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Abstract 

Cytochrome c oxidase links the reduction of oxygen with the pumping of protons 

across the inner mitochondrial membrane. Recently it has been shown that only two of the 

four electron transfers to the oxygen binding site are coupled with proton translocation. 

This discovery implies that there is a conformational switch between pumping and non­

pumping forms of the enzyme. The expected properties of this unloaded/loaded 

conformational transition are discussed here and contrasted with gating conformational 

changes. Gating conformational transitions occur in each cycle of the pump when electrons 

and protons are alternatively accessible to either the inside or outside of the membrane. 

Such transitions are linked to the redox state of the coupling site. The unloaded/loaded 

transition, on the other hand, depends on the intermediate at the oxygen binding site and is 

not part of the pumping cycle. 

A 16 nm red-shift in the tryptophan emission maximum of cytochrome oxidase upon 

reduction of the enzyme with dithionite was reported earlier [Copeland, R.A., Smith, P.A., 

& Chan, S.I. (1987) Biochemistry 26,7311]. As such a redox-linked change could be an 

important probe of pumping transitions, the fluorescence change of cytochrome oxidase 

upon reduction with ascorbate and cytochrome c was measured. The absence of a shift 

led to the reevaluation of the earlier experiments for inner filter effects. The earlier 

experiments were reproduced with proper optical controls, and a method for reconstructing 

absorbance artifacts from the reported fluorescence spectra was devised. Tryptophan 

fluorescence lifetimes were also measured. All the data support the conclusion that the 

earlier reports of a redox-linked fluorescence change were artifacts and that the other 

transient changes in fluorescence which have been measured cannot be associated with 

either the unloaded/loaded transition or a gating transition. 
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Part 1 

Introduction 

Cytochrome c oxidase spans the inner mitochondrial membrane and catalyzes the 

transfer of electrons from cytochrome c to molecular oxygen in the reaction: 

4 Fe(cytochrome c )2+ + 02 + 4 H+ ~ 4 Fe(cytochrome c )3+ + 2 H20. 

As is shown in figure 1, the protons for this reaction come exclusively from inside the 

mitochondria (the mitochondrial matrix), while the electrons come from the cytoplasmic 

side of the membrane (the cytosol). The energy released by the reduction of a molecule of 

oxygen is used to pump up to four additional protons across the membrane (Thelen et al., 

1985; WikstrOm, 1977). During steady-state respiration, the proton concentration inside 

the mitochondria is one to two pH units higher than the concentration outside, and there is 

an electrostatic potential of about 180 mY across the membrane (Gelles et a/., 1986), giving 

a total protonmotive force of approximately 240 mY. Although the net driving force to 

pump protons against this gradient (the vectorial reaction) and selectively consume protons 

from the inside of the mitochondria (the scalar reaction) is 575 mY at standard conditions 

(298K, pH 7), not all of the four electron transfer steps are equally exothermic. It has 

recently been discovered that all the protons are pumped in just two of the electron transfer 

steps (Wikstrom, 1989). The mechanism by which the transfer of electrons to oxygen is 

coupled to the pumping of protons is a topic of current research. Efforts are under way in 

several laboratories to detect the conformational changes which must be associated with 

proton pumping. This thesis first describes the types of conformational changes that 

should be associated with proton pumping, then it details experiments evaluating the use of 

tryptophan fluorescence spectroscopy as a conformational probe. 
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FIGURE 1. Schematic view of the major physiological functions of cytochrome c oxidase. 
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Cytochrome oxidase is a large protein consisting of three to thirteen subunits and 

having a molecular weight of up to 260,000 (for a review, see Wikstrom et ai., 1981). The 

three largest subunits are extremely well conserved in species as diverse as bacteria, yeast, 

and man. These three subunits, which constitute the entire bacterial protein, are genetically 

coded inside the mitochondria of eucaryotes, while the other more variable subunits are 

coded and synthesized in the cytoplasm. Subunits I and II are known to bind the redox­

active metal centers of cytochrome oxidase, while subunit III can be removed by several 

methods without destroying the electron transfer activity of the enzyme (for reviews see 

Brunori et ai. , 1987 and Prochaska & Fink, 1987). The removal of subunit III does, 

however, appear to halve the proton pumping stoichiometry. The labeling of subunit III 

with dicyclohexy1carbodiimide (DCCD)' also lowers the proton pumping ration to two 

protons per oxygen molecule. Furthermore, cytochrome oxidase from the bacteria 

Paracoccus denitrificans, from which subunit III is lost during purification, shows a halved 

proton pumping efficiency (Solioz et ai., 1982). It is unclear whether the removal of 

subunit III affects proton pumping directly, in that one of two pump sites is located in the 

subunit, or indirectly, either because subunit III has a regulatory function or because its 

removal destabilizes a pumping site in another part of the protein. Subunit III is an integral 

membrane protein, composed largely of hydrophobic residues forming putative 

transmembrane helices, and its removal tends to destabilize interaction between monomers 

that causes native cytochrome oxidase to be dimeric. 

