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Abstract 

 

The addition and removal of the monosaccharide N-acetyl-D-glucosamine 

(GlcNAc) to serine and threonine residues of proteins has emerged as a critical regulator 

of cellular processes.  However, studies of O-GlcNAc in such complex systems as the 

brain have been limited, in part due to the lack of tools.  Here we report the development 

of new tools for studying O-GlcNAc, and the application of these and other tools for 

studying the roles of O-GlcNAc in the brain.  

 

Working from a previously established chemoenzymatic method, we designed an 

isotopic labeling strategy for probing the dynamics of O-GlcNAc glycosylation using 

quantitative proteomics.  With this tool, we show that O-GlcNAc is dynamically 

modulated on specific proteins by excitatory stimulation of the brain in vivo.  Separately, 

we improved this chemoenzymatic strategy by integrating [3+2] azide-alkyne 

cycloaddition chemistry to attach biotin and fluorescent tags to O-GlcNAc residues.  

These tags allow for the direct fluorescence detection, proteomic analysis, and cellular 

imaging of O-GlcNAc modified proteins.  With this strategy, we identified over 146 

novel glycoproteins from the mammalian brain.   

 

The transcription factor cAMP-response element binding protein (CREB) is 

critical for numerous functions in the brain, including neuronal survival, neuronal 

development, synaptic plasticity, and long-term memory.  We show that CREB is highly 

glycosylated in the brain and discover new glycosylation sites on CREB in neurons.  One 
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of these sites is dynamically modulated by neuronal activity and is important for 

regulating CREB.  Removal of this glycosylation site accelerates axon and dendrite 

development in vitro and long-term memory consolidation in vivo.  These studies are the 

first demonstration that O-glycosylation at a specific site on a specific protein is critical 

for neuronal function and behavior. 

 

Chondroitin sulfates (CS) are sulfated linear polysaccharides important in 

neuronal development and viral invasion.  Depending on their sulfation patterns, CS 

molecules differ dramatically in their functions.  We developed a computational method 

to model the structure and function of CS.  Using this approach, we show that different 

CS tetrasaccharides have distinct solution structures.  We also modeled the CS binding 

site on a variety of proteins and discovered that CS may be important in modulating the 

interaction between specific growth factors and their receptors.   
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