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Abstract 

In this work, we first discuss the image halftoning problem. Halftoning is the rendition of 

continuous-tone pictures on displays that are capable of producing only two levels. There 

are several well-known algorithms for half toning. The dot diffusion method for digital 

half toning has the advantage of pixel-level parallelism unlike the error diffusion method, 

which is a popular half toning method. The image quality offered by error diffusion is 

still regarded as superior to most of the other known methods. We show how the image 

quality obtained using the dot diffusion method can be improved by optimization of the 

so-called class matrix. By taking the human visual characteristics into account we show 

that such optimization consistently results in images comparable to error diffusion, without 

sacrificing the pixel-level parallelism. The dot diffusion algorithm will be discussed and 

by modifying the algorithm, embedded multiresolution property will be added. Later, 

we introduce LUT (Look Up Table) based half toning and tree-structured LUT (TLUT) 

halftoning. We demonstrate how error diffusion characteristics can be achieved with this 

method. Afterwards, our algorithm will be trained on halftones obtained by Direct Binary 

Search (DBS) which is an algorithm with high computational complexity. The complexity 

of TLUT halftoning is higher than that of error diffusion but much lower than that of the 

DBS algorithm. Thus, halftone image quality between that of error diffusion and DBS will 

be achieved depending on the size of tree structure in TLUT algorithm. 

We also discuss the inverse halftoning problem. Inverse halftoning is the reconstruc­

tion of a continuous tone image from its halftoned version. We propose two methods for 

inverse half toning of dot diffused images. The first one uses Projection Onto Convex Sets 

(POCS) and the second one uses wavelets. We then propose a novel and fast method for 

inverse halftoning called the Look Up Table (LUT) Method. The LUT for inverse halfton­

ing is obtained from the histogram gathered from a few sample halftone images and the 

corresponding original images. For each pixel, the algorithm looks at the pixel's neighbor­

hood (template) and depending upon the distribution of pixels in the template, it assigns 

a contone value from a precomputed LUT. The method is extremely fast (no filtering is 

required) and the image quality achieved is comparable to the best methods known for 
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inverse halftoning. The LUT inverse half toning method does not depend on the specific 

properties of the half toning method, and can be applied to any method. An algorithm for 

template selection for LUT inverse half toning is introduced. We also extend LUT inverse 

halftoning to color halftones. 

The next topic is image watermarking and effects of halftoning on watermarked images. 

Watermarking is the process of embedding a secret signal into a host signal in order to 

verify ownership or authenticity. We discuss the effects of applying inverse half toning be­

fore detection of watermark in half toned images and offer methods to improve watermark 

detection from halftoned images. 

Finally, we consider the optimal histogram modification with MSE metric and optimal 

codebook selection problem. Watermarking with histogram modification is one of the few 

watermarking methods which is robust to rotation and scaling. We formulate histogram 

modification problem as finding a transformation such that the error between the input and 

the output signal is minimized and the output signal has the desired histogram. It turns 

out that this problem is equivalent to the integer linear programming problem. Then, we 

formulate the problem of finding the optimal code book where the codewords can come from 

a finite set. The equivalent problem again turns out to be a linear integer programming 

problem and the solution is guaranteed to be globally optimal. 
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Chapter 1 Introduction 

In this thesis, we first introduce the halftoning problem and review different standard meth­

ods to solve it. Then we describe novel half toning algorithms and demonstrate their perfor­

mance. Another interesting problem addressed here is the inverse halftoning of images. We 

will discuss the importance of this problem and describe the existing solutions. This will 

be followed by an introduction of our novel inverse half toning algorithms. The performance 

of these algorithms will be assessed by applying them to different kinds of halftones. Then 

we will study the watermarking problem and examine the effects of half toning and inverse 

half toning on watermark detection. The last topic will be a specific way of embedding 

watermarks into images through histogram modification. In the following we give a brief 

explanation of the topics discussed in the thesis. 

1.1 The history of half toning 

Half toning is the rendition of continuous-tone pictures on media on which only two levels 

can be displayed. The problem arose in the late 19th century when printing machines 

attempted to print images on paper. This was accomplished by adjusting the size of the 

dots according to local image intensity. This process is called analog half toning and the 

details of this process are given below. With the proliferation of bilevel devices, the digital 

halftoning problem also gained importance. Some of these bilevel devices are fax machines, 

printers, plasma display panels, etc. Half toning is vastly used in printing newspapers, 

magazines, etc. The first commercial halftone screen was used in 1866 to print continuous 

tone images on paper by arranging dots for a specific image. Some of the screen densities 

used are 50-85 lpi (line per inch) for newspapers, 100-120 lpi for highly polished papers and 

for some magazines, 120-150 lpi for color illustrations in magazines and for books printed 

on coated papers. This work will focus on digital half toning. 
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Original Image 

Optical Lens 

Ai~~~IIIIIIII_fi~V Halftone Screen 

Halftone Image 

Figure 1.1: Analog halftoning process. 

1.1.1 Analog half toning 

An analog halftone is a photoengraving made from an image photographed through a screen 

and then etched so that the details of the image are reproduced in dots. This is useful in 

rendering smooth variations of color in the original image by means of dots assigned to 

areas of the image. This process is depicted in Fig. 1.1. An image is illuminated by a light 

source. The light coming from the image passes through a halftone screen. The halftone 

screen consists of a series of regular spaced opaque lines on glass, crossing at right angles, 

producing transparent apertures between intersections. This screen breaks up a solid or 

continuous tone image into a pattern of small dots. This is depicted in Fig. 1.2. The 

incident wave goes through the openings of the halftone screen and creates a luminance 

pattern on the surface of the high contrast film due to diffraction. The brightness of the 

incident wave modulates the peak of this luminance pattern. Then this pattern translates 

into black and white areas due to the high contrast nature of the film. 

1.1.2 Digital halftoning 

Digital halftoning is the rendition of continuous-tone pictures on displays that are capable 

of producing only two levels. This process is depicted in Fig. 1.3. The input is an image 
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1 Halftone Screen 

Threshold of 
the high contrast 
material 
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~----~~--~f--------I~--~~----~ 

High contrast material 

Figure 1.2: The diffraction pattern due to halftone screen. 

whose pixels have more than two levels, e.g., 256 levels, and the result of the halftoning 

process is an image which has only two levels. These two images look nearly the same to 

human eye when viewed from a distance. Thus half toning process exploits the low pass 

characteristics of the human visual system. 

There are different kinds of half toning algorithms. Some of these algorithms are sum­

marized in Table 1.1, categorized by their computational complexity, halftone quality that 

they produce, and amount of parallelism they offer. Among these algorithms, the ordered 

dither algorithm is the simplest one and it has complete parallelism but the worst halftone 

/ 

Figure 1.3: Digital half toning process. 
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Method Complexity Halftone Quality Parallelism 
Ordered Dither extremely low poor complete 
Dot Diffusion low poor substantial 
Error Diffusion low good none 
Direct Binary Search high best none 

Table 1.1: Comparison of different half toning algorithms. 

quality. On the other hand error diffused halftones are good, but error diffusion is an in­

herently serial algorithm. Notice that the best halftone quality is achieved by direct binary 

search algorithm, but this algorithm is computationally very intense. The details of these 

algorithms are given in Chapter 2. 

The dot diffusion method for digital half toning has the advantage of pixel-level paral­

lelism unlike the popular error diffusion halftoning method. However, image quality offered 

by error diffusion is still regarded as superior to most of the other known methods. In 

Chapter 2 we show how the dot diffusion method can be improved by optimization of the 

so-called class matrix. By taking the human visual characteristics into account, we show 

that such optimization consistently results in images comparable to error diffusion, without 

sacrificing the pixel-level parallelism. This is followed by a discussion on special cases of dot 

diffusion. Adaptive dot diffusion is also introduced and then a mathematical description of 

dot diffusion is derived. Embedded multiresolution dot diffusion is also discussed, which is 

useful for rendering at different resolutions and transmitting images progressively. 

In the second part of Chapter 4, we introduce LUT (Look Up Table) based halftoning 

and tree-structured LUT (TLUT) half toning. Pixels from a causal neighborhood (template) 

and contone value of the current pixel will be included in LUT. This process is depicted 

in Fig. 1.4 and details of this algorithm are given in Chapter 4. We will demonstrate 

how error diffusion characteristics can be achieved with this method. The performance of 

LUT half toning will be improved by TLUT half toning. This is achieved by making the 

templates adaptive. Even though TLUT method is more complex than LUT half toning, it 

produces better halftones and requires much less storage than LUT half toning. Afterwards, 

our algorithm will be trained on halftones obtained by Direct Binary Search (DBS). The 

complexity of TLUT halftoning is higher than that of error diffusion algorithm but much 

lower than that of the DBS algorithm. Also, the quality of TLUT halftones increases if 
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Figure 1.4: LUT half toning. 

the size of TLUT gets bigger. Thus, diffent halftone image qualities between that of error 

diffusion and DBS can be achieved depending on the size of tree structure in the TLUT 

algorithm. 

1.2 Inverse halftoning problem 

Inverse halftoning is the reconstruction of a continuous tone image from its halftoned ver­

sion. Inverse half toning has a wide range of applications. Examples include image compres­

sion, printed image processing, scaling, enhancement, etc. In these applications, operations 

cannot be done on the halftone image directly, and inverse half toning is mandatory. 

Since there can be more than one continuous tone image giving rise to a particular 

halftone image, there is no unique inverse halftone of a given half toned image. Thus, extra 

properties of images are needed in order to do inverse half toning. The basic assumption in all 

inverse halftoning algorithms is that "natural" images have "mostly lowpass" characteristics. 

Simple low pass filtering can remove most of the noise due to half toning but it also removes 

edge information. Besides lowpass filtering, there are more sophisticated approaches for 

inverse halftoning. The method of projection onto convex sets (POCS) has been used by 

Analoui and Allebach [4] for halftone images produced by ordered dithering. For error 

diffused halftones, Rein and Zakhor [22] have successfully used the POCS approach. A 

different method called logical filtering has been used by Fan [16] for ordered dither images. 

Wong [62] has used an iterative filtering method for inverse halftoning of error diffused 

images. The method of overcomplete wavelet expansions has been used in [64] to produce 

inverse halftones with good quality for error diffused images by separating the half toning 

noise from the original image through edge detection. Another method for inverse half toning 

of error diffused images was introduced by Kite et al. in [27]. This method is not only fast 

but also yields images of very good quality. The method uses space varying filtering based 
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Figure 1.5: LUT inverse halftoning. 

on gradients obtained from the image. 

In Sections 2.7-2.8, inverse half toning of dot diffused images is addressed and two meth­

ods are discussed. The first one uses Projection Onto Convex Sets (POCS) and the second 

one uses wavelets. 

In Chapter 3 we propose LUT (Look Up Table) based methods for inverse half toning 

of images. The LUT for inverse halftoning is obtained from the histogram gathered from 

a few sample halftone images and corresponding original images. For each pixel, the algo­

rithm looks at pixel's neighborhood (template) and depending upon distribution of pixels 

in template, it assigns a contone value from a precomputed LUT. The algorithm is depicted 

in Fig. 1.5. The method is extremely fast (no filtering is required) and the image quality 

achieved is comparable to the best methods known for inverse halftoning. The LUT inverse 

halftoning method does not depend on the specific properties of the halftoning method, 

and can be applied to any halftoning method. An algorithm for template selection for 

LUT inverse half toning is introduced. We demonstrate the performance of the LUT inverse 

half toning algorithm on error diffused images and dithered images. We also extend LUT 

inverse half toning to color halftones. 

Many of the entries in the LUT are unused because the corresponding binary patterns 

hardly occur in commonly encountered halftones. These are called nonexistent patterns. 

In Chapter 4, we propose a tree structure which will reduce the storage requirements of 

an LUT by avoiding nonexistent patterns. First a small template LUT will be used to get 

a crude inverse halftone. Then this value will be refined by adaptively adding pixels to 

the template depending on context. The TLUT algorithm is depicted in Fig. 1.6. We will 
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Figure 1.6: TLUT inverse halftoning. 

demonstrate its performance on error diffused images and ordered dither images. 

1.3 Watermarking and effects of watermarking on half toned 

Images 

Watermarking is the process of embedding a secret signal into a host signal in order to verify 

ownership or authenticity. The watermark in an image should be detectable robustly even 

after common image processing algorithms are applied on the watermarked image. These 

algorithms include compression, scaling, cropping, printing and scanning, etc. Application 

of these algorithms can be thought of as a distortion to the watermarked images. 

It is sometimes necessary to watermark half toned images. In Chapter 5 we discuss the 

effects of applying inverse halftoning before detection of watermark in half toned images. 

Inverse halftoning can be thought of as another distortion to the watermarked image. We 

will show an enhancement in watermark detector performance if inverse half toning is used 

on smooth error diffused images and a deterioration in performance if it is used on high 

frequency error diffused images. We also observe that inverse half toning of clustered dot 

and ordered dither images deteriorates the watermark detection. These results are obtained 

when a specific watermarking scheme is used, and we also report experimental results when 

other watermarking schemes are used. 

1.4 Optimal histogram modification with MSE metric and 

the optimal codebook selection problem 

Most of the watermarking methods such as spread spectrum watermarking cannot detect 

the watermark if an unknown amount of rotation or scaling is applied on the watermarked 
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images. Watermarking with histogram modification is one of the watermarking methods 

which is robust to rotation and scaling [10]. However, so far the histogram modification 

problem has been solved in an adhoc manner without defining an error criterion between 

the original and modified images. 

In the first part of Chapter 6 we propose a method to modify the histogram of a signal 

to a desired specific histogram. Traditionally, points having the same value in the input 

signal are all mapped to same value in the output signal. Hence, the desired histogram can 

only be approximated. Here we formulate the histogram modification problem as finding a 

transformation such that the error between the input and the output signal is minimized 

and the output signal has the desired histogram. It turns out that this problem is equiv­

alent to an integer linear programming problem. This method might be specifically useful 

for histogram based watermarking and compression. In the second part of Chapter 6 we 

formulate the problem of finding the optimal codebook where the codewords can come from 

a finite set. The equivalent problem turns out to be a linear integer programming problem 

and the solution is guaranteed to be globally optimal. 
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Chapter 2 Optimized half toning using dot 

diffusion and methods for inverse half toning of dot 

diffused images 

2.1 Introduction 

Digital halftoning is the rendition of continuous-tone pictures on displays that are capable 

of producing only two levels. There are many good methods for digital half toning: ordered 

dither [8), error diffusion [17), neural-net based methods [5), and more recently direct binary 

search (DBS) [54]. Ordered dithering is a thresholding of the continuous-tone image with a 

spatially periodic screen [8]. In error diffusion [17], the error is 'diffused' to the unprocessed 

neighboring pixels. 

Ordered dithering is a parallel method, requiring only pointwise comparisons. But the 

resulting halftones suffer from periodic patterns. On the other hand, error diffused halftones 

do not suffer from periodicity and offer blue noise characteristic [58] which is found to be 

desirable. l 

The main drawback is that error diffusion is inherently seria1.2 Also there occur worm­

like patterns in near mid-gray regions and resulting halftones have ghosting problems [28] . 

Mitsa and Parker have optimized the ordered dither matrix [51] for large sizes like 256x256 

to get the blue noise effect. This is a compromise between parallelism and image quality. 

The dot diffusion method for half toning introduced by Knuth [28] is an attractive method 

which attempts to retain the good features of error diffusion while offering substantial 

parallelism. However, surprisingly, not much work has been done on optimization of the 

so-called class matrix. In this work we will show that the class matrix (see below) can 

further be optimized by taking into account the properties of human visual system (HVS). 

The resulting halftones will then be of the similar quality as for error diffusion. Since dot 

1 More recently, it has been shown that green noise is more appropriate for non-ideal printers, which 
suffer from dot gain [31]. In this chapter we consider ideal printer models. 

2It can be shown [15] that error diffusion for an M X N image can, in principle, be implemented in M + N 
steps by using sufficient number of parallel computations. 
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diffusion also offers increased parallelism, it now appears to be an attractive alternative to 

error diffusion. 

In this chapter, we first review the dot diffusion method in Section 2.2. In the following 

section, the optimization of class matrix will be discussed and adaptive dot diffusion will be 

introduced. We will discuss special cases of dot diffusion algorithm in Section 2.4. Then, in 

Section 2.5, we will give a mathematical description of dot diffusion method. Furthermore, 

we will address the inverse half toning problem in Sections 2.6-2.8. Inverse half toning has a 

wide range of applications such as compression, printed image processing, scaling, enhance­

ment, etc. In these applications, operations cannot be done on the halftone image directly, 

and inverse half toning is mandatory. For inverse half toning two methods are discussed. One 

of the methods uses POCS (Projection Onto Convex Sets) which is an iterative algorithm. 

The other one is based on wavelet decomposition of images to differentiate the halftoning 

noise from the original image. Then a simple yet efficient algorithm for inverse half toning 

of dot diffused images is proposed and compared to other methods. In Section 2.9 embed­

ded multiresolution dot diffusion is discussed. Parts of this chapter have been presented at 

conferences [36],[37],[38] and [39] and published in two journal magazines [40],[41]. 

2.2 Review of dot diffusion 

The dot diffusion method for half toning has only one design parameter, called class matrix 

c. It determines the order in which the pixels are halftoned. Thus, the pixel positions 

(nl, n2) of an image are divided into I J classes according to (nl mod I, n2 mod J) where I 

and J are constant integers. Table 1 is an example of the class matrix for I = J = 8, used by 

Knuth. There are 64 class numbers. Let x(nl,n2) be the continuous tone (contone) image 

with pixel values in the normalized range [0,1]. Starting from class k = 1, we process the 

pixels for increasing values of k. For a fixed k, we take all pixel locations (nl, n2) belonging 

to class k and define the halftone pixels to be 

if x(nl, n2) 2: 0.5 

ifx(nl,n2) < 0.5 
(2.1) 

We also define the error e(nl,n2) = x(nl , n2) - h(nl,n2). We then look at the eight 

neighbors of (nl , n2) and replace the contone pixel with an adjusted version for those neigh-
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bors which have a higher class number (i.e., those neighbors that have not been half toned 

yet). To be specific, neighbors with higher class numbers are replaced with 

x(i,j) + 2e(nj,n2)/w (for orthogonal neighbors) (2 .2(a)) 

x(i,j) + e(nj, n2)/w (for diagonal neighbors) (2.2(b) ) 

where w is such that the sum of errors added to all the neighbors is exactly e(n" n2). 

The extra factor of two for orthogonal neighbors (i.e., vertically and horizontally adjacent 

neighbors) is because vertically or horizontally oriented error patterns are more perceptible 

than diagonal patterns. 

The contone pixels x( nj, n2) which have the next class number k + 1 are then similarly 

processed. The pixel values x(nj, n2) are of course not the original contone values, but the 

adjusted values according to earlier diffusion steps (2.2). When the algorithm terminates, 

the signal h(nj, n2) is the desired halftone. 

This diffusion process is illustrated in Fig. 2.1. The numbers in the matrix are elements 

of a class matrix and the integers in the bubbles are relative weights of diffusion coefficients. 

The neighbors of 33 with higher class numbers are those labeled as 58, 45, 42, 40, 63, 47. 

The error created at 33 is divided by the sum of relative weights of diffusion coefficients, 

which is 2 + 1 + 2 + 1 + 2 + 1 = 9 in this case. The result of the division, E, is the error to 

be diffused to diagonal neighbors, and 2E is diffused to orthogonal neighbors. Since there 

are 64 classes, the algorithm completes the half toning in 64 steps. 

11 58 45 

5 

40 63 47 

Figure 2.1: Error diffusion from a point to the neighbor points. 

Usually an image is enhanced [28] before dot diffusion is applied. For this the continuous 
- 2::'+1 2::1+1 

image pixels C(i,j) are replaced by C' (i,j) = C(i,j)j-:C(i,j) where C(i,j) = u-' - l ;;-;-1 C{u,v). 
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Here the parameter a determines the degree of enhancement. If a = 0, there is no enhance­

ment, and the enhancement increases as a increases. If a = 0.9 then the enhancement filter 

simplifies to 

c' (i,j) = 8C(i , j) + C(i,j) - C(u,v). 

This algorithm is completely parallel requiring 9 additions per pixel, and no multiplications. 

2.3 Optimization of class matrix 

Knuth introduced the notion of barons and near-barons in the selection of his class 

matrix. A baron has only low-class neighbors, and a near-baron has one high class neighbor. 

The quantization error at a baron cannot be distributed to neighbors, and the error at a 

near-baron can be distributed to only one neighbor. Knuth's idea was that the number 

of barons and near-barons should therefore be minimized. He exhibited a class matrix 

with two barons and two near-barons (Table 1). The quality of the resulting halftones 

still exhibits periodic patterns similar to ordered dither methods (see Fig. 2.6). Knuth 

has also produced a class matrix with one baron and near-baron, but unfortunately these 

were vertically lined up to produce objectionable visual artifacts. In our experience, the 

baron/near-baron criterion does not appear to be the right choice for optimization. To 

explain this, define a k-baron to be a position which has k high-level neighbors. Thus 

k = 0 corresponds to a baron, k = 1 to a near baron, and k = 8 to an antibaron. We have 

produced a class matrix which minimizes the number of k-barons sequentially for 0 ::; k ::; 8. 

The resulting halftone quality was found in most cases to be slightly worse than Knuth's 

original results, leading us to conclude that baron minimization is not the right approach. 

In Section 2.3.1 we introduce a different optimization criterion based on the HVS, and show 

that the image quality is significantly improved, though the class matrix does not minimize 

barons. 

2.3.1 Objective function based on blue noise 

It has been observed in the past that the error in a good halftone should have the blue noise 

property [58]. This means that the noise energy should mostly be in the high frequency 

region where it is known to be less perceptible. We will show how to incorporate blue noise 
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characteristics into the class matrix optimization. 

Imagine that we have a constant gray image x(nl,n2) = 9 where 0 ::::: 9 ::::: 1. Let 

h(nl,n2) denote the half toned version. Since the halftone is supposed to create the per­

ception of the gray level, the average number of dark pixels should be equal to the original 

gray level.3 Typically, therefore, the dark pixels are spatially distributed with a certain 

average frequency /g called the principal frequency, which increases with gray level g. 

The preference for blue noise [58] (high frequency white noise) in half toning arises because 

noise energy at a significantly higher spatial frequency than /g is less perceivable. Thus, we 

can optimize a half toning method for a particular gray level 9 by forcing the noise spectrum 

to be concentrated above /g. 

This does not, however, imply optimality at other gray levels. Interestingly, however, if 

the gray level 9 during the optimization phase is chosen carefully, the resulting halftones for 

arbitrary natural images are excellent. For example, we optimized the class matrix in the 

dot diffusion method for the gray level 9 = 116 and obtained very good halftones for natural 

images as we demonstrate in this section. 

Calculating the noise spectrum. In order to implement the optimization, we first need to 

compute the noise spectrum. The halftone pattern h(nl, n2) for the gray level x(nl, n2) = 9 

has the error e(nl,n2) = g-h(nl,n2) , which is an NxN image. Imagine that this is divided 

into L x L blocks so there are B = (N/ L)2 blocks. (In our experiment N = 256, L = 64, B = 

16.) Let Em(ll, 12) be the Lx L DFT of the the mth block of e(nl , n2). We define the average 

noise spectrum as 
1 B-1 

P(l1,12) = B L IEm (l1,12)1 2. 
m = O 

From this we compute the so-called radially averaged power spectrum Pr(kr ) where 

kr is a scalar called the radial frequency. Since 1111 and 1121 range from 0 to L/2, kr ranges 

from 0 to L/.J2. We take specific integer values for kr and calculate Pr(kr ) as follows. For 

each chosen kr define an annulus A(kr ) in the (1 1,12) plane by the equation 

IVli + I~ - krl < b./2. 