Electron transfer in cytochrome oxidase is mediated through four metal centers. Fea 

and Cu A are located on the cytosolic side of the membrane and serve as the primary 

electron acceptors from cytochrome c. The standard reduction potentials of these centers is 

near that of cytochrome c (E0'= 225 mY; Gelles et ai., 1986), and it has been widely 

assumed that one or both of these centers is the coupling site of electron transfer to proton 

pumping. The high potential metal centers, Fea3 and CUB' are buried in the membrane 

, Abbreviations used: cytochrome oxidase, ferrocytochrome c : oxygen oxidoreductase (EC 1.9.3.1) 
DCCD, dicyclohexylcarbodiimide; EPR, electron paramagnetic resonance; Hepes, N-2-
(hydroxyethyl)piperazine-N' -2-ethanesulfonic acid; KDP, Potassium dihydrogen phosphate; Lauryl 
maltoside, dodecyl ~-D-maJtoside; pHMB, p-(hydroxymercuri)benzoate; Tris, tris(hydroxymethyl)­
aminomethane; UV -vis, ultraviolet-visible. 
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and together fonn the binuclear oxygen binding site. In the enzyme as isolated (the "resting 

oxidase"), FeaJ and CUB are strongly antiferromagnetically coupled through a bridging 

ligand. Mter one turnover, this ligand is displaced, yielding a much more active "pulsed 

oxidase." The distance between the high potential centers has been estimated at 0.5 nm in 

the nitric oxide inhibited enzyme (Chan et aJ., 1982). Although both iron atoms are present 

as non-covalently bound heme A groups, only FeaJ can bind exogenous ligands. The 

CUA site in cytochrome oxidase is spectroscopically unique. A broad optical absorption 

band at 830 nm and a distinctive EPR spectrum with unusually small and isotropic 

hyperfine splitting both occur when Cu A is oxidized. These features have been attributed 

the coordination of copper to two sulfur ligands, as is shown in Figure 2 (Martin et al., 

1988). This site is subject to modification both by reaction with pHMB and by heating 

(Gelles & Chan, 1985; Li et al., 1988). Because of its unique structure and the ease with 

which its ligands can be replaced, a redox-linked ligand rearrangement of CUA has been 

proposed as the means by which electron transfer and proton pumping are coupled in 

cytochrome oxidase (Gelles et al., 1986). 

The current understanding of the mechanism oxygen reduction in cytochrome oxidase 

is illustrated in figure 3 (Chan & Li, 1990). Oxygen binds to the cytochrome oxidase in 

which the binuclear center is reduced and rapidly receives two electrons, fonning a 

peroxidic adduct, compound C. As more electrons are transferred from the low potential 

metal centers, first the 0-0 bond is broken, forming the ferryl compound, and finally 

oxygen is fully reduced, yielding the pulsed enzyme. The transfer of two more electrons 

from the low potential centers to the high potential centers (not shown in figure 3) 

completes the catalytic cycle and prepares the enzyme to bind oxygen again. The pumping 

of two protons is coupled to the reduction of compound C to the ferryl intennediate, and 

another two protons are pumped when the ferry I species is reduced to fonn the pulsed 

enzyme (Wikstrom, 1989). The electron transfers to the "unloaded" binuclear center are 

not coupled to proton transfer. When the catalytic cycle is divided in four parts, based on 

the four electron transfers from the low potential metal centers to the high potential centers, 

only one part is strongly exothermic under physiological conditions (Wikstrom, 1986, 
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FIGURE 2. A model of the oxidized CUA site (from Manin et aI., 1988). 
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FIGURE 3. Scheme depicting the reduction of oxygen at the binuclear site of cytochrome 

oxidase. The four reduction steps of oxygen are numbered and the electron transfer steps 

from the low potential metal centers are also indicated. (From Chan and Li, 1990.) 
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1988). The irreversible part of the catalytic cycle includes the second unloaded electron 

transfer, the subsequent binding of oxygen to the protein, and the two electron reduction of 

oxygen to compound C. The existence of both coupled and uncoupled electron transfers 

from the low potential metal centers to the oxygen binding site requires a conformational 

switch between a pumping form of the enzyme and a non-pumping form. This may be 

accomplished either by changing the overall electron transfer route (for example by having 

loaded electron transfers from one of the low potential metal centers and unloaded transfers 

from the other center) or by disengaging and engaging a coupling mechanism along the 

same electron transfer route. The irreversible step of the catalytic cycle traps cytochrome 

oxidase in the loaded conformation. In itself, the unloaded to loaded conformational 

transition may be thermooynamically unfavorable, but it may be linked to a downhill 

process such as oxygen binding. 

An analog of the T -R allosteric transition in hemoglobin upon binding of oxygen to 

the heme has been proposed for the unloadedlloaded transition in cytochrome oxidase 

(Larsen et al. 1991). This proposal highlights the fact that the conformational switch need 

not be linked to an electron transfer or to the redox state of anyone metal center. It has 

been speculated that the unloadedlloaded transition may be the rate limiting step in enzyme 

turnover (Li, 1990), as the measured electron transfer rates are considerably faster than 

turnover. The R-T hemoglobin transition has been found by UV resonance Raman 

spectroscopy to occur in 20 J.l.s (Spiro et aI., 1990), almost three orders of magnitude faster 

than cytochrome oxidase turnover. Even if the reverse T -R transition is considerably 

slower than the R-T transition, it is clear that such an allosteric conformational change is 

kinetically feasible for cytochrome oxidase. Indeed, it need not be the rate limiting step of 

catalysis. Whether or not the unloadedlloaded transition is linked to the binding of oxygen 

at Fea3 ' movements of the protein chain during an allosteric conformational change are 

likely to be detectable by UV resonance Raman spectroscopy because of this technique's 

sensitivity to the environment of individual residues. Another factor which could playa 

role in driving the unloadedlloaded transition is the electrostatic repulsion between the 

reduced metal centers of the oxygen binding site. The repulsion between two unit charges 
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which are separated by 0.5 nm of water (with a dielectric constant of 80) is about 35 mY. 

