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Abstract 

In this thesis we numerically study two unique pattern forming processes observed in 

Rayleigh-Benard convection. Using variants of the Swift-Hohenberg equation, we study 

the Kiippers-Lortz instability and a spiral chaos state in a large cylindrical cell. For the 

Kiippers-Lortz instability, we show that the theoretical scaling of the correlation length 

and domain switching frequency hold in the case of our model equations. We find, 

however, that it is necessary to account for finite size effects by scaling the correlation 

length appropriately. We find then that the correlation length scales linearly with the size 

of the cell when the cell is small and/or when the control parameter is small. Scaling of 

the domain switching frequency for finite size effects is not necessary as domain switching 

appears to be enhanced by sidewall processes. Our results provide strong evidence that 

finite size effects are responsible for the observed discrepancies between theoretical and 

experimental scalings. 

We also study the effect of rotation on the spiral state which occurs in a Swift­

Hohenberg equation through a coupling with mean flow effects. We find that rotation 

and mean flow are competing processes. Mean flow shifts the pattern wave number so 

that the usual Kiippers-Lortz instability is only observed at higher rotation rates. A 

parameter search is performed and a consistent trend of patterns is observed as the 

rotation rate is increased. 
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Chapter 1 

Introduction 

1 

1.1 Rayleigh-Benard Convection and the Kiippers-Lortz 

Instability 

Pattern formation is a fascinating process that occurs in many diverse physical systems 

[17]. The underlying connection in these processes is the formation of ordered structures 

out of essential disorder. This is most easily characterized by the formation of a small 

number of definite length scales in the system. Although the mechanisms responsible for 

this pattern formation can be vastly different in different systems, the similarity of the 

ordering process is truly remarkable. This leads one to search for a more fundamental 

understanding of these processes. 

The difficulty in studying these processes is the inherent complexity in most physical 

systems. It is often difficult to isolate or control exactly those mechanisms which are 

responsible for determining the pattern forming processes. One system which is amenable 

to detailed study is the Rayleigh-Benard convection (RBC) system. This involves a fluid 

which is confined between two horizontal parallel plates. The two plates are considered to 

be perfect conductors relative to the fluid between them so that temperature variations 

across each plate are negligible, while the temperature difference between the plates can 

be precisely controlled. If the bottom plate is heated, then initially, the fluid remains 

at rest and a linear temperature profile is established in the fluid. This is known as 

the conduction or uniform state. If the temperature difference l:1T is increased beyond 

some critical value l:1Tc , the dissipative effects of thermal conduction and viscosity are 

overcome and convection sets in. The important control parameter here is the Rayleigh 

number R, which is the dimensionless ratio of the destabilizing buoyancy force Poo:gl:1T 
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to the stabilizing dissipative force VK,Po/ d3 

(1.1) 

where Po is the average mass density, a the thermal expansion coefficient, 9 the accel­

eration of gravity, v the kinematic viscosity, K, the thermal diffusivity and d the plate 

separation. The transition from the conduction to the convection state then occurs as 

the parameter f = (R - Rc) / Rc = D..T / D..Tc -1 passes through zero and becomes positive. 

The critical Rayleigh number Rc = agD..Tcd3 / K,V ::::: 1708, is found to be independent of 

the fluid under consideration (see [12]). The pattern which is observed is one in which 

fluid rises in some regions and falls in others with a characteristic horizontal length scale 

d, the only length scale available in the ideal laterally infinite system. These structures 

are known as convection rolls. A schematic picture of a Rayleigh-Benard convection roll 

pattern is shown in Fig. (1.1). 

T 

Figure 1.1: Schematic picture of Rayleigh-Benard convection showing fluid streamlines 

in an ideal roll state. 
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The most important way specific fluid properties enter thermal convection is through 

another important dimensionless parameter. The Prandtl number (J = v / /'i" represents 

the ratio of the two damping mechanisms acting on the fluid, the kinematic viscosity 

v and the thermal diffusivity /'i,. It has been shown to be important in controlling the 

effects in secondary instabilities in the convection system. 

Very close to onset (i.e., for small positive E), the parallel roll state is essentially 

time independent. However, the system can be made more complex and interesting 

even near onset by rotating the entire system about a vertical axis. Coriolis forces then 

become important and render the system non-variational. Thus time dependent states 

can occur arbitrarily close to onset. Depending on the rotation rate 0, an interesting 

new instability is seen. Instead of observing reasonably straight parallel rolls, a collection 

of smaller domains of parallel rolls oriented at different angles to each other is seen. The 

domains are dynamic with one domain being replaced over time by a neighboring domain, 

only to be replaced itself by another domain. This replacement occurs by domain wall 

propagation rather than a spontaneous change of roll orientation within the domains. 

This rather novel phenomenon is known as the Kiippers-Lortz (KL) instability. 

The KL instability was first investigated theoretically by Kiippers and Lortz in 1969 

[35]. In that work, they showed that the existence of a nonlinear instability of the 

parallel roll state in the rotating Rayleigh-Benard convection system for the special case 

of infinite Prandtl number, (J ----t 00 and free slip boundary conditions. They found the 

parallel roll state to be maximally unstable to a set of rolls oriented at 58° (in the sense 

of rotation) to the original set of rolls when the Taylor number T = (20)2, exceeds a 

critical value of 2285. Later Kiippers [36] showed the same phenomenon exists for finite 

Prandtl numbers and rigid boundary conditions. 

The first experimental observations of the KL-unstable state were by Heikes and 

Busse [ll, 26] in 1980. Using water as the fluid and shadowgraph flow-visualization 

techniques, they observed patterns consisting of domains of rolls of more or less uniform 

roll orientation at a value of E > 0.5. As predicted by theory, switching of domain 

orientations was observed over time. But for large E the switching angle was generally 

found to be greater than the predicted KL angle of 58° and the instability occurred for 

a rotation rate less than the theoretically expected value Oc [25]. Later experiments by 
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others [52], also in water, recorded patterns down to E ~ 0.1 and also found KL domains 

well below the predicted Oe. The measured switching angle however, agreed well with 

the theoretical value. 

After the initial early work mentioned above, this system received little attention for 

almost a decade. But recent interest in studying systems which exhibit spatio-temporal 

chaos, for which the KL system is an ideal candidate, has renewed interest in it for both 

experimentalists [7, 31, 42, 51, 52] and theorists [18, 21, 41, 43, 48] alike. 

1.2 Boussinesq Equations and Swift-Hohenberg Models 

Another advantage of studying the Rayleigh-Benard convection system is the existence of 

well known governing equations of motion. These are the so-called Oberbeck-Boussinesq 

equations which are derived from the Navier-Stokes equation and the conservation law 

for heat. But in the Oberbeck-Boussinesq equations, a considerable simplification is 

made by assuming that all fluid parameters except the density P are constant. In nondi-

mensionalized form the equations are 

1 (au ) Ij- at + u . vu 

aO 
-+u·VO at 

V· u 

_Ij-1V (%0) + Oz + V2u, 

V 20 + Rz· u, 

0, 

(1.2) 

(1.3) 

(1.4) 

where u is the fluid velocity, 0 is the temperature deviation from the linear conduction 

profile, p is the pressure deviation from the conduction profile and z is the unit vector 

in the vertical direction. The parameters here are the Prandtl number Ij = v / /)', the 

mean fluid density Po, the Rayleigh number R = exgb..Td3 / /),v where ex is the thermal 

expansion coefficient, 9 is the acceleration due to gravity and d is the fluid depth. The 

appropriate boundary conditions at the top and bottom plates are 

u = 0 = 0, 
1 

z = ±-. 
2 

(1.5) 

In the ideal system, the plates are of infinite lateral extent and no lateral boundary 

conditions are needed. In practice, of course, it is necessary to have sidewalls and these 
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will inevitably complicate the behavior of the solutions as well as the analysis of these 

equations. 

The linear instability of the uniform conduction state leading to the formation of 

convection rolls has been extensively studied in this system. The onset of solutions 

varying as eikx can be found in essentially closed form [12]. The important parameter 

controlling this transition is the Rayleigh number, which has a critical value of Rc = 

1707.76, regardless of the fluid. The critical wave vector is ko = 3.117. Notice that this 

is very close to 7r, so that the roll size is very close to the depth. 

A detailed study of the stability boundaries has been done by Busse and his co­

workers [10, 13]. In this work, several different instabilities have been identified and 

classified, according to their visual appearance. Of further interest and importance are 

the corresponding amplitude equations for this system, which govern the growth of the 

instabilities. These were first calculated by Cross in 1980 [14]. He found that for a single 

set of rolls nearly parallel to the y-axis, the equation for the complex amplitude A(x, t) 

is [17] 

(1.6) 

The parameters appearing in this equation are found to be 

-1 19.650" 
(1. 7) TO 

0" + 0.5117' 

~5 0.148, (1.8) 

go 0.6995 - 0.00470"-1 + 0.00830"-2. (1.9) 

Although the amplitude equation is a schematic perturbation expansion of the full 

equations, it clearly does not incorporate all the spatial structure of the solutions in 

the fluid system. Therefore a detailed study of the amplitude equation is not usually 

performed. However, since the amplitude equation possesses the necessary mechanisms 

for pattern formation in the convection system, it is used as a basis for simpler model 

equations whose amplitude equations have the same form as Eq. (1.6). An important 
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equation of this type is the Swift-Hohenberg equation [46]' 

(1.10) 

Using a multiple scales perturbation approach to separate the fast and slow space and 

time scales, it can be shown (see, for example, Appendix A of [17]) that the amplitude 

equation for Eq. (1.10) is, 

(1.11) 

with TO = 1, ~6 = 4 and 90 = 3. Thus, solutions to the Swift-Hohenberg equation 

will exhibit similar pattern formation properties as the full Rayleigh-Benard convection 

system because of this common amplitude equation. 

It is important to note here that as a model for convection, the field 7jJ is only a 

function of two space variables x and y. Thus the study of this equation is considerably 

simpler than for the full fluid system, which involve coupled equations for the three fluid 

velocity components and the temperature field in three space dimensions. Although this 

equation bears little resemblance to the fluid equations for Rayleigh-Benard convection, 

they do share the same basic instabilities through the common amplitude equation. 

Therefore, the Swift-Hohenberg equation can be used to study many of the interesting 

phenomena seen in RBC, without the need to solve the more complicated full system. 

Here the dependent variable 7jJ can be most closely related to the mid-depth temperature 

e in the fluid system. 

It is not surprising that the Swift-Hohenberg equation lacks many of the features 

found in the full fluid system. Firstly, the equation is potential, so that Eq. (1.10) can 

be written as 

(1.12) 

where :F is the potential given by 

(1.13) 
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For such a system, the dynamics consists of relaxation towards the minimum in F, 

so persistent dynamics, periodic or chaotic, is not possible. Also, the stability diagram 

shows qualitative differences with the Busse balloon (the stability boundaries for the fluid 

equations) (see [22]) so that the solutions of Eq. (l.10) often fail to capture important 

qualitative features found in the full fluid system. Therefore, modifications are made to 

this equation at the nonlinear level to try to better emulate the missing features [23]. 

This derives a whole class of Swift-Hohenberg models to study, including a modification' 

to model the Kuppers-Lortz instability [18]. 

If we consider rotating the entire Rayleigh-Benard system about a vertical axis at a 

(dimensionless) rate of n, then Eq. (l.2) becomes, 

(l.14) 

The addition of rotation gives rise to an important chiral-symmetry breaking term, which 

as seen in experiments, provides for more interesting and complex dynamics. To model 

this effect in a Swift-Hohenberg model, it is necessary to construct a term which induces 

a similar symmetry breaking effect. The simplest term constructed out of ?jJ and its 

derivatives retaining the inversion symmetry ?jJ -t ~?jJ, the parity symmetry x -t ~x 

and the rotational invariance in the (x,y)-plane is 92Z' V x [(V?jJ)2 V ?jJ]. Here the 

parameter 92 is approximately proportional to the rotation rate n for small rotations. 

It is also important to include another nonlinear term in the Swift-Hohenberg model 

for the KL instability. This term, 93 V· [(V?jJ)2 V?jJ] , in conjunction with the term model­

ing the rotation, can be shown to be necessary in generating the appropriate instabilities 

of rolls of one orientation towards another, as we have in the KL instability [18]. The 

parameters 92 and 93 are then used to tune the instability to give the appropriate growth 

rate of rolls oriented at an angle of BKL ~ 60° as predicted by Kiippers and Lortz [35] 

and as seen in experiment [52]. 

1.3 Discrepancies Between Theory and Experiment 

The theoretical analysis of the Oberbeck-Boussinesq equations is carried out assuming 

laterally infinite systems, but experiments are done in necessarily finite geometries. Of 
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course, one may hope to construct an experimental cell large enough that sidewall effects 

may be considered negligible, but in practice this is nearly impossible due to physical 

limitations (such as producing plates that can be considered truly fiat, or perfect con­

ductors). But in fact, many interesting effects are due to the presence of the sidewalls 

and it is therefore worthwhile seeking solutions which include lateral boundaries. In the 

case of finite geometries, exact analytical solutions of the governing equations is generally 

impossible to obtain and it is necessary to seek numerical alternatives. 

A major outstanding discrepancy between theory and experiment is the scaling of 

correlation length and domain switching frequencies in the KL state in rotating RBC. 

The correlation length gives a measure of the size of the domains of rolls while the 

domain switching frequency gives a measure of the time it takes for a set of rolls to 

undergo a switching of their orientation. On the basis of Ginzburg-Landau models, the 

correlation length ~ is expected to vary as ~ ex C 1/ 2 and the domain switching Wa varies 

linearly with the control parameter 1':, Wa ex I': for small E. Of course, the theory assumes 

no lateral boundaries, so the experiments are conducted in cells of large aspect ratio to 

try to minimize the effects of a finite geometry. Even so, the scalings obtained from 

experiment are found to be inconsistent with those predicted from theory. In the recent 

experiments of Hu et al. [31], the scalings were found to be ~ ex CO. 2 and Wa ex 1':0.6 

in stark contrast to the theoretical predictions. When higher order corrections in I': are 

included in the scalings, and the theoretically predicted values used at the lowest order, 

unacceptably large coefficients for the corrections are needed to adequately fit the data. 

Our goal is to shed some light on this discrepancy by conducting numerical exper­

iments to determine the valid scalings in a finite geometry. There still exists severe 

computational barriers to the numerical solution of the full Boussinesq equations in 

the experimental geometry (a large cylindrical cell), but as we have seen, solving a 

corresponding Swift-Hohenberg model should provide us with some insight. The Swift­

Hohenberg model considered by Cross et al. [18] has been shown to accurately reproduce 

the behavior seen in the experimental KL state, but their calculations have been per­

formed in a periodic rectangular geometry. Therefore, we solve the Swift-Hohenberg 

model in a cylindrical geometry, and then apply the same pattern analysis techniques 

as in experiment to obtain the corresponding correlation lengths and domain switching 
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frequencies. Since we are not numerically simulating the actual experiments, it is not 

our intention to necessarily obtain their scalings, but instead understand whether finite 

geometries may be responsible for the discrepancies. 

We find that, in the case of the model equation, the theoretical scaling for the cor­

relation length holds, after an appropriate scaling of the values to take account of finite 

size effects. In particular, we find that the correlation length scales linearly with the size 

of the cell when the cell becomes small and/or when the control parameter E ---4 o. The 

switching frequency appears to follow the theoretical scaling without the need to rescale 

the values for the finite cell size. This is not surprising since our model does not account 

for complicated sidewall effects, and we therefore expect the sidewalls to enhance the 

domain switching behavior since the rolls are often nucleated from the sidewalls. Similar 

scalings of the correlation length and domain switching frequency are attempted in the 

experiments, [33], but in the experiments, the rotation rate rather than the cell size is 

varied. These results are found to support the theoretical scalings with only limited 

success as large corrections to the theoretically predicted scalings are necessary to ac­

curately fit the data. This may be due to the less obvious relationship between finite 

size effects and the rotation rate. Furthermore, sidewall effects certainly play a role in 

the case of the experiments. Therefore, it would worthwhile in the future to consider 

more complicated boundary effects in our model to see if these affect our scalings of the 

domain switching frequency. 

