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Abstract 

Fluid-induced rotor dynamic forces in pumping machinery are well documented but 

poorly understood. The present research focuses on the rotordynamics due to fluid 

flow in annuli, in particular, the discharge-to-suction leakage flow in centrifugal 

pumps. There are indications that the contribution of the front shroud leakage flow 

can be of the same order of magnitude as contributions from the nonuniform pressure 

acting on the impeller discharge. Previous investigations have established some of 

the basic traits of these flows. This work furthers the experimental and computa­

tional approach to quantify and predict the shroud contribution to the rotordynamic 

stability of pumping machinery. 

Childs' bulk flow model for leakage paths is carefully examined, and convective 

relations for vorticity and total pressure are deduced. This analysis leads to a new 

solution procedure for the bulk flow equations which does not resort to linearization 

or assumed harmonic forms of the flow variables. 

Experimental results presented show the contributions of the inlet swirl velocities 

to the rotordynamic forces. Antiswirl devices are evaluated for their effectiveness in 

reducing instability. Additional tests measuring the pressure distributions and the 

inlet swirl velocities of the leakage flow confirm some of the predictions by numerical 

analysis. 
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Chapter 1 Introduction 

1.1 Background 

Fluid-induced rotor dynamic forces play an important role in the design of turboma­

chines. They occur as the result of movement in the axis of rotation of the impeller­

shaft system of the turbomachine. General knowledge of the characteristics of these 

fluid forces are still incomplete, and they remain poorly understood. With increasing 

power requirements demanding increases in the rotational speeds of modern turbo­

machines, problems associated with rotordynamic forces will increase as the forces 

typically scale with the square of the rotational velocity. Fluid-induced forces altering 

the expected performance of undersea oil re-injection compressors, boiler feed pumps, 

and rocket engine pumps have motivated investigations of these fluid/structure inter­

action problems in order to provide sufficient information to predict the magnitude 

of destabilizing forces for the design process. 

Ideally a turbomachine should operate where the centerline of its rotating part, 

or rotor, coincides with the machine axis of rotation at all times. This requires 

either all structures (rotor and stator) to be perfectly rigid and aligned, or that all 

loads have a perfectly symmetric distribution. All real turbomachines operate with 

vibrations in the rotor from load imbalance. Fluid flow induced by such vibrations, 

or whirls, will generate forces acting on solid surfaces in the lateral plane, from the 

non-axisymmetricity both in the pressure distributions and in the momentum fluxes. 

These forces are commonly referred to as rotor dynamic forces. An example of the 

fluid forces acting on a seal displaced from a concentric position is depicted in figure 

1.1. For low Reynolds number flows where viscous forces dominate, the fluid forces 

will be restoring, acting to reduce the eccentricity (Reynolds number of order 1 and 

less). For high Reynolds number flows, however, the sign of the fluid force is reversed 

and it will instead act to magnify the eccentricity. At high Reynolds numbers, higher 
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velocity means lower pressure; therefore the pressure at the side where the clearance 

is smaller is lower and there will be a net force acting on the rotor in the direction 

of the displacement. It is apparent that these rotordynamic forces can decrease the 

critical speed of the system, which often results in major shortfalls in performance. 

Rotating machines have many possible sources of fluid-induced rotordynamic 

forces. In a centrifugal pump, the fluid forces acting on journal bearings, wear rings, 

and balance pistons must all be estimated, though often the analysis is incomplete. 

Geometric imperfections from manufacturing, such as a deviate vane, would also con­

tribute to the total fluid forces. Among these elements, journal bearings have been 

studied most extensively. This has been accompanied by progress in the study of 

fluid forces on annular pressure seals. 

Flow in the discharge to inlet leakage path of a shrouded centrifugal pump also 

induce fluid forces and are known to be a significant source. As a centrifugal pump 

lets fluid into the spinning impeller and discharges it at a higher pressure, some of 

the exiting fluid will flow back toward the low pressure inlet side through the leakage 

path between the front impeller shroud and the outer casing of the pump, depicted 

in figure 1.2. The geometry of the leakage path is somewhat similar to that of an 

annular seal except for the varying radii. Thus similar rotordynamic forces will arise. 

The contribution of the rotordynamic forces from leakage flows has been studied 

experimentally, but its effects are still not well predicted by the models adapted from 

the turbulent annular seals. Time and cost make a full three-dimensional computa­

tional fluid dynamic code impracticable. This thesis offers a new approach to the 

computation of rotordynamic forces in the leakage path based on previous models. 

1.2 Notation 

Rotordynamic forces can have significant influence on the dynamic behavior of a 

system with a rotating shaft. The shaft speeds at which large displacements occur 

between the rotor and its centered rotational axis are usually termed the critical speed. 

Fluid induced forces may lower the critical speed dramatically, causing unforeseen 
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limitations to the operating range. 

The set of forces concerned are those caused by the displacement of the axis of 

rotation. Figure 1.3 shows the rotor, spinning at a speed of n, displaced to a distance 

E from a fixed center. Assuming a small displacement, the fluid forces can be written 

as 

{Fn} = {Fox} + [A]{x(t)} 
Ft Fay y(t) 

(1.1) 

where the displacement is given by x(t) and y(t), and [A] would be independent of 

time in a linear model. Figure 1.3 depicts forces that the fluid imparts on the rotor 

in a plane perpendicular to the axis of rotation. Fox and F oy are referred to as radial 

forces; they are independent of rotor displacement and would be present even if the 

rotor is perfectly centered. Fluid can also exert forces on the rotor in a axial direction, 

a thrust, and also moments in various directions. Those are outside the scope of the 

present work. 
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Figure 1.3: Force diagram in plane normal to the shaft axis 

It is conventional for rotordynamists to decompose the function [A] into 

(1.2) 

where [M], [C], [K] are two-by-two constant matrices termed the hydrodynamically­

induced mass, damping and stiffness matrices. Because the dynamics for the overall 

system are generally modelled by a linear system in a similar matrix form for the 

calculation of eigenfrequencies, the advantages for presenting the forces in this form 

are obvious. Since the rotordynamic forces would be the forcing functions in the 

equations for system dynamics, these hydrodynamically-induced matrices will just be 

incorporated into the dynamical matrices for the overall system. 

Under the assumption of rotational invariance, the three rotordynamic matrices 

become 

1M] = [ : : l; [C] = [c c 1 ; 
-c C 

[K] = [K k 1 
-k K 

thus reducing the number of coefficients to six. This allows for another way to describe 

the coefficients. If the rotor center is rotating about the fixed center at a constant 



5 

speed w, then the normal and tangential forces as defined in figure 1.3 become 

Fn = M (~) 2 - C (~) - K 

Ft = -C (~) - k 

(1.3) 

(1.4) 

and the dimensionless coefficients are termed the direct added mass (M), direct damp­

ing (C), cross-coupled damping (c), direct stiffness (K), and cross-coupled stiffness 

(k). The cross-coupled added mass (m) is generally very small, and is often disre­

garded. This provides an easier way to measure the coefficients experimentally and 

is the method used in the present thesis. 

From a stability standpoint, a positive normal force Fn will increase the eccen­

tricity and is therefore destabilizing. Negative direct stiffness coefficient therefore 

indicates destabilizing effects. Less stability would tend to suggest a lower critical 

speed of the overall system. When the whirl frequency ratio, w /0" is positive, a pos­

itive tangential force Ft would be destabilizing since it would increase the forward 

whirl. The tangential force is generally more important in the design process since 

it is difficult to lessen its destabilizing effect. A convenient measure of rotordynamic 

stability is the ratio of cross-coupled stiffness to the direct damping, or simply k / C, 

which is termed the whirl ratio. This defines the range of whirl frequency ratios where 

the tangential forces is destabilizing since Ft is positive for 0 < w /0, < k / C. 

1.3 Literature Survey 

Fluid forces on a centrifugal pump impeller are the sum of the shroud forces caused 

by pressure on external surface of the impeller shrouds and the volute section, and 

of the lateral forces due to a net momentum flux leaving the impeller. Many early 

experiments did not measure these contributions (Bolleter et al. , 1987; Jery, 1986). 

The lateral force is generally caused by impeller blade interaction with the volute 

and non-uniformities in discharge. Experiments done by Ohashi and Shoji (1987) 

report that the tangential component of the lateral forces was largely stabilizing. 
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Destabilizing forces occurred only when impeller operated above twice the critical 

speed and at partial flow rate. Research in this area generally used unsteady potential 

theory (Shoji & Ohashi, 1987; Fongang et al. , 1998), and some qualitative agreement 

with experimental results was found. 

Various seals of the pump also induce rotor dynamic forces; they are by far the 

most studied component. Experiments include measurements of forces (Nordmann 

& Massmann, 1984; Marquette, 1995), flow fields and shear stresses (Morrison et al. 

, 1991; Morrison et al. , 1996), of both the plain annular and the labyrinth seal. 

Leakage flows along the back shroud of an impeller can be important in multi-stage 

pumps where such leakage flows are possible. This type of flow and the resulting fluid 

moments have been examined experimentally (Tsujimoto et al. , 1997). 

On the opposite side, the forces on the front shroud from the flow in the discharge­

to-suction leakage path have also been examined. Bolleter (1987; 1989) measured and 

quantified some effects of the leakage flow on the unsteady forces acting on a cen­

trifugal pump. A radial clearance wear ring, however, contributed significantly to 

the shroud forces. To isolate the effects of the leakage flows along the front shroud, 

Guinzburg (1992), using a solid rotor to model the front shroud of an impeller, exam­

ined the effects of eccentricity, rotational speed, and shroud clearance on the rotordy­

namic forces. Because Guinzburg tested a conical impeller, Uy (1998) examined the 

effects of the geometry of the leakage path by using two contoured impellers whose ex­

ternal profiles were more characteristic of modern centrifugal pump impellers. These 

were tested with various front and back seal configurations. 

Comparison of the tests conducted by Guinzburg and Uy show relatively little 

effect of the curvature in the leakage path due to impeller profile. The effects of low 

pressure and high pressure seals at both ends of the leakage path are very significant 

and can be either stabilizing or destabilizing depending on design. The effects of small 

eccentricity and shaft speed on rotor dynamic forces can both be scaled with the cor­

rect non-dimensionalization, and the fluid forces were roughly inversely proportional 

to clearance. 

Much progress has been made in the study of annular pressure seals (Black, 1969; 
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Childs, 1983a; Nordmann & Massmann, 1984). One of the simpler computational 

models is the bulk flow model first proposed by Hirs (1973) and modified by Childs, 

who identified the necessity of the inertial terms in modeling the forces (Childs, 

1983a), and the sensitivity to inlet swirl (Childs, 1983b). 