In the reduced form of the enzyme, there may be as many as five charges at the binuclear 

center, even after the peroxidic adduct has formed. Thus the electronic repulsions become 

a considerable energetic factor. 

In addition to conformational transitions which switch cytochrome oxidase between 

pumping and non-pumping states, a pumping mechanism requires a series of gating 

confonnational changes. Separate input and output states of the transducing site are 

required both for electrons (electron gating) and for protons (proton gating), and these 

states must be linked so that an electron cannot pass though the pump site without the 

corresponding one or two protons being translocated (Blair et ai., 1986). Gating 

conformational transitions should be linked to the redox state of the transduction site. 

In order for a proton pump to achieve maximum power output, some leakage is 

necessary (Blair, et ai., 1986). When the membrane becomes fully charged, uncoupling 

reactions allow electron transfer rates to remain fast in exchange for a loss in pumping 

efficiency. Several types of leakage can be envisioned. First, there can be pump slippage, 

where the electron or proton gating is circumvented so that an electron is transferred 

without a proton being translocated. However leakage might also occur at the 

loaded/unloaded switching level, especially if the allosteric transition were sensitive to 

membrane potential. A number of transmembrane ionic channels are confonnationally 

sensitive to membrane potential. At high membrane potentials, the reduction of the ferry 1 

intennediate to the pulsed enzyme is energetically uphill when coupled to the pumping of 

two protons. The selective uncoupling of proton pumping at this step would be the most 

effective means of increasing electron transfer rate at the expense of efficiency. A third, 

similar type of leakage, would be if subunit III had a regulatory function , coupling proton 

pumping under low membrane potential conditions, and uncoupling the pumping under 

high potential conditions. Structural similarities between subunit III and voltage or ion 

sensing membrane channels should be looked for. A very illuminating but technically 

difficult experiment would be to co-reconsitute subunit III depleted cytochrome oxidase 

with ATPase and to test the dependence of the ferryVpulsed equilibrium on membrane 
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potential. This experiment, analogous to that perfonned by Wikstrom (1989), would show 

whether the 50 % pumping efficiency of subunit ill depleted enzyme is due to a 50 % 

efficiency at each of the two pumping steps or to complete abolition of one step and 

retention of the other step. 
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Part 2 

A Reexamination of Tryptophan Fluorescence 

in Cytochrome c Oxidase 

When cytochrome c oxidase was reduced with ascorbate and cytochrome c, the 

tryptophan fluorescence emission spectrum was found to be the same as for the oxidized 

enzyme. It was reported earlier [Copeland, R.A., Smith, P.A., and Chan, S.1. (1987) 

Biochemistry 26, 7311] that reduction of cytochrome c oxidase causes a 16 nm red-shift in 

the fluorescence emission spectrum. Reproduction of the earlier experiments suggested 

that the apparent shift in fluorescence might be an inner filter effect of dithionite absorption. 

A method for reconstructing the absorption difference spectrum from two fluorescence 

spectra differing only by inner fIlter effects was used to verify that dithionite could account 

for the observed fluorescence shift The stopped-flow mixing of cytochrome oxidase and 

cytochrome c, which was reported to result in a rapid increase in fluorescence, was 

observed by rapid-scanning absorption spectroscopy. Absorption changes caused by the 

oxidation of cytochrome c account for the rapid fluorescence changes. However, it was 

observed that some small fluorescence changes do occur when cytochrome oxidase is 

diluted in buffer, perhaps due to protein denaturation. No quenching of the cytochrome 

oxidase tryptophan fluorescence by cesium was measured in either the oxidized or reduced 

enzyme. Tryptophan fluorescence lifetimes were measured by time-correlated single 

photon counting. The fluorescence decay is multi exponential and depends on the emission 

wavelength rather than on the reduction state of the enzyme. A triexponential fit of the 

decay at 320 om yields lifetimes of 3.5 ns, 0.9 ns, and 0.13 ns . 
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Large-scale protein conformational changes have been effectively studied by 

fluorescence spectroscopy_ The predominant fluorophore in proteins, tryptophan, is very 

sensitive to changes in solvation (Lakowicz, 1983). The intrinsic fluorescence of 

cytochrome oxidase is dominated by tryptophan residues buried in the interior of the 

enzyme and distant from the heme groups (Hill et al., 1986). Thus tryptophan 

fluorescence provides information about the oxidase structure away from the sites of other 

intrinsic or extrinsic probes. Copeland et al. (1987) reported that the fluorescence 

maximum of cytochrome oxidase shifts from 329 nm to 345 nm upon reduction of the 

enzyme, suggesting that the protein undergoes a conformational change which causes some 

tryptophan residues to be more solvent exposed. 