The quantity b., which determines the width of the annulus, is chosen as unity in our 

3Note that a grey level of 0 represents white and a grey level of 1 represents black. 
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calculation. With N (kr ) denoting the number of elements in A{ kr ), the radially averaged 

power spectrum of the error for gray level 9 is then 

The class matrix in the dot diffusion method should be optimized such that this radial 

spectrum is appropriately shaped for a well-chosen fixed gray level g. In terms of the radial 

frequency variable kr, the principal frequency for the halftone of gray level 9 is given by 

where kmax = L. In fact, for 9 > 0.5, since black pixels are more in number, the halftone is 

perceived as a distribution of white dots [58] and we have to take /9 = kmax vr=9. 

(3) 

Radial Frequency, ~ 

Figure 2.2: A typical 
desired radial spec­
trum characteristics. 

W(~)· 

~ 
Radial Frequency, fr 

Figure 2.3: The weight 
function used in the op­
timization. 

The aim of the optimization is to shape Pr (kr ) by choice of the class matrix C so that 

most of its energy is moved to the region kr > /9 (as demonstrated in Fig. 2.2). We therefore 

define the cost function 

The idea is to choose the weighting function w{kr ) such that upon minimization of the above 

function, Pr{kr) has a low frequency cutoff at principal frequency /9' sharp transition region, 

and a fiat high frequency region. The weight function was chosen to be w (kr) = (kr - /9) 2 

for a ~ kr ~ /9 and zero outside. (In Section 2.3.2 we consider more sophisticated weighting 

functions.) In the optimization the integral was replaced with a discrete sum. The choice 

of the class matrix that minimizes this sum was performed using the pairwise exchange 

algorithm [2] described below: 
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1) Randomly order the numbers in the class matrix. 

2) List all possible exchanges of class numbers. 

3) If an exchange does not reduce cost, restore the pair to original positions and proceed to 

the next pair. 

4) If an exchange does reduce cost, keep it and restart the enumeration from the beginning. 

5) Stop searching if no further exchanges reduce cost. 

6) Repeat the above steps a fixed number of times and keep the best class matrix. 4 

Choice of gray level. Since the algorithm can be applied only to a given gray level, the gray 

level should be chosen wisely, in order to get good halftones for other gray levels also. In our 

experience if we perform this optimization for a fixed small gray level (e.g., g = l~' l etc.), 

we get good halftones for natural images also. Class matrices obtained from optimization 

with a very small gray level will not work, because there is not much error to diffuse to 

other points during the dot diffusion process. Mid gray levels are not suitable, first because 

there are huge diffusions between points, and second, even unoptimized algorithms yield 

perceptually pleasing halftones for mid gray anyway. The actual gray level used in the 

optimization was g = l~ ' and it was found experimentally. The optimized class matrix is 

shown in Table 2. Notice that the optimal class matrix has several barons and near barons. 

Example: The 512 x 512 continuous tone peppers image was half toned by using Knuth's 

class matrix (Fig. 2.6), and by the optimized class matrix (Fig. 2.7). It is clear that the 

new method is visually superior to unoptimized dot diffusion method. In fact , the new 

method offers a quality comparable to Floyd-Steinberg error diffusion method (Fig. 2.5) . 

Error diffused images suffer from worm-like patterns which are not in the original image, 

whereas dot diffused halftones do not contain these artifacts. Notice that the artificial 

periodic patterns in Fig. 2.6 are absent in Fig. 2.5 and in the new method (Fig. 2.7).5 

'Note that pairwise exchange algorithm yields a local minimum of the cost function. We start the pairwise 
exchange with random class matrices and take the class matrix having the least local minimum in order to 
get closer to the global minimum. Global minimum is not guaranteed. 

'The halftone and inverse halftone images can be found at [66J. 



35 49 41 33 30 16 24 32 

43 59 57 54 22 6 8 II 

51 63 62 46 14 2 3 19 

39 47 55 38 26 18 10 27 

29 15 23 31 36 50 42 34 

21 5 7 12 44 60 58 53 

13 I 4 20 52 64 61 45 

25 17 9 28 40 48 56 37 

Table I : Class matrix C 
used in Knuth's method. 

16 

59 12 46 60 28 14 32 3 

21 25 44 11 58 45 43 30 

24 20 13 42 33 5 54 8 

64 52 55 40 63 47 7 18 

35 57 9 15 50 48 4 36 

41 17 6 61 22 49 62 34 

2 53 19 56 39 23 26 51 

16 37 I 31 29 27 38 10 

Table 2: Class matrix C obtained 
by parabolic weighting function. 

2.3.2 Other choices for the weighting function 

48 32 52 25 28 46 6 22 

38 64 54 12 23 5 2 34 

62 I 58 17 27 30 47 9 

21 15 10 63 19 42 39 7 

18 14 26 16 56 49 53 59 

4 8 3 33 31 35 57 61 

29 41 37 40 50 44 36 II 

55 24 51 13 43 60 45 20 

Table 3: Class matrix C 
obtained by HVS function. 

For simplicity we have chosen our weighting function above to be the parabola w(kr ) = 

(kr - fg)2 for 0 ::; kr ::; fg and zero outside. Another alternative is to use the HVS function 

as the weighting function. The images are passed through a model of the HVS function. 

Since our model is linear, we apply the HVS function to the difference between the original 

and halftone images. The energy of the resulting image is defined to be the perceived 

half toning error (PHE). The calculation of PHE of a given image x[m, n] for a given HVS 

function h[m, n] is depicted in Fig. 2.8. In the figure the output of the energy calculator is: 

c = ~;;','=_oo~~=_oole[m , n]12. The image used in the optimization should be chosen wisely. 

For example, in this section we have chosen a gray scale ramp because the cost of a gray 

scale ramp is the average value of the costs of gray scales which exist in the gray scale ramp. 

We will use a specific HVS model in the optimization. In the frequency domain the 

HVS model is defined as follows: 



17 

Figure 2.4: Original image, peppers. 

Figure 2.6: Dot diffusion with Knuth 's class ma­
trix. 

Figure 2.5: Floyd-Steinberg error diffusion. 

Figure 2.7: Dot diffusion with enhancement and 
8 x 8 class matrix optimized using parabolic 
weighting function. 
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x d[m,n] [m,n] Halftoning HVS function 
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h[m,n] 
e[m,n] Energy c -
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HVS function + Calculato 
-' 

h[m,n] 

Figure 2.8: Perceived halftoning error of an image for a given HVS function. 

Here, U and v are the frequency variables in cycles/degree subtended at the retina and 

L is the average luminance in candela/m2. The quantity v'u2 + v2 is therefore the radial 

frequency. The quantity ¢ is the angular frequency defined as ¢ = atan(i7). The various 

constants and the function s(¢) are defined as follows: 

• a = 131.6, b = 0.3188, c = 0.525, d = 3.91. 

• s(¢) = 1-;Wcos(4¢) + l1w where w = 0.7. 

The dependence on radial frequency v'u2 + v2 was developed in [52]. Then the angular 

dependence of the model, i.e., s(¢) was introduced in [3] following Daly's model [12]. We 

used L = 10 candela/m2 in our experiments. With hc(x,y) denoting the inverse Fourier 

transform of Hc(u, v), the discretized version h[m, n] = hc(Tm, Tn) is used in the calcu­

lations. The relation between H(Wl,W2) (the discrete fourier transform of h[m,n]) and 

Hc(u, v) is as follows: 

(2.3) 

Sampling the inverse transform at interval T = 0.0165 corresponds to a certain printer 

resolution, R dpi, viewed at a specific distance, D inches. Since a length x viewed at a 

distance D subtends an angle of e = tan- 1(x/D) ~ x/D radians for x« D, the spacing 

of the dots will be 
1 180 1 

T = RD radians = ----;- RD degrees. (2.4) 

This clarifies the relation between T, D and R . In particular, T = 0.0165 corresponds to 

RD = 300dpi x 1l.5827in. In Fig. 2.9, the normalized HVS function is shown for this value 
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Figure 2.9: Normalized HVS function H(W1, W2) for T = 0.0165 
(RD = 300dpi x 11.5827in). The axes are 7 and ~. 

Notice that the HVS weighting filter has three basic properties: (1) It is a decaying 

function in terms of frequency. (2) The HVS response along the 45-degree line is ,fi of 

the response to horizontal and vertical lines. (3) Weights are nonzero for all frequencies. 

The parabolic weight function is circularly symmetric, and becomes zero after a certain 

frequency. So, the parabolic weighting function does not have properties 2 and 3. We 

optimized the class matrix with this HVS function as the weighting function. 

In the optimization we have used a gray scale image. First we have done the optimization 

for 8 x 8 class matrix. We have optimized this class matrix for RD = 300dpi x 1l.5827in. 

This class matrix is shown in Table 2.1. The dot diffused image of a constant gray level 

9 = 116 with the class matrix optimized using HVS function and the dot diffused image 

of the same constant gray level with the class matrix optimized using the parabolic weight 

function are shown in Fig. 2.10. From the dot patterns it can be seen that the HVS function 

aligns the pattern in diagonal directions, and the dot pattern looks more irregular. 

We have summarized the perceived halftoning errors in Table 2.2. In this chapter, 

perceived errors are normalized so that perceived error of a gray scale ramp half toned by 

the Floyd Steinberg error diffusion algorithm is unity. As it can be seen from the table, our 

optimized class matrix achieves 40.04% less PHE than Knuth's class matrix and 51.61% 

more PHE than error diffusion. 
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Figure 2.10: Optimized dot patterns for g=1/16. Top: using HVS function, bottom: using 
the parabolic weighting function. 

37 41 34 14 60 61 7 9 
16 12 36 59 46 17 50 24 
45 27 33 58 5 3 42 48 
29 2 57 30 43 15 20 11 
26 18 55 49 4 32 10 54 
25 21 53 40 38 6 64 52 
8 28 35 13 39 22 63 56 
51 44 19 23 31 62 1 47 

Table 2.1: 8 x 8 optimized class matrix. 

Example: The 512 x 512 continuous tone peppers image was half toned by using Knuth's 

class matrix (Fig. 2.6, PH E = 30.77), and by the optimized 8 x 8 class matrix (Fig. 2.11, 

PHE = 30.35).6 The images in this chapter are printed out with R = 150 dpi, thus they 

should be viewed from a distance D ~ 23 inches. It is clear that the dot diffusion method 

with the optimized 8 x 8 class matrix is visually superior to dot diffusion method with 

Knuth's class matrix. In fact, dot diffusion with the optimized 8 x 8 class matrix offers 

a quality comparable to Floyd-Steinberg error diffusion method (Fig. 2.5, PH E = 3.86) . 

Note that we cannot use the PHE values of error diffused images and images obtained by 

dot diffusion with enhancement to compare the visual quality of these two methods because 

of the enhancement step. Thus visual inspection is necessary. Error diffused images suffer 

from worm-like patterns which are not in the original image, whereas dot diffused halftones 

do not contain these artifacts. Notice that the artificial periodic patterns in Fig. 2.6 are 

absent in Fig. 2.5 and in the dot diffusion with the optimized 8x8 class matrix (Fig. 2.11). 

"We observed that the enhancement step in dot diffusion is the cause of higher PH E values. In the next 
section , enhancement step will be removed from dot diffusion algorithm. 
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Half toning Dot Diffusion Dot Diffusion Error Diffusion 
Method Knuth's Optimized (Floyd 

Class Matrix Class Matrix Steinberg) 
Perceived Halftoning Error 2.53 1.52 1.00 

Table 2.2: Perceived halftoning errors (PHE) for 8 x 8 class matrices. 

Figure 2.11: Dot diffusion with HVS optimized 8 x 8 
class matrix and enhancement. 

2.3.3 Effect of diffusion constants 

The diffusion constant /3 is the ratio between the horizontal diffusion coefficient and the 

diagonal diffusion coefficient of the dot diffusion process. The diffusion constant has been 

chosen to be 2.0 by Knuth. The reasons for this selection are as follows: 

• It is desirable to diffuse more errors in the vertical and horizontal directions , and keep 

more errors in the diagonal directions where the eye sensitivity is known to be lower. 

• It reduces the number of multiplications if /3 is chosen as a power of 2. 

In Knuth 's method the choice /3 = 2 was rather crucial because there was no optimization of 

the class matrix. We have found experimentally that when the class matrix is optimized for 

a chosen /3, the results are relatively insensitive to /3 as long as it is in the range 1 :s: /3 :s: 2. 
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Figure 2.12: Dot diffusion with HVS optimized 8 x 8 
class matrix and no enhancement. 

However, there are slight vertical and horizontal patterns when f3 = 0.5. For f3 :::: 1/4 and 

f3 :::: 4 more serious artifacts are noticeable. 

In principle the diffusion coefficient can be chosen with greater degree of freedom. For 

example we can choose it such that it depends on the class number as well as the direction 

of diffusion. At this time, however, we do not have an optimization algorithm to optimize 

such a general set of diffusion coefficients. 

2.3.4 Remarks 

The optimization of class matrix was done in Section 2.3.1 for constant gray level images only 

when parabolic weighting function is used. For this, it is necessary to pick the constant 

gray level strategically such that, for most natural images with multiple gray levels, the 

halftone quality is good. A natural question here is can we make the class matrix adaptive? 

For example imagine a library of optimal class matrices {Cd with Ci optimized for the ith 

gray level. We can divide the image into 8 x 8 blocks, and for each block a different class 

matrix can be used depending on the average gray level there. We have done experiments 

with this idea. Assuming that the image is enhanced prior to half toning (as in Section 
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Figure 2.13: Adaptive dot diffusion with no en­
hancement and 8 x 8 class matrices optimized using 
HVS function. 

2.2), we found the advantage of the adaptive scheme to be insignificant. However, if there 

is no enhancement prior to half toning, then adaptive dot diffusion is significantly better 

than non adaptive (compare Figs. 2.12 and 2.13). Besides the obvious advantages brought 

into play by adaptation, there is another reason why this is so. Namely, the grid of pixels 

formed by a given class number is not a periodic grid in the adaptive case. Any periodicity 

artifacts created by the periodic class matrix are therefore broken. But there is another 

problem, namely the boundary effects between the blocks having different class matrices 

are apparent. 

Another parameter in the dot diffusion is the enhancement filter. The enhancement 

lessens the objectionable half toning artifacts in other grey levels which are not close to 9 = 
11

6
. This can be seen from the resulting image obtained by dot diffusion with enhancement 

(Fig. 2.7) and the image obtained by the dot diffusion without enhancement (Fig. 2.12). 

The periodic patterns show up almost everywhere in the dot diffused images if enhancement 

is not done prior to halftoning. The enhancement filter used has a parameter a (see Section 

2.2) which controls the degree of enhancement where a = 0 means no enhancement and 

a = 0.9 is the value used in our experiments. The enhancement parameter a can be lessened 
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Figure 2.14: Dot diffusion with HVS optimized 16 x 
16 class matrix and no enhancement. 

to 0.8 without any perceivable difference. 

2.3.5 Dot diffusion without enhancement 

In all the discussions so far the halftoning step is preceded by an enhancement filter (de­

scribed in Section 2.2). The enhancement step reduces half toning noise, but might be 

objectionable in some applications because of its very visible sharpening effect (e.g., see 

Fig. 2.11). It turns out that we can get good halftones without use ofthe enhancement step 

provided we make the class matrix larger than the standard 8 x 8 size. The price paid for 

the larger class matrix is that the parallelism of the algorithm is compromised. However, 

in practice, even with a 16 x 16 class matrix, we have plenty of parallelism for any desktop 

printing implementation: Assume that we want to render the image at 600 dpi, and process 

16 rasters (lines or rows) of an 8.5 x 11 inch square page simultaneously. Then we will have 

(600*8*16)/256=300 pixels that can be processed simultaneously.7 The real disadvantage 

of increasing the size of the class matrix is the fact that the number of rasters that must be 

7The number 8 in the numerator of this expression is based on the assumption of an 8 inch wide active 
printing area. 
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processed at the same time increases. 

We found that if a 16 x 16 matrix is used, the halftone images resulting from the opti­

mization of this matrix are very good even without the enhancement step. (For comparison 

we note here that whenever enhancement is used, the class matrix can be as small as 5 x 5 

without creating noticeable periodicity patterns.) Such optimization was carried out using 

a gray scale ramp as the training image. The HVS function was used in the optimization, 

and the associated cost was optimized using the pairwise exchange algorithm. The 16 x 16 

optimized class matrix is shown in Table 2.3. The PHE of a gray scale half toned by dot 

diffusion with 16 x 16 optimized class matrix is 1.19. We can compare this PH E value with 

the PH E values in Table 2.2. The PH E for optimized 16 x 16 class matrix is only 19.38% 

worse than the error diffusion. Also, the PH E for optimized 8 x 8 class matrix is 27.00% 

worse than the PH E for optimized 16 x 16 class matrix. 

202 1 14 18 51 56 45 105 74 98 75 145 150 170 171 173 
4 7 24 37 57 52 66 88 146 103 138 159 183 185 198 222 
8 15 25 38 68 70 87 6 107 153 144 166 184 193 225 2 
16 27 44 54 29 102 116 132 140 137 167 120 196 224 227 5 
23 40 53 72 85 104 165 136 158 174 131 200 223 226 228 17 
41 86 73 84 114 118 168 134 169 181 201 220 232 229 13 22 
48 121 55 106 124 133 147 177 180 203 221 231 246 3 21 42 
77 82 128 110 139 135 179 182 207 197 230 245 247 20 43 50 
81 100 113 148 143 172 178 204 219 233 244 250 248 34 49 69 
109 108 141 151 186 164 208 218 234 243 249 256 19 46 71 80 
111 142 89 76 176 206 215 235 242 251 255 39 47 78 117 101 
112 149 161 175 205 216 236 241 252 253 254 62 63 94 95 126 
152 160 190 191 209 217 237 240 26 32 61 83 93 96 125 115 
157 189 192 210 214 238 239 30 33 60 65 92 119 79 129 156 
188 195 199 213 10 11 31 36 59 64 91 97 123 130 155 162 
194 211 212 9 12 28 35 58 67 90 99 122 127 154 163 187 

Table 2.3: 16x16 class matrix. 

The peppers image half toned with the resulting class matrix is shown in Fig. 2.14 

(PH E = 5.90). There are no periodic artifacts in this result. While the overall visible 

noise level appears to be higher than for error diffusion, the problematic halftone patterns 

of error diffusion in the mid gray level are eliminated here. (Examine the body of the middle 

pepper in Fig. 2.5). By comparing Fig. 2.6 and Fig. 2.14, we see that 16 x 16 dot diffusion 

without enhancement is also superior to 8 x 8 enhanced dot diffusion using Knuth's matrix 
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.. . y(nl - 2) + n2 - 1 y(nl - 2) + n2 y(nl - 2) + n2 + 1 ... 

.. . y(nl - 1) + n2 - 1 Y(DI - 1) + D2 y(nl - 1) + n2 + 1 ... 

... ynl +n2-1 ynl + n2 ynl + n2 + 1 . .. 

Table 2.4: A part of the class matrix (defined in Eqn. (2)) which is not close to the 
boundaries of the class matrix. 

because there are no noticeable periodic patterns any more, and there are no enhancement 

artifacts. 

In order to obtain an authentic comparison with good printing quality, we have produced 

three images in Figs. 2.15- 2.17 using 150 dpi resolution. These are half toned versions of the 

Parrot image. Figure 2.15 shows the result of error diffusion, Fig. 2.16, the result of direct 

binary search (DBS) obtained from the website of the authors of [3], and Fig. 2.17 shows 

the result of using the 16 x 16 optimized dot diffusion described above. In terms of image 

quality, the DBS method is evidently the best one. The dot diffusion output appears to be 

comparable to error diffusion in most areas of the image. Dot diffusion has the advantage 

that the complexity is much lower than that of DBS. Moreover, it offers parallelism of 

implementation unlike error diffusion. 

2.4 Special cases of dot diffusion 

Commonly used sizes for the class matrix are 8 x 8 and 16 x 16. A trivial special case of 

the dot diffusion algorithm arises when the class matrix is of size 1 x 1. In this case the 

algorithm reduces to direct pixel by pixel binary quantization. 

Next, what happens when the class matrix is made arbitrarily large? Assume that the 

image is of size x x y and let the class matrix of size x x y be defined as follows: 

(2.5) 

Because of the structure of this class matrix, the pixels are processed in raster scan order 

the same way the pixels are processed in error diffusion. In Table 2.4 we have shown a 

part of the class matrix which is not close to the boundaries of the class matrix. In step 

(nl - l)y + n2, the error due to quantization at (nl,n2) is diffused only to the pixels at 
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Figure 2.15: Floyd-Steinberg error diffusion. 



28 

Figure 2.16: Direct binary search (DBS) . 
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Figure 2.17: 16 x 16 dot diffusion without enhancement. 
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locations (nl,n2 + 1), (nl + 1,n2 -1), (nl + 1,n2) and (nl + 1,n2 + 1). Furthermore, the 

error will be diffused to the four neighbor pixels with the diffusion coefficients shown in 

Table 2.5. Thus, the dot diffusion method becomes identical to error diffusion if the class 

matrix is as large as the image itself, and defined as in Eqn. (2). The only difference 

between this special case and the Floyd-Steinberg error diffusion is in the values of the filter 

coefficients as summarized in Tables 2.5 and 2.6. The filter in Table 2.5 is referred to as the 

DD (dot diffusion) filter to distinguish it from the FS (Floyd-Steinberg) filter in Table 2.6. 

Using these two sets of filters in error diffusion, we found that the image qualities are nearly 

identical. There may be slight differences in the implementation complexities (e.g., the 

denominators in FS filters are powers of two which makes divisions very easy). The main 

point of this discussion, though, is to make the conceptual connection between dot diffusion 

and error diffusion. 

Table 2.5: Diffusion coefficients for the 
case where dot diffusion reduces to error 
diffusion (infinite size class matrix). These 
are called the DD filter coefficients. 

Table 2.6: Floyd-Steinberg error diffusion 
coefficients. These are called the FS filter 
coefficients. 

2.5 Mathematical description of dot-diffusion 

We have defined the dot diffusion process in Section 2.2, but we also want to give a mathe­

matical description of the dot diffusion. With the aid of this description, we can relate the 

quantizer error to halftone error. In addition to providing further insight, this will also be 

useful in Section 2.7 for inverse half toning. 

Let us denote the number of classes by L. For example, if the class matrix is 8 x 8 as 

in Section 2.2, then L = 64. Let Xk denote a vector whose elements are the pixels of the 

original contone image belonging to class k in some order. Let x denote a vector whose 

elements are the pixels, in some order, of the contone image. For example, 

X= 
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Each of the vectors Xl, X2, ... , XL, can be regarded as a polyphase component [59) of the 

contone image. 

2.5.1 Quantizer error q and halftone error e 

In the dot diffusion process, the pixels which are quantized by the two-level quantizer are 

modified versions Yi of the original vectors Xi, the modification being that we diffuse the 

quantization errors from lower classes processed earlier. Since the pixels in class 1 are 

quantized directly, we have 

Let hI denote the halftone vector obtained from quantizing this to two levels. The quantizer 

error ql = YI - hI is then diffused to those neighbors of the pixels of Xl, which have a 

higher class number. For example, X2 is replaced with 

where D21 is a matrix representing the diffusion coefficients (i .e., quantities like 2/w and 

1/w in equations (2.2(a)) and (2.2(b)) . We then quantize Y2 with the two level quantizer 

to produce the halftone h2 for all the pixels in class 2. The quantizer error q2 = Y2 - h2 

is then diffused to the higher class pixels. For example, consider class 3 pixels. In general 

these pixels receive diffused error from ql and q2 so that the modified class 3 pixels are 

represented by the vector 

Two-level quantization of Y3 then produces the halftone h3 for class 3 pixel positions, and 

so forth. Thus, in general, the class vector Xk is modified to 

and then quantized to obtain the halftone hk. Proceeding in this way, the halftone pixels 

hk for all classes 1 :::; k :::; L are generated. The quantizer error vector qk and halftone error 

vector ek for class k are given by 



32 

(quantizer error). 