1.4 Outline of the Thesis 

In order to provide some explanation for the different time and length scales seen in 

experiment and theory, we perform a numerical study of a Swift-Hohenberg model in a 

finite cylindrical geometry. Although numerical studies of Swift-Hohenberg models have 

been performed before (for example, see [4, 18,21,22]), they have not been conducted in 

truly cylindrical geometries, or have considered the models relevant to the Kiippers-Lortz 

instability. 

Another difficulty that is encountered in the numerical solution of these problems is 

the need to find efficient, stable algorithms. Since the time scales involved are typically 

very long, use of explicit or even semi-implicit schemes is impractical. This, coupled 
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with the fact that it is necessary to solve these equations in a circular geometry, presents 

a major obstacle to progress. In this thesis, we have considered several approaches to 

numerically solving the Swift-Hohenberg models in the cylindrical geometry with varying 

degrees of success. 

Numerical solutions to Swift-Hohenberg models have been obtained by many other 

researchers. However, these have not necessarily concentrated on modeling the KL in­

stability or have not looked at solving the equations in a truly circular domain. Most 

importantly, none have considered developing codes which can be used to evolve the 

solution over very long time scales. For this, a fully implicit scheme is needed, which has 

been developed in our work. 

We also implement pattern diagnostic techniques to obtain comparisons with exper­

iment. This requires the collection and processing of large amounts of data which we 

believe has not been attempted before. Again, this may be attributed to the need for a 

numerical scheme which allows for long time evolutions. Our study reveals a dependence 

on the finite size of the domain which may account for the discrepancies seen in scaling 

of time and length scales of experiment and theory. 

Finally, we extended our solution technique to a generalized Swift-Hohenberg equa­

tion which takes account of mean flow effects. Mean flow arises when the vertical vorticity 

is driven by roll curvature and amplitude modulations. Coupling to mean flow has been 

shown to playa key role, for example, in the onset of weak turbulence [39, 24, 45, 53]. We 

follow the approach of Xi et al. [50] from a model suggested by Greenside and Cross [23], 

but extend their results by adding terms related to rotation. In the absence of rotation, 

and for sufficiently large f and sufficiently large cells and strong mean flow, spiral chaos is 

observed, in agreement with the experimental system. We have found that the addition 

of rotation has a negative effect on spiral formation, often unwinding the spirals. As we 

further increase the rotation, we find that it is possible to remove all spiral structures 

from the pattern. The spirals are first replaced by a quasi-static or slowly evolving roll 

structures which are reasonably straight for smaller f, but may become more curved at 

higher f > 0.55. At higher rotation rates, this roll pattern is replaced by the familiar KL 

state. The onset of the KL state however, occurs at considerably higher rotation rates 

than would be expected in the absence of mean flow. This further confirms the existence 
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of the competition between mean flow and rotational effects in the system. 

The rest of this thesis is organized as follows. In Chapter 2, several numerical schemes 

for Swift-Hohenberg models are presented, leading to a fully implicit scheme suitable for 

use in integrating over very long time scales. We also show the need for a variable radial 

mesh to help stabilize some numerical artifacts which arise when using a polar mesh. In 

Chapter 3 we present the techniques for pattern and data analysis following the work 

of experimentalists. In Chapter 4, a generalized Swift-Hohenberg equation is solved and 

the effects of rotation on the spiral chaos state is considered. 
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Chapter 2 

Numerical Simulation of the Model 

Equations 

2.1 Swift-Hohenberg Models 

Our models of Rayleigh-Benard convection are conveniently studied using the time de­

pendent fourth-order partial differential equation, 

(2.1) 

where 'l/J(x, t) is a real-valued function of two horizontal space variables. In the physical 

set up, the field 'l/J would roughly represent the mid-plane temperature field of the con­

vecting fluid. N('l/J, t) is a nonlinear function of'l/J and possibly time t, and it is through 

this term that the interesting dynamics can be generated. We notice that the mecha­

nism represented by this equation is a basic linear instability at wave number 1 when the 

control parameter E > O. Expanding about k = X, for example, we see that the linear 

growth rate r for wave number k = (1 + !:::..kx ) . x + !:::..ky . fj is 

(2.2) 

which is of the same form as that for the linear instability in Rayleigh-Benard convection. 

With N ('l/J) = - 'l/J3, we obtain the original Swift-Rohenberg equation. By considering 

more complicated forms of the nonlinear term N('l/J) , we are able to use Eq. (2.1) to 

simulate the dynamics seen in the Kiippers-Lortz instability. 



13 

2.1.1 Modeling the Kiippers-Lortz Instability 

A particularly novel instability is seen when the Rayleigh-Benard system is rotated about 

a vertical axis. In the nonrotating case, straight parallel rolls are typically observed 

just above onset, but in the rotating case, several patches of differently oriented stripe 

patterns are possible once a critical rotation rate is exceeded. These patches are dynamic 

in the sense that they are constantly in a process of creation and destruction which 

occurs primarily through boundary interactions with other patches. In particular, one 

set of rolls becomes unstable towards a second set of rolls rotated at a particular angle 

BKL = 58°. This second set of rolls, when established, in turn becomes unstable to a 

third set of rolls, rotated through a further BKL, and so on. This is the well documented 

Kiippers-Lortz (KL) instability. 

Early efforts to model this instability by Busse and Heikes [11] involved using a 

three-mode model with BKL = 60° ::::; 58°, but with no spatial variation. Later Tu and 

Cross [48] added spatial dependence to the model, as well as more realistic interaction 

terms, but still limited study to the truncated set of three orientations. In order to more 

accurately model the continuous range of orientations possible in the fluid system, Cross 

et al. [18] derived a Swift-Hohenberg type model which would allow for a full range of 

possible roll orientations. The model they developed has the form of Eq. (2.1) where the 

nonlinear term is taken to be 

If we take the parameters g2 and g3 to be zero, we recover the original Swift-Hohenberg 

equation. The second term is the important term which breaks the reflection or chiral 

symmetry, and represents the effect of rotation on the convection system. It is the 

simplest term constructed out of 'ljJ and its derivatives retaining the inversion symmetry 

'ljJ .--., -'ljJ, the parity symmetry x .--., -x and the rotational invariance in the X,y plane. 

In a derivation of this model equation from the fluid equations we would expect g2 to 

increase with the rotation rate 0, and to be proportional to 0 for small rotations. 

The reason for including the third term is shown by calculating the amplitude equa-
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7jJ = L Aj exp[iqj . x], 
j 

gives amplitude equations for Aj of the form, 

( 
. 2) 2 8Aj 8 z 8 2 2 

- = fA + 4 - - -- - golAI A - '"'g(B-k)IAkl A at J ax _ 2 ay2 J J ~ J J' 
J J j# 

where Bjk is the angle from % to qk, and 

90 
1 
"29(Bjj) = 3(91 + 93), 

691 + 292 sin(2Bjk ) + 493 + 293 COS(Bjk) , 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

and the coordinates are Xj = X· qj and Yj = X· (z x qj). The Kiippers-Lortz instability, 

when stripes i become unstable towards stripes j, first occurs for the angle Bij = BKL 

that gives 9( Bij) its largest negative value. Minimizing 9( B) gives 

(2.8) 

and the instability then occurs for 

(2.9) 

Thus the coefficient 93 can be used to tune BKL. For example, if we wish to mimic the 

Kiippers-Lortz instability where the rolls are maximally unstable to another set of rolls 

at 7r /3 to the original rolls, we set 

(2.10) 

and then Eq. (2.9) implies that the instability occurs for 91 < 93. Note that by rescaling 

the magnitude of 7jJ we may choose 91 to be of unit magnitude, and we shall assume that 

this is the case unless otherwise noted. Then the Kiippers-Lortz instability at an angle 

BKL = 7r /3 occurs for 91 = 1, 92 = -V393 and 93 > 1. Note that a band of orientations 
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f}.() '"" (93/91 - 1)1/2 will actually be unstable (see [18]). 

2.1.2 Numerical Challenges 

The full fluid system still represents a considerable challenge to current computational 

capabilities although researchers have begun to implement such problems in finite rect­

angular geometries [37]. The effect of finite system sizes and fixed boundaries on the 

dynamics of pattern forming processes, like the Kuppers-Lortz instability, is still not fully 

understood, even in the model systems. Therefore, as a first step, we consider studying 

these effects in the corresponding Swift-Hohenberg models. These, too, present many 

challenges to the researcher looking to accurately and efficiently integrate numerically 

equations of the form of Eq. (2.1). 

The main difficulties to overcome are inherent in the problem we wish to study. 

These are a circular physical geometry and a need to obtain solutions over long time 

scales. Since theoretical results really only apply in the weakly nonlinear regime, it is 

particularly important to be able to study these models close to onset (where the control 

parameter E is close to zero). In this regime, the dynamics are slow so it is necessary to 

obtain the solutions over long time scales if meaningful statistical information is to be 

obtained. 

Although a circular geometry is generally easy to deal with using a standard rect­

angular grid (in a spatial finite difference discretization), the circular outer boundary is 

usually poorly approximated by such a discretization. This can lead to anomalous results 

near the boundary, which ultimately propagate into the bulk, where we are most inter­

ested in obtaining accurate solutions [33]. An obvious way to overcome this difficulty is 

to repose the problem in polar coordinates, r = jx2 + y2 and () = tan- 1(y/x), where 

x and yare the usual Cartesian coordinates, but one must then deal with the artificial 

singularity that is generated at the polar origin. This is a difficulty that is reasonably 

easy to overcome in this case (see [6]) and we choose to use a polar description instead 

of having to apply an appropriate fix at the outer boundary. As we will see later, a polar 

mesh also has the disadvantage that it is no longer uniform in space, and this causes 

our numerical solution to become sensitive to the computational mesh. This too can be 

overcome as we describe later in Section 2.6. 
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Given these restrictions, the difficulties involved in integrating Eq. (2.1) become more 

apparent. In particular, we see that the high order derivatives of the biharmonic operator 

precludes the use of simple explicit methods. The fourth order spatial derivatives would 

require time steps of the order 0(~x4), where ~x is the spatial step, to ensure stable 

solutions. Note that in polar coordinates, it is necessary to take several thousands of 

points in the () direction to achieve sufficient accuracy at the outer boundary of a cell 

of radius ~ 100, so that ~e = 0(10-3 ). Thus a time step ~t = 0(10-12 ) would be 

required to obtain stable solutions which this is clearly unacceptable. On the other 

hand, the nonlinear term makes the use of implicit methods difficult since a nonlinear 

system of equations would then have to be solved at each time step. Additionally, the 

more complicated circularly geometry makes the spatial problem more difficult to solve. 

2.2 A Semi-Implicit Scheme 

We have already mentioned that it is impractical to use an explicit time stepping scheme 

for the numerical solution of our Swift-Hohenberg models Eq. (2.1) because of the severe 

time step constraints necessary to stably evolve the linear biharmonic term. In this 

section we consider a simple hybrid time stepping method which looks to overcome this 

severe restriction, while also avoiding the need to solve any nonlinear problems. We find 

that this approach is appropriate for some choices of the nonlinearity N (?/J), but has only 

limited success in the solution of more complicated Swift-Hohenberg models. 

2.2.1 Time and Space Discretization 

We avoid the severe time step constraints of an explicit method by evolving Eq. (2.1) 

with an implicit time stepping scheme. However, because of the nonlinear term N(?/J) , 

a fully implicit treatment will lead us to solving a nonlinear equation. To avoid this, we 

consider a simple hybrid time stepping scheme where the linear part of the equation is 

treated implicitly while the nonlinear terms are treated explicitly. A similar semi-implicit 

approach is used in the work of Cross et al. [18]. 

In the current implementation, we use the second order accurate Crank-Nicolson 
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scheme on the linear part which gives the following discretized equation in time; 

(2.11) 

Here we have used L to denote the linear biharmonic operator on the right-hand side of 

Eq. (2.1), 

(2.12) 

At each time step, n = 0,1, ... , we have the following partial differential equation in the 

spatial variables to solve; 

(2.13) 

Since L is a linear operator, we note that Eq. (2.13) is a linear equation for 'ljJn+l. 

We now consider an appropriate spatial discretization for these equations. This choice 

is clearly influenced by the physical geometry and boundary conditions of the problem 

under investigation. In the case of a finite geometry, the appropriate "rigid" boundary 

conditions are, as described in [15], 

(2.14) 

where ii is the unit normal to the boundary of the domain, B. Since it is our goal 

to solve Eq. (2.1) in a truly circular geometry, it seems natural to solve Eq. (2.13) in 

polar coordinates, (r, e), rather than Cartesian coordinates (x, y). We have noted before 

that this would also lead to a more accurate treatment of the boundary conditions at 

the outer radius, r = R. We now have a choice of discretizing the polar coordinates 

using finite differences or spectral methods. Although spectral methods may seem more 

natural because of the periodicity in the angular coordinate e, the need to impose both 

a functional and derivative boundary condition at r = R (in order to obtain a well-posed 

problem) makes this choice more difficult. Since it is a simple matter to implement 

periodic, functional or derivative boundary conditions using finite differences, we choose 

to discretize the polar domain using standard finite differences. 
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Our choice of spatial discretization is also influenced by the presence of the bihar­

monic operator L in Eq. (2.13). This term would make it difficult to consider more 

complicated spatial discretizations such as a mix of finite difference and spectral de­

compositions for the radial and angular coordinates respectively, or a spectral element 

decomposition. Fortunately, the work of Bj0rstad on the fast direct solution of gen­

eralized biharmonic problems in rectangular domains [5] and in circular domains [6] 

allows us to solve Eq. (2.13) simply and efficiently in this polar, finite difference spatial 

discretization. 

Although we have not compared the performance of Bj0rstad's polar solver against an 

iterative solver, we have performed comparisons of the direct rectangular solver against a 

preconditioned conjugate gradient technique. The convergence of the iterative conjugate 

gradient method can, of course, be greatly improved by a careful choice of preconditioner, 

but we found that most natural choices of preconditioning (like diagonal preconditioning) 

did not improve the convergence enough to make this competitive with the direct solver. 

We therefore believe that Bj0rstad's direct polar biharmonic solver provides us with the 

optimal method for solving Eq. (2.13). 

2.2.2 Difficulties and Limitations 

The semi-implicit scheme presented above provides a good method for solving Eq. (2.1) 

only for certain choices of the nonlinear term, N (7jJ). We found that the method was 

particularly stable if N did not include any terms with spatial derivatives of 7jJ, as in 

the case of the Swift-Hohenberg equation (N(7jJ) = _7jJ3). Note that this equation is 

relaxational (or potential) and eventually settles down to a quasi-steady state. The slow 

changes which occur after long evolution times actually allow us to stably increase the 

time step. We also observed that the stability was not affected by the value of the 

parameter E, for 0 < E ::; 0.3. For accuracy reasons, though, a smaller time step should 

be used for larger E, since the dynamics are more rapid in this regime. 

The situation was quite different when more complicated nonlinear terms were in­

volved. The numerical scheme became much more sensitive to the choice of time step 

size, as well as the value of E. We have found that for small E < 0.05, the solutions 

evolve on a time scale of the order t = 0(103 ), so it would be ideal if we could use time 
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step which is 0(1). For larger E > 0.1, the solutions evolve more rapidly on a time scale 

0(101), so a time step of 0.1 or even 0.01 would be acceptable. Rowever, we have found 

that a time step t6.t < 0.1 is generally needed to obtain stable solutions with E ~ 0.01. If 

larger values of E are used, the method appeared to develop a local finite time singularity 

if the time step was maintained around 0.1. It was not always clear whether or not 

this singularity could be avoided by simply reducing the time step, although we did see 

a general improvement if this was done. Since we are interested in simulations where 

the parameter E can be as large as 0.3, the poor stability characteristics of this scheme 

clearly makes this an unsuitable approach. 

We have not done a complete investigation of this instability, but it is clear from 

our experience with this solver and the Swift-Rohenberg equation, that the difficulty lies 

with the nonlinear terms. Since our treatment of these terms is explicit in this scheme, 

it seems reasonable that we should experience some time step constraint when derivative 

terms are present in N (1j;). This is certainly consistent with our results for the Swift­

Rohenberg equation where N(1j;) = _1j;3 contains no derivative terms and we appear 

to achieve the unconditional stability of the Crank-Nicolson scheme. Substituting the 

nonlinear terms for the KL instability Eq. (2.3), we see that the nonlinearities contain 

up to second order spatial derivatives. Thus we would expect a time step constraint 

of the form t6.t = 0(t6.x2 ). This actually appears to be more restrictive than we find 

in practice, although it does explain why we were able in some cases to stabilize the 

solutions by reducing the time step. In any case, it is clear that we will not be able to 

achieve unconditional stability with this scheme when derivative terms are present in the 

nonlinear term N ( 1j; ) . 