A major complication in fluorescence studies is the apparent change in fluorescence 

due to changes in the absorbance of fluorophores or other species in the reaction mixture. 

In an attempt to minimize such inner ftIter effects, cytochrome oxidase was reduced by 

different means (ascorbate with a catalytic amount of cytochrome c ), and the fluorescence 

spectrum was recorded. As these results were inconsistent with Copeland et al. (1987), an 

effort was made to reproduce the earlier experiments. Meanwhile, other laboratories 

reported data inconsistent with a shift in tryptophan fluorescence (Ferreira-Rajabi & Hill, 

1989, Dennis Rousseau, personal communication). In this paper we report new data 

showing that the tryptophan fluorescence of cytochrome oxidase does not change upon 

reduction of the enzyme and we explain the origins of the data reported by Copeland et al. 

Materials and Methods 

Materials . Sodium dithionite was purchased from GFS Chemicals. Potassium 

ascorbate was recrystallized and stored as a concentrated solution at - 80 °c until used. 

Argon for anaerobic work was scrubbed for oxygen by a column of manganese oxide on 

venniculite. 

Cytochrome c oxidase was isolated by the method of Harzell and Beinert (1974). 

The enzyme was solubilized in 0.05M Hepes buffer, pH 7.4, containing 0.5% Tween-20 
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(Sigma) and stored at -80 °c until used. Samples were diluted to the desired concentration 

in a 0.5% lauryl maltoside (Calbiochem), 50 mM Tris, pH 7.7,50 mM NaCI buffer. The 

buffer was stored overnight at 2 °c and filtered to removed any aggregated detergent 

before addition of enzyme. 

Equine ferricyctochrome c was purchased from Sigma (type VI). The reduced form 

of the enzyme was prepared by addition of excess sodium dithionite to a 1 - 2 mM solution 

of cytochrome c, and excess dithionite was removed by gel chromatography using two 

Sephadex G-25 centricolumns (Neal & Fiorini, 1973, Penefsky, 1977). Extinction 

coefficients reported by Margoliash & Frohwirt (1959) were used to assess the 

concentration and extent of reduction of the enzyme. For the reduced enzyme, an 

extinction coefficient of 27.7 mM- 1cm- 1 at 550 nm was used. For experiments involving 

the mixing of comparable volumes of cytochrome c and cytochrome oxidase (such as the 

stopped-flow samples), the cytochrome c was diluted to the desired concentration in the 

same lauryl maltoside buffer as the oxidase. For experiments involving a catalytic amount 

of cytochrome c, detergent was omitted from the buffer. 

Sample Preparation. The cyanide derivative of cytochrome oxidase was prepared by 

incubation of the stock enzyme with 20 mM KCN for 24 to 72 hours at 4 oC, followed by 

centrifugation at 29,000 g to remove denatured protein. The enzyme was then diluted to 

2.3 IlM in lauryl maltoside buffer containing 4 mM KCN. 

Reduced cytochrome oxidase was prepared by addition of either dithionite or 

potassium ascorbate and cytochrome c. As described earlier (Copeland et al., 1987), 30 -

100 ilL of a freshly prepared dithionite solution was added to approximately 3.5 ml of 1.8 

IlM oxidase which had been flushed with nitrogen for 10 minutes. After approximately five 

minutes spectra were recorded. Optical spectra were taken before and after the fluorescence 

spectra in order to assess the decay of dithionite during the scan. Ascorbate/cytochrome c 

reduction was accomplished by placing 1.6 - 1.8 IlM cytochrome oxidase in a fluorescence 
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cell containing the reductants in a sideann. After evacuating the cell and flushing with 1 

atm. argon three times, an optical spectrum was recorded and the reactants were mixed, 

resulting in 0.01 mM ascorbate and 0.4 - 0.8 IJ-M cytochrome c . After incubation 

overnight, the extent of reduction was assessed spectroscopically at the wavelength pairs 

605 nm/ 622 run and 444.5 nm! 462 nm using the extinction coefficients of Blair et al . 

(1982). When the fluorescence spectra and lifetimes had been recorded, solid sodium 

dithionite was added to the sample under an argon atmosphere to record spectral values for 

full reduction. In some cases, prior to the addition of dithionite, the reoxidized enzyme 

was prepared by opening the sample to air for 10 minutes. The Soret and alpha band 

absorption increases in the ascorbate/cytochrome c reduced enzyme were 85 - 100% of the 

increases in the dithionite reduced enzyme. 

Fluorescence quenching samples were prepared by the addition of solid CsCI to a 

final concentration of 0.5M. 

Optical Absorption Spectroscopy. UV-vis absorption spectra were taken at 20 0 C 

using a Beckman DU-7 HS scanning spectrophotometer. Base-line spectra were subtracted 

digitally. 

Rapid-scanning stopped-flow spectra were obtained using a hybrid system consisting 

of the Durrum D-110 Kel F flow and illumination systems and the Princeton Applied 

Research OMA-2 multichannel analyzer, 1218 controller, and 1412 photodiode array 

detector as described in Sartorius, et at. (1987). The repetitive scan rate was 7.5 ms/scan. 

Difference spectra were calculated through subtraction of the last scan (at 1.5 sec). 

