
Micromachined Devices for an 

Airborne Bio-Particle Analysis System 

Thesis by 

Amish S. Desai 

In Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

~ 
z 
c.:: o 1891 

California Institute of Technology 

Pasadena, California 

2000 

(September 15, 1999) 



ii 

©2000 

Amish Desai 

All Rights Reserved 



III 

To my parents 



IV 

Acknowledgements 

Just to be here in Los Angeles, United States of America, writing the 

acknowledgements of my Caltech thesis after a morning of surfing is a dream in itself. 

To many this scene might not amount to much. But this moment is a reality, only 

because of my parents who crossed the globe to give me an opportunity to make 

something like this come true. I can never be thankful enough for their hard work. 

I would like to thank Dr. Yu-Chong Tai who has taught me much more than just 

micromachining, and made me worthy of a Caltech Ph.D. This amazing career path 

could not have been possible were it not for Dr. Chih-Ming Ho at UCLA, who opened a 

young undergraduate's eyes to the world of micromachining. Thanks to Dr. Denny Miu 

for that first year at the Caltech Micromachining Lab, and connecting me up with one of 

the most intense and amazing professors at Caltech - Dr. Tai. I'm grateful to Raanan, 

JAWS, Ceca, Xing, Tom -- the "senior guys" who taught me how to process, saved me 

from fatal mistakes, and tolerated my jokes. More specifically, the various parts of my 

thesis could not have been done without insight and help of Dr. Dirk Bokenkamp(dive 

buddy for life), Dr. Stephen Mayo, Xing Yang, Dr. Terry Lee and Mike Davis at the City 

of Hope, and Dr. Sang-Wook Lee. I can't forget Trevor Roper, who is the only guy that I 

know, who knows how to fix it all - from sputtering machines to Volvos. A special 

thanks to XQ, "Parylene master," who made the mass spec nozzle a true success, and 

always had time to help and advise. 

And then there those who are behind the scenes who are not mentioned in any 

papers, presentations, or anything tangible: Guido--for convincing me to stay with the 

program, Jenny, Viki, Marc B.,Marc R., and Chase-- for having more confidence in me 

than I had in myself, Guido and Veronique - for things that words can't express, for 

always being there, and for the good times in our future, Wen - for keeping me "flying 

high," and always looking out for me. Thanks to my sister, Ratna, for being my best and 

worst critic, and for adding the final awarding winning touches on some of my hardest 

tasks. And a final "cheers" to all the "Euros" at Caltech for making memories and 

friendships spanning oceans and continents. 



v 

Micromachined Devices for an Airborne Bio-Particle Analysis System 

Thesis by 

Amish S. Desai 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

Abstract 

The goal of this thesis is to develop micromachined devices for an automated 

miniaturized airborne bio-particle analysis system. The realization of such a system is 

complex requiring a particle capture, transport, collection, sample preparation, and 

analysis. Accordingly, microelectromechanical systems (MEMS) teams have studied and 

developed micro-pumps, valves, channels as building blocks for a miniature chemical 

analysis system. In this thesis, novel micromachined solutions to some of these tasks are 

presented. Specifically, the development of: 

1) a low voltage, air-based electrostatic particle transportation system, 

2) an air-to-liquid interface design for transport of airborne particles into a liquid 

environment 

3) a micro-chip electro spray (ES) mass spectrometer interface for small 

volume(nL) mass spectrometry, 

4) and fast mixers « 1 OOj..ls) for the study of chemical reaction kinetics. 

The particle transport system consists of 3-phase electrode arrays covered by photoresist 

and Teflon. Extensive testing of this system has been done using a variety of insulation 

materials, thicknesses (O-12j..lm), particle sizes (1-10j..lffi), particle materials (metal, glass, 

polystyrene, spores, etc.), waveforms, frequencies, and voltages. Although previous 
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literature claimed it impractical to electrostatically transport particles with sizes of 5-

10J.UI1 due to complex surface forces, this effort actually demonstrates 90% transportation 

efficiencies with the optimal combination of insulation thickness, electrode geometry, 

and insulation material. 

As the second step, this particle transportation technology has also been integrated with 

an active micromachined filter and an air-to-liquid silicone rubber interface. Two 

methods of air to liquid particle transport were explored - moving particles across a 

stationary fluid meniscus and the other, moving meniscus across stationary particles. 

Third, the development of a micron-sized MEMS nozzle (1-3 J.UI1 orifice diameters) is 

presented with successful demonstration of its application for electro spray ionization 

mass spectroscopy. MEMS scaling issues were verified with the flow visualization of the 

Taylor Cone on this nozzle. 