We conclude this section by mentioning the advantages of this solver. First and 

foremost is the efficiency. By using the direct biharmonic solver, we are able to obtain 

solutions in O(M N log N) arithmetic operations (per time step), while the storage re­

quirements are M N + O(M) + O(N), where M is the number of points in the radial 

direction, and N is the number of points in the angular direction. The second is the 

simplicity. The numerical scheme can be coded in around 200 lines (excluding the bihar­

monic solver) and is therefore very manageable and easily maintained. Perhaps it is not 

surprising then, that this approach has limited usefulness, although it is clear that other 
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more sophisticated schemes should, where possible, take advantage of the fact that we 

are able to solve the linear biharmonic problem directly. 

2.3 Krylov Methods and Exponential Propagation 

An alternative approach to solving Eq. (2.1) is possible by using the concept of Krylov 

subspaces and exponential propagation. Our primary reason for investigating these 

methods is that they allow us to take much larger time steps than would normally 

be possible with the semi-implicit method we have used above. This is particularly true 

when the system is close to equilibrium, as is the case when the control parameter, (0, is 

close to zero. The basic idea is that the discretized spatial operator can be reasonably 

approximated by a moderate sized Krylov subspace. This subspace, rather than the 

operator itself, can be easily (and cheaply) diagonalized and the solution obtained by 

a simple exponentiation process. In the next section we outline the approach for linear 

problems, and then show how the method is extended to nonlinear problems. We then 

make some comments about our experience with this approach, and the difficulties we 

have found in applying the method to our Swfit-Hohenberg models. 

2.3.1 Exponential Propagation for Linear Differential Equations 

Consider the following linear initial value problem: 

au 
at 

U(to) 

AU, 

Un, 

for an arbitrary linear operator A. The exact solution at a later time t is 

(2.15) 

(2.16) 

(2.17) 

If U(t) is represented in discrete form by a vector of length N, then the operator (tA) 

may be exponentiated if the N x N matrix form of A can be decomposed as 

(2.18) 
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where E is the matrix of eigenvectors and A is a diagonal matrix of eigenvalues )'1, A2, ... ,AN' 

In this case 

(2.19) 

where etA is the diagonal matrix with entries et>I1, e tA2 , ... ,etAN . 

However, explicit exponentiation of the operator A by this method is quite expensive 

if N is large. For example, in our two-dimensional calculations we will often be using 

hundreds of points in the radial direction and thousands of points in the azimuthal 

direction. Thus N is of the order of 105 and the operator A would be a matrix of size 

N x N. Even if such a large amount of storage were available, the computational cost 

of diagonalizing A would mean that this approach was no longer competitive with other 

standard methods. Instead, the idea is to approximate the action of etA on an initial 

vector Uo by exponentiating a small matrix H which approximates the action of A in a 

Krylov subspace. 

Define the K -dimensional Krylov subspace to be the space spanned by the vectors 

{Uo, AUo, ... ,A K -1 Uo}. An orthonormal basis for this subspace is generated by the 

following Arnoldi process [1]. Setting WI == Uo, we compute, for k = 1,2, ... ,K, 

wk/iiwkii, 
k 

AVk - L VI (VI, AVk). 
1=1 

(2.20) 

(2.21) 

This is equivalent to the Gram-Schmidt orthogonalization of the sequence of vectors 

{Uo, AUo, ... ,A K -1 Uo} and the K resulting K rylov vectors VI, V2, ... ,V K are orthonor­

mal vectors in JRN. Although finite precision arithmetic can sometimes lead to a loss 

of orthogonality, we have found empirically in our calculations that a straightforward 

implementation of Eqs. (2.20) - (2.21) leads to a reasonably orthogonal basis set. 

Now that we have constructed the orthonormal basis, we assemble the Krylov vectors 

into an N x K matrix V whose columns are VI, V2, ... ,V K. Storage requirements for these 

methods are dominated by the size of V, which is the largest matrix that is explicitly 

constructed. 
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The action of the operator A may be approximated in the Krylov subspace by 

where the K x K matrix 

H == VTAV, (2.22) 

has elements 

(2.23) 

We note that by definition, Vl is orthogonal to AVk for l > k + 1 so H is upper Hessenberg. 

Also, we see that 

k 

(Vk+1,Wk+1) + L (Vl, AVk) (Vk+1,Vl) ' 

l=l 

using Eq. (2.21). But the vectors Vl, l = 1,2, ... ,k are orthonormal to Vk+l by construc­

tion, so all terms in the sum on the right-hand side are zero. Thus we have 

using Eq.(2.20), and we see that all of the elements of H are generated automatically as 

a byproduct of the orthogonalization in the Arnoldi process. 

In order to approximate the exponential of tA, we now diagonalize the small matrix 

H explicitly 

H = EAE- 1 , 

where A is a diagonal K x K matrix of eigenvalues AI, A2, ... ,AK and E is the K x K 

matrix whose columns are the corresponding eigenvectors. The solution at time to + t is 
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etAUo ~ VetHVTUo 

V EetA E- 1 VTUO, 

where etA is the diagonal matrix with entries eO\! , et)..2, ••• ,et)..K. 

(2.24) 

(2.25) 

We now state some important results which are proved by Edwards et al. in [20]. 

Firstly, the approximation Eq. (2.24) can be shown to be of order O(tK ). In fact, it is 

shown in [20] that 

( 
(tA)2 (tA)K-l) 

1+ tA + -2- + ... + (K _ I)! 

(
tK tK+l ) 
K!I + (K + I)! VVT A +... VVT AKUo, 

and thus Eq. (2.24) approximates etA to order t K. Although this is a correct upper 

bound, it is important to note the presence of the operator A, in this bound. Since IIAII 
may be large when we are solving PDEs, we can in fact experience very poor accuracy 

with this method. We will discuss this point further in Section 2.3.3. Secondly, the 

method can be shown to be unconditionally stable, in the sense that if 

lim IletAUol1 = 0, 
t---->oo 

then 

lim IlVetHVTUol1 = O. 
t---->oo 

Note that the stability can only be shown in the case of a symmetric operator, although 

the result has been extended to normal operators [20]. 

2.3.2 Extension to Nonlinear Problems 

Consider the general nonlinear initial-value problem: 

au 
at 

U(to) 

F(U), 

Uo. 

(2.26) 

(2.27) 
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We define 

u(t) == U(to + t) - Uo, 

and Taylor expand F about Uo to get the following problem for u, 

au 
at 

u(to) 

b+Au+G(u), 

0, 

(2.28) 

(2.29) 

(2.30) 

where b == F(Uo), the Jacobian A == DF(Uo), and the remainder G(u) is defined by 

G(u) == F(Uo + u) - b - Au. (2.31) 

If G(u) were zero, then the exact solution to Eqs. (2.29) - (2.30) would be 

etA - I 
u(t) = A b. (2.32) 

There is, of course, no closed form solution to Eqs. (2.29) - (2.30) when G(u) # O. But 

we may write an equivalent integral equation: 

etA - I rt 
u(t) = A b + Jo e(t-r)AG(U(T)) dT. (2.33) 

We solve Eq. (2.33) by the functional iteration 

(2.34) 

using Eq. (2.32) as the initial guess u(O)(t). Equation (2.32) is approximated by analogy 

with Eq. (2.25) as 

(2.35) 

Recall that A is diagonal, so that its inversion and exponentiation is straightforward. 

The convolution integral in Eq. (2.34) is evaluated by a combination of linear ex­

ponential propagation and quadrature, as follows. We calculate G(U(m)(T)) at several 
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values of T in order to fit G(U(ml(T)) to a polynomial, 

J+l 

G(U(ml(T)) ~ L9jTj , 
j=2 

(2.36) 

where each 9j is a vector of length N. The polynomial has no constant or linear terms 

in T by virtue of the definition Eq. (2.31) of the remainder G(u). 

The integral in Eq. (2.34) can now be written as 

(2.37) 

(2.38) 

We act with the integral operator in the square brackets in Eq. (2.38) on each of 

the vector coefficients 9j by forming a separate Krylov subspace Vj and approximate 

operator H j for each j. This involves carrying out the Arnoldi process using 9j as the 

initial vector. The computational complexity of doing this for large j > 10 would quickly 

make this procedure undesirable. Also, there is little purpose in evaluating these integrals 

more accurately than the linear term Eq. (2.35). Empirically we find that much smaller 

Krylov spaces (Kj ~ 2) are optimal, and give an error that is comparable to evaluating 

Eq. (2.35) with K = 20. After diagonalizing each small matrix H j = EjAjE;l, the final 

approximation for the convolution integral Eq. (2.37) is assembled as 

!at e(t-TlAG(u(ml(T)) dT ~ L VjEj (!at e(t-TlAjTj dT) Ej-1Vl9j , 

J 

(2.39) 

where the Aj are K j x K j diagonal matrices. The integrals in Eq. (2.39) enclosed in 

parentheses are evaluated in closed form by the following recursion relation: 

(2.40) 

(2.41) 
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and 

1 [At ] 10 = >: e - 1 . (2.42) 

2.3.3 Difficulties and Limitations 

In order to confirm that we had implemented this approach correctly, we first considered 

solving the one-dimensional heat equation. The exact solution to this problem is known, 

and it is therefore possible to compare our computed solutions against the exact solution. 

In these tests, we found that we could not achieve the accuracy suggested by Edwards et 

al. A closer look at the accuracy bound they provide shows that there is a dependence of 

this bound on the norm of operator A, IIAII. In the case of partial differential equations, 

this is a discretized version of the exact spatial differential operator, and therefore has 

an error associated with it. But what is more detrimental is the fact that IIAII may 

have a very large bound, essentially nullifying the benefit of having the accuracy depend 

on (,6.t)k. That is, reasonable accuracy is likely to be achieved only for very small 

time steps. Given that this is the case, there seems to be little advantage to using 

this approach. Therefore, as a way to solve unsteady problems, much care must be 

taken in simply implementing this approach with careful attention to the operator A. 

We should note, however, that for steady problems, or where solutions quickly approach 

an equilibrium state, this still remains a reasonable solution method, particularly if one 

is more interested in seeing the behavior of solutions over long time scales. 

We have not pursued a way of overcoming this difficulty in the method. It has 

been shown [47] that the problem lies in the simple treatment of the time stepping by 

exponential propagation outlined above. Other researchers [27, 28] have developed more 

successful alternatives for the time evolution. Unfortunately, in the implementation of 

[27, 28], the accuracy drops to being only as high as third or fourth order depending on 

the time stepping scheme used, but still retains the advantage that generally large time 

steps can be taken. 

Another difficulty we have encountered in attempting to implement this approach 

is associated with determining a reasonable approximation to the spectrum of the dis­

cretized form of A. In the exponential propagation procedure, the rightmost eigenvalues 
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Annulus Smallest Magnitude Eigenvalues Largest Magnitude Eigenvalues 
radii Arnoldi Exact Arnoldi Exact 

l.1278 0.3134 1273.84 1274.02 
22.924 0.3205 1264.97 1272.72 

21f - 41f 42.947 0.3431 1252.29 1268.85 
67.063 0.3857 1226.68 1262.46 
96.373 0.4554 1199.91 1253.64 
68.129 0.3151 106464 106453 
483.76 0.3610 105977 105965 

1T 91T 1144.9 0.5778 104526 104515 "4 -""4 
2239.2 l.0879 102146 102134 
3694.1 l.9516 98891 98879 
742.65 0.2953 3653290 3653247 
6398.0 0.3807 3635652 3635813 

1T 651T 25283 0.8026 3583959 3583924 32 - 32 
52261 l.6198 3498863 3498821 
87610 2.2493 3382551 3382517 

Table 2.1: Smallest and largest magnitude eigenvalues of the discretized biharmonic 
operator \74 in an annular region using polar coordinates. The Arnoldi values are ob­
tained using a Krylov space of 30 vectors. The discretized operator has a total of 1024 
eigenvalues. 

(i.e., the ones with the largest real parts) are the most important since the solution 

is determined essentially from the exponentiation of these values (see Eq. (2.25) and 

Eq. (2.35)). For solutions that are bounded in time, the eigenvalues will have either 

negative real parts or only small positive real parts. Therefore, we are most interested in 

the small magnitude eigenvalues. We have found however, that for the discretized form 

of the biharmonic operator \74 in polar coordinates, the Arnoldi procedure Eqs. (2.20) 

and (2.21), does a poor job of approximating this part of the spectrum. On the other 

hand, the large magnitude eigenvalues appear to be better approximated. This is shown 

in Table 2.1, where we give the five smallest and five largest eigenvalues obtained from 

diagonalizing the matrix H obtained from a basis of 30 Krylov vectors generated by the 

Arnoldi procedure. For comparison we give the exact eigenvalues of \7~, the discretized 

form of \74 . In this particular case, an annular domain with a resolution of 16 points in 

the r-direction and 64 points in the B-direction is used, so that \7~ has a total of 1024 
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eigenvalues. 

We notice that the large magnitude eigenvalues become larger as we shrink the an­

nulus to a disk. It is apparent that this behavior is due to the singularity at the origin 

in the polar coordinate system. As the separation between the small and large mag­

nitude eigenvalues increases, the Arnoldi procedure is clearly less and less effective at 

extracting the small magnitude eigenvalues of vt Since these are the eigenvalues that 

are required in the exponential propagation procedure outlined above, this would not 

be effective way to solve a biharmonic problem in a circular geometry. It is of course 

possible to replace the Arnoldi iteration with more sophisticated eigenvalue extracting 

procedures (for example [38]), but we have found in the case of the biharmonic operator 

in polar coordinates, that these too are somewhat ineffectual at extracting the required 

eigenvalues in reasonable times. 

An obvious solution to a stiff operator is to use preconditioning. With a careful 

choice of preconditioner, it would be possible to ensure a well behaved spectrum for the 

new operator. However, it is somewhat unclear in the context of this method, exactly 

how the preconditioning would be implemented. We consider an approach which utilizes 

this idea, but in a different context, in the next section. 

2.4 A Fully Implicit Scheme 

The two approaches above have yielded some success in the solution of the model equa­

tion, although each has had its difficulties. The semi-implicit scheme appeared to suffer 

from poor stability properties, particularly for complicated nonlinearities involving spa­

tial derivatives of 'IjJ. While exponential propagation appeared to deal better with the 

nonlinearities, it suffered instead from the stiffness of the biharmonic term in polar co­

ordinates. Our next approach was to try to combine elements of each of the previous 

methods in the hope of retaining each of their attractive features, whilst overcoming 

their difficulties. This leads to an implicit time stepping approach coupled to a Krylov 

subspace treatment of the spatial components. 
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2.4.1 Time and Space Discretization 

The fully implicit scheme is closely related to the semi-implicit approach of Section (2.2). 

The difference occurs in the time discretization of Eq. (2.1). Instead of treating the 

nonlinear term explicitly, Crank-Nicolson is applied to entire right-hand side of Eq. (2.1). 

This then requires us to solve the following nonlinear equation at each time step n = 

0,1,2, ... , 

where 

L 

( L + ~t) 7jJn + N(7jJn) , 

E - (V2 + 1)2. 

(2.43) 

(2.44) 

(2.45) 

The nonlinear equation can be solved by Newton's method, as we describe in the next 

section. The solution of the resultant linear problem once again depends on our choice 

of spatial discretization. For reasons given in Section (2.2), the appropriate spatial 

discretization will once again be the use of finite differences on the polar form of the 

equations. 