Fluorescence Spectroscopy. Fluorescence spectra and time courses were recorded on 

a SLM 4800 spectrofluorometer equipped with a SMC-21O monochrometer controller and 

SE-480-485 electronics which was interfaced to an IBM XT computer. The beam from a 

xenon arc-lamp was split for reference against a solution of 3g/L rhodamine B in ethylene 

glycol. For most samples, a 1 cm x 1 cm quartz cuvette was used, but emission inner filter 

effects could be reduced by using a 1 cm x 4 mm cuvette, illuminated along the 1 cm path. 

Stopped flow fluorescence spectra were obtained using a Durrum stopped-flow 
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apparatus with the photomultiplier tube mounted perpendicular to the excitation beam path 

as described elsewhere (Dunn et al., 1979, 1980). Unless otherwise noted, a Rolyn 

65.1010 filter (bandpass 300-400 nm) and a Rolyn 65.1620 fIlter (highpass 310 nm) were 

placed between the sample and the photomultiplier tube, producing a transmittance window 

from 310 nm to 390 nm. To assess the dependence of the signal on emission wavelength, 

the highpass filter was substituted by one or two Rolyn 65.1625 filters (highpass 335 nm) 

and both filters were replaced by a Corion special bandpass (313 nm ± 20 nm) filter. 

Photomultiplier voltages were recorded and fit to a single-exponential curve of the form 

F = A + B (I - exp(Ct)} , where F is the measured fluorescence, t is time, and A, B and C 

are the parameters of the fit. The change of fluorescence reported is 100% (B/A) and the 

time constant is C. 

Fluorescence lifetimes were measured by time-correlated single photon counting. An 

excitation frequency of 290 nm was generated using a synchronous pumped dye laser and a 

frequency doubling KDP crystal, achieving a time resolution of 70 ps. Fluorescence 

emission was measured at 320 nm, 340 nm, and 370 nm with a wavelength resolution of 

10 - 20 nm. The time-course was recorded using a multi-channel analyzer set to 12.766 ps 

per channel. Lifetimes were determined by fitting 800 channels, beginning with channel 

65, to a triexponential curve. 

Inner Filter Correction and Reconstruction. Fluorescence spectra were corrected for 

inner fIlter effects by using the expression (Lakowicz, 1983): 

F corr = Fobs antilog { (ODex + ODem)/2} (1) 

where Fcorr is the corrected fluorescence intensity, Fobs is the observed fluorescence 

intensity, and ODex and ODem are the optical densities of the sample at the excitation and 

emission wavelengths respectively. This expression can also be used to generate the 

optical spectrum of a species causing an inner filter effect in an uncorrected fluorescence 

spectrum. If the uncorrected fluorescence spectra of two samples (x and y) differ only 

because of inner filter effects and instrument gain, then we have: 

F obs(x) antilog { [ODex(x) + ODem(x)]/2}/ g(x) = Fcorr 

= Fobs(Y) antilog{[ODex(y) + ODem(y)]/2}/g(y) 
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where g(x) and g(y) are the instrument gains of spectra x and y respectively. This can be 

rearranged to give: 

log [Fobs(x)lFobs(y)] = log [g(x)/g(y)] + [ODex(Y) - ODex(x)]!2 + 

[ODem(y) - ODem(x)]!2 (2) 

If two fluorescence emission spectra are being compared, then the fIrst and second tenns 

on the right hand side of this equation are constants, while the third tenn is proportional to 

the optical difference specttum between samples x and y. If fluorescence excitation spectra 

are being compared, then the first and third terms determine the baseline, while the second 

term produces the difference spectrum. The left hand side of this equation is calculated 

directly from the experimental spectra. 

Results and Discussion 

The study of tryptophan fluorescence in reduced or partially reduced forms of 

cytochrome c oxidase is hampered by the optical absorbances of most electron donors in 

the near ultraviolet specttum. The absorption specttum of dithionite, shown in Figure 4, is 

a broad peak centered at 315 nrn, with an extinction coefficient of 6.9 mM-1cm- 1 (Creutz 

& Sutin, 1974). Aerobic solutions containing dilute dithionite were found to be unstable 

due to the rapid reaction of dithionite with oxygen. Therefore accurate inner filter 

corrections to the fluorescence of dithionite-reduced cytochrome oxidase could be applied 

only if the optical and fluorescence spectra were taken without any intervening delay. 

Uncorrected fluorescence spectra of oxidized and dithionite-reduced cytochrome oxidase 

are shown along with the corresponding optical spectra in Figure 5. Although minimal 

dithionite was used, the fluorescence maximum undergoes an apparent red-shift of 2 nm. 

The corrected spectra show no shift. 

The observed lack of a shift in the fluorescence specttum of cytochrome oxidase upon 

reduction with dithionite is incompatible with the observations of Copeland et al. (1987). 

Therefore equation (2) was applied to the data reported in Figure 2 of Copeland et al. 

