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Abstract

The importance of sparse signal structures has been recognized in a plethora of applications ranging

from medical imaging to group disease testing to radar technology. It has been shown in practice

that various signals of interest may be (approximately) sparsely modeled, and that sparse modeling

is often beneficial, or even indispensable to signal recovery. Alongside an increase in applications, a

rich theory of sparse and compressible signal recovery has recently been developed under the names

compressed sensing (CS) and sparse approximation (SA). This revolutionary research has demon-

strated that many signals can be recovered from severely undersampled measurements by taking

advantage of their inherent low-dimensional structure. More recently, an offshoot of CS and SA has

been a focus of research on other low-dimensional signal structures such as matrices of low rank.

Low-rank matrix recovery (LRMR) is demonstrating a rapidly growing array of important appli-

cations such as quantum state tomography, triangulation from incomplete distance measurements,

recommender systems (e.g., the Netflix problem), and system identification and control.

In this dissertation, we examine CS, SA, and LRMR from a theoretical perspective. We consider

a variety of different measurement and signal models, both random and deterministic, and mainly

ask two questions.

How many measurements are necessary? How large is the recovery error?

We give theoretical lower bounds for both of these questions, including oracle and minimax lower

bounds for the error. However, the main emphasis of the thesis is to demonstrate the efficacy of

convex optimization—in particular `1 and nuclear-norm minimization based programs—in CS, SA,

and LRMR. We derive upper bounds for the number of measurements required and the error derived

by convex optimization, which in many cases match the lower bounds up to constant or logarithmic

factors. The majority of these results do not require the restricted isometry property (RIP), a

ubiquitous condition in the literature.
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Chapter 1

Introduction

An image of blood vessels in the body, which may be captured through MRI, has an abundance

of structure; in particular, it is sparse in space, and its spatial finite differences are even sparser.

Can this structure be utilized to improve MR imaging? Resoundingly, yes! In fact, by taking into

account sparsity, MR imaging can be (and has been) sped up by a factor of 7, as demonstrated

through a double blind study [159]. The improvement applies outside of just angiography, to MR

images in general, which tend to be sparse in the appropriate basis. Moreover, the benefits can be

life altering in cases when a slow MR scan is not feasible [71]. The research that has lead to these

improvements is called compressed sensing and is closely related to sparse approximation. CS was

born seven years ago, pioneered by the papers [39, 42, 55], and it is still being intensely researched

today.

1.0.1 Compressed sensing

In CS, a signal x ∈ Cn is modeled as a superposition of a small number of elements from a given

dictionary, Φ ∈ Cn×k. In other words, x = Φv, where v ∈ Ck is sparse (it has few nonzero elements).

The basic goal is to recover an approximation of x from linear measurements corrupted by noise

y = Ax + z (1.0.1)

where A ∈ Cm×n is a measurement matrix (often constructed by the scientist), and z is a noise term.

For example, in MRI Φ may be a wavelet dictionary, and A can be modeled as a subsampling of the

rows of a descrete fourier transform (DFT).

An interesting point about the theory of CS is that it generally requires random measurements

(e.g., A could be a random subsampling of the DFT). Not only is this assumption crucial to the

derivation of many strong theoretical results, but also random measurements seem to give better

results in practice and are sought out in real applications.

Before continuing, for simplicity of this thesis we will absorb Φ into the definition of A (or take
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it to be the identity), so that x itself should be sparse.1 With this simplification CS is a special case

of a more general class of problems called SA.

1.0.2 Sparse approximation

Once again in SA, we would like to recover a sparse vector x from linear measurements y = Ax + z,
but there is still one subtle difference between CS and SA. Whereas in CS A is a measurement

matrix which in most applications may be constructed (randomly) by the scientist (e.g., in MRI,

one chooses which Fourier coefficients to sample), in SA in general there is no expectation that

the structure of A may be affected by the scientist. A is often a deterministic, unalterable matrix,

and this leads to different theoretical aspects of the problem and a quite different analysis. As an

example of SA, in statistical model selection, A is the design matrix, filled with response variables

(e.g., answers to a survey). Sparsity plays an important role because often only a few regressors

(columns of A) are significant. (Statisticians will be more familiar with the notation y = Xβ + z,
X ∈ Rn×p.)

While MRI and the statistical linear model are important examples, sparse signal structures

are ubiquitous throughout science and engineering (and we will point to several more examples

throughout the thesis). They often arise from the parsimonious nature of the signal—often the

underlying structure depends on just a few parameters. In some cases this leads to sparse signals,

or, in another vein, this may lead to matrix-valued signals with low rank; this is the second signal

structure considered in this thesis.

1.0.3 Low-rank matrix recovery

As a quintessential example of LRMR, consider the semi-famous Netflix problem, in which one has

available several entries of the Netflix movie-rating matrix. This matrix contains at position i, j

the rating (or estimated rating) of user i for movie j. The goal is to fill in the missing entries—in

particular, Netflix would like to be able to predict user ratings for unrated movies. Now, it turns out

that the Netflix matrix is (approximately) low-rank; the theoretical justification for this phenomena

is that there are only a few important factors which effect peoples’ movie ratings. For example, a few

ostensible factors would be the user’s predilection towards drama, comedy, and violence. However,

due to the general methods used for LRMR (see Chapter 4), it is completely unnecessary to know

exactly which factors contribute—these are discovered along with the missing entries.

The Netflix problem is an example of a subclass of LRMR problems called matrix completion.

However, LRMR, has many applications (see Chapters 4 and 5), which follow from a more general

1This is fairly innocuous for unitary transforms, since they are isometries in the `2 norm. For a treatment of CS
with non-unitary dictionaries, see [31].
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model:

y = A(M) + z

where y is a vector of noisy measurements, A ∶ Rn1×n2 →m is a linear measurement operator, z is a

noise term, and M ∈ Rn1×n2 is a matrix with low rank. The goal is to recover M .

1.0.4 Peek at the results

In this thesis we study the effectiveness of convex optimization to recover sparse vectors and low-

rank matrices from noisy, linear measurements. In fact, beyond estimating x from equation (1.0.1),

we also consider the accurate recovery of Ax and the support of x. The theory will show that one

may take far fewer samples than the ambient dimension of the signal; instead the number of samples

must match (approximately) the number of dimensions of the manifold that the signal resides in.

For example, vectors of length n with sparsity level exactly s lie in an s dimensional manifold; in

Chapters 2 and 3 we show that in many cases on the order of s logn measurements are sufficient

for stable recovery by `1-minimization-based programs. Similarly, rank(r), n × n matrices lie in a

manifold with dimension 2nr − r2; in Chapters 4 and 5 we show that they may be stably recovered

by nuclear-norm-minimization-based programs from approximately nr, or nr log2 n, measurements

(depending on the measurement model).

While the manifolds that our signals lie in are quite nonlinear, they contain many linear subspaces

with (approximately) the same dimension as the original manifolds. In Chapters 3 and 4, this is

used to develop lower bounds on the error achievable by any recovery method. We consider an

oracle which gives away the smaller linear subspace that the signal resides in; from this point it

is easy to analyze the error achieved by least squares regression (which is minimax). As is well

known, in the case of Gaussian noise, this leads to an error proportional to the dimension of the

linear subspace, and thus proportional to the dimension of the underlying manifold. Interestingly,

we give upper bounds for the error achieved by convex optimization, which nearly match these lower

bounds. In other words, by taking into account the parsimony of the model, the error in estimation

is not proportional to the entire noise vector, but rather to the norm of the noise vector projected

onto a much smaller subspace.

1.0.5 The restricted isometry property

A quite prevalent way to prove results about the efficacy of `1 minimization, nuclear-norm mini-

mization, and a large array of other recovery techniques is the use of the RIP. From here on, we call

a vector s-sparse if it has at most s nonzero entries.

Definition 1.0.1 (Restricted isometry property) We say that an m × n matrix A obeys the
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RIP with parameters s and δ if

(1 − δ)∥v∥2
`2 ≤ ∥Av∥2

`2 ≤ (1 + δ)∥v∥2
`2 (1.0.2)

for all s-sparse vectors v.

In other words, A should be well conditioned when acting on signals of interest. When the RIP

holds with parameters 2s and δ <
√

2 − 1 [28] or even δ ≤ 0.453 . . . [78], it is known that certain

convex optimization programs are stable. In particular the LASSO and Dantzig selector, both `1-

minimization-based convex programs introduced in Chapter 2, accurately recover all signals x with

at most s nonzero elements.

An analogous version of the RIP holds for LRMR (see Chapter 4); in this case one asks the

measurement operator A to be well conditioned when acting on low-rank matrices. As shown in

Chapter 4, once again this demonstrates stability of convex optimization.

However, there are a number of limitations to RIP-based theory: 1) testing for the RIP is

generally an intractable, combinatorial problem; 2) the only deterministic measurement ensembles

which are known to satisfy the RIP do so only under extremely strong conditions; 3) the random

measurement ensembles that satisfy the RIP (with high probability) are lacking in many applications;

4) the RIP provides uniform guarantees over all low-dimensional signals of interest, and thus theory

with the RIP is necessarily limited by worst-case signals (and similarly for other conditions which

provide uniform guarantees such as the RIP-1 [81] and restricted strong convexity [116]). However,

numerical experiments [58] and theoretical results (some of which are contained in this thesis)

demonstrate that in many cases typical signals may be accurately recovered far past the point

when worst-case signals are unrecoverable.

In fact, proving ‘RIP-less’ results is a delicate matter. To see the difficulty, note that to have

universal results, i.e., results that hold for all sparse x (or low-rank M), simultaneously, the lower

bound of the RIP would be a necessary condition for stability. To illustrate the point, take the case

of SA, and suppose that an oracle gives the exact support, T , of the signal x. Then, one would need

the pseudo inverse of AT (A restricted to the columns in T ) to be bounded. In other words, the

minimum singular value of AT should be away from zero.

Thus, the RIP-less results in Chapters 2, 3, 5 are not universal, but rather they must take into

account the structure of a typical signal. We do this in a variety of ways.

� Fix the signal independent of the measurement ensemble (see Chapters 2 and 5):

This method is incontrovertible in many CS setups where the measurement ensemble, A, may

often be constructed randomly by the scientist. One expects that the measurement ensemble

has no dependence on the signal x, and so it is quite innocuous to fix x, rather than proving

results about worst-case signals that may be chosen dependent on the random matrix A.
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� Adopt a statistical model for the signal (see Chapter 3): Adopting a statistical model

is a straightforward way to avoid worst-case signals, and can be used to prove results (with

high probability) about general signals. This may be interpreted as proving results for most

signals of interest.

� Assume extra signal structure (see Chapter 5): Here, we assume that the signal x

belongs to a certain (large) subset of its inherent low-dimensional space, and prove results

given this assumption. (These assumptions are also called incoherence assumptions in matrix

completion.)

1.0.6 Organization

Each of the chapters, as described below, is self-contained, including notation. Also, they are all

based upon research conducted jointly with my advisor, Emmanuel Candès.

Chapter 2: In this chapter, we introduce a simple and very general theory of CS. In this theory, the

sensing mechanism simply selects sensing vectors independently at random from a probability

distribution F ; it includes all models—e.g. Gaussian, frequency measurements—discussed in

the literature, but also provides a framework for new measurement strategies as well. We prove

that if the probability distribution F obeys a simple incoherence property and an isotropy

property, one can faithfully recover approximately sparse signals from a minimal number of

noisy measurements. The novelty is that these recovery results do not require the restricted

isometry property (RIP)—they make use of a much weaker notion—or a random model for

the signal. As an example, in this chapter we show that a signal with s nonzero entries can be

faithfully recovered from about s logn Fourier coefficients that are contaminated with noise.

Chapter 3: In this chapter, we turn to the sparse approximation problem which applies in partic-

ular to model selection; thus we switch to the standard statistics notation. We first consider

the fundamental problem of estimating the mean vector, Xβ, from the data y = Xβ + z. X is

an n × p design matrix in which one can have far more variables than observations and z is z

is a mean-zero, stochastic error term—the so-called ‘p > n’ setup. When β is sparse, or more

generally, when there is a sparse subset of covariates providing a close approximation to the

unknown mean vector, we ask whether or not it is possible to accurately estimate Xβ using

convex optimization.

We show that in a surprisingly wide range of situations, the LASSO happens to nearly select

the best subset of variables. In fact, if all of the nonzero entries of β stand above the noise,

we show that the support of β is recovered exactly. Quantitatively speaking, we prove that

solving a simple, `1-minimization-based, quadratic program achieves a squared error within a
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logarithmic factor of the ideal mean squared error one would achieve with an oracle supplying

perfect information about which variables should be included in the model and which variables

should not. Interestingly, our results describe the average performance of the LASSO; that is,

the performance one can expect in an vast majority of cases where Xβ is a sparse or nearly

sparse superposition of variables, but not in all cases.

These results are widely applicable since they simply require that pairs of predictor variables

are not too collinear.

Chapter 4: This chapter presents several novel theoretical results regarding the recovery of a

low-rank matrix from just a few measurements consisting of linear combinations of the matrix

entries. We show that properly constrained nuclear-norm minimization stably recovers a low-

rank matrix from a constant number of noisy measurements per degree of freedom. Further,

with high probability the recovery error from noisy data is within a constant of three targets:

1) the minimax risk, 2) an oracle error that would be available if the column space of the

matrix were known, and 3) a more adaptive oracle error which would be available with the

knowledge of the column space corresponding to the part of the matrix that stands above

the noise. Lastly, the error bounds regarding low-rank matrices are extended to provide an

error bound when the matrix has full rank with decaying singular values. The analysis in this

chapter is based on the restricted isometry property.

Chapter 5: This chapter turns to the RIP-less matrix completion problem. We first survey the

novel literature on matrix completion, which shows that under some suitable conditions, one

can recover an unknown low-rank matrix from a nearly minimal set of entries by nuclear-

norm minimization subject to data constraints. Further, this chapter introduces novel results

showing that matrix completion is provably accurate even when the few observed entries are

corrupted with a small amount of noise. A typical result is that one can recover an unknown

n × n matrix of low rank r from just about nr log2 n noisy samples with an error which is

proportional to the noise level. We present numerical results which complement our quanti-

tative analysis and show that, in practice, nuclear-norm minimization accurately fills in the

many missing entries of large low-rank matrices from just a few noisy samples. Some analogies

between matrix completion and compressed sensing are discussed throughout.

Chapter 6: In this chapter, we give a brief summary of the results discussed in the earlier chapters,

and discuss the related open problems still left to be researched.
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Chapter 2

A general model for CS

2.1 Introduction

This chapter develops a novel, simple, general, and ‘RIP-less’ theory of CS [39, 42, 55]. We begin

by motivating and stating the results, and in turn give a discussion of related literature including a

discussion of the restricted isometry property (RIP) in Section 2.1.7.

2.1.1 A RIP-less theory?

The early paper [39] triggered a massive amount of research by showing that it is possible to sample

signals at a rate proportional to their information content rather than their bandwidth. For instance,

in a discrete setting, this theory asserts that a digital signal x ∈ Rn (which can be viewed as Nyquist

samples of a continuous-time signal over a time window of interest) can be recovered from a small

random sample of its Fourier coefficients provided that x is sufficiently sparse. Formally, suppose

that our signal x has at most s nonzero amplitudes at completely unknown locations and that we

are given the value of its discrete Fourier transform (DFT) at m frequencies selected uniformly at

random (we think of m as being much smaller than n). Then [39] showed that one can recover x

by solving an optimization problem which simply finds, among all candidate signals, that with the

minimum `1 norm; the number of samples we need must be on the order of s logn. In other words,

if we think of s as a measure of the information content, we can sample nonadaptively nearly at

the information rate without information loss. By swapping time and frequency, this also says that

signals occupying a very large bandwidth but with a sparse spectrum can be sampled (at random

time locations) at a rate far below the Shannon-Nyquist rate.

Despite considerable progress in the field, some important questions have still been left open.

We discuss two that have both a theoretical and practical appeal.

Is it possible to faithfully recover a nearly sparse signal x ∈ Rn, one which is well approx-

imated by its s largest entries, from about s logn of its Fourier coefficients? Is it still
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possible when these coefficients are further corrupted by noise?

These issues are paramount since in real-world applications, signals are never exactly sparse, and

measurements are never perfect either. Now the traditional way of addressing these types of problems

in the field is by means of the restricted isometry property (RIP) [41]. The trouble here is that it

is unknown whether or not this property holds when the sample size m is on the order of s logn.

In fact, answering this one way or the other is generally regarded as extremely difficult, and so the

restricted isometry machinery does not directly apply in this setting.

In this chapter, we prove that the two questions formulated above have positive answers. In fact,

we introduce recovery results which are—up to a logarithmic factor—as good as those one would

get if the restricted isometry property were known to be true. To fix ideas, suppose we observe m

noisy discrete Fourier coefficients about an s-sparse signal x,

ỹk =
n−1

∑
t=0

e−ı2πωktx[t] + σzk, k = 1, . . . ,m. (2.1.1)

Here, the frequencies ωk are chosen uniformly at random in {0,1/n,2/n, . . . , (n − 1)/n} and zk is

white noise with unit variance. Then if the number of samples m is on the order of s logn, it is

possible to get an estimate x̂ obeying

∥x̂ − x∥2
`2 = polylog(n) s

m
σ2 (2.1.2)

by solving a convex `1-minimization program. (Note that when the noise vanishes, the recovery is

exact.) Up to the logarithmic factor, which may sometimes be on the order of logn and at most a

small power of this quantity, this is optimal. Now if the RIP held, one would get a squared error

bounded by O(logn) s
m
σ2 [17, 43] and, therefore, the ‘RIP-less’ theory developed in this chapter

roughly enjoys the same performance guarantees.

2.1.2 A general theory

The estimate we have just seen is not isolated and the real purpose of this chapter is to develop a

theory of compressive sensing which is both as simple and as general as possible.

At the heart of compressive sensing is the idea that randomness can be used as an effective

sensing mechanism. We note that random measurements are not only crucial in the derivation of

many theoretical results, but also generally seem to give better empirical results as well. Therefore,

we propose a mechanism whereby sensing vectors are independently sampled from a population F .

Mathematically, we observe

ỹk = ⟨ak, x⟩ + σzk, k = 1, . . . ,m, (2.1.3)

where x ∈ Rn, {zk} is a noise sequence, and the sensing vectors ak
iid∼ F . For example, if F is the
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family of complex sinusoids, this is the Fourier sampling model introduced earlier. All we require

from F is an isotropy property and an incoherence property.

Isotropy property: We say that F obeys the isotropy property if

Eaa∗ = I, a ∼ F. (2.1.4)

If F has mean zero (we do not require this), then Eaa∗ is the covariance matrix of F . In other

words, the isotropy condition states that the components of a ∼ F have unit variance and are

uncorrelated. This assumption may be weakened a little, as we shall see later.

Incoherence property: We may take the coherence parameter µ(F ) to be the smallest number

such that with a = (a[1], . . . , a[n]) ∼ F ,

max
1≤t≤n

∣a[t]∣2 ≤ µ(F ) (2.1.5)

holds either deterministically or stochastically in the sense discussed below. The smaller µ(F ),
i.e. the more incoherent the sensing vectors, the fewer samples we need for accurate recovery.

When a simple deterministic bound is not available, one can take the smallest scalar µ obeying

E[n−1∥a∥2
`2 1E

c] ≤ 1
20
n−3/2 and P(Ec) ≤ (nm)−1, (2.1.6)

where E is the event {max1≤t≤n ∣a[t]∣2 > µ}.

Suppose for instance that the components are i.i.d. N (0,1). Then a simple calculation we shall

not detail shows that

E[n−1∥a∥2
`2 1E

c] ≤ 2nP(Z > √
µ) + 2

√
µφ(√µ), (2.1.7)

P(Ec) ≤ 2nP(Z ≥ √
µ),

where Z is standard normal and φ is its density function. The inequality P (Z > t) ≤ φ(t)/t shows

that one can take µ(F ) ≤ 6 logn as long as n ≥ 16 and m ≤ n. More generally, if the components

of a are i.i.d. samples from a sub-Gaussian distribution, µ(F ) is at most a constant times logn.

If they are i.i.d. from a sub-exponential distribution, µ(F ) is at most a constant times log2 n. In

what follows, however, it might be convenient for the reader to assume that the deterministic bound

(2.1.5) holds.

It follows from the isotropy property that E ∣a[t]∣2 = 1, and thus µ(F ) ≥ 1. This lower bound is

achievable by several distributions and one such example is obtained by sampling a row from the
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DFT matrix as before, so that

a[t] = eı2πkt/n,

where k is chosen uniformly at random in {0,1, . . . , n − 1}. Then another simple calculation shows

that Eaa∗ = I and µ(F ) = 1 since ∣a[t]∣2 = 1 for all t. At the other extreme, suppose the measurement

process reveals one entry of x selected uniformly at random so that a = √
nei where i is uniform in

{1, . . . , n}; the normalization ensures that Eaa∗ = I. This is a lousy acquisition protocol because one

would need to sample on the order of n logn times to recover even a 1-sparse vector (the logarithmic

term comes from the coupon collector effect). Not surprisingly, this distribution is in fact highly

coherent as µ(F ) = n.

We pause to note that when specializing to subsampled Fourier measurements, this is a slightly

different model that what has been considered in most past works [42,135]. In particular, our model

samples rows from a DFT with replacement, allowing the possibility of duplicates, whereas older

works have considered sampling without replacement. These models are in fact essentially the same.

First, when significantly undersampling, very few rows will be duplicated. Second, in the noiseless

case, the only relevant facet of A is its null space; sampling more rows decreases the null space and

strictly aids in recovery. In particular, resampling a row provides no new information and does not

decrease the null space. In other words, the probability that recovery fails when sampling m rows

with replacement is strictly larger than than the probability that it fails when sampling m rows with

replacement, i.e., our results extend to the other model. In the noisy case, the models appear to be

quite similar, but neither is strictly weaker.

With the assumptions set, we now give a representative result of this chapter: suppose x is an

arbitrary but fixed s-sparse vector and that one collects information about this signal by means of

the random sensing mechanism (4.1.1), where z is white noise. Then if the number of samples is on

the order µ(F )s logn, one can invoke `1 minimization to get an estimator x̂ obeying

∥x̂ − x∥2
`2 ≤ polylog(n) s

m
σ2.

This bound is sharp. It is not possible to substantially reduce the number of measurements and get

a similar bound, no matter how intractable the recovery method might be. To be precise, as shown

in Section 2.1.5 the number of measurements required is sharp modulo a constant. Further, with

this many measurements, the upper bound is optimal up to logarithmic factors. Finally, we will see

that when the signal is not exactly sparse, we just need to add an approximation error to the upper

bound.

To summarize, this chapter proves that one can faithfully recover approximately s-sparse signals

from about s logn random incoherent measurements for which µ(F ) = O(1).
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2.1.3 Examples of incoherent measurements

We have seen through examples that sensing vectors with low coherence are global or spread out.

Incoherence alone, however, is not a sufficient condition: if F were a constant distribution (sampling

from F would always return the same vector), one would not learn anything new about the signal by

taking more samples regardless of the level of incoherence. However, as we will see, the incoherence

and isotropy properties together guarantee that sparse vectors lie away from the nullspace of the

sensing matrix whose rows are the a∗k’s.

The role of the isotropy condition is to keep the measurement matrix from being rank defi-

cient when sufficiently many measurements are taken (and similarly for subsets of columns of A).

Specifically, one would hope to be able to recover any signal from an arbitrarily large number of

measurements. However, if Eaa∗ were rank deficient, there would be signals x ∈ Rn that would

not be recoverable from an arbitrary number of samples; just take x ≠ 0 in the nullspace of Eaa∗.

The nonnegative random variable x∗aa∗x has vanishing expectation, which implies a∗x = 0 almost

surely. (Put differently, all of the measurements would be zero almost surely.) In contrast, the

isotropy condition implies that 1
m ∑

m
k=1 aka

∗
k → I almost surely as m → ∞ and, therefore, with

enough measurements, the sensing matrix is well conditioned and has a left-inverse.1

We now provide examples of incoherent and isotropic measurements.

� Sensing vectors with independent components. Suppose the components of a ∼ F

are independently distributed with mean zero and unit variance. Then F is isotropic. In

addition, if the distribution of each component is light-tailed, then the measurements are

clearly incoherent.

A special case concerns the case where a ∼ N(0, I), also known in the field as the Gaussian

measurement ensemble, which is perhaps the most commonly studied. Here, one can take

µ(F ) = 6 logn as seen before.

Another special case is the binary measurement ensemble where the entries of a are symmetric

Bernoulli variables taking on the values ±1. A shifted version of this distribution is the sensing

mechanism underlying the single pixel camera [68].

� Subsampled orthogonal transforms: Suppose we have an orthogonal matrix obeying

U∗U = n I. Then consider the sampling mechanism picking rows of U uniformly and inde-

pendently at random. In the case where U is the DFT, this is the random frequency model

introduced earlier. Clearly, this distribution is isotropic and µ(F ) = maxij ∣Uij ∣2. In the case

where U is a Hadamard matrix, or a complex Fourier matrix, µ(F ) = 1.

1One could require ‘near isotropy,’ i.e., Eaa∗ ≈ I. If the approximation were tight enough, our theoretical results
would still follow with minimal changes to the proof.
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� Random convolutions: Consider the circular convolution model y = Gx in which

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g[0] g[1] g[2] . . . g[n − 1]
g[n − 1] g[0] g[1] . . .

g[1] . . . g[n − 1] g[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because a convolution is diagonal in the Fourier domain (we just multiply the Fourier compo-

nents of x with those of g), G is an isometry if the Fourier components of g = (g[0], . . . , g[n−1])
have the same magnitude. In this case, sampling a convolution product at randomly se-

lected time locations is an isotropic and incoherent process provided g is spread out (µ(F ) =
maxt ∣g(t)∣2). This example extends to higher dimensions; e.g. to spatial 3D convolutions.

� Subsampled tight or continuous frames: We can generalize the example above by sub-

sampling a tight frame or even a continuous frame. An important example might be the

Fourier transform with a continuous frequency spectrum. Here,

a(t) = eı2πωt,

where ω is chosen uniformly at random in [0,1] (instead of being on an equispaced lattice

as before). This distribution is isotropic and obeys µ(F ) = 1. A situation where this arises

is in magnetic resonance imaging (MRI) as frequency samples rarely fall on an equispaced

Nyquist grid. By swapping time and frequency, this is equivalent to sampling a nearly sparse

trigonometric polynomial at randomly selected time points in the unit interval [125].

These examples could of course be multiplied, and we hope we have made clear that our framework

is general and encompasses many of the measurement models discussed in compressive sensing—and

perhaps many new ones as well.

In some specific cases our theory improves upon what is available in the literature (e.g., for Fourier

measurements), but for certain other measurement models (e.g., Gaussian), our theory requires an

increase in the number of measurements. In both cases the difference between our theory and the

prior literature is the removal or inclusion of logarithmic factors. See Section 2.1.6 for a more detailed

discussion.
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2.1.4 Matrix notation

Before continuing, we pause to demonstrate exactly how we display this model in the matrix notation

of the introduction. Divide both sides of (4.1.1) by
√
m, and rewrite our statistical model as

y = Ax + σmz; (2.1.8)

the kth entry of y is ỹk divided by
√
m, the kth row of A is a∗k divided by

√
m, and σm is σ divided

by
√
m. This normalization implies that the columns of A are approximately unit-normed, and is

most used in the compressive sensing literature.

2.1.5 Incoherent sampling theorem

To ease readability, we introduce our results by first presenting a recovery result from noiseless data.

The recovered signal is obtained by the standard `1-minimization program

min
x̄∈Rn

∥x̄∥`1 subject to Ax̄ = y. (2.1.9)

(Recall that the rows of A are normalized independent samples from F .)

Theorem 2.1.1 (Noiseless incoherent sampling) Let x be a fixed but otherwise arbitrary s-

sparse vector in R
n. Then with probability at least 1−5/n−e−β, x is the unique minimizer to (2.1.9)

with y = Ax provided that

m ≥ Cβ ⋅ µ(F ) ⋅ s ⋅ logn.

More precisely, Cβ may be chosen as C0(1 + β) for some positive numerical constant C0.

Among other things, this theorem states that one can perfectly recover an arbitrary sparse signal

from about s logn convolution samples, or a signal that happens to be sparse in the wavelet domain

from about s logn randomly selected noiselet coefficients. It extends an earlier result [38], which

assumed a subsampled orthogonal model, and strengthens it since that reference could only prove

the claim for randomly signed vectors x. Here, x is arbitrary, and we do not make any distributional

assumption about its support or its sign pattern.

This theorem is also about a fundamental information theoretic limit: the number of samples

for perfect recovery has to be on the order of µ(F ) ⋅ s ⋅ logn, and cannot possibly be much below

this number. More precisely, suppose we are given a distribution F with coherence parameter µ(F ).
Then there exist s-sparse vectors that cannot be recovered with probability at least 1−1/n, say, from

fewer than a constant times µ(F ) ⋅s ⋅logn samples. When µ(F ) = 1, this has been already established

since [39] proves that some s sparse signals cannot be recovered from fewer than a constant times

s ⋅ logn random DFT samples. Our general claim follows from a modification of the argument in [39].



14

Assume, without loss of generality, that µ(F ) is an integer and consider the isotropic process that

samples rows from an n × n block diagonal matrix, each block being a DFT of a smaller size; that

is, of size n/` where µ(F ) = `. Then if m ≤ c0 ⋅µ(F ) ⋅ s ⋅ logn, one can construct s-sparse signals just

as in [39] for which Ax = 0 with probability at least 1/n. We omit the details.

The important aspect, here, is the role played by the coherence parameter µ(F ). In general, the

minimal number of samples must be on the order of the coherence times the sparsity level s times a

logarithmic factor. Put differently, the coherence completely determines the minimal sampling rate.

2.1.6 Main results

We assume for simplicity that we are undersampling so that m ≤ n. Our general result deals with

1) arbitrary signals which are not necessarily sparse (images are never exactly sparse even in a

transformed domain) and 2) noise. To recover x from the data y and the model (2.1.8), we consider

the unconstrained LASSO [147] which solves the `1 regularized least-squares problem

min
x̄∈Rn

1
2
∥Ax̄ − y∥2

`2 + λσm∥x̄∥`1 . (2.1.10)

We assume that z is Gaussian z ∼ N(0, I). However, the theorem below may be adapted to any noise

model that obeys ∥A∗z∥`∞ ≤ C
√

logn with high probability (for a fixed constant C). Thus many

other noise models would work as well. In what follows, xs is the best s-sparse approximation of x

or, equivalently, a vector consisting of the s largest entries of x in magnitude. Ties may be resolved

in any arbitrary way.

Theorem 2.1.2 Let x be an arbitrary fixed vector in R
n. Then with probability at least 1−6/n−6e−β

the solution to (2.1.10) with λ = 10
√

logn obeys

∥x̂ − x∥`2 ≤ min
1≤s≤s̄

C(1 + α)
⎡⎢⎢⎢⎢⎣

∥x − xs∥`1√
s

+ σ
√

s logn

m

⎤⎥⎥⎥⎥⎦
(2.1.11)

provided that m ≥ Cβ ⋅ µ(F ) ⋅ s̄ ⋅ logn. If one measures the error in the `1 norm, then

∥x̂ − x∥`1 ≤ min
1≤s≤s̄

C(1 + α)
⎡⎢⎢⎢⎢⎣
∥x − xs∥`1 + sσ

√
logn

m

⎤⎥⎥⎥⎥⎦
. (2.1.12)

Above, C is a numerical constant, Cβ can be chosen as before, and α =
√

(1+β)sµ logn logm log2(sµ)
m

which is never greater than log3/2 n in this setup.

These robust error bounds do not require either (1) a random model on the signal or (2) the RIP

nor one of a few closely related strong conditions such as the RIP-1 [81], the restricted eigenvalue

assumption [17], or the compatibility condition [158]. The conditions are weak enough that they do
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not necessarily imply uniform sparse-signal recovery, but instead they imply recovery of an arbitrary

fixed sparse signal with high probability. Further, the error bound is within at most a log3/2 n factor

of what has been established using the RIP since a variation on the arguments in [43] would give an

error bound proportional to the quantity inside the square brackets in (2.1.11). As a consequence,

the error bound is within a polylogarithmic factor of what is achievable with the help of an oracle

that would reveal the locations of the significant coordinates of the unknown signal [43]. In other

words, it cannot be substantially improved.

Because much of the compressive sensing literature works with restricted isometry conditions—

we shall discuss exceptions such as [14,62] in Section 2.1.7—we pause here to discuss these conditions

and to compare them to our own. As mentioned in Chapter 1, we say that an m×n matrix A obeys

the RIP with parameters s and δ if

(1 − δ)∥v∥2
`2 ≤ ∥Av∥2

`2 ≤ (1 + δ)∥v∥2
`2 (2.1.13)

for all s-sparse vectors v. In other words, all the submatrices of A with at most s columns are well

conditioned. When the RIP holds with parameters 2s and δ < 0.414 . . . [28] or even δ ≤ 0.453 . . . [78],

it is known that the error bound (2.1.11) holds (without the factor (1 + α)). This δ is sometimes

referred to as the restricted isometry constant.

Bounds on the restricted isometry constant have been established in [42] and in [135] for partial

DFT matrices, and by extension, for partial subsampled orthogonal transforms. For instance, [135]

proves that if A is a properly normalized partial DFT matrix, then the RIP with δ = 1/4 holds

with high probability if m ≥ C ⋅ s logn logm log2 s (C is some positive constant). We believe the

proof extends with hardly any change to show that the measurement ensembles considered in this

chapter obey the RIP with high probability when m ≥ C ⋅ µ(F ) ⋅ s logn logm log2(sµ). Thus, our

result bridges the gap between the region where the RIP holds and the region in which one has the

minimum number of measurements needed to prove perfect recovery of exactly sparse signals from

noisy data, which is on the order of µ(F ) ⋅ s logn. In doing so, we introduce an extra factor α into

our error bounds, which does not exist in the RIP-based results. This factor is at most logarithmic

(α < log3/2 n) and shrinks with the number of measurements; when the RIP is known to hold, the

factor α disappears, i.e., α = O(1). With that said, we believe that in the region in which the RIP

does not hold, and α > 1, this extra factor is an artifact of the proof technique and could be removed

by a different theoretical analysis. Last, we note that in certain regimes there are prior RIPless

results that give stability guarantees when m > Csµ logm log5(µ logm) (see Section 3.1.2).

The careful reader will no doubt remark that for very specific models such as the Gaussian

measurement ensemble, it is known that on the order s log(n/s) samples are sufficient for stable

recovery while our result asserts that on the order of s log2 n are sufficient (and s logn for the binary
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measurement ensemble). This slight loss is a small price to pay for a very simple general theory,

which accommodates a wide array of sensing strategies. Having said this, the reader will also verify

that specializing our proofs below gives an optimal result for the Gaussian ensemble; i.e. establishes

a near-optimal error bound from about s log(n/s) observations.

Finally, another frequently discussed algorithm for sparse regression is the Dantzig selector [43].

Here, the estimator is given by the solution to the linear program

min
x̄∈Rn

∥x̄∥`1 subject to ∥A∗(Ax̄ − y)∥`∞ ≤ λσm. (2.1.14)

We show that the Dantzig selector obeys nearly the same error bound.

Theorem 2.1.3 The Dantzig selector, with λ = 10
√

logn and everything else the same as in Theo-

rem 2.1.2, obeys

∥x̂ − x∥`2 ≤ min
s≤s̄

C(1 + α2)
⎡⎢⎢⎢⎢⎣

∥x − xs∥`1√
s

+ σ
√

s logn

m

⎤⎥⎥⎥⎥⎦
(2.1.15)

∥x̂ − x∥`1 ≤ min
s≤s̄

C(1 + α2)
⎡⎢⎢⎢⎢⎣
∥x − xs∥`1 + sσ

√
logn

m

⎤⎥⎥⎥⎥⎦
(2.1.16)

with the same probabilities as before.

The only difference is α2 instead of α in the right-hand sides.

2.1.7 Our contribution

Due to the plethora of background literature, we reverse the standard order and first describe our

contribution before describing many of the important contributions that came before it, in Section

3.1.2.

From the perspective of an engineer or scientist with a problem that may fit in the CS framework,

our main contribution is to provide a simple framework which applies to all the standard compressive

sensing models and some new ones as well. With that said and as noted above, one could adapt the

arguments of [135] to prove the RIP under our general framework, although this RIP-based theory

would require about a factor of logm log2(sµ) more measurements. From a theoretical standpoint,

our main contribution is to reduce the minimal number of measurements required in some standard

sensing models such as Fourier measurements, or, more generally, sensing matrices obtained by

sampling a few rows from an orthogonal matrix. This is interesting theoretically, because in a

sense (described above) the number of measurements required has been reduced to the absolute

minimum, up to a constant. In fact, the theoretical developments necessary to idealize this number

were quite involved, in particular using the majorizing measures theorem. Further, we establish
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that the restricted isometry property is not necessarily needed to accurately recover nearly sparse

vectors from noisy compressive samples. Thus our work is a significant departure from the majority

of the literature, which establishes good noisy recovery properties via the RIP machinery. This

literature is, of course, extremely large and we cannot cite all contributions but a partial list would

include [9, 10,17,26,40,42,43,51,56,94,124,135,166,167].

The reason why one can get strong error bounds, which are within a polylogarithmic factor

of what is available with the aid of an ‘oracle’, without the RIP is that our results do not imply

universality. That is, we are not claiming that if A is randomly sampled and then fixed once for all,

then the error bounds from Section 2.1.6 hold for all signals x. What we are saying is that if we

are given an arbitrary x, and then collect data by applying our random scheme, then the recovery

of this x will be accurate. As discussed in Chapter 1, if one wishes to establish universal results

holding for all x simultaneously, then we would need the RIP or a property very close to it. As a

consequence, we cannot possibly be in this setup and guarantee universality since we are not willing

to assume that the RIP holds.

To the best of our knowledge, only a few papers have addressed non-universal stability (the

literature grows so rapidly that an inadvertent omission is entirely possible). In Chapter 3 we also

consider weak conditions that allow stable recovery; in this case the we assume that the signal is

sampled according to a random model, but in return the measurement matrix A can be deterministic.

In the asymptotic case, stable signal recovery has been demonstrated for the Gaussian measurement

ensemble in a regime in which the RIP does not necessarily hold [14,62]; these papers will be discussed

more below, and in the asymptotic limit they provide exact answers. This contrasts with our non-

asymptotic theory which non-exact, but gives bounds that are tight to within logarithmic factors.

Aside from these papers and the work in progress [35], it seems that that the literature regarding

stable recovery with conditions weak enough that they do not imply universality is extremely sparse.

Finally and to be complete, we would like to mention that earlier works have considered the recovery

of perfectly sparse signals from subsampled orthogonal transforms [38], and of sparse trigonometric

polynomials from random time samples [125].

2.1.8 Organization of the chapter

The chapter is organized as follows. In Section 3.1.2 we describe many of the important contribu-

tions in the literature of CS. In Section 2.3, we introduce several fundamental estimates which our

arguments rely upon, but which also could be useful tools for other results in the field. In Section

3, we prove the noiseless recovery result, namely, Theorem 2.1.1. In Section 2.5, we prove our main

results, Theorems 2.1.2 and 2.1.3. In Section 2.6, we give the proof of an important technical piece,

which we call the weak RIP. Now all these sections assume for simplicity of exposition that the

coherence bound holds deterministically (2.1.5). We extend the proof to distributions obeying the
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coherence property in the stochastic sense (2.1.6) in Section 2.7. Finally, we conclude the main text

with some final comments in Section 2.8.

2.1.9 Notation

We provide a brief summary of the notations used throughout the chapter. For an m × n matrix A

and a subset T ⊂ {1, . . . , n}, AT denotes the m × ∣T ∣ matrix with column indices in T . Also, A{i}

is the i-th column of A. Likewise, for a vector v ∈ Rn, vT is the restriction of v to indices in T .

Thus, if v is supported on T , Av = AT vT . In particular, ak,T is the vector ak restricted to T . The

operator norm of a matrix A is denoted ∥A∥. The identity matrix, in any dimension, is denoted I.

Further, ei always refers to the i-th standard basis element, e.g., e1 = (1,0, . . . ,0). For a scalar t,

sgn(t) is the sign of t if t ≠ 0 and is zero otherwise. For a vector x, sgn(x) applies the sign function

componentwise. We shall also use µ as a shorthand for µ(F ) whenever convenient. Throughout, C

is a constant whose value may change from instance to instance.

2.2 Background CS literature

While the theory and practice of `1 minimization to recover sparse signals had been around for quite

some time (see Chapter 3, Section 3.1.2), CS emerged with the seminal works by Donoho [55] and

Candès et al. [39]. In contrast to the prior theory of `1 minimization, these works extolled the value

of taking random measurements, and showed that near-optimal results could be achieved with such

measurements. However, two different paths of work grew from each of these results, focusing on

different points of view and with a completely different theoretical analysis. Beyond these two paths,

many researchers from various disciplines forged their own beautiful contributions to the theory of

CS.

In this section, we discuss some of the various important results in the CS theory. This is by no

means a comprehensive survey, as the number of papers on the subject is in the hundreds, and would

be infeasible to review. We begin by discussing the pioneering CS papers and the subsequent line

of theory described by the authors of those results. We then describe some of the keystone results

in CS, focusing on those with relation to the theory in this chapter and we conclude by describing

some of the techniques outside of `1 minimization used to recover sparse signals.

2.2.1 Asymptotic results and phase transitions

The early results addressed the noiseless problem y = Ax. Donoho et al. [57,64–66] focused on asymp-

totic results, and based the theory on polytope geometry and s-neighborliness (or k-neighborliness

in the notation of these papers). They demonstrated sharp phase transitions theoretically for Gaus-

sian measurements, and through numerical simulations demonstrated that these phase transitions
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appeared to be universal to many measurement schemes (such as Fourier). To be a bit more precise,

fix parameters (δ, ρ). Now suppose that we let s, n,m→∞ with s/n→ ρ and m/n→ δ. Then there is

a curve, defined by a specific function ρCG(δ) dividing the region in which reconstruction succeeds

and reconstruction fails. In particular, let x̂ be the `1 minimization (2.1.9) solution; if ρ < ρCG(δ)
then with probability converging to 1 in the asymptotic limit, x̂ = x. If ρ > ρCG(δ), the probability

that x̂ = x tends to zero. In particular, note that there is a linear relationship between the number

of measurements needed and the sparsity level of x. Further, Donoho et al. [61] demonstrated that

a certain algorithm based on message passing achieves the same phase transitions curve, while of-

fering a large speed up in computational time. In fact, this message passing algorithm was shown

to converge to the LASSO solution, a fact that led to important theoretical breakthroughs in the

noisy problem.

