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Chapter 3 

Steady-State Invariant Genetics: Probing the Role of 
Morphogen Gradient Dynamics in Developmental Patterning 
 

 

Morphogen-mediated patterning is the predominant mechanism by which positional 

information is established during animal development. In the classical view, the 

interpretation of morphogen gradients is assumed to be at equilibrium and the dynamics 

of gradient formation are generally ignored. The problem of whether or not morphogen 

gradient dynamics contribute to developmental patterning has not been explored in detail, 

in part, because genetic experiments that selectively affect signaling dynamics while 

maintaining unchanged the steady-state morphogen profile are difficult to design and 

interpret. Here, I present a theoretical approach to identify genetic mutations in 

developmental patterning that may affect the transient, but leave invariant the steady-state 

signalling gradient. As a case study, I illustrate how these tools can be used to explore the 

dynamic properties of Hedgehog signaling in the developing wing of the fruit fly, 

Drosophila melanogaster. This analysis provides insights into how different properties of 

the Hedgehog gradient dynamics, such as the duration of exposure to the signal or the 

width of the gradient prior to reaching the equilibrium, can be genetically perturbed 

without affecting the local steady-state distribution of the gradient. I propose that this 

method can be generally applicable as a tool to design experiments to probe the role of 

transient morphogen gradients in developmental patterning and discuss potential 

applications of these ideas to a wide variety of problems. 
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3.1. Introduction 

A classical paradigm in developmental biology is that cells in a developing embryo or 

tissue acquire information about their relative spatial location by interpreting the local 

concentration of chemical signals in their environment called morphogens. The key idea 

is that the interpretation of positional information results in the establishment of gene 

expression patterns whose boundaries correspond to concentration thresholds of the 

morphogen gradient (Wolpert, 1971; Gurdon et al., 1998; Ashe and Briscoe, 2006). A 

common implicit assumption of the Classical Morphogen model is that gradients are 

interpreted approximately at the steady state in order to produce stable patterns of gene 

expression (Nellen et al., 1996; Kicheva et al., 2008). However, recent quantitative 

imaging studies in some systems have demonstrated that morphogens are more dynamic 

than previously thought and have raised criticisms to the classical morphogen concept 

(Gregor et al., 2007; Harvey and Smith, 2009; Liberman et al., 2009). For instance, if 

gradient formation evolves in time, how and when are concentration thresholds 

interpreted? Or more generally, how do morphogen dynamics contribute to positional 

information? One possibility is that patterns evolve as the gradient develops, giving rise 

to transient patterns that converge to stable gene expression domains as the gradient 

approaches the equilibrium (Bourillot et al., 2002). This scenario supports a ‘no-role’ 

model for transient gradients (Fig. 3.1A), but this seems not always to be the case. For 

example, we recently reported that in the wing disc of the fruit fly, Drosophila 

melanogaster, the specification of different spatial domains of expression in response to 

Hedgehog (Hh) signalling depends on the dynamics of the Hh gradient (Nahmad and 

Stathopoulos, 2009). In particular, we showed that cells exposed to Hh only transiently  
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Figure 3.1 Static vs. dynamic models of morphogen-mediated patterning. 

 (A) In the classical view, morphogens are assumed at equilibrium and cellular states (blue, white, or red) 

depend on morphogen concentration thresholds (T1 and T2). In this model, the dynamics of the gradient 

prior to reaching the equilibrium (gray region) does not have a role in patterning. For example, cells 

transiently exposed to the morphogen, but that cease receiving the signal at the steady state acquire the 

same state (red) than cells always exposed to low signaling levels (trajectories 1 and 4). (B) In the 

‘Overshoot’ Model (Nahmad and Stathopoulos, 2009), the dynamics of the gradient are essential for pattern 

formation. Cells receiving the morphogen will change from a red (OFF) to a blue (ON) state. As in (A), 

those cells that keep receiving the signal will maintain their blue fate (trajectories 2 and 3), but cells that 

lost their transient signal (trajectory 4) will adopt a different state (white) than cells that never reach the 

switching threshold T (trajectory 1). In (B), the red and white domains are not simple-connected, i.e. 

trajectories cannot cross the red-white boundary. 

 

express a different combination of genes compared to cells constantly receiving the signal 

or cells that never receive it at all. In contrast to the Classical Morphogen Model (Fig. 

3.1A), this case provides an example in which patterns are not only defined based on the 

steady-state readout of the morphogen concentration, but also on their history of exposure 

to the signal (Fig. 3.1B). In general, the problem of whether or not the dynamics of 
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gradient formation are required for morphogen interpretation remains largely unexplored 

experimentally because mutants that affect gradient dynamics are also likely to perturb 

the steady-state morphogen distribution. Despite the recent introduction of techniques to 

quantify and measure the dynamic properties of morphogen gradients in living embryos 

or tissues (Kicheva et al., 2007; Yu et al., 2009), the identification of mutants that 

selectively affect gradient dynamics with little or no effect on the equilibrium profile 

remains challenging.  