(1987) to generate the optical specttum required to produce such a shift through inner filter 
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FIGURE 5. A. Absorption spectra of cytochrome oxidase in the resting oxidized form 

(solid line), after incubation with dithionite for 10 minutes (dotted line), and incubation 

with dithionite for 13 1/2 minutes (dashed line). B.Uncorrected fluorescence emission 

spectra of cytochrome oxidase in the resting oxidized form and after incubation with 

dithionite for 11 minutes. Excitation at 270 nm, excitation slit width 8 nm, emission slit 

width 4 nm. 
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FIGURE 6. Reconstruction of the absorption difference spectrum between dithionite­

reduced and reoxidized cytochrome oxidase from fluorescence data reponed in Copeland 

et al. (1987). Details in text. 
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effects. The result of our back-calculation, shown in Figure 6, clearly indicates that the 

presence of approximately 0.12 mM dithionite would have been sufficient to cause the 

fluorescence red-shift in the uncorrected data. The actual corrections used reflect a 

concentration of only about 0.02 mM dithionite. The rapidly changing optical spectrum or 

an improperly mixed sample could have resulted inadequate inner filter corrections. We 

were also unable to reproduce any large increase in fluorescence upon reduction of 

cytochrome oxidase. The most plausible explanation for the reported increase is that the 

fluorometer gain was inadvertently adjusted between samples. This change in fluorometer 

gain manifests itself in the negative baseline of Figure 6. The combination of an apparent 

increase in fluorescence with a red-shift of the peak seemed to rule out inner filter effects in 

the original study. 

The absorption spectrum of ascorbate, with a maximum at 265 nm and very little 

absorption above 300 nm, does not interfere with tryptophan fluorescence emission. 

However, the catalytic amounts of cytochrome c required to transfer electrons from 

ascorbate to cytochrome oxidase do cause a small inner filter effect. Figure 7 demonstrates 

that oxidized and reduced cytochrome oxidase show identical corrected fluorescence 

spectra. 

The presence of 0.5 M CsCI did not affect the steady-state fluorescence of 

cytochrome oxidase in either the oxidized or reduced forms. The data used in constructing 

the Stern-Volmer plot in Copeland et al. (1987) clearly show not only decreases in 

fluorescence, but also the peak shifts associated with dithionite inner filter effects (Figure 

8A). In the original study, the optical spectra associated with these fluorescence spectra 

were cursorily checked to verify that approximately the same amount of dithionite was used 

in each, and the spectra were not recorded. However, it is possible to reconstruct 

absorbance difference spectra using equation (2). The results, shown in Figure 8B, clearly 

implicate dithionite as the cause of the fluorescence decreases. 

Further evidence that the tryptophan fluorescence of cytochrome oxidase is identical 

in the oxidized and reduced enzyme and that cesium does not quench either form was 

obtained through studying the fluorescence lifetimes of the protein. The fluorescence 
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FIGURE 7. A. Absorption spectra of cytochrome oxidase in the resting fonn (dotted line), after 

incubation with 0.1 roM potassium ascorbate and 0.7 11M cytochrome c for 23 hours (solid 

line), and after reoxidation (dashed line). This sample contained 0.5M CsCl. B. Corrected 

fluorescence emission spectra of reduced oxidase (solid line) and reoxidized oxidase (dashed 

line). Excitation at 290 nm with a slit width of 8 nm. Emission slit width of 4 nm. 
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FIGURE 8. 

A. Uncorrected fluorescence spectra of dithionite reduced cytochrome oxidase 

containing 0 M, 0.1 M, and 0.5 M CsC!. Data from Copeland eta/. (1987). 

B. Reconstruction of absorption difference spectra from the fluorescence spectra in A. 

The abscissa indicates log {F[OM CsCl] / F[0.5M CsCl]) (squares) or 

log {F[O.IM CsCl] / F[OM CsCl]) - 0.1 (crosses). See text for further details. 
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decays of oxidized and ascorbate/cytochrome c reduced enzyme, with and without 0.5 M 

CsCl, were essentially the identical. The fluorescence decay, shown in Figure 9, was 

multiexponential and depended on the emission wavelength. At higher emission 

wavelengths, the initial decay was faster but the long lifetime component decayed more 

slowly. The fluorescence lifetimes of individual tryptophan residues or homogenous 

groups of residues cannot be identified from the observed fluorescence decay. The decay 

represents a distribution of many lifetimes that can be characterized by a triexponential 

function . At an emission wavelength of 320 nm the decay is described by lifetimes of 3.5 

ns (20%), 0.9 ns (40%), and 0.13 ns (40%), while at 370 nm the distribution is fit by 

lifetimes of 4.2 ns (34%), 1.1 ns (50%), and 0.24 ns (16%). 

The corrected fluorescence spectra of oxidized and dithionite-reduced cyanide­

inhibited cytochrome oxidase, shown in figure 10, are also identical. In no form of the 

enzyme did we observe a redox-linked fluorescence change. 

The reaction of cytochrome oxidase with ferrocytochrome c was reported by 

Copeland et ai. (1987) to be accompanied by a small increase in fluorescence. We have 

investigated the absorbance changes of this reaction with a rapid-scanning stopped-flow 

spectrophotometer. Difference spectra of the reaction, shown in Figure 11, are the same as 

the difference spectrum of reduced minus oxidized cytochrome c. The absorbance changes 

caused by the oxidation of cytochrome c occur at the same rate as the apparent fluorescence 

changes, suggesting that the fluorescence changes may be due to an inner filter effect. 