Fourth, a lcm x lcm x Imm DRIE silicon mixer capable of initiating and quenching 

(starting and stopping) chemical reactions in intervals as short as 100 J..ls was 

characterized by employing two carefully chosen chemical reactions with reaction time 

constants of 3 ms and 9 ms along with visualization techniques using dyes and acid-base 

indicators. 
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Chapter 1 

MEMS and Bio-Particle Detection 

1.1 Introduction 

The emerging area of micro electro mechanical systems (MEMS) has had a long history. 

The precursor to this technology, the integrated circuit, was developed in the '60's by 

Jack Kirby [1] and Robert Noyce [2]. Prior to their invention (actually in 1958) all the 

components of a computing circuit had to be individually soldered taking up vast 

amounts of room, adding to manufacturing complexity, and often prone to failure. The 

miniaturization and integration revolution started by Kilby and Noyce has resulted in 

modem mainframe computers capable of processing billions of instructions per second 

[3]. 

During the semiconductor revolution, where emphasis was on the electronic properties of 

semiconductor materials (such as polysilicon, silicon nitride, thermal oxide, and 

aluminum), a few researchers began to study the mechanical properties of these thin films 

[4] [5]. As early as 1966, engineers had started to use selective silicon bulk etching 

technology to fabricate three-dimensional micro sensors [6]. By the 1970's, such etching 

techniques had been labeled "micromachining" and were used creating neural probes [7], 

pressure sensors [8], gas chromatograph columns [9], and other devices. By the 1980's, 

surface micromachined technology [10] developed at the University of California, 

Berkeley gave rise to new types of micro sensors and actuators [11] such as gyroscopes 

[12], micro grippers [13], micro-optics [14], digital micromirrors [15] and accelerometers 

[16]. The hope of these scientists was to do the same for mechanical systems as the IC 

had done for the electronic circuit, namely, to integrate large numbers of mechanical 

sensors with electronic circuitry to be able to develop smaller, faster, cheaper, and more 

complex microsystems. Just as the integrated circuit revolutionized the transport of 

current, MEMS researchers today are creating microdevices to revolutionize the transport 

of fluids for bio-analysis. MEMS technology has made it possible to make miniaturized 
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pumps [17] [18] [19] [20], valves [21] [22] [23] [24], channels [25] [26], reservoirs [27], 

reactors [28] [29] [30], mixers [31] [32] [33] [34], filters [35] [36] [37], and detection 

systems [38] [39] [40] [41] [42]. One of the important applications of this technology is 

in the area portable environmental monitoring for toxins, chemicals, and other bio­

particles. 

The ability to fabricate microdevices for such applications offers many advantages. 

MEMS devices can be made smaller and cheaper resulting in low cost portable devices. 

Reductions of scale also promise faster analyses times and the creation of new on-chip 

detection chemistries. Furthermore, common manual operations such as pipetting, 

incubating, and mixing can be automated eliminating human error and increasing 

throughput. Unfortunately, very few micro systems capable of complete bio-particle 

analysis exist because of the diversity and complexity of the components that are 

required. For example, a micromachined automated analytical system would require 

pumps, valves, channels, reservoirs, mixers, physical filters, chemical filters, electronics, 

flow meters, external connectors, detectors, etc. [43] [44] [45] [46] [47]. 

While the emerging area of MEMS has spanned well over four decades, the current state 

of MEMS technology and research is giving value to the idea of conceiving traditional 

semiconductor fabrication concepts and applying them to innovative devices for 

biochemical analysis. With a unique multidisciplinary approach, this thesis examines 

specific aspects of the current MEMS demands for this bio-particle analysis problem -

namely, airborne transport, collection into liquid, liquid sample analysis and fluidic 

mixing. The following sections in this chapter review MEMS fabrication techniques, 

MEMS bio-analysis systems, and conclude with the goal and layout of this thesis. 

1.2 Micro Electro Mechanical Systems (MEMS) 

It may be referred to as "micromachining," "mechatronics," "micro system technology 

(MST)" or MEMS, but the definition still remains the same. After Kurt Peterson's 

review paper [48] on "Silicon as a Mechanical Material," the field was broadly defined as 
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the method of mass fabricating three-dimensional structures rangmg from a few 

millimeters to submicrometers. Micromachinists tend to divide the micromachining field 

into two distinct fabrication methods: bulk micromachining and surface micromachining. 

[49] 

Bulk micro machining refers to the selective etching of the substrate to create three­

dimensional structures from the remaining material. A silicon substrate is typically 

associated with this technique which can be etched either isotropic ally or anisotropically 

with a variety of chemistries. Anisotropic etchants such as potassium hydroxide (KOH) 

[50], tetramethylammonium hydroxide (TMAH) [51] and ethylene diamine 

pyrochatechol (EDP) [52] have etch rates which etch the (111) crystallographic plane in 

the single crystal silicon wafer at a much slower rate than the other planes. Figure 1-1 

illustrates anisotropic etching on two different Si orientations, (100) and (110). Out of 

the three, KOH has the highest selectivity between <100>/<111>, TMAH is aluminum 

selective, and EDP is the most toxic. However, for boron etch stop applications, EDP 

remains the best performer. 