(half toning error). 

that is, 

q2 = e2 + D 21 ql· 

q3 e3 + D31ql + D 32q2· 

(2.7) 

By starting from the first equation, we can sequentially replace q i in terms of ei, ei- l . .. , 

on the right side of Eq. (2.7), resulting in an expression of the form 

where AL is a matrix depending on the elements of the smaller matrices Dij. We now show 

that AL can be generated from A L - 1 as follows: from Eq. (2.7) we can express qL as 



which shows that 

that is, 

q1 

qL 
'-v-" 

q 

I 
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I] [
ALO-l 

OL,L-1 ~] 

Similarly A L - 1 can be expressed in terms of AL-2, and so forth. This gives an expression for 

AL as a product of simple matrices, that is , AL = BLBL- 1 ... B2Bl, where Bk represents 

diffusion of error to class k from all lower classes, and Bl = I. For example 

I 0 0 0 I 0 0 0 I 0 0 0 

0 I 0 0 0 I 0 0 0 21 I 0 0 
A4= (2.8) 

0 0 I 0 0 31 0 32 I 0 0 0 I 0 

0 41 0 42 0 43 I 0 0 0 I 0 0 0 I . . . 
B4 B3 B2 

The matrix AL has determinant equal to unity as seen from the factored expression 

(2.8). It is therefore invertible, and we can obtain 

where T L = AL I
. Here T L can be regarded as the transfer function from the quantizer 

error q to the actual half toning error. The total halftoning error-squared, defined as eT e, 

can readily be computed from this if we know the quantizer error q. 
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2.5.2 Expression for diffused image 

Here is a summary of the main points of the preceding discussions. The original contone 

image is made from pixels in the vectors Xk. The diffused image y is made from the pixels 

in Yk which are inputs to the two level quantizer. The image h whose pixels come from hk 

is the halftone image. The pixels from the original contone, diffused, and halftone images 

can be arranged in the form of vectors x, y, and h as 

Xl Yl hi 

X2 Y2 h2 
X= Y= h= 

XL YL hL 

The quantizer error vector q and halftone error vector e are defined as 

q= Y -h, e = x-h. 

The diffusion process is schematically depicted in Fig. 2.18. We can now express the diffused 

image y in terms of the original contone image x and the halftone image h as follows: 

y = q + h = ALe + h = Adx - h) + h, that is, 

(2.9) 

This expression allows us to characterize the so-called inverse halftone set in a nice way. 

Let Yi and hi denote, respectively, the ith scalar component of y and h. Since Yi is directly 

quantized to yield hi , we see that 

{ 

2 0.5 

Yi 

< 0.5 

if hi = 1 

(2.10) 

if hi = 0 

Given a halftone image h and the halftone algorithm (e.g., dot diffusion with class matrix 

(as in Table 2)), the inverse halftone set C is the collection of all image vectors x which 

yield the halftone image h . That is, an image x belongs to C if and only if the vector y 

computed using (2.9) satisfies Eq. (2.10). 

Notice that if we set x = h in Eq. (2.9), then we get y = h which implies in particular 
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that (2.10) holds. Thus the halftone image h itself is a member ofC. That is, if we perform 

dot diffusion again on the halftone image h, the result is still h. 

2.5.3 A closed convex subset of the inverse halftone set 

We will see now that the inverse halftone set C is convex but not closed. We then show how 

to construct a subset 51 c C which is closed and convex. This will be useful Section 2.7 

where we create a contone image from the dot-diffused halftone using the poes method. 

For convenience of discussion let us renumber the elements of the halftone h such that it 

can be partitioned as 

h = [~] where 1= 

1 

1 

1 

The elements of x, y and the matrix AL are also renumbered accordingly. Then the diffused 

image vector y has the form 

where A a , Ab and c do not depend on x or y. 

The diffused image vector y is such that Ya ~ 0.5 x 1 and Yb < 0.5 x 1 where the vector 

inequalities in the previous equation should be interpreted on an element by element basis. 

That is, the inverse halftone set C is the set of all image vectors x such that 

and (2.11) 

Given two image vectors x(1) and x(2) satisfying (2.11), we can readily verify that the linear 

combination ax(1) + (1 - a)x{2) also satisfies Eq. (2.11) whenever 0 ::; a ::; 1. This shows 

that the set C is convex. 

The set of all x satisfying Aax ~ d is interpreted geometrically as in Fig. 2.19 for the 

case where x is a two-dimensional vector. Since the boundary AbX = d is included, this is 

a closed set [19]. The set AbX < d has a similar interpretation, but since the boundary is 

not included, it is not closed. The intersection of the two sets described by Aax ~ d a and 



36 

AbX < db is therefore not closed. Summarizing, the inverse halftone set C for a dot-diffused 

halftone h is a convex set but it is not closed. 

Contone 
Image xk 

D"ff dIm 1 use age 
Yk OSI 

Diffusion 
Control + -

\ 
quantizer error 

Halftone Image 
hk 

Figure 2.18: Schematic representation of the dot diffusion process. 
Here Xk represents a vector of all pixels belonging to class k. 

~ 

Ax=b 

Figure 2.19: Ax ~ b is a closed set. 

2.5.4 The digitized subset 

Now consider a subset Dee such that all images in D are digitized to, say, 8 bits/pixel. 

The set D is clearly not empty because the halftone image h is certainly a member of D. 

With x chosen from this digitized subset D, the elements Yi of y also take values from a 

discrete set. So we can always find an E > 0 such that none of the Yi'S fall in the open 

interval (0.5 - E, 0.5). That is, not only is Eq. (2.10) satisfied, but the following stronger 

condition holds: 

{ 

~ 0.5 

Y 

, :::; 0.5 - E 

if hi = 1 

(2.12) 

if hi = 0 
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for some fixed E > 0 that can be precalculated from A and h . By following the kind of 

reasoning that resulted in Eq. (2.11), we see that if x is in the digitized subset V, then 

and (2.13) 

where the vector db now depends on E as well. Notice that the strict inequality < of (2.11) 

has now been replaced with ::; . 

2.5.5 The closed convex subset 

We have just shown that every element of the digitized set V satisfies Eq. (2.13). The set 

V is trivially "closed" because it is finite [po 15, [7]]. However, V is evidently not convex 

because a linear combination aXl + (1 - a)x2 of 8 bit images Xl and X2 is not an 8 bit 

image for arbitrary a in 0 ::; a ::; 1. Now consider a set 51 that is bigger than V by defining 

it to be the set of all image vectors X for which Eq. (2.13) holds, or equivalently, Eq. (2.12) 

holds. By slight modification of the arguments at the end of Section 4.4 we see that this 

set is both closed and convex. Since Eq. (2.12) holds, it is also clear that Eq. (2.10) holds 

which shows that x continue to belong in the inverse halftone set C. Summarizing, we have 

three sets V,51 and C with the inclusion relationship 

V C 51 C C. 

C is the set of all image vectors which result in the given halftone image h using the given 

dot diffusion algorithm. The set C is convex but not closed. The digitized subset V is closed 

but not convex. The intermediate set 51 is closed and convex. Notice finally that the closed 

convex set 51 described by Eq. (2.13) can be described more compactly as 

Ax::; b 

where A = [-~a ] and b = [
-da ] db . Note that the above vector-inequality is interpreted 

componentwise. 

These ideas will be useful in Section 2.7 where we apply the iterative POCS technique 

to derive an approximation of the original contone image from a halftone. Assuming that 

an 8-bit image is a good approximation of the original contone, the distinction between 
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the three sets is minor. However the fact that we can work with the closed convex set 51 

without much loss of generality is significant as we shall see in Section 2.7. It allows us to 

assume that the method of POCS converges to a good approximation of the contone image. 

2.6 Inverse half toning 

In Section 2.7 we show how the POCS method can be applied for the inverse halftoning of a 

dot-diffused halftone. The mathematical characterization of dot-diffused images developed 

in Section 2.5 will be especially useful to construct the so-called space-domain constraint set, 

which is a key ingredient in the development of the algorithm. Even though the wavelet 

method gives better results, inverse halftoning using POCS method is added because of 

its elegance and generality. In Section 2.8 we show how the wavelet method for inverse 

half toning [64] can be modified for the case of dot-diffused images. While the POCS method 

often produces better PSNR, the wavelet method typically yields a more pleasing visual 

quality. 

2.7 Inverse half toning using poes 

The method of POCS, which is an acronym for Projection Onto Convex Sets, is a powerful 

algorithm for the approximate recovery of a signal from partial information. It has been 

used very widely in many applications, as elaborated in authoritative references [55],[65]. 

To explain the idea in its simplest form, assume that the unknown signal is known a-priori 

to belong to the intersection of two sets 51 and 52. Assume these are closed convex sets 

(see below). Then starting from an arbitrary initial guess for the signal and performing 

successive projections onto these two sets, we can converge to a point in the intersection of 

51 and 52. Even though this intersection may have many elements and therefore the original 

signal not exactly recoverable, careful choice of 51 and 52 often leads to satisfactory results. 

We will first state the POCS method and the associated convergence theorem more 

precisely. After this we describe how the method can be applied for recovering a continuous 

tone image from its half toned version. We will see that the specific details of the convex 

set 51 depend on the details of the dot diffusion procedure and the class matrix (Section 

2.7.4). Finally in Section 2.7.5 we will show experimental results. 
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2.7.1 Mathematical background 

The mathematical setting for the POCS method is the following. Let the unknown signal 

f be a vector in a Hilbert space H, e.g., £2 space of images. For example, it could be a 

vector constructed from some arrangement of the pixels in a contone image. In view of the 

physical constraints that we happen to know, let us assume that f is in the intersections 

of known subsets SI, S2, ... Sm in H. (These may not be subspaces.) Assume that each of 

these is a closed convex set8 and that their intersection Sint is nonempty. Let Pi be the 

projection operator from H to Si. The projection x of x onto Si is defined to be the 

unique vector in Si such that the error norm Ilx - xii is minimized [[55], Section 2.2]. Define 

the composite operator 
def 

P = PmPm- l ... PI 

and consider the iteration fk = Pfk - l , with initial vector fa E 1{. Then, according to the 

POCS theorem (Theorem 2.4-1 in [55]) , the vector fk converges weakly9 to some vector 

flim in the intersection Sint. This result is true regardless of the initial vector fa, even though 

the limit flim can depend on fa. If this limit is an acceptable approximation of f, then we 

are happy. 

The convergence result continues to be true even if the projection operators Pi are 

replaced with so-called relaxed projections Ti [55]. These are defined as Ti = 1 + Ai(Pi - 1) 

where 0 < Ai < 2. We shall not require this stronger version. 

2.7.2 Application of the poes theorem for inverse half toning 

Consider applying the above result for the problem of inverse halftoning. The contone 

image x is half toned with a known algorithm (e.g., dot diffusion with known class matrix)' 

to yield a halftone h. From this h, and using our knowledge of the half toning process, we 

have to construct a contone approximation xapprox subject to two conditions, namely (i) if it 

is halftoned, the result is again h, and (ii) xapprox should be an "acceptable" approximation 

ofx. 

8 A set S is said to be convex if af + (1 - a)g belongs to S for any a such that 0 :;:; a :;:; 1, whenever f, g 
are in S. A set S equipped with a metric (i.e. , any measure of distance) is said to be closed if the limit of 
any convergent subsequence {fd in S also belongs to S. 

9The term "weakly" means that the inner product (f, fk) converges to (f, fUm) for any f in H. This is 
weaker than the requirement that fk converges to f1im, which would mean that Ilfk - fUml1 goes to zero. 



40 

The first condition alone can be satisfied by many images. Let S1 be the set of all 

images such that the given halftoning algorithm yields the fixed halftone h. The original 

contone image x evidently belongs to S1. Moreover, using the description of dot diffusion 

process in Section 4, it can be shown that the halftone h itself belongs to S1' We say that 

S1 is the space domain constraint set. For the second condition we have to define a set 

S2 which represents the set of "acceptable images" in some sense. For example, S2 could 

represent "natural images" which have certain smoothness properties. Since S2 is usually 

constructed with the help of lowpass operators (see below), it will be called the frequency 

domain constraint set. In the notation of Section 2.5, the parent Hilbert space H is e2 , 

and S1 and S2 are the two subsets. If these are closed and convex, then we can start from 

an arbitrary initial image fo in e2 and perform the projections 

gk = P1f k - 1 (space-domain projection), 

fk = P2gk (frequency-domain projection). 

That is, fk = P2P1fk-l. According to the POCS theorem this iteration converges to a 

member in the intersection of SI and S2. If we are willing to accept any member in the 

intersection to be a valid approximation of the contone x, then we are done. 

The POCS algorithm has in the past been applied for inverse half toning [22]. In the 

actual algorithm we have to identify the projection operators PI and P2 which take an 

arbitrary image in e2 and project onto sets SI and S2 . For our application we already 

showed, using the mathematics of the dot diffusion algorithm (Section 2.5), that the set SI 

is a closed convex set. The second point of novelty is with respect to the projection operator 

P2. In the past, lowpass filtering has been used [Zakhor and Hein] as an approximation 

for P2 , the rationale being that many natural images are lowpass. But unfortunately LTI 

filtering is not a projection operator, that is H2(dW) oF H(ejW ), unless H(ejW ) is an ideal 

filter with passband response of unity and stopband response of zero. In [22] the authors 

use partial reconstructions from DCT and SVD (singular value decomposition) as other 

possible choices for the projection operator. In this chapter we use an operator which is 

not only an orthogonal projection but retains the properties of a good lowpass filter; this 

projection is constructed from an orthonormal multirate filter bank. 
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2.7.3 Implementation of the frequency domain projection 

Consider Fig. 2.20 which shows the synthesis section of an M-band uniform orthonormal 

filter bank [59] with the perfect reconstruction property y(n) = x(n). Note that the subbands 

xo(n), . .. XL-l (n) are obtained by feeding x(n) to the analysis section (not shown) of the 

same filter bank. Suppose we delete the subband signals xL(n) , ... xM-l(n) and perform 

the synthesis by retaining only the subbands xo(n), ... xL-l(n). Then the reconstruction 

y(n) #- x(n) in general, and y(n) is called a partial reconstruction. If the filter bank has the 

orthonormal property [59],[60]'[56]' then we can give an orthogonal projection interpretation 

for this partial reconstruction. Thus, assume that the input x(n) is in £2. Let 8 C £2 be 

the subspace formed by the basis functions 

17km(n) = fk(n - Mm) , L::; k ::; M - 1, -00 ::; m ::; 00 

from the deleted channels. Then the partial reconstruction y(n) belongs to 81., the or­

thogonal complement of 8. Since orthogonal complements are closed subspaces [33], and 

subspaces are automatically convex, it follows that y(n) is the projection of x(n) onto the 

closed convex set 81.. We can take the frequency domain constraint set to be 

As explained in Section 2.7.2, in order to implement the POCS method we have to know 

how to project an arbitrary intermediate image onto the closed convex set S2. It is clear 

that this can be done by decomposing the image into subbands using an orthonormal filter 

bank, and partially reconstructing it as above. 

Figure 2.22 shows the actual two-dimensional filter bank used in our work for this 

frequency domain projection. Here Ho(z) and H1(z) are one-dimensional filters, so the 

filter bank has separable two-dimensional analysis filters [59]. The notation .j,. (2,1) means 

decimation by two in the horizontal direction and no decimation in the vertical direction. 

The notation t (2, 1) similarly stands for the separable expander. With Ho(z) and H1(z) 

denoting a lowpassjhighpass pair, the signal soo(no, nl) is the low-low subband. If y(no, nl) 

is reconstructed using this subband alone, then we can regard it as a "multirate" lowpass 

version, which at the same time is an orthogonal projection in the mathematical sense. In 
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our work we actually used Daubechies' lO-tap FIR filter [13] for the lowpass filter Ho( z ). 

The highpass filter HI (z) was chosen in the usual way [59] to obtain the orthonormal filter 

bank. [B--i ~ "0 Fo(z) 

X 
L -I 

x 
L 

~ X [B--i F (z) 
I y 

M ·I M · I 

Figure 2.20: Synthesis section of an M channel 
filter bank. 
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Figure 2.21: Overlapping 
blocks used in approximating 
the QP problem. 

Y(!b,n,) 

Figure 2.22: Two-dimensional separable PR filter bank. 

2.7.4 Implementation of space domain projection 

The space domain constraint on the inverse halftone is that it should lie in the closed convex 

set 51 defined in Section 2.5. This is essentially the set of all contone images which can give 

rise to the given halftone h . As explained in Section 2.7.2, in order to implement the POCS 

method we have to know how to project an arbitrary intermediate image vector v E £2 

onto the closed convex set 51. The meaning of a projection was reviewed in Section 2.7.1: 

The projection v of v onto 51 is the unique vector in 51 such that the error norm Ilv - vii 
is minimized. Here the notation Ilell represents the £2 norm .Jete. In order to implement 

this projection, we simply solve a minimization problem subject to the constraint v E 51' 

Thus, the projection v of the image v onto the convex set 51 is the solution to the following 

constrained optimization problem: 
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subject to Av:::;h. (2.14) 

This follows because the elements v of the set SI are completely characterized by the 

property Av :::; h. This is a quadratic programming (QP) problem and can be solved 

using standard techniques. We used the Matlab optimization toolbox to solve for v. In the 

interest of efficient programming, the QP problem was broken into several subproblems by 

partitioning the image into blocks. For this, overlapping blocks are used. In Fig. 2.21, the 

blocks used are shown. The black circles show the pixel positions that are changed after 

solving the QP subproblem, and white circles show the pixels used for boundary conditions 

of black circles, but they are not changed after solving this QP subproblem. Afterwards, 

the block location is moved 8 pixels to right or left, till the whole image is covered. The 

sizes of QP subproblems are 9 x 9. A further detail in the implementation is that the 

matrix A in the constraint equation must be modified to take into account the fact that 

the original image x is enhanced with a highpass filter before half toning (as described in 

Section 2.2). Recall that the matrix A originated from the matrix AL described in Section 

2.5 where the key equation relating the original image x and the diffused image y was 

y = ALX + (I - AL)h. In this equation we have to replace ALx with ALXe where Xe is the 

enhanced version of x. The enhancing filter for a = 0.9 (see Section 2.2) is the 2D filter 

and we can write Xe = Ex where E is a square matrix (neglecting boundary details, such as 

lengthening of a signal due to filtering). The modified A matrix in the constraint Av :::; h 

in Eq. (2.14) can now be worked out. 

2.7.5 Implementation details and experimental results 

The frequency domain projection described above implicitly assumes that the original con­

tone image is in the subset S2. Given an arbitrary image x{no,nd, we can replace it with 

its projection onto S2 before halftoning (i.e., compute the partial reconstruction y(no, nl) 

by using soo{no, nl) alone, and then halftone y(no, nl)). This preconditioning ensures 

that the desired inverse halftone is indeed in the intersection of SI and S2. We found ex-
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perimentally that for most natural images, the projection onto S2 is nearly as good as the 

original image, so such an initial conditioning is not a severe loss of information. Second, 

we found that in many examples the poes algorithm converges to a good solution even 

without such preconditioning. 

For the peppers and lena images, Figs. 2.23, 2.24, 2.25, 2.26 show the inverse half toned 

images. In Figs. 2.23, 2.24, the original image was first projected onto the transform domain 

set S2 before halftoning. In Figs. 2.25, 2.26 this preconditioning was omitted. For complete­

ness we mention the PSNR values for the reconstructed images. The PSNR values are as 

follows: peppers with preconditioning (PSNR=30.35dB with respect to original peppers and 

PSNR=32.39dB with respect to projection of peppers image onto S2 ), lena with precondi­

tioning (PSNR=31.19dB with respect to original lena and PSNR=33.08dB with respect to 

projection of lena image onto S2), peppers without preconditioning (PSNR=29.44dB), and 

lena without preconditioning (PSNR=30.66dB). The images are obtained after 5 iterations. 

2.8 Inverse half toning using wavelets 

An inverse half toning algorithm which use wavelets was considered in [64] and [34]. In this 

method, wavelets are used to differentiate the half toning noise from the edge information. 

The edges are detected at different scales with specific overcomplete wavelet transform. 

Since the edges are correlated at different scales whereas the noise is not, the half toning 

noise is suppressed by thresholding operations wherever the edges are not prominent (These 

correspond to steps 2,3 in our inverse half toning method). However, the algorithm in [64] 

is tailored for error diffusion, which has different characteristics than dot diffusion. If the 

method in [64] is used for dot diffusion, the result is not good. This can be seen from 

Fig. 2.30 which shows the result of inverse halftoning the dot diffused Lena by using the 

method in [64]. The image suffers from periodic patterns, which represent low frequency 

noise. There are basically two reasons for the inferior performance: The images are enhanced 

in dot diffusion before half toning and there is more low frequency noise in dot diffusion. 

In the new method, the specific properties of the dot diffusion algorithm are taken 

into account. The image is enhanced before dot diffusion, hence in the inverse halftoning, 

the dot diffused image should be de-enhanced using the inverse of the filter Fenh(Zl , Z2) = 

10 - (Zl + 1 + z11)(z2 + 1 + zil ). Note that Fenh(eiWl,ejw2) > 0 for all 0::::: Wl,W2 ::::: 1r. 
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Figure 2.23: Inverse halftoned peppers with 
POCS (transform domain projection applied be­
fore halftoning). 

Figure 2.25: Inverse halftoned peppers with 
POCS (transform domain projection is not ap­
plied before half toning). 

Figure 2.24: Inverse half toned Lena with POCS 
(transform domain projection applied before 
halftoning) . 

Figure 2.26: Inverse halftoned Lena with POCS 
(transform domain projection is not applied be­
fore half toning) . 



46 

We use the wavelet tree built from the analysis block shown in Fig. 2.27. An image X(x,y) 

is decomposed into L(x, y), H(x, y), and V(x, y) using the undecimated wavelet transform. 

At scale 2i+l (which will be described below) the filtering operations are as follows: 

L(Wb W2) = F(2iwIlF(2iw2)X(wl, W2), 

H(Wl,W2) = G(2iwl)F(2iw2)X(W],W2), 

V(Wl,W2) = F(2iwl)G(2iw2)X(W] ,W2), 

where G and F are derived from quadratic spline wavelets. These are tabulated along with 

the synthesis filters in Table 1 of [35] (our F is H in that table). The choice of filters given 

in [35] detect edges at different scales if they are used in the wavelet tree shown in Fig. 2.28 

with scales 2°,2],22 ,23 from left to right. For example, Hi(X,y) and Vi(x,y) represent the 

horizontal edges, and vertical edges of Li-](X,y) at scale 2i- 1 respectively, and Li(X,y) is 

the low pass version of Li-l(X,y). 

The algorithm starts with a dot diffused image, h(x,y). Then h(x,y) is de-enhanced 

with the de-enhancement filter specified above. Let us call the resulting image Lo(x,y). 

Afterwards, a 4-level wavelet decomposition is applied to Lo(x, y). Then for each pixel 

location (x, y), the following is done: 

1) Apply a symmetric FIR Gaussian filter , fg(n,m) to V1 (x , y) , and H 1(x , y) . (fg(n,m) = 
n

2 ±T2 
ce- 2u for -3 :::; n,m:::; 3, and c is chosen such that the DC gain of the filter is unity). 