2.4.2 Newton's Method and GMRES 

In order to solve Eq. (2.43), we apply Newton's method. Let us drop the superscripts 

corresponding to the time step, and let 

F(7jJ) = ( -L + ~t) 7jJ - N(7jJ) - R = 0, (2.46) 

and DF(7jJ) be the Jacobian of F(7jJ). Then Newton's method involves finding a sequence, 

7jJl, 7jJ2,' .. , of approximations to the solution of Eq. (2.46) by successively solving the 

linear equation 

(2.4 7) 
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for Ll'lj; = 'lj;m - 'lj;m+l, from which the new (and hopefully better) approximate solution, 

'lj;m+l = 'lj;m - Ll'lj;, is obtained. Note here that the Jacobian operator, DF('lj;) on the 

left-hand side of Eq. (2.47) is simply 

DF('lj;) = ( -L + ~t) -DN('lj;), (2.48) 

and DN('lj;) is the Jacobian of the nonlinear term N('lj;). For example, if N('lj;) = _'lj;3, 

as in the original Swift-Hohenberg equation, then D N ('lj;) = - 3'lj;2 . The iteration is 

continued until some desired convergence criterion is reached (usually measured by the 

size of some norm of F('lj;)). As with any iterative process, an initial approximate 

solution, 'lj;o, is required. In this case, it is most convenient to choose the solution 

at the previous time step. 

Before discussing any convergence issues of this iteration, we first must address the 

method of solving the resultant linear system, Eq. (2.47), obtained at each step of New­

ton's method. Once again, this will depend upon the spatial discretization used, but 

for the reasons mentioned above, we shall assume this to be a finite difference scheme. 

Then, as we have seen with exponential propagation, this problem will generally be too 

large to store, let alone perform any kind ofreduction on (such as an LU decomposition). 

Thus, this system cannot be solved directly, and we must resort again to some iterative 

procedure. We have chosen to use GMRES (generalized minimal residual) to do this, 

and this combined with Newton's method is just one of a class of strategies known as 

inexact, iterative, or truncated Newton solving (see [20], and the references therein). 

Like the Krylov methods mentioned in the previous section, GMRES also uses Krylov 

subspaces of the operator DF('lj;) in its solution strategy, rather than the full operator 

itself. For this reason, only the action of the Jacobian, D F( 'lj;), and the evaluation of 

F( 'lj;) need to be carried out, without explicit storage or manipulation of the large linear 

system. 

2.4.3 Some Implementation Issues 

As with any iterative linear solver, the performance (convergence) of GMRES is greatly 

affected by preconditioning. Most preconditioning strategies involve trying to make the 
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operator or matrix "close," in some sense, to the identity. With this in mind, we tried 

preconditioning our system with the inverse of the linear biharmonic operator. We 

found this to greatly accelerate the convergence, as it would generally take more than 

30 iterations to obtain convergence when trying to solve a simple biharmonic problem 

without preconditioning. We note, however, that we can actually take advantage of this 

preconditioning step before solving the linear system Eq. (2.47). In our implementation, 

preconditioning is done on Eq. (2.46). Thus we actually solve 

( 2)-1 (2)-1 F(1jJ) == -L + ~t F(1jJ) = 1jJ - -L + ~t (N(1jJ) + R) = 0, (2.49) 

by Newton's method. The Jacobian operator DF(1jJ) has the form 

( 
2 )-1 

DF(1jJ) = 1+ -L + ~t DN(1jJ) , (2.50) 

where once again, DN(1jJ) represents the Jacobian of the nonlinear term N(1jJ). This 

saves a great deal of computation, since we see that it is no longer neccessary to evaluate 

the linear biharmonic operator (-L + 2 / ~t) on the current approximate solution 1jJm, 

and then essentially invert this operation in the preconditioning step of the GMRES 

procedure. 

We comment briefly on the convergence of these iterations. To make it clear, we 

shall call the iterations performed in Newton's method, Eq. (2.47), the outer iterations, 

while the iterations performed in the GMRES procedure, the inner iterations. It is 

known that if the linear systems Eq. (2.47) are solved exactly, then Newton's method 

has locally quadratic convergence toward the solution of Eq. (2.46). When these linear 

systems are solved only approximately, generally the convergence achieved is only linear. 

Several guidelines have been suggested as to how to set somewhat optimal convergence 

criteria for the inner iterations, but we have not experimented with these. Instead, 

we have chosen to follow those set out in [9]. We have found in our calculations that 

generally no more than three inner iterations and six outer iterations are necessary to 

achieve convergence to an accuracy of 10-6 in the two-norm of F, i.e., IIF(1jJM)112 :::; 10-6 , 

where 1jJM is our last Newton iterate. In most cases, convergence to this accuracy was 

achieved in a total of only five to six iterations (for a time step of ~t = 0.2). 
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2.5 A Test Case 

Since there are no known analytical solutions to the model equation Eq. (2.1), it is 

difficult to verify the correct performance of our code. In particular, we want to ensure 

that we do not generate artificial solutions. Other than performing simple tests on the 

various components in our solution approach (Newton's method, GMRES, etc.), there 

are no systematic quantitative tests for our results. Fortunately, the qualitative behavior 

of solutions is known for several choices of the nonlinearities N ('I/J) in the Swift-Hohenberg 

models. We consider one such case in this section which should provide us with some 

verification of correct code performance. 

2.5.1 Convection Between Poorly Conducting Plates 

We consider the following variant of our model equation; 

(2.51) 

This has been suggested as a potential model for Rayleigh-Benard convection between 

poorly conducting upper and lower plates by Gertsberg and Sivashinsky [23]. It is known 

that a square cell pattern is the stable configuration for this equation [23]. In particular, 

if we start with an initial state of straight parallel rolls, we should see this becoming 

unstable to the square cell pattern. In a finite domain, we would expect this to happen 

in a predictable way. Since the most stable configuration is for the rolls to approach the 

boundaries with their axes perpendicular to the boundary, we would expect the square 

cell pattern to begin forming where the rolls are parallel to the boundaries. In the absence 

of any other perturbations in the system, the square cell state should then propagate 

in from the boundaries, eventually transforming the entire domain to the square cell 

pattern. Therefore, a good test of our code is to see if this behavior can be reproduced 

in our computed solutions. 

2.5.2 Sensitivity to the Computational Mesh 

We begin by generating an initial state of straight rolls, for example 'l/Jo(x, y) = cos(x). 

We impose zero boundary conditions, 'l/Jlr=R = 0, by multiplying this function by a 
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"cap" w(r), which simply forces the value to zero at r = R. Once again, r = Jx2 + y2 

is the radial polar coordinate and R is the radius of the cell. Some of the choices for 

w(r) we have considered are w(r) = cos(7rr/2R) and w(r) = (1- tanh(r - 0.95R))/2. It 

is possible that our solution will show some sensitivity to this choice, but we have not 

observed any differences in our computed solutions when different "caps" are used. 

In Fig. (2.1) we show the computed solution at t = 50 and t = 75 after starting 

from the initial roll state 'l/Jo(x, y) = cos(x)w(r), with w(r) = (1 - tanh(r - 0.95R))/2 

and R = 207r. The time step was b.t = 0.2. At t = 50, we see the expected breakdown 

of the rolls to the square cell state near the outer boundary. Notice that the rolls at 

the three and nine o'clock positions have gone unstable first, while the rolls at the six 

and twelve o'clock positions remain relatively unaffected. This is expected since these 

rolls are essentially perpendicular to the boundary, while the rolls at the three and nine 

o'clock positions are parallel. There is also a noticeable "bending" of some of the rolls 

as they approach the boundary, so as to be perpendicular to it. This seems to prevent 

them from going unstable to the square cell state. Although not particularly discernible 

at this time, a slight instability in the rolls at the center of the domain can be observed. 

By t = 75, the breakdown of the rolls in the center of the domain is evident. It is 

clear, however, that this has not occurred through the square cell state propagating in 

from the outer boundary, but instead, through some instability being generated near the 

center. This breakdown is contrary to what we expect and it is necessary to seek an 

explanation for this behavior. It is simple to determine that the breakdown is not due 

to our choice of w(r), or a possible time step instability. In Fig. (2.2) we show in (a) 

and (b) the solutions obtained using a smaller time step (b.t = 0.1), and in (c) and (d) 

the solutions obtained starting from an initial condition with a different cap function 

w(r) = cos(7rr/2R). The lower spatial resolution (160 x 1024) has been used in both 

these runs. We once again observe the same breakdown of the rolls near the center, and 

can safely conclude that neither our choice of w (r) or time step size is responsible for 

this breakdown. 

It is, in fact, easy to show that the breakdown in the center of the domain is a 

numerical artifact due the computational grid we have used. We show in the bottom two 

plots in Fig. (2.1), exactly the same run as before but on a grid with twice the radial 
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Figure 2.1: Contour plots of solutions of Eq. (2.51) with E = 0.3, started from straight 
rolls, 'l/Jo = cos(x)(l - tanh(r - 0.95R))/2. Plots on the left are at t = 50, plots on the 
right are at t = 75. The top plots are computed on a 160 x 1024 mesh, the bottom plots 
on a 320 x 1024 mesh. The time step was tlt = 0.2 for all plots. 
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(a) (b) 

(0) 

Figure 2.2: Contour plots of solutions of Eq. (2.51) with f = 0.3, started from straight 
rolls, 'l/Jo = cos(x)w(r). In (a) and (b), the solution is shown at t = 50 and t = 75 
respectively, and is started from the same initial condition as in Fig. (2.1). We have 
reduced the time step to Llt = 0.1 in this run. In (c) and (d) the solutions are started 
from an initial condition with w(r) = cos(nr/2R), and are again shown at t = 50 and 
t = 75. The time step for this run was Llt = 0.2. All plots are computed on a 160 x 
1024 mesh. 
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resolution. It is clear in these plots that the breakdown to the square cell state is less 

pronounced near the center, but that the breakdown near the outer boundary is the 

same in both cases. By further increasing the radial resolution, it is possible to prevent 

any discernible instability in the rolls near the center. We have also confirmed this by 

increasing the resolution in both the radial and angular coordinates. Therefore, we do 

appear to converge to the "correct" solution in the limit of higher spatial resolutions. 

Our understanding of this phenomenon is not complete, but it is clear that the use 

of the polar coordinate system is partly responsible. We believe the effect is due to the 

loss of accuracy in the computation of derivatives in the nonlinear terms near the origin. 

Because of the clustering of the angular grid points in this region, it appears that a 

higher resolution in the radial direction is necessary to maintain reasonable accuracy. 

Although it is reasonably simple to overcome this effect, increasing the radial reso­

lution throughout the entire domain is generally unnecessary. In most circumstances, a 

resolution of eight points per half wavelength is sufficient to resolve the roll structures. 

When we set this resolution at the outer boundary, we actually obtain a higher resolution 

in the interior because of the "fanning out" of the radial lines () = constant, from the 

origin. Therefore, little would be served by further increasing the resolution through­

out the whole domain. Additionally, this higher resolution results in an increase in the 

complexity and memory requirements of the code, which eventually become prohibitive. 

2.6 Introduction of a Varying Radial Mesh 

In this section we consider two simple approaches to increasing the spatial resolution. 

Since we only require a higher resolution in the radial coordinate near the center of the 

domain, this leads to introducing a variable radial mesh. 

2.6.1 Simple Two-Step Mesh 

Our first attempt was to simply introduce a finer uniform mesh near the origin. This 

mesh would cover some inner fraction (between 1/4 to 1/2) of the domain, with the usual 

(coarser) uniform mesh covering the remainder. Because we continue to use uniform 

meshes, the changes are trivial except at the boundary of the two grids. Here it is 
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necessary to use finite differences over unequally spaced points to correctly approximate 

the derivatives. To keep the differencing consistent over the entire domain, only three­

point stencils were used for first and second derivatives. This unfortunately leads to 

a reduction in the order of accuracy of the approximations (from second to essentially 

first), but only at the boundary point between the two grids. This drop in the accuracy 

is similar to one we would encounter at a physical boundary, so again, we do not expect 

it to reduce the overall order of accuracy of our method. 

Our tests with this two-step uniform mesh showed an improvement near the origin, 

but the breakdown of the rolls now seemed to occur at the boundary between the fine and 

coarse mesh. Also, the breakdown was more severe when there was a greater difference 

between the mesh spacings of the two grids, but was not particularly sensitive to where 

this boundary occurred in the domain. This phenomenon shows the sensitivity of the 

equation to the computational mesh, but again, it is not clear why the breakdown occurs. 

Although we did not try to use more accurate approximations for the derivatives at the 

boundary point, we believe this may have helped in stabilizing the breakdown at the 

mesh boundary. However, we do not believe it would have been enough to completely 

eliminate the instability. 

2.6.2 Smoothly Varying Mesh 

The next natural step was to introduce a smoothly varying radial mesh. This allow us 

to increase the resolution in certain areas of the domain, without introducing any sharp 

changes in the mesh spacing. Several strategies are available, but a particularly general 

approach is to introduce a mapping or function between the radial coordinate, r and a 

fictitious variable, p. These would be related through a function h, r = h(p), which we 

shall call the radial mesh generating function. The radial mesh points are then obtained 

by laying down a uniform grid in p. By doing this, we are able to ensure our method 

retains second order accuracy (when using three-point stencils), even though the points 

in the radial coordinate are no longer equi-spaced. We demonstrate this in the next 

section, as well as show how to do numerical differentiation and integration on this grid. 

We then describe appropriate conditions for the radial mesh generating function and 

consider some simple examples for h. 
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2.6.3 Numerical Differentiation and Integration using the Smoothly 

Varying Mesh 

Let us first show that we can retain second order accuracy in the radial derivatives when 

using three-stencils to approximate the derivatives in p. We assume here that our mesh 

generating function h(p) is sufficiently smooth. We compute the new approximations 

to the various derivatives with respect to r, in terms of the function h(p) and the new 

variable p. First, we have, 

1 au 
h'(p) . ap' 

1 [a
2
u h"(p) au] 

[h'(p)f ap2 - h'(p) ap . 

(2.52) 

(2.53) 

We now use standard second order central differences to approximate the derivatives in p 

(recall that the mesh in p is assumed to be equi-spaced). Letting ri = h(Pi), h~ == h'(Pi), 

h~' == h"(Pi) and Ui == u(ri), we therefore have 

1 

h; 2!:::J.p 
(2.54) 

~ (h~)2 [Ui+l (~~): Ui-l (2.55) 

When we compute the errors incurred by these approximations, we find, 

aUi 1 ui+l - Ui-l 
or - h; . 2!:::J.p 

= (!:::J.p)2 (h,{PUi h;'aUi) O(!:::J. 3) 
6 t ar2 + h' or + p 

t 

(2.56) 

and 

(2.57) 

so the approximations are certainly second order accurate in the new independent vari­

able p. We notice how this reduces to the usual case of an equi-spaced grid when 
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r = h(p) = p, so that all derivatives of h, higher than first order, are zero. It is also 

worth noting that using linear functions for h is optimal, in the sense of minimizing the 

error in these approximations. In fact, the errors will become particularly large if the 

ratios h"/h' h"'/h' and h(iV)/h' are large. 
1, P l Z 1, t' 

When we tried implemementing this approach, we found that even choosing very 

smooth functions for h tended to yield poor approximations to the derivatives. A closer 

examination did indeed reveal that it was the moderate size of the ratios between higher 

order derivatives and the first derivative that was generally preventing us from gaining 

reasonable accuracy. This lead to the idea of simply trying to use linear functions 

where possible (usually at the two ends), with the major difficulty now being how to 

connect them smoothly. A more obvious way to find good candidates for h was in fact 

to look at the behavior of the first derivative of h. What we require is for the slope 

h' (p) to be some constant for small values of p and some other constant for higher 

values of p with a (somewhat) smooth connection between them. The clear choice here 

is a tanh-like function for h' (p). After experimenting with functions of this nature, a 

general improvement in the accuracy was found, but the magnitude of the error was still 

considerably larger in the regions where h was significantly nonlinear. 

It should be noted, however, that this approach gave much more accurate results 

when used to do numerical integration over this variable grid. In these circumstances, 

the errors were not only second order accurate over the entire domain, but were also 

smaller in magnitude in regions where the grid was finer. Perhaps this is not surprising, 

given the smoothing behavior of any integration process. What we have then is a viable 

approach to at least do the integration parts of our problem. What was attractive here, 

was the fact that we were able to continue to use three-point stencils, and therefore, 

not significantly increase the complexity of the problem. However, a better approach to 

differentiation on this grid was still needed. 