For more than 50 years, mathematical modeling and theoretical biology have 

provided powerful tools to identify potential mechanisms of morphogen gradient 

formation and interpretation in developmental patterning (Turing, 1952; Meinhardt, 

1978; von Dassow et al., 2000; Lander et al., 2002; Eldar et al., 2003; Bollenbach et al., 

2008). However, much of this literature has been built on the assumption that 

morphogens are interpreted at the steady state and transient gradients are often 

completely ignored. Reducing a dynamical system to its steady state is usually 

mathematically convenient as the equations of the model often simplify considerably and 

theoretical tools are readily available to study the stability of solutions. In contrast, much 

less analytical tools exist to investigate the temporal evolution of a gradient and studies 

that have taken morphogen dynamics into consideration usually rely on exhaustive 

numerical explorations of high-dimensional parameter spaces (Jaeger et al., 2004; Saha 

and Schaffer, 2006).   

In this paper, I present theoretical tools to study transients of dynamical systems 

in general and the role of the dynamics of morphogen gradients in particular. Given a 

mathematical model of a particular morphogen-based pattern formation system, we 
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consider parameter perturbations that may change the transient shape of a morphogen 

without effectively affecting its steady-state distribution. I introduce a theoretical 

framework to study these perturbations in a geometric way and discuss how they could be 

analyzed systematically. As an example, I investigate the dynamics of the Hh gradient in 

the Drosophila wing disc and show how this approach may lead to predict genetic 

mutants that provide insights into the role of Hh gradient dynamics during development. 

Other applications of these concepts and their theoretical and biological implications are 

also highlighted. 

 

3.2. Methods 

Wing Disc Immunostaining 

In Figure 3.3A, a third instar wing disc of genotype dpp10638/CyO was immunostained 

with mouse anti-Ptc (Hybridoma Bank Developmental Studies at the University of Iowa) 

and rabbit anti‐β-Galactosidase (Invitrogen) antisera following standard techniques. 

dpp10638 is a lacZ enhancer trap reporter that expresses nuclear β-Galactosidase under 

the control of the dpp enhancer. 

 
Analytical Solutions 

The analytical solution of equation (3.1) was derived by Bergmann et al. (2007) and is 

given by: 
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[A](x,  t) = A0 exp −x
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with erfc, the complementary error function, 

€ 

erfc(z) =
2
π

exp(−τ 2)dτ
z

∞

∫ . This solution was 

used to generate the gradient profiles in Figure 3.2C-E. An approximate analytical 

solution of Equation (3.6) near the AP boundary (Equation (3.8)) was obtained by 

linearization and the full details of this approximation are given in the Supporting Text. 

 
Numerical Simulations 

Our model of Hh-dependent patterning of the wing disc is assumed one-dimensional 

along the AP axis. We used a system of coordinates centered at the AP boundary (x=0) 

where the posterior and anterior ends of the disc were assumed at 

€ 

x = −LP  and 

€ 

x = LA, 

respectively (with LP+LA=200 µm, the length of the AP axis). Equations (3.5) were 

numerically solved with the parameters values as in Supporting Table 1 and using a 

Forward-in-Time-Centered-in-Space algorithm implemented in MATLAB. As in 

previous work (Nahmad and Stathopoulos, 2009), we use zero initial conditions, except 

for [ptc] and [Ptc] that were taken as: 

€ 

[ptc](x,  0) =
α ptc0

β ptc

,  for x > 0 and zero otherwise; [Ptc](x,  0) = TPtc

βPtc

[ptc](x,  0). 

Furthermore, we imposed zero-flux boundary conditions at the disc extremes (

€ 

x = −LP ; 

€ 

x = LA), and assumed continuity of the [Hh]SS profile and its derivative at the AP 

boundary (x = 0; see Supporting Text). 

 

3.3. Theoretical Framework: Definitions and Examples 
 
 
One way to study the role of signaling dynamics is to consider perturbations that maintain 

certain steady-state properties of a system unchanged, but affect the history of how those 
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equilibrium states are reached. In this section, I introduce a general theoretical framework 

to define this class of perturbations, referred here as steady-state invariant perturbations, 

and use a practical example to illustrate how this approach can be used as a tool for 

experimental design in the context of developmental genetics.   