The first level edge images contain mostly the halftoning noise, thus low pass filtering these 

images reduces the blue noise without harming the edges significantly. 

2) Let E23(X, y) = V2(X, y)V3(X, y)+H2(X, y)H3(X, y). If E 23 (X, y) :::; Tl then make V2(x, y) = 

o and H2 (x , y) = O. 

3) Let E34 (X , y) = V3(X, y)V4(X, y)+H3(x, y)H4(x, y). If E34 (X, y) :::; T2 then make V3(X , y) = 
o and H 3 (x, y) = O. 

Steps 2 and 3 are the denoising steps in the algorithm where Tl and T2 are the thresholds 

determined experimentally. In order to discriminate the edges from the half toning noise, we 

have to locate the edges. For this, the above steps perform a cross correlation between the 

edges at different scales. If there is a horizontal edge at scale i at (x , y), then Hi(X, y) and 

Hi+! (x, y) will be of the same sign [35]. The same is also true for vertical edges. Combining 

the horizontal and vertical edge correlations gives better results in detecting the diagonal 
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L(x,y) 

C(x,y) H(x,y) 

V(x,y) 

Figure 2.27: Wavelet de­
composition of an image. 

H\(x,y) H,(x,y) 

~ (x,y) 
Figure 2.28: Wavelet tree used in inverse halftoning. 

Figure 2.29: Result of simple deenhancement of 
dot diffused Lena image. 

Figure 2.31: Inverse half toned lena using the 
modified wavelet denoising method . 

Figure 2.30: Result of inverse half toning using 
an earlier method [27] . 

Figure 2.32: Inverse half toned peppers using the 
modified wavelet denoising method. 
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edges. 

4) The above steps have modified the subband signals Li, Hi and V; in certain ways. We 

now use the inverse filter bank (synthesis bank) corresponding to Fig. 2.28, and obtain a 

reconstructed version La (x, y). The image La (x, y) is the desired inverse halftone image. 

In inverse halftoning, dot diffusion has an advantage, namely, even the simple de­

enhanced image is a quite reasonable inverse halftone (PSNR=26.62dB for Lena image) 

(Fig. 2.29). The de-enhanced image is further processed as described above. The parame­

ters used in the method are found experimentally. The variance of the Gaussian filter , a 2 , 

is chosen to be 0.5 and the thresholds are chosen to be Tl = 300 and T2 = 20. The results 

are shown in Fig. 2.31 (PSNR=30.58dB) and in Fig. 2.32 (PSNR=30.07dB). 

Even though poes gives higher PSNR values than the wavelet method, the wavelet 

method gives more pleasing results than the poes. This is due to the space domain projec­

tion step in the poes. Another advantage of the wavelet method is that, it is not iterative, 

whereas the poes is inherently iterative. Thus the wavelet method is better than the poes 

method for inverse half toning. More recently a promising faster method has emerged for 

inverse half toning of error diffused images [27). We have not tried applying the algorithm 

for dot diffused images. 

2.9 Embedded multiresolution dot diffusion 

Another desired property of images is the embedded multiresolution property. If an image 

has embedded multiresolution property, the lower resolution images can be obtained from 

higher resolution images. Embedded images require less storage space, and embedding is 

also useful for progressive transmission. 

As observed by [61)' normal halftones do not have embedded multiresolution property. 

This can be seen from Fig. 2.33 where the 512 x 512 image is half toned by dot diffusion and 

the lower resolution images are obtained by downsampling the higher resolution images by 

2 in each direction. The lower resolution images are not good representations of the cor­

responding original images. But, the embedded multiresolution property can be imposed 

during the halftoning process. In [6)' [29)' and [61) this property is imposed on the halftone 

image as follows: First, the lowest resolution image is obtained using the halftoning algo­

rithm. The higher resolution halftones are obtained from the lower resolution halftones, by 
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retaining the lower resolution image at the corresponding pixels, and halftoning the other 

pixels of the higher resolution. In [6] and [29], the halftoning method was an optimization­

based one whereas in [61], the method was adaptive error diffusion. We will exploit the 

same idea, and we will show how to impose the embedded multiresolution property for dot 

diffused images. 

Given a contone image Co(m, n) of size Mo x No, we want halftone images of smaller 

sizes Mk x Nk , k = 0,1 , 2, .. , K, to have a fair representation of the original image. We 

assume that there exist integers Pk and qk such that Mk-I = PkMk and Nk-I = qkNk for 

k = 1,2, .. , K. Then the half toning algorithm will be as follows: 

1) Obtain CK(m, n) = C(mpIP2 ... PK , nqIq2 ... qK) for m = 1,2, .. Mk, n = 1,2, .. Nk. Then 

initialize i as K - 1. 

2) Halftone CK(m, n), and let the resulting image be hK(m, n). 

4) Define Ci(m, n) = C(mpoPI ... Pi , nqOql ... qi) for m = 1,2, .. Mi ,n = 1,2, .. Ni , where Po = 1, 

qo = 1. 

5) For each pixel location (m,n) belonging to class i do 

else 

{
I if Ci(m , n) ~ 0.5, 

hi(m,n) = ° if Ci(m, n) < 0.5. 
b) e(m,n) = Ci(m,n) - hi(m, n), and diffuse the error as in Eq. (2) 

6) if i = 0, stop else let i = i-I and go to step (3). 

The multiresolution property is demonstrated in Fig. 2.34 where K = 2, PI = P2 = 2, 

and qi = q2 = 2. The lower resolution halftones are contained in higher resolution halftones 

and halftones at any resolution have a 'fair' representation of the original contone image. 

For the peppers image, the embedded multiresolution constraint did not affect the image 

quality at the highest resolution. However, there is a slight loss of quality in the highest 

resolution halftone image for the lena image because of the latter constraint. Thus, at the 

expense of a little quality loss, the embedded multiresolution property can be imposed on 

the dot diffusion method. 
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Figure 2.33: Dot diffused pep­
pers image without embedded 
multiresolution property. 

Concluding remarks 
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Figure 2.34: Dot diffused pep­
pers image with embedded 
multiresolution property. 

Even though dot diffusion offers more parallelism than error diffusion, it has not received 

much attention in the past. This is partly because the noise characteristics of error diffusion 

method are generally regarded as superior. Although the quality of dot diffused halftones 

is not as good as error diffusion, we have shown that it can be substantially improved 

over standard dot diffusion. With more optimization work, it should be possible to come 

even closer to error diffusion quality. Furthermore, the parallelism offered by dot diffusion 

is a great advantadge. The dot diffusion algorithm terminates in at most 64 steps for 

an 8 x 8 class matrix, compared to M x N steps needed for error diffusion algorithm for 

an M x N image. Moreover, as noticed in [36], the algorithm can in fact be terminated 

in about 50 steps. The conclusion is that Knuth's dot diffusion method with a carefully 

optimized class matrix is very promising; the image quality is comparable to error diffusion, 

and the implementation offers more parallelism than error diffusion. Since enhancement 

prior to half toning can be objectionable in some cases, we also introduced and optimized 

16 x 16 class matrix, which eliminated the need for enhancement. In this chapter, we 

first optimized the class matrix. Then a mathematical description of dot diffusion was 
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derived which was particularly useful in inverse half toning. We also presented a wavelet­

based inverse half toning algorithm which works very well, even though the class matrix 

information is not used. Furthermore, we have shown that the dot diffusion algorithm can 

be easily modified to have the embedding property. This is useful for rendering at different 

resolution levels and for transmitting images progressively. 



52 

Chapter 3 Look up table (L UT) method for 

inverse half toning 

3.1 Introduction 

In this chapter we introduce Look Up Table (LUT) methods for inverse halftoning of im­

ages. 1 The LUT method was first used by Netravali et al. to display dithered images [53]. 

However, in that work the authors assumed that the dither matrix and the registration of 

half toned image with the dither matrix are known. Notice that this information may not 

be known for a particular halftone image. In another paper, Ting and Riskin used LUT 

method in halftone compression to get a temporary contone image [57]. However, obtaining 

high quality contone image was not the aim in that work. 

Our LUT inverse halftoning method does not involve any linear filtering at all, and it 

does not explicitly assume any image model. To determine the inverse halftone value at a 

point, the algorithm looks at the pixel's neighborhood and, depending upon the distribution 

of pixels in the neighborhood, it assigns a contone value from a precomputed LUT. The 

number of pixels used in the neighborhood is relatively small, typically 16. For a 16 pixel 

neighborhood, we need 216 = 64K bytes of LUT, and for a 19 pixel neighborhood, we need 

219 = 512K bytes of LUT.2 The method is completely parallel and it does not require any 

computation because it is an LUT based algorithm. This makes it faster than the previously 

known methods. Moreover, the method provides very good image quality, often even better 

than the method in [27] as we shall demonstrate. 

Since inverse halftoning cannot be done without using extra properties of images, we use 

sample images for training the LUT. In the training phase, sample images and corresponding 

halftone versions are used to obtain the LUT. The training phase is simple, and should be 

done once for a specific halftone method. In Section 3.2 the details of the algorithm are 

given. Then we show application of LUT inverse halftoning to actual images. Note that 

1 Preliminary versions of parts of this chapter are presented in [42] and [43], and part of this chapter is 
accepted for publication as a journal article [44]. 

'These storage requirements are calculated for 1 byte/pel contone images. 
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our LUT inverse half toning algorithm accepts binary images only and extension to scanned 

halftones remains to be explored. 

In Section 3.2, we use experimentally found templates for LUT inverse half toning. How­

ever, these templates can be designed during the training phase. This problem is addressed 

in Section 3.3 and a recursive template selection algorithm is proposed. This algorithm 

minimizes the mean square error between the inverse half toned and corresponding contone 

values when an additional pixel is added to the template. Then templates for error diffused 

halftones, clustered dither halftones and ordered dither halftones are designed and perfor­

mances are presented. Afterwards, LUT inverse halftoning is extended for color halftones 

in Section 3.4. The template selection algorithm for black and white LUT inverse half ton­

ing is then modified for the case of color LUT inverse half toning. The performance of our 

algorithm on color images is demonstrated on error diffused color halftones. 

3.2 LUT inverse half toning 

In the inverse half toning method, we want to predict the contone value of a pixel from 

its surrounding neighbors. The idea we propose here has only superficial similarity to 

traditional linear filtering. In traditional filtering, the inverse halftone value of a pixel 

is a linear combination of the surrounding halftone pixels. But in the LUT method the 

estimated value is a nonlinear function of these pixels. In our method we have to keep the 

neighborhood to be used in the prediction relatively small. Otherwise, the size of the L UT 

will be extremely large. 

The first step is to choose the neighborhood or template (a collection of pixels) for the 

pixels to be used in the prediction. We have used different templates as shown in Tables 3.1 

and 3.2. In Table 3.1, a rectangular template is shown, and this template is abbreviated 

as "Rect" in comparison tables later. "0" denotes the estimated pixel. All of the pixels 

are used in the prediction. In Table 3.2 another template is shown. This pattern consists 

of a symmetric part and some additional pixels. In the 16 pixel pattern the "a" pixels and 

the "0" pixel are used in the prediction of the contone value of pixel "0." This template is 

denoted as "16pels" in comparison tables. Another example of a template is obtained by 

adding "b" pixels to the "16pels" template, and this template is referred to as "19pels" 

template. 



a a a a 
a a a a 
a a 0 a 
a a a a 

Table 3.1: Neighborhood used in 
inverse halftoning (rectangular sup­
port, "Rect" template). 
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b a a a b 
a a a a b 
a a 0 a a 

a a a 
a 

Table 3.2: Another possible neigh­
borhood used in inverse halftoning 
("19pels" template). 

Let us assume that there are N pixels (including the pixel being estimated) in the 

neighborhood and that they are ordered in a specific way. Let us also call the pixel values as 

Po ,PI ,· ··,P N -1· Note that there are 2N different patterns since Pi E {O, I} for i = 0, 1, ... , N -

1. Assuming that the original image is an 8 bit image, our LUT, T, should return a value for 

each pattern, i.e. , T(PO,PI, .. . ,PN-l) E {O, 1, ... , 255}. During the inverse half toning phase, 

the pixels in the region of support will be arranged in a specific order, and the contone 

value will be obtained from the LUT. 

3.2.1 Design of LUT 

We first obtain the expected contone value for each template pattern. Then this con­

tone value will be assigned to the corresponding LUT position for that pattern. Let us 

denote the number of occurrences of pattern (POPl .. . PN- l) in the sample halftone im­

ages as K(PO,PI, ... ,PN-l). Thus, K(PO,Pl, ... ,PN-1l is the histogram value of the pattern 

(POPl ... PN-l). Notice that the pattern (POPI ... PN-1l can occur in any of the sample im­

ages any number of times. Let us also denote the contone values in the original images 

corresponding to patterns (POPl ... PN-1l as 

C(PO,PI, ··· ,PN-l , i) for i = 0,1, ... , K(PO,Pl, ... ,PN-1l - 1. 

If K(PO,PI, ... ,PN-l) > 0, the LUT value for the pattern (pO, PI, ... ,PN-l) will be the mean 

of the corresponding contone values, i.e., 

"K(PO,Pl, ... ,PN_,)-l C(p 0) 
T(P ) - L..i-O O,PI , ··· ,PN-I,t 

O,PI, ···,PN-I - ( ) 
K PO,PI, ···,PN-I 

If K(PO,PI, ... ,PN-1l = 0, then the pattern (POPl ... PN-l) does not exist and we explain next 

how to handle this situation. 
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-2 ° 1 2 3 4 
-1 5 6 7 8 9 

° 10 11 12 13 14 
1 15 16 17 
2 18 

t II -2 I -1 I ° I 1 I 2 I +--- to 
il 

Table 3.3: An example of correspondence between the integers i 
inside the table and (io,id for "19pels" template. 

Nonexistent Patterns: Some template patterns may not exist in any of the sample 

halftone images. Therefore, the contone values for nonexistent patterns should be estimated 

from the existent patterns. We applied three different methods to obtain the nonexistent 

values: 

1.Low pass filtering: The contone value T(PO,PI, ... ,PN-I) corresponding to the missing 

pattern (POPI ... PN-d is obtained as a linear combination of the binary pixels Pi, that is 

N- I 
T(PO,PI, ···,PN-d = L h(i)pi. 

i=O 

The weights h(i) are obtained by sampling a two-dimensional circularly symmetric Gaussian 

of the form g(io,il) = ce-(i5+i~)/20"2, the parameter CT 2 being obtained experimentally by 

trial and error in order to achieve high PSNR values in the inverse halftoned images. The 

vector (io, iI) is in the template, the exact correspondence between the integers i and the 

vectors (io, id being fixed throughout the discussion. An example of the correspondence 

between the integers i and the vectors (io, iI) is depicted in Table 3.3 for "19pels" template. 

For example, i = 15 corresponds to (io, iI) = (-1,1) in the table. In our experiments the 

value CT2 = 0.586 was used for "19pels" template. The constant c was chosen such that 

L:i h(i) = 255 so that the contone value is in the range [0,255]. 2.Hamming distance: In the 

sample halftone images, the existing pattern closest to the nonexistent pattern in hamming 

distance sense is searched. Then, the contone value corresponding to this existing pattern 

is assigned as the value for the nonexistent pattern. 

3.Best linear estimator: Let us number all the patterns which exist in the sample halftone 

images as (Pi,OPi,l ... Pi,N-I) for i = 0, 1, ... , M -1 where M is the number of existing patterns. 
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Define the pattern matrix A with elements 

A(i,j) =Pi,j for i = O,I, ... ,M -1,j = O,I , ... ,N-l 

and LUT vector b with elements 

b(i) = T(Pi,O,Pi,l, .. . ,Pi,N- I) for i = 0,1, ... , M - 1. 

Consider the overdetermined set of equations 

Pattern #0 --+ 

Pattern #1 --+ 

Pattern #M-1 --+ 

Po,o PO,1 PO,N-I Xo 

PI,O PI,1 PI ,N- I Xl 

PM-I,O PM-I,! PM-I,N-I XN-I 
'-----------~.~------------~'~ A x 

b(O) 

b(1) 

b(M - 1) . 
b 

The best linear estimator will be the least squares solution to x and is given by 

Then for each nonexistent pattern (POPI ... PN-tl, we obtain the contone value, T(po, ... ,PN- I), 

as follows: Define y = [POPI ... PN-I]X. Then 

{ 

0, if Y < ° 
T(PO,PI, ···,PN-tl = 255, if Y > 255 

round(y), otherwise 

3.2.2 Experimental results on LUT inverse half toning 

Image Examples: In order to illustrate the performance of our method, we will use Lena 

and mandrill images in our experiments. The error diffused halftones of these images can 

be seen in Figs. 3.1 and 3.2. For visual comparison we now show the inverse halftone images 

for mandrill in Fig. 3.3 and Fig. 3.4. Figure 3.3 is obtained by using a recent method [27] 

called the "fastiht2" method (perhaps the best known method which achieves high PSNR 
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Figure 3.1: Error diffused Mandrill image. 

in inverse half toning or error diffused images and which is also quite fast). Figure 3.4 is 

obtained with our new LUT method. A clearer view can be obtained at our website [66]. 

It is clear that the LUT method performs very well compared to "fastiht2'. For example, it 

preserves high frequency information with nearly no loss (observe the hair on the cheeks) . In 

this example the LUT method uses a training set containing 30 images which can be found 

at [66] and the template used was the "Rect" support. The training set does not include lena 

and mandrill images. The training time was 5 seconds on a Pentium II 450MHz computer. 

Note that the training is done only once for a specific half toning algorithm. (Training is 

only required once for a specific half toning method and training time should not be confused 

with inverse half toning time of an image.) Similar comparison for the case of Lena (Figs. 3.5 

and 3.6) confirms that the LUT method performs as well as the "fastiht2' method.3 

We now explain how the inverse halftone quality is affected by various factors. This 

includes the handling of nonexistent patterns, the content of the training set, and template 

selection. These effects on inverse halftone quality are summarized in Tables 3.4 and 3.5 

and will be explained in detail below.4 The entries in these tables are the PSNR values 

3More examples of images can be found at [66J. 
4In this section halftone images were obtained from original images by using the Floyd-Steinberg error 

diffusion. 
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Figure 3.2: Error diffused Lena image. 

Figure 3.3: Inverse half toning by fastiht2 (Kite et 
al.) (PSNR=22.59dB) . The halftone was obtained 
by error diffusion. 
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Figure 3.4: LUT inverse halftoning with "Rect" 
template (PSNR=24.42dB). The halftone was ob­
tained by error diffusion. 

Figure 3.5: Inverse halftoning by fastiht2 (Kite et 
al.)(PSNR=31.37dB) . The halftone was obtained by 
error diffusion. 
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Figure 3.6: LUT inverse half toning with "Rect" 
template (PSNR=30.41dB). The halftone was ob­
tained by error diffusion. 

(with respect to the original cantone images). In all the tables, the row denoted as "Nonex" 

indicates the method used for handling the nonexistent patterns (Section 2.1). The last 

columns in Tables 3.4 and 3.5 show the performance of "fastiht2" method. 

Handling the Nonexistent Patterns: In order to compare the methods for the estima­

tion of the values of nonexistent patterns, we have trained our LUT with "19pels" template. 

The training set includes Lena, peppers, Barbara, mandrill, goldhill and boat images. When 

the nonexistent pattern estimation methods used are low pass filtering, hamming distance 

and best linear estimator, the PSNR values of the inverse halftoned airplane image (not 

included in the training set) are 29.79dB, 28.91dB, and 29.92dB respectively. The Ham­

ming distance method does not work well. The performances of low pass filtering and best 

predictor methods are close to each other, the best predictor method being a bit better 

subjectively in image quality. Another disadvantage of low pass filtering method is that a 

two-dimensional Gaussian filter should be designed experimentally. Thus, only the results 

based on the best predictor are shown in Tables 3.4 and 3.5. 

The number of nonexistent patterns depends on the template and the half toning method. 
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If we train LUT for "Rect" template on error diffused images (Lena, peppers, Barbara, 

mandrill, Goldhill and boat images), 46.5% of the patterns do not exist in the training set. 

If we use the same template and train on clustered dither halftones, this percentage increases 

to 90%. Similarly, if we use the same template and train on ordered dither halftones with 

the 8 x 8 Bayer matrix, 95% of the patterns do not exist in the training set! However, if 

the LUT is applied on the same type of halftones used in the training, nonexistent patterns 

rarely occur. From the above percentage of nonexistent patterns, we can also conclude that 

in ordered dither and clustered dither halftones, the patterns are more restricted compared 

to patterns in error diffused halftones. 

Effect of the Training Set: The second and third columns in Table 3.4 show results 

from our LUT methods. The difference between these two columns lies in the training 

set used for creating the LUT. The images used in the training set for the second column 

are Lena, Peppers, Goldhill, and Boat images, as indicated by the "x" symbols (mostly 

smooth images). Similarly the images in the training set for the third column are indicated 

by "x," and these are the images with more high frequency content (e.g., hairy cheeks in 

Mandrill, stripes on Barbara's clothing, etc.). The numbers in the table clearly show the 

importance of the training set. The inverse halftone quality of the LUT method is always 

better than that of the "fastiht2" method for images with high frequency content (mandrill, 

Barbara) even when these images are outside the training set. In fact, if these images are 

in the training set, the LUT method is distinctly better for these images. If the training set 

has only smooth images, then as shown by column 3, the LUT method is still better than 

"fastiht2" for these smooth images. Note that the airplane image is not in either of the two 

training sets we have used. Nevertheless, the inverse halftone quality is better than that 

of the "fastiht2"method if the training set is smooth (col. 2). This is because the airplane 

image is smooth. Thus a good training set should have enough images representing both 

smooth and nonsmooth images. 

Effect of Template Selection: In Table 3.5 we investigate the effect of template selection 

on the quality of the inverse halftone. The training set includes 30 images and test set 

includes another 30 images. In these sets we have included smooth and non-smooth images 

and these images can be found at [66). Between two templates having 16 pixels, "Rect" 

template gives better results than "16pels" when these templates are used to LUT inverse 

halftone the test images. If we add more pixels into the template, the quality of inverse 
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Method LUT Method fastiht2 
Template Rect Rect (Kite 
Nonex. 3 3 et.al.(27]) 
Lena 31.16x 29.91 31.37 
Peppers 30.92x 29.22 31.46 
Barbara 25.79 27.01x 24.63 
Mandrill 23.83 25.43x 22.59 
Goldhill 29.67x 28.51 29.54 
Boat 30.18x 28.78 29.28 
Airplane 29.90 28.69 29.86 

Table 3.4: Comparison of different training sets. (Note: 'x' 
near PSNR value denotes that the image is used in the train­
ing set.) The halftones were obtained by error diffusion. 

Method LUT Method fastiht2 
Template 16pels Rect 19pels (Kite 
Nonex. 3 3 3 et.al. [27]) 
Average PSNR 26.43 26.50 26.61 25.95 

Table 3.5: Comparison of different templates. Halftones are 
obtained by error diffusion. 

halftone gets better as can be seen from the third column of the same table. But adding 

more pixels to the template makes the LUT bigger. Notice that LUT inverse half toning 

even with "16pels" outperforms 'fastiht2" method. We have observed that for "19pels" 

the PSNR values of reconstructed non-smooth images are higher than the PSNR values 

of corresponding "fastiht2" reconstructed images and the PSNR values of reconstructed 

smooth images are close to the PSNR values of corresponding "fastiht2" reconstructed 

images. 

3.3 Template selection 

We have shown how to design the LUT for a given template. The next question is how 

we can choose the best template for inverse halftoning.5 In the past, the selection of a 

'The "Rect" and "16pels" templates are found by trial and error, but they are nearly as good as the 
optimal templates having 16 pixels as we will see at the end of this section. 