In order to determine derivative values more accurately, we decided to treat the grid 

as though it were nonuniform. Even though this would generally not be the case near the 

center and the outer boundary of the domain (as noted above), our approach here also 

takes advantage of any uniformity in the spacing of the grid. We use centered five-point 

stencils for the first and second derivatives, assuming now a nonuniform grid spacing. 
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This leads to essentially fourth and third order accurate approximations, respectively. 

In regions where the grid spacing is uniform, these orders of accuracy are increased by 

one. 

Let us indicate, explicitly, how the first derivative is approximated. Let b..Ti = 

Ti - Ti-l be the distance between the Ti and Ti-l grid points, and Ui = U(Ti). Then we 

try to approximate the first derivative by 

(2.58) 

where a, b, c, d and e are constants to be determined. We Taylor expand each of the u's 

in the right-hand side, about T = Ti. For example, 

We form the right-hand side of Eq. (2.58) and collect the coefficients of Ui and its first four 

derivatives. Equating both sides of Eq. (2.58) clearly requires that all these coefficients 

are zero, except the coefficient of the first derivative, which should be one. This gives 

a 5 x 5 linear system which can then be solved for a, b, c, d and e. Note that in this 

approach, we are able to correctly account for all terms up to the fifth order derivative. 

Thus, the resulting approximation given by the right-hand side of Eq. (2.58) will be 

essentially fourth order accurate (after we divide through by the coefficient of the first 

derivative). When the points are equi-spaced, the coefficient corresponding to the fifth 

order derivative will automatically be zero, due to symmetry. Thus, the order of accuracy 

of the approximation increases by one. 

The second derivative is obtained in a similar way. Note, however, that its order of 

accuracy is one lower than the corresponding first derivative because we need to divide 

through by its coefficient, which is quadratic rather than linear, in the grid spacings b..Ti. 

We also note that this five-point stencil cannot be used at the inner most grid points. 

At these points, we revert back to using standard three-point stencils. Since we expect 

the mesh to be uniform in these places, we are still able to achieve second order accuracy 

at these points. 
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To summarize then, we assume that the radial coordinate is given by some mapping 

r = h(p), where h is free to be chosen. The radial mesh points are obtained by evaluating 

h at equi-spaced values of p. The relationships (2.54) - (2.55), obtained above for the 

derivatives with respect to r, in terms of hand p, are then used to do any integration 

on this grid, while the derivatives are approximated directly from the location of the 

nonuniform grid points ri, without any knowledge of this mapping h. 

2.6.4 Simple Choices for Mesh Generating Functions 

In the preceding sections, we have already suggested several characteristics we expect 

the function h to have. In this section we will attempt to use these to help us determine 

some suitable choices for this function. 

Our initial choice above, of a tanh-like function (for the derivative of h), is such an 

example. However, an even simpler choice is to use linear pieces at the ends, connected 

in some (reasonably) smooth way through the interior. This choice is more appealing 

because it offers a greater degree of flexibility. We found when trying to use the tanh-like 

function, only two parameters were essentially available to adjust the shape of the curve. 

The function is given by: 

h(p) = (1 -c) In [cosh[a(p - b)l] + (1 + c) p. 
2a cosh( ab) s 

(2.59) 

Here, the parameter c is taken to be less than 1, and essentially gives the slope of the 

nearly linear piece at the lower end. The other two parameters, a and b, are used to 

adjust the shape of the curve. Roughly speaking, a controls the physical extent over 

which the two end-pieces are joined and b controls the positioning of the variability of 

the mesh. 

It was then particularly difficult to find parameters which would give a reasonably 

gradual change in the grid spacing for r, if we also wanted reasonably linear pieces at the 

ends. The reasons for wanting linear functions for h were alluded to above. We reiterate 

these reasons again to make it clear why this choice is desirable. Firstly, if h is linear, 

then the truncation error, given by (2.54) and (2.55), will generally be lower. Secondly, 

linear functions for h lead to uniform grid spacings in r, so our approximations to the 
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derivatives using five point stencils will generally have higher orders of accuracy. Given 

these, it seems clear how we should proceed. 

The difficulty that remains is in connecting these two linear pieces. We first tried to 

use a polynomial to do this, ensuring that function, first and second derivative values 

were continuous. This leads to a quintic polynomial, which surprisingly, does not connect 

them in a truly monotonic way. By this we mean that we observe a change in curvature 

over its domain. Although there is no reason why this is unacceptable, it appears that 

this is unnecessary if all we require is a smooth connection between the two linear pieces. 

If we no longer require continuity in the second derivative of h, then a cubic polynomial 

can be used. This too, however, has a change in its curvature and we again discard it as 

a possibility. 

Our next attempt was to use a circular arc to connect the linear ends. This again 

would not give a continuous second derivative for h, but it was hoped that the discon­

tinuous jumps would be small. This would be the case if the arc had a large radius. 

Although we were not able to arbitrarily specify this radius, in practice it will be large 

if the connection occurs over a reasonably large region. For this we reason, we basically 

divided the range of r (which is just the radius of our disk) into thirds. The circular 

arc would then cover the region over this middle third, with linear pieces over the first 

and last thirds. We would generally choose the slope of the "outer" linear piece to be 

one, and the "inner" slope to be a fraction 11k, where k = 2,3, .... This corresponds 

to the inner third of the radial mesh having k-times the resolution of the outer third. 

Our solutions on meshes generated from this approach have been found to be more than 

satisfactory. 

2.7 Adaptive Time Stepping 

The fully implicit code provides a highly stable integration scheme, which appeared to 

be stable for time steps even as large as f).t = 100. When the scheme did breakdown, it 

was usually due to a lack of convergence in the GMRES iteration, which was halted if the 

number of iterations exceeded more than 30. This in essence signifies a loss of stability 

in the scheme. Given the stable nature of this scheme, and the need to integrate the 

equations over very long time frames, a simple adaptive time stepping procedure was 
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implemented. This involved computing the solution at some time t, using a step of size 

L::.t and the solution at the same time using two steps of size L::.t/2. If a local measure 

of error between these two solutions was below a specified tolerance (usually 1 % of the 

two-norm of the solution), then the time step was doubled to 2L::.t and the same accuracy 

test performed. Since the dynamics of the pattern formation tends to decrease as time 

increases or if E is reduced, this test is performed to determine an appropriate time step 

size, comparable to the dynamics in the solution. 

The simple adaptive time stepping procedure was implemented in two ways. The 

first was to simply conduct the test after a specified number of time steps. In general we 

found that, after the initial transients in the dynamics had dissipated, it was likely that 

the time step could be doubled as often as required, and there seems to be little sign of an 

upper bound on the time step. This provides some justification that the scheme achieves 

almost unconditional stability. In practice, we would not allow for too large a time step 

since the method is only second order accurate in time, and the simple accuracy test we 

perform clearly only checks the accuracy locally in time. In Fig. (2.3) we show a plot of 

the time step trace on logarithmic scales in a typical run. 

The persistent dynamics expected in these systems is another reason that simply 

checking the accuracy at specific times in the evolution may not be a particularly good 

method of choosing an appropriate time step. The possibility of local changes in the 

patterns happening on time scales that are less than the current time step would lead to 

inaccurate solutions that the simple test above would be unable to detect. Therefore, as 

an alternative or additional criterion for determining when the accuracy test is performed, 

we compute a measure of the rate of change of the solution after each time step. This 

simply involves obtaining a local measure of 8'lj; / 8t by evaluating the right-hand side of 

Eq. (2.1) after each time step. Any large deviations in this value indicates the possibility 

of rapid changes in the solution, and therefore the need to check the accuracy at the 

current time step. 

In Fig. (2.4) we show a time step trace for a typical run using this particular scheme. 

The two spikes seen at t ~ 1200 and t ~ 1800 clearly shows the capability of this scheme 

to detect rapid changes in the solution and change (in this case halve) the time step 

accordingly. We see that the time step is quickly doubled again and shows that the 
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Time 

Figure 2.3: Example of the simple adaptive time stepping procedure shown on logarith­
mic scales. The time step is doubled or halved according to whether the solutions at !:l.t 
and 2!:l.t or !:l.t and !:l.t/2, respectively, differ by less than 1%. In this case, the accuracy 
test is performed every 50 time steps. For this particular run, f = 0.01. 
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Figure 2.4: Example of adaptive time stepping procedure based on checking the rate of 
change in the solution. At each time step, 8?j; / 8t is computed and monitored for large 
changes (relative to 11?j;112). If a significant change is detected, the accuracy test is used 
to determine if the time step is doubled, halved or left unchanged. The two spikes seen 
indicates that the scheme always tries to use the largest time step size compatible with 
the dynamics. For this particular run, E = 0.05. 
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scheme is successful at choosing the largest step compatible with the dynamics in the 

system. In general, we did not find many such large changes in the long time evolutions 

and the usual accuracy check after a specified number of time steps was usually sufficient 

for providing the appropriate time step size. 
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Chapter 3 

Data Analysis and Numerical Results 

3.1 Qualitative Observations 

In this section we briefly describe some qualitative features of the solutions. Our primary 

goal is to confirm that our numerical solutions qualitatively reproduce the behavior seen 

in the Kiippers-Lortz instability. The experimental work of Hu et al. [31, 33] should 

be consulted for comparison. The appropriate value of the parameters 92 and 93 in our 

model equation Eq. (2.3) are chosen to ensure that we are in the appropriate KL regime, 

as indicated in the work of Cross et al. [18]. We also consider the trends as we vary the 

control parameter E and the cell size, to ensure our solutions are behaving as expected. 

A typical evolution in the KL state is shown in Fig. (3.1). This should be compared 

with Fig. (3.2) which is taken from the experimental work of Hu et al. [33]. The 

similarity with experiments is truly remarkable. Here we see that in the KL regime, 

several domains of essentially parallel rolls coexist in the cell. The domains are dynamic 

and grow and shrink in size due to the presence of the other domains. Sharp boundaries 

exist between the various domains and it is through the propagation of these boundaries 

that the orientation of the rolls change in any particular part of the cell over time. It 

should be noted that the boundaries appear sharp relative to the size of the cell, but 

generally have a thickness on the order of one or two roll widths. Since our computed 

solutions have at least 8 points per roll width, these boundaries are more than adequately 

resolved in our calculations. 

We notice that the rolls are mostly nucleated from the boundary in this particular 

evolution. However, at higher values of E, spontaneous generation of new rolls has been 

observed in the interior of the cell. This is also a feature of the experiments. Thus, we 

are able to reproduce many of the phenomena found in the experimental system. 
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(a) (b) 

(c) (d) 

Figure 3.1: Typical time evolution in the KL regime. The evolution is shown at (a) 
t = 10460, (b) t = 10780, (c) t = 11000 and (d) t = 11420. The parameters are to = 0.05, 
91 = 1, 92 = -2.60 and 93 = 1.5 in a cell of radius 401T. In these grey-scale contour plots 
of the field 'ljJ(x, y, t), black corresponds to a maximum field value of 0.248 and white to 
a minimum value of -0.247. 
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Figure 3.2: Time sequence of images from experiments for a cell of aspect ratio 40, 
showing Kiippers-Lortz domains and dislocation-defect motion. The images are approx­
imately 40 seconds apart. Reprinted from [33]. 
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3.1.1 Variations with the Control Parameter f 

The control parameter f provides a measure of the distance from onset. Thus, as E 

increases, the system is driven further and further from equilibrium, and we expect to 

see a generally more disordered pattern. Indeed this is what is found in experiment, and 

here we show that the same trend is also seen in our simulations. 

In Fig. (3.3), we show the configurations obtained at three different values of E. As 

expected, when E is very small, the cell is filled almost entirely with a single set of 

parallel rolls. As E increases, we see that more and more sets of rolls begin to fill the cell. 

Consequently, the size of each of these domains shrinks. What is not shown here is the 

dynamics of the domains which grow and shrink due to the propagation of the walls of 

the domains. This behavior is indicative of the KL state, and is generally only observed 

for E < 1. 

3.1.2 Effects of Different Cell Size 

We have computed solutions in cells with radii R = 307r, 407r and 507r, corresponding to 

cells with aspect ratios of 30,40 and 50 respectively. Much experimental work [31,33] has 

been conducted in cells of aspect ratio 40, so this should allow us to to make meaningful 

comparisons with experiments, while also allowing us to investigate possible effects due 

to finite geometries. Unfortunately, our maximum cell size is restricted by computational 

resources, although we have been able to perform a small number of runs in a cell of 

radius R = 807r (see later results). 

Since we are interested in determining if finite size effects are important in this 

problem, this range of cell sizes gives us an opportunity to observe the changes with 

different cell sizes. We find that for the same value of f, the patterns look qualitatively 

the same. In Fig. (3.4) we show that patterns at the same E look very similar regardless 

of the cell size. In particular, at this larger value of f = 0.2, the domains ofrolls appear to 

be of comparable size in each of the different cells. We note, however, that this situation 

changes as E ----? O. As E decreases, the domains become larger (see Fig. (3.3)) and the 

size of the cell clearly begins to constrain the size of the domains that are possible. 

This is shown in Fig. (3.5), where it is clear that, although the patterns have similar 

configurations, the size of the largest domains are influenced by the size of the cell. This 
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(a) (b) 

(c) 

Figure 3.3: Snapshots of contours of the field 'IjJ(x, y, t) for different values of E, showing 
the trend to smaller domains as E increases. (a) E = 0.01 (at t = 27000), black corresponds 
to a maximum of 0.100 for 'IjJ, white to a minimum of -0.100, (b) E = 0.1 (at t = 7000), 
black corresponds to a maximum of 0.337 for 'IjJ, white to a minimum of -0.334, (c) E = 0.3 
(at t = 310), black corresponds to a maximum of 0.617 for 'IjJ, white to a minimum of 
-0.621. The other parameters are gl = 1, g2 = -2.60 and g3 = 1.5 in a cell of radius 
407r. 
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Figure 3.4: Comparison of solutions in cells of different size for the same value of to = 0.2. 
The cells have radii (a) 301r, (b) 401r and (c) 501r. The other parameters are the same 
as in Fig. (3.3). Black corresponds to a maximum field value of 0.496 and white to a 
minimum of -0.501. 
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is studied more quantitatively later in this chapter. 

3.2 Quantitative Data Analysis and Pattern Diagnostics 

In order to better classify the many complicated patterns that develop in Rayleigh­

Benard convection, experimentalists have developed ways to analyze the patterns in a 

quantitative way [31, 33]. In particular, Hu et al. [33] have done a detailed quantitative 

study of the Kiippers-Lortz instability from which we hope to draw some comparisons. 

To this end, we have developed similar diagnostic analyses for our simulations. The 

primary analysis is a spatial Fourier transform of the pattern 'ljJ(x, y, t), 

w(k, t) = w(kx, ky, t) = 1: 1: 'ljJ(x, y, t)ei(kxx+kyy) dxdy. (3.1) 

We assume that 'ljJ(x, y, t) = 0 for all values of x and y outside the circular cell x2 + y2 :s 
R2, where R is the radius of the cell. Thus the integration in Eq. (3.1) need only be 

performed over any finite region in space incorporating the cell region. It is convenient 

to choose the square region D = {(x,y)l- R:S x :S R,-R:S y :S R}, and use the 

fast Fourier transform (FFT) to compute Eq. (3.1). Note that we first interpolate the 

values of 'ljJ from our computational polar mesh to a uniform mesh in (x, y). This is 

accomplished using a piecewise bicubic interpolation scheme. A resolution comparable 

to that used in the computation (about 8 points per half wavelength) is used to cover 

the square region D. For a cell of radius R = 407r, we have used 512 x 512 points. 

As with experiments, our patterns are actually prefiltered with a 71 % Hanning win­

dow before the Fourier transform is taken. The Hanning window is applied by multiplying 

the pattern 'ljJ(r, e, t) by a radial function defined by 

{ 0

[1 + cos(7rr/ro)]/2 
H(r) = 

for r :S ro, 

for r > ro 
(3.2) 

where ro = O.71R and R is the radius of the cell. The effect of the Hanning window is 

to de-emphasize any contributions from near the boundary. Thus, the Fourier transform 

which results only essentially shows the dominant orientations from the center of the 

cell. For this reason, it was necessary for us to ensure that our numerical approach did 
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(a) 
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(0) 

Figure 3.5: Comparison of solutions in cells of different size for the same value of E = 0.03. 
The cells have radii (a) 30n, (b) 40n and (c) 50n. The other parameters are the same 
as in Fig. (3.3). Pattern configurations are similar, but larger domains can be observed 
in the larger cells. Black corresponds to a maximum field value of 0.180 and white to a 
minimum of -0.175. 
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not generate any spurious results (i.e., non-physical generation of rolls) near the center 

of the cell. 

