI!..(a)dQdad~ 
S(£J sW S(~ 

= J [J [J ~f(~;Q,a)d~]7r!!.(Q)dQ] 7rI!..(a)da 
st.!!:.) st.!!) S(£J 

== J [J !l(Q)7r!!. (Q)dQ]rr I!.. (fl.)dQ 
S(I!..) S(J!} 

= J 7rI!..(a)dQ.. J !I(Q)7r!!.(Q)dQ 

S(I!..) st.!!) 

= J !l(Q)7r!!.(Q)dQ 

Sc!!) 

J 7r I!..(Q)da = 1 
S(I!..) 

Similarly the covariance matrix of ~ can be expressed as follows: 

Cov(~) = E [[~ - L][~ - ifflMp 1 

= E[~TIMpl - xxT 

(2.4.7) 

(2.4.8) 

(A..l) 
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E[xxTJiv/p] = J gT p(±JMp )d± 

S(£l 

= J J J gT !(±;g, O}Tr!l.(g)7r!!..(a) dgda d± 

S(£l SC~) SC~) 

= J [J [J gT !(±;g, a)d±] 7r!l.(g)dg] 7r!!..(Q:.)da 
S(!!..l S(!!) S(£l 

= J [J ~(g)~(g)T + ~(a») 7r!!(g)dg]7r!!..ca)da (A.2) 

S(!!..l 5(!!) 

Slnce 

= J 7r!!..(Sl.)dQ J ~(g)~(g? 7r!!(g)dg 

5(!!..l S(!!) 

+ J ~(Q)7r!!..(Q)da J 7r!!(g)dg 

S(!!..l S(f!) 

= J ~(g)~(g? 7r !!..Cg)dg + J ~(Q)7r!!..( a )da 

S(!!! S(!!..l 

J 7r!!..(Q)da = 1 and 

S(.!!) 

J 7r!!(g)dg = 1 

S(!!! 

It follows directly from (A.I) and (A.2), that: 

Cov(±) = J !1.(g)!1.(g? 7r!!(g)dg - xxT + J ~(Q:)7r!!..(Q)da 
S(!!) S(!!..l 

(2.4.9) 
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Appendix B: An Analytical Expression for ~~;. 

Recall from Chapter 2: 

r = 1, ... ,Nd (2.6.13a) 

where 
N9 

K= Ko + I:e;K; (2.6.10) 
;=1 

Assume also that the modeshapes have been normalized so that they constitute 

an orthonormal basis for RNd with respect to M: 

Differentiating (2.6.13a) with respect to ej , we obtain: 

BK B,I.(r) B 2 B,I.(r) 
_rjJ(r) + K ~ = Wr.M rjJ(r) + w2_'1'_ 
Be j - Be; Be; - r Be; 

Premultiplying (B.1) with ¢(r) and rearranging terms: 

Using the s~'mmetry of J( and .1\!. and Equation (2.6.13a). we obtain: 

Because of (B.3) and (2.6.16), Equation (B.2) implies: 

or using Equation (2.6.10): 

(2.6.16) 

(B.l) 

(B.4) 

(B.5) 
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Thus, the final expression for ~~~ is obtained: 

(3.9.3) 

Notice that the evaluation of the partial derivatives of the rtk modal frequency 

with respect to the OJ'S requires calculations involving only the corresponding rth 

eigenvector ¢}r). Also, notice that the eigenvectors in (3.9.3) are assumed to be 

normalized according to (2.6.16). 
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Appendix C: An Optimal Choice for the Parameter "'{ of Section 2.8. 

As discussed in Section 2.8, a quadratic polynomial is sought which approx­

imates fUD well over the entire range of interest of ft.'s. To measure how well a 

function h (ft.) approximates another function 12 (ft.) over the domain of interest 

of the ft.'s, the following measure of fit is introduced: 

J(h,h) = J(h,h) = J Ifl(ft.) - hUDI 27l"!!(ft.)dft. (C.1) 

SCi) 

Note that points with higher prior probability get weighted more heavily. The 

smaller J(fI, h) is, the better is the fit between h (ft.) and heft) over the domain 

S(ft.). 