63 

suitable template has been discussed in the context of halftone compression [14]. In the 

latter problem, the halftone value of the current pixel should be estimated from a causal 

template as closely as possible. The correlation of halftone pixels with the current pixel 

is calculated and the highly correlated pixels are included in the template. On the other 

hand, in inverse half toning we want to predict the contone value of the current pixel from 

a template which need not be causal. 

Assume that the number of pixels to be used in the template is fixed. Our aim will be 

to choose the best template of size M. We will simplify the template selection problem by 

restricting the pixels to be in a fixed neighborhood, i.e., a rectangular (L + 1) x (L + 1) 

neighborhood. We will define our neighborhood as NL = {(i,j)li E {-L/2, ... , L/2} and j E 

{-L/2, ... , L/2}}. Let us call the pixel whose contone value is being estimated as the current 

pixel. 

Here we give a recursive algorithm to choose the template. Let us denote a template 

having a pixels as Ta. Assume that we have P images which have sizes Xl x Yl, X2 X Y2, 

... , xp X yp in our training set. We will have both continuous tone images DI(nl,n2) and 

halftone images Hl(nl, n2) for I = 1,2, ... , P in our training set where (nl, n2) denotes the 

pixel location in the images. Now let us define the mean square error between two image 

sets {Dl} and {Fl} as follows: 6 

P Xl Yl 

Err(D,F) = LLL(DI(i,j) -FI(i,j))2. 
l=li=lj=l 

We can summarize our template selection algorithm in five steps: 

Step O. Let a = 0 and Ta = 0. 

Step 1. Increment a by 1. Let us define Ta,i,j as Ta ,i,j = Ta-l + (i,j). For each (i,j) E NL 

design an LUT using the template Ta,i,j to estimate contone value of a pixel from the pixels 

in the template Ta,i,j as explained in Section 3.2.1. Use this LUT to estimate the contone 

images {D l } from halftone images {HI}. Let us call the estimate images as {.o;;:j,l}' 

Step 2. Calculate Err(D,Da,i,j) for (i,j) E NL. Let 

(p,r) = argmin(i,j)ENLErr(D,Da,i,j)' 

Include the pixel in the template: Ta = Ta-l + {(p, r)}. 

6In our definition of error we did not incorporate the human visual system. We leave this topic for further 
research. 
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Step 3. If Ta does not have M elements, go to step 1. Otherwise stop. 

In step 1, we obtain the estimated images using the pixels in the previous template and 

one more candidate pixel in NL. In step 2, we choose one pixel from the candidate pixels 

such that when that pixel is added to the previous template in LUT inverse half toning, 

the estimated images are closest to their corresponding contone images. Even though the 

template selection algorithm is a greedy algorithm, it does not find the globally optimum 

template. However, as we will demonstrate with the examples, it gives good results. 

Designing better template selection algorithms is a topic for further research. Notice 

that finding the globally optimum template of size M and its pixels constrained to NL neigh­

borhood requires designing I1~l(INLI + 1- i) LUT's and testing these LUT's.7 Hence, a 

sub-optimum algorithm is necessary for template selection. The algorithm given above min­

imizes the mean square error between inverse halftoned and corresponding contone images 

when an additional pixel is added to the template. In [43] we proposed another template 

selection method which exploits the correlation between the halftone values of pixels in 

the neighborhood and the contone value of the current pixel in the template selection pro­

cess. Even though that method gave good results, it was based on the correlation between 

halftone and contone values rather than the error between inverse halftoned and correspond-

ing contone images. 

3.3.1 Experimental results on template selection 

In this section, the training set contains different 30 images and the test set contains another 

different 30 images. Smooth and non-smooth images exist in both sets. These images can 

be found at [66]. 

Error Diffusion Example: We used our template selection algorithm to find the best 

template for error diffused images. The template is shown in Table 3.6. In the table '0' 

denotes the current pixel, and the numbers denote the order in which the pixel is added 

to the template. Thus if a smaller template of size K is needed, the first K pixels can be 

taken into the template.8 

In Section 3.2 we showed two templates "Rect" and "16pels." These templates have 

16 pixels and they are found by trial and error. Now, let us compare these two different 

7Here INLI is the number of elements in the set NL. 
"Small optimal templates may be useful for halftone compression as in [57] where a temporary contone 

image of the halftone is obtained by LUT inverse half toning. 
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18 16 15 17 
10 5 3 4 14 

19 9 1 0 2 12 
11 7 6 8 13 

Table 3.6: Template used for LUT inverse half toning of FS er­
ror diffused images. '0' denotes the current pixel, and 'k 'th pixel 
denotes the order in which the pixel is added to the template. 

16 pixel 19 pixel 
Template 16pels I Rect I 160pt 19pels I 190pt 
Average PSNR 26.43 I 26.50 I 26.43 26.61 I 26.76 

Table 3.7: Comparison of optimal template with others (error diffusion). 

templates which have 16 pixels with the template ("16opt ") found using the optimization 

algorithm. The average PSNRs of LUT inverse halftoned images are shown in the second, 

third and fourth columns of Table 3.7. Notice that the average PSNR value is an average 

of inverse halftoned images which are not included in the training set. Hence even though 

the optimal templates achieve bigger average PSNR values inside the training set, this does 

not directly imply better performances of these optimal templates in the test set. However, 

for a bigger training set and a bigger test set, we would expect that both training and test 

sets give almost the same results. As it is seen from the table, the average PSNR values 

are close to each other for the 16 pixel templates. The average PSNR value of LUT inverse 

half toned images with "190pt" template is better than the average PSNR value of LUT 

inverse halftoned images with "19pels" template. The performances of these two templates 

can be compared from the last two columns of Table 3.7. Notice that the improvements in 

PSNR by using the optimal templates rather than trial and error templates are small. But 

trial and error templates are found after extensive experiments, whereas template selection 

algorithm gives the optimum templates without any human interaction. 

Clustered Dither Example: We have applied our LUT inverse half toning algorithm on 

3 x 6 clustered dither halftones [34). The template designed is shown in Table 3.8. Notice 
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18 

21 
19 

7 
17 3 11 14 2 

1 9 0 8 16 13 
5 15 12 4 10 

6 

20 

Table 3.8: Template used for LUT inverse halftoning of clustered dithered images. 

that the order in which the pixels are added to the template is different than the one for 

error diffused images. Even though the PSNR values are high, the inverse half toned images 

have a periodic frequency content which corresponds to the screen frequency as can be 

seen from Fig. 3.7. Increasing the number of pixels in a template up to 21 did not help to 

suppress the periodic frequency content fully even though the PSNR values of the inverse 

halftoned images increase. This is due to the fact that small templates cannot contain one 

full cycle of the lowest screen frequency. Increasing the template size to capture these low 

frequency content makes storage requirements infeasible. For comparison, the LUT inverse 

half toned clustered dither image is shown in Fig. 3.7. Also, the PSNR values for different 

templates are shown in Table 3.9. 

Our method works well on stochastic halftones (error diffusion, DBS, etc.) efficiently 

because stochastic halftones only introduce blue noise. For clustered and ordered dither 

halftones we use a median filtering step after LUT inverse halftoning. We have chosen 

the median filter as the postprocessor because a median filter smooths the image without 

smearing the edges. Thus, we get rid of the low screen-frequency content in the image. 

We have experimented 3 x 3 and 5 x 5 median filters [24] as post processors. The 

3 x 3 median filter was not big enough to suppress the periodic structures in the halftones, 

whereas 5 x 5 median filter was sufficient to suppress the periodic structures. In order 

to reduce the number of comparisons needed to implement the median filter, we used a 
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16 pixel 19 pixel 21 pixel 
Template 16pels Rect 160pt 19pels 190pt 210pt 
Average PSNR 23.19 22.30 23.30 23.49 23.71 23.78 
Boat 26.00 25.03 26.07 26.50 26.49 26.55 

Table 3.9: Comparison of optimal template with others (clustered dither) . 

Figure 3.7: LUT inverse half toning of 
boat image with "21opt" template. The 
halftone was a clustered dither image. 

Figure 3.8: Two-step LUT inverse 
halftoning with "190pt" template. The 
halftone was a clustered dither image. 
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Template 160pt 190pt 210pt 
Average PSNR 23.24 23.28 23.30 
Boat 26.53 26.73 26.75 

Table 3.10: Performance of two-step LUT inverse 
half toning algorithm for clustered dither halftones. 

5 x 5 separable median filter which requires only 18 comparisons per pixel. The result of 

two-step LUT inverse halftoning on clustered dither boat images is shown in Fig. 3.8 for 

template having 19 pixels. Increasing the template size also increases the image quality. In 

our experiments we use a 19 pixel template. The PSNR values for two step LUT inverse 

halftones which employs 16, 19, 21 pixel size templates are shown in Table 3.10. If we 

compare these PSNR values of two step L UT inverse halftones with the PSNR values of the 

one step LUT inverse halftones (Table 3.9), we see that median filtering does not increase 

the PSNR values; in fact it decreases them a bit. However, the image quality improves, 

since the periodic structures are suppressed. (These are not noticible here, but please see 

our website [66).) As a comparison we show the inverse half toned images with algorithm II 

in [34) in Fig. 3.9 (PSNR=25.86dB). If this is compared with the image in Fig. 3.8, we can 

conclude that the former is more smoothed than the latter. 

Another alternative post processing strategy would be to apply a notch filter to filter 

the screen frequency. But this means that we have to estimate the screen frequency and 

design the notch filter for different dither halftone methods. Also, we need to make the 

filter length quite large to get good performance. Hence we have chosen median filter as 

our post processing algorithm. Notice that we cannot apply median filtering directly on 

halftone images, because median filtering of halftone images means majority voting inside 

the median filter support and the output image is still a binary image. 

Ordered Dither Example: The optimal template designed for ordered dither halftones 

using the method described in this section is shown in Table 3.11. In the halftoning process 

the 8 x 8 Bayer dither matrix [58) is used. We again used the two step L UT inverse halftoning 

algorithm. Experimentally we found out that it is a bit harder to inverse halftone ordered 

dither images. The two-step LUT inverse half toning with 16 pixel template is not enough 

to suppress the periodic structures. With the 19 pixel template and 5 x 5 median filtering 
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12 10 14 15 
19 9 2 8 11 

7 1 0 4 16 
12 3 5 6 20 

18 17 

Table 3.11: Template used for LUT inverse halftoning 
of dispersed dithered images (8 x 8 Bayer's matrix). 

Figure 3.9: Inverse halftoned boat image with algorithm II in [34]. 

the periodic structures are mostly suppressed, but if closely examined some defects can be 

seen in the inverse halftoned image. This is due to the fact that the periodicity of 8 x 8 

Bayer dither screen is longer than the periodicity of 3 x 6 clustered dither screen. Thus 

our two-step LUT inverse halftoning method will work for dither screens which are small 

enough so that our two step LUT algorithm can annihilate the periodic patterns in the 

halftones . We have verified this claim by inverse half toning 4 x 4 Bayer dithered images: 

The periodic structures were absent in the inverse halftone images. 

Remark: If the images are mostly smooth images, the inverse halftone quality of error 

diffused halftones can be improved by applying a simple smoothing algorithm on the LUT 

inverse half toned image. Here we apply a small median filter (a 3 x 3 separable median 

filter which requires only 6 comparisons per pixel) on the LUT inverse halftone result to get 
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Figure 3.10: Result of LUT inverse half toning with "Rect" template, followed by 3 x 3 
median filtering (PSNR=31.50dB). The halftone was originally obtained by ED. 

even smoother , high PSNR inverse halftone images. The Lena image LUT inverse half toned 

with 'Rect' template (third column in Table 3.7) and then 3 x 3 median filtered is shown 

in Fig. 3.10 (PSNR=31.50dB). 

3.4 Color inverse half toning 

In this section we will extend the LUT method for color halftones. In color inverse half toning 

we will try to exploit the correlation between the color components of an image. Experi­

mental results of template selection and color inverse half toning will be presented in Section 

3.4.2. 

3.4.1 Template selection for color halftones 

The simple extension of LUT inverse halftoning algorithm to color halftones is to treat the 

color planes separately. For each plane first choose the template and then design the LUT 

table for that template. This gives satisfactory results as we will illustrate in Section 3.4.2. 

However, we can do better for color inverse half toning. In most of the "natural images" 
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Template 
Average PSNR 

Table 3.12: Results of color inverse halftoning indepen­
dently in each color plane using LUT inverse halftoning. 

there is a high correlation between the color planes. This can be exploited in inverse 

half toning. Since there is a correlation between the color planes, there is correlation between 

the halftone values of any color plane and the contone value of a specific color plane. During 

the LUT creation phase, if we carefully include the pixels from different color planes to 

predict the contone value of a particular color plane, this means that we are exploiting the 

correlation between the color planes. 

If we decide to include pixels to our template from other color planes, we have to decide 

exactly which pixels from which color planes to add to our template. The template selection 

for color halftones can be made by simply changing the search space of the template selection 

algorithm. Let us denote the pixel locations in (R,G,B) planes as (R,p , r), (G,p, r), (B,p, r) 

for (p,r) E NL. We will define a fixed neighborhood around the current pixel to include 

pixels from its own color plane as well as other color planes. Let us define Ncolor,L to be 

Ncolor,L = {(c,p, r)lc E {R, G, B},p E {-L/2, ... , L/2} and r E {-L/2, .. . , L/2}}. 

Then, the template selection algorithm given in Section 3.3 can be modified by changing 

NL to Nco1or,L' The templates designed in this manner will be shown in Section 3.4.2. 

3.4.2 Experimental results and conclusions on color inverse half toning 

Our training and test set include different 30 color images. These images can be found 

at [66]. We first apply Floyd-Steinberg error diffusion separately to red, green and blue 

planes to get the color halftone. Other types of halftoning methods can also be applied to 

these images. In Table 3.12 we show the average PSNR9 values of the inverse half toned 

images. In column 2 of Table 3.12 we show the average PSNR value of L UT inverse halftones 

obtained with "Rect" template applied separately to color planes. Similarly in column 3 

9Here the PSNR value is obtained by averaging the PSNR values in the three color planes. 
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of Table 3.12 we show the average PSNR value of LUT inverse halftones obtained with 

"19pels" template applied separately to color planes. 

We have applied template selection algorithm to our training set. In Tables 3.13, 3.14, 

and 3.15, we have shown the optimized templates which are used to estimate R, G, and B 

plane values respectively. In all these tables, there are three grids for each color plane. In 

these grids the middle cells denote the current pixel in different color planes and the 'k'th 

pixel denotes the order in which the pixel is added to the template. If the 'k'th pixel is in the 

(left most/middle, right most) grid, then 'k'th pixel added to the template is added from the 

(red, green, blue) plane. Since the tables are constructed recursively, any size n LUT can be 

obtained from the tables by keeping the first n pixels from the corresponding column. We 

have taken the first 19 pixels for each color plane to get "190ptc" template. In the fourth 

column of Table 3.12 we have shown the average PSNR value of LUT inverse halftones 

obtained with the optimized "190ptc" template. As expected, the inverse halftone quality 

for "190ptc" template is better than "19pels" template. Notice that, since we allowed pixels 

from different color planes to be in the template for a color plane, two pixels from different 

color planes are used in the prediction of a specific color plane. In order to demonstrate the 

performance of color LUT inverse half toning algorithm, we have shown the LUT inverse 

half toned Lena image in Fig. 3.13. Color LUT inverse half toned mandrill image is also shown 

in Fig. 3.14 (also see our website [66]). The color inverse halftone images obtained with LUT 

method are visually pleasing. For comparison, color halftones of Lena and mandrill images 

and original color Lena and mandrill images are shown in Figs. 3.15, 3.16 and 3.11, 3.12 

respectively. 

In another experiment we optimized the templates when only the mandrill image is used 

during the template selection algorithm. In the optimized templates (which are not shown 

here), there are a lot pixels from other color planes which are also used in the prediction 

of a particular color plane. Notice that, Mandrill has rapidly changing colors whereas most 

of the images in the training set have big color patches (almost constant color areas) . This 

also explains why there are a lot of pixels from other color planes in the template when only 

mandrill is used in the template selection algorithm. Thus, if there are big color patches 

in the training images, there will be fewer pixels from other color planes in the prediction 

of a particular color plane, and we can separately inverse halftone the color planes without 

compromising the image quality. However, if we have rapidly changing colors in the training 
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Figure 3.11: Original color Lena image. 

Figure 3.12: Original color Mandrill image. 
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Figure 3.13: Result of LUT inverse half toning of color Lena with "190ptc" 
template. The halftone was originally obtained by error diffusion. 

Figure 3.14: Result of LUT inverse half toning of color Mandrill with "190ptc" 
template. The halftone was originally obtained by error diffusion. 
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Figure 3.15: Color halftone Lena image. The halftone was 
originally obtained by error diffusion. 

Figure 3.16: Color halftone Mandrill image. The halftone 
was originally obtained by error diffusion. 
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20 17 16 18 
10 5 3 4 15 
9 1 0 2 12 14 13 
11 7 6 8 19 

R plane G plane B plane 

Table 3.13: Template which is used to estimate R plane values for color inverse 
half toning. The halftones are obtained by error diffusion. 

20 18 17 19 
10 5 3 4 15 

14 9 1 0 2 12 13 
11 7 6 8 16 

R plane G plane B plane 

Table 3.14: Template which is used to estimate G plane values for color inverse 
half toning. The halftones are obtained by error diffusion. 

image, correlation between planes becomes more important. 

3.5 Conclusion 

In this chapter we have introduced a fast method for inverse halftoning which produces im­

ages of very good quality. We also proposed a recursive template selection algorithm which 

minimizes the mean square error between the inverse halftoned and original images. For 

20 15 14 16 
10 5 3 4 18 

12 17 9 1 0 2 11 
13 7 6 8 19 

R plane G plane B plane 

Table 3.15: Template which is used to estimate B plane values for color inverse 
halftoning. The halftones are obtained by error diffusion. 
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coarse halftones like clustered dither halftones, a two-step LUT inverse half toning algorithm 

was also introduced. Finally, the LUT inverse half toning and template selection algorithm 

were extended for inverse halftoning of color halftones. Our inverse half toning method uses 

a training mode whereby a look up table (LUT) is created from samples of halftone images 

in a particular training set. These training sets are obtained for each halftoning method 

separately. However, our LUT method works for any half toning algorithm (error diffusion, 

screening [58], optimized dot diffusion [40], blue noise mask [51], DBS [54], etc.). With a 

properly chosen training set we demonstrated that the quality of the inverse halftones are 

at least as good as the best known methods. Note that the inverse halftone quality depends 

on the starting halftone, i.e., the inverse halftone quality will be better for better halftones. 

The LUT method is very fast compared to other known methods because it does not 

require any computations, and is based entirely on memory access. However, our algorithm 

assumes bilevel halftones as input, thus it does not extend to scanned halftones yet and this 

topic is under investigation. 
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Chapter 4 Tree-structured method for L UT 

inverse halftoning and for image half toning 

4.1 Introduction 

The LUT sizes in LUT inverse half toning can become bigger if high quality inverse halftone 

is required. Each binary combination of pixels in the template corresponds to one entry in 

the LUT. But many of these combinations hardly arise in practice, and are referred to as 

nonexistent patterns. For example, in error diffusion with a sixteen pixel neighborhood, 

we found that 46.5% of the patterns are nonexistent. For clustered dither 90% are nonex­

istent, and for Bayer's ordered dithering 95%. In the next section we show how to take 

advantage of nonexistent patterns and reduce storage. 

In this chapter, we will introduce tree-structured LUT (TLUT) inverse halftoning and 

show how to design TLUT in Section 4.2. The experimental results of TLUT inverse 

half toning will be shown in Section 4.3. In the second part of the chapter, we will apply 

LUT and TLUT ideas to image halftoning. The aim of TLUT will be to imitate the 

computation-intensive good quality halftones. These will be discussed in Sections 4.4-4.6. 

Preliminary versions of this chapter were presented in [45] and [46]. 

4.2 Tree-structured LUT (TLUT) inverse half toning 

In this section, we show how to take advantage of nonexistent patterns and reduce storage. 

By using a tree structure, the storage requirements can be a fraction of its LUT equivalent. 

In this sense, the tree structure can be regarded as a 'compressed' version of the LUT. First 

a small template LUT will be used to get a crude inverse halftone for each pixel. Then 

this value will be refined by adaptively adding pixels to the template depending on the 

context. These adaptive pixels will be placed in a tree structure. Like the LUT method, 

tree-structured LUT inverse halftoning does not involve any filtering, but there will be more 

steps in inverse halftoning as outlined in Section 4.2.2. 
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x x x x 
x x x x 
x x 0 x 
x x x x 

Table 4.1: An example of template used in inverse half toning. 

In Section 4.2.1 we show the type of tree structure we are using in inverse halftoning. 

Then we will describe our inverse halftoning with tree structure in Section 4.2.2. Design 

of tree structure is discussed in Section 4.2.3 whereas assigning the contone values to tree 

leaves is outlined in Section 4.2.4. Then the experimental results on error diffused halftone 

images are reported and discussed in Section 4.3. 

4.2.1 Tree structure 

Let us denote the size of the initial template used as a (this is typically small, e.g., a = 9). 

We will define 2a binary trees corresponding to the different patterns in the template. Each 

tree node is either split further or it is a leaf. Tree nodes are split so that the contone values 

of LUT obtained with initial template can be refined. If a node is split, then the location 

of additional pixel, (i, j), is stored in the node and two more nodes attached to this node as 

its children. If a tree node is a tree leaf, then a contone value is stored in the node. 

In Fig. 4.1 we have illustrated a generic tree structure. The upper tree nodes are the tree 

roots. The black shaded nodes are the tree leaves and they store a contone value in [0, 255]. 

Unshaded tree nodes have two children and they store the location of the additional pixel 

as shown. 

In order to store the tree, we need to record the tree structure, additional pixel locations, 

and contone values stored in the tree leaves. Let us assume that we have 2a trees and b 

tree leaves. Then it can be shown that we need b bytes to store the contone values in the 

tree leaves, (2b - 2a )/8 bytes to store the tree structure and (b - 2a ) memory units to store 

the locations of additional pixels (See Appendix 4.8.1 for details). Memory unit usually 

corresponds to 1 or 2 bytes. The storage requirement of memory unit will depend on the 

number of possible locations for additional pixels. 
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(2,1j\ (4,-1) 

I ~3,1) 

• • • 000 

o Pixel coordinates . 
• Contone value for inverse halftoning; 

halftone value for halftoning. 

Figure 4.1: Generic tree structures used in inverse half toning and half toning. 

4.2.2 Inverse half toning with tree structure 

In tree-structured L UT inverse halftoning, we try to find a tree leaf for each pixel in the 

halftone image. After finding the tree leaf, the contone value stored in the tree leaf will be 

assigned as the inverse halftone value of the pixel. To find the corresponding tree leaf for 

each halftone pixel location, we will do the following: 

1. First look at the pattern inside the initial template B of size a. Each pattern will 

correspond to one of the binary trees. The root of the corresponding tree is declared 

as the current node. 

2. Each node is either split into two nodes or it is a leaf. If a node is a leaf, then the 

average contone value is stored in the node. This value is assigned as the inverse 

halftone value at the pixel. 

3. If a node is split into two, then the location (i , j) of the additional pixel is stored in 

the node. Get the halftone value of the pixel which is (i, j) away from the current 

pixel. If this value is 0(1) , then the left (right) node is assigned as the current node. 