(100) (110) 

(100) anisotropic etching (111) anisotropic etching 

Figure 1-1: Typical silicon anisotropic bulk etching profiles 

isotropic etching 

Figure 1-2: Isotropic etching of silicon results in rounded features 
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Isotropic etching of the silicon substrate with RNA (hydroflouric acid, nitric acid, and 

acetic acid) [53] results in rounded features due to equal etch rate in all directions (Figure 

1-2). In addition to these wet (liquid based) etchants, the silicon substrate can also be 

etched isotropically with bromine trifluoride (BrF3) [54] and xenon difluoride (XeF2) 

[55]. The advantage of these vapor based processes is three-fold: 1) extremely high etch 

selectivity to silicon dioxide, silicon nitride, and metal, 2) room temperature process, and 

3) elimination of surface tension stiction effects on free standing structures [56]. 

Lastly, another widely popular deep etching technology is deep reactive IOn etching 

(DRIE) which allows very high aspect ratio (>20: 1) etching of silicon independent of 

crystallographic orientation. This plasma based process relies on a high density 

inductively coupled plasma source and an alternating process [57] [58] of etching and 

protective polymer deposition to achieve the almost 90° wall angles. Photoresist and 

silicon dioxide can be used as a masking layer with selectivities of 80: 1 and 120: 1, 

respectively. 

Unlike bulk machining, surface micromachining, technology was originally characterized 

by the fabrication of structures from deposited thin films such as polysilicon [59] [60], 

silicon nitride [61], and various silicon dioxides [62] [63]. The technique employs the 

sequential deposition and selective removal of thin films as the structural layer or the 

sacrificial layer. The substrate (silicon, quartz, glass, alumina, or even plastic) plays a 

passive role in this technique and only provides mechanical support. An example of a 

sequence of surface micromachining steps is illustrated in Figure 1-3. First, a sacrificial 

layer is deposited and patterned. Next, the structural layer is laid down and patterned. 

Finally, the sacrificial layer is etched away releasing the structural layer except where it 

is retained by an attachment to the silicon surface. 
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sacrificial layer ~ ---
A) substrate 

structural layer 
~ ---

B) substrate 

C) 

Figure 1-3: Example of a surface micromachining fabrication sequence 

Polysilicon pin joints and motors [64], succeeded by electrostatic comb-drive actuators 

[65] and complex fold out structures [66] [67] were the direct result of this type of 

process. In 1991, Analog Devices Inc., developed surface micromachined accelerometers 

[68] integrated with CMOS circuits which are now commercially available. Today, the 

realm of surface micromachining materials have expanded to include such as silicon 

nitridelPSG [69], aluminumlpolyimide [70], Parylene/photoresist [71], polysiliconlsilicon 

nitride [72], and polysiliconlcopper [73]. Surface micromachining offers submicron 

control over features, but also is susceptible to film stress which causes out-of-plane 

bending, grain size which affects the Young's Modulus [74] [75], and stiction problems 

during the release etch [76] [77] [78] [79]. 

Other micromachining technologies include LIGA [80], silicon carbide MEMS [81], 

silicon-silicon fusion bonding [82], electrical discharge machining [83], polymer hot 

embossing [84], and plastic injection molding [85]. 

1.3 Airborne Sampling and MEMS 

In the past decade, researchers have demonstrated feasibility for microsystems for 

biochemical analyses such as PCR-on-a-chip [86], immunoassays [87], antibody 

detection [88], and chemical warfare gas detection [47], but for bio-partic1e airborne 
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sampling, almost no micro systems exist. As Poruthoor and Dasgupta [89] point out, 

automated measurement techniques for gaseous and chemical components of ambient 

have been extensively developed [90], but no commercial instruments exist for rapid in 

situ measurement of the biochemical composition of aerosol particles. Typically, 

chemical analysis of bio-particles has largely been conducted offline in separate batch 

processes - collection and analysis. Particle collection is normally accomplished by 

inertial techniques such as gravitational settling, centrifuging, filtration, electrostatic, or 

thermal precipitation [91]. For bio-particles it is imperative that the detection instrument 

be based on wet chemistry because of the many accepted biochemical analytical 

protocols available. Furthermore, wet chemistry has the potential to be fast, sensitive, 

and affordable, provided there are easy methods for continuous collection and transfer of 

aerosols to such analyzers. 

However, easy methods are not available for automated particle collection. Most MEMS 

detection systems forego the sample collection step and focus purely on detection. 