By analyzing the message passing algorithm, and lifting the results to the LASSO case, Donoho

et al. [62] demonstrated an asymptotic phase transition for the noisy problem (once again under

the assumption of Gaussian measurements). In fact, the curve, ρCG(δ) is exactly as in the noiseless

case. Above the curve, the worst-case error is unbounded and below the curve there is an exact

expression for the mean squared error. We emphasize that while this is also a noisy RIP-less result,

it is clearly of a different nature than the results given in this chapter. In particular, it considers

the asymptotic case and restricts to Gaussian measurements, but in return a very precise theory is

offered.

A result of a similar nature, which once again used the message passing algorithm as a key

part of the analysis and considered Gaussian measurements, was proven by Bayati–Montanari [14].

Here, the authors considered a sequence of problem instances yj = Ajxj + zj , and assumed that

in the asymptotic limit the empirical distribution of xj converged weakly to a probability measure

(thereby avoiding worst-case signals). Under this assumption, the authors gave an explicit form for

the asymptotic error under a family of norms, but with no assumption on the sparsity level. Once

again, this is a RIP-less result complementary to the theory described in this chapter.

We also note that a number of other researchers have considered the asymptotics, especially in

the case of Gaussian measurements. For example, Wainwright [163] addresses the asymptotics for

a family of Gaussian measurement ensembles, not restricting to the i.i.d. case. See also the work of

Fletcher et al. [76].

2.2.2 Nonasymptotic results and the RIP

We begin by reviewing some of the relevant works of Candès and co-workers. This nonasymptotic

theory began with the paper [39], which, as noted in the introduction, demonstrated that m ran-

dom noiseless Fourier measurements were sufficient to recover an s-sparse vector by `1 minimization

(2.1.9) as long as m ≿ s logn. In [38], Candès and Romberg extended these results to general sub-



20

sampled orthogonal matrices with small entries, but in this case they required a random model on

the signs of x. In [42] Candès and Tao introduced the uniform uncertainty principle, now called the

restricted isometry property (RIP), and used it to demonstrate that `1 minimization could recover

approximately sparse vectors from subsampled measurements. They considered Fourier measure-

ments, Gaussian measurements, and binary measurements and gave non-asymptotic error bounds

under the assumption that the entries of x decay following a power law. Under this assumption,

and using the theory of Gelfand widths, they showed that their results were near optimal, up to

constant or logarithmic factors. (See [51] for an explanation of Gelfand widths tailored to CS and

see [82, 83] for the relevant theory on Gelfand widths.) Along the way, they proved the RIP for

these ensembles, although their requirements were refined in later papers. Numerical results sup-

porting the theory were described in [27], demonstrating that in practice, 3s−5s measurements were

necessary for accurate signal recovery by `1 minimization. In [40] the authors considered the noisy

problem, and demonstrated that the `2 norm of the error in recovery when solving the constrained

LASSO was within a constant of size of `2 norm of the noise—this required the RIP. In [43] the

authors demonstrated that a different convex program, called the Danzig selector, in fact achieved

a stronger error bound in the case of Gaussian noise: they showed that the error in recovery is

proportional to the sparsity of the signal. In other words it was nearly as if one were able to project

onto the low-dimensional space spanned by the non-zero coefficients of x (this is the type of error

bound given in this chapter).

Beginning with this line of work, much of the theory of CS concentrated on RIP conditions. We

pause to note that although the RIP was introduced to the CS community by Candès–Tao [42],

similar constructions had already been considered in the approximation theory literature [95].

Now, a number of papers proved that different random measurement ensembles satisfy the RIP

with high probability, as long as m is large enough. The case of a subsampled Fourier trans-

form was first considered in [42] and then refined in [135] and [126], giving the sufficient condition

m ≿ s logn logm log2 s. These results also extend to subsampled orthogonal matrices and were proved

using subtle arguments—in each case chaining techniques—in particular, the latter two papers care-

fully applied Dudley’s inequality. In contrast, matrices with independent sub-Gaussian entries can

be handled with more straightforward techniques. For example, as shown in [10], a simple covering

argument, similar to the proof of the Johnson-Lindenstrauss lemma, gives the RIP while only re-

quiring m ≿ s log(n/s). In fact, this requirement is optimal up to a constant, which can be proven

with the theory of Gelfand widths.

The RIP has been considered in a number of other measurement setups as well. Tropp et

al. [157] demonstrated that random demodulators satisfy the RIP under weak conditions; this has

clear applications in analog to digital conversion. Rauhut et al. [127] showed that random circulant

matrices satisfy the RIP, but under the somewhat strong condition m ≳ (s logn)3/2. To be clear,
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they considered a measurement matrix A that acts as a sampling of fixed (non-random) entries of the

convolution of x with a random vector. To prove the RIP in this setup under the weaker condition

m ≳ spolylog(n) appears to be difficult and is still an open problem.

2.2.3 Null space conditions

An important direction of the theory of CS (and sparse recovery in general), was the consideration

of null space conditions, i.e., conditions on the null space of A that can be used to imply that `1

minimization is exact in the noiseless, exactly sparse case and robust in the noisy, approximately

sparse case. The quintessential null space condition is as follows. Below, N(A) is the null space of

A.

Definition 2.2.1 (Null space property) A matrix A ∈ Cm×n satisfies the null space property of

order s if for all subsets T ∈ {1,2,⋯, n} with ∣T ∣ = s it holds that

∥vT ∥`1 < ∥vT c∥`1 for all v ∈ N(A)/{0}.

It is straightforward to prove that this is a necessary and sufficient condition for `1 minimization

(2.1.9) to exactly recover all s-sparse signals in the noiseless problem. This result appeared explicitly

in [87] and was implicit in the earlier works [60,70].

Zhang [168] used a stronger null space property to prove stability to noise. In particular, he

introduced the requirement

∥x∥0 =
ν

4
(∥u∥`1
∥u∥`2

)
2

for some ν ∈ (0,1). (2.2.1)

In this condition, we may take u to be any vector in the null space of A, or we can be more specific, as

shown below. As noted by Zhang, this is a variation on a well-known sufficient condition considered in

the noiseless case (see [168] for details). We pause to give the intuition for this condition: ∥u∥`1/∥u∥`2
is in some sense an approximation of the sparsity level of u (in particular this ratio is bounded by
√

∥u∥0). Thus, intuitively, the condition requires the vectors u to be spread, i.e., not overly sparse.

We now describe Zhang’s main result; it is RIP-less and quite pertinent in comparison to the

results given in this chapter. To best compare, we specialize Zhang’s main theorem to the case when

A is a subsampled orthogonal matrix. In particular, to simplify, we assume that it is sampled with

replacement so that no rows are repeated. We also take A to have unit normed rows (rather than

norm
√
n/m as in our chapter) so that AA∗ = I. Zhang considered the solution to the constrained

LASSO

min ∥x̄∥`1 subject to ∥Ax̄ − y∥`2 ≤ γ (2.2.2)



22

where γ should be chosen so that ∥z∥`2 ≤ γ (with high probability). He proved the following result.

Theorem 2.2.2 Let γ ≥ ∥z∥`2 and let x̂ be the solution to (2.2.2). Assume that ∥x∥0 satisfies (2.2.1)

for u = (I −AA∗)(x̂ − x) whenever u = (I −AA∗)(x̂ − x) ≠ 0. Then, for either p = 1 or p = 2

∣∣x̂ − x∣∣`p ≤ λp(Cν + 1)(∥z∥`2 + γ)

where γ1 =
√
n, γ2 = 1 and

Cν = 1 + ν
√

2 − ν2

1 − ν2
.

Note that I −AA∗ is the projection onto the null space of A, and thus u ∈ N(A). To be clear, the

theorem states that ∣∣x̂ − x∣∣p follows the bound above for either p = 1 or p = 2, not necessarily for

both norms simultaneously, and it is not known which norm satisfies the bound. Nevertheless this is

an important RIP-less stability result, and combined with a result on Kashin splittings by Guedon

et al. [91], it applies to the subsampled Fourier problem and sometimes gives weaker requirements

than RIP-based results.

We state the result of Guedon et al. [91, Theorem 3], written in the language of our chapter,

except that we once again take the rows of our matrix to have unit norm.

Theorem 2.2.3 Let U ∈ Cn×n be an orthonormal matrix (UU∗ = I), whose rows, ui, satisfy ∥ui∥2
`∞

≤
µ/n. Then there exists a matrix A ∈ Cm×n, created as a subsampling of m distinct rows of U , such

that for any x in the null space of A, we have

∥x∥`1 ≥ C
√

m

µ logm log5(µ ⋅ (n/m) ⋅ logm)
∥x∥`2

where C is a fixed constant.

Now, combine this theorem with Zhang’s requirement (2.2.1) to demonstrate the existence of sub-

sampled orthogonal matrices that can be used to stably compress s-sparse signals when

m ≥ Csµ logm log5(µ ⋅ (n/m) ⋅ logm).

Now, specialize to the case of Fourier measurements which are not drastically undersampled, so that

m ≥ n/ logm. The requirement becomes

m ≥ Cs logm log5(logm)

in this situation, which compares quite favorably with the best known RIP-requirement [135]

m ≥ Cs logm logn log2 s.
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This also comes quite close to the number of samples required in this chapter, m ≳ s logn.

2.2.4 Other algorithms for CS

While there has been quite a bit of work on `1-minimization-based programs (e.g., the LASSO, basis

pursuit, and the Dantzig selector), algorithms based on different approaches offer distinct advantages

in certain areas. In particular, greedy algorithms tend to be much faster, but in return they tend to

require more measurements for successful signal recovery.

There is a strong base of theoretical results on such greedy algorithms and we state a few such

results. The simplest greedy algorithm, orthogonal matching pursuit (OMP) [54, 123], selects one

coefficient at a time to include in the support of β. In particular, at each step it creates a residual by

taking the projection of y onto the complement of the space spanned by the columns already included

in the model, and adds to the model the column which has the highest inner product with this residual

(i.e., forward selection). In [156] Tropp–Gilbert demonstrated that with high probability O(s logn)
Gaussian measurements are sufficient to recover an s-sparse signal by OMP. Variations on this

algorithm have also been developed, e.g., stagewise OMP [63] and regularized OMP [114,115]. In fact,

Needell–Vershynin [114,115] proved that under RIP conditions, regularized OMP is stable to noise,

although in comparison to analogous results in convex optimization, the error bound is suboptimal by

a logarithmic factor and so is the requirement of the RIP constant δ. More recently, Needell–Tropp

[113] introduced a greedy-type algorithm called compressive sampling matching pursuit (CoSaMP)

and proved stability to noise via the RIP, but without any extra logarithmic factors. Dai–Milenkovic

[53] gave similar RIP-based guarantees for the greedy algorithm termed subspace pursuit.

2.3 Fundamental Estimates

Our proofs rely on several estimates, and we provide an interpretation of each whenever possible.

The first estimates E1–E4 are used to prove the noiseless recovery result; when combined with the

weak RIP, they imply stability and robustness. Lemmas 2.3.1, 2.3.3, and 2.3.4 below are involved

in the construction of an approximation of a dual vector (see Section 2.4), inspired by a similar

construction in [88]. Thus, these lemmas are adaptations of similar results from [88]. Throughout

this section, δ is a parameter left to be fixed in later sections; it is always less than or equal to one.

2.3.1 Local isometry

Let T of cardinality s be the support of x in Theorem 2.1.1, or the support of the best s-sparse

approximation of x in Theorem 2.1.2. We shall need that with high probability,

∥A∗
TAT − I∥ ≤ δ (2.3.1)
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with δ ≤ 1/2 in the proof of Theorem 2.1.1 and δ ≤ 1/4 in that of Theorem 2.1.2. Put differently, the

singular values of AT must lie away from zero. This condition essentially prevents AT from being

singular as, otherwise, there would be no hope of recovering our sparse signal x. Indeed, letting h

be any vector supported on T and in the null space of A, we would have Ax = A(x + h) and thus,

recovery would be impossible even if one knew the support of x. The condition (2.3.1) is much

weaker than the restricted isometry property because it does not need to hold uniformly over all

sparse subsets—only on the support set.

Lemma 2.3.1 (E1: local isometry) Let T be a fixed set of cardinality s. Then for δ > 0,

P (∥A∗
TAT − I∥ ≥ δ) ≤ 2s exp(− m

µ(F )s ⋅ δ2

2(1 + δ/3)) . (2.3.2)

In particular, if m ≥ 56
3
µ(F ) ⋅ s ⋅ logn, then

P (∥A∗
TAT − I∥ ≥ 1/2) ≤ 2/n.

Note that ∥A∗
TAT − I∥ ≤ δ implies that ∥(A∗

TAT )−1∥ ≤ 1/(1− δ), a fact that we will use several times.

In compressive sensing, the standard way of proving such estimates is via Rudelson’s selection

theorem [133]. Here, we use a more modern technique based on the matrix Bernstein inequality of

Ahlswede and Winter [3], developed for this setting by Gross [88], and tightened in [155] by Tropp

and in [120] by Oliveira. We present the version in [155].

Theorem 2.3.2 (Matrix Bernstein inequality) Let {Xk} ∈ Rd×d be a finite sequence of inde-

pendent random self-adjoint matrices. Suppose that EXk = 0 and ∥Xk∥ ≤ B a.s. and put

σ2 ∶= ∥∑
k

EX2
k∥ .

Then for all t ≥ 0,

P(∥∑
k

Xk∥ ≥ t) ≤ 2d exp( −t2/2
σ2 +Bt/3) . (2.3.3)

Proof Decompose A∗
TAT − I as

A∗
TAT − I =m−1

m

∑
k=1

(ak,Ta∗k,T − I) =m−1
m

∑
k=1

Xk, Xk ∶= ak,Ta∗k,T − I.

The isotropy condition implies EXk = 0, and since ∥aT ∥2
`2
≤ µ(F ) ⋅ s, we have ∥Xk∥ = max(∥ai,T ∥2

`2
−

1,1) ≤ µ(F ) ⋅ s. Last, 0 ⪯ EX2
k = E(ak,Ta∗k,T )2 − I ⪯ E(ak,Ta∗k,T )2 = E ∥ak,T ∥2ak,Ta

∗
k,T . However,

E ∥ak,T ∥2ak,Ta
∗
k,T ⪯ µ(F ) ⋅ s ⋅ Eak,Ta∗k,T = µ(F ) ⋅ s ⋅ I
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and, therefore, ∑k EX2
k ⪯m ⋅µ(F ) ⋅ s ⋅ I so that σ2 is bounded above by m ⋅µ(F ) ⋅ s. Plugging t = δm

into (2.3.3) gives the lemma.

Instead of having A act as a near isometry on all vectors supported on T , we could ask that it

preserves the norm of an arbitrary fixed vector (with high probability), i.e. ∥Av∥`2 ≈ ∥v∥`2 for a fixed

v supported on T . Not surprisingly, this can be proved with generally (slightly) weaker requirements.

Lemma 2.3.3 (E2: low-distortion) Let v be a fixed vector supported on a set T of cardinality at

most s. Then for each t ≤ 1/2,

P(∥(A∗
TAT − I)vT ∥`2 ≥ t∥v∥`2) ≤ exp(−1

4
(t

√
m

µ(F )s − 1)
2

).

The proof is an application of the vector Bernstein inequality described in the fourth estimate E4.

It is analogous to the proof shown there and is not repeated.

2.3.2 Off-support incoherence

Lemma 2.3.4 (E3: off-support incoherence) Let v be supported on T with ∣T ∣ = s. Then for

each t > 0,

P(∥A∗
T cAv∥`∞ ≥ t∥v∥`2) ≤ 2n exp(− m

2µ(F ) ⋅ t2

1 + 1
3

√
st

) . (2.3.4)

This lemma says that if v = x, then maxi∈T c ∣⟨A{i},Ax⟩∣ cannot be too large so that the off-support

columns do not correlate too well with Ax. The proof of E3 is an application of Bernstein’s

inequality—the matrix Bernstein inequality with d = 1—together with the union bound.

Proof We have

∥A∗
T cAv∥`∞ = max

i∈T c
∣⟨ei,A∗Av⟩∣.

Assume without loss of generality that ∥v∥`2 = 1, fix i ∈ T c and write

⟨ei,A∗Av⟩ = 1

m
∑
k

gk, gk ∶= ⟨ei, aka∗kv⟩.

Since i ∈ T c, E gk = 0 by the isotropy property. Next, the Cauchy-Schwartz inequality gives ∣gk ∣ =
∣⟨ei, ak⟩ ⋅ ⟨ak, v⟩∣ ≤ ∣⟨ei, ak⟩∣∥ak,T ∥`2 . Since ∣⟨ei, ak⟩∣ ≤

√
µ(F ) and ∥ak,T ∥`2 ≤

√
µ(F )s, we have

∣gk ∣ ≤ µ(F )√s. Last, for the total variance, we have

E g2
k ≤ µ(F )E⟨ak,T , v⟩2 = µ(F )

where the equality follows from the isotropy property. Hence, σ2 ≤mµ(F ), and Bernstein’s inequality

gives

P(∣⟨ei,A∗Av⟩∣ ≥ t) ≤ 2 exp(− m

2µ(F ) ⋅ t2

1 + 1
3

√
st

) .
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Combine this with the union bound over all i ∈ T c to give the desired result.

We also require the following related bound:

max
i∈T c

∥A∗
TA{i}∥`2 ≤ δ.

In other words, none of the column vectors of A outside of the support of x should be well approxi-

mated by any vector sharing the support of x.

Lemma 2.3.5 (E4: uniform off-support incoherence) Let T be a fixed set of cardinality s. For

any 0 ≤ t ≤ √
s,

P(max
i∈T c

∥A∗
TA{i}∥`2 ≥ t) ≤ n exp(− mt2

8µ(F )s +
1

4
) .

In particular, if m ≥ 8µ(F ) ⋅ s ⋅ (2 logn + 1/4), then

P(max
i∈T c

∥A∗
TA{i}∥`2 ≥ 1) ≤ 1/n.

The estimate follows from the vector Bernstein inequality, which essentially follows from Chapter

6 of [100], and was proved by Gross [88, Theorem 11]. We use a slightly weaker version, which we

find slightly more convenient.

Theorem 2.3.6 (Vector Bernstein inequality) Let {vk} ∈ Rd be a finite sequence of indepen-

dent random vectors. Suppose that E vk = 0 and ∥vk∥`2 ≤ B a.s. and put σ2 ≥ ∑k E ∥vk∥2
`2

. Then for

all 0 ≤ t ≤ σ2/B,

P(∥∑
k

vk∥`2 ≥ t) ≤ exp(−(t/σ − 1)2

4
) ≤ exp(− t2

8σ2
+ 1

4
) . (2.3.5)

Note that the bound does not depend on the dimension d.

Proof Fix i ∈ T c and write

A∗
TA{i} =

1

m

m

∑
j=1

a∗k,T ⟨ak, ei⟩ ∶=
1

m

m

∑
k=1

vk.

As before, E vk = Ea∗k,T ⟨ak, ei⟩ = 0 since i ∈ T c. Also, ∥vk∥`2 = ∥ak,T ∥`2 ∣⟨ak, ei⟩∣ ≤ µ(F )√s. Last, we

calculate the sum of expected squared norms,

m

∑
k=1

E ∥vk∥2
`2 =mE ∥v1∥2

`2 ≤mE[∥a1,T ∥2
`2⟨ei, a1⟩2] ≤mµ(F )s ⋅ E⟨ei, a1⟩2 =mµ(F )s.

As before, the last equality follows from the isotropy property. Bernstein’s inequality together with

the union bound give the lemma.
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2.3.3 Weak RIP

In the nonsparse and noisy setting, we shall make use of a variation on the restricted isometry

property to control the size of the reconstruction error. This variation is as follows:

Theorem 2.3.7 (E5: weak RIP) Let T be a fixed set of cardinality s and fix δ > 0. Then for all

v supported on T ∪R, where R is any set of cardinality ∣R∣ ≤ r, we have

(1 − δ)∥v∥2
`2 ≤ ∥Av∥2

`2 ≤ (1 + δ)∥v∥2
`2 (2.3.6)

with probability at least 1 − 5e−β provided that

m ≥ Cδ ⋅ β ⋅ µ(F ) ⋅max(s log(sµ), r logn log2(rµ) log(rµ logn)).

Here Cδ is a fixed numerical constant which only depends upon δ.

This theorem is proved in Section 2.6 using Talagrand’s generic chaining construction, and combines

the framework and results of Rudelson and Vershynin in [135] and [133]. In the proof of Theorem

2.1.2, we take δ = 1/4. Out of our estimates, the weak RIP is the one that is truly novel, while the

others have clear antecedents.

The condition says that the column space of AT should not be too close to that spanned by

another small disjoint set R of columns. To see why a condition of this nature is necessary for any

recovery algorithm, suppose that x has fixed support T and that there is a single column A{i} which

is a linear combination of columns in T , i.e., AT∪{i} is singular. Let h ≠ 0 be supported on T ∪ {i}
and in the null space of A. Then Ax = A(x+ th) for any scalar t. Clearly, there are some values of t

such that x+ th is at least as sparse as x, and thus one should not expect to be able to recover x by

any method. In general, if there were a vector v as above obeying ∥Av∥`2 ≪ ∥v∥`2 then one would

have AT vT ≈ −ARvR. Thus, if the signal x were the restriction of v to T , it would be very difficult

to distinguish it from that of −v to R under the presence of noise.

The weak RIP is a combination of the RIP and the local conditioning estimate E1. When r = 0,

this is E1 whereas this is the restricted isometry property when s = 0. The point is that we do

not need the RIP to hold for sparsity levels on the order of m/[µ(F ) logn]. Instead we need the

following property: consider an arbitrary submatrix formed by concatenating columns in T with r

other columns from A selected in any way you like; then we would like this submatrix to be well

conditioned. Because T is fixed, one can prove good conditioning when s is significantly larger than

the maximum sparsity level considered in the standard RIP.
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2.3.4 Implications

The careful reader may ask why we bothered to state estimates E1–E4 since they are all implied

by the weak RIP! Our motivation is threefold: (1) some of these estimates, e.g. E2 hold with better

constants and weaker requirements than those implied by the weak RIP machinery; (2) the weak

RIP requires an in-depth proof whereas the other estimates are simple applications of well-known

theorems, and we believe that these theorems and the estimates should be independently useful tools

to other researchers in the field; (3) the noiseless theorem does not require the weak RIP.

2.4 Noiseless and Sparse Recovery

This section proves the noiseless recovery theorem, namely, Theorem 2.1.1. Our proof essentially

adapts the arguments of David Gross [88] from the low-rank matrix recovery problem.

2.4.1 Dual certificates

A standard method for establishing exact recovery is to exhibit a dual certificate; that is to say, a

vector v obeying the two properties below.

Lemma 2.4.1 (Exact duality) Set T = supp(x) with x feasible for (2.1.9), and assume AT has

full column rank. Suppose there exists v ∈ Rn in the row space of A obeying

vT = sgn(xT ) and ∥vT c∥`∞ < 1. (2.4.1)

Then x is the unique `1 minimizer to (2.1.9).

The proof is now standard, see [42, 80, 150]. Roughly, the existence of a dual vector implies that

there is a subgradient of the `1 norm at x that is perpendicular to the feasible set. This geometric

property shows that x is solution. Following Gross, we slightly modify this definition as to make use

of an ‘inexact dual vector’.

Lemma 2.4.2 (Inexact duality) Set T = supp(x) where x is feasible, and assume that

∥(A∗
TAT )−1∥ ≤ 2 and max

i∈T c
∥A∗

TA{i}∥`2 ≤ 1. (2.4.2)

Suppose there exists v ∈ Rn in the row space of A obeying

∥vT − sgn(xT )∥`2 ≤ 1/4 and ∥vT c∥`∞ ≤ 1/4. (2.4.3)

Then x is the unique `1 minimizer to (2.1.9).
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Proof Let x̂ = x + h be a solution to (2.1.9) and note that Ah = 0 since both x and x̂ are feasible.

To prove the claim, it suffices to show that h = 0. We begin by observing that

∥x̂∥`1 = ∥xT + hT ∥`1 + ∥hT c∥`1 ≥ ∥xT ∥`1 + ⟨sgn(xT ), hT ⟩ + ∥hT c∥`1 .

Letting v = A∗w be our (inexact) dual vector, we have

⟨sgn(xT ), hT ⟩ = ⟨sgn(xT ) − vT , hT ⟩ + ⟨vT , hT ⟩ = ⟨sgn(xT ) − vT , hT ⟩ − ⟨vT c , hT c⟩,

where we used ⟨vT , hT ⟩ = ⟨v, h⟩ − ⟨vT c , hT c⟩ = −⟨vT c , hT c⟩ since ⟨v, h⟩ = ⟨w,Ah⟩ = 0. The Cauchy-

Schwartz inequality combined with Hölder’s inequality and the properties of v yield

∣⟨sgn(xT ), hT ⟩∣ ≤ ∣⟨sgn(xT ) − vT , hT ⟩∣ + ∣⟨vT , hT ⟩∣

= ∣⟨sgn(xT ) − vT , hT ⟩∣ + ∣⟨vT c , hT c⟩∣

≤ ∥sgn(xT ) − vT ∥`2 ⋅ ∥hT ∥`2 + ∥vT c∥`∞ ⋅ ∥hT c∥`1

≤ 1

4
(∥hT ∥`2 + ∥hT c∥`1).

Therefore,

∥x̂∥`1 ≥ ∥x∥`1 −
1

4
∥hT ∥`2 +

3

4
∥hT c∥`1 .

We now bound ∥hT ∥`2 . First, it follows from

hT = (A∗
TAT )−1A∗

TATh = −(A∗
TAT )−1A∗

TAT chT c

that ∥hT ∥`2 ≤ 2∥A∗
TAT chT c∥`2 . Second,

∥A∗
TAT chT c∥`2 ≤ 2 ∑

i∈T c
∥A∗

TA{i}∥`2 ∣hi∣ ≤ max
i∈T c

∥A∗
TA{i}∥`2∥hT c∥`1 ≤ ∥hT c∥`1 .

In conclusion, ∥hT ∥2 ≤ 2∥hT c∥1 and thus,

∥x̂∥`1 ≥ ∥x∥`1 +
1

4
∥hT c∥`1 .

This implies hT c = 0, which in turn implies hT = 0 since we must have AThT = Ah = 0 (and AT has

full rank).

Lemma 2.4.3 (Existence of a dual certificate) Under the hypotheses of Theorem 2.1.1, one

can find v ∈ Rn obeying the conditions of Lemma 2.4.2 with probability at least 1 − e−β − 1/n.
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This lemma, which is proved next, implies Theorem 2.1.1. The reason is that we just need to

verify conditions (2.4.2). However, by Lemmas 2.3.1 and 2.3.5, they jointly hold with probability at

least 1 − 3/n provided that m ≥ µ ⋅ s ⋅ (19 logn + 2) (recall that µ is a shorthand for µ(F )).

2.4.2 Proof of Lemma 2.4.3

The proof uses the clever golfing scheme introduced in [88]. Partition A into row blocks so that from

now on, A1 are the first m1 rows of the matrix A, A2 the next m2 rows, and so on. The ` matrices

{Ai}`i=1 are independently distributed, and we have m1 +m2 + . . . +m` = m. As before, Ai,T is the

restriction of Ai to the columns in T .

The golfing scheme then starts with v0 = 0, inductively defines

vi =
m

mi
A∗
iAi,T (sgn(xT ) − vi−1,T ) + vi−1

for i = 1, . . . , `, and sets v = v`. Clearly v is in the row space of A. To simplify notation, let

qi = sgn(xT ) − vi,T , and observe the two identities

qi = (I − m

mi
A∗
i,TAi,T) qi−1 =

i

∏
j=1

(I − m

mj
A∗
j,TAj,T) sgn(xT ) (2.4.4)

and

v =
`

∑
i=1

m

mi
A∗
iAi,T qi−1, (2.4.5)

which shall be used frequently. From (2.4.4) and the fact that I− m
mi
A∗
i,TAi,T should be a contraction

(local isometry E1), we see that the norm of qi decreases geometrically fast—the terminology comes

from this fact since each iteration brings us closer to the target just as each golf shot would bring

us closer to the hole—so that vT should be close to sgn(xT ). Hopefully, the process keeps the size

of vT c under control as well.

To control the size of vT c and that of sgn(xT )− vT , we claim that the following inequalities hold

for each i with high probability: first,

∥qi∥`2 ≤ ci∥qi−1∥`2 (2.4.6)

and, second,

∥ m
mi

A∗
i,T cAi,T qi−1∥`∞ ≤ ti∥qi−1∥`2 (2.4.7)

(the values of the parameters ti and ci will be specified later). Let p1(i) (resp. p2(i)) be the
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probability that the bound (2.4.6) (resp. (2.4.7)) does not hold. Lemma 2.3.3 gives

p1(i) ≤ exp(−1

4
(ci

√
mi/(sµ) − 1)2) . (2.4.8)

Thus, if

mi ≥
2 + 8(β + logα)

c2i
sµ, (2.4.9)

then p1(i) ≤ 1
α
e−β . Next, Lemma 2.3.4 gives

p2(i) ≤ 2n exp(− 3t2imi

6µ + 2µ
√
sti

) . (2.4.10)

Thus, if

mi ≥ ( 2

t2i s
+ 2

3ti
√
s
)(β + log(2α) + logn)sµ, (2.4.11)

then p2(i) ≤ 1
α
e−β .

It is now time to set the number of blocks `, the block sizes mi and the values of the parameters

ci and ti. These are as follows:

� ` = ⌈(log2 s)/2⌉ + 2;

� c1 = c2 = 1/[2
√

logn] and ci = 1/2 for 3 ≤ i ≤ `;

� t1 = t2 = 1/[8√s] and ti = logn/[8√s] for 3 ≤ i ≤ `;

� m1,m2 ≥ 35(1 + log 4 + β)sµc−2
i and mi ≥ 35(1 + log 6 + β)sµc−2

i for 3 ≤ i ≤ `.

It is not hard to see that the total number of samples m = ∑imi obeys the assumptions of the

lemma. To see why v is a valid certificate, suppose first that for each i, (2.4.6) and (2.4.7) hold.

Then (2.4.4) gives

∥sgn(xT ) − vT ∥`2 = ∥q`∥`2 ≤ ∥sgn(xT )∥`2
`

∏
i=1

ci ≤
√
s

2`
≤ 1

4

as desired. Further, (2.4.5) yields

∥vT c∥`∞ ≤
`

∑
i=1

∥ m
mi

A∗
i,T cAi,T qi−1∥`∞ ≤

`

∑
i=1

ti∥qi−1∥`2 ≤
√
s

`

∑
i=1

ti
i−1

∏
j=1

ci.

Now with our choice of parameters, the right-hand side is bounded above by

1

8
(1 + 1

2
√

logn
+ logn

4 logn
+⋯) < 1

4
,

which is the desired conclusion.
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Now we must show that the bounds (2.4.6), (2.4.7) hold with probability at least 1 − e−β − 1/n.

It follows from (2.4.9) and (2.4.11) that p1(i), p2(i) ≤ 1
4
e−β for i = 1,2 and p1(i), p2(i) ≤ 1

6
e−β ≤ 1/6

for i ≥ 3. Thus, p1(1) + p1(2) + p2(1) + p2(2) ≤ e−β and p1(i) + p2(i) ≤ 1/3 for i ≥ 3. Now the

union bound would never show that (2.4.6) and (2.4.7) hold with probability at least 1 − 1/n for

all i ≥ 3 because of the weak bound on p1(i) + p2(i). However, using a clever idea in [88], it is

not necessary for each subset of rows to ‘succeed’ and give the desired bounds. Instead, one can

sample a ‘few’ extra batches of rows, and throw out those that fail our requirements. We only need

` − 2 working batches, after the first 2. In particular, pick `′ + 2 > ` batches of rows, so that we

require m ≥ 2 ⋅ ⌈140(1 + log 4 + β) ⋅ µ ⋅ s ⋅ logn⌉ + ` ⋅ ⌈140(1 + log 6 + β)sµ⌉ (note that we have made no

attempt to optimize constants). Now as in [88], let N be the the number of batches—after the first

2—obeying (2.4.6) and (2.4.7); this N is larger (probabilistically) than a binomial(`′,2/3) random

variable. Then a standard concentration bound [107, Theorem 2.3a]

P(N < ` − 2) ≤ exp(−2
( 2

3
`′ − ` + 2)2

`′
)

tells us that if we were to pick `′ = 3⌈logn⌉ + 1, we would have

P(N < ` − 2) ≤ 1/n.

In summary, from p1(1)+p2(1)+p1(2)+p2(2) ≤ e−β and the calculation above, the dual certificate

v obeys the required properties with probability at least 1 − 1/n − e−β , provided that m ≥ C(1 + β) ⋅
µ ⋅ s ⋅ logn.

2.5 General Signal Recovery from Noisy Data

We prove the general recovery theorems from Section 2.1.6 under the assumption of Gaussian white

noise but would like to emphasize that the same result would hold for other noise distributions.

Specifically, suppose we have the noisy model

y = Ax + z, where ∥A∗z∥`∞ ≤ λn (2.5.1)

holds with high probability. Then the conclusions of Theorem 2.1.3 remain valid. In details, the

Dantzig selector with constraint ∥A∗(y −Ax̄)∥`∞ ≤ 4λn obeys

∥x̂ − x∥`2 ≤ C1(1 + α2) [∥x − xs∥`1√
s

+ λn
√
s] (2.5.2)
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with high probability. Hence, (2.1.15) is a special case corresponding to λn = 2.5σm
√

logn =
2.5σ

√
logn
m

. Likewise, the bound on the `1 loss (2.1.16) with λn in place of σ
√

logn
m

holds as

well. A similar generality applies to the LASSO as well, although in this case we need a second noise

correlation bound, namely,

∥A∗
T c(I − P )z∥`∞ ≤ λn

where P ∶= AT (A∗
TAT )−1A∗

T is the projection onto the column space of AT .

Now when z ∼ N (0, I) and A is a fixed matrix, we have

∥A∗z∥`∞ ≤ 2∥A∥1,2

√
logn (2.5.3)

with probability at least 1 − 1/2n; here, ∥A∥1,2 is the maximum column norm of A. Indeed, the ith

component of A∗z is distributed as N (0, ∥A{i}∥2
`2
) and, therefore, the union bound gives

P(∥A∗z∥`∞ > 2∥A∥1,2

√
logn) ≤ nP(∣N (0,1)∣ > 2

√
logn).

The conclusion follows for n ≥ 2 from the well-known tail bound P(∣N (0,1)∣ > t) ≤ 2φ(t)/t, where φ

is the density of the standard normal distribution. The same steps demonstrate that

∥A∗(I − P )z∥`∞ ≤ 2∥(I − P )A∥1,2

√
logn ≤ 2∥A∥1,2

√
logn (2.5.4)

with probability at least 1 − 1/2n.

2.5.1 Proof of Theorem 2.1.2

We assume σm = 1 since the general result follows from a simple rescaling.

Fix s obeying s ≤ s̄, and let T = supp(xs). We prove the error bounds of Theorem 2.1.2 with s

fixed, and the final result follows by considering that s which minimizes either the `2 (2.1.11) or `1

(2.1.12) error bound. This is proper since the minimizing s has a deterministic value. With T as

above, we assume in the rest of the proof that

(i) all of the requirements for noiseless recovery in Lemma 2.4.2 are met,

(ii) and that the inexact dual vector v of Section 2.4 is successfully constructed.

All of this occurs with probability at least 1 − 4/n − e−β . Further, we assume that

(iii) the weak RIP holds with δ = 1/4, r = m
C(1+β)⋅µ⋅logn logm log2(sµ)

∨ s and T is as above.

This occurs with probability at least 1− 5e−β , and implies the RIP at sparsity level r and restricted

isometry constant δ = 1/4. Last, we assume
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(iv) the noise correlation bound

∥A∗z∥`∞ ≤ 2.5
√

logn. (2.5.5)

Assuming the weak RIP above, which implies ∥A∥1,2 ≤ 5/4, the conditional probability that this

occurs is at least 1 − 1/2n because of (2.5.3). Because the weak RIP implies the local isometry

condition E1 with δ = 1/4, all of these conditions together hold with probability at least 1−4/n−6e−β .

All of the steps in the proof are now deterministic consequences of (i)–(iv); from now on, we will

assume they hold.

With h = x̂ − x, our goal is to bound both the `2 and `1 norms of h. We will do this with a pair

of lemmas. The first is frequently used (recall that λ is set to 10
√

logn).

Lemma 2.5.1 (Tube constraint) The error h obeys

∥A∗Ah∥`∞ ≤ 5λ

4
.

Proof As shown in [33, Lemma 3.1], writing that the zero vector is a subgradient of the LASSO

functional 1
2
∥y −Ax̄∥2

`2
+ λ∥x̄∥`1 at x̄ = x̂ gives

∥A∗(y −Ax̂)∥`∞ ≤ λ.

Then it follows from the triangle inequality that

∥A∗Ah∥`∞ ≤ ∥A∗(y −Ax̂)∥`∞ + ∥A∗z∥`∞ ≤ λ + ∥A∗z∥`∞ ,

where z is our noise term. The claim is a consequence of (2.5.5).

Lemma 2.5.2 The error h obeys

∥hT c∥`1 ≤ C0(sλ + ∥xT c∥`1) (2.5.6)

for some numerical constant C0.

Before proving this lemma, we show that it gives Theorem 2.1.2. Some of the steps are taken from

the proof of Theorem 1.1 in [43].

Proof [Theorem 2.1.2] Set r as in (iii) above. We begin by partitioning T c and let T1 be the indices

of the r largest entries of hT c , T2 be those of the next r largest, and so on. We first bound ∥hT∪T1∥`2
and set T̄1 = T ∪ T1 for short. The weak RIP assumption (iii) gives

3

4
∥hT̄1

∥2
`2 ≤ ∥AT̄1

hT̄1
∥2
`2 = ⟨AT̄1

hT̄1
,Ah⟩ − ⟨AT̄1

hT̄1
,AT̄ c1 hT̄ c1 ⟩. (2.5.7)
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From Lemma 2.5.1, we have

⟨AT̄1
hT̄1

,Ah⟩ = ⟨hT̄1
,A∗

T̄1
Ah⟩ ≤ ∥hT̄1

∥`1 ∥A∗

T̄1
Ah∥`∞ ≤ 5

4
λ∥hT̄1

∥`1 .

Since T̄1 has cardinality at most 2s, the Cauchy-Schwarz inequality gives

⟨AT̄1
hT̄1

,Ah⟩ ≤ 5

4
λ
√

2s∥hT̄1
∥`2 . (2.5.8)

Next, we bound ∣⟨AT̄1
hT̄1

,AT̄ c1 hT̄ c1 ⟩∣ ≤ ∣⟨AThT ,AT̄ c1 hT̄ c1 ⟩∣ + ∣⟨AT1hT1 ,AT̄ c1 hT̄ c1 ⟩∣. We have

⟨AThT ,AT̄ c1 hT̄ c1 ⟩ ≤∑
j≥2

∣⟨AThT ,ATjhTj ⟩∣. (2.5.9)

As shown in [41, Lemma 1.2], the parallelogram identity together with the weak RIP imply that

∣⟨AThT ,ATjhTj ⟩∣ ≤
1

4
∥hT ∥`2∥hTj∥`2

and, therefore,

⟨AThT ,AT̄ c1 hT̄ c1 ⟩ ≤
1

4
∥hT ∥`2 ∑

j≥2

∥hTj∥`2 . (2.5.10)

To bound the summation, we use a standard result [43, (3.10)] 2

∑
j≥2

∥hTj∥`2 ≤ r−1/2∥hT c∥`1 , (2.5.11)

which gives

∣⟨AThT ,AT̄ c1 hT̄ c1 ⟩∣ ≤
1

4
r−1/2∥hT ∥`2∥hT c∥`1 .

The same analysis yields ∣⟨AT1hT1 ,AT̄ c1 hT̄ c1 ⟩∣ ≤
1
4
r−1/2∥hT1∥`2∥hT c∥`1 and thus,

∣⟨AT̄1
hT̄1

,AT̄ c1 hT̄ c1 ⟩∣ ≤
1

2
r−1/2∥hT̄1

∥`2∥hT c∥`1 .

Plugging these estimates into (2.5.7) gives

∥hT̄1
∥`2 ≤

1

2
(5

2

√
2sλ + r−1/2∥hT c∥`1). (2.5.12)

2We note that this method to compare `1 and `2 has older roots in approximation theory.
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The conclusion is now one step away. Obviously,

∥h∥`2 ≤ ∥hT̄1
∥`2 +∑

j≥2

∥hTj∥`2 ≤ ∥hT̄1
∥`2 + r−1/2∥hT c∥`1

≤ 1

2
(5

2

√
2sλ + 3r−1/2∥hT c∥`1),

where the second line follows from (2.5.12). Lemma 2.5.2 completes the proof for the `2 error. For

the `1 error, note that by the Cauchy-Schwarz inequality

∥h∥`1 = ∥hT ∥`1 + ∥hT c∥`1 ≤
√
s∥hT ∥`2 + ∥hT c∥`1 ≤

√
s∥hT̄1

∥`2 + ∥hT c∥`1 .

Combine this with (2.5.12) and Lemma 2.5.2.

2.5.2 Proof of Lemma 2.5.2

Since x̂ is the minimizer to (2.1.10),

1

2
∥Ax̂ − y∥2

`2 + λ∥x̂∥`1 ≤
1

2
∥Ax − y∥2

`2 + λ∥x∥`1 ,

which can be massaged into the more convenient form

1

2
∥Ah∥2

`2 + λ∥x̂∥`1 ≤ ⟨Ah, z⟩ + λ∥x∥`1 .