Then go to step 2. 
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4.2.3 Designing the tree structure 

First, the initial template B of size a should be chosen. The pixels in B are chosen from a 

neighborhood NL of the current pixel. Here NL denotes a neighborhood of size L: 

NL = {(i,j)liE{-L/2, ... ,L/2} andjE{-L/2, ... ,L/2}}. 

Thus, B = {(io,jo), (il,i!), ... , (ia-l,ja-l)). This template can be found using the algo­

rithm outlined in [43] and a this algorithm is given in Section 3.3. Then, each pattern in 

this template will correspond to one of the binary trees. These will also correspond to the 

initial 2a tree leaves. Starting from this tree structure, we will add new tree leaves incre­

mentally. This is done until we get sufficient number of tree leaves or we are satisfied with 

the inverse halftone quality. In this process the cost function will be the MSE of a specific 

tree structure. By this, we mean the mean squared error between the inverse half toned 

images with the specific tree structure and the original images in the training set. Finding 

the MSE of a tree requires the contone values in the tree leaves. Given any tree, there is an 

optimal way to assign contone values to its leaves. In Section 4.2.4 we explain how these 

are calculated. Here we give an algorithm to add the 'best' tree leaf to a tree structure. 

1. For each leaf t and for each pixel P in NL do the following: Assume that the leaf t 

is split into two nodes with the additional pixel p. Calculate the MSE of this tree 

structure (MSEt,p). 

2. Find the leaf to and additional pixel Po such that M S Eto ,Po is minimum. 

3. Update the tree structure by splitting the tree leaf to with the additional pixel Po. 

Here the algorithm is written as above for simplicity. However, the algorithm can be 

improved for computational efficiency. Another simplification would be to split K leaves 

rather than one leaf after calculating the MSE for each tree leaf in the tree structure. Then, 

the second and third steps of the above algorithm should be modified as follows: 

2'. Find K leaves to,l,"" to,K and Po,l,'" ,Po,K such that MSEto,l,Po,ll'" MSEto,J(,Po,J( 

are the smallest K numbers of the set of all possible values of MSEt,p. 

3'. Update the tree structure by splitting the tree leaves to,l,"" to,K with the additional 

pixels Po,l,'" ,Po,K correspondingly. 
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4.2.4 Assigning contone values to tree leaves 

We have to find the contone values for each tree leaf given a tree structure and additional 

pixel locations. Afterwards, these contone values will be assigned as inverse halftone values 

in the tree-structured LUT inverse haiftoning algorithm (Section 4.2.2) . We will use training 

images in this process, i.e., halftone images and corresponding contone images. First we find 

the tree leaves for each pixel in the training set using the inverse half toning algorithm in 

Section 4.2.2. Let us denote the set of contone values of pixels which have the same tree leaf 

t as St where at is the size of St. Thus St = {Xl , X2, ... , xa,}. Then the closest integer to the 

mean value of St will be assigned as the contone value of the leaf (Ct): Ct = int(Lf~l x;jat). 

4.3 Experimental results for TL UT inverse half toning 

We will first apply the TLUT inverse halftoning algorithm on error diffused halftones to 

demonstrate the performance of our algorithm. Then, TLUT will be applied on clustered 

dither and ordered dither halftones. Note that our inverse half toning algorithm can be 

applied to any type of halftoning algorithm. 

4.3.1 TLUT inverse half toning of error diffused images 

First we choose the initial template using the algorithm given in [43). In our training set we 

have included Lena, peppers, Barbara, mandrill, boat and Goldhill images. The template, 

called TFS9 , for Floyd Steinberg error diffused images is shown in Table 4.2. In the table 

'0' denotes the current pixel, and the 'x' denotes the other pixels in the template. We have 

chosen the biggest template such that there are no nonexistent patterns in the halftone 

training images. Then the nodes are added incrementally using the algorithm summarized 

in Section 4.2.3. For the tree design algorithm, we have chosen N3 as our neighborhood. l 

In Table 4.4, we have summarized the performance of tree-structured LUT inverse 

half toning. The trees used differ only in the number of tree leaves. The initial template for 

all of these tree structures is T F S9 and it has nine pixels in the template. Thus all tree 

structures have 29 = 512 initial tree leaves. The number of additional tree leaves can be seen 

in the second row. Storage requirements for storing the tree structure, the contone values 

and the additional pixel locations are also shown in third, fourth and fifth row respectively 

1 A list of acronyms used in this chapter is summarized in Table 4.3. 
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x x x x 
x x 0 x 

x 

Table 4.2: Initial template T F S9 used in tree-structured L UT inverse half toning 
of Floyd-Steinberg error diffused images. 

NL 
TFS9 
FSl, FS2,FS3,FS4 

TCD7 
CDl, CD2, ... , CD7 

TOD6 
ODl, OD2, ... , OD7 

Neighborhood around the current pixel 
Initial template used for FS error diffused images 
Different trees used in TL UT inverse halftoning of 
FS error diffused images 
Initial template used for clustered dithered images 
Different trees used in TLUT inverse halftoning of 
clustered dithered images 
Initial template used for ordered dithered images 
Different trees used in TLUT inverse half toning of 
ordered dithered images 

Table 4.3: Acronyms used in Chapter 4. 

in terms of bytes. The total storage requirement of a tree is then reported in the sixth row. 

In the remaining rows, the PSNR values of the inverse halftone images (with respect to the 

original contone images) are shown. Note that 'x' near PSNR value denotes that the image 

is used in the training set. 

Similarly in Table 4.5 we have summarized the inverse halftone image quality and storage 

requirements of 16 and 19 size LUT inverse halftoning [43], and the inverse half toning 

algorithm 'fastiht2' reported in [27]. In this table 'Rect' denotes a specific 16 pixel template 

and '19pels' denotes a specific 19 pixel template as defined in [43]. 

From these tables it can be seen that the image quality achieved with tree structure FSI 

is close to the image quality achieved with LUT halftoning using the 'Rect' template. Note 

that the latter needs 64KB for storage whereas F SI needs less than 10K. Also, the inverse 

halftone image quality achieved with F SI is close to fastiht2 method. Besides, the inverse 

halftone quality is superior for mandrill image which has a lot high frequency content. 

Note that, even though the airplane image is outside the training set, the inverse halftone 

image quality is close to the fastiht2 inverse halftone quality. Image quality for F SI can be 
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Tree FSI FS2 FS3 FS4 
# add. leaves 4608 8704 12800 16896 
Storage( tree) 1088B 2112B 3136B 4160B 
Storage ( contone) 4608B 8704B 12800B 16896B 
Storage(location) 4096B 8192B 12288B 16384B 
Storage(total) 9792B 19008B 28224B 37440B 
Lena 31.06x 31.42x 31.61x 31.76x 
Peppers 30.90x 31.30x 31.51x 31.67x 
Barbara 26.69x 27.19x 27.52x 27.79x 
Mandrill 24.89x 25.22x 25.53x 25.81x 
Goldhill 29.67x 29.93x 30.07x 30.19x 
Boat 29.88x 30.22x 30.43x 30.61x 
Airplane 29.82 29.99 29.95 29.65 

Table 4.4: Comparison of different tree structures used in TL UT inverse half toning. 
(Note: 'x' near PSNR value denotes that the image is used in the training set.) 

Method LUT Method fastiht2 
Template Rect 19pels (Kite[27]) 
Storage 64KB 512KB -
Lena 30.90x 31.65x 31.37 
Peppers 30.61x 31.48x 31.46 
Barbara 26.80x 27.60x 24.63 
Mandrill 25.24x 26.41x 22.59 
Goldhill 29.49x 30.05x 29.54 
Boat 29.89x 30.62x 29.28 
Airplane 29.63 29.92 29.86 

Table 4.5: Comparison of different templates used in LUT inverse halftoning. 
(Note: 'x' near PSNR value denotes that the image is used in the training set .) 
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Figure 4.2: Result of LUT inverse half toning with "Rect" template. 

increased by adding more tree leaves to FSI. Bigger trees with storage requirements are 

reported in second, third and fourth columns of Table 4.4. For visual comparison we now 

show the inverse halftone images for lena in Fig. 4.2 and Fig. 4.3. These figures can be seen 

better at the website [66). In Fig. 4.2 the inverse halftone is obtained with LUT inverse 

half toning using 'Rect' template. In Fig. 4.3, the tree-structured LUT inverse half toning 

with tree F S2 is shown. 

4.3.2 TLUT inverse halftoning of clustered dithered images 

We have designed and trained TLUT trees on 3 x 6 clustered dither halftones [34). The initial 

template is found using the template selection algorithm given in [43) and this template is 

shown in Table 4.6 (TCD7). In Table 4.7 we have listed TLUT trees with the same TCD7 

initial template but with different number of tree leaves.2 Thus, all these tree structures 

have 27 = 128 initial tree leaves. In the table, the number of tree leaves increases from 

left to right. The inverse halftone images obtained using CD1 tree structure have apparent 

periodic structures because we did not have enough adaptive pixels. If tree structure CD2 

2Note that the PSNR values of inverse half toned clustered dither images are smaller than the PSNR 
values of inverse halftoned error diffused images (see [34],[44]). This is due to the halftone quality difference 
between these two halftoning methods. 
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Figure 4.3: Result of tree-structured LUT inverse half toning with F S2. 

is used in TLUT, most of the periodic structures are suppressed and the inverse halftones 

are almost free from blockiness. If we add leaves to the tree in an unlimited manner in order 

to get rid of the blockiness, then the inverse halftone images suffer from "over training." 

Experimentally we observed that this results in the occurence of impulsive noise. 3 However, 

the tree should be big enough to prevent blocking. The impulsive noise can be removed by 

median filtering. We used 3 x 3 median filtering to suppress it. Let us call the following 

algorithm as two step TLUT inverse half toning: Given a halftone image, first TLUT inverse 

halftone the image and then apply median filtering to the result. The results of two step 

TLUT inverse halftoning are given in Table 4.8. If we add more tree leaves to tree structure 

CD3, the inverse halftone quality does not change much visually. Also PSNR values of the 

images outside the training set decrease as more tree leaves are added to tree structure 

CD3. The reason again is over-training. In Fig. 4.4 we show the two step TLUT inverse 

half toned Boat400 image with CD3 tree. For comparison we show two step LUT inverse 

half toned Boat400 image with 16 pixel template in Fig. 4.5. Visually, the TLUT result 

is better: Notice that there is a natural texture in the water in TLUT result whereas the 

3The tree should normally depend on the halftoning method but not on the specific images in the training 
set as long as the training set is sufficiently rich. However, when we enter the "overtraining mode," this 
ceases to be the case, and we believe that the impulsive noise is caused by this phenomenon. 
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x 
0 x 

x x 
x 

Table 4.6: Initial template TCD7 used in tree-structured 
LUT inverse half toning of clustered dithered images. 

Tree cm CD2 CD3 CD4 CD5 CD6 
additional # of leaves 354 1455 4635 8731 12827 16923 
Storage(tree) 105B 380B 1175B 2199B 3223B 4247B 
Storage(contone) 482B 1583B 4763B 8859B 12955B 17051B 
Storage(location) 708B 2910B 9270B 17462B 25654B 33846B 
Storage(total) 1295B 4873B 15208B 28520B 41832B 55144B 
Lena 26.00x 28.03x 29.05x 29.6lx 30.01x 30.29x 
Peppers 25.95x 27.96x 29.18x 29.90x 30.34x 30.6lx 
Barbara 22.33 23.18 23.51 23.53 23.46 23.38 
Mandrill 19.99 20.59 20.77 20.77 20.70 20.60 
Goldhill 25.16x 26.68x 27.43x 27.78x 28.03x 28.23x 
Boat 24.72x 26.20x 27.12x 27.74x 28.24x 28.64x 
Airplane 24.65 25.99 26 .35 26 .35 26.26 26.12 
Boat400 23.60 24.63 24.92 24.90 24.75 24.64 

CD7 
21019 
5271B 
21147B 
42038B 
68456B 
30.53x 
30.84x 
23.30 
20.53 
28.42x 
28.96x 
26.03 
24.42 

Table 4.7: Comparison of different tree structures for TLUT inverse half toning of clustered 
dithered images. (Note: 'x' near PSNR value denotes that the image is used in the training 
set.) 

water does not look natural in some parts in the LUT example.) Also, TLUT needs only 

15KB whereas LUT needs 64KB. For comparison in Fig. 3.9 we show the inverse half toned 

images with algorithm II in [34]. If this is compared with the image in Fig. 4.4, we see that 

the former is more smooth than the latter. 

4.3.3 TLUT inverse halftoning of ordered dithered images 

Here, we trained our TLUT trees on ordered dithered with 8 x 8 Bayer's matrix. Again 

the initial template is found using the template selection algorithm given in [43] and this 

template is shown in Table 4.9 (TOD6). We have listed TLUT trees with the same TOD6 

initial template but with different number of tree leaves in Table 4.10. In this table, the 

number of tree leaves increases from left to right. When we add more tree leaves in order 

to get rid of the blockiness, impulsive noise occurs which makes it necessary to use 3 x 3 
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Tree CD1 CD2 CD3 CD4 CD5 CD6 CD7 
Lena 27.99x 28.76x 29.31x 29.65x 29.93x 30.14x 30.33x 
Peppers 27.84x 28.87x 29.59x 30.08x 30.42x 30.65x 30.82x 
Barbara 23 .09 23.32 23.46 23.52 23.52 23.52 23.51 
Mandrill 20.69 20.88 20.97 21.00 21.00 20.99 20.98 
Goldhill 26.57x 27.23x 27.56x 27.74x 27.89x 28.01x 28.12x 
Boat 26.01x 26.63x 27.15x 27.51x 27.85x 28 .12x 28.34x 
Airplane 25.84 26.32 26.62 26.67 26.66 26.64 26.64 
Boat400 24.93 25.30 25.61 25.81 25.87 25.87 25.78 

Table 4.8: Comparison of different tree structures for two-step TLUT inverse halfton­
ing of clustered dithered images. (Note: 'x ' near PSNR value denotes that the image 
is used in the training set.) 

Figure 4.4: Result of two-step TLUT inverse halftone 
of clustered dithered Boat400 image with CD3. 
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Figure 4.5: Two-step LUT inverse half toning with "160pt" 
template. The halftone was a clustered dither image. 

x 
x x 
x 0 
x 

Table 4.9: Initial template TOD6 used in tree-structured 
LUT inverse half toning of clustered dithered images. 

median filtering to suppress it. Impulsive noise occurs if the tree is bigger than OD5 and 

most of the periodic structures go away after OD6. However, some slight periodic pattern 

in the water can still be seen. We have included the two step TLUT inverse halftoned 

Boat400 image with OD7 tree in Fig. 4.6. Notice that LUT inverse half toning of this image 

even with 25 pixels could not suppress the periodic structures [44]. 

4.4 L UT and TL UT image half toning 

The aim of half toning is the rendition of gray-scale images on bilevel devices. The most 

common algorithms for half toning are ordered dither and error diffusion. In ordered dither 

a continuous-tone image is thresholded with a spatially periodic screen whereas in error 

diffusion halftoning, the error is 'diffused' to the unprocessed neighbor points [58]. 
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Tree OD1 OD2 OD3 OD4 OD5 OD6 OD7 
additional # of leaves 184 872 3292 7388 11484 15580 19676 
Storage( tree) 54B 226B 831B 1855B 2879B 3903B 4927B 
Storage( contone) 248B 936B 3356B 7452B 11548B 15644B 19740B 
Storage(location) 368B 1744B 6584B 14776B 22968B 31160B 39352B 
Storage( total) 670B 2906B 10771B 24083B 37395B 50707B 64019B 
Lena 24.64x 26.35x 27.62x 28.30x 29.00x 29.45x 29.76x 
Peppers 24.75x 26.36x 27.73x 28.57x 29.24x 29.68x 30.00x 
Barbara 21.83 22.76 23.25 23.45 23.52 23.53 23.49 
Mandrill 20.32 20.88 21.14 21.20 21.17 21.12 21.06 
Goldhill 24.15x 25.52x 26.42x 26.97x 27.38x 27.68x 27.93x 
Boat 24.15x 25.47x 26.50x 27.13x 27.71x 28.15x 28.50x 
Airplane 23.92 24.75 26.28 26.55 26.62 26.64 26.56 
Boat400 23.92 24.26 25.09 25.44 25.54 25.43 25.38 

Table 4.10: Comparison of different tree structures for TLUT inverse halftoning of 8 x 8 
ordered dithered images. (Note: 'x' near PSNR value denotes that the image is used in 
the training set.) 

Tree OD1 OD2 OD3 OD4 OD5 OD6 OD7 
Lena 26.01x 27.58x 28.59x 29.02x 29.35x 29.60x 29.81x 
Peppers 26.29x 27.72x 28.76x 29.39x 29.74x 30.02x 30.27x 
Barbara 22.57 23.14 23.43 23.52 23.55 23.56 23.57 
Mandrill 20.76 21.04 21.16 21.20 21.20 21.19 21.19 
Goldhill 25.39x 26.48x 27.11x 27.40x 27.59x 27.74x 27.89x 
Boat 25.47x 26.39x 26.99x 27.37x 27.69x 27.96x 28.18x 
Airplane 24.85 25.60 26.74 26.90 26.98 27.02 27.02 
Boat400 24.43 24.87 25.64 25.95 26.01 25.98 26.00 

Table 4.11: Comparison of different tree structures for two-step TLUT inverse 
half toning of 8 x 8 ordered dithered images. (Note: 'x' near PSNR value denotes 
that the image is used in the training set.) 
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Figure 4.6: Result of TLUT inverse halftone of 
ordered dithered Boat400 image with OD7. 

The complexities of the algorithms and the resulting image quality are different. Or­

dered dither requires only pointwise comparisons, and it is a parallel method. But the 

resulting halftones suffer from periodic patterns. Error diffused halftones do not suffer from 

periodicity and offer blue noise characteristic [58J which is found to be desirable. The main 

drawback is that error diffusion is inherently serial, and it requires some computation in 

the diffusion process. The blue noise mask is another way to get halftone quality similar to 

error diffusion [51J. The disadvantage of blue noise masks is that the resulting halftones do 

not have enhancement like the error diffusion inherently has. 

Here, we introduce LUT based half toning and TLUT based half toning methods. Pixels 

from a causal neighborhood and the contone value of the current pixel will be included in 

the LUT. The LUT half toning will require no arithmetic operations other than memory 

access. For any half toning method, a sample set of images and halftones of these images 

will be used to construct the LUT. Even though tree-structured LUT (TLUT) halftoning is 

more complex than LUT halftoning, it produces better halftones and it requires much less 

storage than LUT half toning. We will demonstrate how error diffusion characteristics can 

be achieved with this method. 
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15 14 
11 9 6 8 

13 7 3 2 4 12 
10 5 1 0 

Table 4.12: LUT template used in halftoning. 

There are more computation-intensive half toning methods like Direct Binary Search 

(DBS) [54] which give the best halftone quality. These algorithms serve as excellent bench­

marks, but are not commonly used. When TLUT is trained on DBS-like images, the halftone 

quality will be in between the error diffusion quality and DBS quality. Moreover, the TLUT 

halftone quality will get better when the size of TLUT increases. 

4.5 LUT half toning 

We will process pixels one by one in raster-scan order. In order to decide the halftone value 

at a chosen cell (or pixel location), we will use the halftone values already decided in a 

carefully selected template or neighborhood of the chosen cell and the contone value of the 

chosen pixel. The template design phase is merely a process of deciding which neighboring 

cells should be involved in the prediction. We show a sample template in Table 4.12. The 

letter "0" denotes the cell whose halftone value is being decided and other numbers denote 

the cells in the template. The template selection algorithm will be described later in this 

section. 

Let us assume that there are N pixels (excluding the pixel being predicted) in the 

neighborhood and they are ordered in a specific way. Let us also call the halftone values of 

pixels as PO,Pl, .. . ,PN-l and the contone value of the pixel being predicted as c. Note that 

there are 2N 28 different patterns since Pi E {O, I} for i = 0,1, ... , N - 1 and c E {0,28 - I}. 

Since the halftone image is a bilevel image, our LUT should return a binary value for each 

pattern (POPl ... PN-lC): T(POPl···PN-lC). 

4.5.1 Design of LUT 

In the design of LUT, we need training images and corresponding halftone images. Thus, 

we select a set of images and halftone these images with any halftoning algorithm of our 
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choice. We will first obtain the expected halftone value for each pattern. Then this halftone 

value will be assigned to the corresponding LUT position for that pattern. Let us de­

note the number of occurrences of pattern (POP1 ... PN-1C) in the sample halftone images as 

KpOP1 .. . PN_IC and corresponding halftone values as 

hpOP1 ... PN_IC,i for i = 0,1, ... , KPOP1",PN - IC - 1. 

If KpOP1 ... PN_IC > 0, the LUT halftone value for the pattern (POP1 ... PN - 1C) will be the closest 

quantization point to the mean of the corresponding halftone values is, i.e., 

where 

if mpOP1 ... PN_IC 2': 0.5 

if mpOP1" .PN _ IC < 0.5 

4.5.2 Nonexistent pattern estimation 

If KPOP1".PN_IC = 0, then the pattern (POP1 .•• PN-1C) does not exist. In this case the halftone 

value should be estimated in a different way. A similar problem arises in LUT inverse 

halftoning as well, and three methods are proposed in [42] for this. One of these called 

the best linear estimator, modified for LUT half toning, works as follows: Let us number 

all the patterns which exist in the sample halftone images as (Pi,OPi,1 ... Pi,N-1Ci) for i 

0,1, ... , M - 1 where M is the number of existing patterns. Let A(i,j) = Pi,j and b(i) 

T(Pi,OPi,1".Pi,N-1Ci) for i = O,I, ... ,M -1, j = O,I, ... ,N -1. Also let A(i,N) = Ci for 

i = 0,1, ... , M - 1. We are looking for an estimate of the halftone value of the nonexistent 

pattern of (POP1 ... PN-1C) in the following form: 

x 

The best linear estimator will be the least squares solution to the overdetermined system 

of equations Ax = h. The solution is 
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Then for each nonexistent pattern (POP1 ... PN-1C), we obtain the halftone value as follows: 

T(POP1···PN-1C) = { 
1, 

0, if Y < 0.5, 

if Y 2: 0.5. 

4.5.3 Template selection 

We have shown how to design the LUT for a given template. The next question is how we 

can choose the best template for LUT halftoning. We have proposed a method for template 

selection in LUT inverse half toning in [43]. Here we will modify that algorithm for LUT 

halftoning. 

Assume that the number of pixels to be used in the template is fixed. Our aim will be 

to choose the best template of size N. We will simplify the template selection problem by 

restricting the pixels to be in a fixed causal neighborhood. We will define our neighborhood 

as Nr,={(i,j)liE{-L/2, ... ,0},jE{-L/2, ... ,L/2}} U {(O,j)U E {-L/2, ... ,-1}}. Let us 

call the pixel whose half- tone value is being estimated as the current pixel. 

Here we give a recursive algorithm to choose the template. Let us denote a template 

having a pixels as Ta. Assume that we have P images which have sizes Xl x Yl, X2 X Y2, 

... , xp x yp in our training set. We will have both continuous tone images D1(nl,n2) and 

corresponding halftone images Hl(nl, n2) for 1= 1,2, ... , P in our training set where (nl, n2) 

denotes the pixel location in the images. 

Now let us define the error in the LUT halftone images compared to LUT images for a 

given template T as follows4 : 

~ p Xl Yl ~ 2 

ET(HT,H) = L LL (Hl(i,j) - Hr(i,j)) 
1=1 ;=1 j=l 

where fiT is obtained using LUT halftoning with template T. We can summarize our 

size-M template selection algorithm in two steps: 

Step O. a = 0. Ta = 0. 