Since the patterns consist primarily of domains of straight rolls, these would manifest 

themselves as regions in wave space k, where the magnitude of the Fourier transform is 

large. Our model equation has been scaled so that these regions are concentrated about 

the circle Ikl = 1. Then rolls of a particular orientation give rise to a large concentration 

at a particular angle on this circle in wave space. This can be seen in Fig. (3.6), which 

shows a snapshot of a pattern and the corresponding Fourier transform. It should be 

noted that there are generally domains in the pattern oriented at 60 degrees to each 

other. This is a consequence of the model and the particular parameter values chosen. 

The three-mode switching is a feature of experimental patterns and it is a promising sign 

that our simulations are able to capture this phenomenon. 

It should also be noted that one drawback of the Fourier transform analysis is that 

local spatial information is lost. Thus, we cannot distinguish rolls with the same wave 

vector in several disconnected domains from rolls in a single larger domain. Nevertheless, 

it provides a simple and effective method of determining the "average" roll orientation 

of the patterns. 

3.2.1 Angle Time Plots and Their Auto-correlations 

In order to better determine temporal trends in the patterns, we need a way of displaying 

the evolution of the average roll orientation. A particularly convenient way to do this 

is to integrate the Fourier intensity I 'l1 (k, t) I, over radial coordinates to give the angular 

intensity as a function of the direction (given by the unit vector k with k = kk) 

Sl(k,t) = J 21fkdkl'l1(k,k,t)l· (3.3) 

By plotting this as function of time, we should be able to clearly see the evolution of the 

average domain structure. We show an example of this angle time plot in Fig. (3.7). 

This is essentially the same plot seen in the experimental work of Hu et al. [33], who call 

them angular distributions F((), t). Similar plots are also considered in the numerical 

work of Cross et al. [18]. 
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I 

Figure 3.6: Snapshot of the field 'lj; (x , y , t) (top panel) and its corresponding Fourier 
transform (bottom panel) after a time 2000 from random initial conditions. The param­
eters are gl = 1, g2 = -2.60, g3 = 1.5 and to = 0.3, in a cell of radius 401f. In the field 
representation (top panel) black denotes positive values and white negative values. In 
the bottom panel the full range of wave vectors shown is ±1.6 in each direction kx, kyo 
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Figure 3.7: Angular Fourier intensity versus time and its auto-correlation. Top panel is 
a color scale plot of the radially integrated Fourier intensity (blue, zero; red, maximum 
intensity) as a function of the angle (h of the wave vector, plotted against time for an 
interval of 5,120 starting at time 800, in a cell of radius 30n. The other parameters are 
€ = 0.1, 91 = 1, 92 = -2.60 and 93 = 1.5. The lower panel is the auto-correlation of the 
top panel, with the origin ((h, t = 0) in the center of the plot . 
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To accentuate the details in the angular distributions F(B, t), auto-correlations (la­

belled C(bB, bt) by the experimentalists) of this plot are computed. This is simply the 

square of the Fourier transform of F(B, t) treated as a two-dimensional image. Notice 

that we shift the auto-correlation so that the largest contributions now occur at the 

center of the plot. From these, it is particularly easy to see the switching behavior of 

the domains. The switching behavior manifests itself as a sequence of bright spots sep­

arated by (Bs, Ts) offsets. Here Bs represents the switching angle which we see is close to 

60°. We also notice that it is possible for there to be an overall drift in the dominant 

orientation. Thus, after any two consecutive switches, it is not necessary to return to 

the same dominant orientation. This is also seen in the experimental results. Ts gives 

a characteristic switching time, but it is important to note exactly how this is being 

determined. As we have already mentioned, there is a loss of local spatial information 

after we take the Fourier transform. Therefore, our angle time plots F(B, t) and auto­

correlations C (15e, 6t) do not show the switching behavior of anyone particular domain. 

Instead, it is a measure of the average stripe orientation, and therefore our switching 

angle and switching time are also only average measures of these quantities. Neverthe­

less, they provide a good quantitative way of determining the important characteristics 

of the particular system under study. 

3.2.2 Structure Function S(k) and the Correlation Length ~ 

Of particular interest to us is a way to obtain some measure of the size of the domains 

in our cell. This leads to defining a correlation length, and we again follow the work of 

the experimentalists [40J. They begin by defining the structure function S(k), which is 

simply the time average of the square of the modulus of the spatial Fourier transform. 

They also consider averaging this azimuthally to obtain a function which depends only on 

k == Ikl. In cases where S(k) is nearly azimuthally symmetric, S(k) provides a convenient 

way to represent the wavespace information. 

In terms of the first two moments, 

(k) = I IkIS(k)d2k = 10
00 

k
2
S(k)dk 

- I S(k)d2k 1000 kS(k)dk 
(3.4) 
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and 

2 _ J IkI2S(k)d2k Jooo 
k3 S(k)dk 

(k ) = J S(k)d2k = Jooo kS(k)dk 
(3.5) 

of S(k), an average wave vector (k) and the correlation length 

(3.6) 

can be defined. Note that although the integrals defining the first two moments are 

over a semi-infinite range, they are clearly not computed on this range. In our case, we 

integrate only as far as we can in wave space which is determined by the (finite) Fourier 

transform that we calculate. If we take N points in the sample and R is the radius of 

the cell, then the maximum wave number is given by k < 7r N / R. 

An alternative definition of the correlation length is considered by Cross et al. [18]. 

This is defined in terms of a filtered Fourier transform which is the product of the Fourier 

transform W(k) of the field 1jJ(r) with a Gaussian filter centered at some angle ()f around 

the k = 1 circle in Fourier space: 

(3.7) 

where k f = (cos () f' sin () f) and a sets the width of the filtering function. If we perform 

the inverse Fourier transform with respect to k on W f (k, () f) we get a function 1jJ f (r, () f) 

that is large in magnitude in those domains where the stripe normal is close to the () f 

direction. From this filtered field 1jJf(r), the correlation function for a particular filtering 

angle () f is defined as 

and the filtered correlation function is defined as this quantity averaged over () f 

(3.9) 

summing over n f discrete filtering angles. Typically 8 to 12 () f are used in their cal-
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culations. By plotting C f for separations R along the x and y directions gives a curve 

which decays approximately exponentially as the separation increases. The correlation 

length is then taken as the width at half the maximum of Cf. We have not considered 

this for our purposes since we hope to draw more direct comparison from the experi­

ments. Thus, where possible, we have tried to implement the quantitative analyses of 

the experimentalists. 

3.2.3 Domain Switching Frequency Wa 

We saw from the angle time plots F(e, t) and auto-correlations C(oe, Ot) how a charac­

teristic switching time could be determined. However, often in experiments, they are in 

regimes where the Kiippers-Lortz instability is not fully developed (usually when they 

are below the critical rotation rate) and the pattern rotation seen in these plots is most 

likely not due to a switching orientation of domains. In fact, domains may not be the 

primary structure in such cases, and it is therefore difficult to attribute a characteristic 

switching time to such pattern behavior. However, it is still possible to consider a domain 

switching frequency Wa as the inverse of the slope of the bright lines in the angle time 

plots and auto-correlations. In the fully developed KL state, this will be proportional to 

the inverse of the characteristic switching time since the domain switching angle will be 

reasonably constant. 

In our simulations, we have restricted ourselves to a parameter regime where the KL 

state is active and therefore it is possible for us to directly determine a switching time. 

However, to be consistent with experiment, and since the switching time and switching 

frequency are so closely related in this regime, we only consider computing Wa' We 

note again that this is determined from the Fourier transform analysis, and therefore 

only represents an average, and not a switching time for anyone particular domain. 

The domain switching frequency is therefore also only an average measure of the true 

switching frequencies that may be seen in the patterns. 
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3.3 Time and Length Scales 

Our primary purpose for studying these models is to try to establish time and length 

scales for this problem. This is of interest because there are both theoretical and experi­

ment results for these quantities, which do not agree. Since we are not modeling the full 

fluid systems, we do not fully expect to reproduce the same scalings seen in experiment, 

but it is interesting to see how finite size effects might alter the scalings predicted by 

theory based on results in infinite size cells. In particular, it is interesting to determine 

whether such finite size effects might be responsible for the discrepancy between the 

theoretical and experimental scalings. 

3.3.1 Experimental and Theoretical Predictions 

In the work of Hu et al. [31,33]' they have established time and length scales in rotating 

Rayleigh-Beard convection based on the measurements described in the previous sections. 

Their findings suggest that the data are not particularly well described by the theoretical 

predictions. They have suggested alternative scalings which fit the data better, but which 

facilitates the need for further explanation. 

The theoretical scalings are based on general properties of Ginzburg-Landau models 

which hold only in the limit of small E and in the absence of boundaries. The theory 

predicts that Wa ex: E and that ~ ex: C I !2, so it is convenient to plot Wa and lie as 

functions of E to see if the data fall on straight lines. For small E, Hu and his co-workers 

found that a linear relationship was a reasonable fit to the data, but the lines did not 

pass through the origin. This indicates that there are nonzero correlation lengths and 

switching times at E = 0, contrary to what is expected theoretically. In order to search 

for a scaling which fit the data better, they included higher order corrections to the 

scalings of the form 

(3.10) 

(3.11) 

However, in doing this, they found that the coefficients Xl, X 2 , Wa,l and Wa ,2, correspond­

ing to these higher corrections, had to be considerably larger than 0(1). An alternative 
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is to consider a different scaling at the lowest order. A particularly good fit to their data 

is obtained with the scalings Wa ex: EO.6 and'; ex: EO.17 • 

3.3.2 Numerical Results 

As we mentioned earlier, we do not expect to necessarily reproduce the scalings found 

in experiment, and it is likely that we will not be able to confirm the theoretical scalings 

because of finite size effects. Indeed, this is the case as we show in Fig. (3.8). Here we 
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Figure 3.8: Dependence of the correlation length ~ on the control parameter E for g3 = 1.5 
and the expected y'E fit for small E. 

see that the correlation length does not follow a C 1/ 2 relationship as E --+ O. In fact, it 

appears that a linear fit is actually better to the data. There is a general trend, however, 

for the data to follow the theoretical C 1/ 2 scaling for smaller E in the larger cells, i.e., the 

deviation from the theoretical scaling occurs for smaller E in the larger cells. Therefore, it 
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is clear that finite size plays a role in determining~. This is not too surprising perhaps, 

since ~ must be constrained to be no larger than the size of the cell, otherwise it is 

questionable as to what ~ is measuring. Although our computed correlation lengths are 

still considerably smaller than the size of the cell, this does not exclude the possibility 

that the finite boundaries are influencing their values. The correlation length data is 

also given in Table 3.l. 

A somewhat contrary observation is made in [31] where they try to show that finite 

size effects have not influenced the measurement of their correlation lengths. They do 

this by comparing the correlation lengths of patterns obtained without rotation and for 

small values of the control parameter E. In this case, the pattern consists of essentially 

one set of nearly straight rolls, and a measured correlation length of such a pattern 

should provide, in essence, the upper bound to the correlation. Since they show this 

to be considerably larger than the lengths measured with rotation, they conclude that 

finite size effects in the analysis algorithm are not important. We currently do not have 

an explanation for this observation. 

Since we anticipate that finite size effects are influencing the correlation lengths we 

observe, we consider scaling them with the size of the cell. Thus we assume that our 

correlation lengths computed using Eq. (3.6), and which we now label as ~FS, are related 

to the theoretical value ~ by 

~FS = ~F(UR) (3.12) 

where R is the radius of the cell and F is some function. Then, if the theoretical scaling 

~ ex C 1
/

2 holds, a plot of C 1/ 2 /~FS versus C 1/ 2 / R should collapse all the data for 

different values of Rand f onto a single curve. We show in Fig. (3.9) a plot of our data 

on these scales. The successful collapse of the data onto a single curve indicates that the 

theoretical scaling of domain size with f does indeed hold for our model equation. It also 

shows the importance of scaling the correlation length appropriately to take account of 

finite size effects. Note that if finite size effects were unimportant, a straight horizontal 

line is the expected fit for the data since this would imply that ~FS ex ~, and so from 

Eq. (3.12), F(U R) = constant. We can see that for small values of the argument C 1/ 2 / R, 

our data does indeed follow this expected fit reasonably well. This is not surprising since 
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Control parameter E Cell radius R Correlation length xi 
0.01 3071" 31.92 

4071" 39.84 
39.38 

5071" 48.32 
49.21 

0.03 3071" 29.77 
29.92 

4071" 35.83 
36.00 

5071" 43.09 
0.05 3071" 28.40 

28.42 
4071" 34.46 
5071" 35.97 

0.1 3071" 25.17 
25.34 
26.19 
26.65 
26.94 

4071" 27.20 
5071" 28.99 

29.20 
0.12 8071" 29.41 
0.2 3071" 19.79 

4071" 21.33 
5071" 20.77 

0.3 3071" 17.20 
4071" 17.53 
5071" 17.45 

17.46 
8071" 18.73 

Table 3.1: Measured correlation lengths for different E and different cell sizes. The inverse 
values are plotted as a function of E in Fig. (3.8). Multiple correlation lengths at the 
same value of E and R indicate values that have been obtained from different sections of 
a run, or from runs started with different initial conditions. 
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Figure 3.9: Collapse of the correlation length ~ versus E data on a line by rescaling ~ and 
E to take account of finite size effects. The dashed line represents the asymptotic limit 
of the finite size correlation length ~FS. 
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we would expect finite size effects to be less prevalent in those cases where the domain 

size was small compared with the cell size. This occurs when both R and I'. are large, or 

when 1'.-1/2/ R is small. Thus, this provides further evidence that our data are consistent 

with the theoretical scaling. 

For larger values of C 1/ 2 / R > 0.03, significant deviation from the theoretical fit 

occurs. This is clearly due to finite size effects since large values of 1'.-1/2/ R corresponds 

to small cells and small values of 1'., where we tend to find domains of rolls that are 

large compared to the cell size. Thus, it is not surprising that the size of the cell 

may be influencing the size of the domains. It is important to note that the deviation 

from the theoretical scaling approximately follows a straight line. This indicates that 

C 1/ 2 /~FS ,-..., C 1/ 2 / R and hence that ~FS ,-..., R as C 1/ 2 / R ----'> 00. In other words, we 

find that the correlation length scales like the size of the cell as the cell size and/or I'. 

decreases. The asymptotic limit is shown as the dashed line in Fig. (3.9). 

In recent experimental work, a similar collapse of the data onto a single curve has been 

attempted [33]. In these experiments, the cell size is fixed while the control parameter 

I'. = R/ Rc - 1 and rotation rate n are varied to give the different domain structures. A 

successful collapse of the data is then achieved by scaling the data sets with n. In the 

finite cell, sidewall effects are known to influence the dynamics, and some differences as n 
is varied have also been noted [33]. Thus the scaling with n is somewhat less satisfactory 

than scaling with the cell size since it becomes difficult to isolate exactly those effects due 

to finite size, and those due to rotation. In any case, the experimental results appear to 

be consistent with our findings. They find that in plotting (1/02/1'. as a function of 1'., the 

data does not approach a constant value as I'. vanishes, as one expects if the theoretical 

scaling ~ ex: C 1
/

2 holds. The divergence of the values of (1/02/1'. as I'. ----'> 0 is clearly due 

to the fact that (1/02 is non-vanishing as I'. decreases. In other words, the correlation 

length ~ remains finite as I'. ----'> O. Our results clearly provide evidence to support this 

conclusion, at least in the case of the Swift-Hohenberg models. 

For the domain switching frequency, we find good agreement with the theoretical 

scaling, so long as I'. is not too large. In Fig. (3.10), we have plotted Wa against I'. on 

linear scales, and we see that a linear fit to the data is good for I'. < 0.2. Beyond values 

of 0.2, we see that the data no longer follow a linear relationship, but this deviation 
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can be attributed to higher order corrections as to increases. The fact that the time 
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Figure 3.10: Domain switching frequency as function of to on linear scales. The line is 
Wa = 0.04E. 

scales follow the theoretical predictions in the finite case is not totally surprising, even 

in light of the disagreement found in the length scales above. Since our model equation 

does not allow for any complicated dynamics at the outer boundary, it is likely that the 

presence of such boundaries will not affect the temporal behavior of the solution. In fact, 

since many of the rolls are actually nucleated from the boundary, we might expect the 

presence of boundaries to enhance rather than inhibit any domain switching behavior of 

our solutions. 