The bulk flow model for the seal describes the gap-averaged flow between two 

cylinders and is thus two-dimensional, in the meridional direction and the tangential 

direction. This assumes that the velocity profiles within the annular region are self­

similar and can be averaged without excessive error. Shear stress effects are only 

considered at the fluid-solid interfaces. Thus the bulk flow equation can be seen as 

the Euler's equation with four added terms to account for the shear stresses exerted 

by the two solid surfaces and acting on the fluid in the meridional and tangential 

directions. 

The Childs perturbation method solved the bulk flow equations by assuming a 

harmonic perturbation of the flow field of a system without eccentricity (a perfectly 

centered seal). The results are now widely used for annular seals. 

Since the geometry of the leakage flow is very similar to that of an annular seal, the 

Childs bulk flow equations were adapted to study shroud forces (Childs, 1989). For 

forces on the back shroud (Tsujimoto et al. , 1997), the model showed good agreement 

with experimental results. Unsteady wall shear stress terms had little effect on the 

flow in the passage, but the tangential swirl velocity was critical to the success of the 

model. 

For fluid forces on the front shroud, the bulk flow has proven to be useful but 

is still inadequate in the prediction of the rotordynamic forces. One of the more 

contentious results was its prediction of resonant like behavior at certain positive 

whirl frequency ratios (Childs, 1989). Experiments showed no such resonances. To 

examine the limitations of the bulk flow model in the leakage flows, Sivo (1994b) 

took measurements of the flow field inside the leakage path using a laser Doppler 

velocimeter. Regions of flow recirculation and reversal were noted, especially close 

to the impeller near the tip. Other researchers have found similar results (Guelich 

et al. , 1989). The bulk flow model predicted that increased pre-rotation of fluid into 
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the leakage path will increase the destabilizing effects of rotordynamic forces. For 

this reason, Sivo (1995) examined the effects of swirl reduction devices in the leakage 

path. Grooves and brakes in the leakage path seemed to offer some help at reducing 

the rotordynamic forces for small flow coefficients. 

Other models have been used to calculate the forces induced by leakage flow. 

Baskharone and Hensel (1991) devised a deformable finite element model, which 

proved capable of predicting flow reversals in the leakage flow. The Baskharone 

model still assumed a harmonic perturbation of the pressure field, but the zeroth or­

der equation was an axisymmetric flow instead of a one-dimensional one. The model, 

however, was not able to predict the rotordynamic forces with any better accuracy. 

The model has since been expanded to examine the effect of flow interactions be­

tween pump primary flow and the leakage flow on rotordynamic forces (Baskharone 

& Wyman, 1999). 

1.4 Taylor Vortices and Reynolds Number Effects 

Before modelling these flows, one should examine the nature of fluid flows in annular 

regions. For Couette flows, one nondimensional number that must be considered 

is the Taylor number. The Taylor number for a typical leakage flow experiment is 

Ta = 2 x 107 with it defined as 

(1.5) 

where R2 is the tip radius of the impeller, H the leakage path clearance, and n is 
the shaft frequency of the impeller. A critical Taylor number around 1700 denotes 

the transition region from laminar to Taylor vortex flow (Bjorklund & Kays, 1959), 

and hence different mechanisms of momentum and heat transfer. Above the critical 

Taylor number, momentum transfer occurs in sublayers close to the surface. While 

some experimental evidence from Sivo (1994) shows path velocity reversal that may 

indicate this type of rotating vortex pattern in the leakage path, the reversal is isolated 
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near the inlet area. 

The typical value for transition to turbulence in a Taylor Couette flow is Ta ~ 

160000, but some works have examined flow fields at 2.1 x 107 < Ta < 5.5 x 109 

and 7300 < Reo. < 120000 (Smith & Townsend, 1982), where Reo. = o'Rdv. Smith 

and Townsend reported the presence of large toroidal eddies at Reo. < 30000 in the 

flow between concentric cylinders, and also that the coherence of the eddies disap­

pears into fully irregular turbulent flow for values of Reynolds number above that. 

The experiments used an axial flow of about 1 % of the rotational speed, and had a 

clearance equal to half the inner cylinder radius. A typical leakage flow experiment 

with a flow coefficient of ¢ = 0.06 has an axial flow of the same order of magnitude 

but has a much smaller clearance between the solid surfaces, and Reynolds num­

ber Reo. ~ 30000. Smith and Townsend also noted that the intensity of toroidal 

components compared to those of irregular turbulence motion decreased rapidly with 

increased speed above Reynolds numbers of 2 x 104 . A later paper by Townsend 

(1984) found that toroidal eddies though more helical in shape still existed for values 

of Reynolds number above 30000. But the decrease in the energy of these eddies for 

increased speed still held true, and that the wall shear stresses were all unidirectional. 

It therefore is likely that the dominant flow field in the leakage flow experiments and 

the applications has incoherent structure of turbulent flows. 

1.5 Research Objective 

The objective of this research was to develop a computational method for calculating 

the rotordynamic forces induced by the discharge to suction leakage flows of centrifu­

gal pump impellers. This was then extensively used for insights into the physical 

nature of rotordynamic flows. A new solution approach to the model is proposed 

with few assumptions about the functional form of the flow variables. 

Experimental data for the rotordynamic forces induced by the discharge-to-suction 

leakage flow will also be presented. A more typical leakage flow geometry will be ex­

amined as well as the effects of swirl reduction devices. Some experiments previously 
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conducted at Caltech were examined in detail. Moreover, new experiments to mea­

sure the pressure distribution and the inlet swirl velocities of the leakage flow were 

conducted in order to carry out a more accurate comparison with the model. 
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Chapter 2 Test Apparatus 

2.1 Rotor Force Testing Facility 

The experiments described in this work were conducted in the Rotor Force Testing 

Facility at the California Institute of Technology. The apparatus has been in existence 

in one form or another for over 20 years (Ng, 1976), and has been used for many tests 

of turbomachinery and related components. 

The current form of the facility (see figure 2.1) was configured by Jery (1986) to 

measure both the steady and unsteady forces on whirling pump impellers. In experi­

ments, the rotor is forced to move in a circular whirl orbit of prescribed frequency and 

amplitude (eccentricity). To accomplish this, an eccentric drive was built to apply a 

whirl motion to the rotating main shaft. Thus fluid forces could be measured without 

having to approach the critical speed of the system. The eccentric drive is used to 

impose a circular whirling motion onto the main rotation of the impeller; the radius 

of the whirl (eccentricity) can be varied. With a separate whirl motor, the speed of 

the whirl orbit is varied through a range of subsynchronous (less than the main shaft 

speed) whirl frequencies from negative to positive values. 

In the main flow loop (figure 2.1), the air bladder (airbag) and heat exchanger can 

be used to set the pressure and temperature, though neither was used in the present 

experiments. The working fluid is water containing sodium chromate for corrosion 

inhibition, and pH balanced by potassium chloride. 

The auxiliary pumping unit pumps the water through the loop and the test sec­

tion. The unit contains a digital flow meter and bypass loops with valves for manual 

adjustment of the flow rate, replacing the turbine flow meter and the silent throttle 

valve in the main loop. Smoothing sections exist both upstream and downstream of 

the test section. During experiments, inside the test section, an impeller is mounted 

onto the force balance and the main shaft, and it is spun as some fixed speed. Water 
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Figure 2.1: Schematic of the Rotor Forces Testing Facility, from Uy (1998) 

is pumped from the tip of the rotor, where it has its maximum diameter, to the eye of 

the solid impeller through only the annular region between the stator and the rotating 

impeller. The center of the rotor is at a fixed eccentricity to the center of the stator 

mounted on its outside. As seen in figure 2.2, the main shaft rotates inside a double 

bearing system, in which the inner bearings are eccentric to the outer ones. There­

fore when the auxillary motor rotates the whirl shaft via a chain/sprocket wheel, the 

main shaft constrained by the inner bearings will be rotating in an eccentric orbit. 

The digitally controlled auxiliary motor shaft connected to the chain/sprocket wheel 

drives the whirl motion to be synchronous with the main shaft rotation. The setup 

will provide a shaft whirling in a circular orbit, much like that diagrammed in figure 

1.3 and described in section 1.2. 

Both the 15kW DC main motor, offering speeds of up to 3000 rpm, and the 

1.5kW DC whirl motor are driven with feedback controller systems that are coupled 
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Figure 2.2: Main test section showing the eccentric drive with contoured impeller 

to a data acquisition system. The force measurements come from an internal balance 

connected to the rotating rotor that measures the forces directly on the rotor. The 

rotating dynamometer inside the force balance involves nine strain-gage bridges which 

measure all six force components on the impeller. The construction, operation, and 

calibration of a six force component internal force balance are described in detail in 

Jery (1986). 

In order to isolate the effects of the leakage flow, solid rotors were employed for 

all the present tests. Force contributions from blade interaction with the volute are 

therefore negated. The dummy impeller attempts to model the front clearance of a 

typical shrouded centrifugal impeller as closely as possible. In these tests, fluid is 



Swirl Plate 

Guide Vane Passage 

B 

Stator 

High Pressure Seal 

Force 

Balance 

14 
Guide Vanes 

____________ .J.--L __ ---'-_--'-__ ----' _______ . 

Figure 2.3: Swirl plate geometry 
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forced from the clearance at the tip of the impeller and the stator, the larger end, to 

the clearance at the eye. A suitable range of leakage flow rates was chosen for the 

tests. 

2.2 Leakage Path 

Experiments to compare different geometries of the pump discharge-to-inlet leakage 

paths were conducted in the Rotor Force Test Facility. The different leakage flow 

configurations are shown in figure 2.4. The conical shroud with a straight 45 degree 

leakage path was the first one built and has been extensively tested (Guinzburg, 1992; 

Sivo et al. , 1995). Along its stator, there exist numerous pressure taps to facilitate 

pressure measurements. The contoured impeller was constructed by Uy (1998) to 

match the axial length and the eye-to-tip ratio of the conical model while having 

a more typical centrifugal pump geometry. A third rotor and stator were made to 

model the leakage path of the Space Shuttle Main Engine High Pressure Oxidizer 

Turbopump Impeller as closely as possible. This has a much shorter axial length and 

a much larger eye-to-tip ratio. 

The geometry of the contoured rotors are such that their profiles are parallel to 
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Figure 2.4: Test matrix of rotor geometries 

the centerline at the eye and perpendicular to the centerline at the tip. The stators 

were constructed to maintain a constant nominal normal clearance of 0.30 em. The 

tip or outer radii of all the dummy impellers are the same. 