Lemma 2.5.3

∥x̂∥`1 ≥ ∥x∥`1 + ⟨hT , sgn(xT )⟩ + ∥hT c∥`1 − 2∥xT c∥`1 .

Proof We have ∥x̂∥`1 = ⟨x̂, sgn(x̂)⟩ ≥ ⟨xT + hT , sgn(xT )⟩ + ∥xT c + hT c∥`1 and the claim follows from

the triangle inequality.

It follows from this that

1

2
∥Ah∥2

`2 + λ∥hT c∥`1 ≤ ⟨Ah, z⟩ − λ⟨hT , sgn(xT )⟩ + 2λ∥xT c∥`1 , (2.5.13)

and the proof is now a consequence of the two short lemmas below.

Lemma 2.5.4

⟨Ah, z⟩ ≤ 5

12
sλ2 + λ

4
∥hT c∥`1 . (2.5.14)
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Proof The proof is similar to an argument in [33]. Let P = AT (A∗
TAT )−1A∗

T be the orthogonal

projection onto the range of AT . Then

⟨Ah, z⟩ = ⟨PAh, z⟩ + ⟨(I − P )AT chT c , z⟩

= ⟨A∗
TAh, (A∗

TAT )−1A∗
T z⟩ + ⟨hT c ,A∗

T c(I − P )z⟩

≤ ∥A∗
TAh∥`∞∥(A∗

TAT )−1A∗
T z∥`1 + ∥hT c∥`1∥A∗

T c(I − P )z∥`∞

≤ 5

4
λ∥(A∗

TAT )−1A∗
T z∥`1 + 2.5

√
logn∥hT c∥`1 . (2.5.15)

The last line follows from Lemma 2.5.1 and (2.5.4). We now bound the first term, and write

∥(A∗
TAT )−1A∗

T z∥`1 ≤
√
s∥(A∗

TAT )−1A∗
T z∥`2

≤ 4

3

√
s∥A∗

T z∥`2

≤ 4

3
s∥A∗

T z∥`∞ ≤ 1

3
sλ. (2.5.16)

The first inequality follows from Cauchy-Schwarz, the second from ∥A∗
TAT ∥ ≤ 4/3, and the fourth

from ∥A∗z∥`∞ ≤ λ/4. Inequality (2.5.15) establishes the claim.

Lemma 2.5.5

∣⟨hT , sgn(xT )⟩∣ ≤ Csλ +
7

12
∥hT c∥`1 +

1

2λ
∥Ah∥2

`2 . (2.5.17)

Proof Let v be the inexact dual vector, and decompose ⟨hT , sgn(xT )⟩ as

∣⟨hT , sgn(xT )⟩∣ ≤ ∣⟨hT , sgn(xT ) − vT ⟩∣ + ∣⟨hT , vT ⟩∣

≤ ∣⟨hT , sgn(xT ) − vT ⟩∣ + ∣⟨h, v⟩∣ + ∣⟨hT c , vT c⟩∣. (2.5.18)

First,

∣⟨hT , sgn(xT ) − vT ⟩∣ ≤ ∥hT ∥`2∥sgn(xT ) − vT ∥`2 ≤ 1
4
∥hT ∥`2 .

Now

∥hT ∥`2 ≤ ∥(A∗
TAT )−1∥ ∥A∗

TAThT ∥`2 ≤
4

3
∥A∗

TAThT ∥`2

≤ 4

3
∥A∗

TAh∥`2 +
4

3
∥A∗

TAT chT c∥`2

≤ 4

3

√
s∥A∗

TAh∥`∞ + 4

3
∥hT c∥`1 max

j∈T c
∥A∗

TA{j}∥`2

≤ 5

3

√
sλ + 4

3
∥hT c∥`1 , (2.5.19)
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where the last line follows from Lemma 2.5.1 and (2.4.2). Second, it follows from the definition of v

that

∣⟨hT c , vT c⟩∣ ≤ ∥hT c∥`1∥vT c∥`∞ ≤ 1
4
∥hT c∥`1 .

Hence, we established

∣⟨hT , sgn(xT )⟩∣ ≤
5

12

√
sλ + 7

12
∥hT c∥`1 + ∣⟨h, v⟩∣. (2.5.20)

Third, we bound ∣⟨h, v⟩∣ by Lemma 2.5.6 below. With the notation of this lemma,

∣⟨h, v⟩∣ = ∣⟨h,A∗w⟩∣ = ∣⟨Ah,w⟩∣ ≤ ∥Ah∥`2∥w∥`2 ≤ C0

√
s∥Ah∥`2

for some C0 > 0. Since

∥Ah∥`2
√
s ≤

∥Ah∥2
`2

2C0λ
+ C0sλ

2
,

it follows that

∣⟨h, v⟩∣ ≤ C
2
0

2
sλ + 1

2λ
∥Ah∥2

`2 . (2.5.21)

Plugging this into (2.5.20) finishes the proof.

Lemma 2.5.6 The inexact dual certificate from Section 2.4 is of the form v = A∗w where ∥w∥`2 ≤
C0

√
s for some positive numerical constant C0.

Proof For notational simplicity, assume without loss of generality that the first ` batches of rows

were those used in constructing the dual vector v (none were thrown out) so that

v =
`

∑
i=1

m

mi
A∗
iAi,T qi−1.

Hence, v = A∗w with w∗ = (w∗
1 , . . . ,w

∗
` ,0, . . . ,0) and wi ∶= m

mi
Ai,T qi−1 so that ∥w∥2

`2
= ∑`i=1 ∥wi∥2

`2
.

We have

m
mi

∥Ai,T qi−1∥2
`2 = ⟨ m

mi
A∗
i,TAi,T qi−1, qi−1⟩

= ⟨( m
mi
A∗
i,TAi,T − I)qi−1, qi−1⟩ + ∥qi−1∥2

`2

≤ ∥qi∥`2∥qi−1∥`2 + ∥qi−1∥2
`2

≤ 2∥qi−1∥2
`2

≤ 2s
i−1

∏
j=1

c2j . (2.5.22)

It follows that

∥w∥2
`2 ≤ 2s ⋅

`

∑
i=1

m

mi

i−1

∏
j=1

c2j .
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Assume that m ≤ C(1 + β)µs logn so that m is just large enough to satisfy the requirements of

Theorem 2.1.2 (up to a constant). Then recall that mi ≥ C(1 + β)µsc−2
i ⇒ m

mi
≤ Cc2i logn. (If m is

much larger, rescale each mi proportionally to achieve the same ratio.) This gives

∥w∥2
`2 ≤ Cs logn

`

∑
i=1

i

∏
j=1

c2j ≤ Cs
`

∑
i=1

i

∏
j=2

c2j

since c1 = (2
√

logn)−1. For i ≥ 1, ∏ij=2 4−(i−1) and the conclusion follows.

2.5.3 Proof of Theorem 2.1.3

Proof Fix s and T as in Section 2.5.1 and assume that (i)–(iv) hold. The proof parallels that for

the LASSO; this is why we only sketch the important points and reuse the earlier techniques with

minimal extra explanation. We shall repeatedly use the inequality

ab ≤ ca2/2 + b2/(2c), (2.5.23)

which holds for positive scalars a, b, c. Our first intermediate result is analogous to Lemma 2.5.2.

Lemma 2.5.7 The error h = x̂ − x obeys

∥hT c∥`1 ≤ C(sλ + ∥xT c∥`1 +
√
s∥Ah∥`2).

Proof Since x is feasible, ∥x̂∥`1 ≤ ∥x∥`1 and it follows from Lemma 2.5.3 that

∥hT c∥`1 ≤ −⟨hT , sgn(xT )⟩ + 2∥xT c∥`1 . (2.5.24)

We bound ∣⟨hT , sgn(xT )⟩∣ in exactly the same way as before, but omitting the last step, and obtain

∣⟨hT , sgn(xT )⟩∣ ≤ Csλ +
7

12
∥hT c∥`1 +C

√
s∥Ah∥`2 .

This concludes the proof.

The remainder of this section proves Theorem 2.1.3. Observe that ∥A∗Ah∥`∞ ≤ 5
4
λ (Lemma

2.5.1) since the proof is identical (we do not even need to consider subgradients). Partitioning the

indices as before, one can repeat the earlier argument leading to (2.5.12). Then combining (2.5.12)

with Lemma 2.5.7 gives

∥hT̄1
∥`2 ≤ C

√
sλ +Cr−1/2(sλ + ∥xT c∥`1 +

√
s∥Ah∥`2). (2.5.25)
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The term proportional to
√
s/r∥Ah∥`2 in the right-hand side was not present before, and we must

develop an upper bound for it. Write

∥Ah∥2
`2 = ⟨A∗Ah,h⟩ ≤ ∥A∗Ah∥`∞∥h∥`1 ≤

5

4
λ(∥hT ∥`1 + ∥hT c∥`1)

and note that (2.5.24) gives

∥hT c∥`1 ≤ ∥hT ∥`1 + 2∥xT c∥`1 .

These last two inequalities yield ∥Ah∥2
`2

≤ 5
2
λ(∥hT ∥`1 + ∥xT c∥`1), and since

√
λ∥xT c∥`1 ≤ 1

2
λ
√
s +

1
2
√
s
∥xT c∥`1 because of (2.5.23), we have

∥Ah∥`2 ≤
√

5
2
λ(

√
∥hT ∥`1 +

√
∥xT c∥`1) ≤

√
5
2
(
√
λ∥hT ∥`1 + 1

2
λ
√
s + 1

2
√
s
∥xT c∥`1).

In short,

∥hT̄1
∥`2 ≤ C(

√
sλ + r−1/2(sλ + ∥xT c∥`1 +

√
sλ∥hT ∥`1)).

The extra term on the right-hand side has been transmuted into C
√
s
r
λ∥hT ∥`1 , which may be

bounded via (2.5.23) as

C

√
s

r
λ∥hT ∥`1 ≤ C2 s

r

√
sλ + 1

2
√
s
∥hT ∥`1 ≤ C2 s

r

√
sλ + 1

2
∥hT ∥`2 .

Since ∥hT ∥`2 ≤ ∥hT̄1
∥`2 , we have

∥hT̄1
∥`2 ≤ C (1 +

√
s

r
+ s
r
)
√
sλ +C ∥xT c∥`1√

r
.

The remaining steps are the same as those in the proof for the LASSO.

2.6 Proof of Theorem 2.3.7 (the weak RIP)

Our proof uses some the results and techniques of [133] and [135]. Recall that A is a matrix with

rows drawn independently from a probability distribution F obeying the isotropy and incoherence

conditions, and that we wish to show that for any fixed 0 ≤ δ < 1,

(1 − δ)∥v∥2
`2 ≤ ∥Av∥2

`2 ≤ (1 + δ)∥v∥2
`2 .
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These inequalities should hold with high probability, uniformly over all vectors v obeying supp(v) ⊂
T ∪R where T is fixed, R may vary, and

∣T ∣ ≤ c m

µ logm
, ∣R∣ ≤ c m

µ logn logm log2(∣R∣µ)

⇔ m ≥ C ∣T ∣µ log(∣T ∣µ), m ≥ C ∣R∣ logn log(rµ logn) log2(∣R∣µ).

To express this in another way, set

X ∶= sup
v∈V

∣∥Av∥2
`2 − ∥v∥2

`2 ∣,

where

V = {v ∶ ∥v∥`2 = 1, supp(v) ⊂ T ∪R, ∣R∣ ≤ r, T ∩R = ∅}. (2.6.1)

In words, v is a unit-normed vector supported on T ∪ R where T is fixed of cardinality s ≤
cm/(µ logm), and R is any set disjoint from T of cardinality at most r ≤ cm/(µ logn logm log2(rµ)).
We wish to show that X ≤ δ with high probability. We will first bound this random variable in ex-

pectation and then show that it is unlikely to be much larger than its expectation. The bound in

expectation is contained in the following lemma.

Lemma 2.6.1 Fix ε > 0. Suppose m ≥ C µ [s logm ∨ r logn logm log2(rµ)], where C is a constant

only depending on ε. Then

EX ≤ ε.

To begin the proof, note that for any v with supp(v) ⊂ T ∪R, we have

∥Av∥2
`2 = ∥AT vT ∥2

`2 + ∥ARvR∥2
`2 + 2⟨vT ,A∗

TARvR⟩.

The first two terms are easily dealt with using prior results. To be sure, under the conditions of

Lemma 2.6.1, a slight modification of the proof of Theorem 3.4 in [135] gives3

E sup
vR∶∣R∣≤r

∣∥ARvR∥2
`2 − ∥vR∥2

`2 ∣ ≤
ε

4
∥vR∥2

`2 . (2.6.2)

Next, it follows from [134], or the matrix Bernstein inequality in Estimate 1, that

E sup
vT

∣∥AT vT ∥2
`2 − ∥vT ∥2

`2 ∣ ≤
ε

4
∥vT ∥2

`2 . (2.6.3)

3Rudelson and Vershynin consider a slightly different model but the proof in [135] extends to our model with
hardly any adjustments.
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Thus, to prove Lemma 2.6.1, it suffices to prove that

Emax
R

∥A∗
RAT ∥ ≤ ε/4.

This is the content of the following theorem.

Theorem 2.6.2 Under the assumptions of Lemma 2.6.1, we have

Emax
R

∥A∗
RAT ∥ ≤ C

⎛
⎝

√
sµ logm

m
+
√

rµ logn logm log2(rµ)
m

⎞
⎠
. (2.6.4)

Put differently, the theorem develops a bound on

E max
(x,y)∈BT×D

1

m

m

∑
i=1

⟨ai, x⟩⟨ai, y⟩ (2.6.5)

in which

BT ∶= {x ∶ ∥x∥`2 ≤ 1, supp(x) ⊂ T},

D ∶= {y ∶ ∥y∥`2 ≤ 1, supp(y) ∩ T = ∅, ∣ supp(y)∣ ≤ r}.

By symmetrization followed by a comparison principle—both of which follow by Jensen’s inequality

(see [100, Lemma 6.3] followed by [100, inequality (4.8)])—(2.6.5) is less or equal to a numerical

constant times

E max
(x,y)∈BT×D

1

m

m

∑
i=1

gi⟨ai, x⟩⟨ai, y⟩,

where the gi’s are independent N (0,1) random variables. The main estimate is a bound on the

conditional expectation of the right-hand side; that is, holding the vectors ai fixed.

Lemma 2.6.3 (Main lemma) Fix vectors {ai}mi=1 and let

R1 ∶= max
x∈BT

1

m

m

∑
i=1

⟨ai, x⟩2, R2 ∶= max
y∈D

1

m

m

∑
i=1

⟨ai, y⟩2.

Suppose m ≥ C µ [s logm ∨ r logn logm log2(rµ)].
Then

E max
(x,y)∈BT×D

1

m

m

∑
i=1

gi⟨ai, x⟩⟨ai, y⟩ ≤ C
⎛
⎝

√
(1 +R2)(1 +R1)sµ logm

m
+
√

(1 +R1)rµ logn logm log2(rµ)
m

⎞
⎠
.

Proof [Theorem 2.6.2] We have
√

(1 +R2)(1 +R1) ≤ 1
2
(2 +R1 +R2). Now, under the assumptions

of the theorem, it follows from the results in [135] that ER2 ≤ C. Likewise, the results in [134] and

give ER1 ≤ C, and thus E
√

1 +R1 ≤ C. (These inequalities were also noted, in a different form, in
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(2.6.3) and (2.6.2)). Hence, Lemma 2.6.3 implies

Emax
R

∥A∗
RAT ∥ ≤ C

⎛
⎝

√
sµ logm

m
+
√

rµ logn logm log2(rµ)
m

⎞
⎠

where the expectation is taken over the randomly selected rows {a∗i }.

2.6.1 Proof of Lemma 2.6.3

We need to develop a bound about the expected maximum of a Gaussian process, namely,

E max
(x,y)∈BT×D

F (x, y),

where

F (x, y) ∶=
m

∑
i=1

gi⟨ai, x⟩⟨ai, y⟩.

We shall do this by means of a certain version of the majorizing measure theorem, which may be

found in [133] and is attributed to Talagrand. It is derived as a combination of a majorizing measure

construction of Talagrand (combine Theorem 4.1 with Propositions 2.3 and 4.4 in [145]) and the

majorizing measure theorem of Fernique [100].

From now on, (M,d) is a metric space and B(t, ε) is the ball of center t and radius ε under the

metric d.

Theorem 2.6.4 (Majorizing measure theorem) Let (Xt)t∈M be a collection of zero-mean ran-

dom variables obeying the subgaussian tail estimate

P(∣Xt −Xt′ ∣ > u) ≤ exp(−c u2

d2(t, t′)) , (2.6.6)

for all u > 0. Fix ρ > 1 and let k0 be an integer so that the diameter of M is less than ρ−k0 .

Suppose there exist σ > 0 and a sequence of functions {ϕk}∞k=k0 , ϕk ∶M → R
+, with the following two

properties: 1) the sequence is uniformly bounded by a constant depending only on ρ; 2) for each k

and for any t ∈M and any points t1,⋯, tÑ ∈ B(t, ρ−k) with mutual distances at least ρ−k−1, we have

max
j=1,⋯,Ñ

ϕk+2(tj) ≥ ϕk(s) + σρ−k
√

log Ñ . (2.6.7)

Then

E sup
t∈M

Xt ≤ C(ρ) ⋅ σ−1. (2.6.8)

To apply this theorem, we begin by bounding the variance between increments in order to
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ascertain the metric we need to use (the induced metric). We compute

d((x, y), (x′, y′)) ∶=
√

Var(F (x, y) − F (x′, y′))

=
¿
ÁÁÀ

m

∑
i=1

(⟨ai, x⟩⟨ai, y⟩ − ⟨ai, x′⟩⟨ai, y′⟩)
2

Before continuing, we record two useful lemmas for bounding Ñ . Here and below, N(M,d, ε) is

the covering number of M in the metric d with balls of radius ε.

Lemma 2.6.5 (Packing number bound) Let t1, t2,⋯, tÑ ∈M be points with mutual distances at

least 2ε under the metric d. Then

Ñ ≤ N(M,d, ε).

This is a standard result proved by creating an injective mapping from the points {tj} to those in

the cover set (map each tj to the nearest point in the cover).

The next lemma is a standard tool used to obtain bounds on covering numbers, see [122] and [20]

for a more general statement.

Lemma 2.6.6 (Dual Sudakov minorization) Let B`2 be the unit `2 ball in R
d, and let ∥⋅∥ be a

norm. Let z ∈ Rd be a Gaussian vector with independent N (0,1) entries. Then there is a numerical

constant C > 0 such that
√

logN(B`2 , ∥⋅∥ , ε) ≤
C

ε

√
E ∥z∥2

.

We now invoke the majorizing measure theorem to prove Lemma 2.6.3. We start by bounding the

diameter of BT ×D under the metric d. By Cauchy-Schwarz, for any y ∈D, we have ∣⟨ai, y⟩∣ ≤
√
rµ.

This may be used to derive the following bound on the diameter.

d((x, y), (x′, y′)) ≤ 2
√

2rµmR1.

Thus set k0 to be the largest integer such that

ρ−k0 ≥ 2
√

2rµmR1.

We also set k1—whose meaning will become apparent in a moment—to be the largest integer such

that

ρ−k1 ≥ 2
√

2mR1

We now define ϕk on coarse and fine scales. In what follows, we may take ρ = 8 so that C(ρ)
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(2.6.8) is an absolute constant.

Coarse scales: for k = k0, k0 + 1, . . . , k1 − 1,

ϕk(x, y) ∶= min{∥u∥2
`2 ∶ (u, v) ∈ B((x, y),2ρ−k)} + k − k0

log(rµ) .

Fine scales: for k ≥ k1, ϕk is a constant function given by

ϕk(x) ∶= 3ρσ∫
ρ−k1

ρ−k

√
logN(BT ×D,d, ε)dε + 2.

Last, set

σ−1 ∶= C
√
m (

√
(1 +R2)(1 +R1)sµ logm +

√
(1 +R1)rµ logn logm log2 r) .

Our definition of ϕk is closely related to—and inspired by—the functions defined in [133]. We

need to show that these functions are uniformly bounded and obey (2.6.7) for all k. We begin by

verifying these properties for fine scale elements as this is the less subtle calculation.

2.6.2 Fine scale: k ≥ k1

To show that (2.6.7) holds, observe that,

ϕk+2 − ϕk = 3σρ∫
ρ−k

ρ−(k+2)

√
logN(BT ×D,d, ε)dε

≥ 3σρ∫
1
2ρ

−(k+1)

ρ−(k+2)

√
logN(BT ×D,d, ε)dε

≥ 3σρ(1

2
ρ−(k+1) − ρ−(k+2))

√
logN(BT ×D,d,

1

2
ρ−(k+1))

≥ σρ−k
√

log Ñ .

The last line follows from ρ ≥ 6 and the packing number bound (Lemma 2.6.5). Note that this same

calculation holds when k = k1 − 1, k1 − 2 because for k ≤ k1 − 1, ϕk ≤ 3 (see Section 2.6.3).

We now show that ϕk is bounded. Since

ϕk ≤ 3ρσ∫
ρ−k1

0

√
logN(BT ×D,d, ε)dε + 3 ≤ 3ρσ∫

ρ
√

8mR1

0

√
logN(BT ×D,d, ε)dε + 3 (2.6.9)

it suffices to show that the right-hand side is bounded. This follows from crude upper bounds on
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the covering number. Indeed, observe that

d((x, y), (x′, y′)) ≤
¿
ÁÁÀ2

m

∑
i=1

⟨ai, x − x′⟩2⟨ai, y⟩2 +
¿
ÁÁÀ2

m

∑
i=1

⟨ai, x′⟩2⟨ai, y − y′⟩2

≤
√

2mR2 max
1≤i≤m

∣⟨ai, x − x′⟩∣ +
√

2mR1 max
1≤i≤m

∣⟨ai, y − y′⟩∣

≤
√

2mR2sµ∥x − x′∥`2 +
√

2mR1rµ∥y − y′∥`2

≤m3/2∥x − x′∥`2 +m3/2∥y − y′∥`2 .

Thus,

N(BT ×D,d, ε) ≤ N (B, ∥ ⋅ ∥`2 ,
ε

m3/2
) ⋅N (D, ∥ ⋅ ∥`2 ,

ε

m3/2
)

≤ (2m3/2

ε
)
s

⋅ (n
r
)(2m3/2

ε
)
r

.

The second line comes from the standard volumetric estimate N(B, ∥ ⋅ ∥`2 , ε) ≤ ( 3
ε
)s for ε ≤ 1. The

factor (n
r
) arises from decomposing D as the union of (n−s

r
) ≤ (n

r
) sets of the same form as BT ,

but with support size bounded by r. Now, in order to bound the last inequality, we further write

(n
r
) ≤ nr. Plugging this in, we obtain

√
logN(BT ×D,d, ε) ≤ C(

√
s log(m/ε) +

√
r log(mn/ε)).

To conclude, bounding the integration gives

∫
√

8R1m

0

√
s log(m/ε) +

√
r log(mn/ε)dε ≤ C

√
8R1ms(

√
log(m) + 1) +

√
8R1mr(

√
log(mn) + 1),

which establishes the claim since the right-hand side is dominated by σ−1.

2.6.3 Coarse scale: k ≤ 0

This section contains the crucial estimates, which must be developed very carefully. To show that

ϕk is bounded, observe that by definition, ρk1−1−k0 ≤ √
rµ, and thus (k1 − 1 − k0) ≤ 1

2
log(rµ). It

follows that ϕk ≤ 2.

Next, we show that the more subtle bound (2.6.7) holds. Let {(xi, yi)} be the points in the

definition of the majorizing measure theorem with mutual distances at least ρ−k−1, so that Ñ =
∣{(xi, yi)}∣. Let (zx, vx) be the point of B((x, y), ρ−k) which minimizes the value of ∥zx∥2

`2
. Let

(zj , vj) be the similar points of B((xi, yi), ρ−k−2). Finally, introduce the pivotal quantity

θ ∶= max
1≤j≤Ñ

∥zj∥2
`2 − ∥zx∥2

`2 .



47

We must show that

ρ−kσ
√

log Ñ ≤ max
1≤j≤Ñ

ϕk+2(xj , yj) − ϕk(x, y) = θ + 2/ log(rµ).

In order to bound Ñ , we consider the points {zj , vj} and note that Ñ = ∣{zj , vj}∣.
We shall need two key properties of the points {zj , vj}. First, these points are well separated.

Indeed, the triangle inequality, gives for i ≠ j

d((zi, vi), (zj , vj)) ≥ d((xi, yi), (xj , yj)) − d((xi, yi), (zi, vi)) − d((xj , yj), (zj , vj))

≥ ρ−k−1 − 4ρ−k−2

≥ 1

2
ρ−k−1

provided that ρ ≥ 8. Second, each point (zj , vj) is close to (x, y) in the sense that

d((x, y), (zj , vj)) ≤ d((x, y), (xj , yj)) + d((xj , yj), (zj , vj)) ≤ ρ−k + 2ρ−k−2 ≤ 2ρ−k

provided that ρ ≥ 2. In other words (zj , vj) ∈ B((x, y),2ρ−k), and thus ∥zj∥`2 ≥ ∥zx∥`2 .

Now, the benefit of the special construction of ϕk on the coarse scale is that the size of θ

restricts the space that {zj} can inhabit. To demonstrate this, since B((x, y),2ρ−k) is convex,

( zx+zj
2

,
vx+vj

2
) ∈ B((x, y),2ρ−k). Now combine ∥ zx+zj

2
∥`2 ≥ ∥zx∥`2 with ∥zj∥`2 ≥ ∥zx∥`2 to give

∥zj − zx
2

∥2
`2 =

1

2
∥zj∥2

`2 +
1

2
∥zx∥2

`2 − ∥zj + zx
2

∥2
`2 ≤ ∥zj∥2

`2 − ∥zx∥2
`2 ≤ θ.

Hence,

∥zj − zx∥`2 ≤ 2
√
θ.

Combined with Lemma 2.6.5, we obtain

Ñ ≤ N(BT (zx,2
√
θ) ×D,d, ρ−k−1/4), (2.6.10)

where BT (zx,2
√
θ) ∶= {x ∶ supp(x) ⊂ T, ∥x∥`2 ≤ 1, ∥x − zx∥`2 ≤ 2

√
θ}.

We now bound the metric, d, but we will do so more carefully than in the fine scale. We have

d((x, y), (x′, y′)) ≤ d((x, y), (x′, y)) + d((x′, y), (x′, y′))

≤ ∥x − x′∥y +
√
mR1∥y − y′∥X
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where

● ∥y∥X ∶= max
1≤i≤m

∣⟨ai, x⟩∣

● ∥x∥y ∶=
¿
ÁÁÀ

m

∑
i=1

⟨ai, x⟩2⟨ai, y⟩2

Note that the norm ∥ ⋅∥y varies with y. Also note that they may be pseudonorms, but this makes

no difference to the proof. All of the utilized lemmas and theorems generalize to pseudonorms.

We cover BT (u,2
√
θ)×DS to precision ε by covering DS to precision ε/2 under the norm

√
mR1∥⋅

∥X , and then, for each y contained in this cover, we cover BT (u,2
√
θ) to precision ε/2 under the

norm ∥ ⋅ ∥y.

Thus,

√
log Ñ ≤

√
logN(DS ,

√
mR1, ∥ ⋅ ∥X , ε/2) + max

y′∈DS

√
logN(BT (u,2

√
θ), ∥ ⋅ ∥y, ε/2)

∶=K1 +max
y∈D

K2(y) (2.6.11)

Using Lemma 3.7 from [135] (which follows from an argument of [45]) gives

K1 ≤ C
√
mR1rµ logn logmρk (2.6.12)

(We do not reproduce the proof of this lemma here, but encourage the interested reader to explore

the extremely clever, short, arguments used).

Now we bound K2(y). For y fixed, using dual Sudakov minorization (Lemma 2.6.6) and Jensen’s

inequality, we have

K2(y) ≤ C
√
θ

ε

¿
ÁÁÀE

m

∑
i=1

⟨ai, zT ⟩2⟨ai, y⟩2 (2.6.13)

where z is a guassian vector with standard normal entries. Note that E⟨ai, zT ⟩2 = ∥ai,T ∥2
`2
≤ sµ, and

thus

K2(y) ≤ C
√
θ

ε

√
µsmR2 ≤ C

√
µsmR2ρ

k
√
θ. (2.6.14)

Plug in the covering number bounds (i.e., plug in (2.6.12) and (2.6.14) into (2.6.11)) to give

√
log Ñ ≤ C(

√
mR1ru logn logmρk +

√
µsmR2ρ

k
√
θ).

Now, plug in
√
θ ≤ θ

√
log(rµ) + 1/

√
log(rµ), along with the definition of σ, to give

ρ−kσ
√

log Ñ ≤ 2

log(rµ) + θ
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as desired, thus proving Theorem 2.6.2.

2.6.4 Concentration around the mean

We have now proved that EX ≤ ε for any ε > 0 provided thatm ≥ Cε µ [s logm∨r logn logm log2(rµ)].
This already shows that for any fixed δ > 0,

P(X > δ) ≤ ε
δ

and so taking ε to be a small fraction of δ gives a first crude bound. However, we wish to show

that if m ≥ Cµβ [s logm ∨ r logn logm log2(rµ)] then the probability of ‘failure’ decreases as e−β .

This can be proved using a theorem of [135] which in turn is a combination of Theorem 6.17 and

inequality (6.19) of [100]. We restate this theorem below.

Theorem 2.6.7 Let Y1,⋯, Ym be independent symmetric random variables taking values in some

Banach space. Assume that ∥Yj∥ ≤ R for all j and for some norm ∥⋅∥. Then for any integer ` ≥ q,
and any t > 0, the random variable

Z ∶=
XXXXXXXXXXX

m

∑
j=1

Yj

XXXXXXXXXXX
obeys

P(Z ≥ 8q EZ + 2R` + t) ≤ (C
q
)
`

+ 2 exp(− t2

256q(EZ)2
) .

In our setup, we work with a norm on positive semidefinite matrices given by

∥M∥ ∶= sup
v∈V

v∗Mv,

where V is given by (2.6.1). The rest of the details of the proof of concentration around the mean

follows exactly as in the steps of [135, pages 11–12] and so we do not repeat them, but encourage

the interested reader to check [135]. This is the final step in proving Theorem 2.3.7.

2.7 Stochastic Incoherence

In Sections 2–4, we have assumed that the coherence bound holds deterministically, and it is now

time to prove our more general statement; that is to say, we need to extend the proof to the case

where it holds stochastically. We propose a simple strategy: condition on the (likely) event that each

row has ‘small’ entries, as to recreate the case of deterministic coherence (on this event). Outside of

this event, we give no guarantees, but this is of little consequence because we will require the event

to hold with probability at least 1−1/n. A difficulty arises because the conditional distribution of the

rows no longer obeys the isotropy condition (although the rows are still independent). Fortunately,
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this conditional distribution obeys a near isotropy condition, and all of our results can be reproved

using this condition instead. In particular, all of our theorems follow (with adjustments to the

absolute constants involved) from the following two conditions on the distribution of the rows:

∥Eaa∗ − I∥ ≤ 1/(8√n) (near isotropy)

max1≤t≤n ∥a[t]∥2
`2

≤ µ (deterministic coherence).
(2.7.1)

We first illustrate how to use near isotropy to prove our results. There are several results that need

to be reproved, but they are all adjusted using the same principle, so to save space we just prove

that a slight variation on Lemma 2.3.1 still holds when requiring near isotropy, and leave the rest

of the analogous calculations to the interested reader.

Set W ∶= Eaa∗ and let WT,T be the restriction of W to rows and columns in T . We first show

that

P(∥A∗
TAT −WT,T ∥ ≥ δ) ≤ 2s exp(− m

µ(s + 1)
δ2

2 + 2δ/3) . (2.7.2)

To prove this bound, we use the matrix Bernstein inequality of Section 2.3.1, and also follow the

framework of the calculations of Section 2.3.1. Thus, we skim the steps. To begin, decompose

A∗
TAT −WT,T as follows:

m(A∗
TAT −WT,T ) =

m

∑
k=1

(ak,Ta∗k,T −WT,T ) ∶=
m

∑
k=1

Xk.

We have EXk = 0 and ∥Xk∥ ≤ ∥ak,Ta∗k,T − I∥+ ∥I −WT,T ∥ ≤ sµ+ 1
8
√
n
≤ (s+ 1)µ ∶= B. Also, the total

variance obeys

∥EXk∥2 ≤ ∥E(ak,Ta∗k,T )2∥ ≤ sµ ∥Eak,Ta∗k,T ∥ = sµ ∥WT,T ∥ ≤ sµ(1 + 1
8
√
n
) ≤ (s + 1)µ.

Thus, σ2 ≤m(s + 1)µ, and (2.7.2) follows from the matrix Bernstein inequality.

Now, it follows from ∥WT,T − I∥ ≤ ∥W − I∥ ≤ 1
8
√
n

that

P(∥A∗
TAT − I∥ ≥ 1

8
√
n
+ δ) ≤ 2s exp(− m

µ(s + 1)
δ2

2 + 2δ/3) .

In the course of the proofs of Theorems 2.1.1 and 2.1.2 we require ∥A∗
TAT − I∥ ≤ 1/2 for noiseless

results and ∥A∗
TAT − I∥ ≤ 1/4 for noisy results. This can be achieved under the near isotropy

condition by increasing the required number of measurements by a tiny bit. In fact, when proving

the analogous version of Lemma 2.3.1, one could weaken the near isotropy condition and instead

require ∥Eaa∗ − I∥ ≤ 1/8, for example. However, in extending some of the other calculations to

work with the near isometry condition—such as (2.4.10)—the factor of
√
n (or at least

√
s) in the

denominator appears necessary; this seems to be an artifact of the method of proof, namely, the
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golfing scheme. It is our conjecture that all of our results could be established with the weaker

requirement ∥Eaa∗ − I∥ ≤ ε for some fixed positive constant ε.

We now describe the details concerning the conditioning on rows having small entries. Fix the

coherence bound µ and let

Ek = {max
1≤t≤n

∣ak[t]∣2 ≤ µ} and G = ∩1≤k≤m Ek.

Thus G is the ‘good’ event (G is for good) on which max1≤t≤n ∣ak[t]∣2 ≤ µ for all k. By the union

bound, P(Gc) ≤mP(Ec1). We wish for P(Gc) to be bounded by 1/n, and so we require µ to be large

enough so that P(Ec1) ≤ (mn)−1.

Next we describe how conditioning on the event G induces the near isometry condition. Because

of the independence of the rows of A, we may just consider the conditional distribution of a1 given

E1. Drop the subindex for simplicity and write

I = E[aa∗] = E[aa∗1E] + E[aa∗1Ec] = E[aa∗∣E]P(E) + E[aa∗1Ec].

Thus,

∥E[aa∗∣E] − I∥ ⋅ P(E) = ∥(1 − P(E))I − E[aa∗1Ec]∥ ≤ P(Ec) + ∥E[aa∗1Ec]∥ . (2.7.3)

We now bound ∥E[aa∗1Ec]∥. By Jensen’s inequality (which is a crude, but still fruitful, bound here),

∥E[aa∗1Ec]∥ ≤ E[∥aa∗1Ec∥] = E[∥a∥2
`21E

c], (2.7.4)

and, therefore,

∥E[aa∗∣E] − I∥ ≤ 1

1 − P(Ec)
(P(Ec) + E[∥a∥2

`21E
c]) .

Combine this with the requirement that P(Ec) ≤ (mn)−1 to give

∥E[aa∗∣E] − I∥ ≤ 19

20
( 1

20
√
n
+ E[∥a∥2

`21E
c])

as long as m
√
n ≥ 20. It now follows that in order to ensure near isotropy, it is sufficient that

E[∥a∥2
`21E

c] ≤ 1

20
√
n
.

It may be helpful to note a simple way to bound the left-hand side above. If f(t) is such that

P(max
1≤t≤n

∣a[t]∣2 ≥ t) ≤ f(t),
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then a straightforward calculation shows that

E[∥a∥2
`21E

c] ≤ nµf(µ) + n∫
∞

µ
f(t)dt.

2.8 Discussion

This chapter developed a general and accessible theory of compressive sensing, in which sensing

vectors are drawn independently at random from a probability distribution. In addition to estab-

lishing a general framework, we showed that nearly sparse signals could be accurately recovered

from a small number of noisy compressive samples by means of tractable convex optimization. For

example, s-sparse signals can be recovered accurately from about s logn DFT coefficients corrupted

by noise. Our analysis shows that stable recovery is possible from a minimal number of samples,

and improves on previously known results. This improvement comes from novel stability arguments,

which do not require the restricted isometry property to hold.

We have seen that the isotropy condition is not really necessary, and it would be interesting to

know the extent in which it can be relaxed. In particular, for which values of α and β obeying

αI ⪯ Eaa∗ ⪯ βI would our results continue to hold? Also, we have assumed that the sensing vectors

are sampled independently at random, and although the main idea in compressive sensing is to use

randomness as a sensing mechanism, it would be interesting to know how the results would change

if one were to introduce some correlations.
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Chapter 3

Sparse approximation and model
selection

3.1 Introduction

One of the most common problems in statistics is to estimate a mean response Xβ from the data

y = (y1, y2, . . . , yn) and the linear model

y =Xβ + σz, (3.1.1)

where X is an n× p matrix of explanatory variables, β is a p-dimensional parameter of interest, and

z ∼ N (0, I) is a Gaussian error term. (Gaussian errors are chosen for simplicity, but our results and

methods can easily accommodate other types of distributions.) We measure the performance of any

estimator Xβ̂ with the usual squared Euclidean distance ∥Xβ −Xβ̂∥2
`2

, or with the mean-squared

error which is simply the expected value of this quantity.

In this chapter and although this is not a restriction, we are primarily interested in situations

in which there are as many or more explanatory variables than observations—the so-called and now

widely popular ‘p > n’ setup. In such circumstances, however, it is often the case that a relatively

small number of variables have substantial explanatory power so that to achieve accurate estimation,

one needs to select the ‘right’ variables and determine which components βi are not equal to zero.

A standard approach is to find β̂ by solving

min
b∈Rp

1

2
∥y −Xb∥2

`2 + λ0 σ
2 ∥b∥`0 , (3.1.2)

where ∥b∥`0 is the number of nonzero components in b. In other words, the estimator (3.1.2) achieves

the best trade-off between the goodness of fit and the complexity of the model—here the number of

variables included in the model. Popular selection procedures such as AIC, Cp, BIC, and RIC are all

of this form with different values of the parameter: λ0 = 1 in AIC [4,106], λ0 = 1
2

logn in BIC [139],
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and λ0 = log p in RIC [77]. It is known that these methods perform well both empirically and

theoretically, see [77] and [12, 18] and the many references therein. Having said this, the problem

of course is that these ‘canonical selection procedures’ are highly impractical. Solving (3.1.2) is

in general NP-hard [112] and to the best of our knowledge, requires exhaustive searches over all

subsets of columns of X, a procedure which clearly is combinatorial in nature and has exponential

complexity, since for p of size about n there are about 2p such subsets.

In recent years, several methods based on `1 minimization have been proposed to overcome this

problem. The most well-known is probably the LASSO [147] (as introduced in Chapter 2), which

replaces the nonconvex `0 norm in (3.1.2) with the convex `1 norm ∥b∥`1 = ∑pi=1 ∣bi∣. The LASSO

estimate β̂ is defined as the solution to

min
b∈Rp

1

2
∥y −Xb∥2

`2 + λσ ∥b∥`1 , (3.1.3)

where λ is a regularization parameter essentially controlling the sparsity (or the complexity) of the

estimated coefficients; see also [136] and [48] for exactly the same proposal. In contrast to (3.1.2),

the optimization problem (3.1.3) is a quadratic program which can be solved efficiently. It is known

that the LASSO performs well in some circumstances. Further, there is also an emerging literature

on its theoretical properties [17,23,24,85,86,108,109,162,167,169] showing that in some special cases,

the LASSO is effective. These important results, as well as many related results on `1 minimization,

are discussed below in Section 3.1.2.

In this chapter, we will show that the LASSO provably works well in a surprisingly broad range of

situations. We establish that under minimal assumptions guaranteeing that the predictor variables

are not highly correlated, the LASSO achieves a squared error which is nearly as good as that one

would obtain if one had an oracle supplying perfect information about which βi’s were nonzero.

Continuing in this direction, we also establish that the LASSO correctly identifies the true model

with very large probability provided that the amplitudes of the nonzero βi are sufficiently large.

3.1.1 The coherence property

Throughout the chapter, we will assume without loss of generality that the matrix X has unit-

normed columns as one can otherwise always rescale the columns. We denote by Xi the ith column

of X (∥Xi∥`2 = 1) and introduce the notion of coherence, which essentially measures the maximum

correlation between unit-normed predictor variables and is defined by

µ(X) = sup
1≤i<j≤p

∣⟨Xi,Xj⟩∣. (3.1.4)
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In words, the coherence is the maximum inner product between any two distinct columns of X. It

follows that if the columns have zero mean, the coherence is just the maximum correlation between

pairs of predictor variables.

We will be interested in problems in which the variables are not highly collinear or redundant.

Definition 3.1.1 (Coherence property) A matrix X is said to obey the coherence property if

µ(X) ≤ A0 ⋅ (log p)−1, (3.1.5)

where A0 is some positive numerical constant.

We will sometimes shorten notation by writing µ for the coherence and leaving the dependence on

X implicit.

A matrix obeying the coherence property is a matrix in which the predictors are not highly

collinear. This is a mild assumption. Suppose X is a Gaussian matrix with i.i.d. entries whose

columns are subsequently normalized. The coherence of X is about
√

(2 log p)/n so that such

matrices trivially obey the coherence property unless n is ridiculously small, i.e., of the order of

(log p)3. We will give other examples of matrices obeying this property later in the chapter, and

will soon contrast this assumption with what is traditionally assumed in the literature.