Collection and transport of airborne particles becomes a difficult task because of the 

complex surface adhesion forces acting on the particles [92] [93]. Extensive amount of 

research has been done for manipulating particles in liquid [94][95][96] but the transport 

of particles from an air medium to the liquid medium is not a simple task. Large 

automated systems typically resort to manual intervention at this step in the system or 

others have shown wetted screen type diffusion denuders. These denuders are typically 

30cm wetted parallel screens which trap particles traveling in an adjacent air stream [97]. 

Devices as large as this are obviously unsuitable for the microfluidic components that 

have already been developed for chip based bio-analyses. 

Another area that is needed for sensitive analysis is the mass spectrometer. There has 

been significant advancement in MEMS based chemical separation systems, but on-chip 

detection can be performed mainly by methods such as UV absorbance and electro­

chemi-Iuminescence [98]. These optical methods are not viable for most biomolecule 

(protein and peptide) detection; they are no match for the femtomole sensitivity, 
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selectivity, and versatility (minimal liquid sample preparation) provided by a mass 

spectrometer (MS) (Table 1-1). 

Table 1-1: Mass spectrometer has superior sensitivity 

Detection Method Approximate Detection Limits 

UV Ivisible absorbance 10-13-10-16 Moles 
Fluorescence 10-15_10-17 Moles 
Mass spectrometry 10-16_10-17 Moles 

Furthermore, because of this tremendous advantage in sensitivity, mass spectrometry is 

ideally suited for detection from on-chip small sample volumes [99] [100]. This 

femtomolar sensitivity then can be crucial for MEMS environmental monitoring systems 

where permissible concentrations are extremely low. 

1.4 The Purpose and Organization of this Thesis 

The aim of this work is to develop micromachined devices for the area of bio-particle 

analysis. Much of the research here has been funded by DARPA to develop a handheld 

system for airborne virus and toxin detection in chemicallbiological warfare 

environments. As noted, although MEMS technology promises many innovations, the 

diversity and complexity of components that are required for such a micro-analysis 

system are daunting. As a result, this project has involved fluid dynamists, electrical 

engineers from the UCLA, several biology groups, and members of the Caltech 

Micromachining Lab to research issues such as air flow in micro filters, micropumps, 

microvalves, check-valves, detection protocols, and low powered detection electronics. 

Accordingly, the work here focuses on new key components that are required to realize 

this bioaerosol detection system. 

This thesis is organized as follows: 

• Chapter 2 discusses the fundamental forces governing typical airborne particles and 

illustrates the performance envelope of past particle transportation devices. 
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• Chapter 3 details the development design, fabrication, and testing of MEMS 

transportation chip over several generations. Experimental trends are compared to 

electrostatic simulations to verify the improved performance with dielectric insulators 

such as photoresist and Teflon. 

• Chapter 4 attacks the difficult problem which has plagued the design of bio-particle 

detector - particle transport from air into a liquid system. To further demonstrate 

more applications of this transportation technology, a prototype combining an active 

filter, transportation electrodes, and the air liquid interface was fabricated and tested. 

• In Chapter 5, the motivation for on-chip electro spray ionization is explained together 

with the importance of the mass spectrometer as a bio-analytical tool. 

• Chapter 6 outlines the development of the first surface micromachined electro spray 

nozzle. 

• Chapter 7 concludes this topic with more nozzle generations/thin film problems and 

flow visualization of an electro spray fluid cone from the micromachined chip. 

• In Chapter 8, the area of fast mixing for liquid chemical reaction studies is explored. 

Chemical calibration with a novel fast reaction and extensive flow visualization 

authenticate the mixing chip's ability to conduct quenched flow lOOf,.ls quenched flow 

experiments. 

• Finally, Chapter 9 concludes with a synopsis and some future trends in the area of 

MEMS bio-analytical systems. 
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Chapter 2 

Particle Transportation Fundamentals 

2.1 Introduction 

The ability to transport and manipulate particles in air is desirable in many instruments 

such as airborne particle samplers [1], particle sorters, and electrostatic particle-cleaning 

apparatuses [2]. There are many different ways to transport particles larger than 10 ~m 

such as forced air jets [1], centrifuges, and other mechanical means [I]. However for 

particles ranging from 1 to 1 0 ~m, there is still no efficient way to transport them because 

complex surface forces, instead of gravitational force, dominate. Current particle 

conveyance methods are cumbersome, often requiring manual rinsing and pipetting [1]. 

These surface forces acting on these sizes of particles can be separated into three parts: 

London-Van der Waals force, coulombic force, and meniscus force. Though only three 

in number, these forces are easily affected by many parameters which are very difficult to 

control [3]. The table below is a brief list of possible factors affecting particle adhesion 

to a surface. 