The low pressure side of the leakage path corresponds to the inlet or suction side 

of a normal centrifugal pump. The high pressure side corresponds to the discharge of 

a typical pump. Seals can be installed on both ends of the leakage path. Their effects 

on rotordynamic forces were examined by Uy (1998). In the current tests, only a low 

pressure seal is present. An axial clearance device that models a typical face seal on 

a centrifugal pump is used, as shown figure 2.4. The distance from the inner radius 

of the axial clearance seal to the impeller eye radius is 1. 14em; its clearance was set 

to 0.05em for all the tests, but could be varied if necessary. 

2.3 Inlet Guide Vanes 

The bulk flow model (Childs, 1983b) predicts significant effects of the inlet swirl rate 

on the magnitude of rotordynamic forces. Experimentally the effect of inlet swirl 



B r ~ Inlet Guide Vanes 

U ~ U Swirl Plate 

% 

16 

+ 
Figure 2.5: Swirl plate geometry 

was examined by installing a swirl plate at the leakage inlet to induce pre-rotation. 

Figure 2.3 shows a standard vane with a logarithmic spiral channel of a constant 

turning angle, and its installation relative to the rotor and stator. Three inlet swirl 

plates with vanes of different turning angles were built to vary the rate of inlet swirl as 

the fluid enters the leakage path. The desired inlet swirl ratio, A (ratio of the leakage 

flow circumferential velocity to the impeller tip velocity) is calculated as follows. 

Assume the fluid will be constrained to flow parallel to the inlet guide vanes, then 

the relationship between the vane angle, a (figure 2.3), and the fluid velocities, UR 

and UT , will be 

(2.1) 

where U Rand UT are defined to be the velocity components at the discharge from the 

inlet guide vanes. Equation 2.1 assumes the fluid flow exits the inlet passage parallel 

to the inlet guide vanes. We note that the solidities of the inlet guide vane geometry 

range from 5 to 10, well above the value of 2 which is normally required to constrain 

the flow to follow the vanes. However, the present passages are very thin axially and 

viscous effects on the end walls could change the flow substantially. This issue will 

be discussed further in later sections. 

The continuity equation yields the following: 

(2.2) 
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where R2 is the tip radius of the impeller, Ro is the radius of the swirl plate on flow 

discharge side, H is the leakage path clearance, B is the breadth of the inlet swirl 

passage, and Us is the meridional velocity at inlet to the leakage path (see figure 2.5). 

From the conservation of angular momentum, 

(2.3) 

where Ue is the tangential velocity at the leakage path inlet and m is the mass flow 

rate. Equation 2.3 assumes there are no frictional effects; the validity of this is not at 

all certain. As shown in figure 2.5, there exists a gap between the discharge from the 

inlet guide vanes and the beginning of the leakage path, leading to a small chamber 

behind the impeller. The effect that has on the fluid flow is unknown. 

If all of the above equations hold, then at inlet to the leakage path 

Ue UT 
(2.4) -

Us BUR/H 
UTH 

(2.5) 
URB 

H 
(2.6) 

Btana 

Since both inlet velocities are non-dimensionalized by the impeller tip velocity, equa­

tion (2.6) becomes 
A H 
¢ Btan a 

(2.7) 

where ¢ and A are the flow coefficient and the inlet swirl ratio, respectively. The flow 

coefficient is the nondimensionalized flow rate, UsdnR2' and the inlet swirl ratio is 

the nondimensionlized inlet velocity the circumferencial direction, UednR2' where i 

denotes inlet to the leakage path. Therefore, for the same inlet guide vane, increasing 

the flow rate will also increase the inlet swirl. Vanes with 1°, 2°, 6° turning angles 

were constructed to allow variations of a or ¢ while maintaining the same inlet swirl 

rate. Uy (1998) conducted extensive tests examining the effects of inlet swirl for the 

contoured impeller geometry. 
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Figure 2.6: Swirl reduction devices 

The above was the theory behind the design and installation of the guide vanes. 

As will seen in section 3.5, the vanes failed to act in the anticipated fashion. This was 

discovered only after the publication of early experimental results (Uy et al. , 1998) . 

2.4 Swirl Reduction Devices 

We now turn attention from inlet swirl to swirl reduction in the leakage path by vanes 

installed within the passage. Previous investigations (Sivo et al. , 1994a) demon­

strated some benefits from fitting anti-swirl ribs to the surface of the stator, as it 

decreased destabilizing forces. The inner surface of the conical stationary shroud is 

designed to accept meridional ribs or swirl brakes along the length of the leakage path. 

As shown in figure 2.6, four equally spaced ribs, O.5cm wide and O.16cm high, were 

installed for these tests. The effectiveness of cutting grooves on the stator surface 

was also examined. For these tests, the grooves cut duplicated the height and width 

of the brakes. 
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2.5 Force Measurements 

Various main shaft speeds were used for the experiments, although most were con­

ducted with a speed of 1000rpm. For each set of measurements, a series of sub­

synchronous whirl frequency tests were conducted, ranging from a whirl frequency 

ratio of -0.7 to +0.7. This was done by changing the output of the frequency divider 

box (Jery, 1986). The phase of the main and whirl motors, important in assuring 

correct force measurements, was checked using a strobe lamp. 

The force measurement are obtained using a data acquisition system connected 

to strain gage amplifiers. A clock signal from the frequency divider box is also sent 

to the data acquisition system to ensure accurate timing. Samples of 128 points per 

cycle are taken for all strain gages and averaged over 256 cycles, where each cycle 

is an integral number of revolutions of the whirl motor. Data is then processed and 

reduced to the normal and tangential rotordynamic forces for each frequency ratio, 

normalized by P7r02 R2 LE, which involves the tip speed, OR, and the axial length of 

the impeller, L, as well as the eccentricity, E. The internal force balance is calibrated 

using a system of weights and pulleys, applying static loads for all six components of 

force. The calibration is then checked by running the dynamometer with the mounted 

rotor and recording the steady force component, which should equal the weight of the 

rotor. 

Two runs are conducted for each test, a "dry run" where the working fluid is air, 

and a "wet run" when the rotor is submerged in water. Isolation of the fluid forces 

is done by subtracting the "dry run" results from the "wet run" data. The buoyancy 

force of the impeller is also subtracted from the data. 

For the conical impeller, static pressures in the leakage flow along the stator surface 

were measured by attaching tubes to the various pressure taps and connecting them 

to inverted water manometers located outside of the test section. Pressure data could 

then be hand recorded. Tests using pitot tubes to measure the inlet swirl velocities 

were also conducted, and the stagnation pressures of the pitot tube were recorded 

using the same set of manometers. 
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2.5.1 Pitot Tube Installation 

Questions arose during the investigations about the flow field at inlet to the leakage 

path, see section 5.2 for details. Pitot tubes were therefore installed to measure the 

flow velocities at the inlet. Considerations were given to the measurement of the flow 

angle, using five-hole pitot tubes for example. This was not done, however, for several 

reasons. The flow velocities are likely to vary as a function of distance away from the 

wall. This would mean that several measurements at different distances away from 

the wall would be needed to accurately access the flow, a difficult feat considering the 

tight confining spaces in the apparatus. In addition the flow is unsteady and highly 

disturbed, making the accuracy of flow angle measurements a concern. Because of 

this, it was decided that a cruder measurement of only the velocity in the tangential 

direction would suffice for the purposes of ascertaining the inlet flow conditions to 

the leakage path. 

The stator had two holes drilled through for the insertion of pitot tubes, as shown 

in figure 2.7. The pitot tubes were placed immediately after the exit of the inlet guide 

vanes and before entrance into the leakage path, a gap of approximately 0.8cm normal 

to the axis of rotation. Normally one would have the diameter of the pitot tube be 

less than one quarter of the gap. Because of the tight space in the apparatus, we were 

unable to meet this condition. The diameter of the pitot tube is 0.3cm and is roughly 

equal to clearance of the leakage path and the width of the inlet guide vanes. The 

tubes are connected to the set of water manometer mentioned earlier for stagnation 

pressure readings. Existing pressure taps next to the pitot tubes were used for static 

pressure measurements. The difference between the readings would be the velocity 

head of the flow in the direction facing the pitot tube. 

The pitot tubes were held in place such that their orientations are fixed and can 

only be changed during the installation, not during the experiments. Most of the 

tests were done to measure only the swirl velocity, thus the pitot tubes were set 

tangent to the circumference. Changing their orientation to face the flow directly 

did not change the measurements, as the difference were within the error limits. 
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Figure 2.7: Pitot tube setup 

Because of the large diameter of the pitot tubes compared to the gap width, the 

measured velocities are likely to be some type of averaged value for the velocity in 

the circumferential direction near the inlet to the leakage path. The results for the 

measurements of the swirl velocities will be presented in section 3.5. 

2.6 Experimental Error 

Errors in the measurements of the unsteady rotordynamic forces could arise from 

several sources. Uy (1998) placed Bentley displacement transducers during a typical 

experiment to measure the errors in eccentricity as well as to verify the rotational 

and whirl frequencies. The uncertainty in eccentricity was found to be less than 5%. 

Another source of error could arise in the force measurements due to temperature 

drift in the strain gauges in the force balance. Uy reported that the standard deviation 

for various tests was under 5% for all rotordynamic coefficients with the exception of 

direct stiffness, which had an 8% deviation. 

Water manometers were used for measuring static pressure in the leakage path at 

the stator surface. The uncertainty in pressure was found to be about O.3cm of water; 

while the uncertainty for the stagnation pressure of the pitot tube measurements was 
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roughly l.Ocm of water. This is less than 5% for all of the pressure data presented in 

the thesis as well as the velocity measurements. 
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Chapter 3 Experimental Results 

3.1 Introduction 

A number of effects of the leakage path have been experimentally studied previously. 

The reader may refer to work of Guinzburg (1993), Sivo (1995), and Uy (1998) for 

details of tests conducted at Caltech. Comparing experimental results from using 

no inlet swirl devices and using the inlet swirl vanes to provide inlet swirl velocities 

which were as much as twice the tip velocity, Guinzburg's test showed that inlet 

swirl increased the the normal and tangential rotordynamic forces though nowhere 

near as much as those predicted by the Childs' perturbation solution to the bulk 

flow equations. Further tests conducted by Uy for different inlet swirl rates showed 

that for non-zero inlet swirl, the inlet swirl had no effect on the rotordynamic forces. 