Step 1. Define (P, r) as follows: 

(p,r) = 
argmin ~T 

ET(H ,H). 
(i,j) E N~ 

4Note that a better error measure would be the MSE of the HVS filtered error between the halftones. 
However, this topic is left for further research. 
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Include the pixel (p,r) in the template: Ia = Ia- l + {(p,r)}. 

Step 2. If Tea does not have M elements go to step 1. Otherwise stop. 

4.5.4 LUT example 

We have chosen N = 15 and constructed our template using algorithm given in the previous 

section. The training set included several error diffused halftone images (see below). This 

template was shown in Table 4.12. In the table, "k"th cell (k > 0) denotes that the cell 

is added to the template in kth step. Note that we need 2N 28 = 223 Bits (lMBytes) to 

store the LUT. We have trained our LUT with images using the following images: Lena, 

peppers, grey ramp, boat, airplane, Zelda, grey scale ramp and two more smooth images. 

The halftones of these images for training are obtained with error diffusion. Afterwards we 

half toned goldhill with the designed LUT. Notice that goldhill was not in the training 

set. The result is shown in Fig. 4.8. For comparison we show Goldhill halftoned with error 

diffusion in Fig. 4.7. Except in regions of very low and very high grey levels, the LUT 

halftoning method gives the same image quality as error diffusion.5 Notice that the storage 

requirement of LUT half toning is also high. In the next section we will introduce TLUT 

halftoning in order to overcome these problems. 

4.6 Tree-structured LUT half toning 

As illustrated above, LUT half toning has some defects in regions of very low and very high 

grey levels. It can be seen that the halftone pattern for 9 = 2i6 has approximately 16 x 16 

periodicity, and LUT half toning with a template shown in Table 4.12 cannot capture this 

periodicity. This is because template shown in Table 4.12 does not have a pixel which is 

16 x 16 pixels away from the halftone pixel being predicted. Different cells should be added 

to capture different halftone patterns. However, the template size cannot be increased arbi­

trarily because of storage problems. This problem can be solved by adding cells adaptively 

to the template. We will show that "adaptive cells" can be stored efficiently in a tree 

structure. 

5The images can be found at the website [66J for better viewing. 
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Figure 4.7: Goldhill halftoned with FS error diffusion. 

Figure 4.8: Goldhill halftoned with LUT halftoning. 
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4.6.1 Tree structure 

Let us denote the size of the initial template used as a (this is typically small, e.g., a = 11). 

We will define 2a+8 binary trees corresponding to the different patterns in the template. 

Each tree node is either split further or it is a leaf. Tree nodes are split so that the halftone 

values of LUT obtained with initial template can be refined. If a node is split, then the 

location of additional pixel,(i,j), is stored in the node and two more nodes are attached to 

this node as its children. If a tree node is a tree leaf, then a halftone value is stored in the 

node. 

In Fig. 4.1 we have illustrated a generic tree structure. The upper tree nodes are the 

tree roots. The black shaded nodes are the tree leaves and they store a halftone value. 

Unshaded tree nodes have two children and also they store the location of the additional 

pixel as shown. 

In order to store the tree, we need to record the tree structure, additional pixel locations, 

and halftone values stored in the tree leaves. Let us assume that we have 2a+8 trees and b 

tree leaves. Then it can be shown that we need b bits to store the halftone values in the 

tree leaves, (2b - 2a+8 ) bits to store the tree structure and (b - 2a+8 ) memory units to store 

the locations of additional pixels.6 One memory unit usually corresponds to 1 or 2 bytes 

and this depends on the size of N~ used in the tree design step. In general one memory 

unit is k bits where k < l092(# of elements in N~) ::; x + 1. 

4.6.2 TL UT half toning algorithm 

In TLUT halftoning, we try to find a tree leaf for each pixel in the halftone image. After 

finding the tree leaf, the halftone value stored in the tree leaf will be assigned as the halftone 

value of the pixel. To find the corresponding tree leaf for each halftone pixel location, we 

will do the following: 

1. First look at the pattern inside the initial template T of size a. Each different pattern 

will correspond to one of the binary trees. The root of the corresponding tree is 

declared as the current node. 

2. Each node is either split into two nodes or it is a leaf. If a node is a leaf, then the 

halftone value is stored in the node. This value is assigned as the halftone value at 

6Similar calculations for storing the tree used in inverse halftoning are done in Appendix 8.2. 
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the pixel. 

3. If a node is split into two, then the location (i, j) of the additional pixel is stored in 

the node. Get the halftone value of the pixel which is (i, j) away from the current 

pixel. If this value is 0(1), then left (right) node is assigned as the current node. Then 

go to step 2. 

4.6.3 Designing the tree structure 

First, the initial template T of size a should be found. The pixels in T are chosen from 

a neighborhood N~ of the current pixel. This template can be found using the algorithm 

outlined in Section 4.6.3. Then, each pattern in this template will correspond to one of 

the binary trees. These will also correspond to the initial 2a+8 tree leaves. Starting from 

this tree structure, we will add new tree leaves incrementally. This is done until we get 

sufficient number of tree leaves or we are satisfied with the halftone quality. In this process 

the cost function will be the MSE of a specific tree structure. By this, we mean the mean 

squared error between the TLUT half toned images with the specific tree structure and the 

halftone images in the training set. Finding the MSE of a tree requires the halftone values 

in the tree leaves. Given any tree, there is an optimal way to assign halftone values to its 

leaves using the majority rule. Here we give an algorithm to add the 'best' tree leaf to a 

tree structure. 

1. For each leaf t and for each pixel P in NL do the following: Assume that the leaf t 

is split into two nodes with the additional pixel p. Calculate the MSE of this tree 

structure (MSEt,p). 

2. Find the leaf to and additional pixel Po such that M SEto,Po is minimum. 

3. Update the tree structure by splitting the tree leaf to with the additional pixel Po. 

4.6.4 Assigning halftone values to tree leaves 

We have to find the halftone values for each tree leaf given a tree structure and additional 

pixel locations. Afterwards, these halftone values will be assigned as halftone values in 

the TLUT halftoning algorithm. We will use training images in this process, i.e., halftone 

images and corresponding contone images. First we find the tree leaves for each pixel in 
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Figure 4.9: Goldhill half toned with TLUT half toning trained on error diffused images. 

the training set using the TLUT half toning algorithm in Section 4.6.2. Let us denote the 

set of halftone values of pixels which have the same tree leaf t as St where at is the size of 

St· Thus St = {hi, h2 , ... , hat }' If there are more ones than zeros in St, then the halftone 

value of the leaf (Ct) will be one. Otherwise it will be zero. 

4.6.5 TLUT example 

We have chosen our initial template to consist of the first eleven elements of the template 

shown in Table 4.12. Then we have refined the trees with the training set as in Section 4.5.4 

for LUT half toning with N;7' In the resulting tree, we have a = 11, b = 2a+8 + 27310 = 

524288. The TLUT halftone image is shown in Fig. 4.9. As it can be seen from the figure, 

the problems with very high and very low grey levels in LUT half toned images do not 

occur for TLUT half toning algorithm (see the sky in the image). The total storage cost 

is approximately 158KB. Note that this is much less than storage requirements of LUT 

half toning which is 1 MB. 

We have also trained TLUT on DBS halftones. The halftones are obtained by applying 

fifty steps of DBS iterations on FS error diffused halftones [54]. Our initial template consists 

of the first eleven elements of the template shown in Table 4.12. The parameters of the 
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Figure 4.10: Goldhill halftoned with TLUT half toning trained on DBS images. 

TLUT with N17 are as follows: a = 11, b = 2a+8 + 32768 = 557056. The TLUT halftoned 

image for Goldhill is shown in Fig. 4.10. Notice that the quality of the halftone image 

is better than error diffused halftone image (especially in the sky). The dots are more 

uniformly distributed in the sky in TLUT half toned image whereas artificial worm artifacts 

in the sky can be noticed easily in error diffused images. 7 

4.7 Conclusion 

In the first part of the chapter, we discussed tree-structured LUT inverse half toning. This 

method gives good results, and the storage requirements are much smaller compared to 

LUT inverse half toning. Here we have applied our algorithm to error diffused halftones, 

ordered dither halftones and clustered dither halftones. Other type of halftones (e.g., dot 

diffused images [40]) can also be inverse halftoned easily. In the second part of the chapter, 

a new LUT based halftoning method is discussed. The algorithm is capable of producing 

good quality halftones. To refine the halftones, we then proposed tree-structured L UT 

half toning. We have demonstrated the performance of our algorithm by training on error 

7The images can be found at the website [66) for better viewing. 
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diffused and DBS images. The complexity of TLUT halftoning is higher than the error 

diffusion algorithm but much lower than the DBS algorithm. Correspondingly, the halftone 

image quality will lie in between error diffusion and DBS. 

4.8 Appendix 

4.8.1 Calculation of storage requirement for tree structures used in TLUT 

inverse halftoning 

Assume that we have 2a trees and b tree leaves in the tree structure. Since the contone 

values are stored in the tree leaves, we need b bytes to store the contone values. Notice that 

every addition of a new pixel to the tree structure increases the number of tree leaves by 

one. Since the tree structure with b tree leaves is obtained by adding additional pixels to 

an initial tree which contains only 2a tree leaves, tree structure contains b - 2a additional 

pixels and we need b - 2a memory units to store the locations of these additional pixels. 

In order to explain how to store the tree structure, let us define a tree node storage 

routine as follows: In this routine, a "1" will be stored if the tree node is a leaf. If the 

tree node is split, then a "0" will be stored and this will be followed by applying the tree 

node storage routine to the right child and then to the left child. Thus, if we apply the tree 

node storage routine to the roots of 2a binary trees in a specific order, we can store the 

tree structure. Notice that we need b bits to store the tree structure when b = 2a and each 

addition of an adaptive pixel to the tree structure increases the storage requirement by 2 

bits. Thus we need 2b - 2a bits to store the tree structure. 
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Chapter 5 Effects of inverse half toning in 

watermarking 

5.1 Introduction 

Watermarking is the process of embedding a secret signal into a host signal in order to verify 

the ownership or authenticity of images. A recent state of the art review of watermarking 

methods can be found in [30]. 

It is sometimes necessary to watermark halftoned images. A recent scheme for this [25] 

is shown in Fig. 5.1. Here a contone image x is first watermarked and then half toned, and 

the watermark detector works directly on the halftone image. In this chapter we consider 

the effect of first inverse half toning the image before detecting the watermark (Fig. 5.2).1 

In this figure, inverse halftoning can also be thought of as another possible distortion on 

the watermarked image. 

The first watermarking algorithm, spread spectrum watermarking method, was intro­

duced by Cox et al.[ll]. This method is a private watermarking algorithm and thus requires 

the original image in watermark detection. The second method, image watermarking by 

moment invariants, is introduced by Alghoniemy and Tewfik [1]. This is a public water­

marking algorithm, and it does not require the original image in watermark detection. This 

method is robust to geometric affine transformations. We will perform our experiments for 

spread spectrum watermarking and watermarking based on image invariants. 

In order to examine the effects of inverse halftoning on watermarked images, we will use 

Tree-structured Look Up Table (TLUT) method for inverse halftoning of images [45],[47]. 

This algorithm is fast and gives good quality inverse halftone images. Basically inverse 

half toning removes most of the halftoning noise. If a good quality halftoning method such 

as error diffusion is used, then the half toning noise will be mostly high pass, and if the wa­

termark is embedded in the low pass band, inverse half toning will not affect the watermark. 

It may also enhance the watermark detection because it also shapes the lowpass band of 

lIn the same paper [25], an algorithm for joint halftoning and watermarking is proposed, but in this 
chapter we will only discuss the effects of inverse half toning in watermark detection. 
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Figure 5.1: Watermark detection from the halftone directly. 
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Figure 5.2: Watermark detection after inverse halftoning. 

the image slightly. 

Thus we could expect an enhancement in watermark detector performance if inverse 

halftoning is used on smooth images and we will expect a deterioration in watermark de­

tector performance if inverse half toning is used on high frequency images. We will experi­

mentally show that this is indeed the case. 

In Section 5.2 we review the details of these watermarking algorithms. A brief review of 

TL UT inverse halftoning is given in Section 5.3. Experimental results are given in Section 

5.4. 

5.2 Watermarking algorithms 

Here we will look at two watermarking schemes. In private watermarking schemes, the orig­

inal image is required for watermark extraction, whereas in public watermarking schemes 

original image is not needed for watermark detection. As an example of private watermark­

ing we will describe spread spectrum watermarking and as an example of robust public 

watermarking we will describe image watermarking by moment invariants. Notice that 

Least Significant Bit (LSB) embedded watermarking is not robust against half toning be­

cause LSB watermark is embedded in high frequency band and half toning destroys this 

watermark completely. 
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5.2.1 Spread spectrum watermarking 

Let us first summarize the spread spectrum watermarking scheme proposed in [11]. Let 

x be the original image of size P x Q and f be the transform domain representation of 

x obtained with a DCT. Let v!, ... VN be the first N largest coefficients of If I where 1.1 
stands for the point-wise absolute value operator. Watermarking x with the watermark 

w = [WI , ... , W N f is the process of modifying v;'s as follows: vi = Vi (1 + aWi). Here w;'s 

are i.i.d. normal random variable with zero mean and unit variance and a determines the 

strength of watermark sequence to be embedded. To make the watermark more robust to 

distortions a should be made large; however, if we want the watermark to be invisible, a 

should be chosen below a threshold. 

Let us denote the watermarked image as Xl and the possibly distorted version of the 

watermarked image as x". In the detection process we will use normalized correlation as a 

performance measure. Let use assume that we want to test whether the watermark Wt is 

embedded in image x". Let f" be the DCT transform of x". The first N largest coefficients 

of I f"l will be v~ , ... v'lv. Then the detected watermark is 

" " 1 Vi 
W,' = - (- - 1) for i = 1, ... , N 

Q' Vi 

and the normalized correlator output is2 

" < Wt,W > 
I = --;========n==n== J< Wt,Wt >< w",w" > 

Here, we are checking whether Wt exists in the image. If Wt = W then we expect I to be 

close to unity; otherwise, we expect I to be close zero. 

5.2.2 Image watermarking by moment invariants 

In this method, the watermark is the mean of several functions of the second and third 

order moments designed to be invariant to scaling and orthogonal transformations. For an 

image f(x,y) its geometric moments are 

mp,q = J J xPyq f(x, y) 

2The inner product between X= [Xl, ... ,XNf and y = [Yl, ... ,YNf is defined as < x,y >= I;~lXiYi. 
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and central moments are 

where x = ml,o/mo,o and y = mO,l/mo,o. Then the normalized central moments are 

'T/p,q = /1op,q/ /106,0 where "y = (p + q + 2) /2. The following functions are found to be invariant 

to orthogonal transformations [23]: 

<Pl = T/2,0 + 'T/O ,2· 

Functions which are invariant to general affine transformation are also derived in [23],[18] 

and they are 

.1. _ 2 
'1"1 - 'T/2,0'T/O,2 - 'T/l,l' 

.1. - 2 2 6 4 3 4 3 
'1"2 - T/3,0'T/O,3 - 'T/3,0'T/2,1'T/l,2'T/0,3 + 'T/2,1'T/O,3 + T/3,0'T/l ,2 
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+7]0,2(7]3,07]1 ,2 - 7]~,1)' 

./, 3 2 6 2 6 2 '/"4 = 7]2 ,07]0,3 - 7]2,07]1,17]1,27]0,3 - 7]2,07]0,27]2,17]0,3 

3 2 
+7]0,27]3,0 ' 

We will return to this issue in Section 5.4.2. 

5.3 Experimental results and discussion 

5.3.1 Spread spectrum watermarking 

We have embedded the watermark in 0.3% of the DCTcoefficients of images, i.e., N/(PQ) = 

0.003. The strength of watermark is chosen to be a = 0.1. We have averaged our results over 

100 different watermarks. We also observed that inverse halftoning results in a slightly scaled 

image. We have found this scale factor to be 1/1.018. Even though the scale parameter can 

be estimated from the detected watermark (see Appendix 5.4.2) , the actual scale parameter 

is quite close to unity, and the results of scale detection were not reliable, so we have 

experimentally found the scale parameter. The effects of scaling on the watermark detector 

when Wt = W is shown in Appendix 5.4.1. Basically I gets scaled by l/h/I + (:2~t) when 

the image is scaled by s. 

In Fig. 5.3, we show a portion of the original, watermarked, half toned, and inverse 

half toned Lena images for visual comparison. The watermark is invisible in the water­

marked image, and inverse halftoning removes most of the half toning noise. Our results 

are summarized in Tables 5.1 and 5.2. The mean value of the detector output I for 100 

different watermarks is reported in the second, third and fourth columns of Table 5.1. In 

Table 5.2, standard deviation of the detector outputs is shown. (The mean value of the 

detector output when the watermarks don't match is quite small, so we report only the 

standard deviation of these variables.) In our experiments we use Floyd Steinberg error 

diffusion to get our halftones. In [45], we describe a specific TLUT, T2 for use in inverse 
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Figure 5.3: Lena image, top left: original, top right: watermarked , bottom left: 
half toned , bottom right: inverse halftoned. These correspond to x,x',y,w in Fig. 5.2. 



108 

half toning. This TLUT requires 19KBytes of memory and it is used in inverse half toning 

here. In both tables, the second column shows the correlator outputs after halftoning is 

applied to watermarked image, the third column shows the correlator outputs when inverse 

half toning is applied to the halftones, and the fourth column shows the detector outputs 

when scaling is applied on inverse half toned images. 

correct watermark 
Image halftone inverse scaled 

halftone 
Lena 0.9027 0.9292 0.9415 
Peppers 0.7093 0.8498 0.8652 
Barbara 0.8697 0.8887 0.8962 
Mandrill 0.8079 0.5363 0.5531 
Goldhill 0.8388 0.8981 0.9063 
Airplane 0.8303 0.8561 0.8741 

I toning and inverse halftonin on waterm Table 5.1: Effects of ha g ark correlator when wa-
termarks match. Images are half toned by Floyd-Steinberg error diffusion. 

incorrect watermark 
Image halftone inverse scaled 

halftone 
Lena 0.0343 0.0348 0.0349 
Peppers 0.0329 0.0352 0.0352 
Barbara 0.0312 0.0317 0.0315 
Mandrill 0.0329 0.0352 0.0346 
Goldhill 0.0326 0.0319 0.0320 
Airplane 0.0307 0.0363 0.0365 

I tonin and inverse halftonin on waterm Table 5.2: Effects of ha g g ark correlator when wa-
termarks do not match. Images are half toned by Floyd-Steinberg error diffusion. 

From our experiments we have found that inverse halftoning helps in watermark detec­

tion if the original image is smooth, i.e., watermark is embedded in the low pass portion 

of the image. If the image has high frequency content, then the watermark will also be 

embedded in the high frequency band, and inverse half toning will tend to wipe out that 

information. (The Mandrill image has high frequency details and the watermark correlator 

output deteriorates if inverse half toning is applied to Mandrill image. On the other hand 

lena and peppers are smooth images and inverse half toning increases the watermark corre­

lator output for these images.) Notice also that halftoning and inverse half toning do not 

affect the watermark correlator output when the watermark is not present. Also using the 

scaling parameter helps to increase the watermark correlator output. 
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We have also looked at the effects of clustered dot and ordered dither halftoning and 

inverse halftoning. We have summarized our results in Tables 5.3 and 5.4 for clustered 

dot and ordered dither halftoning algorithms. The watermark detector output of clustered 

dither or ordered dither halftones are smaller than the watermark detector output of error 

diffused halftones. This is expected because error diffusion produces halftones which are 

better than clustered dot and ordered dither algorithms. If the half toning algorithm is 

clustered dither or ordered dither, then inverse half toning makes it difficult to extract the 

watermark. This is again due to poor halftone quality. 

correct watermark 
Image halftone inverse scaled 

halftone 
Lena 0.6906 0.6131 0.6467 
Peppers 0.7433 0.5657 0.6203 
Barbara 0.6501 0.6174 0.6370 
Mandrill 0.4154 0.3184 0.3340 
Goldhill 0.5541 0.5101 0.5324 
Airplane 0.6984 0.5747 0.6050 

Table 5.3: Effects of ha g g I tonin and inverse haTftonin on waterm ark correlator when wa-
termarks match. Images are halftoned by clustered dot. 

correct watermark 
Image halftone inverse scaled 

halftone 
Lena 0.6841 0.6385 0.6614 
Peppers 0.7351 0.6086 0.6495 
Barbara 0.6312 0.6108 0.6255 
Mandrill 0.4313 0.3288 0.3469 
Goldhill 0.5421 0.5065 0.5329 
Airplane 0.6673 0.6709 0.6741 

Table 5.4: Effects of ha g g lftonin an, inverse halftonin on waterm ark correlator when wa-
termarks match. Images are half toned by ordered dither. 

5.3.2 Image watermarking by moment invariants 

Let <I> be a vector whose elements are (Pl, .. . , ¢7 which are invariant to orthogonal transforma­

tions [23] and let x* be IloglOxl for each variable x. We have chosen /(<1>*) to be the 

mean of these ¢i, ... , ¢:; functions. The original Lena image had /(<1>*) = 13.6962 and we 

have modified the image as follows3: g'(x,y) = g(x,y) + f3logg(x,y). We have chosen 

3The invariants are computed after normalizing the images to have a maximum of 255. 
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(3 = 8.9267 so that the f(<P*) computed from the modified image is around 14.00. In 

order to detect the watermark correctly, we want f(<P*) to be close to this predefined 

value. We have summarized our results in Tables 5.5 and 5.6. In Table 5.6 we have 

shown 1/Ii, ... , 1/I.j functions which are invariant to general affine transformations [18]. Notice 

that 1/Ii, ... , 1/I.j are invariant to aspect ratio changes whereas ¢>i, ... , ¢>'7 are not. From 

the tables we see that the extracted watermarks from halftoned images are close to their 

original value. However, clustered dot dithering and error diffusion disturb the watermark 

more than ordered dithering. Error diffusion affects the watermark because it enhances 

the edges, and edges are main parts where the watermark is embedded in the modified 

image. Clustered dot dithering affects the watermark, because the clustered dot halftones 

are worse than ordered dither halftones. Thus the watermarks extracted from clustered dot 

halftones are worse than the watermarks extracted from ordered dither halftones. When 

inverse halftoning is applied on these halftoned images, the watermark extraction becomes 

even harder. 

f(¢>*) ¢>i ¢>'2 ¢>'3 ¢>.j ¢>'5 ¢>'6 ¢>'7 
Original 13.696 2.892 8.203 11.976 11.193 23.837 15.125 22.648 
Watermarked 14.002 2.932 8.369 12.200 11.400 24.591 15.413 23.108 
Clustered dot 14.033 2.935 8.381 12.202 11.406 24.780 15.424 23.105 
(CD) dithered 
CD dithered 14.328 2.945 8.394 12.240 11.432 26.680 15.455 23.151 
+inv. half toned 
Ordered dithered 14.005 2.935 8.366 12.217 11.411 24.562 15.420 23.122 
Ordered dithered 14.007 2.947 8.378 12.251 11.441 24.406 15.459 23.169 
+inverse half toned 
Error Diffusion 13.968 2.932 8.365 12.218 11.402 24.344 15.410 23.104 
Error Diffusion 14.101 2.945 8.379 12.209 11.426 25.182 15.447 23.122 
+inverse halftoned 

Table 5.5: Effects of halftonmg and mverse halftonmg on moment mvarlants, <P* (used for 
public watermarking). 
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~i ~2 ~3 ~4 
Original 6.387 23.216 15.075 21.633 
Watermarked 6.467 23.638 15.325 21.966 
Clustered dot (CD) 
dithered 6.473 23.658 15.334 21.969 
CD dithered 
+inverse half toned 6.494 23.704 15.366 22.043 
Ordered dithered 6.473 23.657 15.335 21.993 
Ordered dithered 
+inverse halftoned 6.497 23.712 15.375 22.074 
Error Diffusion 6.468 23.635 15.322 21.991 
Error Diffusion+ 
inverse half toned 6.493 23.697 15.366 22.012 

Table 5.6: Effects of halftonmg and mverse halftonmg on moment mvarIants, 1J!* (used for 
public watermarking). 