In order to prove results with this relatively weak requirement on the correlations, we make use

of random matrix theory derived by Tropp in [153]. Tropp also used this theory to prove noiseless

results [152] with the same condition on the correlations.

3.1.2 Background literature

In the last few years, there have been many beautiful works attempting to understand the properties

of the LASSO and other minimum `1 algorithms such as the Dantzig selector when the number of

variables may be larger than the sample size [17,23,24,43,59,85,86,108,109,151,162,167,169]. Some

papers focus on the estimation of the parameter β and on recovering its support, others focus on

estimating Xβ.

Preceding the recent surge in attention, the efficacy of `1 minimization as a method for sparse

approximation and model selection had been treated in the literature for quite some time (see,

e.g., the 1938 work [16]); we could not hope to cover all of the relevant literature here. Instead,

we detail several of the keystone achievements, and the results that set the background for the

material in this chapter. In particular, we mainly restrict our discusssion to theoretical papers that

use coherence-related conditions. This removes from the discussion the many RIP-based results

discussed in chapter 2, whose applicability rests mainly with CS matrices, i.e., matrices that can be

randomly chosen by the scientist. Further, when reviewing noisy results, we concentrate on papers
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that consider the estimation of Xβ and the support of β since this is what is considered in this

chapter.

We begin with an early example in the geophysics literature, which demonstrates that `1 mini-

mization was known to be useful in practice for quite some time. In 1979 Taylor et al. [146] applied

`1 minimization to the problem (3.1.1), in the case when Xβ is the convolution of β with a given

wavelet w. They showed numerically that this recovered sparse signals quite well, while ridge regres-

sion (regularization with an `2 penalty), was shown to smooth out sparse signals, thus losing their

inherent structure. A similar numerical result by Levy–Fullagar [103] demonstrated that a sparse

signal could be reconstructed from subsampled Fourier measurements. Similar numerical results

have been accumulating over the last few decades (see e.g., [47, 48]). In 1986, Santo-Synes [137]

provided some theoretical justification for these empirical results. However, starting around the

year 2000, their has been a spring of new and rigorous theory about `1 minimization.

The main thrust of the theory on `1 minimization began in the noiseless setting, y = Xβ; here

the goal was to recover the sparsest vector β fitting the data, or a good approximation of it. Chen–

Donoho [48] introduced to the signal processing community the now standard `1 recovery procedure

min
b

∥b∥`1 subject to Xb = y. (3.1.6)

This program is called basis pursuit, and may be interpreted as the LASSO in the limit as λ →
0 (assuming that X has full row rank). Its introduction caused a chain reaction of theoretical

publications on model selection and sparse approximation by `1 minimization, leading within a few

years to the invention of CS.

An early paper by Donoho–Xuo [60] considered the case where X is the concatenation of two

orthonormal bases. To state their result, we let s be an upper bound on ∥β∥0. The authors demon-

strated that `1 minimization deterministically succeeds in recovering β whenever s < 1
2
(1+1/µ(X)).

They also demonstrated that under this coherence condition β is the unique sparsest solution to

y =Xb. Elad–Bruckstein [69,70] fine tuned this result by softening the condition on µ and ∥β∥0, as

in the following theorem.

Theorem 3.1.2 Suppose that y =Xβ with ∥β∥0 ≤ s, where X is the concatenation of two orthonor-

mal bases. Let β̂0 be the solution to

min
b

∥b∥0 subject to Xb = y

and let β̂1 be the basis pursuit (3.1.6) solution. Then, if s < 1/µ(X), β̂0 = β. Further, if s <
(
√

2 − .5)/µ(X), then β̂1 = β.

Not surprisingly, there is a gap between where `0 minimization provably succeeds, and where its
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convex relaxation, `1 minimization, succeeds. It may be surprising that this gap is so small. In fact,

both bounds are tight (see [75]), and thus the gap cannot be removed.

These results were extended to concatenations of arbitrary numbers of orthogonal bases by

Gribonval–Nielsen [87]. Shortly afterwards, Donoho–Elad [67] and Fuchs [80] further extended these

results to arbitrary incoherent dictionaries. In this case the requirement given for exact recovery

by `1 minimization was s ≤ 1
2
(1 + 1/µ(X)). Tropp [149] then introduced a general condition which

ensures the efficacy of `1 minimization. Specifically, let T ⊂ {1,2,⋯, p} be the support of β, and

let XT be the matrix X restricted to just the columns indexed by T . Tropp proved the following

theorem.

Theorem 3.1.3 Suppose that y =Xβ and T = supp(β). Let β̂ be the `1 minimizer of (3.1.6). If

max
i∉T

∥(X∗
TXT )−1X∗

TXi∥`1 < 1 (3.1.7)

then β̂ = β.

Further, Tropp showed that the condition s = ∣T ∣ < (1+1/µ(X))/2 implies that (3.1.7) holds, thereby

recovering the incoherence-based results above. In the same paper, Tropp also considered somewhat

weaker conditions; instead of a requirement on the maximum inner product between columns, he gave

conditions for recovery based on sums of multiple inner products; we do not detail this result. We

pause to note that Tropp’s analysis also demonstrated that under the condition (3.1.7) a completely

different sparsity-promoting algorithm also provably recovers β. This algorithm is called orthogonal

matching pursuit [123], and is known as a greedy algorithm, which selects one coefficient at a time

to include in the support set. See [149] for details.

We now move to the noisy model considered in this paper, y = Xβ + z. Basis pursuit (3.1.6) is

somewhat ill-suited for this problem because the constraint y = Xb would generally mean that β is

infeasible. (Nevertheless, in certain cases, strong theoretical results on the ability of the basis pursuit

to approximate a sparse vector from a noisy model do exist [166].) A program that makes more sense,

and has better stability in practice, is the LASSO, introduced by Tibshirani [147] in 1995 (this is

also equivalent to basis pursuit denoising, as introduced by Chen–Donoho [48]). In fact, Tibshirani

credits Breiman [21] for motivating the definition of the LASSO with his own sparsity-inducing

program: the non-negative garotte. Breiman’s program solves

min
c

∥y −X(β̂0 ⋅ c)∥`2 subject to cj ≥ 0, ∥c∥`1 ≤ t

where β̂0 is the least-squares estimate and (β̂0 ⋅ c)j ∶= β̂0
j ⋅ cj , i.e., componentwise multiplication. In

other words, the garotte shrinks the least-squares estimate by factors whose sum is constrained by

t, a parameter which must be chosen by the scientist.
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Returning to the LASSO, Tibshirani [147] demonstrated through numerical simulations, and

analysis of the simple case where X is an orthogonal matrix, that the LASSO tends to promote

sparse solutions. His numerical simulations further showed that the LASSO outperforms both ridge

regression and subset selection when there are a small to moderate number of effects (i.e., when

∥β∥0 is small to moderate). Tibshirani’s inspiring work on the LASSO led to years of study of this

seemingly simple program, with the main goal of demonstrating its theoretical efficacy.

In the last decade, Bunea et al. [22–24] addressed the predictive error of the LASSO in a series

of papers. There are several results here with different assumptions in this string of papers, one of

which matches the coherence-based, p > n discussion. Specifically, [23, Theorem 4.3] demonstrates

similar error bounds to the ones given in this chapter (see Theorem 3.1.6), but under the coherence

condition s < 1
32µ

. Bickel et al. [17] also consider the prediction error of the LASSO, but under the

assumption that the RIP holds. This is a somewhat different model than the one considered in this

chapter. Nevertheless, we note that the RIP is satisfied at sparsity level s as long as s < O(1)/µ, a

condition on the coherence which is now perhaps looking familiar. We also note that this is a tight

bound in the sense that there are matrices with s-sparse vectors in their null space with sµ = O(1).
Next, we would like to point to a work by Tropp [151], which, under the coherence condition

s < µ/2 demonstrated three key properties of the LASSO solution: 1) the support of the large entries

of β are recovered; 2) the support of β̂ is contained in the support of β; and 3) the error in recovery

of β is comparable to the noise level in infinity norm. Further, Tropp noted that the coherence

conditions may be weakened by techniques in Banach space geometry—indeed such techniques led

to the weaker coherence conditions available in this Chapter.

Having a sparsity level substantially smaller than the inverse of the coherence is a common

assumption in the modern literature on the subject, although in some circumstances a few papers

have developed some weaker assumptions. To be a little more specific, [169] reports an asymptotic

result in which the LASSO recovers the exact support of β provided that the strong irrepresentable

condition of Section 3.3.5 holds. The references [108, 162] develop very similar results and use very

similar requirements. The recent paper [93] develops similar results, but requires either a good

initial estimator, or a level of coherence on the order of n−1/2. In [43, 109] the singular values of X

restricted to any subset of size proportional to the sparsity of β must be bounded away from zero

while [17] introduces an extension of this condition. In all these works, a sufficient condition is that

the sparsity be much smaller the inverse of the coherence.

This is a quite strong condition. In fact, as shown in [132] or [144, Theorem 2.3]

µ ≥
√

p − n
n(p − 1) .

It follows that for p ≥ 2n, µ ≥ 1/
√

2n. Thus, in the significantly underdetermined case, these universal
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results based on coherence all require s ≾ √
n (the ‘

√
n bottleneck’).

In contrast, as noted in the previous section Tropp drastically weakened the coherence assumption

in the paper [152]. He did this by considering a statistical model for β, as we do in this chapter.

The main contribution of this chapter is to extend these results to the estimation of Xβ in the noisy

problem.

3.1.3 Sparse model selection

We begin by discussing the intuitive case where the vector β is sparse before extending our results

to a completely general case. The basic question we would like to address here is how well can one

estimate the response Xβ when β happens to have only s nonzero components? Recall that we call

such vectors s-sparse.

First and foremost, we would like to emphasize that in this chapter, we are interested in quanti-

fying the performance one can expect from the LASSO in an overwhelming majority of cases. This

viewpoint needs to be contrasted with an analysis concentrating on the worst case performance;

when the focus is on the worst case scenario, one would study very particular values of the parame-

ter β for which the LASSO does not work well. Our non-universal approach will enable us to show

that one can reliably estimate the mean response Xβ under much weaker conditions than those

required for worst-case analysis.

Our point of view emphasizes the average performance (or the performance one could expect in

a large majority of cases) and we thus need a statistical description of sparse models. To this end,

we consider the generic s-sparse model, defined as follows:

1. The support T ⊂ {1, . . . , p} of the s nonzero coefficients of β is selected uniformly at random.

2. Conditional on T , the signs of the nonzero entries of β are independent and equally likely to

be -1 or 1.

The consideration of random signs is not new (see, e.g., [38]); nor is the consideration of uniformly

random support along with random, mean-zero signs, (see [37,153]).

We make no assumption on the amplitudes. In some sense, this is the simplest statistical model

one could think of; it simply says that that all subsets of a given cardinality are equally likely, and

that the signs of the coefficients are equally likely. In other words, one is not biased towards certain

variables nor do we have any reason to believe a priori whether a given coefficient is positive or

negative.

Our first result is that for most s-sparse vectors β, the LASSO is provably accurate. Throughout,

∥X∥ refers to the operator norm of the matrix A (the largest singular value).
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Theorem 3.1.4 Suppose that X obeys the coherence property and assume that β is taken from the

generic s-sparse model. Suppose that s ≤ c0p/[∥X∥2 log p] for some positive numerical constant c0.

Then the LASSO estimate (3.1.3) computed with λ = 2
√

2 log p obeys

∥Xβ −Xβ̂∥2
`2 ≤ C0 ⋅ (2 log p) ⋅ s ⋅ σ2 (3.1.8)

with probability at least 1−6p−2 log 2−p−1(2π log p)−1/2. The constant C0 may be taken as 8(1+
√

2)2.

For simplicity, we have chosen λ = 2
√

2 log p but one could take any λ of the form λ = (1+a)
√

2 log p

with a > 0. Our proof indicates that as a decreases, the probability with which (3.1.8) holds decreases

but the constant C0 also decreases. Conversely, as a increases, the probability with which (3.1.8)

holds increases but the constant C0 also increases.

Theorem 3.1.4 asserts that one can estimate Xβ with nearly the same accuracy as if one knew

ahead of time which βi’s were nonzero. To see why this is true, suppose that the support T of the

true β was known. In this ideal situation, we would presumably estimate β by regressing y onto the

columns of X with indices in T , and construct

β⋆ = argmin
b∈Rp

∥y −Xb∥2
`2 subject to bi = 0 for all i ∉ T. (3.1.9)

It is a simple to calculation to show that this ideal estimator (it is ideal because we would not know

the set of nonzero coordinates) achieves1

E ∥Xβ −Xβ⋆∥2
`2 = s ⋅ σ

2. (3.1.10)

Hence, one can see that (3.1.8) is optimal up to a factor proportional to log p. It is also known that

one cannot in general hope for a better result; the log factor is the price we need to pay for not

knowing ahead of time which of the predictors are actually included in the model.

The assumptions of our theorem are pretty mild. Roughly speaking, if the predictors are not

too collinear and if s is not too large, then the LASSO works most of the time. An important point

here is that the restriction on the sparsity can be very mild. We give two examples to illustrate our

purpose.

� Random design. Imagine as before that the entries of X are i.i.d. N (0,1) and then normalized.

Then the operator norm of X is sharply concentrated around
√
p/n so that our assumption

essentially reads s ≤ c0n/ log p. Expressed in a different way, β does not have to be sparse at

all. It has to be smaller than the number of observations of course, but not by a very large

margin.

1One could also develop a similar estimate with high probability but we find it simpler and more elegant to derive
the performance in terms of expectation.
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Similar conclusions would apply to many other types of random matrices.

� Signal estimation. A problem that has attracted quite a bit of attention in the signal processing

community is that of recovering a signal which has a sparse expansion as a superposition of

spikes and sinusoids (see, e.g., [37, 154]). Here, we have noisy data y

y(t) = f(t) + σz(t), t = 1, . . . , n, (3.1.11)

about a digital signal f of interest, which is expressed as the the ‘time-frequency’ superposition

f(t) =
n

∑
k=1

α
(0)
k δ(t − k) +

n

∑
k=1

α
(1)
k ϕk(t); (3.1.12)

δ is a Dirac or spike obeying δ(t) = 1 if t = 0 and 0 otherwise, and (ϕk(t))1≤k≤n is an orthonormal

basis of sinusoids. The problem (3.1.11) is of the general form (3.1.1) with X = [In Fn] in

which In is the identity matrix, Fn is the basis of sinusoids (a discrete cosine transform), and

β is the concatenation of α(0) and α(1). Here, p = 2n and ∥X∥ =
√

2. Also, X obeys the

coherence property if n or p is not too small since µ(X) =
√

2/n = 2/√p.

Hence, if the signal has a sparse expansion with fewer than on the order of n/ logn coefficients,

then the LASSO achieves a quality of reconstruction which is essentially as good as what could

be achieved if we knew in advance the precise location of the spikes and the exact frequencies

of the sinusoids.

This fact extends to other pairs of orthobases and to general overcomplete expansions as we

will explain later.

In our two examples, the condition of Theorem 3.1.4 is satisfied for s as large as on the order

of n/ log p; that is, β may have a large number of nonzero components. The novelty here is that

the assumptions on the sparsity level s and on the correlation between predictors are very realistic.

This is different from the available literature, which typically requires a much lower bound on

the coherence or a much lower sparsity level, see Section 3.4 for a comprehensive discussion. In

addition, many published results assume that the entries of the design matrix X are sampled from

a probability distribution—e.g., are i.i.d. samples from the standard normal distribution—which

we are not assuming here (one could of course specialize our results to random designs as discussed

above). Hence, we do not simply prove that in some idealized setting the LASSO would do well, but

that it has a very concrete edge in practical situations—as shown empirically in a great number of

works.

An interesting fact is that one cannot expect (3.1.8) to hold for all models as one can construct

simple examples of incoherent matrices and special β for which the LASSO does not select a good
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model, see Section 3.2. In this sense, (3.1.8) can be achieved on the average—or better, in an

overwhelming majority of cases—but not in all cases.

3.1.4 Exact model recovery

In this section we consider the problem of recovering the support of β. Before beginning, we note

that Tropp [151] has already considered this problem in the deterministic setting (without a random

model for the signal), and has shown under some strong coherence conditions that the support of

the entries of β which stand above the noise is recovered. In fact, our results are derived as a

combination of the ideas of [151] and the theory of [153] together with the development of a few

concentration inequalities.

Now, to be concrete, suppose that we are interested in estimating the set T = {i ∶ βi ≠ 0}. Then

we show that if the values of the nonvanishing βi’s are not too small, then the LASSO correctly

identifies the ‘right’ model.

Theorem 3.1.5 Let T be the support of β and suppose that

min
i∈I

∣βi∣ > 8σ
√

2 log p.

Then under the assumptions of Theorem 3.1.4, the LASSO estimate with λ = 2
√

2 log p obeys

supp(β̂) = supp(β), and (3.1.13)

sgn(β̂i) = sgn(βi), for all i ∈ T, (3.1.14)

with probability at least 1 − 2p−1((2π log p)−1/2 + ∣T ∣p−1) −O(p−2 log 2).

In words, if the nonzero coefficients are significant in the sense that they stand above the noise, then

the LASSO identifies all the variables of interest and only these. Further, the LASSO also correctly

estimates the signs of the corresponding coefficients. Again, this does not hold for all β’s as shown

in the example of Section 3.2 but for a wide majority.

Our condition says that the amplitudes must be larger than a constant times the noise level times
√

2 log p which is sharp modulo a small multiplicative constant. Our statement is nonasymptotic,

and relies upon [169] and [24]. In particular, [169] requires X and β to satisfy the Irrepresentable

Condition, which is sufficient to guarantee the exact recovery of the support of β in some asymptotic

regime; Section 3.3.3 connects with this line of work by showing that the Irrepresentable Condition

holds with high probability under the stated assumptions. We would also note in passing that [79]

considers the Irrepresentable Condition as well (without calling it by this name) and in fact our

proof of Theorem 3.1.5 has some ideas in common with that paper.
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As before, we have decided to state the theorem for a concrete value of λ, namely, 2
√

2 log p but

we could have used any value of the form (1 + a)
√

2 log p with a > 0. When a decreases, our proof

indicates that one can lower the threshold on the minimum nonzero value of β but that at the same

time, the probability of success is lowered as well. When a increases, the converse applies. Finally

our proof shows that by setting λ close to
√

2 log p and by imposing slightly stronger conditions on

the coherence and the sparsity s, one can substantially lower the threshold on the minimum nonzero

value of β and bring it close to σ
√

2 log p.

We would also like to remark that under the hypotheses of Theorem 3.1.5, one can improve the

estimate (3.1.8) a little by using a two-step procedure similar to that proposed in [43].

1. Use the LASSO to find T̂ ≡ {i ∶ β̂i ≠ 0}.

2. Find β̃ by regressing y onto the columns (Xi), i ∈ T̂ .

Since T̂ = T with high probability, we have that

∥Xβ̃ −Xβ∥2
`2 = σ

2∥P [T ]z∥2
`2

with high probability, where P [T ] is the projection onto the space spanned by the variables (Xi).
Because ∥P [T ]z∥2

`2
is concentrated around ∣T ∣ = s, it follows that with high probability,

∥Xβ̃ −Xβ∥2
`2 ≤ C ⋅ s ⋅ σ2,

where C is a some small numerical constant. In other words, when the values of the nonzero entries

of β are sufficiently large, one does not have to pay the logarithmic factor.

3.1.5 General model selection

In many applications, β is not sparse or does not have a real meaning so that it does not make much

sense to talk about the values of this vector. Consider an example to make this precise. Suppose

we have noisy data y (3.1.11) about an n-pixel digital image f , where σz is white noise. We wish

to remove the noise, i.e. estimate the mean of the vector y. A majority of modern methods express

the unknown signal as a superposition of fixed waveforms (ϕi(t))1≤i≤p,

f(t) =
p

∑
i=1

βiϕi(t), (3.1.15)

and construct an estimate

f̂(t) =
p

∑
i=1

β̂iϕi(t).
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That is, one introduces a model f =Xβ in which the columns of X are the sampled waveforms ϕi(t).
It is now extremely popular to consider overcomplete representations with many more waveforms

than samples, i.e., p > n. The reason is that overcomplete systems offer a wider range of generating

elements which may be well suited to represent contributions from different phenomena; potentially,

this wider range allows more flexibility in signal representation and enhances statistical estimation.

In this setup, two comments are in order. First, there is no ground truth associated with each

coefficient βi; there is no real wavelet or curvelet coefficient. And second, signals of general interest

are never really exactly sparse; they are only approximately sparse meaning that they may be well

approximated by sparse expansions. These considerations emphasize the need to formulate results

to cover those situations in which the precise values of βi are either ill-defined or meaningless.

In general, one can understand model selection as follows. Select a model—a subset T of the

columns of X—and construct an estimate of Xβ by projecting y onto the subspace generated by

the variables in the model. Mathematically, this is formulated as

Xβ̂[T ] = P [T ]y = P [T ]Xβ + σP [T ]z,

where P [T ] denotes the projection onto the space spanned by the variables (Xi), i ∈ T . What is

the accuracy of Xβ̂[T ]? Note that

Xβ −Xβ̂[T ] = (Id − P [T ])Xβ − σP [T ]z

and, therefore, the mean-squared error (MSE) obeys2

E ∥Xβ −Xβ̂[T ]∥2 = ∥(Id − P [T ])Xβ∥2 + ∣T ∣σ2. (3.1.16)

This is the classical bias variance decomposition; the first term is the squared bias one gets by using

only a subset of columns of X to approximate the true vector Xβ. The second term is the variance

of the estimator and is proportional to the size of the model T .

Hence, one can now define the ideal model achieving the minimum MSE over all models

min
I⊂{1,...,p}

∥(Id − P [T ])Xβ∥2 + ∣T ∣σ2. (3.1.17)

We will refer to this as the ideal risk. This is ideal in the sense that one could achieve this performance

if we had available an oracle which—knowing Xβ— would select for us the best model to use, i.e. the

best subset of explanatory variables.

To connect this with our earlier discussion, one sees that if there is a representation of f = Xβ
2It is again simpler to state the performance in terms of expectation.
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Figure 3.1: The vector Xβ0 is the projection of Xβ on an ideally selected subset of covari-
ates. These covariates span a plane of optimal dimension which, among all planes spanned
by subsets of the same dimension, is closest to Xβ.

in which β has s nonzero terms, then the ideal risk is bounded by the variance term, namely, s ⋅ σ2

(just pick T to be the support of β in (3.1.17)). The point we would like to make is that whereas

we did not search for an optimal bias-variance trade off in the previous section, we will here. The

reason is that even in the case where the model is interpretable, the projection estimate on the model

corresponding to the nonzero values of βi may very well be inaccurate and have a mean-squared

error which is far larger than (3.1.17). In particular, this typically happens if out of the s nonzero

βi’s, only a small fraction are really significant while the others are not (e.g., in the sense that any

individual test of significance would not reject the hypothesis that they vanish). In this sense, the

main result of this section, Theorem 3.1.6 generalizes but also strengthens Theorem 3.1.4.

An important question is of course whether one can get close to the ideal risk (3.1.17) without

the help of an oracle. It is known that solving the combinatorial optimization problem (3.1.2) with a

value of λ0 being a sufficiently large multiple of log p would provide an MSE within a multiplicative

factor of order log p of the ideal risk. That real estimators with such properties exist is inspiring. Yet

solving (3.1.2) is computationally intractable. Our next result shows that in a wide range problems,

the LASSO also nearly achieves the ideal risk.

We are naturally interested in quantifying the performance one can expect from the LASSO in

nearly all cases and just as before, we now introduce a useful statistical description of these cases.

Consider the best model T0 achieving the minimum in (3.1.17). In case of ties, pick one uniformly

at random. Suppose T0 is of cardinality s. Then we introduce the best s-dimensional subset model

defined as follows:

1. The subset T0 ⊂ {1, . . . , p} of cardinality s is distributed uniformly at random.

2. Define β0 with support T0 via

Xβ0 = P [T0]Xβ. (3.1.18)

In other words, β0 is the vector one would get by regressing the true mean vector Xβ onto
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the variables in T0; we call β0 the ideal approximation. Conditional on T0, the signs of the

nonzero entries of β0 are independent and equally likely to be -1 or 1.

We make no assumption on the amplitudes. Our intent is just the same as before. All models are

equally likely (there is no bias towards special variables) and one has no a priori information about

the sign of the coefficients associated with each significant variable.

Theorem 3.1.6 Suppose that X obeys the coherence property and assume that the ideal approxi-

mation β0 is taken from the best s-dimensional subset model. Suppose that s ≤ c0p/[∥X∥2 log p] for

some positive numerical constant c0. Then the LASSO estimate (3.1.3) computed with λ = 2
√

2 log p

obeys

∥Xβ −Xβ̂∥2
`2 ≤ (1 +

√
2) [ min

I⊂{1,...,p}
∥Xβ − P [T ]Xβ∥2

`2 +C
′
0 (2 log p) ⋅ ∣T ∣ ⋅ σ2] (3.1.19)

with probability at least 1−6p−2 log 2 −p−1(2π log p)−1/2. The constant C ′
0 may be taken as 12+10

√
2.

In words, the LASSO nearly selects the best model in a very large majority of cases. As argued

earlier, this also strengthens our earlier result since the right-hand side in (3.1.19) is always less or

equal to O(log p) sσ2 whenever there is an s-sparse representation.3

Theorem 3.1.6 is guaranteeing excellent performance in a broad range of problems. That is,

whenever we have a design matrix X whose columns are not too correlated, then for most responses

Xβ, the LASSO will find a statistical model with low mean-squared error; simple extensions would

also claim that the LASSO finds a statistical model with very good predictive power but we will

not consider these here. As an illustrative example, we can consider predicting the clinical outcomes

from different tumors on the basis of gene expression values for each of the tumors. In typical

problems, one considers hundreds of tumors and tens of thousands of genes. While some of the gene

expressions (the columns of X) are correlated, one can always eliminate redundant predictors, e.g.,

via clustering techniques. Once the statistician has designed an X with low coherence, then in most

cases, the LASSO is guaranteed to find a subset of genes with near-optimal predictive power.

There is a slightly different formulation of this general result which may go as follows: let s0 be

the maximum sparsity level s0 = ⌊c0p/[∥X∥2 log p]⌋ and for each s ≤ s0, introduce As ⊂ {−1,0,1}p as

the set of all possible signs of vectors β ∈ Rp with sgn(βi) = 0 if βi = 0 such that exactly s signs are

nonzero. Then under the hypotheses of our theorem, for each Xβ ∈ Rn,

∥Xβ −Xβ̂∥2
`2 ≤ min

s≤s0
min

b ∶ sgn(b)∈A0,s

(1 +
√

2) [∥Xβ −Xb∥2
`2 +C

′
0 (2 log p) ⋅ s ⋅ σ2] (3.1.20)

3We have assumed that the mean response f of interest is in the span of the columns of X (i.e. of the form Xβ)
which always happens when p ≥ n and X has full column rank for example. If this is not the case, however, the error
would obey ∥f −Xβ̂∥2`2 = ∥Pf −Xβ̂∥2`2 + ∥(Id −P )f∥

2
`2

where P is the projection onto the range of X. The first term

obeys the oracle inequality so that the LASSO estimates Pf in a near-optimal fashion. The second term is simply
the size of the unmodelled part the mean response.
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with probability at least 1−O(p−1), where one can still take C ′
0 = 12+ 10

√
2 (the probability is with

respect to the noise distribution). Above, A0,s is a very large subset of As obeying

∣A0,s∣/∣As∣ ≥ 1 −O(p−1). (3.1.21)

Hence, for most β, the sub-oracle inequality (3.1.20) is actually the true oracle inequality.

For completeness, A0,s is defined as follows. Let b ∈ As be supported on T ; bT is the restriction

of the vector b to the index set T , and XT is the submatrix formed by selecting the columns of X

with indices in T . Then we say that b ∈ A0,s if and only if the following three conditions hold: 1)

the submatrix X∗
TXT is invertible and obeys ∥(X∗

TXT )−1∥ ≤ 2; 2) ∥X∗
IcXT (X∗

TXT )−1bT ∥`∞ ≤ 1/4
(recall that b ∈ {−1,0,1}p is a sign pattern); 3) maxi∉I ∥XT (X∗

TXT )−1X∗
TXi∥ ≤ c0/

√
log p for some

numerical constant c0. In Section 3.3, we will analyze these three conditions in detail and prove

that ∣A0,s∣ is large. The first condition is called the invertibility condition and the second and third

conditions are needed to establish that a certain complementary size condition holds, see Section

3.3.

3.1.6 Implications for signal estimation

Our findings may be of interest to researchers interested in signal estimation and we now recast our

main results in the language of signal processing. Suppose we are interested in estimating a signal

f(t) from observations

y(t) = f(t) + σz(t), t = 0, . . . , n − 1,

where σz is white noise with variance σ2. We are given a dictionary of waveforms (ϕi(t))1≤i≤p which

are normalized so that∑n−1
t=0 ϕ

2
i (t) = 1, and are looking for an estimate of the form f̂(t) = ∑pi=1 α̂iϕi(t).

When we have an overcomplete representation in which p > n, there are infinitely many ways of

representing f as a superposition of the dictionary elements.

Introduce now the best m-term approximation fm defined via

∥f − fm∥`2 = inf
a∶ #{i, ai≠0}≤m

∥f −∑
i

aiϕi∥`2 ;

that is, it is that linear combination of at most m elements of the dictionary which comes closest

to the object f of interest. 4 With these notations, if we could somehow guess the best model of

dimension m, one would achieve a MSE equal to

∥f − fm∥2
`2 +mσ

2.

4Note that again, finding fm is in general a combinatorially hard problem.
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Therefore, one can rewrite the ideal risk (which could be attained with the help of an oracle telling

us exactly which subset of waveforms to use) as

min
0≤m≤p

∥f − fm∥2
`2 +mσ

2, (3.1.22)

which is exactly the trade-off between the approximation error and the number of terms in the

partial expansion5.

Consider now the estimate f̂ = ∑i α̂iϕi where α̂ is solution to

min
a∈Rp

1

2
∥y −∑

i

aiϕi∥2
`2 + λσ∥a∥`1 (3.1.23)

with λ = 2
√

2 log p, say. Then provided that the dictionary is not too redundant in the sense

that max1≤i<j≤p ∣⟨ϕi, ϕj⟩∣ ≤ c0/ log p, Theorem 3.1.6 asserts that for most signals f , the minimum-`1

estimator (3.1.23) obeys

∥f̂ − f∥2
`2 ≤ C0 [inf

m
∥f − fm∥2

`2 + log p ⋅mσ2] , (3.1.24)

with large probability and for some reasonably small numerical constant C0. In other words, one

obtains a squared error which is within a logarithmic factor of what can be achieved with information

provided by a genie.

Overcomplete representations are now in widespread use as in the field of artificial neural networks

for instance [49]. In computational harmonic analysis and image/signal processing, there is an

emerging wisdom which says that 1) there is no universal representation for signals of interest and

2) different representations are best for different phenomena; ‘best’ is here understood as providing

sparser representations. For instance:

� sinusoids are best for oscillatory phenomena;

� wavelets [105] are best for point-like singularities;

� curvelets [29,30] are best for curve-like singularities (edges);

� local cosines are best for textures; and so on.

Thus, many efficient methods in modern signal estimation proceed by forming an overcomplete

dictionary—a union of several distinct representations—and then by extracting a sparse superpo-

sition that fits the data well. The main result of this chapter says that if one solves the quadratic

program (3.1.23), then one is provably guaranteed near-optimal performance for most signals of

interest. This explains why these results might be of interest to people working in this field.

5It is also known that for many interesting classes of signals F and appropriately chosen dictionaries, taking the
supremum over f ∈ F in (3.1.22) comes within a log factor of the minimax risk for F .
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The spikes and sines model has been studied extensively in the literature on information theory

in the nineties and there, the assumption that the ‘arrival times’ of the spikes and the frequencies

of the sinusoids are random is legitimate. In other situations, the model may be less adequate. For

instance, in image processing, the large wavelet coefficients tend to appear early in the series, i.e.,

at low frequencies. Baraniuk et al. [11] address this situation, and show that taking into account

prior information about the model can aid in the sparse approximation of the image. With this

in mind, two comments are in order. First, it is likely that similar results would hold for other

models (we just considered the simplest). And second, if we have a lot of a priori information about

which coefficients are more likely to be significant, then we would probably not want to use the plain

LASSO (3.1.3) but rather incorporate this side information.

3.1.7 Organization of the chapter

The chapter is organized as follows. In Section 3.2, we explain why our results are nearly optimal,

and cannot be fundamentally improved. Section 3.3 introduces a recent result due to Joel Tropp

regarding the norm of certain random submatrices which is essential to our proofs, and proves all

of our results. We conclude with a discussion in Section 3.4 where for the most part, we relate our

work with a series of other published results, and distinguish our main contributions.

3.2 Optimality

3.2.1 For almost all sparse models

A natural question is whether one can relax the condition about β being generically sparse or about

Xβ being well approximated by a generically sparse superposition of covariates. The emphasis is

on ‘generic’ meaning that our results apply to nearly all objects taken from a statistical ensemble

but perhaps not all. This begs a question: can one hope to establish versions of our results which

would hold universally? The answer is negative. Even in the case when X has very low coherence,

one can show that the LASSO does not provide an accurate estimation of certain mean vectors Xβ

with a sparse coefficient sequence. This section gives one such example.

Suppose as in Section 3.1.3 that we wish to estimate a signal assumed to be a sparse superposition

of spikes and sinusoids. We assume that the length n of the signal f(t), t = 0,1, . . . , n − 1, is equal

to n = 22j for some integer j. The basis of spikes is as before and the orthobasis of sinusoids takes
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the form

ϕ1(t) = 1/
√
n,

ϕ2k(t) =
√

2/n cos(2πkt/n), k = 1,2, . . . , n/2 − 1,

ϕ2k+1(t) =
√

2/n sin(2πkt/n), k = 1,2, . . . , n/2 − 1,

ϕn(t) = (−1)t/
√
n.

Recall the discrete identity (a discrete analog of the Poisson summation formula)

2j−1

∑
k=0

δ(t − k2j) =
2j−1

∑
k=0

1√
n
ei2π k2jt/n

= 1√
n
(1 + (−1)t) + 2√

n

2j−1−1

∑
k=1

cos(2π k2jt/n)

= ϕ1(t) + ϕn(t) +
√

2
2j−1−1

∑
k=1

ϕk2j+1(t). (3.2.1)

Then consider the model

y = 1 + σz =Xβ + σz,

where 1 is the constant signal equal to 1 and X is the n × (2n − 1) matrix

X = [In Fn,2∶n]

in which In is the identity (the basis of spikes) and Fn,2∶n is the orthobasis of sinusoids minus the

first basis vector ϕ1. Note that this is a low-coherence matrix X since µ(X) =
√

2/n. In plain

English, we are simply trying to estimate a constant-mean vector. It follows from (3.2.1) that

1 =
√
n

⎡⎢⎢⎢⎢⎣

2j−1

∑
k=0

δ(t − k2j) − ϕn(t) −
√

2
2j−1−1

∑
k=1

ϕk2j+1(t)
⎤⎥⎥⎥⎥⎦
,

so that 1 has a sparse expansion since it is a superposition of at most
√
n spikes and

√
n/2 sinusoids

(it can also be deduced from existing results that this is actually the sparsest expansion). In other

words, if we knew which column vectors to use, one could obtain

E ∥Xβ⋆ −Xβ∥2
`2 =

3

2

√
nσ2.
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(a) (b)

Figure 3.2: Sparse signal recovery with the LASSO. (a) Values of the estimated coefficients.
All the spike coefficients are obtained by soft-thresholding y and are nonzero. (b) LASSO
signal estimate; Xβ̂ is just a shifted version of the noisy signal.

How does the LASSO compare? We claim that with very high probability

β̂i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yi − λσ, i ∈ {1, . . . , n},

0, i ∈ {n + 1, . . . ,2n − 1},
(3.2.2)

so that

Xβ̂ = y − λσ 1 (3.2.3)

provided that λσ ≤ 1/2. In short, the LASSO does not find the sparsest model at all. As a matter

of fact, it finds a model as dense as it can be, and the resulting mean-squared error is awful since

E ∥Xβ̂ −Xβ∥2
`2 ≈ (1 + λ2)nσ2.

Even if one could somehow remove the bias, this would still be a very bad performance.

An illustrative numerical example is displayed in Figure 3.2. In this example, n = 256 so that

p = 512 − 1 = 511. The mean vector Xβ is made up as above and there is a representation in which

β has only 24 nonzero coefficients. Yet, the LASSO finds a model of dimension 256; i.e. select as

many variables as there are observations.

We need to justify (3.2.2), as (3.2.3) would be an immediate consequence. It follows from taking

the subgradient of the LASSO functional that β̂ is a minimizer if and only if

X∗
i (y −Xβ̂) = λσ sgn(β̂i), β̂i ≠ 0,

∣X∗
i (y −Xβ̂)∣ ≤ λσ, β̂i = 0.

(3.2.4)
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One can further establish that β̂ is the unique minimizer of (3.1.3) if

X∗
i (y −Xβ̂) = λσ sgn(β̂i), β̂i ≠ 0,

∣X∗
i (y −Xβ̂)∣ < λσ, β̂i = 0,

(3.2.5)

and the columns indexed by the support of β̂ are linearly independent (note the strict inequalities).

We then simply need to show that β̂ given by (3.2.2) obeys (3.2.5). Suppose that mini yi > λσ. A

sufficient condition is that maxi σ ⋅ ∣zi∣ < 1 − λσ which occurs with very large probability if λσ ≤ 1/2
and λ >

√
2 logn (see (3.3.4) with X = I). (One can always allow for larger noise by multiplying the

signal by a factor greater than 1.) Note that y −Xβ̂ = λσ 1 so that for i ∈ {1, . . . , n} we have

X∗
i (y −Xβ̂) = λσ = λσ sgn(β̂i),

whereas for i ∈ {n + 1, . . . ,2n − 1}, we have

X∗
i (y −Xβ̂) = λσ⟨Xi,1⟩ = 0,

which proves our claim.

To summarize, even when the coherence is low, i.e. of size about 1/√n, there are sparse vectors

β with sparsity level about equal to
√
n for which the LASSO completely misbehaves (we presented

an example but there are of course many others). It is therefore a fact that none of our theorems,

namely, Theorems 3.1.4, 3.1.5, and 3.1.6 can hold for all β’s. In this sense, they are sharp.

3.2.2 For sufficiently incoherent matrices

We now show that predictors cannot be too collinear, and begin by examining a small problem in

which X is a 2× 2 matrix, X = [X1,X2]. We violate the coherence property by choosing X1 and X2

so that ⟨X1,X2⟩ = 1 − ε, where we think of ε as being very small. Assume without loss of generality

that σ = 1 to simplify. Consider now

β = a
ε

⎡⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎦
,

where a is some positive amplitude and observe that Xβ = aε−1(X1 −X2), and X∗Xβ = a(1,−1)∗.

For example, we could set a = 1. It is well known that the LASSO estimate β̂ vanishes if ∥X∗y∥`∞ ≤ λ.

Now

∥X∗y∥`∞ ≤ a + σ∥X∗z∥`∞
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so that if a = 1, say, and λ is not ridiculously small, then there is a positive probability π0 that β̂ = 0

where π0 ≥ P(σ ⋅ ∥X∗z∥∞ ≤ λ − 1).6 For example, if λ > 1 + 3 = 4, then β̂ = 0 as long as both entries

of X∗z are within 3 standard deviations of 0. When β̂ = 0, the squared error loss obeys

∥Xβ∥2
`2 = 2

a2

ε
,

which can be made arbitrarily large if we allow ε to be arbitrarily small.

Of course, the culprit in our 2-by-2 example is hardly sparse and we now consider the n × n
diagonal block matrix X0 (n even)

X0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

X

⋱
X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with blocks made out of n/2 copies of X. We now consider β from the s-sparse model with inde-

pendent entries sampled from the distribution (we choose a = 1 for simplicity but we could consider

other values as well)

βi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε−1 w. p. n−1/2,

−ε−1 w. p. n−1/2,

0 w. p. 1 − 2n−1/2.

Certainly, the support of β is random and the signs are random. One could argue that the size of

the support is not fixed (the expected value is 2
√
n so that β is sparse with very large probability)

but this is obviously unessential.7

Because X0 is block diagonal, the LASSO functional becomes additive and the LASSO will

minimize each individual term of the form 1
2
∥Xb(i) − y(i)∥2

`2
+ λ∥b(i)∥`1 , where b(i) = (b2i−1, b2i) and

y(i) = (y2i−1, y2i). If for any of these subproblems, β(i) = ±ε−1(1,−1) as in our 2-by-2 example

above, then the squared error will blow up (as ε gets smaller) with probability π0. With i fixed,

P (β(i) = ±ε−1(1,−1)) = 2/n and thus the probability that none of these sub-problems is poised to

blow up is (1 − 2
n
)
n
2 → 1

e
as n→∞. Formalizing matters, we have a squared loss of at least 2/ε with

probability at least π0 (1 − (1 − 2
n
)
n
2 ). Note that when n is large, λ is large so that π0 is close to

1, and the LASSO badly misbehaves with a probability greater or equal to a quantity approaching

1 − 1/e.
In conclusion, the LASSO may perform badly—even with a random β—when all our assumptions

6π0 can be calculated since X∗z is a bivariate Gaussian variable.
7We could alternatively select the support at random and randomly assign the signs and this would not change

our story in the least.
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are met but the coherence property. To summarize, an upper bound on the coherence is also

necessary.

3.3 Proofs

In this section, we prove all of our results. It is sufficient to establish our theorems with σ = 1 as the

general case is treated by a simple rescaling. Therefore, we conveniently assume σ = 1 from now on.

Here and in the remainder of this chapter, xT is the restriction of the vector x to an index set T ,

and for a matrix X, XT is the submatrix formed by selecting the columns of X with indices in T .

In the following, it will also be convenient to denote by K the functional

K(y, b) = 1

2
∥y −Xb∥2

`2 + 2λp∥b∥`1 (3.3.1)

in which λp =
√

2 log p.