This chapter presents data that disputes this claim. The pressure distributions for 

flows with various inlet swirl vanes installed showed no variation for the different 

inlet swirl devices, which could only be explained by assuming the same inlet swirl 

velocity existed for almost all flows. This motivated the construction of pitot tubes 

to measure the flow velocities at inlet to the leakage path. And those experiments 

confirmed the suspicion that the inlet swirl vanes did not work as Guinzburg and Uy 

assumed. 

3.2 Curve Fitting of Forces 

Rotordynamic force coefficients provide a convenient way to compactly present the 

rotordynamic forces and thus ease comparison. As discussed in the introduction, the 

normal and tangential forces are fitted, respectively, to second order and first order 

polynomials of the whirl frequency ratio. The validity of such curve fits is a subject 

of concern. Figure 3.2 shows a typical example. While the fit looks decent using this 
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Figure 3.1: Curve fit of the rotordynamic forces 

scale, it is a bit deceiving. Table 3.1 shows the difference between using all whirl 

frequency ratios and only the positive whirl frequency ratios for the curve fit. The 

discrepancy can be significant, especially for the added mass term. The coefficients 

for the tangential forces differ by some twenty percent. 

M c K C k 
positive and 3.22 3.76 -1.08 0.78 -0.76 
negative whirls 
positive whirls 1.64 2.83 -1.06 1.11 -0.91 
only 

Table 3.1: curve fitting of forces using sets of different whirl frequencies 

While the rotordynamic coefficients obviously do not capture all the information 

of the rotordynamic forces, almost all current rotor dynamic analyses are done using 

only coefficients. This leaves researchers to always report the coefficients, no matter 

their inadequacies. 
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3.3 Effect of Anti-swirl Devices 

With a rotating impeller, fluid swirl is obviously generated in the leakage path, and the 

question arises as to how reducing this swirl will affect rotordynamic forces. Therefore, 

the effects of anti-swirl ribs and grooves in the leakage path were investigated. Work 

by Sivo (1995) identified some benefits to having anti-swirl ribs in the leakage path, 

but only for very small flow coefficients. 

Figure 3.2 shows the rotordynamic force coefficients as a function of the flow 

coefficient for the conical impeller and shroud. The tests were conducted with a 2 

degree inlet swirl vane and compare the effects of anti-swirl ribs and grooves. 

The direct stiffness K and the cross-coupled damping c are largest for tests with 

no anti-swirl devices. The two coefficients improve stability-wise with grooves and 

even with anti-swirl ribs. The added mass remains about the same for all three cases. 

The direct damping of the tangential forces is the same magnitude for the three 

cases, while the cross-coupled stiffness exhibits different trends. It decreases with flow 

coefficient with no swirl reduction devices, and increases in the presence of anti-swirl 

ribs. With grooves, the cross-coupled stiffness first increases and then decreases with 

flow coefficient. This leads to improvements in the whirl ratio for anti-swirl devices at 

low flow coefficients, but to a detrimental effect at higher flow rates. The whirl ratio 

for the case with anti-swirl ribs is increasing with flow coefficient, in marked contrast 

to the decreasing trend when no anti-swirl devices are present. 

Thus it seems that anti-swirl devices provide some benefit in reducing the destabi­

lizing region in the tangential forces only for very small flow rates. They do, however, 

contribute to an increase in direct stiffness, helping in the stability of normal forces. 

3.4 Meridional Pressure Distribution 

The numerical predictions of the rotordynamic force integrate the pressure distribu­

tions within the leakage path to find the total force acting on the impeller. Therefore 

experimental data on the pressure distribution is useful for comparison with the nu-
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Figure 3.2: Rotordynamic coefficients plotted against flow coefficient for experiments 
with inlet swirl. No anti-swirl devices (x), 4 full length anti-swirl ribs (0), 4 full 
length anti-swirl grooves (+) 

merical results and could aid in matching coefficients in turbulence models. Experi­

ments were conducted to measure the pressure distributions along the leakage path 

of the conical impeller. The test apparatus included swirl vanes attached to stator to 

provide inlet swirl (figure 2.3). A leakage path with a clearance of 0.28 em and an 

exit seal clearance of 0.05 em was chosen for these experiments. In the setup there 

is an eccentricity between the rotor and the stator. Figure 3.3 shows the pressure 

distribution curves at different circumferential locations, from the meridian with the 

smallest clearance to the meridian with the largest clearance and the two 900 locations 

in between. 

The pressure data presented has been non-dimensionalized by the fluid density 
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times the square of the tip velocity, OR2 (corresponding to velocity on the discharge 

side of the pump). It is presented as the difference between the pressure at each 

location and the pressure at inlet to the leakage path. The presence of the swirl vanes 

causes a large pressure drop from the upstream gauge pressure to the inlet pressure 

that is difficult to quantify. Thus the difference between the inlet pressure and the 

upstream pressure varies somewhat unpredictably from one experiment to the next. 

Hence the choice of the inlet pressure as the reference in figure 3.3. 

From figure 3.4, it is seen that the pressure profiles do not differ much for different 

flow coefficients and are essentially identical for the first several points in the leakage 

path. Note that the pressures in figure 3.4 are from a circumferential location where 

the clearance is equal to the average clearance. Figure 3.5 shows that changes in the 

rotational speed of the impeller also do not affect the dimensionless pressure profile. 

Comparisons with calculated pressure profiles will be presented in section 5.2. The 

comparisons demonstrated that the best explanation for the lack of dependence of 

experimental pressure profiles on the flow coefficient is that the different leakage flows 

had the same inlet swirl, something that is contrary to the original intent of the inlet 

swirl vane design. This motivated the measurements of the inlet swirl for various flows 

with several different inlet swirl vanes. Details of these experiments are presented in 

the next section. 
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Figure 3.5: Non-dimensionalized pressure profile for different impeller rotation speeds 
when ¢ = 0.043, 500 rpm (x), 600 rpm( <» , 750(0),1000 rpm( 0), 1200(1\) 
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Figure 3.6: Repeated non-dimensional pressure profile for trials 1, 2, and 3 
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3.5 Inlet Swirl 

Analysis of the pressure profiles necessitated the measurement of the swirl at inlet 

to the leakage path. The inlet swirl was measured by inserting a pitot tube in the 

gap between the exit of the inlet swirl vane and the entrance to the leakage path 

as described in section 2.5.1. Measurements were made over a wide range of flow 

coefficients and with different inlet swirl vanes, an inlet swirl vane with a 6 degree 

turning angle, another with a 2 degree turning angle, as well as an inlet swirl device 

with a set of 24 radial vanes designed to eliminate inlet swirl. 

As figure 3.7 shows, with the exception of the radial vanes, the inlet swirl ratios 

are within a narrow range between 0.24 to 0.28, with an uncertainty of about 0.02. 

The data is from the pitot tube B; data from pitot tube A gave slightly larger results, 

by approximately 0.03. As equation 2.6 shows, the theoretical, or the intended, inlet 

swirl ratio, A, for these flows vary from 0 to 1.8. It therefore seems that the inlet swirl 

vanes are not creating the expected swirl at inlet to the leakage flow. Some possible 

causes are discussed in the next section. 

The radial vanes, however, do seem to affect the flow at higher flow rates. For 

low flow rates, the inlet swirl ratio is around 0.18, slightly lower than flows with inlet 

swirl vanes. Once the flow coefficients are greater than 0.03, the inlet swirl ratio drops 

to around 0.05, decreasing further to zero after flow coefficient becomes larger than 

0.05. 

The experimental inlet swirl ratios seem to be consistent with the rotordynamic 

force measurements as seen in figure 3.8 (Uy 1997). For the various flows with inlet 

swirl, there is no effect of the inlet swirl ratio. That can be easily explained by the 

observation that the measured inlet swirl ratios are nearly constant for all these flows. 

As for the flows with radial vanes, at low flow coefficients the inlet swirl ratio is quite 

close to those with inlet swirl, and the rotordynamic forces reflect this. The forces 

are indeed fairly similar, with the normal forces being nearly identical. Above a flow 

coefficient of 0.03, the forces start to diverge, which is consistent with measurement 

of much lower inlet swirl ratios. 



31 

0.35.-------.--------r-------.--------~------~------~--------

0.3 

~~ ~ 
1:;.0 ~ 

0 I:;. ~ 

0.2d 
0 0 0 0 

I:;. 0 

* 0 

0.2 
x 

5' 
~0 x 
~ 

0.15 

0.1 * 

0.05 * 

O~------~-------L------~--------L-------~~----~------~ 
o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
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The rotordynamic forces were measured for a contoured geometry. However the 

entrance regions are very similar for the contoured and the conical impellers and there 

is no reason to expect the inlet swirl velocities to the leakage paths would be different. 

It therefore appears that the various inlet swirl vanes with different turning angles 

are not guiding the flow as intended, and the resulting leakage flows all have the same 

inlet swirl ratios. The exception occurs with the radial vanes, which seem to result 

in low swirl ratios at higher flow rates. 

The pressure differences between the reservoir upstream of the vanes and the inlet 

to the leakage path also reflect this new interpretation. Figure 3.5 shows the pressure 

drop of the fluid as it passes through the inlet guide vane structure. The pressure 

drops for flows with the radial vanes are significantly lower than those for flows with 
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inlet guide vanes. Thus figure 3.5 further strengthens the evidence that the radial 

vanes do something significantly different than the inlet swirl vanes. 
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Figure 3.8: Experimental rotordynamic coefficients plotted against flow coefficient ¢ 
for tests with inlet swirl, A = 0.0 (.6), 0.4 (+), 0.5 (x), 0.6 (0), and 0.7 (*) (Uy, 
1997) 

3.6 Discussion 

The experimental data from the current research shows that the inlet swirl vanes 

are not providing the designed inlet swirl to the leakage path. For ranges of the 

experimental parameters used during previous rotordynamic force measurements, the 

measured inlet swirl velocity to the leakage path is nearly constant, between 0.24 to 

0.28 of the tip velocity of the impeller. It is postulated that because of the small 
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clearance in the guide vane structure, VISCOUS forces dominate thus negating the 

guiding effects of the swirl vanes. The viscous forces will act to slow down the fluid 

flow in the circumferential direction and push the fluid inward in a more radial manner 

at the exit from the guide vanes. Another possible reason may be the gap that exists 

between end of the inlet guide vanes and the beginning of the leakage path. The 

gap is connected to a fluid-filled chamber; mixing may occur in this region and thus 

reduce the effects of the inlet guide vanes. 