As Table 1 indicates, the extent of the fluorescence rise depends only on the 

concentration of cytochrome c, not on the concentration of cytochrome oxidase. The time 

course of the fluorescence rise, on the other hand, depends on the concentration of 

cytochrome oxidase. As is shown in Table 2, a decrease of cytochrome oxidase in the 

reaction mixture by more than two orders of magnitude slows the reaction from less than a 

second to more than a minute without changing the magnitude of the fluorescence increase. 

Cytochrome oxidase is necessary for the fluorescence increase only insofar as it catalyzes 



- 24 -

nm 

320 nm 

/ 
.Illl 

FIGURE 9. Fluorescence decays of acsorbate/cytochrome c reduced cytochrome oxidase 

at 320 nm and 370 nm. The data, indicated by dots, are fit by triexponential decay curves. 
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HGURE 10. Corrected fluorescence spectra of cyanide-inhibited cytochrome oxidase in 

the oxidized (solid line) and dithionite-reduced forms (dotted line). Spectra were measured 

in a 10mrn x 4mrn cell with excitation at 290 nm, excitation and emission slit widths of 8. 
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FIGURE 11. 

Rapid-scanning stopped-flow difference absorption spectra of the mixing of 12.4 11M 

cytochrome c with 1.55 IlM cytochrome oxidase. The spectrum at 1.5 s was subtracted 

from spectra at (A) 0 ms, 7.5 ms, 22.5 ms, 45 ms, 75 ms, 105 ms, 240 ms, and 750 ms, 

(B) 7.5 ms, 60 ms, 90 ms, 150 ms, 330 ms, and 750 ms. 
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TABLE 1 

Dependence of uncorrected stopped-flow fluorescence change on concentration. 

Sample Fluorescence change 

2.5 IlM cytochrome oxidase + 13.8 IlM ferrocytochrome c § + 3.8 %# 

1.5 IlM cytochrome oxidase + 13.8 IlM ferrocytochrome c 

1.5 IlM cytochrome oxidase + 9.71lM ferrocytochrome c 

§Concentrations before 1: 1 mixing in stopped-flow apparatus. 

#Excitation at 280 nm, slit width 4. 

+ 3.8 ± 0.25 % 

+ 2.35 ± 0.25 % 
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TABLE 2 

Uncorrected stopped-flow fluorescence changes and time constants§ 

Sample Excitation at 280 nm 

Cytochrome oxidase + cytochrome c 2+ + 2.8% (2.9 s-l ) 

Cytochrome oxidase + cytochrome c 3+ - 0.3% (0.5 s·l ) 

Cytochrome oxidase + buffer 

Trace cytochrome oxidase + cytochrome c 2+ 

Trace cytochrome oxidase + cytochrome c 2+ 

Buffer + buffer 

* 

* 

* 

Excitation at 304 nm 

+ 13.5% (3.0 s· l) 

+ 2.6% (4.3 s·l ) 

+ 2.3% (2.3 s· l ) 

+ 13.5% (0.54 s·l) 

+ 13.2% (0.013 s·l ) 

- 0.5% (0.4 s·l ) 

§Experimental conditions: Slit width at 280 nm excitation = 4, slit width at 304 run = 1.8. 

Syringes of the stopped flow fluorometer loaded with 13.8 11M cytochrome c , 2.5 11M 

cytochrome oxidase, except in trace oxidase conditions where a small aliquot of 2.5 11M 

was added to buffer. Further details in text. 

*In the absence of cytochrome oxidase, excitation at 280 run produced very weak signals 

with unusable signal to noise ratios. 
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cytochrome c oxidation and provides enough fluorescence intensity for the inner filter 

effect to be visible. The fluorescence change depends in both rate and magnitude on the 

oxidation of cytochrome c. 

A significant increase in the extent of the fluorescence rise was observed as the 

excitation wavelength was increased from 280 nm to 304 nm. This parallels an increasing 

absorption difference spectrum of reduced minus oxidized cytochrome c. Due to sample 

geometry, the inner filter effect at the excitation wavelength is larger than the effect at the 

emission wavelength, but both are observable. The region of the emission spectrum 

collected by the photomultiplier is divided almost equally into a part that has decreasing 

optical absorption during the reaction (less than 339 nm, see Figure IIA) and a part that 

has increasing optical absorption (more than 339 nm). The emission beam can be filtered 

to selectively view these regions which have opposite inner filter effects. When a 313 ± 20 

nm bandpass filter is used, the fluorescence change increases to 3.9% for excitation at 280 

nm (up from 2.8%). When a high pass filter with cutoff of 335 nm is used , the 

fluorescence change drops to l.8%, and when this filter is doubled, raising the cutoff to 

about 345 nm, the fluorescence change becomes l.2%. 