Table 2-1: Factors Affecting Particle Adhesion 

Surface contamination Particle to surface distance Net charge 

Polarization Humidity Contact Area 

Surface roughness Time of contact Particle shape 

Meniscus radius Dielectric constant Homogeneity of particle 

Interaction between 
particles 
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Consequently, these factors have added complexity to the development and study of 

particle transportation systems. In the past, successful transportation of sub 10 J.lm 

particles has been accomplished in the liquid medium [14], but not on a solid surface in 

air. In air, Moesner and Higuchi [4] and Balachandran et al. [5] have demonstrated 

motion of larger particles with voltages up to a few kV. Unfortunately, in the sub IOJ.lm 

regime, the electrostatic forces that can be exerted on the particle are of the same 

magnitude as the adhesive forces between the particle and the solid surface. Numerous 

researchers have noted this size range cut-off. For example, Novick et al. [3] have noted 

that the sub 10J.lm range presents a different regime where surface adhesive forces and 

particle charging hinder the successful engineering of a robust particle transport system. 

The goal of this work, then, is to reexamme this difficult task and design a 

dielectrophoretic (DEP) particle transportation system [4-6] capable of moving particles 

below 10J.lm in air with low voltages. The following sections review some of the basic 

forces governing particles in this size domain and discuss the fundamentals of the DEP 

force. 

2.2 Particle Adhesion Forces in Air 

The adhesion forces between a J.lm-sized particle and a surface are mostly Van der Waals 

forces, electrostatic forces (image force), meniscus forces, and also gravitational forces 

[6,7]. It is impossible to calculate the exact contribution of these various forces that 

govern the adhesion of particles in this size range. Since, the calculation of these forces 

on micro-particles, even in vacuum, is approximate (order of magnitude) at best [7], in 

air, these theoretical formulas become more inaccurate because of irregularities of 

surfaces, molecular adsorption, and stray electronic charging. Nevertheless, we use these 

formulas to gain an understanding of the magnitude of the forces involved. Many 

scientists have experimentally studied these phenomena, and have come up with 

estimates for adhesive forces [3,7]. Because of the irregularity of particle and surface 

contact areas, experimental results for this range of particles are often denoted in 

percentages of particles that are removed vs. adhered. Large variation is common with 

these percentages due to the statistical nature of the phenomena. 
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2.2.1 Van der Waals Forces 

The Van der Waals force stems from close range intermolecular interactions. These 

forces are often termed dispersion forces, which include London forces, charge­

fluctuation forces, electrodynamic forces, and induced-dipole interactions. Much work 

has been conducted in this area, namely London (1937), Hirschfelder et al. (1954), 

Moe1wyn-Hughes (1961), Margenau and Kestner (1971), Israelachvili (1974) and 

Mahanty and Ninham (1976) [6]. These dispersion forces govern adhesion, surface 

tension, physical adsorption, wetting, and other key properties of gases, liquids and thin 

films. This intermolecular force comes into play from distances of 10nm down to O.2nm. 

Typically, we can assume that the pair potential between two atoms or small molecules is 

purely attractive and additive (molecule and other surface are composed of similar 

molecules and interactions superimpose). With this assumption the pair potential is of 

the form [8] 

w(r) = _C/rn (2-1) 

where C is the London dispersion force coefficient, r is the distance between the 

molecules or atoms, and n = 6 for Van der Waals force. By integrating Equation (2-1) for 

the case of a molecule distance D away from the surface, we arrive at, 

w D _ -2nCp 
( ) - (n - 2 Xn - 3 )Dn-3 (2-2) 

where p is number density of molecules in the solid. To calculate this interaction energy, 

W( d), between a sphere and a surface, we have to integrate Equation (2-2) about a sphere 

of radius R and distance D from the surface (Figure 2-1) [8]. 

W(D)= _2n
2
Cp2 z=r(2R-Z)zdz 

(n - 2)(n - 3) z=o (D + zr-3 
(2-3) 
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+-D 

Figure 2-1: Method of summing interaction energy of particle near surface, D< <R [8]. 

Assuming D«R and n=6, we can obtain the Van der Waal interaction energy for a 

particle on a surface, Equation 2-4. 

(2-4) 

The corresponding expression for force can be derived by differentiation with respect to 

D. 