 

Steady-State Invariant Perturbations: An Example 

In order to introduce the concept of steady-state invariant perturbations, consider a simple 

example, namely, a naïve model of a one-dimensional morphogen produced at a point 

source (x=0) that establishes a concentration gradient by diffusion and linear degradation, 

€ 

∂ [A]
∂t

= D∂
2[A]
∂x 2 +αδ(x) −β[A], 

   
(3.1)  

where [A] denotes the concentration of morphogen A, δ(x) is the Dirac delta distribution, 

and α, β and D are the production, degradation, and diffusion rates of A, respectively. At 

the steady state, the shape of the [A] gradient is exponential* and given by 

€ 

[A]ss(x) = A0 exp −
x
λ

 

  
 

  
,   with 

€ 

A0 =
α

2 Dβ
 and 

€ 

λ =
D
β
.  (3.2) 

In Equation (3.2), A0 and λ  represent the amplitude and characteristic length of the 

steady-state gradient, and their values determine uniquely this solution. As A0 and λ are 

defined in terms of the parameters of the system, a perturbation on the wild-type 

parameter values will maintain the steady-state solution invariant if and only if the values 

of A0 and λ remain unchanged. To formalize, let 

€ 

( ˜ α ,  ˜ β ,  ˜ D ) be the wild-type parameter 

values and consider a mutant that perturbs the system such that the effective parameter 
                                                        
*  In this example, we ignore boundary conditions by assuming that the system is infinitely long and 
diffusion occurs in both directions from the source. These assumptions allow us to solve the full time-
dependent problem (3.1) exactly using the method of Fourier transforms (Bergmann et al., 2007; see 
Methods section) and solution (3.2) arises as a limit of the time-dependent solution when t∞. 
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values of the system change to (α’, β’, D’). We say that the mutant preserves the steady-

state gradient or is steady-state invariant if the following equations hold: 

€ 

′ α 
′ D ′ β 

=
˜ α 
˜ D ˜ β 

≡ constant1

     ′ D 
′ β 

=
˜ D 
˜ β 
≡ constant2.

     (3.3)  

The set of all steady-state invariant perturbations can be represented geometrically in 

parameter space and will be referred to as the steady-state invariant set of the system. In 

general, a steady-state invariant perturbation Δ can be denoted as a vector in parameter 

space that is based on the point of wild-type parameter values and ends on the steady-

state invariant set (Fig. 3.2A). In this example, it follows that any perturbed parameter 

vector (α’, β’, D’) satisfying Equation (2.3) must be of the form, 

€ 

( ′ α ,  ′ β ,  ′ D ) = (δ ˜ α ,  δ ˜ β ,  δ ˜ D )    for some δ > 0.  (3.4) 

Equation (3.4) represents a straight line in parameter space that crosses through the origin 

and contains the wild-type parameter vector 

€ 

( ˜ α ,  ˜ β ,  ˜ D ) (Fig. 3.2B). Thus, the line defined 

by Equation (3.4) is the steady-state invariant set of this system. Importantly, a 

perturbation that keeps the parameter values within the steady-state invariant set may 

affect the transient evolution of the gradient but maintains the steady-state morphogen 

gradient unchanged. In this simple example, the effects on morphogen dynamics along 

the steady-state invariant set are simple to interpret;  for  δ  < 1, gradient formation is 

slower compared to the wild-type case, while for δ > 1 the steady-state gradient is 

approached faster than in the wild type (Fig. 3.2C-E). In addition, the rates in which the 

steady state is approached are space-dependent; cells adjacent to the source approach 

equilibrium faster than cells away from it and this property also holds after steady-state  
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Figure 3.2 Analysis of steady-state invariant perturbations in the case of a morphogen established by 
diffusion and uniform linear degradation.  
 
(A) Steady-state invariant sets can be generally described as subsets of parameter space. A steady-state 

invariant perturbation is represented by a vector in parameter set based on the point of wild-type parameter 

values (green) and ending on another point of the steady-state invariant set (red). (B) The steady-state 

invariant set of the morphogen modelled by Equation (1) is the straight line defined by Equation (3.4) with 

δ>0. (C-E) Temporal dynamics of the morphogen concentration [from Equation (3.1)] when parameter 

values α, β, and D are perturbed along the steady-state invariant set by varying the value of δ. (C) δ=1 

(unperturbed case); (D) δ=0.5; (E) δ=2. For comparison purposes, gradients in (C-E) are plotted using the 

same colour-coded timescale and the (invariant) steady-state profile is displayed in all three panels. 

 

invariant perturbations (see Supporting Fig. 3.1). Despite the simplicity of this example, 

the definition of steady-state invariant sets and the method to compute them can be 

generalized (see Box 3.1).   
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BOX 3.1 
 
Consider the following general model of developmental patterning. Let G=([g1], [g2], …, [gk]) a 
vector denoting concentrations of gene products g1, …, gk and assume that the dynamics of gene 
concentrations is described by a reaction-diffusion equation of the form 
 

€ 

∂ G
∂t

=D∇2G + f (G,  µ) .  (B1) 

 

In this equation, 

€ 

∇2 denotes the Laplacian operator (

€ 

∇2 ≡
∂ 2

∂x 2
+
∂ 2

∂y 2
+
∂ 2

∂z2
), D is a vector of 

diffusion coefficients, f is the reaction function that describes the interactions of gene products, and m 
is a vector of kinetic rates or parameters of the system. Note that the systems considered in the text 
(Equations (3.1) and (3.5)) are particular cases of Equation (B1). At the steady state, we set the time 
derivatives to zero so that the steady-state concentrations, Gss, obey the following equation, 
 

€ 

0 =D∇2GSS + f (GSS,  µ) .  (B2) 
 

Assume that the solution of (B2) exists and let us denote it as 

€ 

Gx
SS(µ) . 