For illustrative purposes, assume the case of a single uncertain parameter 

8; in this case, Ne = 1, N/ = N;+3td 2. = 3. The quadratic approximation for 

f( a) is: 

(C.2) 

Equation (C.2) can be rewritten as: 

(C.3) 

~=A£ (C.4) 

where 

A~ U 
-e ~ 1 !;9 1 
0 

(C.5) 

The coefficients f. or £ are evaluated, according to the discussion in Section 2.8, 

by fitting g( a) or g( a) through N/ = 3 points (a(;),j( a(;)) , i = 1,2,3. Such 

points are evalauted to be: a(l) = e, e(2) = e - ",{(Ie and a(3) = 8 + "We. The 

requirement to fit g( a) through these three points leads to: 

Co = fee) (C.6a) 
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Co -,O'OC1 + ,20'~C2 = fCB -,0'0) 

Co + ,O'OC1 + ,20'~C2 = fCB + ,0'0) 

(C.6b) 

(C.6c) 

Assume now that the optimal cubic polynomial approximating fee) passing 

through the points Ce(i),fce(i)),i = 1,2,3 is: 

do = fCB) 

By comparing Equations (C.6a,b,c) and (C.8a,b,c), it can be seen that: 

By subtracting (C.7) from (C.3), and using (C.9a,b,c), we obtain: 

CC.8a) 

(C.8b) 

(C.8c) 

(C.9a) 

(C.9b) 

(C.9c) 

(C.10) 

The measure of fit between gee) and 'k(e) is found by substituting (C.10) into 

(C.l): 

00 

J(g(e), /lee); ,) = J ~(e - 8)2 b2a~ - (8 - 8)2)2 7ro(fJ)de (C.ll) 

o 

To obtain the best fit between the quadratic and the cubic approximation of 

fee), J(g(O), h(O); ,) is minimized with respect to ,: 
_ 00 

8J(g(f)~;(f);,) = 4;IT~J~ J(R - A)2 (;21T~ - (8 - 8)2) ~G(B)clB = 0 (C.1~) 
o 
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or equivalently: 

00 00 

,20'~ fC8 - a?7I"o(8)d8 = fe8 - 8)471"OC8)d8 e C.13) 

o 0 

Solving for " we obtain: 

.1 [[e8 _ 8)471"oC8)d8] 2 

O'~ 
(C.14) ,= 

For a Gaussian distribution of e, (C.14) implies, = J3. For a Gamma distri­

bution 71"(8) = g(8; /-lO, Vo), [see Equation (2.7.1)], (C.14) implies, = )3 + :9 = 

';3 + 60:~ ~ J3 for typical values of coefficients of variations 0:0. The choice 

, = J3 then gives the best quadratic fit to an optimal cubic fit to fCe) going 

through the points (e(i),f(e(i»),i = 1,2,3. The same choice of, is used in the 

multivariate case involving fUl.). 
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Appendix D: Pdf of y = ax, where x is Gamma Distributed 

Let x be a Gamma distributed uncertain parameter: 

(D.1) 

where g(X;J-lXlVX) is given by (2.7.1). Let y = ax be a transformed uncertain 

parameter, where a > 0 is a deterministic constant. The pdf p(y) must satisfy: 

(D.2) 

Substituting (D.l) into (D.2), we obtain: 

(D.3) 

Let Vy = VX, and J-ly = ~, then Equation (D.3) can be rewritten: 

v. 

p(y) = ~~y)y"Y-le-J-t.y = g(y; J-ly, vy) (D.4) 

Thus, y = ax is also Gamma distributed. 

Note: It is easy to show that a linear transformation y = ax + b, assuming x is 

Gamma distributed, leads to a Gamma distribution for y, only if b = 0 and 

a > 0; this is contrary to the case of a Gaussian distributed parameter where 

any of its linear transformations are also Gaussian distributed. 
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Appendix E: An approximation for p(iiOIVN,J\ltp) 

Based on the supporting notes of J.L. Beck for Beck [1990J, an approxima­

tion for p(iiOIVN, Mp) is derived which is valid for both the globally and locally 

identifiable cases. This approximation shows that in the neighborhood 'H.(Q~) of 

the optimal parameters Q~ = [Q{, a-o(Qk)JT , k = 1, ... , K, this distribution co­

incides with a scaled multi-dimensional Gaussian distribution for iio = [QoT, aOJ T 

with mean Q~ and covariance matrix ANI(Q~). In the globally identifiable case, 

where K = 1, the subscript k may be omitted in the following. 