F(D) = _ n
2
Cp2 R 

l2D2 
(2-5) 

Typically Equation (2-5) is simplified by coalescing the constants, n2Cp2/l2, into a larger 

constant called the Hamaker constant. Assessing this dispersion force is difficult because 

the Hamaker constant can vary from (0.01 to 200)'1O-19J and the particle distance from 

the surface, D, can also vary from 0.1 to 20nm [2,3,8]. Furthermore, the Van der Waals 

forces are highly dependent on particle shape, and consequently, quantitative calculations 

are difficult for irregularly shaped particles. 
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2.2.2 Coulombic Forces 

Coulombic forces on particle arise when a particle develops a net charge. Not much is 

understood about how particles become charged, but this charge drastically alters the 

adhesion force between the particle and the substrate. For instance, researchers have 

shown this charging can increase adhesive forces by a factor of 2 [7]. Others groups have 

noted that any sliding, rubbing, or rolling contact or normal contact without lateral 

motion can affect the charge on the particle surface. A detailed hypothesis of the contact 

potential differences in the energy band gaps can be found in Zimon [7]. Various 

theories exist to account for particle charging. Kunkel concluded that it is not the friction 

that causes charging but the making and breaking of contacts [6]. Another fact that 

complicates this study is that particles tend to interact physically with other particles. 

This contact also brings about localized surface charging and transportation of charge [6]. 

A charged particle can expenence two types of electrostatic forces (relevant to this 

work): a) electrostatic attraction, commonly referred to as the Coulomb force and b) an 

image force. From basic electromagnetic theory, the Coulomb force is generated due to 

the interaction between an electric field and a charged body (or between charges) and can 

be described by the following equation: 

F=qE (2-6) 

where q is the total charge on a particle and E is the external e-field. 

For the case of the image force, the presence of charged particle near a conductor 

generates an attractive force (Figure 2-2). From electrostatic theory, we see that the force 

is a strong function of the net particle charge and the distance, Equation (2-7). 

(2-7) 
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particle charge, q 

conductor 

Figure 2-2: Image force between a charged particle near a conductor. 

Similar to the difficulty in determining the particle to substrate contact distance for 

dispersion forces, particle charge, q, is also a quantity that is difficult to judge and 

control. It has been shown that non-conductive (>1030) particles (depending on 

humidity, temperature, and presence of adsorbed layers) tend to retain their charge for 

long periods of time if no other means of charge leakage are available [7]. Experimental 

data from [7] shows that this accumulation of charge increases as the particle diameter 

decreases. More importantly, this charge increase results in an increase in the adhesion 

force. Another trend discovered is that the repeated detachment of the particle from the 

substrate results in an order of magnitude increase in q. An example of this trend is 

shown in the graph below. Data is taken from polyvinyl chloride particles when detached 

from a metal surface [7]. As will be discussed later, this phenomenon is one of the first 

roadblocks uncovered in our preliminary particle transportation experiments. 

Particle charge before & after 
detachment 

-. 100 " iii 
Q,j 

'" CJ) 
" iii 

.. 
C,j -- 10 r;-

Q • • ..... 
~ • • 
Q,j 1 • 
~ • • befure iii after 
~ -= 0.1 C,j 

0 2 4 6 8 10 12 14 16 18 20 22 

diameter (microns) 

Figure 2-3: Polyvinyl chloride particles show increase in charge after detachment [7]. 
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2.2.3 Meniscus Force 

Meniscus forces result from surface tension of adsorbed films at the particle-surface 

interface. Adhesion in air usually increases when the relative humidity is increased. This 

meniscus force is created when a film of liquid exists between the particle and the contact 

surface. If the radius of the film at the contact point is small relative to the radius of the 

sphere, r, (Figure 2-4) we can derive a simple model between the liquid surface energy 

and the meniscus force. 

r 

Figure 2-4: Model of capillary condensation of liquid between particle and surface. 

The Laplace pressure relationship states that the pressure P between the surface and the 

particle is given by [8]: 

P = r (.1 + 1-) ~ l.!:... 
L r R r (2-8) 

where 'YL is the surface energy of the liquid, r, and R are the radii shown in the figure. 

When R is much greater than r and when <I> is small, we can multiply this pressure by the 

area between the two surfaces and obtain an equation for the meniscus force (Equation 2-

2). Also, note that d is approximated to be 2rcos(8) when <I> is small. 

F z 4ny L R cose (2-9) 

The angle 8 represents the contact angle between the sphere and the liquid. This contact 

angle depends on the surface properties such as hydrophobicity and surface asperities. 

The meniscus force model assumes a perfectly smooth surface, and typically adhesion 
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force values are much lower than predicted maximum except in cases where the relative 

humidity is close to 100% [8]. 

2.3 Dielectrophoretic Force for Particle Transportation 

Although other types of particle transport schemes can be utilized, the dielectrophoretic 

(DEP) force [9] is one of the few solutions available for a MEMS system. Without any 

moving parts, and without high power consumption, the DEP technique offers many 

advantages in comparison with other transport schemes such as ultrasonic manipulation, 

liquid washing, and mechanical cilia-type structures [10]. Due to the character of the 

adhesive forces in this particle size range, DEP forces have been utilized for particle 

transport in this work. Researchers have designed micromachined manipulators for 

transport in a dry medium such as air [4,5] but have been limited by high voltage and low 

transportation efficiencies. 