 A parameter perturbation (e.g., a genetic perturbation) of the system is a function D of the form 
D(m)=(d1m1, d1m2, ..., drmr)

€ 

≡

€ 

(µ'1 ,µ'2 ,...,µ'r )  for some positive constants d1, ..., dr. We are 
interested in the study of perturbations that leave the steady-state solution 

€ 

Gx
SS(µ)  unchanged at least 

in a region of space S. A steady-state invariant perturbation is a parameter perturbation D that 
satisfies the following property: 
 

€ 

Gx
SS(µ) =Gx

SS(Δ(µ))                for all x ∈ S .  (B3) 
 

Our goal is to find the set of steady-state invariant perturbations satisfying Equation (B3). For this 
purpose, it is useful to consider the following geometric representation. Note that there is a one-to-one 
correspondence between parameter perturbations and points in parameter space (i.e points of the form 

€ 

(µ'1 ,µ'2 ,...,µ'r )  with m'i ≥ 0, i=1,…, r). For each x (fixed), 

€ 

Gx
SS(µ) = constant  and therefore, we 

can consider the points 

€ 

(µ'1 ,µ'2 ,...,µ'r )  in parameter space that satisfy 
 

€ 

Gx
SS(µ'1 ,µ'2 ,...,µ'r ) =Gx

SS(µ) = constant,                for x fixed . (B4) 
 

Denote by Wx the set of points in parameter space satisfying (B4) for a given x, and define the steady-
state invariant set, W, of the system (in S) as the set that results from the intersection of Wx for all 

€ 

x ∈ S , i.e. 
 

  

€ 

Ω = Ωx
x∈S
 ,  (B5)  

 
(see Supporting Figure 3.2). Hence, the steady-state invariant set is a geometric representation of the 
set of mutants that leave invariant the equilibrium gene concentrations in cells located within the 
region S. 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Hh Signaling in the Drosophila Wing Disc: A Case Study 

In order to motivate the applications of the concept of steady-state invariant sets to 

practical cases, the dynamic properties of Hh signaling in the Drosophila wing imaginal 

disc were investigated. In a recent study, we provided experimental evidence for the 

existence of a transient expansion (or ‘overshoot’) of the Hh gradient in the Drosophila 

wing disc which is required to define three different regions of signal exposure (Fig. 

3.3A; Nahmad and Stathopoulos, 2009). However, how specific properties of this 

transient overshoot (e.g., its duration) contribute to patterning has not been established. 

Here, I use the concept of steady-state invariant perturbations to make predictions about 

which genetic perturbations of the system may affect the dynamic properties of this 

overshoot without affecting the equilibrium profile of the gradient.  

Consider the mathematical model of the Hh signaling pathway originally 

presented in Nahmad and Stathopoulos (2009): 

€ 

∂[Hh]
∂t

= D ∂
2[Hh]
∂x 2

+ S−(x)αHh − γHh_Ptc[Hh][Ptc]−βHh[Hh]

∂[ptc]
∂t

= S+(x)α ptc0 +
α ptc[Signal]

m

kptc
m + [Signal]m

−β ptc[ptc]

∂[Ptc]
∂t

= T
Ptc
[ptc]− γHh_Ptc[Hh][Ptc]−βPtc[Ptc]

∂[Hh_Ptc]
∂t

= γHh_Ptc[Hh][Ptc]−βHh_Ptc[Hh_Ptc]

∂[Signal]
∂t

=

S
+

(x)α
Signal

[Hh_Ptc]
[Ptc]

 

 
 

 

 
 

n

k
Signal

n
+
[Hh_Ptc]
[Ptc]

 

 
 

 

 
 

n
−βSignal[Signal],

   (3.5) 

where [Hh], [ptc], [Ptc], [Hh_Ptc] are the concentrations of Hh, ptc (mRNA), Ptc 

(protein), and the Hh-Ptc complex, respectively.  The coefficients α, β, γ, and T,  
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Figure 3.3 Analysis of steady-state invariant perturbations of the Hh morphogen in the Drosophila 
wing disc.  
 