3.3.1 Preliminaries

We will make frequent use of subgradients and we begin by briefly recalling what these are. We say

that u ∈ Rp is a subgradient of a convex function f ∶ Rp → R at x0 if f obeys

f(x) ≥ f(x0) + ⟨u,x − x0⟩ (3.3.2)

for all x.

Further, our arguments will repeatedly use two general results that we now record. The first

states that the LASSO estimate is feasible for the Dantzig selector optimization problem.

Lemma 3.3.1 The LASSO estimate obeys

∥X∗(y −Xβ̂)∥`∞ ≤ 2λp. (3.3.3)

Proof Since β̂ minimizes f(b) = K(y, b) over b, 0 must be a subgradient of f at β̂. Now the

subgradients of f at b are of the form

X∗(Xb − y) + 2λp ε,

where ε is any p-dimensional vector obeying εi = sgn(bi) if bi ≠ 0 and ∣εi∣ ≤ 1 otherwise. Hence, since

0 is a subgradient at β̂, there exists ε as above such that

X∗(Xβ̂ − y) = −2λp ε.
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The conclusion follows from ∥ε∥`∞ ≤ 1.

The second general result states that ∥X∗z∥`∞ cannot be too large. With large probability,

z ∼ N (0, I) obeys

∥X∗z∥`∞ = max
i

∣⟨Xi, z⟩∣ ≤ λp. (3.3.4)

This is standard and simply follows from the fact that ⟨Xi, z⟩ ∼ N (0,1). Hence for each t > 0,

P(∥X∗z∥`∞ > t) ≤ 2p ⋅ φ(t)/t, (3.3.5)

where φ(t) ≡ (2π)−1/2e−t
2
/2. Better bounds may be possible but we will not pursue these refinements

here. Also note that ∥X∗z∥`∞ ≤
√

2λp with probability at least 1 − p−1(2π log p)−1/2. These two

general facts have an interesting consequence since it follows from the decomposition y =Xβ+z and

the triangle inequality that with high probability

∥X∗X(β − β̂)∥`∞ ≤ ∥X∗(Xβ − y)∥`∞ + ∥X∗(y −Xβ̂)∥`∞

= ∥X∗z∥`∞ + ∥X∗(y −Xβ̂)∥`∞

≤ (
√

2 + 2)λp. (3.3.6)

3.3.2 Proof of Theorem 3.1.4

Put T for the support of β. To prove our claim, we first establish that (3.1.8) holds provided that

the following three deterministic conditions are satisfied.

� Invertibility condition. The submatrix X∗
TXT is invertible and obeys

∥(X∗
TXT )−1∥ ≤ 2. (3.3.7)

The number 2 is arbitrary; we just need the smallest eigenvalue of X∗
TXT to be bounded away

from zero.

� Orthogonality condition. The vector z obeys ∥X∗z∥`∞ ≤
√

2λp.

� Complementary size condition. The following inequality holds

∥X∗
IcXT (X∗

TXT )−1X∗
T z∥`∞ + 2λp∥X∗

IcXT (X∗
TXT )−1sgn(βT )∥`∞ ≤ (2 −

√
2)λp. (3.3.8)

This section establishes the main estimate (3.1.8) assuming these three conditions hold whereas

the next will show that all three conditions hold with large probability—hence proving Theorem

3.1.4. Note that when z is white noise, we already know that the orthogonality condition holds with

probability at least 1 − p−1(2π log p)−1/2.
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Assume then that all three conditions above hold. Since β̂ minimizes K(y, b), we have K(y, β̂) ≤
K(y, β) or equivalently

1

2
∥y −Xβ̂∥2

`2 + 2λp∥β̂∥`1 ≤
1

2
∥y −Xβ∥2

`2 + 2λp∥β∥`1 .

Set h = β̂ − β and note that

∥y −Xβ̂∥2
`2 = ∥(y −Xβ) −Xh∥2

`2 = ∥Xh∥2
`2 + ∥y −Xβ∥2

`2 − 2⟨Xh, y −Xβ⟩.

Plugging this identity with z = y −Xβ into the above inequality and rearranging the terms gives

1

2
∥Xh∥2

`2 ≤ ⟨Xh, z⟩ + 2λp (∥β∥`1 − ∥β̂∥`1) . (3.3.9)

Next, break h up into hT and hIc (observe that β̂Ic = hIc) and rewrite (3.3.9) as

1

2
∥Xh∥2

`2 ≤ ⟨h,X∗z⟩ + 2λp (∥βT ∥`1 − ∥βT + hT ∥`1 − ∥hIc∥`1) .

For each i ∈ I, we have

∣β̂i∣ = ∣βi + hi∣ ≥ ∣βi∣ + sgn(βi)hi

and thus, ∥βT + hT ∥`1 ≥ ∥β∥`1 + ⟨hT , sgn(βT )⟩. Inserting this inequality above yields

1

2
∥Xh∥2

`2 ≤ ⟨h,X∗z⟩ − 2λp(⟨hT , sgn(βT )⟩ + ∥hIc∥`1). (3.3.10)

Observe now that ⟨h,X∗z⟩ = ⟨hT ,X∗
T z⟩ + ⟨hIc ,X∗

Icz⟩ and that the orthogonality condition implies

⟨hIc ,X∗
Icz⟩ ≤ ∥hIc∥`1∥X∗

Icz∥`∞ ≤
√

2λp∥hIc∥`1 .

The conclusion is the following useful estimate

1

2
∥Xh∥2

`2 ≤ ⟨hT , v⟩ − (2 −
√

2)λp∥hIc∥`1 , (3.3.11)

where v ≡X∗
T z − 2λp sgn(βT ).
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We complete the argument by bounding ⟨hT , v⟩. The key here is to use the fact that ∥X∗Xh∥`∞
is known to be small as pointed out by Terence Tao. We have

⟨hT , v⟩ = ⟨(X∗
TXT )−1

X∗
TXThT , v⟩

= ⟨X∗
TXThT , (X∗

TXT )−1
v⟩

= ⟨X∗
TXh, (X∗

TXT )−1
v⟩ − ⟨X∗

TXIchIc , (X∗
TXT )−1

v⟩ ≡ A1 −A2. (3.3.12)

We address each of the two terms individually. First,

A1 ≤ ∥X∗
TXh∥`∞ ⋅ ∥(X∗

TXT )−1v∥`1

and

∥(X∗
TXT )−1v∥`1 ≤

√
s ⋅ ∥(X∗

TXT )−1v∥`2

≤
√
s ⋅ ∥(X∗

TXT )−1∥ ∥v∥`2

≤ s ⋅ ∥(X∗
TXT )−1∥ ∥v∥`∞ .

Because 1) ∥X∗
TXh∥`∞ ≤ (2+

√
2)λp by Lemma 3.3.1 together with the orthogonality condition (see

(3.3.6)) and 2) ∥(X∗
TXT )−1∥`2 ≤ 2 by the invertibility condition, we have

A1 ≤ 2(2 +
√

2)λp s∥v∥`∞ .

However,

∥v∥`∞ ≤ ∥X∗
T z∥`∞ + 2λp ≤ (2 +

√
2)λp.

so that

A1 ≤ 2 (2 +
√

2)2 λ2
p ⋅ s. (3.3.13)

Second, we simply bound the other term A2 = ⟨hIc ,X∗
IcXT (X∗

TXT )−1v⟩ by

∣A2∣ ≤ ∥hIc∥`1 ∥X∗
IcXT (X∗

TXT )−1v∥`∞

with v =X∗
T z − 2λp sgn(βT ). Since

∥X∗
IcXT (X∗

TXT )−1v∥`∞ ≤ ∥X∗
IcXT (X∗

TXT )−1X∗
T z∥`∞ + 2λp∥X∗

IcXT (X∗
TXT )−1sgn(βT )∥`∞

≤ (2 −
√

2)λp
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because of the complementary size condition, we have

∣A2∣ ≤ (2 −
√

2)λp ∥hIc∥`1 .

To summarize,

∣⟨hT , v⟩∣ ≤ 2 (2 +
√

2)2 λ2
p ⋅ s + (2 −

√
2)λp ∥hIc∥`1 . (3.3.14)

We conclude by inserting (3.3.14) into (3.3.11) which gives

1

2
∥X(β̂ − β)∥2

`2 ≤ 2 (2 +
√

2)2 λ2
p ⋅ s,

which is what we needed to prove.

3.3.3 Norms of random submatrices

In this section we establish that the invertibility and the complementary size conditions hold with

large probability. These essentially rely on a recent result of Joel Tropp, which we state first.

Theorem 3.3.2 [152] Suppose that a set T of predictors is sampled using a Bernoulli model by first

creating a sequence (δj)1≤j≤p of i.i.d. random variables with δj = 1 w.p. s/p and δj = 0 w.p. 1 − s/p,

and then setting I ≡ {j ∶ δj = 1} so that E ∣T ∣ = s. Then for q = 2 log p,

(E ∥X∗
TXT − Id∥q)1/q ≤ 30µ(X) log p + 13

√
2s ∥X∥2 log p

p
(3.3.15)

provided that s∥X∥2/p ≤ 1/4. In addition, for the same value of q

(Emax
i∈Ic

∥X∗
TXi∥q`2)

1/q ≤ 4µ(X)
√

log p +
√
s ∥X∥2/p. (3.3.16)

The first inequality (3.3.15) can be derived from the last equation in Section 4 of [152]. To be sure,

using the notations of that chapter and letting H ≡X∗X − Id, Tropp shows that

Eq ∥RHR∥ ≤ 15q̄ Eq ∥RHR′∥max + 12
√
δq̄∥HR∥1→2 + 2δ∥H∥, δ = s/p,

where q̄ = max{q,2 log p}. Now consider the following three facts: 1) ∥RHR′∥max ≤ µ(X); 2)

∥HR∥1→2 ≤ ∥X∥; and 3) ∥H∥ ≤ ∥X∥2. The first assertion is immediate. The second is justified

in [152]. For the third, observe that ∥X∗X − Id∥ ≤ max{∥X∥2 − 1,1} (this is an equality when p > n)

and the claim follows from ∥X∥ ≥ 1, which holds since X has unit-normed columns. With q = 2 log p,

this gives

Eq ∥RHR∥ ≤ 30µ(X) log p + 12

√
2s log p ∥X∥2

p
+ 2s∥X∥2

p
.
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Suppose that s∥X∥2/p ≤ 1/4, then we can simplify the above inequality and obtain

Eq ∥RHR∥ ≤ 30µ(X) log p + (12
√

2 log p + 1)
√
s ∥X∥2/p,

which implies (3.3.15). The second inequality (3.3.16) is exactly Corollary 5.1 in [152].

The inequalities (3.3.15) and (3.3.16) also hold for our slightly different model in which I ⊂
{1, . . . , p} is a random subset of predictors with s elements provided that the right-hand side of both

inequalities be multiplied by 21/q. This follows from a simple Poissonization argument, which is

similar to that posed in the proof of Lemma 3.3.6.

It is now time to investigate how these results imply our conditions, and we first examine how

(3.3.15) implies the invertibility condition. Let T be a random set and put Z = ∥X∗
TXT −Id∥. Clearly,

if Z ≤ 1/2, then all the eigenvalues of X∗
TXT are in the interval [1/2,3/2] and ∥(X∗

TXT )−1∥ ≤ 2.

Suppose that µ(X) and s are sufficiently small so that the right-hand side of (3.3.15) is less than

1/4, say. This happens when the coherence µ(X) and s obey the hypotheses of the theorem. Then

by Markov’s inequality, we have that for q = 2 log p,

P(Z > 1/2) ≤ 2q EZq ≤ (1/2)q.

In other words the invertibility condition holds with probability exceeding 1 − p−2 log 2.

Recalling that the signs of the nonzero entries of β are i.i.d. symmetric variables, we now examine

the complementary size condition and begin with a simple lemma.

Lemma 3.3.3 Let (Wj)j∈J be a fixed collection of vectors in `2(I) and consider the random variable

Z0 defined by Z0 = maxj∈J ∣⟨Wj , sgn(βT )⟩∣. Then

P(Z0 ≥ t) ≤ 2∣J ∣ ⋅ e−t
2
/2κ2

, (3.3.17)

for any κ obeying κ ≥ maxj∈J ∥Wj∥`2 . Similarly, letting (W ′
j)j∈J be a fixed collection of vectors in

R
n and setting Z1 = maxj∈J ∣⟨W ′

j , z⟩∣, we have

P(Z1 ≥ t) ≤ 2∣J ∣ ⋅ e−t
2
/2κ2

, (3.3.18)

for any κ obeying κ ≥ maxj∈J ∥W ′
j∥`2 .8

8Note that this lemma also holds if the collection of vectors (Wj)j∈J is random, as long as it is independent of
sgn(βT ) and z.
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Proof The first inequality is an application of Hoeffding’s inequality. Indeed, letting Z0,j =
⟨Wj , sgn(βT )⟩, Hoeffding’s inequality gives

P(∣Z0,j ∣ > t) ≤ 2e−t
2
/2∥Wj∥

2
`2 ≤ 2e−t

2
/2 maxj ∥Wj∥

2
`2 . (3.3.19)

Inequality (3.3.17) then follows from the union bound. The second part is even easier since Z1,j =
⟨W ′

j , z⟩ ∼ N (0, ∥W ′
j∥2
`2
) and thus

P(∣Z1,j ∣ > t) ≤ 2e−t
2
/2∥W ′

j∥
2
`2 ≤ 2e−t

2
/2 maxj ∥W

′
j∥

2
`2 . (3.3.20)

Again, the union bound gives (3.3.18).

For each i ∈ Ic, define Z0,i and Z1,i as

Z0,i =X∗
i XT (X∗

TXT )−1 sgn(βT ) and Z1,i =X∗
i XT (X∗

TXT )−1X∗
T z.

With these notations, in order to prove the complementary size condition, it is sufficient to show

that with large probability,

2λpZ0 +Z1 ≤ (2 −
√

2)λp,

where Z0 = maxi∈Ic ∣Z0,i∣ and likewise for Z1. Therefore, it is sufficient to prove that with large

probability

Z0 ≤ 1/4 and Z1 ≤ (3/2 −
√

2)λp.

The idea is of course to apply Lemma 5.2.5 together with Theorem 3.3.2. We have

Z0,i = ⟨Wi, sgn(βT )⟩ and Z1,i = ⟨W ′
i , z⟩,

where

Wi = (X∗
TXT )−1X∗

TXi and W ′
i =XT (X∗

TXT )−1X∗
TXi.

Recall the definition of Z above and consider the event E = {Z ≤ 1/2} ∩ {maxi∈Ic ∥X∗
TXi∥ ≤ γ} for

some positive γ. On this event, all the singular values of XT are between 1/
√

2 and
√

3/2, and thus

∥(X∗
TXT )−1∥ ≤ 2 and ∥XT (X∗

TXT )−1∥ ≤
√

2, which gives

∥Wi∥ ≤ 2γ, and ∥W ′
i ∥ ≤

√
2γ.
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Applying (3.3.17) and (3.3.18) gives

P({Z0 ≥ t} ∪ {Z1 ≥ u}) ≤ P({Z0 ≥ t} ∪ {Z1 ≥ u} ∣ E) + P(Ec)

≤ P(Z0 ≥ t ∣ E) + P(Z1 ≥ u ∣ E) + P(Ec)

≤ 2p e−t
2
/8γ2

+ 2p e−u
2
/4γ2

+ P(Z > 1/2) + P(max
i∈Ic

∥X∗
TXi∥ > γ).

We already know that the second-to-last term of the right-hand side is polynomially small in p

provided that µ(X) and s obey the conditions of the theorem. For the other three terms let γ0 be

the right-hand side of (3.3.16). For t = 1/4, one can find a constant c0 such that if γ < c0/
√

log p,

then 2pe−t
2
/8γ2 ≤ 2p−2 log 2, say. Likewise, for u = (3/2 −

√
2)λp, we may have 2pe−u

2
/4γ2 ≤ 2p−2 log 2.

The last term is treated by Markov’s inequality since for q = 2 log p, (3.3.16) gives

P(max
i∈Ic

∥X∗
TXi∥ > γ) ≤ γ−q ⋅ E(max

i∈Ic
∥X∗

TXi∥q) ≤ (γ0/γ)q.

Therefore, if γ0 ≤ γ/2 = c0/2
√

log p, we have that this last term does not exceed 1 − p−2 log 2. For

µ(X) and s obeying the hypotheses of Theorem 3.1.4, it is indeed the case that γ0 ≤ c0/2
√

log p. In

conclusion, we have shown that all three conditions hold under our hypotheses with probability at

least 1 − 6p−2 log 2 − p−1(2π log p)−1/2.

In passing, we would like to remark that proving that Z0 ≤ 1/4 establishes that the strong

irrepresentable condition from [169] holds (with high probability). This condition states if T is the

support of β

∥X∗
IcXT (X∗

TXT )−1sgn(βT )∥`∞ ≤ 1 − ν

where ν is any (small) constant greater than zero (this condition is used to show the asymptotic

recovery of the support of β).

3.3.4 Proof of Theorem 3.1.6

The proof of Theorem 3.1.6 parallels that of Theorem 3.1.4 and we only sketch it although we

carefully detail the main differences. Let T0 be the support of β0. Just as before, all three conditions

of Section 3.3.2 with T0 in place of T and β0 in place of β hold with overwhelming probability. From

now on, we just assume that they are all true.

Since β̂ minimizes K(y, b), we have K(y, β̂) ≤K(y, β0) or equivalently

1

2
∥y −Xβ̂∥2

`2 + 2λp∥β̂∥`1 ≤
1

2
∥y −Xβ0∥2

`2 + 2λp∥β0∥`1 . (3.3.21)
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Expand ∥y −Xβ̂∥2
`2

as

∥y −Xβ̂∥2
`2 = ∥z − (Xβ̂ −Xβ)∥2

`2 = ∥z∥2
`2 − 2⟨z,Xβ̂ −Xβ⟩ + ∥Xβ̂ −Xβ∥2

`2

and ∥y −Xβ0∥2
`2

in the same way. Then plug these identities in (3.3.21) to obtain

1

2
∥Xβ̂ −Xβ∥2

`2 ≤
1

2
∥Xβ0 −Xβ∥2

`2 + ⟨z,Xβ̂ −Xβ0⟩ + 2λp (∥β0∥`1 − ∥β̂∥`1) . (3.3.22)

Put h = β̂ − β0. We follow the same steps as in Section 3.3.2 to arrive at

1

2
∥Xβ̂ −Xβ∥2

`2 ≤
1

2
∥Xβ0 −Xβ∥2

`2 + ⟨hT0 , v⟩ − (2 −
√

2)λp ∥hT c0 ∥`1 ,

where v =X∗
T0
z − 2λpsgn(βT0). Just as before,

⟨hT0 , v⟩ = ⟨X∗
T0
Xh, (X∗

T0
XT0

)−1
v⟩ − ⟨hT c0 ,X

∗
T0
XT c0

(X∗
T0
XT0

)−1
v⟩ ≡ A1 −A2.

By assumption ∣A2∣ ≤ (2−
√

2)λp ⋅ ∥hT c0 ∥`1 . The difference is now in A1 since we can no longer claim

that ∥X∗Xh∥`∞ ≤ (2 +
√

2)λp. Decompose A1 as

A1 = ⟨X∗
T0
X(β̂ − β), (X∗

T0
XT0

)−1
v⟩ + ⟨X∗

T0
X(β − β0), (X∗

T0
XT0

)−1
v⟩ ≡ A0

1 +A1
1.

Because ∥X∗X(β̂ − β)∥`∞ ≤ (2 +
√

2)λp, one can use the same argument as before to obtain

A0
1 ≤ 2(2 +

√
2)2 λ2

p s.

We now look at the other term. Since ∥XT0
(X∗

T0
XT0

)−1 ∥ ≤
√

2 by assumption, we have

∣A1
1∣ = ⟨X(β − β0),XT0

(X∗
T0
XT0

)−1
v⟩

≤ ∥X(β − β0)∥`2 ∥XT0
(X∗

T0
XT0

)−1
v∥`2

≤
√

2∥X(β − β0)∥`2 ∥v∥`2 .

Using ab ≤ (a2 + b2)/2 and ∥v∥2
`2
≤ (2 +

√
2)2λ2

ps gives

∣A1
1∣ ≤

√
2

2
∥X(β − β0)∥2

`2 +
√

2

2
(2 +

√
2)2λ2

ps.

To summarize

⟨hT0 , v⟩ ≤
√

2

2
∥X(β − β0)∥2

`2 + (2 +
√

2

2
)(2 +

√
2)2λ2

ps + (2 −
√

2)λp ⋅ ∥hT c0 ∥`1 .
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It follows that

1

2
∥Xβ̂ −Xβ∥2

`2 ≤
1 +

√
2

2
∥Xβ0 −Xβ∥2

`2 + (4 +
√

2)(1 +
√

2)2λ2
ps.

This concludes the proof.

We close this section by arguing about (3.1.20) and (3.1.21). First, it follows from our proof

that (3.1.20) holds. And second, our analysis also shows that the set A0,s is very large and obeys

(3.1.21).

3.3.5 Proof of Theorem 3.1.5

Just as with our other claims, we begin by stating a few assumptions which hold with very large

probability, and then show that under these conditions, the conclusions of the theorem hold. These

assumptions are stated below.

(i) The matrix X∗
TXT is invertible and obeys ∥(X∗

TXT )−1∥ ≤ 2.

(ii) ∥X∗
IcXT (X∗

TXT )−1
sgn(βT )∥`∞ < 1

4
.

(iii) ∥ (X∗
TXT )−1

X∗
T z∥`∞ ≤ 2λp.

(iv) ∥X∗
Ic(I − P [T ])z∥`∞ ≤

√
2λp.

(v) The matrix-vector product (X∗
TXT )−1

sgn(βT ) obeys

∥ (X∗
TXT )−1

sgn(βT )∥`∞ ≤ 3. (3.3.23)

We already know that conditions (i) and (ii) hold with large probability, see Section 3.3.3 (the

change from 1/2 to 1/4 in (ii) is unessential). As before, we let E be the event {∥X∗
TXT − Id∥ ≤ 1/2}.

For (iii), the idea is the same and we express ∥ (X∗
TXT )−1

X∗
T z∥`∞ as maxi∈I ∣⟨Wi, z⟩∣, where Wi is

now the ith row of (X∗
TXT )−1

X∗
T . On E, maxi ∥Wi∥ ≤ ∥ (X∗

TXT )−1
X∗
T ∥ ≤

√
2 and the claim now

follows from (3.3.5). Indeed, one can check that conditional on E

P(∥ (X∗
TXT )−1

X∗
T z∥`∞ > 2λp) ≤ ∣T ∣ ⋅ p−2 ⋅ (2π log p)−1/2.

For (iv), we write ∥X∗
Ic(I − P [T ])z∥`∞ as maxi∈Ic ∣⟨Wi, z⟩∣ where Wi = (I − P [T ])Xi. We have

∥Wi∥ ≤ ∥Xi∥ = 1 and conditional on E, it follows from (3.3.5)

P(∥X∗
Ic(I − P [T ])z∥`∞ >

√
2λp) ≤ ∣Ic∣ ⋅ p−2 ⋅ (2π log p)−1/2.
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The subtle estimate is (v) and is proven in the next section. There, we show that (3.3.23) holds with

probability at least 1 − 2p−2 log 2 − 2∣T ∣p−2. Hence, under the assumptions of Theorem 3.1.5, (i)–(v)

hold with probability at least 1 − 2p−1 ((2π log p)−1/2 + ∣T ∣/p) −O(p−2 log 2).

Lemma 3.3.4 Suppose that the assumptions (i)–(v) hold and assume that mini∈I ∣βi∣ obeys the con-

dition of Theorem 3.1.5. Then the LASSO solution is given by β̂ ≡ β + h with

hT = (X∗
TXT )−1 [X∗

T z − 2λpsgn(βT )] ,
hIc = 0.

(3.3.24)

Proof The point β̂ is the unique solution to the LASSO functional if

X∗
i (y −Xβ̂) = 2λp sgn(β̂i), β̂i ≠ 0,

∣X∗
i (y −Xβ̂)∣ < 2λp, β̂i = 0,

(3.3.25)

and the columns of XT are linearly independent where T is the support of β̂. Consider then h as in

(3.3.24) and observe that

∥hT ∥`∞ ≤ ∥(X∗
TXT )−1X∗

T z∥`∞ + 2λp ∥(X∗
TXT )−1sgn(βT )∥`∞ ≤ 2λp + 6λp.

It follows that ∥hT ∥`∞ < mini∈I ∣βi∣ and, therefore, β̂ = β + h obeys

supp(β̂) = supp(β),

sgn(β̂T ) = sgn(βT ).

We now check that β̂ = β + h obeys (3.3.25). By definition, we have

y −Xβ̂ = z −Xh = z −XT (X∗
TXT )−1 [X∗

T z − 2λpsgn(β̂T )]

since β and β̂ share the same support and the same signs. Clearly,

X∗
T (y −Xβ̂) = 2λp sgn(β̂T ),
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which is the first half of (3.3.25). For the second half, let P [T ] =XT (X∗
TXT )−1X∗

T be the orthonor-

mal projection onto the span of XT . Then

∥X∗
Ic(y −Xβ̂)∥`∞ = ∥X∗

Ic(I − P [T ])z + 2λpX
∗
IcXT (X∗

TXT )−1sgn(βT )∥`∞

≤ ∥X∗
Ic(I − P [T ])z∥`∞ + 2λp ∥X∗

IcXT (X∗
TXT )−1sgn(βT )∥`∞

<
√

2λp +
1

2
λp

< 2λp.

Finally, note that X∗
TXT is indeed invertible since T = I; this is just our invertibility condition. This

concludes the proof.

Lemma 3.3.4 proves that β̂ has the same support as β and the same signs as β, which is of course

the content of Theorem 3.1.5.

3.3.6 Proof of (3.3.23)

We need to show that ∥ (X∗
TXT )−1

sgn(βT )∥`∞ is small with high probability and write

∥ (X∗
TXT )−1

sgn(βT )∥`∞ ≤ ∥sgn(βT )∥`∞ + ∥((X∗
TXT )−1 − Id)sgn(βT )∥`∞

≤ 1 +max
i∈I

∣⟨Wi, sgn(βT )⟩∣,

where Wi is the ith row of (X∗
TXT )−1 − Id (or column since this is a symmetric matrix).

Lemma 3.3.5 Let Wi be the ith row of (X∗
TXT )−1 − Id. Under the hypotheses of Theorem 3.1.5,

we have

P(max
i∈I

∥Wi∥ ≥ (log p)−1/2) ≤ 2p−2 log 2.

Proof Set A ≡ Id −X∗
TXT . On the event E ≡ {∥Id −X∗

TXT ∥ ≤ 1/2} (which holds w. p. at least

1 − p−2 log 2), we have

(X∗
TXT )−1 = I +A +A2 + . . . .

Therefore, since Wi = ((X∗
TXT )−1 − Id)ei where ei is the vector whose ith component is 1 and the

others 0, Wi = Aei +A2ei + . . . and

∥Wi∥ ≤ ∥Aei∥ + ∥A∥∥Aei∥ + ∥A2∥∥Aei∥ + . . .

≤ ∥Aei∥
∞

∑
k=0

∥A∥k

≤ ∥Aei∥/(1 − ∥A∥).
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Hence on E, ∥Wi∥ ≤ 2∥Aei∥.
For each i ∈ I, Aei is the ith row or column of Id −X∗

TXT and for each j ∈ I, its jth component

is equal to −⟨Xi,Xj⟩ if j ≠ i, and 0 for j = i since ∥Xi∥ = 1. Thus,

∥Wi∥2 ≤ 4 ∑
j∈I ∶j≠i

∣⟨Xi,Xj⟩∣2.

Now it follows from Lemma 3.3.6 that

∑
j∈I ∶j≠i

∣⟨Xi,Xj⟩∣2 ≤ s∥X∥2/p + t

with probability at least 1− 2e−t
2
/[2µ2

(X)(s∥X∥
2
/p+t/3)]. Under the assumptions of Theorem 3.1.5, we

have s∥X∥2/p ≤ c0(log p)−1 ≤ (8 log p)−1 provided that c0 ≤ 1/8. With t = (8 log p)−1, this gives

∑
j∈I ∶j≠i

∣⟨Xi,Xj⟩∣2 ≤ 1/(4 log p) (3.3.26)

with probability at least 1−2e−3/[64µ2
(X) log p]. Now the assumption about the coherence guarantees

that µ(X) ≤ A0/ log p so that (3.3.26) holds with probability at least 1 − 2e−3 log p/[64A2
0]. Hence, by

choosing A0 sufficiently small, the lemma follows from the union bound.

Lemma 3.3.6 Suppose that I ⊂ {1, . . . , p} is a random subset of predictors with at most s elements.

For each i, 1 ≤ i ≤ p, we have

P
⎛
⎝ ∑j∈I ∶j≠i

∣⟨Xi,Xj⟩∣2 >
s

p
∥X∥2 + t

⎞
⎠
≤ 2 exp(− t2

2µ2(X)(s∥X∥2/p + t/3)) . (3.3.27)

Proof The inequality (3.3.27) is essentially an application of Bernstein’s inequality, which states

that for a sum of uniformly bounded independent random variables with ∣Yk − EYk ∣ < c,

P(
n

∑
k=1

(Yk − EYk) > t) ≤ e−t
2
/(2σ2

+2ct/3), (3.3.28)

where σ2 is the sum of the variances, σ2 ≡ ∑nk=1 Var(Yk). The issue here is that ∑j∈I ∶j≠i ∣⟨Xi,Xj⟩∣2 is

not a sum of independent variables and we need to use a kind of Poissonization argument to reduce

this to a sum of independent terms.

A set I ′ of predictors is sampled using a Bernoulli model by first creating the sequence

δj =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 w. p. s/p,

0 w. p. 1 − s/p
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and then setting I ′ ≡ {j ∈ {1, . . . , p} ∶ δj = 1}. The size of the set I ′ follows a binomial distribution,

and E ∣I ′∣ = s. We make two claims: first, for each t > 0, we have

P( ∑
j∈I ∶j≠i

∣⟨Xi,Xj⟩∣2 > t) ≤ 2P( ∑
j∈I′∶j≠i

∣⟨Xi,Xj⟩∣2 > t); (3.3.29)

second, for each t > 0

P( ∑
j∈I′∶j≠i

∣⟨Xi,Xj⟩∣2 >
s

p
∥X∥2 + t) ≤ exp(− t2

2µ2(X)(s∥X∥2/p + t/3)) . (3.3.30)

Clearly, (3.3.29) and (3.3.30) give (3.3.27).

To justify the first claim, observe that

P( ∑
j∈I′∶j≠i

∣⟨Xi,Xj⟩∣2 > t) =
p

∑
k=0

P( ∑
j∈I′∶j≠i

∣⟨Xi,Xj⟩∣2 > t ∣ ∣I ′∣ = k)P (∣I ′∣ = k)

≥
p

∑
k=s

P( ∑
j∈I′∶j≠i

∣⟨Xi,Xj⟩∣2 > t ∣ ∣I ′∣ = k)P (∣I ′∣ = k)

=
p

∑
k=s

P( ∑
j∈Ik ∶j≠i

∣⟨Xi,Xj⟩∣2 > t)P (∣I ′∣ = k),

where Ik is selected uniformly at random with ∣Ik ∣ = k. We make two observations: 1) since s is

an integer, it is the median of ∣I ′∣ and P (∣I ′∣ ≥ s) ≥ 1/2; and 2) P(∑j∈Ik ∶j≠i ∣⟨Xi,Xj⟩∣2 > t) is a

nondecreasing function of k. To see why this is true, consider that a subset Ik+1 of size k + 1 can

be sampled by first choosing a subset Ik of size k uniformly, and then choosing the remaining entry

uniformly at random from the complement of Ik. It follows that with Zk = ∑j∈Ik ∣⟨Xi,Xj⟩∣2 1{i≠j}, we

have that Zk+1 and Zk +Yk, where Yk is a nonnegative random variable, have the same distribution.

Hence P(Zk+1 ≥ t) ≥ P(Zk ≥ t). With these two observations in mind, we continue

P( ∑
j∈I′∶j≠i

∣⟨Xi,Xj⟩∣2 > t) ≥ P( ∑
j∈I ∶j≠i

∣⟨Xi,Xj⟩∣2 > t)
p

∑
k=s

P (∣I ′∣ = k)

≥ 1

2
P( ∑

j∈I ∶j≠i

∣⟨Xi,Xj⟩∣2 > t),

which is the first claim (3.3.29).

For the second claim (3.3.30), observe that

∑
j∈I′∶j≠i

∣⟨Xi,Xj⟩∣2 = ∑
1≤j≤p∶j≠i

δj ∣⟨Xi,Xj⟩∣2 ≡ ∑
1≤j≤p∶j≠i

Yj .

The Yj are independent and obey:

1. ∣Yj − EYj ∣ ≤ supj≠i ∣⟨Xi,Xj⟩∣2 ≤ µ2(X).
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2. The sum of means is bounded by

∑
1≤j≤p∶j≠i

EYj =
s

p
∑

1≤j≤p∶j≠i

∣⟨Xi,Xj⟩∣2 ≤
s∥X∥2

p
.

The last inequality follows from ∑1≤j≤p∶j≠i ∣⟨Xi,Xj⟩∣2 ≤ ∑1≤j≤p ∣⟨Xi,Xj⟩∣2 where the right-hand

side is equal to ∥X∗Xi∥2 ≤ ∥X∗∥2∥Xi∥2 = ∥X∥2 since the columns are unit-normed.

3. The sum of variances is bounded by

∑
1≤j≤p∶j≠i

Var(Yj) =
s

p
(1 − s

p
) ∑

1≤j≤p∶j≠i

∣⟨Xi,Xj⟩∣4 ≤
sµ2(X)∥X∥2

p
.

The last inequality follows from ∑1≤j≤p∶j≠i ∣⟨Xi,Xj⟩∣4 ≤ µ2(X)∑1≤j≤p ∣⟨Xi,Xj⟩∣2, which is less

or equal to µ2(X) ∥X∥2 as before.

The claim (3.3.30) is now a simple application of Bernstein’s inequality (3.3.27).

Lemma 3.3.5 establishes that (3.3.23) holds with probability at least 1−2p−2 log 2−2∣T ∣p−2. Indeed,

on the event maxi ∥Wi∥ ≤ (log p)−1/2, it follows from Lemma 5.2.5 that

P(max
i∈I

∣⟨Wi, sgn(βT )⟩∣ ≥ 2) ≤ 2∣T ∣ e−2 log p ≤ 2∣T ∣p−2.

3.4 Discussion

3.4.1 Comparison to related theoretical results

As described in Section 3.1.2, a common assumption in the literature is that the sparsity is smaller

than the inverse of the coherence, 1/µ. This assumption essentially requires s ≾ √
n. However, the

LASSO is known to work very well empirically when the sparsity far exceeds this threshold [59].

Thus there is a disconnect between what experience shows and the requirements in the majority of

the literature.

In the noiseless setting, this gap was bridged in Tropp’s paper [153]. Our work bridges this gap

in the noisy setting. We do so in the same way as Tropp: by considering the performance of the

LASSO one expects in almost all cases but not all. By considering statistical ensembles much as

in [37,153], one shows that in the above examples, the LASSO works provided that the sparsity level

is bounded by about n/ log p; that is, for generic signals, the sparsity can grow almost linearly with

the sample size. We also prove that under these conditions, the irrepresentable condition holds with

high probability and we show that, as long as the entries of β are not too small, one can recover the

exact support of β with high probability.
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Finally, there does not seem much room for improvement as all of our conditions appear necessary

as well. In Section 3.2, we have proposed special examples in which the LASSO performs poorly.

On the one hand, these examples show that even with highly incoherent matrices, one cannot expect

good performance in all cases unless the sparsity level is very small. And on the other hand, one

cannot really eliminate our assumption about the coherence since we have shown that with coherent

matrices, the LASSO would fail to work well on generically sparse objects.

One could of course consider other statistical descriptions of sparse β’s and/or ideal models, and

leave this issue open for further research. Further, one could consider the error in estimating β under

weak coherence conditions; this appears to be a difficult theoretical problem.
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Chapter 4

Low-rank matrix estimation with
the RIP

4.1 Introduction

Low-rank matrix recovery is a burgeoning topic drawing the attention of many researchers in the

closely related field of sparse approximation and compressive sensing. As noted in Chapter 1, in the

matrix recovery problem, the signal to be recovered is a low-rank matrix M ∈ Rn1×n2 , about which

we have information supplied by means of a linear operator A ∶ Rn1×n2 → R
m (typically, m is far less

than n1n2),

y = A(M) + z, y ∈ Rm.

Here z is a stochastic noise term. Signal recovery appears to be an ill-posed problem because

there are many more unknowns than equations. However, analogously to the results demonstrated

for sparse approximation, taking into account the parsimony of the model may cause recovery to

become feasible.

In this chapter, we derive similar results for matrix recovery to those available for compressed

sensing and sparse approximation in general. However, in contrast to results available in the litera-

ture on compressive sensing or sparse regression, we show that the error bound is within a constant

factor (rather than a log factor) of an idealized oracle error bound achieved by projecting the data

onto a smaller subspace given by the oracle (and also within a constant of the minimax error bound).

This error bound also applies to full-rank matrices (which are well-approximated by low-rank ma-

trices), and there appears to be no analogue of this in the compressive sensing world.

Another contribution is to lower the number of measurements to stably recover a matrix of rank

r by convex programming. It is not hard to see that we need at least m ≥ (n1+n2−r)r measurements

to recover matrices of rank r, by any method whatsoever. To be sure, if m < (n1 + n2 − r)r, we will

always have two distinct matrices M and M ′ or rank at most r with the property A(M) = A(M ′)
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no matter what A is. To see this, fix two matrices U ∈ Rn1×r, V ∈ Rn2×r with orthonormal columns,

and consider the linear space of matrices of the form

T = {UX∗ − Y V ∗ ∶X ∈ Rn2×r, Y ∈ Rn1×r}.

The dimension of T is r(n1 + n2 − r). Thus, if m < (n1 + n2 − r)r, there exists M = UX∗ − Y V ∗ ≠ 0

in T such that A(M) = 0. This proves the claim since A(UX∗) = A(Y V ∗) for two distinct matrices

of rank at most r. Now a novel result discussed in this chapter is that, even without knowing

that M ∈ T , one can stably recover M from a constant times (n1 + n2)r measurements via nuclear-

norm minimization. Once again, in contrast to similar results in compressive sensing, the number

of measurements required is within a constant of the theoretical lower limit—there is no extra log

factor.

4.1.1 A few applications

Following a series of advances in the theory of low-rank matrix recovery from undersampled linear

measurements [32,34,36,44,96,97,101,110,129], a number of new applications have sprung up to join

ranks with the already established ones. A quick survey shows that low-rank modeling is getting

very popular in science and engineering, and we present a few eclectic examples to illustrate this

point.

� Quantum state tomography [88]. In quantum state tomography, a mixed quantum state

is represented as a square positive semidefinite matrix, M (with trace 1). If M is actually a

pure state, then it has rank 1, and more generally, if it is approximately pure then it will be

well approximated by a low-rank matrix [88].

� Face recognition [13,32]. Let {yi}ni=1 be a sequence of images (in vector form) of the same

face under varying illumination. In theory and under idealized circumstances (the images

are assumed to be convex, Lambertian objects), these faces all reside near the same nine-

dimensional linear subspace [13]. Thus, the matrix created by stacking together the images is

well approximated by a rank-9 matrix. In practice, face-recognition techniques based on the

assumption that these images reside in a low-dimensional subspace are highly successful [13,32].

Quantum state tomography lends itself perfectly to the compressive sensing framework. On an

abstract level, one sees measurements consisting of linear combinations of the unknown quantum

state M—inner products with certain observables which can be chosen with some flexibility by the

physicist—and the goal is to recover a good approximation of M . The size of M grows exponentially

with the number of particles in the system, so one would like to use the structure of M to reduce

the number of measurements required, thus necessitating compressive sensing (see [88] for a more
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in depth discussion and a specific analysis of this problem). Depending upon the measurements

used, the RIP may or may not be applicable. For the specific case of random Pauli measurements

suggested in [88] it is presently unknown whether the RIP holds (with high probability). 1

In an important application using the face recognition model, one sees the entirety of every face,

except that a small subset of pixels may have very large errors (this may be caused by shadows

or occlusions). In this case, the sampling operator is the identity. While our results can apply

to this problem, the algorithms discussed in this chapter are intended for bounded, dense errors.

(We include face recognition in our discussion to illustrate the different uses of the low-rank matrix

model.) However, there is another nuclear-norm based minimization approach, specialized to deal

with sparse errors, with strong guarantees for this model [32].

4.1.2 Related literature

There has recently been an explosion of literature regarding low-rank matrix recovery, with special

attention given to the matrix completion subproblem (as made famous by the million dollar Net-

flix Prize). Several different algorithms have been proposed, with many drawing their roots from

standard compressive sensing techniques [25, 34, 36, 52, 97, 101, 104, 110, 129]. For example, nuclear-

norm minimization is highly analogous to `1 minimization (as a convex relaxation to an intractable

problem), and the algorithms analyzed in this chapter are analogous to the Dantzig selector and the

LASSO.

The efficacy of nuclear-norm minimization is a focus of the thesis of Fazel [72] who outlined several

of its various applications from control theory to covariance estimation. Aside from an emphasis

on applications, Fazel et al. [72,74] demonstrated through numerical simulations that nuclear-norm

minimization, and also a somewhat similar log-det heuristic, are quite effective in recovering low-rank

matrices.

