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ABSTRACT 

The synthesis, properties, and electronic structures of a family of iridium corrole complexes 

are discussed in detail.  These compounds represent the first well-characterized examples 

of third-row metals being inserted successfully into the small corrole binding pocket; they 

possess a planar macrocycle, which neither saddles nor ruffles upon bromination, and are 

bound at the axial positions by either two amine ligands or one phosphine.  Unlike their 

well-studied cobalt and rhodium analogues, whose redox activity is restricted primarily to 

the corrole ring, iridium corroles can be oxidized to produce an electron paramagnetic 

resonance spectrum that has extremely anisotropic g tensor components, implying mixing 

of the 5d orbitals into the oxidized ground state and opening the door to possible higher-

valent iridium complexes.  Detailed experimental and computational studies are presented 

showing that this oxidized ground state is actually mostly corrole-based, as has been found 

in the past for numerous other supposedly high-valent corrole compounds, but the 

percentage of iridium character varies from 10 to 18% and tracks with the electron-

donating ability of the ligand.  Additionally, the unique (among corrole complexes) near-IR 

phosphorescence of Ir(III) corroles is presented and discussed.  Iridium(III) corroles 

phosphoresce with lifetimes ranging from hundreds of nanoseconds to a few microseconds 

at room temperature, with slightly longer lifetimes at low temperature.  Unfortunately, the 

quantum yields of phosphorescence are low, 1% or less, and this appears to be due to an 

exceptionally slow set of radiative rates for the corroles.  An examination of the reactivity 

of ammine-ligated Ir(III) corroles is also described.  These compounds can be oxidized in 

the presence of an ammonia source to form novel six-coordinate iridium(III) azaporphyrins 
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in an unprecedented chemical transformation.  The characterization and properties of these 

iridium azaporphyrin complexes are detailed as well, with a focus on nuclear magnetic 

resonance characterization techniques and a discussion of the red phosphorescence of the 

azaporphyrins.  
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O p e n i n g  R e m a r k s  

A BRIEF INTRODUCTION 

I’m an inveterate experimentalist, and for better or for worse, this thesis has come to reflect 

that.  It is split into a large number of bite-sized chapters, much like my research here at 

Caltech, and I hope that the end result proves refreshing rather than disorienting.  Harry 

Gray, my graduate supervisor, advised me to reformat rather than rewrite my published 

work, and the first four chapters of the thesis are published work presented here in 

essentially the same form as they have been presented to the larger scientific community 

(with some additional notes, changes to figures, formatting, and nomenclature for 

consistency between chapters, and introductory statements added in for flavor, background, 

and feel).  The papers discussed herein include: my first JACS communication, “Iridium 

Corroles” (DOI: 10.1021/ja801049t); a detailed electronic structural study from IC entitled 

“Structures and Reactivity Patterns of Group 9 Metallocorroles” (DOI: 

10.1021/ic901164r); another JACS communication focusing on corrole photophysics, 

“Near-IR Phosphorescence of Iridium(III) Corroles at Ambient Temperature” (DOI: 

10.1021/ja101647t); and a computational study from IC, very recently published and 

performed in collaboration with members of Bill Goddard’s group, entitled “Electronic 

Structures of Group 9 Metallocorroles with Axial Ammines” (DOI: 10.1021/ic1005902). 

Additionally, two pieces of unpublished work will be presented.  These include a 

description of some unique reactivity of an easily oxidized Ir(III) corrole complex, which 

will be presented as if it were a journal article, and a combined DFT, EPR, and XAS study 

of the electronic structures of a host of iridium corroles, which is less close to completion 
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and will be discussed only briefly.  I have attempted to present these unpublished studies in 

a similar fashion to the published ones, but these latter chapters may have a slightly more 

informal tone in keeping with my own stylistic tendencies.  I hope they will provide an 

interesting and informative read nonetheless. 