Although much work has been done in investigating the DEP force on particles ranging 

from dust to biological cells [6,9,11], exact calculation of the DEP forces becomes 

extremely difficult. The following brief derivation (from [5,9]) of a simple form of the 

DEP equation demonstrates this complexity and also the specific constraints associated 

with it. 

We can begin with the simplest case by analyzing the force on an infinitesimal dipole 

(Figure 2-5). 

Figure 2-5: Net force on a small dipole of strength p=qd in a non-uniform electric field. 
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Since the electric field is non-uniform, the force on each charge will be different, and can 

be expressed as: 

F = qE(r + d) - qE(r) (2-10) 

If we assume that d is small compared to the non-uniformity of the electric field, then the 

e-field can be expanded about position r using a Taylor's series expansion. Furthermore, 

when higher order terms of d such as d2
, d3 are neglected and the limit d is taken to zero, 

we arrive at the force equation for a dipole: 

F dipole = qd . VE (2-11 ) 

Equation (2-11) can also be written as 

(2-12) 

where <X is the (tensor) polarizability or dipole moment per unit volume in unit field, v is 

the volume of the body, and E is the external field. This equation holds true if the 

dielectric body is linearly, homogeneously, and isotropically polarizable. In other words, 

the form of Equation (2-12) above can be thought of as F = (volume) x (polarizability) x 

(local field) x (field gradient). In place of <xv in Equation (2-12), we can substitute the 

commonly derived expression for the induced moment of a polarizable sphere with radius 

R, permittivity £2, and volume v, in an infinite medium of permittivity £j. [12] 

(2-13) 

Finally, a simplified expression results for the special case for a lossless dielectric sphere. 

FDEP = 2n£1R3 KVIEo 12 (2-14) 

The DEP force is a function of £1, the permittivity of the surrounding medium, R, particle 

radius, and Eo, the electric field. The constant K is defined as 

(2-15) 
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where £2 is the permittivity of the sphere. The important factor to note is that the DEP 

force is a strong function of the particle volume (R3
) and the gradient of the electric field 

squared (VE/). The latter term makes Equation (2-14) difficult to compute in closed 

form for spherical particles. If there is no field gradient or if the permittivities of the 

particle and medium is the same, there is no DEP force. The sign of the K term 

determines if it is a positive or negative DEP force. When K is positive (or £2>£1), 

particles are attracted to the electric field maxima and repelled from the minima. When 

K is negative (or £2<£1), particles are attracted to the field minima and repelled from the 

maxima. Detailed derivations for other DEP cases with conductive and semi-conductive 

mediums can be found in Jones [6]. Although this simplified form of the DEP equation 

becomes inexact for some of the experiments in this thesis, it helps us gain a good 

understanding of the fundamentals behind this electronic force. 

It is important to reiterate the numerous assumptions and the limitations of this DEP force 

equation. For instance, the DEP equation assumes that the electrodes creating the e-field 

have dimensions much larger than the particles. Derivation of this equation has neglected 

the case of multiple particles. Multiple particles in close vicinity invalidate this simple 

model by causing non-uniformities in the e-field which are comparable to the particle 

size [6]. Particles are assumed to be perfect spheres, and to be electrically neutral. The 

Table 2-2 below summarizes many of the assumptions inherent in the DEP force 

equation. Because of these caveats, the DEP structures presented in this work have been 

analyzed using finite element simulation software, MAXWELL [13]. 
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Table 2-2: Breakdown of various particle forces and equations 

Force Type Equation Parameter Assumptions 

and Reference 

DEP force [6] FD = 2nE\R 3 KV E~ £} permittivity of the l. homogeneous dielectric 
surrounding medium sphere 

2. lossless dielectric medium 
Eo electric field 3. slightly non-uniform e-

E2 -E\ 
field 

K= 
E2 +2E\ 

Image force [6] qq' R particle radius l. uniformly distributed 
FI = q magnitude of particle charge 

16nE\R2 
charge 2. particle dielectric constant 

, 1\:, - 1\:\ 
q' magnitude of image = dielectric constant of 

q = q charge surrounding medium 
1\:, + 1\:\ £s permittivity ofthe 3. particle is a perfect 

surrounding medium insulator 
E 

1\:=~ 4. uniform Eo oriented .1 , 
Eo substrate 

E 
5. single particle 

1\:----.l l-

Eo 

Friction force [7] Ff = J.1N ~ friction coefficient l. can be static or kinetic 
coefficient of friction 

N total downward force 
on particle due to FD 
and FI 

FS
\ stiction 

forces 

London-Van der 
F=AR 

A empirical constant 

Waals [11] 
(0.01 - 200) x 1019J 

d 2 d distance from particle 
to surface typically 
0.1 to 20 nm 

Meniscus [11] Y surface tension of fluid 
F =4nyR R particle radius l. ideal sphere to surface 

contact 
E electric field 

Coulombic [6] q magnitude of particle l. uniform charge 
F=qE charge distribution 

2. uniform electric field 
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Figure 2-6: Qualitative comparison of particle forces showing the performance regime of 
operation 

2.4 Conclusion 

We have discussed in depth the dominant forces and the difficulty in determining the 

particle adhesive and dielectrophoretic force. A rough calculation from various sources 

will reveal that adhesive forces on the particle can differ by a few orders of magnitude! 