The theory regarding the power of nuclear-norm minimization to recover low-rank matrices from

subsampled measurements began with two papers by Srebro et al. [142,143] in the matrix completion

setup. General (noiseless) linear measurements were then considered by Recht et al. [129], a paper

which created a bridge between compressive-sensing and low-rank matrix recovery via the RIP (to be

defined in Section 4.2.1). Bach [8] then considered the asymptotics, and demonstrated consistency

of the matrix LASSO estimate in the noisy case, as the number of measurements approached infinity

(the matrix LASSO estimate is defined in Section 4.1.4). Subsequently, several papers revisited the

matrix competion setup which turns out to be RIP-less and further developed the theory of nuclear-

norm minimization [32, 34, 36, 44, 89]; this literature is motivated by very clear applications such as

1An interesting point about quantum state tomography is that if one enforces the constraints that M is positive
semidefinite and trace(M) = 1 then this ensures that ∣∣M ∣∣∗ = 1, and the scientist is left with a feasibility problem.
In [88] the authors suggest to solve this feasibility problem by removing a constraint and then performing nuclear-norm
minimization and they show that under certain conditions this is sufficient for exact recovery (and thus of course the
solution obeys the unenforced constraint).
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recommender systems and network localizations, and has required very sophisticated mathematical

techniques.

Outside of matrix completion, another route used to prove the effectiveness of nuclear-norm min-

imization is the consideration of null space conditions. Recht et al. [130] introduced a necessary and

sufficient condition for the noiseless recovery of all low-rank matrices by nuclear-norm minimization;

this condition is the clear analog of the null space condition for sparse recovery (see Section 2.2.3).

Recht et al. [130] considered Gaussian measurements, and proved that the null space condition is

satisfied with high probability above a certain threshold of measurements. He also augmented these

results with an analysis of the weak threshold, i.e., the number of measurements necessary to recover

a fixed low-rank matrix, rather than what is necessary for universal recovery. Further, he showed

through numerical simulations that for matrices with relatively large rank his threshold appears to

be fairly tight. Oymak et al. [121] improved these thresholds particularly in the case when the rank

is an arbitrarily small proportion of the matrix length or width.

With the recent increase in attention given to the low-rank matrix model, which we surmise is

due to the spring of new theory, new applications are being quickly discovered that deviate from

the matrix completion setup (such as quantum state tomography [88]), and could benefit from a

different analysis. In this chapter, we once again consider measurement ensembles obeying the RIP as

in [129], which are of a different nature than those involved in matrix completion. As in compressive

sensing, the only known measurement ensembles which provably satisfy the RIP at a nearly minimal

sampling rate are random (such as the Gaussian measurement ensemble in Section 4.2.1). Having

said this, two comments are in order. First, our results provide an absolute benchmark of what

is achievable, thus allowing direct comparisons with other methods and other sampling operators

A. For instance, one can quantify how far the error bounds for the RIP-less matrix completion

are from what is then known to be essentially unimprovable. Second, since our results imply that

the restricted isometry property alone guarantees a near-optimal accuracy, we hope that this will

encourage more applications with random ensembles, and also encourage researchers to establish

whether or not their measurements obey this desirable property. Finally, we hope that our analysis

offers insights for applications with nonrandom measurement ensembles.

While the results discussed in this chapter are novel, recent similar and complementary results

are available in the literature [116–118, 131]. Negahban et al. [117] and [118] proved strong results

under the restricted strong convexity condition, which is different than the RIP, but similar in nature.

In fact, in [116], Negahban et al. extend this same analysis to the CS problem. In [117] the authors

showed that this condition holds with high probability for the Gaussian measurement ensemble (see

Section 4.2.2) as long as there is a constant number of measurements per degree of freedom; thus,

this mirrors one of our results. Tsybakov et al. [131] assumed the RIP plus another hypothesis,

and established noisy error bounds. When the unknown matrix is exactly—not approximately—
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low rank and when its nonzero singular values stand far above the noise level,2 the error bounds

in [117, 118, 131], holding under the respective conditions of those papers, are the same as those

presented in Theorem 4.2.4 in Section 4.2.2 below (to within a constant factor). However, when

the unknown matrix is well approximated by a matrix of much lower rank, [118, 131] present error

bounds of a very different nature than those discussed in this thesis; we invite readers to explore

these complementary results. Last, a unique feature of the research discussed in this chapter, is that

we give lower bounds matching our intuitive error bounds (Theorems 4.2.4 and 4.2.7).

4.1.3 Problem setup

As mentioned above, we observe data y from the model

y = A(M) + z, (4.1.1)

where M is an unknown n1 × n2 matrix, A ∶ Rn1×n2 → R
m is a linear mapping, and z is an m-

dimensional noise term. The synthesized versions of our error bounds assume that z is a Gaussian

vector with i.i.d. N (0, σ2) entries, written as z ∼ N (0, σ2I). The goal is to recover a good approxi-

mation of M while requiring as few measurements as possible.

We pause to demonstrate the form ofA(X) explicitly: the ith entry ofA(X) is [A(X)]i = ⟨Ai,X⟩
for some sequence of matrices {Ai} and with the standard inner product ⟨A,X⟩ = trace(A∗X). (A∗

is the adjoint of A.) Each Ai can be likened to a row of a compressive sensing matrix, and in fact

it can aid the intuition to think of A as a large matrix, i.e., one could write A(X) as

A(X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(A1)
vec(A2)

⋮
vec(Am)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vec(X), (4.1.2)

where vec(X) is a long vector obtained by stacking the columns of X. In the common matrix

completion problem, each Ai is of the form eke
∗
j so that the ith component of A(X) is of the form

⟨eke∗j ,M⟩ = e∗kMej =Mkj for some (j, k).
2This can be interpreted as having a signal well separated in amplitude from the noise floor.
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4.1.4 Algorithms

We analyze the theoretical properties of two different nuclear-norm-minimization-based programs.

The first is an analogue to the Dantzig selector from compressive sensing [43], defined as follows:

minimize ∥X∥∗
subject to ∥A∗(q)∥ ≤ λ

q = y −A(X),

(4.1.3)

where the optimal solution is our estimate M̂ , ∥⋅∥ is the operator norm and ∣∣ ⋅ ∣∣∗ is its dual, i.e., the

nuclear norm. (The nuclear norm of a matrix, X, is the sum of the singular values of X and the

operator norm is its largest singular value.) A∗ is the adjoint of A. We call this convex program

the matrix Dantzig selector.

To pick a useful value for the parameter λ in (4.1.3), we stipulate that the ‘true’ matrix M

should be feasible (this is a necessary condition for our proofs). In other words, one should have

∥A∗(z)∥ ≤ λ; Section 4.2.2 provides further intuition about this requirement. In the case of Gaussian

noise, this corresponds to λ = C√
nσ for some numerical constant C as in the following lemma.

Lemma 4.1.1 Suppose z is a Gaussian vector with i.i.d. N (0, σ2) entries and let n = max(n1, n2).

Then if C0 > 4
√

(1 + δ1) log 12

∥A∗(z)∥ ≤ C0

√
nσ, (4.1.4)

with probability at least 1 − 2e−cn for a fixed numerical constant c > 0.

This lemma is proved in Section 4.3 using a standard covering argument. The scalar δ1 is the

isometry constant at rank 1, as defined in Section 4.2.1, but suffice for now that it is a very small

constant bounded by
√

2 − 1 (with high probability) under the assumptions of all of our theorems.

The optimization program (4.1.3) may be formulated as a semidefinite program (SDP) and can

thus be solved by any of the standard SDP solvers. To see this, we first recall that the nuclear norm

admits an SDP characterization since ∥X∥∗ is the optimal value of the SDP

minimize (trace(W1) + trace(W2))/2

subject to

⎡⎢⎢⎢⎢⎢⎣

W1 X

X∗ W2

⎤⎥⎥⎥⎥⎥⎦
⪰ 0

with optimization variables X,W1,W2 ∈ Rn×n. (We say that a matrix Q ⪰ 0 if Q is positive semidef-

inite.) Second, the constraint ∥A∗(q)∥ ≤ λ is an SDP constraint since it can be expressed as the
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linear matrix inequality (LMI)
⎡⎢⎢⎢⎢⎢⎣

λIn A∗(q)
[A∗(q)]∗ λIn

⎤⎥⎥⎥⎥⎥⎦
⪰ 0.

This shows that (4.1.3) can be formulated as the SDP

minimize (trace(W1) + trace(W2))/2

subject to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1 X 0 0

X∗ W2 0 0

0 0 λIn A∗(q)
0 0 [A∗(q)]∗ λIn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0

q = y −A(X),

with optimization variables X,W1,W2 ∈ Rn×n.

While this SDP formulation implies that the program can be solved in polynomial time, a few al-

gorithms have recently been developed to solve similar nuclear-norm minimization problems without

using interior-point methods which work especially efficiently in practice [25,104]. The nuclear-norm

minimization problem solved using fixed-point continuation in [104] is an analogue to the LASSO,

and is defined as follows:

minimize
X

1

2
∥A(X) − y∥2

`2 + µ∣∣X ∣∣∗. (4.1.5)

We call this convex program the matrix LASSO and it is the second convex program whose theo-

retical properties are analyzed in this chapter. To our knowledge, this program was first proposed

in [143] (as a specific case of a more general program).

4.1.5 Organization

The results in this chapter mostly concern random measurements and random noise and so they

hold with high probability. In Section 4.2.1, we show that certain classes of random measurements

satisfy the RIP when only sampling a constant number of measurements per degree of freedom. In

Section 4.2.2 we present the simplest of our error bounds, demonstrating that when the RIP holds,

the solution to (4.1.3) is within a constant of the minimax risk. This error bound is refined in Section

5.3.2 to provide a more adaptive error that holds improvements when the singular values of M decay

below the noise level. It is shown that this error bound is within a constant of the expected value

of a certain oracle error. In Section 4.2.4, we present an error bound handling the case when M has

full rank but is well approximated by a low-rank matrix. Section 4.3 contains the proofs and we

finish with some concluding remarks in Section 4.4.



97

4.1.6 Notation

We review all notation used in this chapter in order to ease readability. We assume M ∈ Rn1×n2

and let n = max(n1, n2). A variety of norms are used throughout: ∣∣X ∣∣∗ is the nuclear norm (the

sum of the singular values); ∥X∥ is the operator norm of X (the top singular value); ∥X∥F is the

Frobenius norm (the `2-norm of the vector of singular values). The matrix X∗ is the adjoint of X,

and for the linear operator A ∶ Rn1×n2 → R
m, A∗ ∶ Rm → R

n1×n2 is the adjoint operator. Specifically,

if [A(X)]i = ⟨Ai,X⟩ for all matrices X ∈ Rn1×n2 , then

A∗(q) =
m

∑
i=1

qiAi

for all vectors q ∈ Rm.

4.2 Main Results

4.2.1 Matrix RIP

The matrix version of the RIP is an integral tool in proving our theoretical results and we begin by

defining the RIP in this setting and describing measurement ensembles that satisfy it. As discussed

in Section 4.1.2, the RIP was first considered in low-rank matrix recovery by Recht et al. in [129].

To characterize the RIP, we introduce the isometry constants of a linear map A.

Definition 4.2.1 For each integer r = 1,2, . . . , n, the isometry constant δr of A is the smallest

quantity such that

(1 − δr)∥X∥2
F ≤ ∥A(X)∥2

`2 ≤ (1 + δr)∥X∥2
F (4.2.1)

holds for all matrices X of rank at most r.

We say that A satisfies the RIP at rank r if δr (or δ4r) is bounded by a sufficiently small constant

between 0 and 1, the value of which will become apparent in further sections (see, e.g., Theorem

4.2.4).

Which linear maps A satisfy the RIP? As a quintessential example, we introduce the Gaussian

measurement ensemble.

Definition 4.2.2 A is a Gaussian measurement ensemble if each ‘row’ Ai, 1 ≤ i ≤ m, contains

i.i.d. N (0,1/m) entries (and the Ai’s are independent from each other).

This is of course highly analogous to the Gaussian random matrices in compressive sensing. Having

said this, a comment about the normalization is in order. We have selected the variance of the entries

to be 1/m so that for a fixed matrix X, E ∥A(X)∥2
`2
= ∥X∥2

F . However, we could instead require that

the entries be standard normal. Suppose one observes y = A(M) + z, where A has standard normal
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entries and z ∼ N (0, σ2I). A simple rescaling gives m−1/2y = m−1/2A(M) +m−1/2z, and the entries

of m−1/2A have variance 1/m. Hence, one would just need to replace σ2 appearing in our bounds

by σ2/m.

Our first result refines a result by Recht et al. [129] (see below for a comparison). It demonstrates

that Gaussian measurement ensembles, along with many other random measurement ensembles,

satisfy the RIP when m ≥ C nr (with high probability) for some constant C > 0.

Theorem 4.2.3 Fix 0 ≤ δ < 1 and let A be a random measurement ensemble obeying the following

condition: for any given X ∈ Rn1×n2 and any fixed 0 < t < 1,

P (∣∥A(X)∥2
`2 − ∥X∥2

F ∣ > t∥X∥2
F ) ≤ C exp(−cm) (4.2.2)

for fixed constants C, c > 0 (which may depend on t). Then if m ≥ Dnr, A satisfies the RIP with

isometry constant δr ≤ δ with probability exceeding 1 −Ce−dm for fixed constants D,d > 0.

The many unspecified constants involved in the presentation of Theorem 4.2.3 are meant to allow

for general use with many random measurement ensembles. However, to make the presentation more

concrete we describe the constants involved in the concentration bound (4.2.2) for a few special

random measurement ensembles. If A is a Gaussian random measurement ensemble, ∥A(X)∥2
`2

is

distributed as m−1∥X∥2
F times a chi-squared random variable with m degrees of freedom and (4.2.2)

follows from standard concentration inequalities [99,129,164]. Specifically, we have

P (∣∥A(X)∥2
`2 − ∥X∥2

F ∣ > t∥X∥2
F ) ≤ 2 exp(−m

2
(t2/2 − t3/3)) . (4.2.3)

Similarly, A satisfies equation (4.2.3) in the case when each entry of each ‘row’ Ai has i.i.d. entries

that are equally likely to take the value 1/√m or −1/√m, or if A is a random projection [2, 129].

Further, A satisfies (4.2.2) if the ‘rows’ Ai contain sub-Gaussian entries (properly normalized) [160],

although in this case the constants involved depend on the parameters of the sub-Gaussian entries.

In order to ascertain the strength of Theorem 4.2.3, note that the number of degrees of freedom

of an n1 × n2 matrix of rank r is equal to r(n1 + n2 − r). (This can be seen by counting the number

of equations and unknowns in the singular value decomposition.) Thus, one may expect that if

m < r(n1 + n2 − r), there should be a rank-r matrix in the null space of A leading to a failure to

achieve the lower bound in (5.3.4). In order to make this intuition rigorous (to within a constant)

assume without loss of generality that n2 ≥ n1, and observe that the set of rank-r matrices contains

all those matrices restricted to have nonzero entries only in the first r rows. This is an n × r
dimensional vector space and thus we must have m ≥ nr or otherwise there will be a rank-r matrix

in the null space of A regardless of what measurements are used. (This is a similar alternative to

the null-space argument posed in the introduction.)
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Theorem 4.2.3 is inspired by a similar theorem in [129][Theorem 4.2] and refines this result in two

ways. First, it shows that one only needs a constant number of measurements per degree of freedom

of the underlying rank-r matrix in order to obtain the RIP at rank r (which improves on the result

in [129] by a factor of logn and also achieves the theoretical lower bound to within a constant).

Second, it shows that one must only require a single concentration bound on A, removing another

assumption required in [129]. A possible third benefit is that the proof follows simply and quickly

from a specialized covering argument. The novelty is in the method used to cover low-rank matrices.

4.2.2 The matrix Dantzig selector and the matrix LASSO are nearly min-

imax

In this section, we present our first and simplest error bound, which only requires that A satisfies

the RIP.

Theorem 4.2.4 Assume the measurement operator A is fixed and satisfies the RIP, and that

rank(M) ≤ r. Let M̂DS be the solution to the matrix Dantzig selector (4.1.3) and M̂L be the solution

to the matrix LASSO (4.1.5). If δ4r <
√

2 − 1 and ∥A∗(z)∥ ≤ λ then

∥M̂DS −M∥2
F ≤ C0 rλ

2, (4.2.4)

and if δ4r < (3
√

2 − 1)/17 and ∥A∗(z)∥ ≤ µ/2, then

∥M̂L −M∥2
F ≤ C1 rµ

2; (4.2.5)

above, C0 and C1 are small constants depending only on the isometry constant δ4r. In particular, if

z ∼ N (0, σ2I) and M̂ is either M̂DS with λ = 8
√
nσ, or M̂L with µ = 16

√
nσ, we have

∥M̂ −M∥2
F ≤ C ′

0 nrσ
2 (4.2.6)

with probability at least 1 − 2e−cn for a constant C ′
0 (depending only on δ4r).

Note that (4.2.6) follows from (4.2.4) and (4.2.5) simply by plugging λ,µ/2 = 8
√
nσ into Lemma

4.1.1. In a nutshell, the error is proportional to the number of degrees of freedom times the noise

level.

An important point is that one may expect the error to be reduced when further measurements

are taken, i.e., one may expect the error to be inversely proportional to m. In fact, this is the case

for the Gaussian measurement ensemble, but this extra factor is absorbed into the definition in order

to normalize the measurements so that they satisfy the RIP (see Section 4.2.1). If instead, each row

‘Ai’ in the Gaussian measurement ensemble is defined to have i.i.d. standard normal entries, then it
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follows from the discussion immediately after Definition 4.2.2 that the error bound reads

∥M̂ −M∥2
F ≤ C ′

0 nrσ
2/m. (4.2.7)

Of course, this rescaling argument applies in general to non-Gaussian measurements.

A second remark is that exploiting the low-rank structure helps to denoise. For example, if we

measured every entry of M (a measurement ensemble with isometry constant δr = 0), but with each

measurement corrupted by a N (0, σ2) noise term, then taking the measurements as they are as the

estimate of M would lead to an expected error equal to

E ∥M̂ −M∥2
F = n2σ2.

Nuclear-norm minimization3 reduces this error by a factor of about n/r.
The strength of Theorem 4.2.4 is that the error bound (4.2.6) is nearly optimal in the sense that

no estimator can do essentially better without further assumptions, as seen by lower-bounding the

expected minimax error.

Theorem 4.2.5 Suppose that the measurement operator A is fixed and satisfies the RIP, and that

z ∼ N (0, σ2I). Then any estimator M̂(y) obeys

sup
M ∶rank(M)≤r

E ∥M̂(y) −M∥2
F ≥ 1

1 + δr
nrσ2. (4.2.8)

In other words, the minimax error over the class of matrices of rank at most r is lower bounded by

about nrσ2.

The exacting reading may argue that while this lower bound is in expectation, the upper bound

holds with high probability. To address this, we also prove the following complementary theorem.

Theorem 4.2.6 Under the assumptions of Theorem 4.2.5, any estimator M̂(y) obeys

sup
M ∶rank(M)≤r

P(∥M̂(y) −M∥2
F ≥ 1

2(1 + δr)
nrσ2) ≥ 1 − e−nr/16. (4.2.9)

Before continuing, it may be helpful to analyze the solutions to the matrix Dantzig selector

and the matrix LASSO in a simple case in order to understand the error bounds in Theorem 4.2.4

intuitively, and also to understand our choice of λ and µ. Suppose A is the identity so that changing

the notation a bit, the model is Y =M+Z, where Z is an n×n matrix with i.i.d. Gaussian entries. We

would like the unknown matrix M to be a feasible point, which requires that ∥Z∥ ≤ λ (for example,

3Of course if one sees all of the entries of the matrix plus noise, nuclear-norm minimization is unnecessary, and
one can achieve minimax error bounds by truncating the singular values.



101

if ∥Z∥ > λ, we already have problems when M = 0). It is well known that the top singular value of a

square n × n Gaussian matrix, with per-entry variance σ2, is concentrated around
√

2nσ, and thus

we require λ ≥
√

2nσ (this provides a slightly sharper bound than Lemma 4.1.1). Let Tλ(X) denote

the singular value thresholding operator given by

Tλ(X) =∑
i

max(σi(X) − λ,0)uiv∗i ,

where X = ∑i σi(X)uiv∗i is any singular value decomposition. In this simple setting, the solution to

(4.1.3) and (4.1.5) can be explicitly calculated, and for λ = µ they are both equal to Tλ(M +Z). If

λ is too large, then Tλ(M + Z) becomes strongly biased towards zero, and thus (loosely) λ should

be as small as possible while still allowing M to be feasible for the matrix Dantzig selector (4.1.3),

leading to the choice λ ≈
√

2nσ.

Further, in this simple case we can calculate the error bound in a few lines. We have

∥M̂ −M∥ = ∥Tλ(Y ) − Y +Z∥

≤ ∥Tλ(Y ) − Y ∥ + ∥Z∥

≤ 2λ

assuming that λ ≥ ∥Z∥. Then

∥M̂ −M∥2
F ≤ ∥M̂ −M∥2

rank(M̂ −M)

≤ 4λ2 rank(M̂ −M). (4.2.10)

Once again, assuming that λ ≥ ∥Z∥, we have rank(M̂ −M) ≤ rank(M̂) + rank(M) ≤ 2r. Plugging

this in with λ = C√
nσ gives the error bound (4.2.6).

4.2.3 Oracle inequalities

Showing that an estimator achieves the minimax risk is reassuring but is sometimes not considered

completely satisfactory. As is frequently discussed in the literature, the minimax approach focuses on

the worst-case performance and it is quite reasonable to expect that for matrices of general interest,

better performances are possible. In fact, a recent trend in statistical estimation is to compare the

performance of an estimator with what is achievable with the help of an oracle that reveals extra

information about the problem. A good match indicates an overall excellent performance.

What information should the oracle reveal in this problem? A first thought is that the oracle

could reveal the rank of M . However, this information could be quite suboptimal as shown by the

following toy example. Imagine that M has 2 large singular values, far above the noise level, and 20
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other small singular values, far below the noise level. The rank of M is 22, but under the presence of

noise it ostensibly has rank 2. Thus, ostensibly it would be best to attempt to approximate it with

a rank−2 matrix, and one would hope to set r = 2 in the error bound from Theorem 4.2.4. Thus,

perhaps the oracle should give the ‘ostensible’ rank of M . To make this rigorous, we examine the

following family of least squares estimators.4

M̂[r] = arg min{∥y −A(M̂)∥`2 ∶ rank M̂ = r}. (4.2.11)

Knowing the true matrix M , an oracle or a genie would then select the best rank to use as to

minimize the mean-squared error (MSE)

E ∥M̂[r] −M∥2
F . (4.2.12)

In fact, this expected error is difficult to analyze due to the nonlinear structure of the manifold of

matrices at a fixed rank, r. Instead, we introduce an oracle which gives more information, and is

easier to analyze. Instead of just the ‘best’ rank, this oracle gives the ‘best’ column space as well.

To develop this oracle bound, assume w.l.o.g. that n2 ≥ n1 so that n = n2 and let rM = rank(M).
Suppose A satisfies the RIP at rank r, and consider the family of estimators defined as follows: for

each n1 × r orthogonal matrix U with r ≤ rM , define

M̂[U] = arg min
R

{∥y −A(M̂)∥`2 ∶ M̂ = UR for some R}. (4.2.13)

In other words, we fix the column space (the linear space spanned by the columns of the matrix U),

and then find the matrix with that column space which best fits the data. The oracle then supplies

the column space that minimizes the MSE.

inf
U,r

E ∥M − M̂[U]∥2
F . (4.2.14)

The question is whether it is possible to mimic the performance of the oracle and achieve a MSE

close to (4.2.14) with a real estimator.

Before giving a precise answer to this question, it is useful to determine how large the oracle risk

is. To this end, consider a fixed orthogonal matrix U , and write the least-squares estimate (4.2.13)

as

M̂[U] ∶= UHU(y), HU = (A∗UAU)−1A∗U ,
4One must make a choice of estimators when examining oracle errors, and we use the standard choice as in [43].
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where AU is the linear map

AU ∶ R
r×n → R

m

R ↦ A(UR),
(4.2.15)

and

A∗U ∶ R
m → R

r×n

y ↦ U∗A∗(y).

Then decompose the MSE as the sum of the squared bias and variance

E ∥M − M̂[U]∥2
F = ∥bias∥2

F + variance

= ∥E M̂[U] −M∥2
F + E ∥UHU(z)∥2

F .

The variance term is classically equal to

E ∥UHU(z)∥2
F = E ∥HU(z)∥2

F = σ2 trace(H∗
UHU) = σ2 trace((A∗UAU)−1).

Due to the restricted isometry property, all the eigenvalues of the linear operator A∗UAU belong to

the interval [1 − δrM ,1 + δrM ], see Lemma 4.3.13. Therefore, the variance term obeys

σ2 trace((A∗UAU)−1) ≥ 1

1 + δrM
nrσ2.

For the bias term, we have

E M̂[U] −M = U(A∗UAU)−1A∗UA(M) −M,

which we rewrite as

E M̂[U] −M = U(A∗UAU)−1A∗UA((I −UU∗ +UU∗)M) −M

= U(A∗UAU)−1A∗UA((I −UU∗)M) +U(A∗UAU)−1A∗UAU(U∗M) −M

= U(A∗UAU)−1A∗UA((I −UU∗)M) − (I −UU∗)M.

Hence, the bias is the sum of two matrices: the first has a column space included in the span of

the columns of U while the column space of the other is orthogonal to this span. Put PU⊥(M) =
(I − UU∗)M ; that is, PU⊥(M) is the (left) multiplication with the orthogonal projection matrix

(I −UU∗). We have

∥E M̂[U] −M∥2
F = ∥U(A∗UAU)−1A∗UA(PU⊥(M))∥2

F + ∥PU⊥(M)∥2
F

≥ ∥PU⊥(M)∥2
F .
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To summarize, the oracle bound obeys

inf
U,r

E ∥M − M̂[U]∥2
F ≥ inf

U
[∥PU⊥(M)∥2

F +
nrσ2

1 + δrM
] .

Now for a given dimension r, the best U—that minimizing the squared bias term or its proxy

∥PU⊥(M)∥2
F—spans the top r singular vectors of the matrix M . Denoting the singular values of M

by σi(M), we obtain

inf
U,r

E ∥M − M̂[U]∥2
F ≥ inf

r
[∑
i>r

σ2
i (M) + 1

2
nrσ2] ,

which for convenience we simplify to

inf
U,r

E ∥M − M̂[U]∥2
F ≥ 1

2
∑
i

min(σ2
i (M), nσ2). (4.2.16)

The right-hand side has a nice interpretation. Write the SVD of M as M = ∑ri=1 σi(M)uiv∗i . Then if

σ2
i (M) > nσ2, one should try to estimate the rank-1 contribution σi(M)uiv∗i and pay the variance

term (which is about nσ2) whereas if σ2
i (M) ≤ nσ2, we should not try to estimate this component,

and pay a squared bias term equal to σ2
i (M). In other words, the right-hand side may be interpreted

as an ideal bias-variance trade-off. Note that when all of the singular values are far above the noise

level, the oracle (nearly) matches the minimax bound of Theorem 4.2.5.)

The main result of this section is that the matrix Dantzig selector and matrix LASSO achieve

this same ideal bias-variance trade-off to within a constant.

Theorem 4.2.7 Assume the measurement operator A is fixed and satisfies the RIP, and that

rank(M) ≤ r. Let M̂DS be the solution to the matrix Dantzig selector (4.1.3) and M̂L be the

solution to the matrix LASSO (4.1.5). Suppose z ∼ N (0, σ2I) and let λ = 16
√
nσ and µ = 32

√
nσ2.

If δ4r <
√

2 − 1, then

∥M̂DS −M∥2
F ≤ C0 ∑

i

min(σ2
i (M), nσ2), (4.2.17)

and if δ4r < (3
√

2 − 1)/17, then

∥M̂L −M∥2
F ≤ C1 ∑

i

min(σ2
i (M), nσ2) (4.2.18)

with probability at least 1 − 2e−cn for constants C0 and C1 (depending only on δ4r).

In other words, not only does nuclear-norm minimization mimic the performance that one would

achieve with an oracle that gives the exact column space of M (as in Theorem 4.2.5), but in fact the

error bound is within a constant of what one would achieve by projecting onto the optimal column

space corresponding only to the significant singular values.

While a similar result holds in the compressive sensing literature [43], we derive the result here
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using a novel technique. We use a middle estimate M̄ which is the optimal solution to a certain

rank-minimization problem (see Section 4.3) and is provably near M̂ and M . With this technique,

the proof is a fairly simple extension of Theorem 4.2.4.

4.2.4 Extension to full-rank matrices

In some applications, such as sensor localization, M has exactly low rank, i.e., only the top few of

its singular values are nonzero. However, in many applications, such as quantum state tomography,

M has full rank, but is well approximated by a low-rank matrix. In this section, we demonstrate an

extension of the preceding error bound when M has full rank.

First, suppose n1 ≤ n2 and note that a result of the form

∥M̂ −M∥2
F ≤ C

n1

∑
i=1

min(σ2
i (M), nσ2) (4.2.19)

would be impossible when undersampling M because it would imply that as the noise level σ ap-

proaches zero, an arbitrary full-rank n × n matrix could be exactly reconstructed from fewer than

n2 linear measurements. Instead, our result essentially splits M into two parts,

M =
r̄

∑
i=1

σi(M)uiv∗i +
n1

∑
i=r̄+1

σi(M)uiv∗i =Mr̄ +Mc

where r̄ ≈ m/n, and Mr̄ is the best rank-r̄ approximation to M . The error bound in the theorem

reflects a near-optimal bias-variance trade-off in recovering Mr̄, but an inability to recover Mc (and

indeed the proof essentially considers Mc as non-Gaussian noise). Note that r̄(n1 + n2 − r̄) is of the

same order as m so that the part of the matrix which is well recovered has about as many degrees

of freedom as the number of measurements. In other words, even in the noiseless case this theorem

demonstrates instance optimality, i.e., the error bound is proportional to the norm of the part of

M that is irrecoverable given the number of measurements (see [166] for an analogous result in

compressive sensing). In the noisy case there does not seem to be any current analogue to this error

bound in compressive sensing.

Theorem 4.2.8 Fix M . Suppose that A is sampled from the Gaussian measurement ensemble with

m ≤ c0n2/ log(m/n) and let r̄ ≤ c1m/n for some fixed numerical constants c0 and c1. Let M̂ be the

solution to the matrix Dantzig selector (4.1.3) with λ = 16
√
nσ or the solution to the matrix LASSO

(4.1.5) with µ = 32
√
nσ. Suppose that z ∼ N (0, σ2I). Then

∥M̂ −M∥2
F ≤ C (

r̄

∑
i=1

min(σ2
i (M), nσ2) +

n

∑
i=r̄+1

σ2
i (M)) (4.2.20)

with probability greater than 1 −De−dn for fixed numerical constants C,D,d > 0. Roughly, the same
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conclusion extends to operators obeying the NNQ condition, see below.

First note that r̄ is small enough so that the RIP holds with high probability (see Lemma 4.2.3).

However, the theorem requires more than just the RIP. The other main requirement is a certain NNQ

condition, which holds for Gaussian measurement ensembles and is introduced in Section 4.3. It is an

analogous requirement to the LQ condition introduced by Wojtaszczyk [166] in compressive sensing.

To keep the presentation of the theorem simple, we defer the explanation of the NNQ condition to

the proofs section and simply state the theorem for the Gaussian measurement ensemble. However,

the proof is not sensitive to the use of this ensemble (for example sub-Gaussian measurements yield

the same result). Many generalizations of this theorem are available and the lemmas necessary to

make such generalizations are spelled out in Section 4.3.

The assumption that m ≤ cn2/ log(m/n) seems to be an artifact of the proof technique. In-

deed, one would not expect further measurements to negatively impact performance. In fact, when

m ≥ c′n2 for a fixed constant c′, one can use Lemma 4.3.2 from Section 4.3 to derive the error

bound (4.2.20) (with high probability), leaving the necessity for a small ‘patch’ in the theory when

cn2/ log(m/n) ≤ n ≤ c′n2. However, our results intend to address the situation in which M is signif-

icantly undersampled, i.e., m ≪ n2, so the requirement that m ≤ cn2/ log(m/n) should be intrinsic

to the problem setup.

4.3 Proofs

The proofs of several of the theorems use ε-nets. For a set S, an ε-net Sε with respect to a norm

∥⋅∥ satisfies the following property: for any v ∈ S, there exists v0 ∈ Sε with ∥v0 − v∥ ≤ ε. (We

abuse notation in this paragraph and let ∥⋅∥ denote any norm, rather than just the operator norm.)

In other words, Sε approximates S to within distance ε with respect to the norm ∥⋅∥. As shown

in [161][Lecture 6], there always exists an ε-net Sε satisfying Sε ⊂ S and

∣Sε∣ ≤
Vol (S + 1

2
D)

Vol ( 1
2
D)

where 1
2
D is an ε/2 ball (with respect to the norm ∥⋅∥) and S + 1

2
D = {x + y ∶ x ∈ S, y ∈ 1

2
D}. 5 In

particular, if S is a unit ball in n dimensions (with respect to the norm ∥⋅∥) or if it is the surface of

the unit ball or any other subset of the unit ball, then S + 1
2
D is contained in the 1 + ε/2 ball, and

thus

∣Sε∣ ≤
(1 + ε/2)n
(ε/2)n = (2 + ε

ε
)
n

≤ (3/ε)n (4.3.1)

5The proposition in [161] does not state that one can take Sε ⊂ S, but the proof remains identical when enforcing
this constraint.
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where the last inequality follows because we always take ε ≤ 1. See [161] for a more detailed argument.

We will require in all of our proofs that Sε ⊂ S.

4.3.1 Proof of Lemma 4.1.1

We assume that σ = 1 without loss of generality. Put Z = A∗(z). The norm of Z is given by

∥Z∥ = sup ⟨w,Zv⟩,

where the supremum is taken over all pairs of vectors on the unit sphere Sn−1. Consider a 1/4-net

N1/4 of Sn−1 (under the `2 norm) with ∣N1/4∣ ≤ 12n. For each v,w ∈ Sn−1,

⟨w,Zv⟩ = ⟨w −w0, Zv⟩ + ⟨w0, Z(v − v0)⟩ + ⟨w0, Zv0⟩

≤ ∥Z∥∥w −w0∥`2 + ∥Z∥∥v − v0∥`2 + ⟨w0, Zv0⟩

for some v0,w0 ∈ N1/4 obeying ∥v − v0∥`2 ≤ 1/4, ∥w −w0∥`2 ≤ 1/4. Hence,

∥Z∥ ≤ 2 sup
v0,w0∈N1/4

⟨w0, Zv0⟩.

Now for a fixed pair (v0,w0),

⟨w0, Zv0⟩ = trace(w∗
0A∗(z)v0) = trace(v0w

∗
0A∗(z)) = ⟨w0v

∗
0 ,A∗(z)⟩ = ⟨A(w0v

∗
0), z⟩.

We deduce from this that ⟨w0, Zv0⟩ ∼ N (0, ∥A(w0v
∗
0)∥2

`2
). Now

∥A(w0v
∗
0)∥2

`2 ≤ (1 + δ1)∥w0v
∗
0∥2
F = (1 + δ1)

so that by a standard tail bound for Gaussian random variables

P(∣⟨w0, Zv0⟩∣ ≥ λ) ≤ 2e
− 1

2
λ2

1+δ1 .

Therefore,

P(max ∣⟨w0, Zv0⟩∣ ≥ γ
√

(1 + δ1)n) ≤ 2∣N1/4∣2e−
1
2γ

2n ≤ 2e2n log 12− 1
2γ

2n,

which is bounded by 2e−cn with c = γ2/2 − 2 log 12 (we require γ > 2
√

log 12 so that c > 0).

4.3.2 Proof of Theorem 4.2.3

The proof uses a covering argument, starting with the following lemma. Throughout the proof, we

make use the of the covering number bound (4.3.1).
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Lemma 4.3.1 (Covering number for low-rank matrices) Let Sr = {X ∈ Rn1×n2 ∶ rank(X) ≤
r, ∥X∥F = 1}. Then there exists an ε-net S̄r ⊂ Sr with respect to the Frobenius norm obeying

∣S̄r ∣ ≤ (9/ε)(n1+n2+1)r.

Proof Recall the SVD X = UΣV ∗ of any X ∈ Sr obeying ∥Σ∥F = 1 (Σ is a diagonal matrix with

singular values on the diagonal, and U and V are rectangular matrices of left- and right-singular

vectors). Our argument constructs an ε-net for Sr by covering the set of permissible U,V, and Σ. We

work in the simpler case where n1 = n2 = n since the general case is a straightforward modification.

Let D be the set of diagonal matrices with nonnegative diagonal entries and Frobenius norm equal

to one. We take D̄ to be an ε/3-net for D with ∣D̄∣ ≤ (9/ε)r. Next, let On,r = {U ∈ Rn×r ∶ U∗U = I}.

To cover On,r, it is beneficial to use the ∣∣ ⋅ ∣∣1,2 norm defined as

∣∣X ∣∣1,2 = max
i

∥Xi∥`2 ,

where Xi denotes the ith column of X. Clearly, On,r is a subset of the unit ball under the norm

∣∣ ⋅ ∣∣1,2 since the columns of an orthogonal matrix are all unit normed. Hence, by (4.3.1), there is

an ε/3-net Ōn,r for On,r obeying ∣Ōn,r ∣ ≤ (9/ε)nr. We now let S̄r = {Ū Σ̄V̄ ∗ ∶ Ū , V̄ ∈ Ōn,r, Σ̄ ∈ D̄},

and remark that ∣S̄r ∣ ≤ ∣Ōn,r ∣2 ∣D̄∣ ≤ (9/ε)(2n+1)r. It remains to show that for all X ∈ Sr there exists

X̄ ∈ S̄r with ∥X − X̄∥F ≤ ε.
Fix X ∈ Sr and decompose X as X = UΣV ∗ as above. Then there exist X̄ = Ū Σ̄V̄ ∗ ∈ S̄r with

Ū , V̄ ∈ Ōn,r, Σ̄ ∈ D̄ obeying ∣∣U − Ū ∣∣1,2 ≤ ε/3, ∣∣V − V̄ ∣∣1,2 ≤ ε/3, and ∥Σ − Σ̄∥F ≤ ε/3. This gives

∥X − X̄∥F = ∥UΣV ∗ − Ū Σ̄V̄ ∗∥F

= ∥UΣV ∗ − ŪΣV ∗ + ŪΣV ∗ − Ū Σ̄V ∗ + Ū Σ̄V ∗ − Ū Σ̄V̄ ∗∥F

≤ ∥(U − Ū)ΣV ∗∥F + ∥Ū(Σ − Σ̄)V ∗∥F + ∥Ū Σ̄(V − V̄ )∗∥F . (4.3.2)

For the first term, note that since V is an orthogonal matrix, ∥(U − Ū)ΣV ∗∥F = ∥(U − Ū)Σ∥F , and

∥(U − Ū)Σ∥2
F = ∑

1≤i≤r

Σ2
i,i∥Ūi −Ui∥2

`2

≤ ∥Σ∥2
F ∣∣U − Ū ∣∣21,2

≤ (ε/3)2.

Hence, ∥(U −Ū)ΣV ∗∥F ≤ ε/3. The same argument gives ∥Ū Σ̄(V − V̄ )∗∥F ≤ ε/3. To bound the middle

term, observe that ∥Ū(Σ − Σ̄)V ∗∥F = ∥Σ − Σ̄∥F ≤ ε/3. This completes the proof.
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We now prove Theorem 4.2.3. It is a standard argument from this point, and is essentially the

same as the proof of Lemma 4.3 in [129], but we repeat it here to keep the results self-contained.

We begin by showing that A is an approximate isometry on the covering set S̄r. Lemma 4.3.1 with

ε = δ/(4
√

2) gives

∣S̄r ∣ ≤ (36
√

2/δ)(n1+n2+1)r. (4.3.3)

Then it follows from (4.2.2) together with the union bound that

P(max
X̄∈S̄r

∣∥A(X̄)∥2
`2 − ∥X̄∥2

F ∣ > δ/2) ≤ ∣S̄r ∣Ce−cm

≤ 2(36
√

2/δ)(n1+n2+1)rCe−cm

= C exp ((n1 + n2 + 1)r log(36
√

2/δ) − cm)

≤ 2 exp(−dm)

where d = c − log(36
√

2/δ)
C

and we plugged in both requirements m ≥ C(n1 + n2 + 1)r and C >
log(36

√
2/δ)/c.

Now suppose that

max
X̄∈S̄r

∣ ∥A(X̄)∥2
`2 − ∥X̄∥2

F ∣ ≤ δ/2

(which occurs with probability at least 1−C exp(−dm)). We begin by showing that the upper bound

in the RIP condition holds. Set

κr = sup
X∈Sr

∥A(X)∥`2 .

For any X ∈ Sr, there exists X̄ ∈ S̄r with ∥X − X̄∥F ≤ δ/(4
√

2) and, therefore,

∥A(X)∥`2 ≤ ∥A(X − X̄)∥`2 + ∥A(X̄)∥`2 ≤ ∥A(X − X̄)∥`2 + 1 + δ/2. (4.3.4)

Put ∆X =X−X̄ and note that rank(∆X) ≤ 2r. Write ∆X = ∆X1+∆X2, where ⟨∆X1,∆X2⟩ = 0, and

rank(∆Xi) ≤ r, i = 1,2 (for example by splitting the SVD). Note that ∆X1/∥∆X1∥F , ∆X2/∥∆X2∥F ∈
Sr and, thus,

∥A(∆X)∥`2 ≤ ∥A(∆X1)∥`2 + ∥A(∆X2)∥`2 ≤ κr(∥∆X1∥F + ∥∆X2∥F ). (4.3.5)

Now ∥∆X1∥F + ∥∆X2∥F ≤
√

2∥∆X∥F which follows from ∥∆X1∥2
F + ∥∆X2∥2

F = ∥∆X∥2
F . Also,

∥∆X∥F ≤ δ/(4
√

2) leading to ∥A(∆X)∥`2 ≤ δ/4. Plugging this into (4.3.4) gives

∥A(X)∥`2 ≤ κrδ/4 + 1 + δ/2.
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Since this holds for all X ∈ Sr, we have κr ≤ κrδ/4 + 1 + δ/2 and thus κr ≤ (1 + δ/2)/(1 − δ/4) ≤ 1 + δ
which essentially completes the upper bound. Now that this is established, the lower bound now

follows from

∥A(X)∥`2 ≥ ∥A(X̄)∥`2 − ∥A(∆X)∥`2 ≥ 1 − δ/2 − (1 + δ)
√

2δ/(4
√

2) ≥ 1 − δ.