The radial vanes, on the other hand, do prevent inlet swirl at higher flow rates. For 

zero throughflow or very low flow rates, the inlet swirl velocities are similar to those 

with no inlet guide vane structure. One may speculate that at low flows, the space 

between the radial vanes are too wide to force the flow to go completely radially. The 

measured rotordynamic forces are consistent with these experimental measurements 

of inlet swirl velocities to the leakage path. 



Chapter 4 
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Theory of Bulk Flow 

The bulk-flow model developed by Childs (1989) is widely used in rotordynamic 

analysis for relatively simple computational domains, and is particularly valuable 

in its simplicity and ease of computations. Essentially the fluid flow is modelled as 

uniform across the gap thereby reducing the computational domain to two dimensions. 

In addition shear stresses at fluid-fluid interfaces are ignored and only the shear 

stresses at solid-fluid contacts are considered. The resulting equations are the Euler's 

equations in an annular coordinate system plus four shear stresses terms, two of 

them from rotor-fluid contact, two from stator-fluid interface. Based on Hirs (1973) 

lubrication equations, the bulk flow model uses simple correlations for shear stresses 

based on gap-averaged velocities. As presented by Childs, the model assumes that the 

three-dimensional, unsteady, turbulent flow in an annular region can be accurately 

approximated by reducing the dimension of the flow from three to two by using a 

simple correlation between the shear stresses and the gap averaged velocities and by 

treating the rotordynamic flow as a linear perturbation flow on the mean flow. Each 

assumption should be carefully examined when applying the model to a more complex 

computational domain such as a centrifugal pump leakage path. 

The assumption that the dimensions of the flow can be reduced from three to two 

is common and leads to the Reynolds lubrication equations. This implies that the 

velocity profiles within the annular region are self-similar and, therefore, the equa­

tions of the flow can be averaged over the gap without excessive error. Limitations 

may occur under certain conditions noted in experiments in which flow reversals and 

recirculation zones occur in the leakage path. For example, changes in flow direction 

could lead to frictional stresses acting in direction opposite of those predicted by the 

gap averaged velocity. Certain 3-D computational analyses (Baskharone and Hensel, 
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1993) have observed these flow reversals. With recirculation regions occurring in dif­

ferent parts of the gap and changing with different flow rates and impeller speeds, a 

serious limitation may be placed on the assumption of a two-dimensional domain. 

The Reynolds number for most leakage flows is very high (of order 104 based on the 

tip speed of the impeller and the gap clearance for experiments at Caltech), and this 

mean the bulk flow model requires expressions relating the turbulent shear stresses 

to the gap-averaged velocities. The turbulent shear stress relationships used are 

correlations for steady turbulent flows based, primarily, on experimental observations 

of steady flows. In contrast, the rotordynamic flows of concern here are fundamentally 

unsteady. The problem is that very little is known about turbulent flows which are 

unsteady in the sense that the flow is being externally excited in an unsteady way. 

Therefore, correlations such as those used here are used only because there are no 

alternatives. It must be recognized that the unsteady flows of the present context 

may lead to substantial deviations from these correlations. At present, this issue can 

only be resolved by careful comparison of the experimental and model results. 

One peculiar aspect of the Childs' perturbation model is the prediction of reso­

nances in the rotordynamic forces for particular subsynchronous whirl frequencies. 

The work of Guinzburg showed no such resonances in the experimental data and 

demonstrated that the resonances mostly arise from reducing the problem to where 

the flow variables are sinusoidal in the circumferential direction and harmonic in time. 

To eliminate this problem and to allow for circumferentially varying geometries, a new 

method of solving the bulk flow equations without resorting to linearization in eccen­

tricity or assuming harmonic forms is proposed. By changing the coordinate system 

to one rotating with the whirl and assuming the flow in the rotating coordinate sys­

tem is independent of time, the resulting equation in two dimensions can be solved. 

In this new formulation, evolutionary equations for a vorticity and total pressure will 

shed some insight into the physical properties of these rotordynamic flows. 
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Figure 4.1: Geometry of fluid filled annulus between a rotor and a stator for turbulent 
lubrication analysis 

4.1 The Bulk Flow Model Equations 

The geometry is sketched in figure 4.1, and is described by the meridian of the gap 

as given by Z(s) and R(s), 0 < s < L, where the coordinate, s, is measured along 

the meridian. 

The equations governing the bulk flow are averaged over the gap. This leads to a 

continuity equation of the form 

aH a 1 a Hus dR 
at + as (Hus ) + R ae (Hue) + Ii: ds = 0 (4.1) 

where Us and Ue are gap-averaged velocities in the sand e directions. The meridional 

and circumferential momentum equations are 

We note that the equations not only include the viscous terms commonly included in 

lubrication analyses (see for example Pinkus and Sternlicht 1961) but also the inertial 
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terms (see Fritz 1970) which are necessary for the evaluation of the rotordynamic 

coefficients. 

To determine the turbulent shear stresses, Childs employed the approach used by 

Hirs (1973). The turbulent shear stresses, Tss and Tse, applied to the stator by the 

fluid in the sand e directions are given by 

(4.4) 

and the stresses, TRs and TRe, applied to the rotor by the fluid in the same directions: 

me+1 

TRs = TRe = nr [u; + (ue _ OR)2] 2 (H/v)me (4.5) 
pUs p(ue - OR) 2 

where the constants n s , nr, ms and mr are chosen to fit the available data on turbulent 

shear stresses. Childs (1983a) uses typical values of these constants from simple pipe 

flow correlations: 

ms = mr = -0.25 (4.6) 

We will focus on steady whirl with a constant eccentricity, E, rotating at the whirl 

frequency, w, which is superimposed on the shaft rotation with radian frequency, n. 
Consequently, the fluid flow in a frame of reference rotating at w is steady and it is 

clearly appropriate to rewrite the equations and to solve them in this rotating frame. 

Defining, therefore, a new angular variable, e, and a new angular velocity, u(}, in this 

rotating frame such that 

e = e - wt u(} = Us -wR (4.7) 

it follows that the continuity equation can be written as 

(4.8) 
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and this is most easily satisfied by defining a stream function, 'l/J(s, ()), such that 

1 a'l/J 
Ue= ---

Has 
(4.9) 

It follows that the total volume flow rate, Q, at any meridional location, s, is given 

by 

Q = 'l/J(s, 271") - 'l/J(s, 0) (4.10) 

and this provides a periodic boundary condition on 'l/J in the () direction. 

In the rotating frame of reference, the equations of motion are usefully written 

using the total pressure, P, instead of the pressure, p, where 

(4.11) 

and the equations of motion, equations (4.2) and (4.3), then become 

(4.12) 

(4.13) 

where the important quantity, r, given by 

(4.14) 

plays a crucial role both in understanding the fluid mechanics of these flows and in 

the solution methodology. Also, in equations (4.12) and (4.13), the functions, 98 and 

9R, are the shear stress terms for the stator and rotor respectively and are given by 

(4.15) 

(4.16) 
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The quantity, r, is the effective vorticity for this flow and a fundamental property 

can be discerned by eliminating P from equations (4.12) and (4.13) to obtain the 

basic convection equation for r: 

which demonstrates that, in the absence of viscous effects (gs = gR = 0), the vorticity 

is invariant along any streamline. Conversely, the shear stresses are alone responsi­

ble for any change in r along a streamline. If ~ is a coordinate measured along a 

streamline, then equation (4.17) clearly implies that 

Furthermore, when written in this way, the governing equations clearly indicate a 

physically reasonable approach to their numerical solution by iterative means. 

4.2 The Limit of Zero Eccentricity 

For clarification we examine the special case of zero eccentricity. The purpose is 

twofold. First to resolve an apparent inconsistency which could be perceived in the 

above system of equations and, second, to develop a zero eccentricity model which 

will be used to derive the meridional pressure distributions for comparison with ex­

perimentally measured pressure distributions. 

Since the flow becomes axisymmetric at zero eccentricity, it must follow that %0 

= O. Using equation (4.13) and to (~) = 0, the equation for r then becomes 

(4.19) 

or, in terms of the stresses, 
H r _ Ts8 Tr 8 

Us - pH + pH (4.20) 
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From equation (4.14), the definition of r, it follows that 

1 8 ( 2) 1 8 Hr = --- Ru() +wR = --- (Rue) 
R8s R8s 

(4.21 ) 

and combining this with equation (4.19) gives a first order differential equation for 

ue: 

(4.22) 

Notice that all the terms in this equation are independent of the whirl frequency, 

w. This means that given the inlet conditions in absolute coordinates, Ue will be 

the same for any whirl frequency. This result, of course, is expected since, with no 

eccentricity, the whirling motion is non-existent. 

Since there is no eccentricity, the pressure drop should also be independent of 

whirl. However, from equation (4.12) 

(4.23) 

( 4.24) 

(4.25) 

For different whirl frequencies, the stresses are the same since the flow field remains 

unchanged. A superficial inspection of equation (4.25) suggests an inconsistency 

arising from the term u(). Since the relative velocity u() = ue-wR, where Ue is the flow 

in absolute coordinates, the term wR which thus appears in equation (4.25) suggests 

that the pressure drop will differ for different whirl frequencies. This inconsistency is 

resolved as follows. 

The total pressure in absolute coordinates, ft, is defined as 

(4.26) 
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or rewritten in terms of u(}, 

(4.27) 

Subtracting equation (4.11) from the above equation, we see that the relationship 

between the two total heads, P in the rotating coordinate system and P in the absolute 

frame, is 

p p 

p p 

=wRue 

(4.28) 

(4.29) 

From equations (4.2) and (4.3), we can derive an equation for ts (~) similar to that 

of equation (4.25), 

8 (P) 1 -8 - = --H rUe (Tse + TRe) + Us (TSs + TRs)] 
s p p Us 

(4.30) 

Using the above equation and equations (4.29), (4.22), we can derive an expres­

sion for ts (~) by a different route and obtain equation (4.25). This proves that the 

equation (4.25) is correct, and that the pressure drop, as defined in rotating coordi­

nates, is in fact a function of the whirl frequency ratio. Thus, in presenting pressure 

distribution, we must be careful to compare experimental measurements with the 

calculation of the total pressure in the absolute coordinate system. 

4.3 Numerical Method of Solution 

It follows from section 4.1 that one method for the solution of the equations for a 

rotor dynamic flow proceeds as follows: 
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(1) First, for given or guessed values of the vorticity, r( s, e), we solve the Poisson-like 

equation (4.14) for the stream function, 'l/J(s, e): 

(4.31) 

and thereby obtain new values for 'l/J(s, e), us(s, e) and uo(s, e). For this purpose 

we deploy boundary conditions on 'l/J as follows: 

(i) Along s = 0, we specify an inlet swirl velocity, uo(O, e), which, in order to 

satisfy conservation of angular momentum, should normally be put equal 

to the swirl velocity in the reservoir upstream of the inlet. However, usually 

an initial Uo is put in even for cases of no inlet swirl. 