(A) Summary of the ‘Overshoot’ Model (Nahmad and Stathopoulos, 2009). An overshoot of the Hh 

gradient determines patterning of the Drosophila wing disc. Three gene expression domains are established 

by this overshoot. Cells that do not receive the signal or that receive sustained signalling levels are denoted 

by red and blue, respectively. Certain cells that are only transiently exposed to the signal are denoted by the 

white state and characterized by dpp (but not ptc) expression. The photo displays wild-type expression 

patterns of ptc and dpp in a third-instar wing disc (with the anterior compartment oriented upwards) 

carrying a dpp-lacZ reporter immunostained using Ptc (blue) and β-Galactosidase (white) antibodies. (B) 
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Comparison of the Hh steady-state profiles as obtained from the numerical solution of equation (6) or the 

exact solution of the linearization [Equation (3.8)]. Note that the approximation is good only near the AP 

boundary. (C) The steady-state invariant subset described by equation (3.10) represents a line 

parameterised by the variable δ. (d) Analysis of the overshoot in selected steady-state invariant mutants. 

Colour coding of the curves correspond to different values of δ as shown in (C). Note that the amplitude of 

the overshoot is unaffected by these steady-state invariant perturbations. (E) The duration of the overshoot 

(in hours) as extracted from (D) (squares) as a function of δ. (F) Representation of the steady-state invariant 

subset from equation (11) in two dimensions. The vertical axis denoted by µ, represents any other 

dimensions of parameter space. (G) Similar analysis as in (D), but corresponding to the approximate 

steady-state invariant subset in (F). (H) Steady-state invariant perturbations in (F) considerably affect the 

amplitude (red), but not the duration of the overshoot (blue).  

 

represent the rates of synthesis, degradation, complex formation, and translation, 

respectively. S+(x) (or S-(x)) is a step function of the form S+(x) = 1 if x > 0 (or S-(x) = 1 if 

x < 0), and zero otherwise that is used to represent compartment-specific reactions. For 

example, in this model, extracellular Hh is produced in the posterior compartment (x<0) 

and diffuses across the anterior-posterior (AP) boundary (x=0). In the anterior 

compartment (x>0), Hh binds its receptor, Patched (Ptc), and Hh signaling is activated as 

a function of the ratio of bound to unbound receptor concentrations (Casali and Struhl, 

2004). As in our previous study, the variable [Signal] denotes the concentration of a 

factor that models pathway activity at the intracellular level (see Nahmad and 

Stathopoulos (2009) for further details). At the steady state, the set of Equations (3.5) 

reduce to the following second-order equation, only valid within the anterior 

compartment (x>0), 
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€ 

D d2[Hh]ss
dx 2

−
χ [Hh]ss

β
Ptc

+ γHh_Ptc[Hh]ss
α ptc0 +

α ptc[Hh]ss
nm

η κ n + [Hh]ss
n[ ]

m
+ [Hh]ss

nm

 

 

 
 
 

 

 

 
 
 
−βHh[Hh]ss = 0 ,  (3.6) 

with 

€ 

χ =
TPtcγHh_Ptc
β

ptc

, 

€ 

κ =
kSignalβHh_Ptc
γHh_Ptc

, and 

€ 

η =
kptcβSignal
αSignal

. This equation is nonlinear and an 

analytical solution may be difficult (or impossible) to obtain. However, near the anterior-

posterior boundary (0< x <<1), we can assume that Hh exists at sufficiently high levels so 

that 

€ 

[Hh]SS
n >> κ n  holds in this region (see parameter values in Supporting Table 1). 

Under this assumption, one of the nonlinear terms in Equation (3.6) can be approximated 

by a constant, 

€ 

α ptc[Hh]ss
nm

η κ n + [Hh]ss
n[ ]

m
+ [Hh]ss

nm
≈
α ptc

η +1
. 

The other nonlinear term in Equation (2.6) can be linearized (via a Taylor expansion) 

around a point where the condition 

€ 

[Hh]SS
n >> κ n

 
is satisfied (see details in the  

Supporting Text). Under these approximations, it can be shown that near to the AP 

boundary the steady-state gradient can be approximately modeled by the following linear 

equation: 

€ 

d2[Hh]SS
dx 2

−B[Hh]SS −C = 0 ,  (3.7) 

with

€ 

B = βHh

D
 1+

TPtcγHh_Ptc

βptc 3βHhβPtc + γHh_PtcαHh( )
α ptc0 +

α ptcαSignal

αSignal + kptcβSignal

 

 
  

 

 
  3−

γHh_PtcαHh

3βHhβPtc + γHh_PtcαHh

 

 
 

 

 
 

 

 
 
 

 

 
 
 

 
and 

€ 

C =
3βHhTPtcγHh_Ptc

2 αHh
2

βptcD 3βHhβPtc + γHh_PtcαHh( )2
α ptc0 +

α ptcαSignal
αSignal + kptcβSignal

 

 
  

 

 
   (see Supporting Text for 
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details). Using appropriate boundary conditions (see Methods section), the solution of 