Although the inner filter effect of cytochrome c dominates the stopped-flow 

fluorescence time course, two other effects are observable. When a sample of cytochrome 

oxidase and cytochrome c is illuminated at 280 nm or 288 nm, the fluorescence appears to 

decrease slowly, dropping by 5 - 6 % in ten minutes. The nearly linear decay of 

fluorescence, displayed in Figure 12, does not depend on the presence of cytochrome c, 

but occurs even if cytochrome oxidase is mixed with buffer. This drop in fluorescence is 

minimal « 0.3%) when the sample is excited at 304 nm. Much of this fluorescence change 

can be attributed to inner filter effects from the slight increases in turbidity of the enzyme as 

it sits at room temperature. However, in a parallel experiment where oxidase was mixed 

with buffer or with cytochrome c by hand and observed for longer time periods, the 

changes in absorbance did not entirely explain the changes in fluorescence. The 

fluorescence time course of one such trial, shown in Figure 13, is extremely 

heterogeneous, but its coarse features are reproducible under identical mixing conditions. 
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FIGURE 12. A. Fluorescence time course of the stopped flow mixing of 1.7 11M 

cytochrome oxidase with 13.8 11M cytochrome c. Excitation at 280 nm, slit width 4 nm. 

B. Fluorescence time course of the stopped flow mixing of 2.37 11M cytochrome oxidase 

with lauryl maltoside buffer. Excitation at 288 nm, slit width 2.8 nrn. 
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FIGURE 13_ Fluorescence time course after mixing of equal volumes of 2.5 JlM 

cytochrome oxidase and 13.8 JlM cytochrome c. Excitation at 280 nIll, slit width 8 nm. 

Emission at 330 nm, slit width 8 nm. 
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Whereas the fluorescence stops decreasing after 20 or 30 minutes, the absorbance of an 

identical sample increases steadily after an initial lag. Hill et al. (1988) have reported 

increases in the tryptophan fluorescence of cytochrome oxidase upon partial denaturation. 

Such increases in fluorescence could offset the inner filter effects due to turbidity and give 

rise to the type of complex behavior observed. The concentrations of oxidase used in this 

experiment are similar to those required for subunit III depletion by incubation in lauryl 

maltoside buffer (Hill & Robinson, 1986), so it is expected that the enzyme would partially 

denature during room temperature incubation. The observed increases in turbidity also 

point to protein degradation. It is sobering to realize that something as simple as doubling 

the detergent protein ratio by mixing cytochrome oxidase with buffer can result in an 

apparent fluorescence change of 10% in less than half an hour. 

The second minor effect on the stopped-flow fluorescence time course, apparent in 

Table 2, is observed when cytochrome oxidase is mixed with buffer and excited at 304 nm. 

A 2 - 3 % increase in fluorescence occurs on a similar time scale as the large cytochrome c 

inner fIlter effect. This effect is not seen when the sample is excited at 280 nm. One 

possible explanation is that the fluorescence of the lauryl maltoside is affected by changes 

in aggregation brought on by a change in the detergent protein ratio. 

It is clear that tryptophan fluorescence studies of protein conformations need to be 

accompanied by careful optical studies and other controls. A cursory application of inner 

fIlter corrections is not enough to prevent misinterpretation of data. Furthermore, actual 

changes in fluorescence may be due to general protein denaturation instead of catalytic 

conformational transitions. The fluorescence changes observed in this study appear to be 

linked to the structural degradation of cytochrome oxidase rather than to redox-linked 

conformational transitions. 

The possibility remains that conformational transitions of cytochrome oxidase might 

produce changes in the tryptophan fluorescence. If the unloaded/loaded transition is linked 

to oxygen binding at Fetrl ' then both the oxidized and reduced forms of the enzyme are in 

the unloaded conformation. The binding of cyanide to Fetrl ' however, does not change 

the fluorescence spectrum significantly, so there is little reason to expect that the 
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unloadedlloaded transition is observable by fluorescence spectroscopy. 

Li (1990) has reported transient changes in cytochrome oxidase fluorescence when 

either the fully reduced carbon monoxide inhibited (COFR) or mixed valence carbon 

monoxide inhibited (COM V) enzyme is photolyzed in the presence of oxygen. A rapid 

(faster than 106 s-l for COFR and faster than 105 s-l for COMV) increase of 2 - 5 % in 

the fluorescence is observed, followed by a slower (80 s-l for COFR and 110 s-l for 

COMV) decay to the original value. This transient change in fluorescence does not occur in 

the absence of oxygen and therefore is not due to carbon monoxide photolysis and 

recombination. The rapid increase in fluorescence is on a time scale consistent with oxygen 

binding to Fea3 ' but it is unclear what process occurs on the millisecond time scale in both 

the COFR and COM V forms of the enzyme and could account for the decrease in 

fluorescence. The COFR enzyme should rapidly form the pulsed enzyme and be in the 

unloaded state, whereas the COMV enzyme is trapped at Compound C, in the loaded state. 

Therefore it is unlikely that the change in fluorescence reflects any of the conformational 

transitions involved in proton pumping. Furthermore, parallel optical studies at both the 

excitation and emission wavelengths are needed to determine whether the observed change 

in fluorescence is due to changes in optical absorptions or actual changes in fluorescence. 

Even if the fluorescence changes are second order effects of absorption changes, it is clear 

that some type of conformational transition or reaction is occurring. 

Two types of conformational transitions are expected during proton pumping in 

cytochrome oxidase: a switching transition between loaded and unloaded forms of the 

enzyme which is allosterically controlled by the binding of intermediates at the binuclear 

site and a gating transition which is linked to the redox state of the coupling site. Neither 

type of conformational transition has yet been accessible to direct experimental 

measurement The use of tryptophan fluorescence spectroscopy to probe conformational 

changes relevant to proton pumping has not proved promising. 
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