In the case of experiments, the switching frequency data are found to be inconsistent 

with the theoretical prediction, Wa ex: to [31, 33]. As with the correlation length, the 

data could be successfully collapsed onto a single curve after scaling by the rotation 
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rate [33]. A plot of waf f against f, where wa is the scaled switching frequency, shows 

that Wa/f does tend to a constant value as f approaches zero, in agreement with the 

theoretical prediction. But the curve quickly deviates from the theoretical scaling and 

the less satisfactory scaling given in Eq. (3.11) is necessary to fit the data. 

To summarize then, we have found that the theoretical scalings of the correlation 

length and switching frequency with f do hold in the case of our model equations. It is 

necessary, however, to make allowances for finite size effects in the case of the correlation 

length. We have found that if the measured correlation lengths are scaled linearly with 

the cell radius, then agreement with the theoretical predictions is obtained. For a cell of 

radius R, we have found that the correlation length ~ '" R/3, for R large and/or f small. 

Our results appear to be consistent with the experimental results in [33], while also 

providing strong evidence to support the conjecture that the different scalings obtained 

in experiment are due in large part to finite size effects. One further effect that we have 

not considered here, but which may help to shed more light on the discrepancy in the 

theoretical and experimental scalings, is to investigate the effects of more complicated 

boundary conditions. In particular, the boundary conditions suggested by Kuo [34] 

might help in explaining the significant difference observed between the scaling of Wa in 

our numerical simulations and in the experiments. 
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Chapter 4 

Numerical Simulation of Spiral Defect 

Chaos 

The existence of a spiral defect chaos state in Rayleigh-Benard convection was first ob­

served experimentally by Morris et ai. [40]. Since then, other researchers have been 

able to confirm the existence of this state both experimentally [2, 29, 30] and numeri­

cally through integrations of Swift-Hohenberg type models [3, 16, 43, 44, 49, 50]. The 

appearance of the spiral state in the convection system was surprising since it was not 

predicted theoretically [10, 13]. This has clearly helped to spur a great deal of interest 

in this system. 

In this chapter we numerically study the spiral chaos state observed in the solutions 

of a generalized Swift-Hohenberg equation. In Section 4.1, we state the model. Then, in 

the next section, we describe the numerical solution, based on our earlier experience with 

solving other Swift-Hohenberg models. In the third section, we describe the qualitative 

features of the solutions and give a detailed account of the effect of a global rotation on 

the spiral state, which is our primary objective in studying this system. 

4.1 The Model - Generalized Swift-Hohenberg Equation 

We follow the work of Xi et ai. [50] who numerically studied a generalized Swift­

Hohenberg model for spiral defect chaos. The model involves the addition of mean 

flow effects to the usual Swift-Hohenberg equation by coupling the field equation for 

1jJ(x, y, t) to a vertical vorticity potential ((x, y, t). The equations we therefore consider 
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are 

81/J at + gmU, V'1/J 

[! _ Pr(V'2 - C
2)] V'2( 

where U is the mean flow velocity given by 

c1/J - (V'2 + 1)21/J + N(1/J, t), 

[V'(V'21/J) x V'1/JJ . z, 

U = V' x ((z) = (8y ()x - (8x ()f). 

( 4.1) 

(4.2) 

(4.3) 

Here, Pr represents the Prandtl number and c2 is a parameter related to damping of the 

horizontal flow by viscous coupling to the top and bottom plates. As in the work of Xi 

et ai., we will use c2 = 2 to model physical rigid-rigid boundary conditions, rather than 

free-slip conditions modeled by c2 = O. The appropriate lateral boundary conditions are 

1/JIB = ft· V'1/JIB = (I B = ft· V'(I B = 0, (4.4) 

where ft is the unit normal to the boundary of the domain of integration, B. Note that 

the boundary conditions for the field 1/J are unchanged with the addition of the vorticity. 

The boundary conditions on ( ensure that both the normal and tangential components 

of the mean flow velocity vanish at the boundary. 

We have considered two different nonlinear terms for N ( 1/J ). The first is the same as 

used by Xi et al., 

(4.5) 

while the second is the combination of terms used to model the KL instability, Eq. (2.3). 

Thus, we hope to see the effect of adding rotation to the spiral chaos state. 

4.2 Numerical Solution 

The obvious similarity between the generalized Swift-Hohenberg equation and our model 

equation for the KL instability Eq. (2.1) and Eq. (2.3) suggests that we also try our fully 

implicit solution approach on this system of equations. 
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We begin by discretizing Eqs. (4.1) and (4.2) in time using the Crank-Nicolson 

scheme; 

o/,n+ 1 _ o/,n 1 
'f/ b.t 'f/ + 29m [Un+1 . \7'1j;n+l + un. \7'1j;n] 

~ [(E - (\72 + 1)2) 'lj;n+l + (E - (\72 + 1)2) 'lj;n] 

+ ~ [N('Ij;n+l) + N('Ij;n)] , (4.6) 

- ~Pr [(\72 
- c2)\72en+1 + (\72 

- c2)\72en] 
2 

~ [\7(\72'1j;n+l) X \7'1j;n+l + \7(\72'1j;n) X \7'1j;n] . z. 
2 

We rewrite these by collecting the terms at the new time step n + 1; 

(4.7) 

[(\72 + 1)2 - E + ~t] 'lj;n+l + 9m Un+1 
. \7'1j;n+l _ N('Ij;n+l) R?, (4.8) 

[ \7
4 _ (c2 + _2_) \72] (n+l + ~ [\7(\72'1j;n+l) X \7'1j;n+l] . z 

Prb.t Pr 
R~, (4.9) 

where R? and R~ contain all terms at the current time step n, 

[E + ~t - (\72 + 1)2] 'lj;n - 9m Un. \7'1j;n + N('Ij;n) , (4.10) 

- [\74 
- (c2 - _2_) \72] en - ~ [\7(\72'1j;n) X \7'1j;n] . z. 

Prt::..t Pr 
(4.11) 

Let us define the operators, 

and the nonlinear terms, 

9mU· \7'1j; - N('Ij;), 

:r [\7(\72'1j;) X \7'1j;] . 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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Then the nonlinear equations to solve at each time step n = 0,1,2, ... are 

L 1'ljJn+1 + N1('ljJn+\cn+ 1) 

L 2c,n+1 + N2('ljJn+\cn+ 1) 

which can also be written conveniently as the matrix system, 

(4.16) 

(4.17) 

(4.18) 

This is a large nonlinear system of equations which can be solved by Newton's method. 

As before, the efficient solution of the resultant linear problem depends upon the spatial 

discretization we choose. Since we are again interested in solving these equations in a 

circular geometry, we use a finite difference discretization of the polar form of the equa­

tions. Then, as before, preconditioned GMRES offers a particularly efficient approach 

to solving the linear problem. 

As we noted before, it is actually more efficient to precondition the system Eq. (4.18) 

before applying Newton's method, rather than applying preconditioned GMRES at every 

inner iteration. Therefore, we actually apply Newton's method to 

(4.19) 

We have dropped the superscripts for convenience, and L11 and Li. 1 are the inverses 

of the biharmonic operators L1 and L2 given in Eq. (4.12) and Eq. (4.13) respectively. 

Notice also that the terms Rr and R~ can be obtained recursively for n 2: 1; 

(4.20) 

(4.21 ) 

The values of R~ and Rg can be obtained from Eq. (4.10) and Eq. (4.11). 

We have also implemented the same adaptive time stepping scheme considered in 

Section 2.7. We find, again, a general trend for the time step to be increased, but the 
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SIze of t1t in this case is considerably smaller (usually 0(1)). Larger time steps are 

usually possible when the rotation nonlinear terms, Eq. (2.3), are included. We suspect 

the need for a smaller time step is due to the presence of fast dynamical structures 

observed in the spiral chaos state by Cross [16], as well as the use of larger values of f. 

4.3 Qualitative Results 

Our primary goal is to study the effects of rotation on the spiral chaos state previously 

obtained by Xi et al. [50] and also by Cross [16]. We begin by reproducing the spiral state 

found by Xi and his coauthors, by choosing the same form for the nonlinearity N(1jJ). 

We use the same parameters, namely a cell of radius 327f and set E = 0.7, gm = 50, 

g2 = 0.35 and Pr = 1. These are chosen to approximately reproduce the parameters 

found in the experiments of Bodenschatz et al. [8]. As we noted before, c2 = 2 to model 

the physical rigid-rigid boundary conditions at the top and bottom plates. 

In Fig. (4.1) we show the evolution of a run started random initial conditions. We also 

show the corresponding vorticity potential at this time. We first note the similarity of 

our result with the result of Xi et al. who integrated the equations using a significantly 

different numerical scheme. At t = 500 in the evolution, we see approximately six 

well developed spirals in the cell of either clockwise or counterclockwise orientations. 

The location of the spirals is also clearly seen in the plot of the vorticity potential 

((x, y, t) where they appear as a bright or dark spot, depending on their sense. An 

interesting question to consider is whether rotation of the entire cell will favor one spiral 

orientation over another. From a physical standpoint, the answer to this question is that 

rotation should affect the behavior since it provides a symmetry-breaking mechanism in 

the system. This has been observed experimentally [19] and somewhat confirmed in the 

numerical work of Ponty et al. [43]. It should be noted that this is a difficult question 

to answer definitively since this would require a large number of runs so that significant 

statistical data could be collected. Therefore, we will concentrate more on providing 

qualitative evidence to justify our claims about the effect of rotation. 
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(a) (d) 

(b) (e) 

(0) (f) 

Figure 4.1: Evolution of the spiral chaos pattern from random initial conditions. The 
field 'ljJ is shown at (a) t = 120, (b) t = 250 and (c) t = 500. Dark (white) regions 
correspond to positive (negative) values of'ljJ. The corresponding vorticity potential ( 
is shown in (d), (e) and (f), where dark and white regions correspond to clockwise and 
counterclockwise rotations respectively. The other parameters are t = 0.7, g2 = 0.35, 
gm = 50, Pr = 1, c2 = 2 and the cell radius is 327r. 
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4.3.1 Comparisons Without Rotation 

We first note some qualitative trends in the absence of rotation. Thus, we will be 

considering solutions to Eq. (4.1) and Eq. (4.2) where the nonlinear term is given by 

Eq. (4.5) as in [50]. We have repeated some of the experiments of Xi et al. to ensure 

consistency in our results, but also to confirm various trends with the parameters for 

ourselves. We shall also briefly summarize some of the other trends they have found, 

as well as the findings of Cross [16]' who considered a slightly different form of the 

nonlinearity. 

We first look at the effect of smaller cell size. In a cell of radius 167r we do not find a 

truly chaotic spiral state. Instead, the domain is dominated by a single slowly rotating 

spiral. This can be seen in Fig. (4.2) where we present an evolution from random initial 

conditions. We see that at around t = 600, a single well defined spiral has formed near 

the center of the cell. The other structures in the domain at this time are generally 

disordered, although some may be seen as the beginnings of other spirals. However, as 

time progresses, we see that no further spirals actually form, and the lone spiral near 

the center begins to dominate the entire cell. From our runs in larger cells at the same 

parameter values, we have observed spirals of the same approximate size as the spiral 

seen in this cell at t = 2000. Thus, it appears that the size of the spirals are determined 

almost exclusively by the parameter values and not the size of the domain. We obtain 

only one spiral here because the cell is not large enough to accommodate another spiral. 

We also notice the slow rotation of this spiral which seems to occur at about one 

revolution every 600 time units. But the important feature we observe here is a more 

globally ordered state with a single spiral, rather than a truly chaotic spiral state. Thus, 

we confirm the findings of Xi and his coauthors in that a cell of large aspect ratio is 

critical to the existence of spiral chaos. 

The inclusion of mean flow is essential to the formation of the spiral chaos state. 

This is easily confirmed by setting the coupling constant gm = o. Then Eqs. (4.1) and 

(4.2) completely decouple, and if we also set m = 0, the equation for the field variable 'Ij; 

reduces to the original Swift-Hohenberg equation, where no spiral chaos state has been 

observed. One may then think that the non-Boussinesq coupling constant g2 plays an 

important role in the formation of spiral chaos, but it has been shown by Bestehorn et 



76 

Figure 4.2: Evolution of the field 'IjJ from random initial conditions in a cell of radius 
161T. From left to right, top to bottom, the times are t = 600,900,1200,2000. The other 
parameters are as in Fig. (4.1). 
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al. [3] and also by Cross [16] that this is not necessary. In fact, in [16]' 92 = 0 for all 

the results presented. There has also been an extensive study of the trends with varying 

9m in that work, which has shown the spiral state to exist for a wide range of values, 

10 < 9m < 50. Although we have not studied these trends in this case of no rotation, we 

have seen the spiral state occur for a similar range of values for 9m even when rotation 

is included (see results in the following section). 

We finally note the importance of the Prandtl number Pro Xi et al. has shown that 

it is necessary for Pr to be reasonably small. For Pr = 6, they did not observe a spiral 

chaos state. This is not too surprising since in the experimental situation, mean flow 

effects are expected to be strongest at smaller Prandtl numbers, and we have already 

noted the importance of mean flow in the formation of spiral chaos. It is also interesting 

to note that E must be reasonably large in order to observe spiral chaos. This is clearly 

seen in the experimental work of Morris et al. [40] who show the transition to the spiral 

state as E is increased. 

4.3.2 Effect of Rotation 

We now consider the effect of rotation on the spiral chaos state. This is modeled by 

changing the nonlinear term in Eq. (4.1) to include the effects of rotation. In our im­

plementation, we have replaced the nonlinear terms Eq. (4.5) with those used to model 

the KL instability in domain chaos, Eq. (2.3). Thus we have a mechanism with which 

to study the transition from a domain chaos to spiral chaos state (or vice versa). 

Our initial observation is that rotation and mean flow are somewhat competing pro­

cesses. While mean flow has the effect of "winding up" the roll structures (into spirals), 

rotation seems to want to "straighten them out." This effect can be seen in Fig. (4.3). 

Here we compare the solutions with and without the rotation terms included, at a se­

quence of times. The initial condition for both is the reasonably well defined spiral state 

seen in Fig. (4.1)(c). In the absence of rotation, we see most of the original spirals con­

tinue to wind up increasing in size. By t = 1500, the cell is dominated by many large 

spirals with either sense of rotation. The structures outside the spirals are noticeably 

smaller and more disordered. On the other hand, with the rotation "switched on," we see 

that many of the original spirals have been unwound, or the spiral core has broken down. 
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Figure 4.3: Comparison of solutions with and without the rotation terms included. The 
solutions without rotation are shown on the left. Both sets of solutions are shown at 
400 time units apart, starting at a time t = 200 from the pattern given in Fig. (4.1) 
(c). The parameters for the run without rotation are unchanged from that run. For the 
solutions with rotation, 93 = 1.5, while all other parameters are the same as with the 
run without rotation. 
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By t = 1500, the cell looks to have no more than three large, well defined spirals, all 

with the same sense of rotation. Outside of these spirals, other large ordered structures 

are observed like the sidewall foci at the nine and ten o'clock positions. 