Note that we have shown

(1 − δ)∥X∥F ≤ ∥A(X)∥`2 ≤ (1 + δ)∥X∥F ,

which can then be easily translated into the desired version of the RIP bound.

4.3.3 Proof of Theorem 4.2.4

We prove Theorems 4.2.4, 4.2.7, and 4.2.8 for the matrix Dantzig selector (4.1.3) and describe

in Section 4.3.7 how to extend these proofs to the matrix LASSO. We also assume that we are

dealing with square matrices from this point forward (n = n1 = n2) for notational simplicity; the

generalizations of the proofs to rectangular matrices are straightforward.

We begin by a lemma, which applies to full-rank matrices, and contains Theorem 4.2.4 as a

special case.6

Lemma 4.3.2 Suppose δ4r <
√

2 − 1 and let Mr be any rank-r matrix. Let Mc =M −Mr. Suppose

λ obeys ∥A∗(z)∥ ≤ λ. Then the solution M̂ to (4.1.3) obeys

∥M̂ −M∥F ≤ C0

√
rλ +C1∥Mc∥∗/r, (4.3.6)

where C0 and C1 are small constants depending only on the isometry constant δ4r.

We shall use the fact thatAmaps low-rank orthogonal matrices to approximately orthogonal vectors.

Lemma 4.3.3 [41] For all X, X ′ obeying ⟨X,X ′⟩ = 0, and rank(X) ≤ r, rank(X ′) ≤ r′,

∣⟨A(X),A(X ′)⟩∣ ≤ δr+r′ ∥X∥F ∥X ′∥F .

Proof This is a simple application of the parallelogram identity. Suppose without loss of generality

that X and X ′ have unit Frobenius norms. Then

(1 − δr+r′)∥X ±X ′∥2
F ≤ ∥A(X ±X ′)∥2

`2 ≤ (1 + δr+r′)∥X ±X ′∥2
F ,

6We did not present this lemma in the main portion of the chapter because it does not seem to have an intuitive
interpretation.



111

since rank(X ±X ′) ≤ r + r′. We have ∥X ±X ′∥2
F = ∥X∥2

F + ∥X ′∥2
F = 2 and the parallelogram identity

asserts that

∣⟨A(X),A(X ′)⟩∣ = 1

4
∣∥A(X +X ′)∥2

`2 − ∥A(X −X ′)∥2
`2
∣ ≤ δr+r′ ,

which concludes the proof.

The proof of Lemma 4.3.2 parallels that of Candès and Tao about the recovery of nearly sparse

vectors from a limited number of measurements [43]. It is also inspired by the work of Fazel, Recht,

Candès, and Parrilo [73,129]. Set H = M̂ −M and observe that by the triangle inequality,

∥A∗A(H)∥ ≤ ∥A∗(A(M̂) − y)∥ + ∥A∗(y −A(M))∥ ≤ 2λ, (4.3.7)

since M is feasible for the problem (4.1.3). Decompose H as

H =H0 +Hc,

where rank(H0) ≤ 2r, MrH
∗
c = 0 and M∗

rHc = 0 (see [129]). We have

∥M +H∥∗ ≥ ∥Mr +Hc∥∗ − ∥Mc∥∗ − ∥H0∥∗

= ∥Mr∥∗ + ∥Hc∥∗ − ∥Mc∥∗ − ∥H0∥∗.

Since by definition, ∥M +H∥∗ ≤ ∥M∥∗ ≤ ∥Mr∥∗ + ∥Mc∥∗, this gives

∥Hc∥∗ ≤ ∥H0∥∗ + 2∥Mc∥∗. (4.3.8)

Next, we use an estimate developed in [40] (see also [129]). This also seems to have deeper

roots in approximation theory. Let Hc = Udiag(σ)V ∗ be the SVD of Hc, where σ is the list of

ordered singular values (not to be confused with the noise standard deviation). Decompose Hc into

a sum of matrices H1,H2, . . ., each of rank at most 2r as follows. For each i define the index set

Ii = {2r(i− 1)+ 1, ...,2ri}, and let Hi ∶= UIidiag(σIi)V ∗
Ii

; that is, H1 is the part of Hc corresponding

to the 2r largest singular values, H2 is the part corresponding to the next 2r largest and so on. A

now standard computation shows that

∑
j≥2

∥Hj∥F ≤ 1√
2r

∥Hc∥∗, (4.3.9)

and thus

∑
j≥2

∥Hj∥F ≤ ∥H0∥F +
√

2

r
∥Mc∥∗

since ∥H0∥∗ ≤
√

2r ∥H0∥F by Cauchy-Schwarz.
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Now the restricted isometry property gives

(1 − δ4r)∥H0 +H1∥2
F ≤ ∥A(H0 +H1)∥2

`2 , (4.3.10)

and observe that

∥A(H0 +H1)∥2
`2 = ⟨A(H0 +H1),A(H −∑

j≥2

Hj)⟩.

We first argue that

⟨A(H0 +H1),A(H)⟩ ≤ ∥H0 +H1∥F
√

4r∥A∗A(H)∥. (4.3.11)

To see why this is true, let UΣV ∗ be the reduced SVD of H0 +H1 in which U and V are n× r′, and

Σ is r′ × r′ with r′ = rank(H0 +H1) ≤ 4r. We have

⟨A(H0 +H1),A(H)⟩ = ⟨H0 +H1,A∗A(H)⟩

= ⟨Σ, U∗[A∗A(H)]V ⟩

≤ ∥Σ∥F ∥U∗[A∗A(H)]V ∥F

= ∥H0 +H1∥F ∥U∗[A∗A(H)]V ∥F .

The claim follows from ∥U∗[A∗A(H)]V ∥F ≤
√
r′∥A∗A(H)∥, which holds since U∗[A∗A(H)]V is

an r′ × r′ matrix with spectral norm bounded by ∥A∗A(H)∥. Second, Lemma 4.3.3 implies that for

j ≥ 2

⟨A(H0),A(Hj)⟩ ≤ δ4r∥H0∥F ∥Hj∥F , (4.3.12)

and similarly with H1 in place of H0. Note that because H0 is orthogonal to H1, we have that

∥H0 +H1∥2
F = ∥H0∥2

F + ∥H1∥2
F and thus ∥H0∥F + ∥H1∥F ≤

√
2∥H0 +H1∥F . This gives

⟨A(H0 +H1),A(Hj)⟩ ≤
√

2δ4r∥H0 +H1∥F ∥Hj∥F . (4.3.13)

Taken together, (4.3.10), (4.3.11), and (4.3.13) yield

(1 − δ4r)∥H0 +H1∥F ≤
√

4r∥A∗A(H)∥ +
√

2δ4r∑
j≥2

∥Hj∥F

≤
√

4r∥A∗A(H)∥ +
√

2δ4r∥H0∥F +
2δ4r√
r
∥Mc∥∗.

To conclude, we have that

∥H0 +H1∥F ≤ C1

√
4r∥A∗A(H)∥ +C1

2δ4r√
r
∥Mc∥∗, C1 = 1/[1 − (

√
2 + 1)δ4r],
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provided that C1 > 0. Our claim (4.2.4) then follows from (5.3.6) together with

∥H∥F ≤ ∥H0 +H1∥F +∑
j≥2

∥Hj∥F ≤ 2∥H0 +H1∥F +
√

2

r
∥Mc∥∗.

4.3.4 Proof of Theorem 4.2.4

Theorem 4.2.4 follows by simply plugging Mr = M into Theorem 4.3.2. To generalize the results,

note that there are only two requirements on M,A, and y used in the proof.

� ∥A∗(A(M) − y)∥ ≤ λ.

� rank(M) = r and δ4r <
√

2 − 1.

Thus, the steps above also prove the following lemma which is useful in proving Theorem 4.2.7.

Lemma 4.3.4 Assume that X is of rank at most r and that δ4r <
√

2− 1. Suppose λ obeys ∥A∗(y −
A(X))∥ ≤ λ. Then the solution M̂ to (4.1.3) obeys

∥M̂ −X∥2
F ≤ C0 rλ

2, (4.3.14)

where C0 is a small constant depending only on the isometry constant δ4r.

4.3.5 Proof of Theorem 4.2.7

In this section, λ = 16
√
nσ and we take as given that ∥A∗(z)∥ ≤ λ/2 (and thus, by Lemma 4.1.1, the

end result holds with probability at least 1 − 2e−cn). The novelty in this proof—the way it differs

from analogous proofs in compressive sensing—is in the use of a middle estimate M̄ . Define K as

K(X;M) ≡ γ rank(X) + ∥A(X) −A(M)∥2
`2 , γ = λ2

4(1 + δ1)
(4.3.15)

and let M̄ = argminXK(X,M). In words, M̄ achieves a compromise between goodness of fit and

parsimony in the model with noiseless data. The factor γ could be replaced by λ2, but the derivations

are cleanest in the present form. We note that similar minimizations have been considered in

sparse approximation and compressed sensing, see [151, Appendix V] and the works discussed in

the introduction of Chapter 3. In fact, an analogous result to Lemma 4.3.5 below is established

in [151, Appendix V].

We begin by bounding the distance between M and M̄ using the RIP, and obtain

∥M̄ −M∥2
F ≤ 1

1 − δ2r
∥A(M̄) −A(M)∥2

`2 (4.3.16)

where the use of the isometry constant δ2r follows from the fact that rank(M̄) ≤ rank(M).
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We now state a simple lemma which will be useful in our derivations. We defer the proof until

later in the section.

Lemma 4.3.5 The minimizer M̄ obeys

∥A∗A(M̄ −M)∥ ≤ λ/2.

We use this lemma to develop a bound about ∥M̂ − M̄∥2
F . Lemma 4.3.5 gives

∥A∗(y −A(M̄))∥ ≤ ∥A∗(z)∥ + ∥A∗A(M − M̄)∥ ≤ λ,

i.e., M̄ is feasible for (4.1.3). Also, rank(M̄) ≤ rank(M) and, thus, plugging M̄ into Lemma 4.3.4

gives

∥M̂ − M̄∥2
F ≤ Cλ2 rank(M̄).

Combining this with (4.3.16) gives

∥M̂ −M∥2
F ≤ 2∥M̂ − M̄∥2

F + 2∥M̄ −M∥2
F

≤ 2Cλ2 rank(M̄) + 2

1 − δ2r
∥A(M̄) −A(M)∥2

`2

≤ C ′K(M̄ ;M) (4.3.17)

where C ′ = max(8C(1 + δ1),2/(1 − δ2r)).
Now M̄ is the minimizer of K(⋅;M), and so K(M̄ ;M) ≤K(M0;M), where

M0 =∑
i

σi(M)1{σi(M)>λ} uiv
∗
i . (4.3.18)

We have

K(M0;M) ≤ γ
r

∑
i=1

1{σi(M)>λ} + ∥A(M −M0)∥2
`2

≤ γ
r

∑
i=1

1{σi(M)>λ} + (1 + δr)∥M −M0∥2
F

≤ (1 + δr)
r

∑
i=1

min(λ2, σ2
i (M)).

In conclusion, the proof follows from λ = 16
√
nσ since

∥M̂ −M∥2
F ≤ C ′

r

∑
i=1

min(λ2, σ2
i (M)).

We now prove Lemma 4.3.5.
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Proof [Lemma 4.3.5] Suppose not. Then there are unit-normed vectors u, v ∈ Rn obeying

⟨uv∗,A∗A(M̄ −M)⟩ > λ/2.

We construct the rank-1 perturbation M ′ = M̄ − αuv∗, α = ⟨uv∗,A∗A(M̄ −M)⟩/∥A(uv∗)∥2
`2

, and

claim that K(M ′ ∶M) <K(M̄ ;M) thus providing the contradiction. We have

∥A(M ′ −M)∥2
`2 = ∥A(M̄ −M)∥2

`2 − 2α⟨A(uv∗),A(M̄ −M)⟩ + α2∥A(uv∗)∥2
`2

= ∥A(M̄ −M)∥2
`2 − α

2∥A(uv∗)∥2
`2 .

It then follows that

K(M ′;M) ≤ γ(rank(M) + 1) + ∥A(M̄ −M)∥2
`2 − α

2∥A(uv∗)∥2
`2

=K(M̄ ;M) + γ − α2∥A(uv∗)∥2
`2 .

However, ∥A(uv∗)∥2
`2
≤ (1+δ1)∥uv∗∥2

F = 1+δ1 and, therefore, α2∥A(uv∗)∥2
`2
> γ since ⟨uv∗,A∗A(M̄ −

M)⟩ > λ/2.

4.3.6 Proof of Theorem 4.2.8

Three useful lemmas are established in the course of the proof of this more involved result, and we

would like to point out that these can be used as powerful error bounds themselves. Throughout

the proof, C is a constant that may depend on δ4r only, and whose value may change from line to

line. An important fact to keep in mind is that under the assumptions of the theorem, δ4r̄ can be

bounded, with high probability, by an arbitrarily small constant depending on the size of the scalar

c1 appearing in the condition r̄ ≤ c1m/n. This is a consequence of Theorem 4.2.3. In particular,

δ4r̄ ≤ (
√

2 − 1)/2 with probability at least 1 −De−dm.

Lemma 4.3.6 Let M̄ and M0 be defined via (4.3.15) and (4.3.18), and set

r = max(rank(M̄), rank(M0)).

Suppose that δ4r <
√

2 − 1 and that λ obeys ∥A∗(z)∥ ≤ λ/2. Then the solution M̂ to (4.1.3) obeys

∥M̂ −M∥2
F ≤ C0 (

n

∑
i=1

min(λ2, σ2
i (M)) + ∥A(M −M0)∥2

`2) , (4.3.19)

where C0 is a small constant depending only on the isometry constant δ4r.
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Before we begin the proof, set Mc =M −M0 so that Mc only contains the singular values below the

noise level.

Proof The proof is essentially the same as that of Theorem 4.2.7, and so we quickly go through

the main steps. First,

∥M̄ −M∥2
F ≤ 2∥M̄ −M0∥2

F + 2∥Mc∥2
F

≤ 2

1 − δ2r
∥A(M̄ −M0)∥2

`2 + 2∥Mc∥2
F

≤ 4

1 − δ2r
∥A(M̄ −M)∥2

`2 +
4

1 − δ2r
∥A(Mc)∥2

`2 + 2∥Mc∥2
F .

Second, we bound ∥M̂ − M̄∥F using the exact same steps as in the proof of Theorem 4.2.7, and

obtain

∥M̂ − M̄∥2
F ≤ Crλ2.

Hence,

∥M̂ −M∥2
F ≤ C(K(M̄ ;M) + ∥A(Mc)∥2

`2 + ∥Mc∥2
F ).

Finally, use K(M̄ ;M) ≤K(M0;M) as before, and simplify to attain (4.3.19).

The factor ∥A(Mc)∥2
F in (4.3.19) prevents us from stating the bound as the near-ideal bias-

variance-trade-off (4.2.19). However, many random measurement ensembles obeying the RIP are

also unlikely to drastically change the norm of any fixed matrix (see (4.2.2)). Thus, we expect that

∥A(Mc)∥`2 ≈ ∥Mc∥`2 with high probability. This idea is not novel and has been developed in [115]

and [166]. Specifically, if A obeys (4.2.2), then

∥A(Mc)∥2
`2 ≤ 1.5∥Mc∥2

F (4.3.20)

with probability at least 1 −De−cm for fixed constants D, c. An important point here is that this

inequality only holds (with high probability) when Mc is fixed, and A is chosen randomly (indepen-

dently). In the worst-case-scenario, one could have

∥A(Mc)∥`2 = ∥A∥ ⋅ ∥Mc∥F

where ∥A∥ is the operator norm of A. Thus we emphasize that the bound holds with high probability

for a given M verifying our conditions, but may not hold uniformly over all such M ’s.

Returning to the proof, (4.3.25) together with

∥Mc∥2
F =

n

∑
i=1

σ2
i (M)1{σi(M)<λ}
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give the following lemma:

Lemma 4.3.7 Fix M and suppose A obeys (4.2.2). Then under the assumptions of Lemma 4.3.6,

the solution M̂ to (4.1.3) obeys

∥M̂ −M∥2
F ≤ C0

n

∑
i=1

min(λ2, σ2
i (M)) (4.3.21)

with probability at least 1 − De−cn where C0 is a small constant depending only on the isometry

constant δ4r, and c, D are fixed constants.

The above two lemmas require a bound on the rank of M0. However, as the noise level approaches

zero, the rank of M0 approaches the rank of M , which can be as large as the dimension. This requires

further analysis, and in order to provide theoretical error bounds when the noise level is low (and

M has full rank, say), a certain property of many measurement operators is useful. We call it the

NNQ property, and is inspired by a similar property from compressive sensing, see [166].

Definition 4.3.8 (NNQ) Let Bn×n∗ be the set of n×n matrices with nuclear norm bounded 1. Let

Bm`2 be the standard `2 unit ball for vectors in R
m. We say that A satisfies NNQ(α) if

A(Bn×n∗ ) ⊇ αBm`2 . (4.3.22)

This condition may appear cryptic at the moment. To give a taste of why it may be useful, note

that Lemma 4.3.2 includes ∣∣M −Mr ∣∣∗ as part of the error bound. The point is that using the NNQ

condition, we can find a proxy for M −Mr, which we call M̃ , satisfying A(M̃) = A(M −Mr), but

also ∣∣M̃ ∣∣∗ ≤ ∥A(M −Mr)∥`2/α. Before continuing this line of thought, we prove that Gaussian

measurement ensembles satisfy NNQ(µ
√
n/m) with high probability for some fixed constant µ > 0.

Theorem 4.3.9 (NNQ for Gaussian measurements) Suppose A is a Gaussian measurement

ensemble and m ≤ Cn2/ log(m/n) for some fixed constant C > 0. Then A satisfies NNQ(µ
√
n/m)

with probability at least 1 − 3e−cn for fixed constants c and µ.

Proof Put α = µ
√
n/m and suppose A does not satisfy NNQ(α). Then there exists a vector x ∈ Rm

with ∥x∥`2 = 1 such that

⟨A(M), x⟩ ≤ α for all M ∈ Bn×n∗ .

In particular,

∥A∗(x)∥ ≤ α.

Let B̄m`2 ⊂ B
m
`2

be an α-net for Bm`2 with ∣B̄m`2 ∣ ≤ (3/α)m. Then there exists x̄ ∈ B̄m`2 with ∥x̄− x∥`2 ≤ α
satisfying

∥A∗(x̄)∥ ≤ ∥A∗(x̄ − x)∥ + ∥A(x)∥ ≤ ⟨uv∗,A∗(x̄ − x)⟩ + α,
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where u, v are the left and right singular vectors of A∗(x̄ − x) corresponding to the top singular

value. Then

⟨uv∗,A∗(x̄ − x)⟩ = ⟨A(uv∗), x̄ − x⟩ ≤ ∥A(uv∗)∥`2 ∥x̄ − x∥`2 ≤
√

1 + δ1 α

and, therefore,

∥A∗(x̄)∥ ≤ 3α

assuming δ1 ≤ 1 (this occurs with probability at least 1 − 2e−cn when m ≥ Cn for fixed constants

c,C).

We will provide the contradiction by showing that with high probability, ∥A∗(x̄)∥ > 3α, for all

x̄ ∈ B̄n×n∗ . For each x̄, A∗(x̄) is equal in distribution to 1
√
m
Z, where Z is a matrix with i.i.d. standard

normal entries. Let Zi be the ith column of Z. Then

P(∥A∗(x̄)∥ ≤ 3α) ≤ P(∥Z∥ ≤ 3
√
mα)

≤ P( max
i=1,...,n

∥Zi∥`2 ≤ 3
√
mα);

the second step uses the fact that the operator norm of Z is always larger or equal to the `2 norm

of any column. With α = µ
√
n/m and using the fact that the columns are independent, this yields

P(∥A∗(x̄)∥ ≤ 3α) ≤ P(∥Z1∥2
`2 ≤ 9µ2n)n.

However, ∥Z1∥2
`2

is a chi-squared random variable with n degrees of freedom, and can be bounded

using a standard concentration of measure result [99, Lemma 1]:

P(∥Z1∥2
`2 − n ≤ −t

√
2n) ≤ e−t

2
/2.

Hence,

P(∥A∗(x̄)∥ ≤ 3α) ≤ e−cn
2

,

where c = (1 − 9µ2)2/4 (we require µ < 1/3 here). Thus, by the union bound,

P
⎛
⎝

min
x̄∈B̄m

`2

∥A∗(x̄)∥ ≤ 3α
⎞
⎠
≤ (3/α)me−cn

2

= exp(m log(3
√
m

µ
√
n
) − cn2) ≤ e−c

′n2

provided that m ≤ Cn2/ log(m/n) for fixed constants, C, c′. The theorem is established.

Note that the preceding proof can be repeated when A is a sub-Gaussian measurement ensemble;

the only difference is that Z above will contain sub-Gaussian entries, rather than Gaussian entries.



119

Using the NNQ property, we can now bound the error when the noise level is low; this does not

involve any condition on the rank of M0, and does not involve a term in the bound depending on

∣∣M −M0∣∣∗.

Lemma 4.3.10 Suppose that A satisfies NNQ(µ
√
n/m) for a fixed constant µ and that ∥A∗(z)∥ ≤ λ.

Let r̄ ≥ cm/n for some fixed numerical constant c, and suppose that that δ4r̄ ≤ 1
2
(
√

2 − 1). Let

Mr̄ =
r̄

∑
i=1

σi(M)uiv∗i .

Let M̂ be the solution to (4.1.3). Then

∥M̂ −M∥F ≤ C(λ
√
r̄ + ∥A(M −Mr̄)∥`2) + ∥M −Mr̄∥F . (4.3.23)

Proof Set Mc =M −Mr̄ = ∑ni=r̄+1 σi(M)uiv∗i . The NNQ(α) property with α = µ
√
n/m gives

A(Mc) = A(M̃)

for some M̃ obeying ∣∣M̃ ∣∣∗ ≤ ∥A(Mc)∥`2/α. We also take note of the identity A(Mr̄ + M̃) = A(M).
It follows from Lemma 4.3.2 that

∥M̂ − (Mr̄ + M̃)∥F ≤ C(λ
√
r̄ + ∣∣M̃ ∣∣∗/

√
r̄).

Plugging in ∣∣M̃ ∣∣∗ ≤ ∥A(Mc)∥`2/α, along with r̄ ≥ cm/n, we obtain

∥M̂ − (Mr̄ + M̃)∥F ≤ C(λ
√
r̄ + ∥A(Mc)∥`2).

Therefore,

∥M̂ −M∥F ≤ C(λ
√
r̄ + ∥A(Mc)∥`2) + ∥M̃∥F + ∥Mc∥F . (4.3.24)

It remains to bound ∥M̃∥F . As in the proof of Lemma 4.3.2, decompose M̃ as M̃ = M̃1 +M̃2 + . . .
so that M̃1 corresponds to the largest r̄ singular values of M̃ , M̃2 corresponds with the next r̄ largest,

and so on. Just as before,

∥M̃∥F ≤∑
i

∥M̃i∥F ≤ ∥M̃1∥F + ∣∣M̃ ∣∣∗/
√
r̄.
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We now bound ∥M̃1∥F . By the RIP,

∥M̃1∥F ≤ 1√
1 − δr̄

∥A(M̃1)∥`2

= 1√
1 − δr̄

(∥A(M̃) −∑
i≥2

A(M̃i)∥`2)

≤ 1√
1 − δr̄

(∥A(M̃)∥`2 +∑
i≥2

∥A(M̃i)∥`2).

By the RIP again, ∥A(M̃i)∥`2 ≤
√

1 + δr̄∥M̃i∥F , and so

∑
i≥2

∥A(M̃i)∥`2 ≤
√

1 + δr̄ ∑
i≥2

∥M̃i∥F ≤
√

1 + δr̄
∣∣M̃ ∣∣∗√

r̄
.

This together with A(M̃) = A(Mc) give

∥M̃∥F ≤
√

1 + δr
1 − δr

(∥A(Mc)∥`2 +
∣∣M̃ ∣∣∗√

r̄
).

However, ∣∣M̃ ∣∣∗ ≤ ∥A(M)∥`2/α ≤
√
r̄∥A(M)∥`2/(µ

√
c) and, therefore,

∥M̃∥F ≤ C∥A(Mc)∥`2 .

Inserting this into (4.3.24) completes the proof of the lemma.

We are now in position to prove our main theorem concerning the recovery of matrices with

decaying singular values (Theorem 4.2.8). There are three cases to consider depending on the

number of singular values of M standing above the noise level. In each case, we need the inequality

∥A(Mc)∥2
F ≤ 1.5∥Mc∥2

F (4.3.25)

which holds with probability at least 1 − De−cn for any measurement ensemble satisfying (4.2.2)

(including the Gaussian measurement ensemble). Put λ = 16
√
nσ and recall the definition of M0:

M0 =
n

∑
i=1

σi(M)1{σi(M)≥λ} uiv
∗
i

whose rank is exactly the number of singular values of M above the noise level. There are three

cases to consider depending mostly on the interplay between the singular values of M and the noise

level.
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Case 1: high noise level

Suppose K(M0;M) ≤ λ2

4(1+δ1)
r̄. Then rank(M0) ≤ r̄ and rank(M̄) ≤ r̄ by definition of M̄ . Hence,

Lemma 4.3.7 gives

∥M̂ −M∥2
F ≤ C

n

∑
i=1

min(nσ2, σ2
i (M))

with probability at least 1 − 2e−cn.

Case 2: low noise level

Suppose K(M0;M) > λ2

4(1+δ1)
r̄ and rank(M0) ≥ r̄. It follows from (4.2.2) that

∥A(M −Mr̄)∥2
`2 ≤

√
1.5∥M −Mr̄∥2

F (4.3.26)

with probability at least 1−De−cn. Now, for the Gaussian measurement ensemble, the requirements

of Lemma 4.3.10 are met with probability at least 1−Ce−cn. Combining (4.3.26) with Lemma 4.3.10

yields

∥M̂ −M∥F ≤ C(λ
√
r̄ + ∥M −Mr̄∥F )

and thus

∥M̂ −M∥2
F ≤ 2C2(λ2r̄ + ∥M −Mr̄∥2

F ) = 2C2 (
r̄

∑
i=1

min(λ2, σ2
i (M)) +

n

∑
i=r̄+1

σ2
i (M)) .

Since λ = 16
√
nσ, this is (4.2.20).

Case 3: medium noise level

Suppose K(M0;M) > λ2

4(1+δ1)
r̄ and rank(M0) < r̄. As in Case 2, we have

∥M̂ −M∥2
F ≤ 2C2(λ2r̄ + ∥M −Mr̄∥2

F ).

From λ2r̄ < 4(1 + δ1)K(M0;M), it follows that

∥M̂ −M∥2
F ≤ 2C2(λ2 rank(M0) + 4(1 + δ1)∥A(M −M0)∥2

`2 + ∥M −Mr̄∥2
F ).

We also have ∥A(M −M0)∥2
`2

≤ 1.5∥M −M0∥2
F with probability at least 1 −De−cn. Inserting this

bound into the previous equation, along with ∥M −Mr̄∥F ≤ ∥M −M0∥F , gives the desired conclusion.

These three cases comprise all possibilities. In short, the proof of Theorem 4.2.8 is complete.
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4.3.7 Extension of proofs to the solution to the LASSO (4.1.5)

In the sparse regression setup, Bickel et al. [17] showed that the Dantzig selector and the LASSO

have analogous properties, leading to analogous error bounds. The analogies still hold in the low-

rank matrix recovery problem (for similar reasons). In fact, all of the theorems above also hold for

the solution to (4.1.5) aside from a shift in those constants appearing in the assumptions, and those

appearing in the error bounds. To see this, note that our proofs only used two crucial properties

about M̂ :

1. ∣∣M̂ ∣∣∗ ≤ ∣∣M ∣∣∗,

2. ∥A∗(A(M̂) − y)∥ ≤ λ.

The second property automatically holds for the solution to (4.1.5) (but with λ replaced by µ). This

follows from the optimality conditions which state that A∗(y−A(M̂)) ∈ µ∂∥M̂∥∗ where ∥M̂∥∗ is the

family of subgradients to the nuclear norm at the minimizer. Formally, let UΣV ∗ be the SVD of

M̂ , then

A∗(y −A(M̂)) = µ(UV ∗ +W )

for some W obeying ∥W ∥ ≤ 1 and U∗W = 0,WV = 0 (see, e.g. [36]). Hence, the second property

follows from ∥UV ∗ +W ∥ = max(∥UV ∗∥ , ∥W ∥) ≤ 1 (we use U∗W,WV = 0 to obtain the equality in

the last equation).

The first property does not necessarily hold for the matrix LASSO, but a close enough approx-

imation is verified (this is analogous to an argument made in [17]). Suppose that ∥A∗(z)∥ ≤ c0µ
for a small constant c0 (which, by Lemma 4.1.1, holds with high probability for Gaussian noise if

µ2 = Cnσ2). Then since M̂ minimizes (4.1.5), we have

1

2
∥A(M̂) − y∥2

`2 + µ∣∣M̂ ∣∣∗ ≤
1

2
∥A(M) − y∥2

`2 + µ∣∣M ∣∣∗.

Plug in y = A(M) + z and rearrange terms to give

µ∣∣M̂ ∣∣∗ ≤
1

2
∥A(M̂ −M)∥2

`2 + µ∣∣M̂ ∣∣∗ ≤ ⟨M̂ −M,A∗(z)⟩ + µ∣∣M ∣∣∗.

Since the nuclear norm and the operator norm are dual to each other, we have ⟨M̂ −M,A∗(z)⟩ ≤
∣∣M̂ −M ∣∣∗ ⋅ ∥A∗(z)∥ ≤ c0µ∣∣H ∣∣∗, where we use the notation H = M̂ −M as in the proof of Lemma

4.3.2. This gives

∣∣M̂ ∣∣∗ ≤ c0∣∣H ∣∣∗ + ∣∣M ∣∣∗,

which nearly is the first property. When c0 is chosen to be a small constant, this factor has no

essential detrimental effects on the proof. In particular, (5.3.5) in the proof of Lemma 4.3.2 is
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replaced by

(1 − c0)∣∣Hc∣∣∗ ≤ (1 + c0)∣∣H0∣∣∗ + 2∣∣Mc∣∣∗.

In particular, for c0 = 1/2,

∣∣Hc∣∣∗ ≤ 3∣∣H0∣∣∗ + 4∣∣Mc∣∣∗.

The rest of the proofs follow.

4.3.8 Proof of Theorem 4.2.5

We begin with a well-known lemma which gives the minimax risk for estimating the vector x ∈ Rn

from the data y ∈ Rm and the linear model

y = Ax + z, (4.3.27)

where A ∈ Rm×n and the zi’s are i.i.d. N (0, σ2).

Lemma 4.3.11 Let λi(A∗A) be the eigenvalues of the matrix A∗A. Then7

inf
x̂

sup
x∈Rn

E ∥x̂ − x∥2
`2 = σ

2 trace((A∗A)−1) =∑
i

σ2

λi(A∗A) . (4.3.28)

In particular, if one of the eigenvalues vanishes (as in the case in which m < n), then the minimax

risk is unbounded.

This result can be found as Exercise 5.8, p. 403, in the textbook [102]. We sketch the important

steps. First, the minimax risk is lower bounded by the Bayes risk. Consider then the prior which

assumes that all the components of x are i.i.d. N (0, τ2). At this point, to simplify the derivation

it is convenient to diagonalize the problem—this is achievable since Gaussian vectors are invariant

in distribution with respect to multiplication by orthogonal matrices. Now, the estimator which

minimizes the Bayes risk can be explicitly calculated as the conditional expectation of x given y,

and thus the Bayes risk itself can be explicitly calculated. Last, take the limit as τ → ∞; the

estimator converges to the least-squares estimator, and the risk converges to the right-hand side of

(4.3.28), thus completing the proof. In fact, these exact steps give the following more general lemma,

which states that the least squares estimate, x̂LS ∶= (A∗A)−1A∗y, is often minimax. (This lemma

will be useful in the proof of Theorem 4.2.6.)

Lemma 4.3.12 Let f be a monotonically increasing function. Then

inf
x̂

sup
x∈Rn

E f(∥x̂ − x∥`2) = E f(∥x̂LS − x∥`2) = E f (∥(A∗A)−1A∗z∥`2) . (4.3.29)

7The infimum is over all measurable functions x̂(y) of y.
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We are now in position to prove Theorem 4.2.5. The set of rank-r matrices is (much) larger than

the set of matrices of the form

M = UR,

where U is a fixed orthogonal n× r matrix with orthonormal columns (note that the matrices of this

form have a fixed r-dimensional column space). Thus,

inf
M̂

sup
M ∶rank(M)=r

E ∥M̂ −M∥2
F ≥ inf

M̂
sup

M ∶M=UR
E ∥M̂ −M∥2

F .

Knowing that M = UR for some unknown r × n matrix R, one can of course limit ourselves to

estimators of the form M̂ = UR̂, and since

E ∥M̂ −M∥2
F = E ∥UR̂ −UR∥2

F = E ∥R̂ −R∥2
F ,

the minimax risk is lower bounded by that of estimating R from the data

y = AU(R) + z,

where AU is the linear map (4.2.15). We then apply Lemma 4.3.11 to conclude that the minimax

rate is lower bounded by

∑
i

σ2

λi(A∗UAU) .

The claim follows from the simple lemma below.

Lemma 4.3.13 Let U be an n × r matrix with orthonormal columns. Then all the eigenvalues of

A∗UAU belong to the interval [1 − δr,1 + δr].

Proof By definition,

λmin(A∗UAU) = inf
∥R∥F ≤1

⟨R,A∗UAU(R)⟩

and similarly for λmax(A∗UAU) with a sup in place of inf. Since

⟨R,A∗UAU(R)⟩ = ∥AU(R)∥2
`2 = ∥A(UR)∥2

`2 ,

the claim follows from

(1 − δr)∥UR∥2
F ≤ ∥A(UR)∥2

`2 ≤ (1 + δr)∥UR∥2
F ,

which is valid since rank(UR) ≤ r together with ∥UR∥2
F = ∥R∥2

F .
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4.3.9 Proof of Theorem 4.2.6

The proof is similar to that of Theorem 4.2.5 and we begin with a lemma.

Lemma 4.3.14 Suppose that x, y,A, z follow the linear model (4.3.27), with z ∼ N (0, σ2I). Then

inf
x̂

sup
x∈Rn

P(∥x̂ − x∥2
`2 ≥

1

2 ∥A∥2
nσ2) ≥ 1 − e−n/16. (4.3.30)

The Lemma is a straightforward application of Lemma 4.3.12, as follows:

Proof We set f to be the indicator function

f(t) ∶= 1[t2≥t20], t20 ∶=
1

2 ∥A∥2
nσ2,

and we use Lemma 4.3.12 to give

inf
x̂

sup
x∈Rn

P (∥x̂ − x∥2
`2 ≥ t

2
0) = P (∥(A∗A)−1A∗z∥2

`2 ≥ t
2
0) = P (∥N (0, (A∗A)−1)∥2

`2 ⋅ σ
2 ≥ t20) . (4.3.31)

However, ∥N (0, (A∗A)−1)∥2
`2

is equal in distribution to ∥N (0,Σ−1)∥2
`2

where Σ is the diagonal matrix

of eigenvalues {λi} of A∗A. Now let z1,⋯, zn be a sequence of iid standard normal random variables,

so that we may write

∥N (0,Σ−1)∥2
`2 =

n

∑
i=1

z2
i

λi
≥ 1

maxi λi

n

∑
i=1

z2
i =

1

∥A∥2
χ2
n

where χ2
n is a chi-squared random variable with n degrees of freedom. Plug this into the right-hand

side of (4.3.31) to give

inf
x̂

sup
x∈Rn

P (∥x̂ − x∥2
`2 ≥ t

2
0) ≥ P (χ2

n ⋅ σ2 ≥ t20 ∥A∥2) = P (χ2
n ≥ n/2) .

The result now follows from a standard concentration bound for χ2 variables as in [99] which states

that

P(χ2
n − n ≤ −c

√
2n) ≤ e−c

2
/2.

Taking c = √
n/(2

√
2) finishes the proof.

The proof of Theorem 4.2.6 now follows from the same steps as in the proof of Theorem 4.2.5.

Once again, note that the worst-case probability (the LHS of equation (4.2.9)) can only decrease

when we limit the space that M can dwell in. As before, constrain M to be of the form M = UR,

so that

y = AU(R) + z.
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The proof now follows from Lemma 4.3.13 which shows that ∥AU∥ ≤
√

1 + δr.

4.4 Discussion

Using RIP-based analysis, we have shown that low-rank matrices can be stably recovered via nuclear-

norm minimization from nearly the minimal possible number of linear samples. Further, the error

bound is within a constant of the expected minimax error, and of an expected oracle error, and

extends to the case when M has full rank. We pause to note that similar ideas with strong error

bounds have been developed in randomized linear algebra (in this case the measurements consist of

multiplications of M with random vectors, and are seen one vector at a time). See [92].

This work differs from the main thrust of the recent literature on low-rank matrix recovery, which

has concentrated on the RIP-less matrix completion problem. An interesting observation regarding

matrix completion is that when the measurements are randomly chosen entries of M , one requires

at least about nr logn measurements to recover M by any method when rank(M) = O(1) [36,44]. In

contrast, the results in this chapter show that on the order of nr measurements are enough provided

these are sufficiently random.

The popularity of the matrix completion model stems from the fact that this setup currently

dominates the applications of low-rank matrix recovery. There are far fewer applications in which

the measurements are random linear combinations of many entries of M (quantum-state tomography

is a notable application though). As a great deal of attention is given to low-rank matrix modeling

these days, with new applications being discovered all the time, this may change rapidly. We hope

that our theory encourages further applications and research in this direction.
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Chapter 5

Matrix completion with noise

5.1 Introduction

Imagine that we only observe a few samples of a signal. Is it possible to reconstruct this signal

exactly or at least accurately? For example, suppose we observe a few entries of a vector x ∈ Rn,

which we can think of as a digital signal or image. Can we recover the large fraction of entries—of

pixels if you will—that we have not seen? In general, everybody would agree that this is impossible.

However, if the signal is known to be sparse in the Fourier domain and, by extension, in an incoherent

domain, then accurate—and even exact—recovery is possible by `1 minimization as shown in [39]

and also discussed in Chapter 2.

Imagine now that we only observe a few entries of a data matrix. Then is it possible to

accurately—or even exactly—guess the entries that we have not seen? For example, suppose we

observe a few movie ratings from a large data matrix in which rows are users and columns are

movies (we can only observe a few ratings because each user is typically rating a few movies as

opposed to the tens of thousands of movies which are available). Can we predict the rating a user

would hypothetically assign to a movie he/she has not seen? In general, everybody would agree

that recovering a data matrix from a subset of its entries is impossible. However, if the unknown

matrix is known to have low rank or approximately low rank, then accurate and even exact recovery

is possible by nuclear-norm minimization [36, 44]. This revelation, which to some extent is inspired

by the great body of work in compressed sensing, is the subject of this chapter.

From now on, we will refer to the problem of inferring the many missing entries as the matrix

completion problem. Now just as sparse signal recovery is arguably of paramount importance these

days, we do believe that matrix completion will become increasingly studied in years to come. For

now, we give a few examples of applications in which these problems do come up.

� Collaborative filtering. In a few words, collaborative filtering is the task of making automatic

predictions about the interests of a user by collecting taste information from many users [84].
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Perhaps the most well-known implementation of collaborating filtering is the Netflix recommen-

dation system alluded to earlier, which seeks to make rating predictions about unseen movies.

This is a matrix completion problem in which the unknown full matrix has approximately low

rank because only a few factors typically contribute to an individual’s tastes or preferences.

In the new economy, companies are interested predicting musical preferences (Apple, Inc.),

literary preferences (Amazon, Barnes and Noble), and many other such things.

� Global positioning. Finding the global positioning of points in Euclidean space from a local

or partial set of pairwise distances is a problem in geometry that emerges naturally in sensor

networks [19,140,141]. For example, because of power constraints, sensors may only be able to

construct reliable distance estimates from their immediate neighbors. From these estimates,

we can form a partially observed distance matrix, and the problem is to infer all the pairwise

distances from just a few observed ones so that locations of the sensors can be reliably esti-

mated. This reduces to a matrix completion problem where the unknown matrix is of rank

two if the sensors are located in the plane, and three if they are located in space.

� Remote sensing. The MUSIC algorithm [138] is frequently used to determine the direction of

arrival of incident signals in a coherent radio-frequency environment. In a typical application,

incoming signals are being recorded at various sensor locations, and this algorithm operates by

extracting the directions of wave arrivals from the covariance matrix obtained by computing

the correlations of the signals received at all sensor pairs. In remote sensing applications, one

may not be able to estimate or transmit all correlations because of power constraints [165].

In this case, we would like to infer a full covariance matrix from just a few observed partial

correlations. This is a matrix completion problem in which the unknown signal covariance

matrix has low rank since it is equal to the number of incident waves, which is usually much

smaller than the number of sensors.

There are of course many other examples of matrix completion and low-rank matrix recovery

in general, including the structure-from-motion problem [46, 148] in computer vision, multi-class

learning in data analysis [5, 6], and so on.

This chapter investigates whether or not one can recover a low-rank matrix from a small subsets

of its entries, and if so, how and how well. In Section 5.2, we will study the noiseless problem in

which the observed entries are precisely those of the unknown matrix; this section is a review of

known results. Section 5.3 examines the more common situation in which the few available entries

are corrupted with noise, and in this chapter offers novel results. We complement our study with

a few numerical experiments demonstrating the empirical performance of our methods in Section

5.4 and conclude with a discussion of open problems and the most recent related literature, which

became available after the material in this chapter was published (Section 5.5).
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Before we begin, it is best to provide a brief summary of the notations used throughout the

chapter. We shall use three norms of a matrix X ∈ Rn1×n2 with singular values {σk}. The spectral

norm is denoted by ∥X∥ and is the largest singular value. The Euclidean inner product between two

matrices is defined by the formula ⟨X,Y ⟩ ∶= trace(X∗Y ), and the corresponding Euclidean norm

is called the Frobenius norm and denoted by ∥X∥F (note that this is the `2 norm of the vector of

singular values). The nuclear norm is denoted by ∥X∥∗ ∶= ∑k σk and is the sum of singular values

(the `1 norm of the vector {σk}). As is standard, X ⪰ Y means that X − Y is positive semidefinite.