Equation (3.7) is given by: 

€ 

[Hh]SS(x) = Aexp − Bx[ ] − CB ,    (3.8) 

with  

€ 

A =

αHh

βHh
+
C
B

1+ BD
βHh

coth βHh
D
LP

 

 
 

 

 
 

 and LP is the width of the posterior compartment (see 

Supporting Text). In fact, the numerical solution of Equation (3.6) (using the parameters 

values in Supporting Table 2.1) is well approximated by the exact solution of the 

linearization [Equation (3.8)] close to the anterior-posterior boundary (Fig. 3.3B). A 

steady-state perturbation will maintain the Hh gradient approximately invariant near the 

anterior-posterior boundary if Equation (3.8) is unaffected by the perturbation, this is, if 

A, 

€ 

B , and 

€ 

C
B

 remain constant. Thus, under these approximations, the steady-state 

invariant set of the linearized system is given by: 

€ 

B'= β 'Hh

D'
 1+

T 'Ptc γ 'Hh_Ptcζ '
β 'ptc 3β 'Hh β 'Ptc +γ 'Hh_Ptcα 'Hh( )

3−
γ 'Hh_Ptcα 'Hh

3β 'Hh β 'Ptc +γ 'Hh_Ptcα 'Hh

 

 
 

 

 
 

 

 
 
 

 

 
 
 

= constant1

     C'=
3β 'Hh T 'Ptc γ 'Hh_Ptc

2 α 'Hh
2 ζ '

β 'ptc D' 3β 'Hh β 'Ptc +γ 'Hh_Ptcα 'Hh( )2 = constant2

A'=

α 'Hh

β 'Hh

+
C'
B'

1+ D'  B'
β 'Hh

coth β 'Hh

D'
LP

 

 
 

 

 
 

= constant3,

   

(3.9)  

where constant1, constant2, and constant3 are given by the wild-type parameter values 

and 

€ 

ζ ' =α 'ptc0 +
α 'ptcα 'Signal

α 'Signal +k'ptc β 'Signal
. Although any set of perturbed parameter values that 

satisfy these equations will maintain the approximated steady-state gradient unchanged, 
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the steady-state invariant set defined by Equations (3.9) is not very useful in practice 

because it involves more than fifteen parameters. Therefore, it is convenient to study 

particular subsets of the set defined by Equations (3.9). As a first case, consider, 

€ 

( ′ α ptc, ′ α ptc, ′ β ptc ) = (δ ˜ α ptc0,δ ˜ α ptc,δ ˜ β ptc ) ,    for any δ > 0    (3.10) 

with 

€ 

˜ α ptc0,  ˜ α ptc,  and ˜ β ptc  denoting the wild-type parameter values and all other 

parameters kept unperturbed (i.e. at their wild-type values). By substitution into 

Equations (3.9), it is clear that Equation (3.10) represents a steady-state invariant subset 

of the linearized system. In fact, Equation (3.10) also leaves invariant the original steady-

state equation of the system [Equation (3.6)] and therefore, it is an exact steady-state 

invariant subset of the system. Geometrically, Equation (3.10) represents a line in the 

αptc0−αptc−βptc parameter subspace (Fig. 3.3C). Numerical simulations suggest that a few-

fold changes in δ  affect the duration but have little effect in the amplitude of the 

overshoot (Fig. 3.3D,E). In particular, we noted that the duration of the overshoot 

increases rapidly as δ decreases (δ<1), but decreases slowly as  δ increases (δ  >1). 

Therefore, perturbations along this steady-state invariant subset provide the opportunity 

to study the role of signal duration in more detail. 

An even simpler case of a steady-state invariant subset of the linearized system 

can be obtained by noticing that the system of Equations (3.9) does not involve the 

degradation rate of the Hh-Ptc complex, βHh_Ptc. Therefore, under these approximations, 

the steady-state solution does not depend on the value of βHh_Ptc. For simplicity, consider 

the approximate steady-state invariant subset given by: 

€ 

′ β Hh_Ptc = δ ˜ β Hh_Ptc ,  for 0<δ <1  (3.11) 
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with all other parameters held constant at their wild-type values (Fig. 3.3F). The 

constraint 0< δ <1 was enforced so that the assumption 

€ 

[Hh]SS
n >> κ n  remains valid. In 

contrast to the subset defined by Equation (3.10), perturbations along the subset described 

by Equation (3.11) will affect the amplitude of the overshoot, but its duration will be 

maintained relatively constant (Fig. 3.3G,H). The simplicity of this subset permits the 

design of a genetic steady-state invariant perturbation. The ptc14 allele has been 

characterized as a mutant that is defective in endocytosis-dependent internalization and 

degradation of the Hh-Ptc complex, suggesting that the stability of the Hh-Ptc complex is 

increased in Ptc14 mutants (Torroja et al., 2004). Importantly, other properties of the Ptc 

protein appear unaffected in ptc14 mutant clones. For example, Ptc14 proteins bind Hh and 

repress Hh signal transduction in a similar manner than wild-type Ptc (Torroja et al., 