(ii) An appropriate boundary condition at discharge, s = S, would be that the 

pressure in the flow exiting the annulus should be uniform for all e or 

(BP) = 0 
Be s=s 

( 4.32) 

This will be discussed in more detail in the next section. 

(iii) The periodic conditions on boundaries at e = 0 and e = 27r such that 

'l/J(s,27r) - 'l/J(s, 0) = Q (4.33) 

(2) Second, given the new values of 'l/J(s, e), us(s, e) and uo(s, e), we can proceed to 

integrate from inlet to exit to find new values for r(s,e) using equation (4.17). 

For this purpose we must evaluate the shear stress functions, gR and gs, in 

equations (4.15) and (4.16). We also need the values of r at the points where 

the streamlines enter the computational domain. Clearly this becomes more 

complicated when there is reverse flow either at inlet or at discharge. We delay 

discussion of this complication until later. If all the streamlines begin at inlet, 

then the boundary condition on that inlet boundary, s = 0, should be that the 

total pressure is uniform along that boundary. Assuming that the inlet flow has 
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not experienced significant viscous stresses, the total head is constant at inlet, 

and equation (4.13) provides an initial value of r, 

1 r (0, 8) = -H [(uo + wR) (gs + gR) + ORgR] 
Us 

(4.34) 

given the results from step 1. 

We then repeat these two steps until the solution converges. 

4.4 Head, Pressure and Rotordynamic Forces 

Having obtained convergence, we then calculate the total pressure, P, the pressure, p, 

and the rotordynamic forces as follows. The total pressure is obtained in a procedure 

similar to that for the vorticity, r. From equations (4.12) and (4.13) it follows that 

( 4.35) 

If one chooses to neglect entrance losses between the upstream reservoir at the inlet 

plane (8 = 0), then this integration begins with a uniform value of P(0,8) equal 

to the total pressure in the reservoir, Pres, and this can conveniently be chosen to 

be zero without loss of generality. On the other hand if entrance losses are to be 

included, then P(O, 8) can be set to a value smaller than Pres by an amount equal to 

the entrance loss at that particular f) position. Having obtained P(8,8) throughout 

the flow field, the pressure, p( 8, 8), follows simply from the definition (4.11). 

From the case of zero eccentricity, we found that the absolute total pressure, P, 
should be used as Pres. From equation (4.29), however, we see that the difference 

between P and P is uniform at inlet since uo(O, 8) is prescribed to be uniform. Hence 

we can choose P(O, 8) to be zero when there are no inlet losses; with inlet losses we 

can use a fraction of Us, namely, 

P(0,8) = -ku~(O, 8) (4.36) 
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where k is some constant. k is normally assumed to be 0, since the precise value has 

minimal contribution to the pressure distribution and the rotordynamic forces. 

For the discharge boundary condition on the streamline calculations, an exit pres­

sure loss term is added to simulate an exit seal. 

(4.37) 

Having obtained the pressure (and the viscous shear stresses) it only remains to 

integrate these to obtain the normal and tangential forces acting on the rotor. With 

the sign convention as defined in figure 1.3, it follows that 

(4.38) 

s { (dR) 2 } ~ 271" Ft = 10 1 - ds 10 (p sin () - TR(} cos ()) d() ds (4.39) 

In most of the results quoted in this paper, the contributions from the TR(} parts of 

these integrals are very small and can usually be neglected. 

4.5 Some Notes on the Computations 

As outlined in section 4.3, the computational procedure is a two-step process. With 

an initial velocity profile, the total head, P, and r are integrated using a forward 

integration method second order accurate in both dimensions. The method then 

proceeds to solve the stream function to determine the velocities Ue and Us for the 

new r values and the new downstream pressure condition. The downstream boundary 

condition for the stream function solution is achieved by changing Ue at the exit to 

satisfy the boundary condition. For example, if the constant pressure condition is 

deployed, then this is implemented by first calculating an average pressure p using 

( 4.40) 
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and then adjusting the existing u(} value using 

(4.41) 

Some of the numerical instability experienced appears to arise from this procedure. 

For example, sometimes the right-hand side of equation (4.41) will become negative 

at some point during the iterative procedure. No matter how this is treated, the 

resulting u(} at that point will be significantly differently than the rest. At times 

this leads to divergence as the iterative procedure is not able to filter out these 

inappropriate values. 

To counter this, the first several iterations are done with a constant u(} exit condi­

tion. The constant u(} condition can be considered as a first order approximation to 

the constant pressure boundary condition. This makes convergence of the code much 

smoother, and it also negates the necessity of choosing a good initial profile. 
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Chapter 5 Numerical Results 

The computation model was exhaustively tested on two sets of geometries for which 

reliable experimental data is available. One comparison was with the seal tests con­

ducted by Marquette and Childs (1991). Seal geometry is very similar to leakage 

path geometry. The particular seal of Marquette and Childs had an axially uniform 

radius, with a length to radius ratio of 0.914 and an average clearance of 0.0029 of 

the radius. Rotor speed varied from 10400 rpm to 41600 rpm and pressure drops 

from 4 MPa to 12 MPa. The other comparison is with the conical impeller in the 

RTFT at Caltech. In those tests the ratio of the average clearance to inlet radius 

is 0.03. One difference between the two flows is the presence of the exit seal for the 

conical impeller tests. About half of the total pressure drop in the leakage path for 

the conical impeller occurs in the exit seal. Another difference is that the clearance 

is about an order of magnitude smaller for the seal experiments than for the impeller 

experiments. This might affect the acceleration of u(). In the calculations there are 

several tunable parameters: the four coefficients in the stress, the inlet and exit loss 

coefficients, and the initial velocity in the circumferential direction. We investigated 

each of the two cases in the sections which follow and examine appropriate values of 

the tunable parameters. 

5.1 The Seal of Marquette and Childs 

Using the parameter values recommended by Marquette and Childs, ns = nr = 0.079 

and an exit loss of 1, the rotordynamic force for the seal in the tangential direction 

is predicted very well by the current model as shown by the solid line in figure 5.l. 

The normal force, however, exhibits a large offset from the experimental data. The 

calculated nondimensionalized pressure drop is 2.35, slightly below the experimental 

measurement of 2.5. 
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Now examine the effects of the adjustable parameters. As seen in figure 5.1 in­

creasing ns increases the magnitude of normal forces by a small amount for all whirl 

ratios. It also changes the slope of the tangential forces. The pressure drop increases 

linearly in the small range of ns that is used. Figure 5.3 shows that increasing nr 

and ns together had effects similar to increasing ns alone. The pressure drop varies 

linearly with the coefficients; the increase is about twice as large as those from in­

creasing ns alone. The increase in the magnitude of the normal forces is also larger, 

but still deviates from the experimental results by a significant offset. The change in 

the coefficients also changes the slope of calculated tangential forces to the whirl ratio 

more than that caused by changing ns alone. The coefficient values of ns = nr = 0.079 

still seem to give the best results on the tangential forces. 

Varying nr alone, however, shows a different behavior as seen in figure 5.2. The 

effect on the pressure drop is almost exactly the same as that for ns , but the forces are 

affected differently. The normal forces exhibit almost no effects from the varying of n r • 

The slope of the tangential forces, the direct damping coefficient, shows a very small 

effect. The main effect is the intercept of the tangential forces. So far, by varying 

only the coefficients, the discrepancy of the normal forces from the experimental data 

remain unexplained. 

Introducing an entrance loss helps to reduce some of the discrepancy in the normal 

forces as shown in figure 5.6. With a reasonable value of 0.1, the discrepancy in the 

normal force is reduced by half. The change in entrance loss has only a slight effect 

on the tangential forces and the pressure drop. Figure 5.6 also shows that increasing 

the entrance loss coefficient to an unreasonable value like 0.3 produces unreasonable 

results, so only an entrance loss value of less than 0.1 seems to be warranted. 

Reducing the exit loss shows the most promise in reducing the discrepancy in 

the normal forces (figure 5.4). A lowering of the exit loss coefficient increases the 

magnitude of the normal forces significantly. Indeed the forces seem very sensitive to 

small changes in the exit condition. The magnitude of change in the direct damping 

coefficient is also not small; it is similar to that of varying the two shear stress 

coefficients together. 
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The last tunable parameter is the value of the inlet swirl ue(O). As seen in figure 

5.5, it has no effect on the normal forces and the slope of the tangential forces, but it 

does shift the tangential force curve up or down by a uniform offset. The effects seem 

to be similar to that of n r , though there is not an obvious answer as to why. In addition 

to the parameters mentioned, the exponents on the turbulent shear stress could also 

be varied. Their effects, however, are very similar to that from the coefficients, and 

changing them would not contribute to the understanding of the problem. 

In conclusion, by adjusting the various parameters, we can fit the numerical results 

to the experimental data. First the exit loss coefficient is lowered to eliminate the 

offset discrepancy in the normal forces. Then ns adjusted to fine tune the normal 

forces to the experimental data, and nr is tuned to achieve the correct slope on the 

tangential forces. Finally, the inlet swirl velocity is adjusted to match the tangential 

forces. The values which best fit the data are ns = 0.05, nr = 0.20, an exit loss 

coefficient of 0.4, and zero inlet swirl velocity. Notice that no inlet loss is used because 

the introduction of an inlet loss causes the added mass to become too small to be 

recovered through varying other parameters. The forces for the best parameters are 

plotted in figure 5.7. The pressure drop, however, is 3.14, significantly higher than 

experimental value of 2.51. 
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5.2 Meridional Pressure Distribution For the Con-

ical Impeller 

In this section, we compare the measured meridional pressure distributions to the 

predictions from theory. Some of the experimental data were already presented in 

section 3.4. The data used for comparison is that from the circumferential location 

where clearance is equal to the average clearance. It happens that the shear stress 

coefficients do not affect the initial slope of the pressure profile, neither do the inlet 

or exit loss coefficients. The inlet swirl velocity, however, has a significant impact on 

the initial stages of the profile. This allows predictions of the inlet swirl rates that 

occurred in the experiments. 

Figures 5.9 and 5.10 shows the pressure profiles as a function of the inlet swirl 

rate. The pressure measurements are best matched by setting the inlet swirl velocity 

equal to 0.23 times the rotor tip velocity for all three flow rates. 