Further, we will also manipulate linear transformations which act on the space Rn1×n2 , and we

will use calligraphic letters for these operators as in A(X). In particular, the identity operator on

this space will be denoted by I ∶ Rn1×n2 → R
n1×n2 . We use the same convention as above, and A ⪰ I

means that A − I (seen as a big matrix) is positive semidefinite.

We use the usual asymptotic notation, for instance writing O(M) to denote a quantity bounded

in magnitude by CM for some absolute constant C > 0.

5.2 Exact Matrix Completion

From now on, M ∈ Rn1×n2 is a matrix we would like to know as precisely as possible. However, the

only information available about M is a sampled set of entries Mij , (i, j) ∈ Ω, where Ω is a subset of

the complete set of entries [n1] × [n2]. (Here and in the sequel, [n] denotes the list {1, . . . , n}.) It

will be convenient to summarize the information available via PΩ(M), where the sampling operator

PΩ ∶ Rn1×n2 → R
n1×n2 is defined by

[PΩ(X)]ij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xij , (i, j) ∈ Ω,

0, otherwise.

Thus, the question is whether it is possible to recover our matrix only from the information PΩ(M).
We will assume that the entries are selected at random without replacement as to avoid trivial

situations in which a row or a column is unsampled, since matrix completion is clearly impossible in

such cases. (If we have no data about a specific user, how can we guess his/her preferences? If we

have no distance estimates about a specific sensor, how can we guess its distances to all the sensors?)

Even with the information that the unknown matrix M has low rank, this problem may be

severely ill posed. Here is an example that shows why: let x be a vector in Rn and consider the n×n
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rank-1 matrix

M = e1x
∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 ⋯ xn−1 xn

0 0 0 ⋯ 0 0

0 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where e1 is the first vector in the canonical basis of Rn. Clearly, this matrix cannot be recovered

from a subset of its entries. Even if one sees 95% of the entries sampled at random, then we will

miss elements in the first row with very high probability, which makes the recovery of the vector x,

and by extension of M , impossible. The analogy in compressed sensing is that one obviously cannot

recover a signal assumed to be sparse in the time domain, by subsampling in the time domain!

This example shows that one cannot hope to complete the matrix if some of the singular vectors

of the matrix are extremely sparse—above, one cannot recover M without sampling all the entries in

the first row, see [36] for other related pathological examples. More generally, if a row (or column)

has no relationship to the other rows (or columns) in the sense that it is approximately orthogonal,

then one would basically need to see all the entries in that row to recover the matrix M . Such

informal considerations led the authors of [36] to introduce a geometric incoherence assumption, but

for the moment, we will discuss an even simpler notion which forces the singular vectors of M to

be spread across all coordinates. To express this condition, recall the singular value decomposition

(SVD) of a matrix of rank r,

M = ∑
k∈[r]

σkukv
∗
k , (5.2.1)

in which σ1, . . . , σr ≥ 0 are the singular values, and u1, . . . , ur ∈ Rn1 , v1, . . . , vr ∈ Rn2 are the singular

vectors. Our assumption—which is also considered in [36] and following works—is as follows:

∥uk∥`∞ ≤
√
µB/n1, ∥vk∥`∞ ≤

√
µB/n2, (5.2.2)

for some µB ≥ 1, where the `∞ norm is of course defined by ∥x∥`∞ = maxi ∣xi∣. We think of µB as

being small, e.g., O(1), so that the singular vectors are not too spiky as explained above.

If the singular vectors of M are sufficiently spread, the hope is that there is a unique low-rank

matrix which is consistent with the observed entries. If this is the case, one could, in principle,

recover the unknown matrix by solving

minimize rank(X)
subject to PΩ(X) = PΩ(M),

(5.2.3)

where X ∈ Rn1×n2 is the decision variable. Unfortunately, not only is this problem NP-hard, but all
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known algorithms for exactly solving it are doubly exponential in theory and in practice [50]. This

is analogous to the intractability of `0-minimization in sparse signal recovery.

A popular alternative is the convex relaxation [36,44,72,74,129]

minimize ∥X∥∗
subject to PΩ(X) = PΩ(M),

(5.2.4)

(see [15, 111] for the earlier related trace heuristic). Just as `1-minimization is the tightest convex

relaxation of the combinatorial `0-minimization problem in the sense that the `1 ball of Rn is the

convex hull of unit-normed 1-sparse vectors (i.e., vectors with at most one nonzero entry), nuclear-

norm minimization is the tightest convex relaxation of the NP-hard rank minimization problem.

To be sure, the nuclear ball {X ∈ Rn1×n2 ∶ ∥X∥∗ ≤ 1} is the convex hull of the set of rank-one

matrices with spectral norm bounded by one. Moreover, in compressed sensing, `1 minimization

subject to linear equality constraints can be cast as a linear program (LP) for the `1 norm has an

LP characterization: indeed for each x ∈ Rn, ∥x∥`1 is the optimal value of

maximize ⟨u,x⟩
subject to ∥u∥`∞ ≤ 1,

with decision variable u ∈ Rn. In the same vein, the nuclear norm of X ∈ Rn1×n2 has the SDP

characterization

maximize ⟨W,X⟩
subject to ∥W ∥ ≤ 1,

(5.2.5)

with decision variable W ∈ Rn1×n2 . This expresses the fact that the spectral norm is dual to the

nuclear norm. The constraint on the spectral norm of W is an SDP constraint since it is equivalent

to ⎡⎢⎢⎢⎢⎢⎣

In1 W

W ∗ In2

⎤⎥⎥⎥⎥⎥⎦
⪰ 0,

where In is the n × n identity matrix. Hence, (5.2.4) is an SDP, which one can express by writing

∥X∥∗ as the optimal value of the SDP dual to (5.2.5). Moreover, specialized algorithms that take

advantage of the structure of the problem have been shown to outperform interior-point methods

by several orders of magnitude (see [25,104]).

In [44], it is proven that nuclear-norm minimization succeeds nearly as soon as recovery is possible

by any method whatsoever.

Theorem 5.2.1 [44] Let M ∈ Rn1×n2 be a fixed matrix of rank r = O(1) obeying (5.2.2) and set

n ∶= max(n1, n2). Suppose we observe m entries of M with locations sampled uniformly at random.
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Then there is a positive numerical constant C such that if

m ≥ C µ4
B n log2 n, (5.2.6)

then M is the unique solution to (5.2.4) with probability at least 1 − n−3. In other words: with high

probability, nuclear-norm minimization recovers all the entries of M with no error.

As a side remark, one can obtain a probability of success at least 1−n−β for a given β by taking

C in (5.2.6) of the form C ′β for some universal constant C ′. The probabilistic nature of this result

stems from the assumption that the revealed entries of M are sampled from the uniform distribution.

Another interpretation is that matrix completion is exact for ‘most’ sampling sets obeying (5.2.6).

An n1 × n2 matrix of rank r depends upon r(n1 + n2 − r) degrees of freedom1. When r is small,

the number of degrees of freedom is much less than n1n2 and this is the reason why subsampling

is possible. (In compressed sensing, the number of degrees of freedom corresponds to the sparsity

of the signal; i.e., the number of nonzero entries.) What is remarkable here, is that exact recovery

by nuclear-norm minimization occurs as soon as the sample size exceeds the number of degrees of

freedom by a couple of logarithmic factors. Further, observe that if Ω completely misses one of the

rows (e.g., one has no rating about one user) or one of the columns (e.g., one has no rating about

one movie), then one cannot hope to recover even a matrix of rank 1 of the form M = xy∗. Thus one

needs to sample every row (and also every column) of the matrix. When Ω is sampled at random,

it is well established that one needs at least on the order O(n logn) for this to happen as this is the

famous coupon collector’s problem. Hence, (5.2.6) misses the information theoretic limit by at most

a logarithmic factor.

To obtain similar results for all values of the rank, [44] introduces the strong incoherence property

with parameter µ stated below.

A1 Let PU (resp. PV ) be the orthogonal projection onto the singular vectors u1, . . . , ur (resp. v1, . . .,

vr). For all pairs (a, a′) ∈ [n1] × [n1] and (b, b′) ∈ [n2] × [n2],

∣⟨ea, PUea′⟩ −
r

n1
1a=a′ ∣ ≤ µ

√
r

n1
,

∣⟨eb, PV eb′⟩ −
r

n2
1b=b′ ∣ ≤ µ

√
r

n2
.

A2 Let E be the ’sign matrix’ defined by

E = ∑
k∈[r]

ukv
∗
k . (5.2.7)

1This can be seen by counting the number of parameters in the singular value decomposition.



133

For all (a, b) ∈ [n1] × [n2],
∣Eab∣ ≤ µ

√
r

√
n1n2

.

These conditions do not assume anything about the singular values. As we will see, incoherent

matrices with a small value of the strong incoherence parameter µ can be recovered from a minimal

set of entries. Before we state this result, it is important to note that many model matrices obey

the strong incoherence property with a small value of µ.

� Suppose the singular vectors obey (5.2.2) with µB = O(1) (which informally says that the

singular vectors are not spiky), then with the exception of a very few peculiar matrices, M

obeys the strong incoherence property with µ = O(
√

logn). Specifically, there is a generic

random model under which µ = O(
√

logn) with very high probability, see [36].

� Assume that the column matrices [u1, . . . , ur] and [v1, . . . , vr] are independent random or-

thogonal matrices, then with high probability, M obeys the strong incoherence property with

µ = O(
√

logn), at least when r ≥ logn as to avoid small samples effects.

The sampling result below is general, nonasymptotic and optimal up to a few logarithmic factors.

Theorem 5.2.2 [44] Let M ∈ Rn1×n2 be a fixed rank-r matrix with strong incoherence parameter

µ, and set n ∶= max(n1, n2). Suppose we observe m entries of M with locations sampled uniformly

at random. Then there is a numerical constant C such that if

m ≥ C µ2 nr log6 n, (5.2.8)

M is the unique solution to (5.2.4) with probability at least 1 − n−3.

In other words, if a matrix is strongly incoherent and the cardinality of the sampled set is about

the number of degrees of freedom times a few logarithmic factors, then nuclear-norm minimization

is exact. This improves on an earlier result of Candès and Recht [36] who proved—under slightly

different assumptions—that on the order of n6/5r logn samples were sufficient, at least for values of

the rank obeying r ≤ n1/5.

More recently, a new matrix-completion result has further reduced the number of measurements

required. This is encapsulated in the following theorem, which is due to the theoretical developments

of Gross [88], and is also derived by mainly the same techniques in Recht’s paper [128]. In fact, [88]

allows for much more general measurement bases—for example, it handles the Pauli measurements

discussed in Chapter 4—while Recht’s paper specializes these results to matrix completion. We

present the version in [128]; the parameter µ1 appearing in this theorem is quite similar to the

strong coherence parameter µ, and will be defined just below.
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Theorem 5.2.3 Let M ∈ Rn1×n2 be a fixed rank-r matrix with incoherence parameter µ1, and set

n ∶= max(n1, n2). Suppose we observe m entries of M with locations sampled uniformly at random.

Then if

m ≥ 32µ1r(n1 + n2)βlog2(2n) (5.2.9)

M is the unique solution to (5.2.4) with probability at least 1 − 6 log(n2)(n1 + n2)2−2β − n2−2β1/2

.

Above, µ1 is the smallest scalar value such that

A3

√
n1

r
max

1≤a≤n1

∥PUea∥`2 ≤ µ1

√
n2

r
max

1≤a≤n2

∥PV ea∥`2 ≤ µ1

A4 (This is the same as A2.)Let E be the sign matrix defined in A2. For all (a, b) ∈ [n1] × [n2],

∣Eab∣ ≤ µ1

√
r

√
n1n2

.

We would now like to point out a result of a broadly similar nature, but with a completely

different recovery algorithm and with a somewhat different range of applicability, which was recently

established by Keshavan, Oh, and Montanari [96]. Their conditions are related to the incoherence

property introduced in [36], and are also satisfied by a number of reasonable random matrix models.

There is, however, another condition which states that the singular values of the unknown matrix

cannot be too large or too small (the ratio between the top and lowest value must be bounded).

This algorithm 1) trims each row and column with too many entries; i.e., replaces the entries in

those rows and columns by zero and 2) computes the SVD of the trimmed matrix, truncates it as to

only keep the top r singular values (note that the value of r is needed here), and rescales. The result

is that under some suitable conditions discussed above, this recovers a good approximation to the

matrix M provided that the number of samples be on the order of nr. The recovery at this point

is not exact, but one can now perform local minimization to achieve exact recovery provided that

one has more samples (on the order of nrmax(logn, r)), and in fact the recovery is stable provided

that the noise level is small [97]. This builds upon an earlier spectral technique suggested by the

computer science community [7], which also proves stability results, but under stronger conditions.

5.2.1 Geometry and dual certificates

We cannot rehash the proof of Theorem 5.2.2 from [44] in this chapter, or even explain the main

technical steps, because of space limitations. We will, however, detail sufficient and almost necessary
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conditions for the low-rank matrix M to be the unique solution to the SDP (5.2.4). This will be

useful to establish stability results.

The recovery is exact if the feasible set is tangent to the nuclear ball at the point M . To express

this mathematically2, standard duality theory asserts that M is a solution to (5.2.4) if and only if

there exists a dual matrix Λ such that PΩ(Λ) is a subgradient of the nuclear norm at M , written as

PΩ(Λ) ∈ ∂∥M∥∗. (5.2.10)

Recall the SVD (5.2.1) of M and the ‘sign matrix’ E (5.2.7). It is well-known that Z ∈ ∂∥M∥∗ if

and only if Z is of the form,

Z = E +W, (5.2.11)

where

PUW = 0, WPV = 0, ∥W ∥ ≤ 1. (5.2.12)

In English, Z is a subgradient if it can be decomposed as the sign matrix plus another matrix

with spectral norm bounded by one, whose column (resp. row) space is orthogonal to the span of

u1, . . . , ur, (resp. of v1, . . . , vr). Another way to put this is by using notations introduced in [36].

Let T be the linear space spanned by elements of the form ukx
∗ and yv∗k , k ∈ [r], and let T ⊥ be the

orthogonal complement to T . Note that T ⊥ is the set of matrices obeying PUW = 0 and WPV = 0.

Then, Z ∈ ∂∥M∥∗ if and only if

Z = E +PT ⊥(Z), ∥PT ⊥(Z)∥ ≤ 1.

This motivates the following definition.

Definition 5.2.4 (Dual certificate) We say that Λ is a dual certificate if Λ is supported on Ω

(Λ = PΩ(Λ)), PT (Λ) = E and ∥PT ⊥(Λ)∥ ≤ 1.

Before continuing, we would like to pause to observe the relationship with `1 minimization. The

point x⋆ ∈ Rn is solution to

minimize ∥x∥`1
subject to Ax = b,

(5.2.13)

with A ∈ Rm×n if and only if there exists λ ∈ Rm such that A∗λ ∈ ∂∥x⋆∥`1 . Note that if S⋆ is the

2In general, M minimizes the nuclear norm subject to the linear constraints A(X) = b, A ∶ Rn1×n2 → R
m, if and

only if there is λ ∈ Rm such that A∗(λ) ∈ ∂∥M∥∗.
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support of x⋆, z ∈ ∂∥x⋆∥`1 is equivalent to

z = e +w, e =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sgn(x⋆i ), i ∈ S⋆,

0, i ∉ S∗,

and

wi = 0 for all i ∈ S, ∥w∥`∞ ≤ 1.

Hence, there is a clear analogy and one can think of T defined above as playing the role of the

support set in the sparse recovery problem.

With this in place, we shall make use of the following lemma from [36]:

Lemma 5.2.5 [36] Suppose there exists a dual certificate Λ and consider any H obeying PΩ(H) = 0.

Then

∥M +H∥∗ ≥ ∥M∥∗ + (1 − ∥PT ⊥(Λ)∥)∥PT ⊥(H)∥∗.

Proof For any Z ∈ ∂∥M∥∗, we have

∥M +H∥∗ ≥ ∥M∥∗ + ⟨Z,H⟩.

With Λ = E +PT ⊥(Λ) and Z = E +PT ⊥(Z), we have

∥M +H∥∗ ≥ ∥M∥∗ + ⟨Λ,H⟩ + ⟨PT ⊥(Z −Λ),H⟩

= ∥M∥∗ + ⟨Z −Λ,PT ⊥(H)⟩

since PΩ(H) = 0. Now we use the fact that the nuclear and spectral norms are dual to one another. In

particular, there exists ∥Z̄∥ ≤ 1 such that ⟨Z̄,PT ⊥(H)⟩ = ∥PT ⊥(H)∥∗. Now pick Z such that PT ⊥(Z) =
PT ⊥(Z̄) so that ⟨Z,PT ⊥(H)⟩ = ∥PT ⊥(H)∥∗. Second, note that ∣⟨Λ,PT ⊥(H)⟩∣ = ∣⟨PT ⊥(Λ),PT ⊥(H)⟩∣ ≤
∥PT ⊥(Λ)∥∥PT ⊥(H)∥∗. Therefore,

∥M +H∥∗ ≥ ∥M∥∗ + (1 − ∥PT ⊥(Λ)∥)∥PT ⊥(H)∥∗,

which concludes the proof.

A consequence of this lemma are the sufficient conditions below.

Lemma 5.2.6 [36] Suppose there exists a dual certificate obeying ∥PT ⊥(Λ)∥ < 1 and that the re-

striction PΩ ⇂T ∶ T → PΩ(Rn×n) of the (sampling) operator PΩ restricted to T is injective. Then M

is the unique solution to the convex program (5.2.4).

Proof Consider any feasible perturbation M +H obeying PΩ(H) = 0. Then by assumption, Lemma
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5.2.5 gives

∥M +H∥∗ > ∥M∥∗

unless PT ⊥(H) = 0. Assume then that PT ⊥(H) = 0; that is to say, H ∈ T . Then PΩ(H) = 0 implies

that H = 0 by the injectivity assumption. The conclusion is that M is the unique minimizer since

any nontrivial perturbation increases the nuclear norm.

The methods for proving that matrix completion by nuclear minimization is exact, consist in

constructing a dual certificate.

Theorem 5.2.7 [44] Under the assumptions of either Theorem 5.2.1 or Theorem 5.2.2, there exists

a dual certificate obeying ∥PT ⊥(Λ)∥ ≤ 1/2. In addition, if p = m/(n1n2) is the fraction of observed

entries, the operator PTPΩPT ∶ T → T is one-to-one and obeys

p

2
I ⪯ PTPΩPT ⪯ 3p

2
I, (5.2.14)

where I ∶ T → T is the identity operator.

The second part, namely, (5.2.14) shows that the mapping PΩ ∶ T → R
n1×n2 is injective. Hence,

the sufficient conditions of Lemma 5.2.6 are verified, and the recovery is exact. What is interesting,

is that the existence of a dual certificate together with the near-isometry (5.2.14)—in fact, the lower

bound—are sufficient to establish the robustness of matrix completion vis a vis noise.

5.3 Stable Matrix Completion

In any real world application, one will only observe a few entries corrupted at least by a small

amount of noise. In the Netflix problem, users’ ratings are uncertain. In the system identification

problem, one cannot determine the locations y(t) with infinite precision. In the global positioning

problem, local distances are imperfect. And finally, in the remote sensing problem, the signal

covariance matrix is always modeled as being corrupted by the covariance of noise signals. Hence, to

be broadly applicable, we need to develop results which guarantee that reasonably accurate matrix

completion is possible from noisy sampled entries. This section develops novel results showing that

this is, indeed, the case.

Our noisy model assumes that we observe

Yij =Mij +Zij , (i, j) ∈ Ω, (5.3.1)

where {Zij ∶ (i, j) ∈ Ω} is a noise term which may be stochastic or deterministic (adversarial).
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Another way to express this model is as

PΩ(Y ) = PΩ(M) +PΩ(Z),

where Z is an n×n matrix with entries Zij for (i, j) ∈ Ω (note that the values of Z outside of Ω are

irrelevant). All we assume is that ∥PΩ(Z)∥F ≤ δ for some δ > 0. For example, if {Zij} is a white

noise sequence with standard deviation σ, then δ2 ≤ (m +
√

8m)σ2 with high probability, say. To

recover the unknown matrix, we propose solving the following optimization problem:

minimize ∥X∥∗
subject to ∥PΩ(X − Y )∥F ≤ δ.

(5.3.2)

Among all matrices consistent with the data, find the one with minimum nuclear norm. This is also

an SDP, and let M̂ be the solution to this problem.

Our main result is that this reconstruction is accurate.

Theorem 5.3.1 With the notations of Theorem 5.2.7, suppose there exists a dual certificate obeying

∥PT ⊥(Λ)∥ ≤ 1/2 and that PTPΩPT ⪰ p
2
I (both these conditions are true with very large probability

under the assumptions of the noiseless recovery Theorems 5.2.1 and 5.2.2). Then M̂ obeys

∥M − M̂∥F ≤ 4

¿
ÁÁÀCpmin(n1, n2)

p
δ + 2δ, (5.3.3)

with Cp = 2 + p.

The same error bound also holds when there exists an ‘inexact dual certificate’ (see [88]); this was

proved by an adaptation of our techniques in [90]. It is significant because the tightest matrix

completion result (Theorem 5.2.3) is proved by constructing an inexact dual certificate.

For small values of p (recall this is the fraction of observed entries), the error is of course at most

just about 4
√

2 min(n1,n2)

p
δ. As we will see from the proof, there is nothing special about 1/2 in the

condition ∥PT ⊥(Λ)∥ ≤ 1/2. All we need is that there is a dual certificate obeying ∥PT ⊥(Λ)∥ ≤ a for

some a < 1 (the value of a only influences the numerical constant in (5.3.3)). Further, when Z is

random, (5.3.3) holds on the event ∥PΩ(Z)∥F ≤ δ.
Roughly speaking, our theorem states the following: when perfect noiseless recovery occurs, then

matrix completion is stable vis a vis perturbations. To be sure, the error is proportional to the noise

level δ; when the noise level is small, the error is small. Moreover, improving conditions under which

noiseless recovery occurs, has automatic consequences for the more realistic recovery from noisy

samples.

A significant novelty here is that there is no equivalent of this result in the compressed sensing
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or statistical literature; in particular our matrix completion problem since it does not obey the

restricted isometry property (RIP) [41]. For matrices, the RIP would assume that the sampling

operator obeys

(1 − δ)∥X∥2
F ≤ 1

p
∥PΩ(X)∥2

F ≤ (1 + δ)∥X∥2
F (5.3.4)

for all matrices X with sufficiently small rank and δ < 1 sufficiently small [129]. However, the RIP

does not hold here. To see why, let the sampled set Ω be arbitrarily chosen and fix (i, j) ∉ Ω. Then

the rank-1 matrix eie
∗
j whose (i, j)th entry is 1, and vanishes everywhere else, obeys PΩ(eie∗j ) = 0.

Clearly, this violates (5.3.4).

It is nevertheless instructive to compare (5.3.3) with the bound one would achieve if the RIP

(5.3.4) were true. In this case, [73] would give

∥M̂ −M∥F ≤ C0p
−1/2 δ

for some numerical constant C0. That is, an estimate which would be better by a factor proportional

to 1/
√

min(n1, n2).
We close this section by emphasizing that our methods are also applicable to sparse signal

recovery problems in which the RIP does not hold.

5.3.1 Proof of Theorem 5.3.1

We use the notation of the previous section, and begin the proof by observing two elementary

properties. The first is that since M is feasible for (5.3.2), we have the cone constraint

∥M̂∥∗ ≤ ∥M∥∗. (5.3.5)

The second is that the triangle inequality implies the tube constraint

∥PΩ(M̂ −M)∥F ≤ ∥PΩ(M̂ − Y )∥F + ∥PΩ(Y −M)∥F

≤ 2δ, (5.3.6)

since M is feasible. We will see that under our hypotheses, (5.3.5) and (5.3.6) imply that M̂ is

close to M . Set M̂ = M +H and put HΩ ∶= PΩ(H), HΩc ∶= PΩc(H) for short. We need to bound

∥H∥2
F = ∥HΩ∥2

F + ∥HΩc∥2
F , and since (5.3.6) gives ∥HΩ∥F ≤ 2δ, it suffices to bound ∥HΩc∥F . Note

that by the Pythagorean identity, we have

∥HΩc∥2
F = ∥PT (HΩc)∥2

F + ∥PT ⊥(HΩc)∥2
F , (5.3.7)
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and it is thus sufficient to bound each term in the right-hand side.

We start with the second term. Let Λ be a dual certificate obeying ∥PT ⊥(Λ)∥ ≤ 1/2, we have

∥M +H∥∗ ≥ ∥M +HΩc∥∗ − ∥HΩ∥∗

and

∥M +HΩc∥∗ ≥ ∥M∥∗ + [1 − ∥PT ⊥(Λ)∥]∥PT ⊥(HΩc)∥∗.

The second inequality follows from Lemma 5.2.5. Therefore, with ∥PT ⊥(Λ)∥ ≤ 1/2, the cone con-

straint gives

∥M∥∗ ≥ ∥M∥∗ +
1

2
∥PT ⊥(HΩc)∥∗ − ∥HΩ∥∗,

or, equivalently,

∥PT ⊥(HΩc)∥∗ ≤ 2∥HΩ∥∗.

Since the nuclear norm dominates the Frobenius norm, ∥PT ⊥(HΩc)∥F ≤ ∥PT ⊥(HΩc)∥∗, we have

∥PT ⊥(HΩc)∥F ≤ 2∥HΩ∥∗

≤ 2
√
n∥HΩ∥F ≤ 4

√
nδ, (5.3.8)

where the second inequality follows from the Cauchy-Schwarz inequality, and the last from (5.3.6).

To develop a bound on ∥PT (HΩc)∥F , observe that the assumption PTPΩPT ⪰ p
2
I together with

P2
T = PT , P2

Ω = PΩ give

∥PΩPT (HΩc)∥2
F = ⟨PΩPT (HΩc),PΩPT (HΩc)⟩

= ⟨PTPΩPT (HΩc),PT (HΩc)⟩

≥ p
2
∥PT (HΩc)∥2

F .

But since PΩ(HΩc) = 0 = PΩPT (HΩc) +PΩPT ⊥(HΩc), we have

∥PΩPT (HΩc)∥F = ∥PΩPT ⊥(HΩc)∥F

≤ ∥PT ⊥(HΩc)∥F .

Hence, the last two inequalities give

∥PT (HΩc)∥2
F ≤ 2

p
∥PΩPT (HΩc)∥2

F ≤ 2

p
∥PT ⊥(HΩc)∥2

F . (5.3.9)
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As a consequence of this and (5.3.7), we have

∥HΩc∥2
F ≤ (2

p
+ 1)∥PT ⊥(HΩc)∥2

F .

The theorem then follows from this inequality together with (5.3.8).

5.3.2 Comparison with an oracle

We would like to return to discussing the best possible accuracy one could ever hope for. For

simplicity, assume that n1 = n2 = n, and suppose that we have an oracle informing us about T . In

many ways, going back to the discussion from Section 5.2.1, this is analogous to giving away the

support of the signal in compressed sensing [43]. With this precious information, we would know

that M lives in a linear space of dimension 2nr − r2 and would probably solve the problem by the

method of least squares:

minimize ∥PΩ(X) −PΩ(Y )∥F
subject to X ∈ T.

(5.3.10)

That is, we would find the matrix in T , which best fits the data in a least-squares sense. Let

A ∶ T → Ω (we abuse notations and let Ω be the range of PΩ) be defined by A ∶= PΩPT . Then

assuming that the operator A∗A = PTPΩPT mapping T onto T is invertible (which is the case under

the hypotheses of Theorem 5.3.1), the least-squares solution is given by

MOracle ∶= (A∗A)−1A∗(Y )

=M + (A∗A)−1A∗(Z). (5.3.11)

Hence,

∥MOracle −M∥F = ∥(A∗A)−1A∗(Z)∥F .

Let Z ′ be the minimal (normalized) eigenvector of A∗A with minimum eigenvalue λmin, and set

Z = δλ−1/2
min A(Z ′) (note that by definition PΩ(Z) = Z since Z is in the range of A).3 By construction,

∥Z∥F = δ, and

∥(A∗A)−1A∗(Z)∥F = λ−1/2
min δ ≳ p

−1/2 δ

since by assumption, all the eigenvalues of A∗A = PTPΩPT lie in the interval [p/2,3p/2]. The matrix

Z defined above also maximizes ∥(A∗A)−1A∗(Z)∥F among all matrices bounded by δ and so the

oracle achieves

∥MOracle −M∥F ≈ p−1/2δ (5.3.12)

3To clarify, Z′ is itself a matrix but it may be useful to picture it as a vector with n1 ⋅ n2 entries.
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with adversarial noise. Consequently, our analysis loses a
√
n factor vis a vis an optimal bound that

is achievable via the help of an oracle.

The diligent reader may argue that the least-squares solution above may not be of rank r (it is

at most of rank 2r) and may thus argue that this is not the strongest possible oracle. However, as

explained below, if the oracle gave T and r, then the best fit in T of rank r would not do much better

than (5.3.12). In fact, there is an elegant way to understand the significance of this oracle which

we now present. Consider a stronger oracle which reveals the row space of the unknown matrix M

(and thus the rank of the matrix). Then we would know that the unknown matrix is of the form

M =MCR
∗,

where MC is an n × r matrix, and R is an n × r matrix whose columns form an orthobasis for the

row space (which we can build since the oracle gave us perfect information). We would then fit the

nr unknown entries by the method of least squares and find X ∈ Rn×r minimizing

∥PΩ(XR∗) −PΩ(Y )∥F .

Using our previous notations, the oracle gives away T0 ⊂ T where T0 is the span of elements of

the form yv∗k , k ∈ [r], and is more precise. If A0 ∶ T0 → Ω is defined by A0 ∶= PΩPT0 , then the

least-squares solution is now

(A∗0A0)−1A∗0(Y ).

Because all the eigenvalues of A∗0A0 belong to [λmin(A∗A), λmax(A∗A)], the previous analysis ap-

plies and this stronger oracle would also achieve an error of size about p−1/2δ. In conclusion, when

all we know is ∥PΩ(Z)∥F ≤ δ, one cannot hope for a root-mean squared error better than p−1/2δ.

Note that when the noise is stochastic, e.g., when Zij is white noise with standard deviation σ,

the oracle gives an error bound which is adaptive, and is smaller as the rank gets smaller. Indeed,

E ∥(A∗A)−1A∗(Z)∥2
F is equal to

σ2 trace((A∗A)−1) ≈ 2nr − r2

p
σ2 ≈ 2nr

p
σ2, (5.3.13)

since all the 2nr − r2 eigenvalues of (A∗A)−1 are just about equal to p−1. When nr ≪ m, this is

better than (5.3.12).

5.4 Numerical Experiments

We have seen that matrix completion is stable amid noise. To emphasize the practical nature of

this result, a series of numerical matrix completion experiments were run with noisy data. To be
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n 100 200 500 1000
RMS error .99 .61 .34 .24

Table 5.1: RMS error (∥M̂ −M∥F /n) as a function of n when subsampling 20% of an n × n
matrix of rank two. Each RMS error is averaged over 20 experiments.

precise, for several values of the dimension n (our first experiments concern n × n matrices), the

rank r, and the fraction of observed entries p = m/n2, the following numerical simulations were

repeated 20 times, and the errors averaged. A rank-r matrix M is created as the product of two

rectangular matrices, M =MLM
∗
R, where the entries of ML,MR ∈ Rn×r are iid N(0, σ2

n ∶= 20/√n)4.

The sampled set Ω is picked uniformly at random among all sets with m entries. The observations

PΩ(Y ) are corrupted by noise as in (5.3.1), where {Zij} is iid N(0, σ2); here, we take σ = 1. Last,

M̂ is recovered as the solution to (5.4.1) below.

For a peek at the results, consider Table 5.1. The RMS error defined as ∥M̂ −M∥F /n, measures

the root-mean squared error per entry. From the table, one can see that even though each entry is

corrupted by noise with variance 1, when M is a 1000 by 1000 matrix, the RMS error per entry is

.24. To see the significance of this, suppose one had the chance to see all the entries of the noisy

matrix Y =M +Z. Naively accepting Y as an estimate of M would lead to an expected MS error of

E ∥Y −M∥2
F /n2 = E ∥Z∥2

F /n2 = 1, whereas the MS error achieved from only viewing 20% of the entries

is ∥M̂ −M∥2
F /n2 = .242 = .0576 when solving the SDP (5.4.1)! Not only are we guessing accurately

the entries we have not seen, but we also ‘denoise’ those we have seen.

In order to stably recover M from a fraction of noisy entries, the following regularized nuclear-

norm minimization problem was solved using the FPC algorithm from [104],

minimize
1

2
∥PΩ(X − Y )∥2

F + µ∥X∥∗. (5.4.1)

It is a standard duality result that (5.4.1) is equivalent to (5.3.2), for some value of µ, and thus

one could use (5.4.1) to solve (5.3.2) by searching for the value of µ(δ) giving ∥PΩ(M̂ − Y )∥F = δ
(assuming ∥PΩ(Y )∥F > δ). We use (5.4.1) because it works well in practice, and because the FPC

algorithm solves (5.4.1) nicely and accurately. We also remark that a variation on our stability proof

could also give a stable error bound when using the SDP (5.4.1).

It is vital to choose a suitable value of µ, which we do with the following heuristic argument:

first, simplifying to the case when Ω is the set of all elements of the matrix, note that the solution

of (5.4.1) is equal to Y but with singular values shifted towards zero by µ (soft-thresholding), as

can be seen from the optimality conditions of Section 5.2 by means of subgradients, or see [25].

4The value of σn is rather arbitrary. Here, it is set so that the singular values of M are quite larger than the
singular values of PΩ(Z) so that M can be distinguished from the null matrix. Having said that, note that for large n
and small r, the entries of M are much smaller than those of the noise, and thus the signal appears to be completely
buried in noise.
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When Ω is not the entire set, the solution is no longer exactly a soft-thresholded version of Y , but

experimentally, it is generally close. Thus, we want to pick µ large enough to threshold away the

noise (keep the variance low), and small enough not to overshrink the original matrix (keep the bias

low). To this end, µ is set to be the smallest possible value such that if M = 0 and Y = Z, then it

is likely that the minimizer of (5.4.1) satisfies M̂ = 0. It can be seen that the solution to (5.4.1) is

M̂ = 0 if ∥PΩ(Y )∥ ≤ µ (once again, check the subgradient or [25]). Then the question is: what is

∥PΩ(Z)∥? If we make a nonessential change in the way Ω is sampled, then the answer follows from

random matrix theory. Rather than picking Ω uniformly at random, choose Ω by selecting each

entry with probability p, independently of the others. With this modification, each entry of PΩ(Z)
is iid with variance pσ2. Then if Z ∈ Rn×n, it is known that n−1/2 ∥PΩ(Z)∥ →

√
2pσ, almost surely

as n → ∞. Thus we pick µ =
√

2npσ, where p = m/n2. In practice, this value of µ seems to work

very well for square matrices. For n1 × n2 matrices, based on the same considerations, the proposal

is µ = (√n1 +
√
n2)

√
pσ with p =m/(n1n2).

In order to interpret our numerical results, they are compared to those achieved by the oracle,

see Section 5.3.2. To this end, Figure 5.1 plots three curves for varying values of n, p, and r: 1)

the RMS error introduced above, 2) the RMS error achievable when the oracle reveals T , and the

problem is solved using least squares, 3) the estimated oracle root expected MS error derived in

Section 5.3.2, i.e.,
√

df/[n2p] =
√

df/m, where df = r(2n − r). In our experiments, as n and m/df

increased, with r = 2, the RMS error of the nuclear norm problem appeared to be fit very well by

1.68
√

df/m. Thus, to compare the oracle error to the actual recovered error, we plotted the oracle

errors times 1.68. We also note that in our experiments, the RMS error was never greater than

2.25
√

df/m.

No one can predict the weather. We conclude the numerical section with a real world example.

We retrieved from the website [1] a 366 × 1472 matrix whose entries are daily average temperatures

at 1472 different weather stations throughout the world in 2008. Checking its SVD reveals that this

is an approximately low rank matrix as expected. In fact, letting M be the temperature matrix,

and calling M2 the matrix created by truncating the SVD after the top two singular values gives

∥M2∥F /∥M∥F = .9927.

We first tested whether the incoherence assumptions described above were satisfied. Since M2

contained almost all of the energy in M , we measured µB in terms of the singular vectors of M2 and

found µB = 3.83. We considered this to be small because µB is bounded as 1 ≤ µB ≤ 1472.5 ≈ 38.4.

To test the performance of our matrix completion algorithm, we subsampled 30% of M and

then recovered an estimate, M̂ , using (5.4.1). Note that this is a much different problem than

those proposed earlier in this section. Here, we attempt to recover a matrix that is not exactly low

rank, but only approximately. The solution gives a relative error of ∥M̂ −M∥F /∥M∥F = .166. For
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Figure 5.1: Comparison between the recovery error, the oracle error times 1.68, and the
estimated oracle error times 1.68. Each point on the plot corresponds to an average over 20
trials. Top left: in this experiment n = 600, r = 2, and p varies. The x-axis is the number of
measurements per degree of freedom (df). Top right: n varies, whereas r = 2, p = .2. Bottom:
n = 600, r varies, and p = .2.
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comparison5, exact knowledge of the best rank-2 approximation achieves ∥M2 −M∥F /∥M∥F = .121.

Here µ has been selected to give a good cross-validated error and is about 535.

5.5 Discussion

This chapter reviewed and developed some new results about matrix completion. By and large,

matrix completion is a field in complete infancy abounding with interesting and open questions, and

if the recent avalanche of results in compressed sensing is any indication, it is likely that this field

will experience tremendous growth in the next few years.

Noisy matrix completion appears to be a difficult problem, in particular because it is RIP-less.

Thus it is difficult to achieve near-optimal error bounds under general assumptions, and indeed the

error bounds presented in this chapter were clearly non-optimal. Nevertheless, a few very recent

papers solving somewhat different tractable problems [97,98,119] have demonstrated near-ideal error

bounds for matrix completion, but under restrictive conditions. In particular, Montanari et al. [97]

demonstrate near-ideal error bounds but under a requirement that the condition number of M

be bounded by a constant, and certain coherence-type requirements hold as well. Wainwright et

al. [119] and Koltchinskii et al. [98] also demonstrate near-ideal error bounds under coherence-type

requirements when the noise level is high. However, it remains an open problem to weaken these

assumptions, and in particular to give near-ideal error bounds that apply when the noise level is low

and without bounding the condition number.

5The number 2 is somewhat arbitrary here, although we picked it because there is a large drop-off in the size of the
singular values after the second. If, for example, M10 is the best rank-10 approximation, then ∥M10 −M∥F /∥M∥F =

.081.



147

Chapter 6

Conclusion

In Chapter 2 we demonstrated the efficacy of `1-minimization-based programs, namely the LASSO

and Dantzig selector, in recovering sparse signals from the linear model y = Ax+σz. We showed that

in many cases the number of measurements necessary (i.e., the length of y) for stable signal recovery

is no more than about s logn. Moreover, the error achieved is within a polylogarithmic factor of the

oracle error achieved by regressing y onto AT (where T contains the support of x). These results

were also generalized to the the case when x is approximately sparse; none of these results required

the restricted isometry property.

One key motivation for this work in CS is the application to MRI. However, besides for an-

giography, many important MRI applications are outside of the scope of the current CS theory. In

particular, the current theory requires a notion of incoherence, as described in Chapter 2, but the

wavelet bases which are commonly used in MRI are in fact quite coherent with Fourier measurements.

Further, it is of interest to also consider the expansion of MRI images in overcomplete dictionaries

(e.g., curvelets). While there are some recent results for CS with overcomplete dictionaries [31],

these are RIP-based in a sense, and do not directly apply to the MRI setup.

In Chapter 3, we studied the ability of the LASSO to recover Xβ and the support of β from the

linear model y = Xβ + z in a RIP-less setting. Under mild assumptions on the collinearity between

columns of X, we once again demonstrated near-ideal error bounds, this time regarding the error in

estimating the mean vector, Xβ. Further we demonstrated the perfect recovery of the support of β

as long as all of its entries stood above the noise. As a consequence of this second result, one may

achieve accurate recovery of β by regressing y onto its support. However, in the case when the entries

of β do not all stand above the noise, our results do not apply to the recovery β. Demonstrating

the accurate recovery of β—with oracle error bounds—under weaker conditions is still an important

problem with many applications.

In Chapter 4, we turned to a RIP-based analysis of low-rank matrix recovery. We showed that

the matrix version of the RIP holds at rank r with high probability for certain random measurement

ensembles as long as the measurement operator provides at least O(nr) measurements. This is
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optimal up to a constant because the set of n × n matrices with rank r, has many linear subsets

of dimension nr. Further, we used the RIP to give oracle error bounds for the matrix LASSO and

the matrix Dantzig selector. In contrast to CS and SA results, the error bounds and number of

measurements needed are within a constant factor of the oracle error, rather than a logarithmic

factor.

While the results in this chapter were theoretically optimal up to constants, they are less ap-

plicable than the results in the other chapters due to the strong requirements on the measurement

ensembles—the main ones considered were Gaussian or subgaussian. An important open problem

is to weaken requirements on the random measurement ensembles. In particular, in the quantum

state tomography problem discussed in this chapter, it is unknown whether the RIP holds.

In Chapter 5, we turned to the RIP-less matrix completion subproblem. We demonstrated

stability of the matrix LASSO from about nr log2 n measurements, but this time without near-

optimal error bounds. While there is a growing literature about matrix completion [97,98,119] with

exciting new results, it has not yet been proven that convex optimization provides near-ideal error

bounds without restrictive assumptions. Such a result would be of great practical relevance due to

the many applications of the matrix completion problem, and also of great theoretical interest due

to its apparent difficulty.
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