2004). Furthermore, Ptc14 is not over expressed in anterior clones away from the AP 

boundary, suggesting that unbound Ptc14 degradation is normal. This genetic evidence 

suggests that βHh_Ptc  decreases in ptc14 mutants, while other parameters approximately 

maintain their wild-type values. Therefore, we predict that ptc14 mutants satisfy Equation 

(3.11) and can be considered as a steady-state invariant perturbation of the system near 

the AP boundary.  Based on our modeling results, perturbations along this steady-state 

invariant subset affect the amplitude of the overshoot, but not the overall shape and 

duration of the transient response suggesting that more anterior cells would be transiently 

exposed to the signal (Fig. 3.3G,H). Experiments using ptc14 mutant clones abutting the 

anterior-posterior show that the expression domains of Hh target genes expand in the 

region of these clones (Torroja et al., 2004), consistent with the predictions of our model 

and our simulations (Nahmad and Stathopoulos, 2009; Fig. 3.3G). 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Other subsets can be similarly obtained from Equations (3.9) and their effects on 

transient dynamics can be systematically analyzed. However, sets involving more 

parameters are difficult to visualize and perturbations along these subsets may not be 

easily achieved by experimental manipulations (see below). 

 

3.4 Analysis of Steady-State Invariant Sets 
 
 
The problem of computing the steady-state invariant set from a given model is in general 

non-trivial. Although the example of the single morphogen gradient established by 

diffusion and degradation [Equation (3.1)] is not intended to represent any biological 

morphogen of interest, it was chosen because the steady-state invariant set can be 

computed exactly. However, in most cases a solution to the steady-state problem 

(equation (B2) in Box 3.1) cannot be obtained analytically. Nonetheless, there are 

different manners to overcome this problem and get a partial or approximate set of 

steady-state invariant perturbations. One easy way to obtain  at least a steady-state 

invariant subset of a system is to simply inspect the steady-state equation and ask which 

parameter perturbations leave the equation invariant. For example, perturbations that 

satisfy Equation (3.10) leave the steady-state problem [Equation (3.6)] unchanged. In this 

case, there is no need to know the solution of the steady-state equation, but in general, 

this approach will only provide a subset of steady-state invariant perturbations. We will 

say that a steady-state invariant set is direct if it can be deduced from the steady-state 

equation. Note that Equation (3.4) is a direct subset of Equation (3.1), and from the 

steady-state solution (3.2), we verified that it contains all the steady-state invariant 

perturbations of the system. But this is not true in general. An interesting theoretical 
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challenge for the future will be to find conditions to determine in which cases the full 

steady-state invariant set is direct, i.e., when we can obtain all steady-state invariant 

perturbations of the system without the need of solving the equations.  

  Alternatively, as we did for Equation (3.6), an approximate steady-state invariant 

set can be obtained by linearization. One advantage of this approach is that subsets may 

be more simple and useful for experiment design (e.g., Equation (3.11)). However, unlike 

exact steady-state invariant sets that are valid throughout the developing field, these 

approximations are rather local (Fig. 3.3B).  

Finally, another approach is to compute the exact steady-state invariant set by 

spatially discretizing the system, i.e., turning the problem (Equation (B1) in Box 3.1) into 

a system of ordinary differential equations. In fact, this is the way in which we defined 

steady-state invariant sets in general in Box 3.1. Using this approach, the property of 

steady-state invariance needs not to be global, i.e., it can be considered in a desired subset 

of the whole developmental field and this might often be convenient in practice. For 

example, some genetic perturbations are lethal to the organism, but can be studied in a 

specific developmental context (e.g., using mosaic genetic analysis). Another advantage 

is that embryos and tissues are composed by discrete entities (cells), so that modelling the 

system in this way might be well justified in this kind of problem.  

In practice, it would be convenient to know, based on the geometry of the steady-

state invariant set, how difficult is to design a genetic experiment that causes a steady-

state invariant perturbation in the system. In other words, how likely is it for a random 

parameter perturbation to be steady-state invariant? A geometric notion that provides 
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insight into this question is the concept of codimension*. Intuitively, the codimension of a 

geometric set tells us how large the dimension of space where the set is embedded is 

compared to the dimension of the set. For example, the codimension of a sphere is one in 

a three-dimensional space, but n-2 if considered in a space of dimension n. For the 

practical purposes of this study, we define the codimension of a set as follows. Let M be 

a steady-state invariant set that affects s parameters and can be parameterized by r 

variables, then the codimension of M is defined as codim(M)=s-r. For instance, the 

steady-state invariant subsets defined by Equations (3.10) and (3.11) depend on three 