The finding was the motivation behind the inlet swirl measurements presented in 

section 3.5. Those measurements do confirm the suspicion that in the experiments 

the inlet swirl to the leakage path is roughly constant for different flow rates. One 

peculiarity that does arise in the model is that for different flow rates, the pressure at 

the exit is the same (figure 5.12). This does not appear to be the case experimentally, 

though the difference is small. 

Because the leakage flow geometry is non-axisymmetric, the pressures profiles 

vary when measured at different circumferential locations. Figure 5.11 compares the 

calculations to the experimental pressure profile at several different circumferential 

positions (the numbers under eccentricity represent degrees from points of maximum 

clearance in the direction of the swirl). The graph shows very good agreement between 

the theory and measurements, again by using the measured swirl velocity. 

Unlike the swirl vanes, the radial vanes worked as intended for larger flow coef­

ficients. Figure 5.13 compares the calculated pressure profiles using zero inlet swirl 

to the experimental data obtained with the anti-swirl vanes guiding the leakage flow. 

The results match up reasonably well. The experimental pressure profiles, however, 
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do not vary with flow rate, while the calculated results show decreasing pressure pro­

files for increasing flow coefficients. With good agreements between the experimental 

and numerical pressure profiles, we can express confidence in the theory and move on 

the the more difficult task of predicting rotor dynamic forces. 
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5.3 Conical Impeller 

In this section, we examine the accuracy of the calculated results from the bulk flow 

model by comparing the rotor dynamic forces for the conical impeller to that of the 

experimental data. As a result of the inlet swirl measurements, an inlet swirl ratio 

of 0.26 was used for calculations of rotor dynamic forces with the conical impeller 

geometry. Numerical results for flow coefficients of 0.04 and 0.053 are compared with 

experimental measurements in figure 5.14. Had the fluid flow followed the guide vanes, 

the inlet swirl ratios would be 1.1 and 1.5 respectively. This data uses ns = nr = 0.079 

for the shear stress coefficients and an exit loss coefficient of 1. The tangential forces 

agree reasonably with the experimental data. The normal forces, however, predict 

the added mass and the cross-coupled damping coefficients that are much smaller 

than the experimental results. The direct stiffness agrees well with the experiments. 

The experimental data show very similar forces for the two different coefficients of 

0.04 and 0.053. This is consistent with the calculated forces using the same inlet swirl 

rate for both coefficients. Results presented in section 3.5 indicate that the inlet swirl 

ratio is about 0.26 for all flow coefficients, and the rotordynamic forces corroborate 

this. 

Figure 5.14 also shows the calculated rotordynamic coefficients using Childs' per­

turbation model. Compared with the Childs' model, the current model gives better 

predictions for the direct stiffness and cross-coupled stiffness coefficients as well as 

the whirl ratio. The direct damping coefficient is well predicted by both, while both 

underpredict the added mass term significantly. Childs' model gives more accurate 

results for the cross-coupled damping coefficient. 

Looking at the rotordynamic force plots in figures 5.15 and 5.16, there are several 

places where the forces exhibit erratic behavior with whirl frequency which is remi­

niscent of the "resonances" in the data of Childs (1989). These are not supported by 

experimental results, and appear to arise from the bulk flow equations themselves. 

The current model does seem to be less plagued with them than the Childs' pertur­

bation method results. 
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5.4 Contoured Impellers 

The calculations for the contoured impeller are similar to the results for the conical 

impeller. Figure 5.17 shows that the added mass and the cross-coupled damping co­

efficients for the contoured impeller are significantly smaller than the experimental 

data, while the direct stiffness matches up well. As for the tangential forces, the di­

rect damping and cross coupled stiffness agree reasonably with the measured values. 

Just by looking at the coefficients in figure 5.17, it may appear that some calculated 

coefficients exhibit a different trend than the experiments. Looking at the plot of ex­

perimental rotor dynamic forces for different flow rates in figure 5.20, however, shows 

that looking at such trends is of dubious merit at best. The forces for the three differ­

ent flow rates are almost exactly the same. This is consistent with the measurements 
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that the flows have the same inlet swirl rates. 

Figure 5.18 shows the rotordynamic force coefficients which result from curve 

fitting at the positive whirl frequency ratios only. For most applications, this is the 

range that most interests rotordynamists. The predicted direct stiffness coefficients 

become slightly worse, but the predictions for the added mass and cross-coupled 

damping coefficients are significantly improved. The coefficients from the tangential 

forces are both underpredicted. 

The effect of small changes in the inlet swirl rates on the forces can be seen in figure 

5.22. The inlet swirl does little to the normal forces, but causes destabilization in the 

tangential forces . However, whether the tangential forces will show the behavior seen 
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in figure 5.21 at high inlet swirl velocity remains unclear. 

A comparison of the coefficients for the flows with no inlet swirl is shown in 

figure 5.19. The model shows good results for the tangential force coefficients. The 

coefficients for the normal forces, however, were all underpredicted, though they do 

show the right trends. 

5.5 Short Contoured Impeller 

The final impeller that was tested is referred to as the short contoured impeller. It 

has a much larger eye-to-tip diameter ratio and much smaller axial length compared 
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Figure 5.22: Rotordynamic forces versus whirl frequency ratio for experiment and 
calculation on the contoured impeller at a flow coefficient of 0.054 using various inlet 
swirl coefficients. 
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calculation on the contoured impeller at a flow coefficient of 0.043 
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Figure 5.24: Comparison of rotordynamic coefficients on the short contoured impeller 
between experiments (0) and calculations (x) 

to the conical and the contoured impellers discussed in the previous sections (see 

figure 2.4). The experimental measurements were conducted without the presence 

of any inlet guide structure. Pitot tube measurements indicated that the inlet swirl 

coefficient under such conditions is slightly smaller than that tested with an inlet 

swirl passage, namely an inlet swirl coefficient of 0.2 rather than 0.26. 

The calculations show similar results to those for the contoured impeller. Figure 

5.24 shows that the added mass and the cross-coupled damping coefficients for the 

impeller are significantly smaller than the experimental data, as was the case for the 

other two impellers. The direct stiffness matches up well. The trend seem to be off for 

some of the rotordynamic coefficients. However an examination of figure 5.25 reveals 

that these trends are merely a result of the curve fitting of noisy data and should 



Figure 5.25: Comparison of rotor dynamic forces on the short contoured impeller 
between experiments, ¢ = 0.01( x), ¢ = 0.02(0), ¢ = 0.03(D), and calculations for 
¢ = 0.03 (solid line) 

not be considered to be important. As for the tangential forces, the direct damping 

and cross coupled stiffness agree reasonably with the measured values. Figure 5.25 

shows that the measured values for the tangential forces are highly nonlinear, but 

the calculations match the data very well. When experiments were conducted on the 

short contoured impeller, the eccentric drive could not lock in at a whirl frequency 

ratio of 0.4, perhaps due to effects of its natural frequency. This may account for the 

fact that the tangential forces for a whirl frequency ratio of -0.4 are much lower than 

those at neighboring whirl frequencies. 

5.6 Effects of Input Parameters 

The bulk flow model has several tunable parameters that affect the normal and tan­

gential rotor dynamic forces. This section explores their effects on the calculated forces 

for the conical impeller. 

Changes in the turbulent shear stress coefficient ns cause a linear change in the 

overall pressure drop (figure 5.27). Increasing n s , however, lowers the pressure drop 

and the normal forces. The normal force decreases by a fixed constant across the 

negative whirl ratios when ns is increased. Lowering the value of ns also reduces the 

resonance in the tangential forces. With ns = 0.05 and nr = 0.079, the resonance is 
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almost completely eliminated for an inlet swirl of 0.5. 

Figure 5.26 shows increasing nr increases the pressure drop and the normal forces, 

unlike the effect of increasing ns. The pressure drop change is smaller than that from 

changing ns. The normal forces increase by a small constant amount for all whirl 

ratios; the constant is also smaller than that for ns. Increasing the value of nr seems 

to reduce the resonance behavior. Judging by the negative whirl ratio range of -0.7 

to -0.2, the tangential forces also increase with n r . It appears that an increase in 

pressure drop reduces the resonance in the calculations. 

Increasing the two shear stress coefficients together lowers the pressure drop and 

the normal forces. This result could have been anticipated since the effects of the 

nr on these are smaller than the effects of ns. The same logic would lead to the 

conclusion that the tangential forces would increase, as is indeed the case (see figure 

5.28). Larger values of nr and smaller values of ns seem to dampen the resonance in 

the tangential forces. 

The exit loss coefficient does not have an effect on the rotordynamic normal forces. 

Judging by figure 5.30, it has some slight effect on the tangential forces in the negative 

whirl region. An increase in inlet swirl velocity, ue(O), increases the tangential forces, 

and also enhances the resonance. The effect of inlet swirl on the calculated normal 

forces is unclear from figure 5.29, although it does appear to change the added mass. 

Using a low value for ns does seem to remove the resonance-like behavior. In­

creasing nr then lowers the normal forces and increases the direct damping in the 

tangential forces. 

The above calculations were all perturbations upon an inlet swirl coefficient of 

0.5 for the conical impeller. The contoured impeller exhibits some different trends 

perturbed about an inlet swirl coefficient of 0.26 and a flow coefficient of 0.53. Figure 

5.31 shows the effect of increasing the two shear coefficients together on the calcula­

tions for the contoured impeller. The normal rotor dynamic force is unchanged, while 

there is a slight increase in the tangential force when the coefficients are increased. 

As show in figure 5.32, when only nr is increased, both the normal and tangential 

forces increase slightly. The resonance seems to be reduced with a lower value of 
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nr . The normal forces decrease when only ns is increased, while the tangential forces 

remain largely unchanged (figure 5.33). None of the changes in the rotordynamic 

forces caused by adjusting the shear stress coefficients appear to be significant. 

For both the conical and contoured impeller, tuning of parameters fail to increase 

the curvature of the normal forces versus the whirl frequency ratio. This leaves a 

somewhat unsatisfactory prediction for the rotordynamic coefficients arising from the 

normal forces. 

5.7 Limitations of the Numerical Algorithm 

The implementation of the numerical algorithm described in the previous chapter can 

not be applied as universally as one would wish. Currently the inputs to the program 

are the tunable parameters mentioned in the preceding section, the shear stress coef­

ficients, the inlet and exit loss coefficients, and the inlet swirl coefficient. Additional 

inputs are the flow coefficient and the rotational speed of the impeller plus the leakage 

path geometry, which include the average clearance and eccentricity. Currently the 

computational grid of the leakage path is equally spaced, though modifications can 

be easily made to accommodate variable spacing. 