First, it will be shown that for a large number of data points N, the optimal 
~o 

parameters iik correspond to local maxima of p(iiOIVN, J\lt p ). By definition, the 
... 0 ,.. ..... 

optimal parameters iik globally maximize fN(XI,N;iio, ZI,N) and, therefore: 

8lnfN(XI ,N;iio, ZI,N) I 1 ofN(XI'N~~o, ZI.N) I 
oiio ~o=.&~ - fN(XI,N;Q~,ZI,N) og ~o=~~ 

=Q 
(E.1) 

Equation (3.4.6) is rewritten: 

Inp(iiOIVN, M p) = Ink + InfN(XI,N;iio, ZI,N) + 11l7l'~o (gO) (E.2) 

where 7T~o(Q°) = 7l'!!o,O"o(gO, aO). Assume that p(gOIVN, Mp) attains a maximum 
• ~ ° 

at iik E H(iik), then: 

0= 8lnp(iiOIV:v, :\lt p) I 
- agO aO=aO* 

- -k 

(E.1), we obtain: 

8lnfN(·YI .N; gO, ZI.N) I 
oflo iiO=iiO* 

- -k 

(E.3) 

(EA) 



-175 -

where the (No + 1) x (No + 1) matrix BN(gO) is defined by: 

82In!Kr(XI ,N; aD, ZI,N) 
8g08g0 (E.5) 

The elements of BN(~o) are O(N). Substituting (E.4) into (E.3) and solving for 

g'{ results in: 
-0' _ ::0 -1 ::0 8lmrao(gO) / 
Qk - Qk + BN (Qk) 8g0 aO=aO' 

- -k (E.6) 

=~~ + O(N- I
) 

since the elements of BN(~o) are O(N-1 ). Equation (E.6) proves that for a large 

number of data points N, the optimal parameters ~~ , k = 1, ... , K locally max-

imize the posterior pdf P(gOIVN,Mp). The global maximum of P(gOIVN,Mp) 

is attained by the solutions ~; = [g/, a-°1 T which satisfy: 

(3.4.23) 

In order to approximate p(QoIVN, ;\Itp) in the neighborhood 1-{(~~), expand 
~O 

lnp(gOIVN,A1p) in a Taylor series about gO =gk, to obtain: 

-0 ::0 81np(gOIVN,/v1p) I _0::0 
Inp(Q IVN, Mp) = Inp(QkIVN, Mp) + 8g0 ao=a

O 
(Q - Qk) 

- -k 

+ ~(_0_::0)T8Z1np(goIVN,Mp)1 (-o_::o)+h t 
') Q Qk 8-0 ~-o Q Qk .0 .. 
-' Q UQ aO=~~ - -..; 

(E.7) 

where gO E 1-{(~~). Since p(QoIVN, Mp ) attains a maximum at gO = ~~, it follows 

that: 

Define the (No + 1) x (No + 1) matrix AN(~~) to be: 

A (5.0) = _ 8ZlnplgoIVN,j\;fp)/ 
N -k 8-°8-0 

Q Q aO=aO 
- -k 

821n fZ,(.Y!,\': QO. Z1:\T) I 821n7r;;o (ir°) I 
(E.g) 

I~o=~~ - 8g08g0 I~o=~~ 
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For large N, the contribution of the second term is negligible and, therefore: 

(E.I0) 

Equation (E.7) may be rewritten, utilizing (E.8) and (E.g), as follows: 

-0 1 -0 T -0 -0 

Inp(.gOI'DN, Mp) = Inp(gkl'DN, Mp) - '2(gO - gk) AN(gk)(gO - ih) + h.o.t. 

(E.1l) 
"'0 "'0 

where gO E 1t(gk). Thus, the following approximation in the neighborhood of gk 

is obtained: 

P(g.°\'DN' jV{p) '" P(g~\1)N' Mp )exp ( -~(gO - g~)T ANCg~)(Q - g~») (E.12) 

Note that: 

(E.13) 

is a multi-dimensional Gaussian with mean Q~ and covariance matrix ANl(Q~). 

Comparing (E.12) with (E.13), it can be concluded that locally, in the neighbor­

hood of Q~, the following approximation holds: 

(E.14) 
-0 ~ - -0-

where gO E 1tUh), and c = k(27r) 2 f'N(Xl,N;gbZl.N) = constant. since all 

Q~,k = 1, ... , K globally maximize fN(X1,N;gO, Zl,N). 
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Note that: 

where 

K '" J clAN -1 (l1~)lt 7l"_ao (l1~)G(liO; 11~, A N1 (11~) )dliO 
~ ~io E1-l(~~) 

K 

= c L IANl(l1~)lt7l"io(l1~) 
k=l 
K 

=cLw~ 
k=l 

Equations (E.14) and (3.4.25) lead to: 

where lio E 'H(11~) and Wk is given by: 

w' _ k 
Wk - k 

2:k=l w~ 

(E.15) 

(3.4.25) 

(3.4.27) 

(3.4.24) 

In the globally identifiable case WI = 1, and, therefore, p(liO IDN, J\It p) can be 

approximated in the neighborhood of its optimal parameters r 
with a multi-dimensional Gaussian distribution. 

T 

[
-0 - ojT = Q ,0" , 