4.3.3 Linear Stability Analysis 

We are interested in gaining a better understanding of the competition that exists be­

tween the mean flow and rotational effects. In particular, we want to determine the 

effect of mean flow on the onset of the KL instability. We consider the linear stability of 

straight roll solutions of the form 

1/Jo(x) = Acos(qx), (0 = 0, (4.22) 

where A '" 10 1/ 2 , to small perturbations 61/J(x, t) and 6((x, t) in the model equations 

Eq. (4.1) - Eq. (4.2). Thus, substituting 

1/J(x, t) 

((x, t) 

1/JO(x) + 61/J(x, t) 

(0 + 6((x, t) 

(4.23) 

(4.24) 

into Eqs. (4.1) - (4.2) and linearizing, we have 

E61/J - (\72 + 1 )261/J - 3g11/J561/J 

+ g2Z· (\7 x [1\71/J01 2 \761/J] + \7 x [2(\71/J0 . \7c51/J)\71/Jo]) 

+ g3 (\7 . [1\71/JoI 2 \761/J] + \7 . [2(\71/Jo . \761/J)\71/Jo]) , (4.25) 

and 

(4.26) 

We assume that 

61/J(x, t) (4.27) 
n 

6((x, t) errteik-x 2:= en sin[(2n + 1)qx]. (4.28) 
n 
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E 93 (k) 
0.4 1.5 0.9 

0.55 4.5 0.77 
6.0 0.76 
9.0 0.78 

0.7 4.5 0.73 
9.0 0.71 
15.0 0.72 

Table 4.1: Mean wave numbers (k) at 9m = 50. The values show a clear trend to smaller 
values as E increases. The critical wave number for our model equation is scaled to be 1. 

Truncating after the first term in each of these sums we find that the growth rate a 

satisfies 

(4.29) 

where 

(4.30) 

Thus we see that the mean flow is important when q2 - Ikl 2 -# 0, i.e., when there is 

difference in the wavenumbers of the base state 'lj;o and the perturbation 5'1j;. 

4.3.4 Parameter Space 

From the linear stability analysis, it is clear that mean flow can affect the onset of the 

KL instability if there is a change in the wave number of the pattern. It is therefore 

useful to calculate the wave number of patterns obtained with mean flow. Note that in 

the absence of mean flow, our equations have been scaled to give a critical wave number 

kc = 1. We present in Table 4.1 representative mean wave numbers computed (using 

Eq. (3.4)) for patterns obtained at various values of E and rotation rates 93 for a fixed 

mean flow, 9m = 50. We clearly see that mean flow has the effect of reducing the wave 

number of the pattern. For fixed E, there is a slight variation in these values as the 

rotation rate 93 is increased, but these variations are small compared to the overall shift 

in the wave number. We also find that once 9m becomes reasonably large, 9m > 10, 
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there is also little variation in the wave numbers as 9m increases. A more significant 

variation in these wave number shifts is seen as E increases, with a clear trend towards 

smaller values of (k) for larger E. This is expected since we anticipate stronger nonlinear 

effects as the system is driven further from onset. 

Although mean flow is an important component in the formation of spirals, we have 

found little variation in our solutions for 10 < 9m < 50. An example of this is seen in 

Fig. (4.4). The patterns at 9m = 10 do show some intrinsic differences from those at the 

higher values of 9m, particularly at later times. However, the solutions at 9m = 25 and 

9m = 50 appear to be very similar to each A similar result has been found by Cross [16]. 

We therefore consider the behavior of the solutions as we vary E and the rotation rate 

93 for a fixed value of 9m. Since we wish to include significant mean flow effects in our 

solutions, we choose a large value, 9m = 50. 

We now consider the effect of rotation at fixed values of E and mean flow. In the 

absence of rotation (93 = 0), we find that a spiral state state develops for E > 0.4. As we 

increase 93, we see that the rotation begins to unwind the spirals. For E close to 0.4, the 

spiral state is completely eliminated for 93 as small as 0.5. For larger E, the spiral state 

appears to more stable and persists for much larger rotation rates. For example, for 

E = 0.7, 93 ~ 7 before all the spirals are eliminated from the solutions. Once the rotation 

rate is high enough to remove all the spirals from the solution, we observe instead a static 

roll-like pattern. For smaller E < 0.55, the rolls are straight and most of the cell is filled 

with just a single set of these parallel rolls. For larger E, though, the rolls appear more 

curved and it is rare that a single set of rolls will fill the cell. If we further increase 93, 

the roll structures become dynamic and domain chaos is observed. For very large values 

of the rotation rate, the domains become smaller and smaller and the patterns generally 

more disordered. However, it is still possible to observe a switching of orientation of 

the roll-like structures in the pattern, and we therefore still classify this state as domain 

chaos. 

It is clear that the higher rotations rates needed to bring on the onset of the KL 

instability and the formation of domains is consistent with our understanding of the 

mean flow effects. As we noted earlier, mean flow acts to decrease the wave number of 

the pattern and the decrease is greater for larger values of E. Thus we would expect to 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.4: Comparison of solutions with varying mean flow gm. For (a) and (b) gm = 10, 
for (c) and (d) gm = 25 and for (e) and (f) gm = 50. The patterns in (a), (c) and (e) are 
shown at t = 550 and in (b), (d) and (f), the time is t = 1550. All solutions are been 
evolved from the same random initial conditions. The other parameters are E = 0.7 and 
g3 = 1.5 for all patterns shown. 
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Figure 4.5: Summary of patterns found in parameter space at fixed gm = 50. A square 
represents that a spiral state is found, a triangle represents that a roll state is found, and 
a diamond represents that a domain chaos state is found. The lines show the approximate 
location of the boundaries between these transitions. 

see the domain state come in at higher values of g3 as we increase f. This is precisely 

what we have observed in our results. 

We summarize our results in Fig. (4.5) which shows a slice of parameter space at 

a fixed mean flow, gm = 50. Since spiral states are generally not found for E < 0.35, 

we have focused our attention on the range 0.4 < E < 0.7. For E > 0.7 spirals are still 

observed in the absence of rotation, but roll states seem to be more difficult to observe 

this far above threshold. With rotation, we find that the roll-like structures occupy only 

small regions of the domain, and the rolls are less well defined, particularly for E > 0.55. 

This is to be expected since the solutions become more disordered at larger E and higher 

rotation rates. From their visual appearance and dynamic behavior, we are able to 

determine approximate boundaries in parameter space between the various states found 
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in this system. These are also shown in Fig. (4.5). 

We observe that the roll patterns seen at moderate rotation rates become less well 

defined as E increases. For smaller values of E, the rolls are mostly straight and a single 

set can occupy a large portion of the cell. At higher E, straight rolls are generally less 

likely to occur, and typically, many sets of rolls are observed in the cell. This appears 

to be due to the stronger effects of mean flow for the larger values of E which have a 

somewhat destabilizing effect on these structures. In many cases, the structures we have 

classified as roll-like have a visual appearance more similar to domain behavior, but it 

is clear that the roll patterns do not exhibit any kind of switching phenomenon. Thus, 

the distinction between roll and domain structures is based on their dynamic behavior 

rather than their visual appearance. 

In Figs.(4.6) - (4.8) we show representative patterns obtained in each of the regions 

of parameter space. For each value of E, we see the same trend for the patterns to go 

from a spiral state to a roll state to a domain state, as g3 is increased. In the roll state, 

the patterns are quasi-static, and changes are seem to occur only over long times scales 

of the order 0(100) time units. In the domain states, clear switching of the orientation of 

rolls is seen over reasonably short time scales of the order 0(10). It should be noted also 

that the roll states and domain states are more clearly defined for the smaller values of 

E. For E = 0.7, these states clearly show more disorder than the corresponding states at 

E = 0.4. This is to be expected since the system is more strongly influenced by nonlinear 

effects as E increases. 

We have not been able to determine definitively if the transitions between the various 

states are sharp or occur in a more continuous way. Certainly, if we start in a spiral state 

(at some value of E and g3) and approach the boundary between the spiral and roll states 

by increasing g3 (keeping E fixed), all spiral structures are eventually eliminated from 

the cell. Before this transition point, the spirals are replaced by straight or moderately 

curved roll structures but well defined spirals still persist in these patterns. Thus, it is 

difficult to say at this point whether the state is truly a spiral one, or a mix of spiral and 

roll state. By further increasing g3, we will eventually lose all spiral structures from the 

pattern and it is at this point that we place the boundary between the spiral and roll 

states. Thus the point at which we lose all spirals seems reasonably well defined, but it is 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.6: Representative patterns for f = 0.4, 9m = 50. The different states are 
obtained by increasing the rotation rate 93. Spiral states are shown at (a) t = 1100, (b) 
t = 1500 for 93 = o. Roll states are shown at (c) t = 1000, (d) t = 1400 for 93 = 1.5. 
Domain chaos states are shown at (e) t = 400, (f) t = 500 for 93 = 4.5. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.7: Representative patterns for f = 0.55, gm = 50. The different states are 
obtained by increasing the rotation rate g3. Spiral states are shown at (a) t = 700, (b) 
t = 1100 for 93 = o. Roll states are shown at (c) t = 400, (d) t = 600 for g3 = 6. Domain 
chaos states are shown at (e) t = 300, (f) t = 400 for g3 = 9. 
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(a) (b) 

(0) (d) 

(e) (f) 

Figure 4.8: Representative patterns for E = 0.7, gm = 50. The different states are 
obtained by increasing the rotation rate g3. Spiral states are shown at (a) t = 1150, (b) 
t = 1550 for g3 = 1.5. Roll states are shown at (c) t = 400, (d) t = 600 for g3 = 9. 
Domain chaos states are shown at (e) t = 200, (f) t = 300 for g3 = 15. 
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Figure 4.9: Correlation length as function of g3 for E = 0.4, gm = 50. 

a matter of definition as to whether the states to the left of this boundary are classified 

as spiral states, since they certainly also contain roll structures. The boundary between 

roll and domain states is somewhat easier to define since, as we noted before, these are 

classified based on whether there is dynamic switching of the domain orientations. 

In order to better quantify the transitions through the various states, we consider the 

correlation lengths of the patterns. We show in Fig. (4.9) and Fig. (4.10) the correlation 

lengths as functions of the rotation rate g3 for E = 0.4 and 0.55 respectively. In these 

plots, a clear peak is seen for a particular range of g3. These clearly correspond to 

the regions where we obtain the roll states since these are the patterns that are most 

highly correlated. The peaks have a reasonably well defined support, suggesting that 

the transition from the roll state to other states is reasonably sharp. This is certainly 
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Figure 4.10: Correlation length as function of g3 for E = 0.55, gm = 50. 
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more significant for the smaller value of E = 0.4. Unfortunately our data is insufficient to 

completely justify this claim. The peak is more clearly pronounced for smaller E = 0.4. 

As we have noted before, and as can be seen in snapshots of the patterns (see Figs. (4.6) 

- (4.8)), more disorder in the patterns is expected as E increases. Thus, we expect smaller 

correlation lengths for the larger values of E, and thus a lower peak for the roll states. 

Finally, we would like to note that the transition boundary we have found between 

the spiral and roll states is somewhat different from that found in experiment [32]. In 

the experiments, rotation is seen to enhance the spiral state in the sense that spirals are 

observed at lower values of E when a small amount of rotation is added to the system. 

This can be seen in Fig. (4.11) which is reprinted from the work of Hu et al. [32]. In 

this diagram, the spiral-roll boundary is the line between the regions II and III. We note 

that this line has negative slope, in contrast to the positive slope seen in our results 

in Fig. (4.5). This indicates that there is a clear difference between our model and the 

physical fluid system. We note however that our results are consistent with the numerical 

work of Ponty et al. [43, 44], who have also considered Swift-Hohenberg type equations, 

rather than the fluid equations. They have also observed a competition between rotation, 

which is seen to order the system, and mean flow, which is seen to destructure the system. 

It is clear that further work is necessary to address this fundamental difference in the 

spiral states observed in the Swift-Hohenberg models and the full fluid system. On 

the other hand, our boundary between the roll and domain states are consistent with 

experiments (see Fig. (4.5) and Fig. (4.11). This further confirms the success of our 

Swift-Hohenberg model to capture the dynamics in the KL regime. 
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Figure 4.11: Phase diagram in the E-n parameter space for a cell of aspect ratio 40 from 
the experimental work of Hu et al. [32J. The division into regions was done by visual 
observations of the patterns, and in some cases supplemented by quantitative measure­
ments. Solid lines denote known boundaries whereas dashed lines are interpolations or 
suggestions of boundaries. In regions I and II, roll states are the predominant structures 
observed. In region III spirals are predominantly observed while in regions IV and V, 
the usual domain states associated with the KL instability are found. More disordered 
structures or a mixture of the above states are generally found in region VI. We see that 
the transition boundary between the roll (II) and spiral (III) states has a negative slope, 
contrary to our results (see Fig. (4.5)). The boundary between roll (II) and domain (IV 
and V) states is consistent with our numerical results. 



Chapter 5 

Conclusions 

92 

In this thesis we have developed and implemented a fully implicit scheme to numerically 

integrate equations of Swift-Hohenberg type in truly circular domains of large radius. 

This allows us to remove the stiffness associated with the linear biharmonic terms and to 

then evolve the solutions over very long time scales. The difficulty of solving in circular 

domains is overcome by integrating the equations in polar coordinates, but this creates 

other difficulties due to the nonuniform spatial grid. We show that our solutions can 

be stabilized by simply increasing the relative radial resolution. However, this cannot 

be done over the entire domain as the complexity quickly becomes prohibitive in large 

radius cells. Thus we have shown the effectiveness of using a variable radial mesh to 

overcome this problem. 

Next we applied pattern analysis techniques similar to those used in experiments on 

rotating Rayleigh-Benard convection [31, 33] to determine appropriate time and length 

scales in the Kiippers-Lortz regime. Our study shows that our model equations follow 

the theoretically predicted scalings for the correlation length and domain switching fre­

quency. However, for the correlation length, it is necessary to scale appropriately to take 

account of finite size effects. We find that the correlation length scales like the size of 

the cell, when the cell is small and/or when E is small. Our results are consistent with 

those from experiment [33] in the sense that deviations from the theoretical scaling can 

be attributed to finite size effects. Our results provide strong evidence for this conjec­

ture. In terms of the time scales, we have found that the domain switching frequency 

scales linearly with E in agreement with the theoretical scaling. In this case, we have not 

found it is necessary to scale appropriately for finite size effects. The finite geometry 

and our simple treatment of the boundary conditions appears to enhance the domain 

switching behavior of our solutions, since sidewall nucleated rolls play an important role 

in smaller cells. This differs from the experimental results, which show significant devi-
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at ion from the theoretical scalings even for E close to zero. It is likely therefore that the 

lateral boundaries playa very important role in the experiment and more complicated 

phenomena may be occurring there. To test this conjecture, it would be worthwhile 

incorporating more complicated boundary conditions into our model equations to help 

determine if this is the source of the discrepancy. 

We have also studied the effect of rotation on the spiral chaos state which is obtained 

by the addition of mean flow effects to the Swift-Hohenberg equation. We find that 

rotation and mean flow effects compete in this system. Rotation tends to have an 

ordering effect while mean flow has a destructuring effect. The addition of mean flow 

appears to shift the wave number of the pattern which results in a shift in the onset 

of the KL instability. In the presence of mean flow, it is therefore necessary to rotate 

the system at higher rates in order to observe the KL instability. Mean flow effects 

increase with increasing E so particularly large rotation rates are necessary before the 

KL instability is observed at large E ~ 0.7. A consistent sequence of patterns is obtained 

for 0.4 < E < 0.7, as we increase the rotation rate. For small amounts of rotation, 

spirals are observed. At moderate rotation rates, the spirals are replaced by roll-like 

structures. By further increasing the rotation rate, the roll structures become dynamic 

and the familiar KL domain switching patterns are observed. The transitions across 

the boundaries (in parameter space) appear to be sharp although some ambiguity in 

the classification of the spiral/roll transition exists. Generally, we classify a pattern to 

be a spiral state if there are any spiral structures observed, but often spirals and roll 

structures will coexist in the cell. 

In terms of future work, there is still a need to determine if there are other effects not 

accounted for in our model of the Kiippers-Lortz instability that may be responsible for 

the different time and length scalings seen in experiment. As we have already mentioned, 

the reflection-symmetry-breaking boundary conditions of Kuo may prove to be a useful 

addition to the model. The conditions cause significant changes in the structure of the 

matrices to be solved, which may possibly destabilize our scheme. It would, however, be 

a worthwhile avenue to pursue since the conditions give rise to a unique state not seen 

before in Swift-Hohenberg models in finite geometries that may well account for realistic 

sidewall effects found in the physical system. 
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Finally, there is a need to carry out direct numerical simulation on the full fluid 

system. As we have mentioned, this is currently being undertaken, but a code in the 

cylindrical geometry is still some time away. There are also algorithmic improvements 

that need to be made since the current implementation in the rectangular geometry is 

only a semi-implicit code and suffers somewhat from a severe time step restriction. 
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