5.4 Appendix 

5.4.1 Effects of image scaling on the watermark detector 

Assume that f, f' and f" are the first N largest coefficients of the DCT of the original, 

watermarked and the scaled version of the watermarked images respectively. 

II = li(l + aWi), II' = 8 * II for i = 1, ... ,N. 

Then the elements in the detected watermark from I" are 

" 1 (II') 8 - 1 
Wi = - -I -1 = 8Wi + -- = 8Wi + (3 . . 

a i a 

Now the watermark detector output would be 

" < 8W + (3, W > 
~ =-r~~~==~~~====~ V< 8W+/3,8W+/3 >< W,W > 

Since the elements in W are zero mean normal distributed random variables, 

< 8W + (3, W >~ 8 < w, W > 

=?< 8W + (3,8W + (3 >~ 82 < w, W > +(32N 

" 8 < w, W > 
=?~~r=====,=;r======;=;;;;;=;c~ V< w, W > (82 < w, W > +(32N) 
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Thus, we have the following: 

Now, let us look at what happens to the watermark detector output when the image is 

scaled by s and we test whether w' exists in the image (w' and ware uncorrelated zero 

mean gaussian random variables). This implies that 

< sw+(3,w' > 
~' - -r~==~~====~~~==T==r7= 

- ..j< sw + /3, sw + /3 >< w', w' >' 

Since < w, w' >::::: 0, the quantity < sw + (3, w' > will be close to zero. 

5.4.2 Estimating the scale parameter 

The scale parameter s can be derived from the watermark extracted from the scaled image. 

Let the detected watermark be w" = sw + (3. Let us evaluate 

II II (3 (3 < w , w >=< sw + , sw + >. 

Since w is a normal random variable with unit variance and zero mean, the above expression 

simplifies to 
(s - 1)2 

< w", w" >::::: (s2 + (32)N = (s2 + 2 )N. 
a 

Thus, we have the following: 

1 I /1 _ (1 + 1)( 1 _ <WIl,W
Il » 

(;'I -, V Q4 (;'I (;'I N s::::: ~--~~------~,-~----~~---
1+~ 
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Chapter 6 Optimal histogram modification with 

MSE metric and optimal codebook selection 

problem 

6.1 Introduction 

Histogram modification is a well known technique in image processing. For example, his­

togram equalization, a special case of histogram modification, is applied to images so that 

details which cannot be seen in the original image can be rendered. Recently, histogram 

modification has been used by Coltuc and Bolon [10] to embed watermarks in images. 1 In 

their work the histogram of an image is modified to a specific watermark histogram. This is 

achieved by defining an ordering of the pixels in the image. However, in this method, there 

is no direct control of how the image quality is affected due to histogram modification. 

Here, we propose a histogram modification method where the mean square error (MSE) 

between the modified and the original image is minimized. This problem turns out to be 

equivalent to an integer linear programming problem. Again the histogram can be modified 

any way we want. 

Another application of histogram modification can be in compression. We may want to 

modify the histogram of an image such that only some gray levels will be allowed in the 

modified image. By doing so, we will reduce the number of gray levels in an image so that 

we need less bits/pixel to store the image. Notice that further compression can be achieved 

on the modified image. In eliminating some of the gray levels, we will again try to find a 

modified image such that the MSE between the original image and the modified image is 

minimum and the histogram of the modified image contains only predefined gray levels. We 

will assume that these predefined gray levels are given. 

The above problem is equivalent to quantization of a signal when the code book is given. 

In fact, an easier solution to this problem than solving an equivalent linear programming 

problem is to find the closest codeword for every signal sample. However, the formulation 

1 A recent state of the art review of watermarking methods can be found in [30] . 
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used in this problem helped us to formulate and solve a harder problem. This is to find 

the optimal codebook for a given signal histogram. Usually, this problem is solved using 

Lloyd's quantizer design algorithm [32],[20]. However, the global optimality of the solution 

is not guaranteed in this algorithm. We will define the problem of finding the optimal 

codebook where the codewords can come from a finite set. Then we will show that the 

equivalent problem turns out to be a linear integer programming problem and the solution 

is guaranteed to be globally optimal. 

We will define our histogram modification problem in Section 6.2. The equivalent linear 

programming problem will be shown in Section 6.3. This will be followed by defining 

histogram modification for compression in Section 6.4. Then we will show our experimental 

results on histogram modification in Section 6.5. In Section 6.6 we will define the optimal 

codebook selection problem when the codewords can come from a finite set. We show the 

equivalent linear programming problem in Section 6.7. Then some experimental results on 

optimal codebook selection will be shown in Section 6.8. This will be followed by conclusion. 

6.2 Histogram modification problem 

Let us assume that the signal has L levels: 91"", 9L. The original signal will have an 

histogram hI, .. . , h L where hi ::::: 0 for i = 1, ... , L. Let us denote the desired histogram as 

hi,.·· , h~. Now we will allow a fraction of points having value hi to become hj and we will 

denote the number of these points as li,j. Apparently, li,j is a nonnegative integer. Also, 

from the preservation of points, for each grey level the following holds: 

hi - L;y=lli,j + L;y=11j,i = h; for i = 1, ... , L. (6.1) 

In order to find feasible li,j we have to ensure that 

(6.2) 

i.e., the equations in (6.1) are consistent. Another constraint comes from the fact that the 

total number of points which have signal level hi and which become some other signal level 
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should not be greater than hi: 

EY=l "ti,j :<:; hi for i = 1, . . . , L . (6.3) 

Now let us calculate the error when this type of histogram modification is applied on the 

signal. For simplicity let "ti,i = O. Let us assume that a signal level gi becomes gj in the 

modified signal. We denote the error due to this modifications as f(gi, gj). Thus the sum 

of errors due to histogram modification will be 

(6.4) 

The common error functions used are square error function and absolute error function: 

Square error function: 

Absolute error function: 

f(x,y) = (x _ y)2. 

f(x,y) = Ix - YI· 

The method described in Section 6.3 works for more general, in fact arbitrary, nonnegative 

error functions. 

We will use square error function from now on to illustrate the power of our method. 

Also note that we will check whether Eqn. (6.2) holds before starting our minimization. In 

Eqn. (6.1) there are L equations and only L - 1 of them are independent. (If we sum all L 

equations we end up with Eqn. (6.2).) 

6.3 Equivalent linear programming problem 

Now, let "t be defined as follows: 

(6.5) 

Simply, "t will contain all "ti,j'S except when i = j. Let us also define c: 

C = [CI,!, ... ,Cl,L-I,C2,1,C2,L-l, ... ,eL,l,'" , CL,L_l]T, (6.6) 
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where 
if i < j, 

ifi ?J 
(6.7) 

Now, it can be shown that the first L - 1 equations of Eqn. (6.1) can be written in matrix 

form as 

ky = d 

where d = [hi - h~, ... , hL- I - hi_dT , and A = [ai,j] is defined to be 

1 if (i - I)(L - 1) < j :::: i(L - 1) , 

-1 if j > i(L - 1) and j-iL~~-I) E Z, 

ai,j = -1 if j :::: (i - I)(L - 1) and 

j-i+J-(i -2)(L-I) Z 
LIE , 

o otherwise. 

Similarly Eqn. (6.3) can be written as 

B,:::: e 

where e = [hI, . .. , hL]T, and B = [bi,j] is defined to be 

b 
. . _ {I if (i - I)(L - 1) < j :::: i(L - 1), 
1.,) -

o otherwise. 

Now, our problem can be formulated as follows: 

minimize cT , 

subject to A, = d, B,:::: e and ,? O. 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

We also want the elements of, to be integers, then the optimal solution is an integer linear 

programming problem of Eqn. (6.12)[19]. Since integer programming takes more time than 

linear programming, if we assume that the number points in the signal is huge, then the 

above problem can be approximated by solving the linear programming of Eqn. (12) . 

Example: When L = 3 and 9i = i, then the required matrices for the integer linear pro­

gramming problem will be as follows: 
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A~[ 1 1 -1 0 -1 ~1 l' -1 0 1 1 0 

B ~ r: 
1 0 0 0 :j, 0 1 1 0 

0 0 0 1 

1=[ 11,2 11,3 12,1 12,3 13,1 13,2 ]T, 

C = [ 1 4 1 1 4 1 jT, 

d = [ hI - hI h2 - h2 V, e = [ hI h2 h3 ]T. 

6.4 Compresion problem 

In some cases we may want to reduce the number of levels in a signal for compression. In 

this case, some of the signal levels are not allowed in the modified histogram: 9m,,···, 9mM 

where 0 < mi :::; L for i = 1, ... M. Here M determines how many gray levels will be in the 

modified image. Then, the constraints for this problem can be written as follows: 

EY=11mi,j = hmi for i = 1, ... ,M. 

EY=11i,j :::; hi for i = 1, ... ,L. (6.13) 

I·· > 0 't,) _ for i,j=l, ... ,L. 

Thus, this problem is again an integer programming problem. 

6.5 Experimental results and discussion 

In this section, we will illustrate our method of histogram modification on Lena image. 

The original histogram of Lena image is shown in Fig. 6.1. We have chosen a raised co­

sine as our desired histogram as our first example. The modified histogram is shown in 

Fig. 6.2 {PSNR=19.42dB).2 We can as well modify the histogram to have a constant value 

(histogram equalization). 

Notice that we degrade the image quality (in terms of MSE) very much if we want 

to modify all portions of the histogram into a very different one. In histogram based 

watermarking, a watermark (a particular signal) is embedded in the histogram of an image 

2PSNR values in this chapter refer to the PSNR values between the original and the modified images. 
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Figure 6.1: Original histogram of Lena image. 
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Figure 6.2: Histogram of modified Lena image (raised cosine)(PSNR=19.42dB). 
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Figure 6.3: Histogram of modified Lena image (partial ramp)(PSNR=35.09dB). 
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Figure 6.4: Histogram of modified Lena image (partial sine wave)(PSNR=36.05dB). 

such that the watermarked and the original images are visually the same. As an example, we 

have made the first half of the histogram to be a ramp. The modified histogram is shown in 

Fig. 6.3 (PSNR=35.09dB). We observed that the histogram-modified image and the original 

image cannot be distinguished visually.3 In another example, we have made a portion of 

histogram to look like a sine wave. This histogram is shown in Fig. 6.4 (PSNR=36.05dB) . 

For visual comparison we show the original image in Fig. 6.5 and the histogram modified 

image in Fig. 6.6. The images are visually indistinguishable. 

Our last example is about reducing the number of gray levels in a given image. We 

have chosen 13 out of 256 gray levels which can appear in the histogram modified image. 

3 All histogram-modified images can be found at [66]. 
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Figure 6.5: Original Lena image. 

Figure 6.6: Histogram modified Lena image (partial sine wave)(PSNR=36.05dB). 
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Figure 6.7: Histogram of modified Lena image (only 13 of 256 gray levels exist) 
(PSNR=34.97dB). 

The modified histogram is shown in Fig. 6.7 (PSNR=34.97dB). Thus, we have reduced the 

number of gray levels in an image without degrading the image very much. Choosing the 

gray levels which can appear in the histogram-modified image is another problem, and this 

problem is addressed in the next section. 

6.6 Optimal codebook selection problem 

Assume that a given signal x[n] can take values only from the set {gi Ii = 1, ... , L} and we 

are given the histogram of the signal, hi for i = 1, ... , L. We want to compress x[n] by 

restricting the values of the quantized signal x'[n] such that x'[n] can take such that the 

error between x[n] and x'[n] is minimum. Let us assume that we want to choose M values 

out of K values of gi for i = 1, ... ,K such that x'[n] can only take those selected K values 

and x'[n] is close to x[n]. We also know the error when x[n] = gi and x' [n] = g}: Ci,j' Let 

us denote the number of signal points which were gi and became g} as li,j' These variables 

are summarized in Table 6.1. The initial signal values and possible levels in the quantized 

signal are depicted in Fig. 6.S. The empty circles denote the inital signal values and gray 

circles denote the possible levels in the quantized signal. The problem is to choose M gray 

circles out of K gray circles such that the error is minimized. 

Let us denote the number of signal points which were gi and became g} as li,j' Then 

the error to minimize will be 

(6.14) 
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o Initial signal sample values 

• Possible values in the quantized signal 

Figure 6.8: A sample diagram which shows initial sig­
nal values and possible values in the quantized signal. 

Initial gray levels gi for i = 1, ... ,L. 
Histogram of the signal hi for i = 1, ... ,L. 

Set of gray levels allowed in 
the quantized signal gi for i = 1, . .. ,K. 

The error when input gray level gi e;. ,J for i = 1, ... ,L, 
is quantized to gj j = 1, . . . ,K. 

The number of allowed 
gray levels in quantized signal M 

Table 6.1: Notations used in optimal codebook selection problem. 

For a fixed codebook, there is a closest codeword for any signal sample. If there is more 

than one codeword at the closest distance to a given signal sample, equalities can be solved 

in favor of any of these codewords and this will not affect the overall error in Eqn. (6.14). 

Hence, only one ,i,j for j = 1, ... , K can be hi and other ones will be zero. These are 

necessary conditions to minimize the defined error function. Let ,i,j = ,i,j/hi , and ci,j 

Ci,jhi. In terms of these new variables, we are looking for a matrix " such that 

,Lj E {O, I} for i = 1, ... , L, j = 1, ... , K. (6.15) 

(6.16) 

,Lmj = 0 for i = 1, ... , L, j = 1 ... , K - M. (6.17) 

. ",L ",K , , 
mIn ~i=l ~j=l 'i,jCi,j· mj for J=l, ... ,K-M. 

(6.18) 

So the problem becomes selecting the correct columns of,' which has only one "1" m 
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every row and which has "1"s in only selected columns to minimize the cost. 

The problematic constraints are equations in (6.17). We have to express the equations 

in (6.17) as linear {in)equalities in terms of "Yi,/s. 

Let us define nj as follows: 

argmin 
Ci,j for j = 1, ... , K. 

i = 1, ... ,L 
(6.19) 

Basically, gnj is the closest gray level to gj. If gj is in the optimal codebook, then gnj 

can be quantized to gj. If gnj is quantized to gj, then "Y~j,j=1 and other gray levels can be 

also quantized to gj, i.e., "Y;,j E {O, I} for i = 1, ... , L. If gj is not in the optimal codebook, 

then "Y~ J =0, and "Y; J' = ° for i = 1, ... ,L. Thus, the following inequalities are necessary 
J, , 

for an optimal codebook assignment if we remember that "YLj E {O, I}: 

(6.20) 

But, inequalities in (6.20) are not the sufficient conditions to satisfy the equations in 

(6.17) because they don't restrict the number of codewords in a given codebook. Let us 

consider the following equation: 

(6.21) 

This equation will make sure that there are only M "Y~ J' which are nonzero, hence it will 
J, 

limit the number of codewords in a codebook. On the other hand inequalities in (6.20) will 

make sure that no signal sample is quantized to a codeword which is not in the codebook. 

Thus, equations in (6.17) can be replaced with inequalities in (6.20) and equation in (6.21). 

6.7 Equivalent integer linear programming problem 

After converting the problematic equations in (6.17), we can express the codebook selection 

problem in terms of "YL/s as it is shown in Table 6.2. The minimization problem shown in 

the table is a linear integer programming problem in terms of "YLi's! 

Thus we have converted the optimal codebook selection to an integer linear programming 

problem. We know that the solution to a linear programming problem can be found in finite 

steps and the solution is globally optimum [19]. Remember that the finite nature of the 
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argmin 
nJ' = Ci' for j = 1, ... , K. 

i = 1, ... ,L ,J 

I:f=o~j ,j = M 
'Yi,j ::::: 'Y~j ,j for i = 1, ... ,L,j = 1, .. . ,K. 
O:::::'YL:::::1 for i=I, ... ,L,j=I, ... ,K. 

I:f=I'Yi,j = 1 for i = 1, ... , L. 
M · .. ~L ~K I I 

Inlmlze ""i=1 ""j=1 'Yi,jCi,j 
'YL E Z. 

Table 6.2: Equivalent linear integer programming problem. 

input signal distribution and finite number of possible codewords are exploited in converting 

the optimal codebook selection to a linear programming problem. 

6.7.1 Special case of the codebook selection problem 

When L = K and 9i = 9i for i = 1, . .. , L , we can show that 

ni = i for i = 1, . .. , L 

using the equations in (6.19). The equivalent problem is shown in Table 6.3. 

I:L_
1

",1 . = M 
t- 1'1. ,'" 

'Yi j ::::: 'Yi i for i = 1, ... , L, j = 1, ... , L. 
o ~ 'YL ~ 1 for i = 1, ... , L,j = 1, ... , L. 

I:y=oi,j = 1 for i = 1, ... , L. 
M· .. ~L ~L I I 

Inlmlze ""i=1 ""j=l 'Yi ,jCi,j 
'YL E Z. 

Table 6.3: Special case of the optimal codebook selection problem when L = K and 9i = 9i. 

This problem is equivalent to keeping only the optimum M values of allowable L values 

of a signal in order to compress the signal by a factor of LIM. 

6.8 Experimental results in optimal codebook selection 

As an example, we have taken Lena image and tried to find the best 13 out of 256 gray 

levels such that the error is minimized when the image samples are quantized to these gray 
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levels. The program took 17 minutes on a Pentium II 450 MHz computer. The linear 

programming used a primal-dual algorithm. The best codebook turned out to be {43, 56, 

73, 88, 101, 115, 128, 141, 152, 163, 176, 194, 211}. 

With this codebook, the PSNR of the quantized image is 36.02dB. Notice that, the error 

is smallest when another codebook of the same size is used. For example, the error is bigger 

for the same size codebook in Section 6.5 (PSNR=34.97dB). 

For comparison, we have used Lloyd Algorithm to find the best codebook of size 13. We 

have started the algorithm from 100,000 random codebooks, and we have taken the best 

of these optimized codebooks. The best codebook was {42.47, 54.85, 72.23 , 88.20, 101.26, 

115.91, 128.91, 141.20, 151.72, 161.68, 175.58, 193.51, 210.13}. The PSNR of the quantized 

images was 36.01dB with this codebook. Since we want the codewords to be one of 256 

initial gray levels, we found the closest codebook to the optimized codebook which satisfy 

this constraint: {42, 55, 72, 88, 101, 116, 129, 141, 152, 162, 176, 194, 21O}. Note that we 

cannot impose this constraint while optimizing with Lloyd Algorithm. The PSNR of the 

quantized image became 35.99dB. 

We have also obtained the best codebook of size 5 with the linear programming problem 

and Lloyd Algorithm. They gave the same codebook: {52, 95, 130, 159, 200}. The PSNR 

of the quantized image with this codebook was 28.24dB. 

The computation time needed for integer programming depends on the size of the possi­

blequantized signal values. Usually, this time is more than what Lloyd Algorithm requires 

to find the best codebook. Notice that if we allow bigger sizes of possible quantized signal 

values, our algorithm will find better codebook. However, more computation time will be 

needed. 

Even though this algorithm may not be suitable for real time application where an opti­

mal codebook is required, it can be used for problems where the globally optimal codebook 

is required and time constraint is not important. It can also serve as a benchmark for other 

codebook selection algorithms. 

In the last sections the signal used had only one dimension, but our algorithm can be 

applied to signals which belong to spaces of dimension greater than one. 
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6.9 Conclusion 

In this chapter we have proposed an optimal algorithm to modify the histogram of an image 

to any desired histogram. The optimality criterion is chosen to be the minimization of MSE 

between the modified and the original image. However, other types of error criterion can 

also be used in the algorithm. We have shown that the histogram modification problem is 

equivalent to integer linear programming problem. We have also shown examples of his­

togram modification which can be useful for watermarking and compression applications. In 

the second part of the chapter, we have shown that the optimal codebook selection problem 

is equivalent to linear integer programming problem when the codewords can come from a 

finite set and initial signal samples come from a finite set. Since linear programming finds 

the globally optimum solutions, we can find the best codebook whereas Lloyd's Algorithm 

does not guarantee the globally optimum codebook. 
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Chapter 7 Conclusion 

In this thesis we have discussed several different image processing problems. These include 

halftoning, inverse half toning, effects of inverse halftoning on watermarked images and 

histogram modification problems. 

In the second chapter, we optimized the dot diffusion half toning algorithm. Even though 

dot diffusion offers more parallelism than a popular error diffusion algorithm, it has not 

received much attention in the past. This is partly because the noise characteristics of error 

diffusion method are generally regarded as superior. We have shown that dot diffusion 

method with a carefully optimized class matrix is very promising. The image quality is 

comparable to error diffusion, and the implementation offers more parallelism than error 

diffusion. Since the enhancement step prior to half toning can be objectionable in some 

cases, we eliminated this by making the class matrix larger. A mathematical description of 

dot diffusion was derived which is particularly useful in inverse halftoning of dot diffused 

images. We also presented a wavelet-based inverse half toning algorithm which works very 

well, even though the class matrix information is not used. Then we have shown that the 

dot diffusion algorithm can be easily modified to have the embedding property. 

In the third chapter we have introduced a novel method for inverse half toning which pro­

duces images of very good quality. The LUT method for inverse half toning is extremely fast 

(no filtering is required) and the image quality achieved is comparable to the best methods 

known for inverse halftoning. The method does not depend on the specific properties of the 

half toning method, and can be applied to any of them. An algorithm for template selection 

for LUT inverse half toning is also introduced and the LUT method has been extended to 

inverse half toning of color halftones. 

In the fourth chapter we have introduced tree-structured LUT (TLUT) inverse halfton­

ing in order to reduce the storage requirements of LUT inverse halftoning. In the second 

part of this chapter, a new LUT based halftoning method is discussed. The algorithm is 

capable of producing good quality halftones. In order to refine the halftones, we proposed 

tree-structured LUT half toning. We have demonstrated that any halftoning algorithm can 

be simulated with this method. When this algorithm is trained on computationally complex 
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half toning algorithms which produce very good halftones, it will reduce the computational 

complexity substantially. 

In the fifth chapter we discussed the image watermarking and effects of halftoning on 

watermarked images. We proposed methods to improve watermark detection from half toned 

images. 

In the last chapter, we have proposed an optimal algorithm for histogram modification, 

so that the modified image has any desired histogram. We have shown that the histogram 

modification problem is equivalent to integer linear programming problem. We have also 

shown examples of histogram modification which can be useful for watermarking and com­

pression applications. In the second part of the chapter, we have shown that the optimal 

codebook selection problem is equivalent to linear integer programming problem when the 

codewords come from a finite set and the initial signal samples come from a finite set. 

The well-known Lloyd's Algorithm to find a good codebook does not guarantee globally 

optimum solutions whereas our algorithm does because the equivalent linear programming 

problem can be solved exactly. 

We conclude by naming some further research directions for the topics discussed in this 

thesis. One of them is finding a stable color halftoning algorithm which uses the human 

visual system. The existing color half toning algorithms are either unstable or do not use 

the human visual system directly. The other research direction is to improve the LUT 

inverse half toning method so that gray level input images like scanned images can be input 

to the algorithm. In the codebook selection problem, the computational complexity of 

the equivalent integer programming can be very high. A faster algorithm will be of great 

importance. Also, watermark embedding with histogram modification can be improved so 

that the watermarks are more robust against compression attacks. 
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