(αptc0,  αptc, and  βptc) and one (βHh_Ptc) parameters, respectively, and both are 

parameterized by the single variable δ. Therefore, their codimensions are two and zero, 

respectively. Intuitively, the codimension of a set is inversely related to the concept of 

degrees of freedom, i.e., the number of parameters that can be arbitrarily varied without 

abandoning the set. In general, steady-state invariant sets of small codimensions (or large 

degrees of freedom) would be expected to be more suitable in practice because they 

provide further flexibility in generating steady-state invariant perturbations. The extreme 

scenario is when the codimension is zero and any perturbation of the parameters involved 

is in fact steady-state invariant. This scenario is potentially very useful for experimental 

design because such perturbations do not require precise tuning of parameter values. For 

example, the fact that the codimension of the subset defined by Equation (3.11) is zero 

allowed us to propose a concrete experiment (using the ptc14 allele) to locally introduce 

steady-state invariant perturbations in this system.  

    

                                                        
* Steady-state invariant sets are defined by algebraic equations and therefore the concepts of dimension and 
codimension can be rigorously defined (see Supporting Text).  
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3.5 Concluding Remarks 
 
 
There is recently much interest in the problem of how the dynamics of morphogen 

gradients contribute to developmental patterning (reviewed by Kutejova et al., 2009). In 

this paper, I presented a general theoretical approach that may help to identify mutations 

that affect the transient establishment of morphogen gradients without changing their 

equilibrium distribution. Although the experimental implementation of these tools to 

study the role of morphogen gradient dynamics in developmental pattern formation is left 

to future studies, I provided details of how they can be implemented in practical systems. 

In particular, the analysis of steady-state invariant subsets in a model of Hh signalling in 

the Drosophila wing provides the opportunity to decouple two properties of the Hh 

gradient overshoot, namely, duration and amplitude. The duration of the overshoot can be 

modulated in a steady-state invariant manner by varying the rates of ptc production and 

degradation (Fig. 3.3C-E). Furthermore, the amplitude of the overshoot can be affected 

by reducing the rate of Ptc-dependent Hh internalization and degradation. In fact, 

previous experiments in which a mutant form of Ptc (Ptc14), that is defective in Ptc-

mediated Hh endocytosis, but otherwise appears to function normally, provides an 

example of an experimental steady-state invariant perturbation in this system. 

Another interesting application of these tools is to consider steady-state invariant 

sets as parameter perturbations to which the system exhibits robustness. For instance, in 

engineering it is often desirable to design systems in which the steady state is robust to a 

certain class of perturbations. Therefore, the converse problem, namely, to construct a 

dynamical system that will maintain a desired set of perturbations invariant poses an 

interesting challenge for the future. The context in which the converse problem has been 
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studied in some detail is robust control theory and there are several examples in which 

imposing invariance into the steady-state values of some variables constrains the dynamic 

properties of the system. One of the most studied examples is ‘perfect adaptation’ in 

bacterial chemotaxis (Barkai and Leibler, 1997; Alon et al., 1999). For instance, a well-

known result in control theory is that the steady-state error in some desired signal remains 

negligible despite external perturbations or variations in internal components if and only 

if the error dynamics are governed by integral feedback and this has been shown to apply 

to perfect adaptation in chemotaxis (Yi et al., 2000). Furthermore, a recent report 

provides structural conditions on biochemical reaction network dynamics to guarantee 

invariance of particular steady-state concentrations (Shinar and Feinberg, 2010). Finally, 

it is likely that evolution has faced and solved this converse problem in selecting for 

optimal mechanisms for developmental patterning; in some systems, it is possible that 

natural selection has minimized the effects of certain classes of genetic perturbations to 

maintain invariant some essential gene expression patterns. Alternatively, natural 

selection may have taken advantage of the diversity of morphogen dynamics to evolve 

the mechanisms of developmental pattern formation. 

 

3.6 Outlook 
 
  
It is broadly recognized that physics and engineering have not only clearly benefited from 

mathematics, but also have substantially motivated the development of new mathematical 

theories and concepts. Although the use of mathematical modelling has become a 

common practice in biological research in general, and in developmental biology in 

particular (Tomlin and Axelrod, 2007; Ibañes and Izpisúa-Belmonte, 2008; Oates et al., 
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2009), some theoreticians hope that problems in biology will contribute to the 

development of new mathematics in the 21st century (Cohen, 2004; Sturmfels, 2005). The 

theory of steady-state invariant sets introduced here was motivated by the problem of 

whether or not morphogen dynamics contribute to developmental patterning. 

Nonetheless, the applications of the tools presented here are not limited to the design of 

experimental perturbations and/or to test the role of transient signals in developmental 

patterning, but may be broadly applicable to a large class of problems and will hopefully 

depict interesting research avenues in dynamical systems theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