Because one component of the algorithm is a forward integration procedure, the 

program will not work for flows when backflow occurs. As mentioned in the introduc­

tion, backflow in leakage path typically occurs near inlet close to the impeller. Since 

the bulk flow equations only calculate the velocity averaged across the clearance, we 

do not need to worry about backflow unless at some location the mean flow, gap 

averaged, is going backwards. As seen from figure 5.34, this type of backflow does 

not occur until the eccentricity becomes large relative to the leakage path clearance. 

For smaller flow coefficients, this can occur more readily. The easy remedy for these 

situations is to reduce the eccentricity, as the rotordynamic forces varies linearly with 

respect to eccentricity for almost all calculations that were performed. There are 

instances, however, where reducing the eccentricity will not help. Those situations 

are believed to be cases where resonance occurs from the bulk flow equations. This 
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Figure 5.29: Calculated rotordynamic forces on the conical impeller with flow coeffi­
cient of 0.053, no inlet loss, exit jet loses all dynamic head. Pressure drops are 0.70, 
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Figure 5.31: Calculated rotordynamic forces on the contoured impeller with flow 
coefficient of 0.053 for different shear stresses coefficients 
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Figure 5.32: Calculated rotordynamic forces on the contoured impeller with flow 
coefficient of 0.053 for different shear stress coefficients 
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coefficient of 0.053 for different shear stress coefficients 
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against eccentricity for ¢ = 0.065 at three different whirl frequency ratios 

will be described in detail in the subsection that follows. 

5.7.1 Prediction of Resonance in Rotordynamic Forces 

The existence of resonance in the rotordynamic forces generated by the discharge 

to inlet leakage flow of a centrifugal pump has been a point of contention. The 

fact that the Childs' bulk flow equations predict these resonances for an inlet swirl 

of greater than 0.5 times the tip velocity has been widely reported (Childs, 1987). 

That, however, was only based upon calculating the rotordynamic forces at whirl 

frequency ratios in multiples of 0.1. From figure 5.35 it is obvious that the resonance 

shows up for the calculated leakage flow with an inlet swirl of 0.27 between a whirl 

frequency ratio of 0.3 and 0.5. The current method, which uses the same bulk flow 

0.5 

0.5 
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Figure 5.35: Rotordynamic forces for <p = 0.18 and an inlet swirl of 0.27 

equations, also behaves strangely in the same range of whirl frequencies: it did not 

converge. The calculations produce backfiow at inlet to the leakage path, and the 

solutions do not then converge. Outside the troublesome range of whirl frequencies 

the two methods predict similar forces. 

5.7.2 Courant Condition 

As mentioned in the previous section, equations 4.17 and 4.35 was solved using for­

ward integration in the meridional direction. An inspection of the two equations yields 

a characteristic velocity of u()/(Rus ). Convergence for forward integration schemes 

depend on satisfying the Courant condition. In this case the Courant constant need 
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to be less than 1. 

(5.1) 

The constant is generally largest at inlet to the leakage path, and is larger for more 

negative whirl frequencies. In most of the calculations, a ten to one ratio of the 

number of grids in the meridional direction to that in the circumferential direction 

provided an adequate stability margin, with the exception of those cases mentioned 

in the preceding subsection. 

5.8 Discussion 

The current stream function vorticity method shows promise in predicting rotordy­

namic forces in both leakage paths and seals. In particular, the tangential forces are 

accurately predicted using the measured inlet swirl rate. The direct stiffness also 

matches the experimental results, while the direct added mass is significantly under­

predicted. However, it might be expected that the curvature of the normal force curve 

would be difficult to predict accurately. 

The calculations for the seal show similar trends to those for the conical impeller, 

with good matches for the tangential forces and the direct stiffness and poor predic­

tions for the added mass. Calculations for the contoured impeller still require more 

study as the agreement between numerical and experimental results are not as good. 

We should summarize the errors of predictions of rotordynamic force coefficients 

induced by fluid flows in the leakage path. The added mass term is always underpre­

dieted and calculation results are not reliable; the experimental values are generally 

two to three times the numerical ones. The predictions of direct stiffness and the 

direct damping coefficients are fair, usually within twenty percent of the experimen­

tal results, sometimes even better. The cross-coupled stiffness and the cross-coupled 

damping coefficients are generally not as good; they usually experience about fifty 

percent deviation from the experimental results. 
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Chapter 6 Conclusion 

For a rotating system such as the turbopump, rotordynamic forces will be generated 

by the movements of the impeller in its fluid environment. These fluid-induced forces 

generated in the annular flows surrounding the rotor are important because they can 

affect the dynamics of the entire rotating system, such as reducing the critical speed 

or the stability margins of the system. With some simplifications, the rotordynamic 

forces can be decomposed into the direct stiffness, cross-coupled stiffness, and the 

direct damping components. A negative direct stiffness is destabilizing and decreases 

the critical speed of the impeller. For low Reynolds flows, the rotordynamic force 

resulting from a positive direct stiffness has a centering effect, while for high Reynolds 

flows, the Bernoulli effect results in a negative direct stiffness and a destabilizing 

radial force. The cross-coupled stiffness and the direct damping coefficients are almost 

always destabilizing for rotordynamic forces and reduce the region of stability for the 

operating speed of the system. 

Rotordynamic forces from the tip-to-eye leakage flow along the front shroud of 

the impeller have not been examined extensively. This thesis has studied these forces 

both experimentally and computationally. The experimental investigation consisted 

of measuring the effects of anti-swirl devices such as grooves and brakes in the leakage 

path of a centrifugal impeller on reducing the destabilizing fluid induced forces. Pres­

sure profiles within the leakage flows were also measured as a diagnostic to indicate 

the nature of this flow. These experimental pressure profiles raised questions as to 

the validity of some assumptions concerning the inlet swirl velocities to the leakage 

path in earlier tests conducted at Caltech. 

Inlet swirl is known to affect the tangential rotordynamic forces significantly in the 

case of annular seals. Various tests were conducted by previous students (Guinzburg, 

1992; Uy et al. , 1997) to study the effects of inlet swirl on forces from leakage flows 

using inlet swirl vanes to prescribe pre-rotation for fluid entering the leakage path. 
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Several inlet swirl vanes were designed with varying turning angles as well as a set of 

radial anti-swirl vanes intended to prevent any inlet swirl by the fluid. Experiments 

described in this thesis showed that the inlet swirl vanes did not work as originally 

intended. Present tests showed that at lower flow rates the tangential velocity at inlet 

to the leakage path is nearly constant for all inlet swirl vanes. This explains why earlier 

measured rotordynamic forces did not show any effect for different nonzero inlet swirls. 

The anti-swirl vanes, however, worked as designed for higher flow rates, producing 

zero inlet swirl for larger flow coefficients. An examination of the experimental data 

of the effects of these two inlet swirl velocities on the rotor dynamic forces show good 

qualitative match with those predicted by the bulk flow computations. They both 

agree that an increase in inlet swirl is destabilizing for both the normal and the 

tangential forces. 

Since the effect of inlet swirl is destabilizing, reducing the swirl inside the leakage 

path also seems advisable. Tests conducted with swirl reduction devices inside the 

leakage path showed that their presence indeed offered some benefits at low flow coeffi­

cients. The results were mixed, however, at higher flow rates. The devices contributed 

to reduce unstable normal forces but greater destabilizing tangential forces. More ex­

periments on different types of swirl reduction devices may be done. Examinations of 

the effects of circumferentially directed or helically shaped brakes and grooves could 

be done. Since the inlet swirl vanes did not work, a more thorough examination of 

the effects of inlet swirl ratio on rotordynamic forces for much higher inlet swirl ratios 

seems difficult to achieve. However, for experiments with swirl reduction devices, an 

impeller with blades can be tested to examine the effects of swirl reduction devices 

on an impeller with more typical inlet swirl velocities into the leakage path. 

Because of the variety of different geometries for the leakage path, pump design­

ers can not simply look up the values of the fluid induced forces. Experimental 

measurements can be time-consuming and expensive; therefore, numerical predic­

tions for rotordynamic forces are useful. Computationally, the basic equations for the 

bulk flow model, which has traditionally been used in rotordynamic analysis, were 

recast into evolutionary equations for vorticity and total pressure. The bulk flow 
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characterizes the flow inside an annular region by velocities averaged over the gap. 

Therefore it will have only two velocity components, one in the meridional direction; 

the other tangential. The only shear stress contributions in the model will be from 

the solid-fluid interfaces. The shear stresses are modelled empirically using correla­

tions from steady turbulent pipe flows. By restricting the analysis to axisymmetric 

rotors and stators, a coordinate transformation eliminated the time dependence and 

a solution method was developed without the assumption of harmonic forms of the 

flow variables. The numerical solutions are compared to experimental results for a 

seal geometry in addition to discharge-to-inlet leakage geometries. Results for the 

seal show very good agreement for the tangential forces. Predictions for the normal 

forces, however, exhibited a large offset to the experimental results, which can be 

reduced by changing the exit loss coefficient. Questions remain as to the reason for 

this discrepancy. 

For leakage path geometries, good agreement with experimental results for the 

conical impeller was found with the exception of the added mass term. Predictions 

for the two contoured impeller geometries were not quite as good but are qualitatively 

similar. Compared to the Childs' perturbation solution method, the current method 

is more computationally intensive, though still relatively fast, and has more con­

vergence problems. It also provided better predictions for most of the rotordynamic 

coefficients with the exception of cross-coupled damping term. At present, it does not 

treat backflow, a consideration for future work. Designers of turbomachinery may use 

the algorithm to find the magnitude of the expected fluid forces and incorporate them 

into the design process. Though many questions may persist regarding scaling effects 

on the shear stress coefficients, there are no currently better choices for those coeffi­

cients than those developed during the present investigation. Thus only the Reynolds 

number effects on the shear stress stress terms need to be adjusted in applying the 

present methodology. Larger scale problems would have increased Reynolds numbers, 

which would affect the shear stresses in the bulk flow model. Possible future work on 

computations include extending the work to compressible flow to model forces acting 

on compressors. Better understanding of the resonance behavior in the calculations 
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for certain flow parameter would also be beneficial. 

This thesis has shown that the bulk flow model can predict many of the behaviors 

of rotordynamic forces induced by annular flows. The dependence of these forces on 

the inlet swirl velocities to leakage path was confirmed. Good predictions for most 

rotordynamic coefficients are obtainable from the current solution method. The pre­

dicted resonances in rotordynamic forces under certain conditions were non-existent 

experimentally, showing that greater understanding of whirling annular flows is still 

needed. 
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