However, to gain a better understanding of the regime under which each type of force 

dominates, a qualitative graphical comparison of forces is illustrated in the graph above. 

This graph represents (order of magnitude forces) on silica glass particles vs. electric 

field in a standard room temperature environment with 0% relative humidity. Each 

region represents the type of force that dominates particles in that particular size range. 

The boundary line between the regions defines where the magnitude of these forces is 

approximately equal. For example, the horizontal line between the "gravity dominated" 

and the "adhesion dominated" regime represents where the adhesion or stiction force is 

equal to the weight of the particle. Also note that as the particle size decreases below 

~ 1 O~m, the adhesive forces dominate the body forces (i.e., gravity). As one travels to the 

right (increasing electric field), the adhesion and gravitational forces can be defeated with 

a strong enough DEP force. The electrostatic limitation is breakdown of the e-field in air 
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as shown at the far right. Therefore, a successful particle transportation device must 

operate where the electrostatic force is greater than adhesion and gravity. The 

operational region of the MEMS particle transport system developed here is marked on 

the graph (Figure 2-6). Above it is the operational regime of some of the prior work in 

this field [2,3,4]. 
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Chapter 3 

The Particle Transportation Chip 

3.1 Introduction 

To create a practical particle transportation scheme to work in the region illustrated in the 

previous chapter, various electrode designs and multiple experiments were performed on 

microfabricated electrode panels. Initially, 1st generation electrode chips were fabricated 

with an assortment of electrode geometries to test out the DEP concept and investigate 

the primary adhesion factors for this sub-l0J..lm particle regime. Hundreds of particle 

transportation experiments were performed under varying conditions such as voltage 

waveforms, surface modification, substrate heating, dielectric cycling, and different 

insulating films. Although many adhesion factors remained ambiguous, particle charging 

was postulated to be the primary cause of particle stiction, and a subsequent generation of 

particle transportation chips was designed to maximize particle transportation 

performance even further. Finally, experimental trends were validated through finite 

element simulation of the DEP force field. The fundamental engineering of the first low 

voltage, high efficiency MEMS particle transportation scheme has been advanced in this 

work. 

3.2 1st Generation Fabrication 

The particle transportation chip was developed in usmg standard micro fabrication 

techniques. The fabrication process consisted of depositing two insulation layers and two 

conductive layers for a three-phase network of electrodes. A cross-sectional view of a 

finished electrode panel is shown below (Figure 3-1). 
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t/~4L+f~~=P~G0~~~G0~dW~G0~S~ 
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~ __ -+ ________ -+ ________ ~ ________________ ~Si 

Figure 3-1: Cross-sectional view of electrode chip 

The fabrication sequence began with a silicon substrate coated with 1-2 /lID of thennal 

oxide to insulate the electrodes from the n-type silicon substrate. Next, 3000 A of 

aluminum was thennally evaporated and patterned to fonn the electrodes. Plasma­

enhanced chemical vapor deposition (PECVD) silicon nitride was deposited to fonn a 

l/-lm insulation layer between the 1st and 2nd metal layers. Vias were etched into this 

silicon nitride layer for connection of the 2nd Al layer to the 1st
. Next, the 2nd Al layer 

was deposited and patterned. During the first process run, deposition of LTO on the 1 st 

aluminum layer resulted in hillock type fonnations in the metal layer. Therefore, 

PECVD silicon nitride was used because of its low temperature deposition (175°C 

compared to 400°C for LTO). The aluminum hillocks were roughly 2/-lm in size and 

created sharp 1-2/-lm protrusions through the LTO layer effectively shorting out the three 

phase structures. Because of the non-unifonn properties of the PECVD nitride and the 

hillock fonnation with aluminum and LTO, a similar process using gold instead of 

aluminum, and (LTO) and photoresist instead of PECVD silicon nitride, were also 

developed. Cross-sectional views of the process steps are shown in Figure 3-2. With the 

above process, many electrode designs were fabricated to investigate the feasibility of 

particle transportation in nonnal atmosphere. 
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'--_________ -' Si 
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Figure 3-2: Key electrode process steps 

3.3 First Generation Designs 

In order to understand the optimal type and size of electrodes for DEP transportation of 

lOl1m particles, numerous designs were fabricated in the first generation. Linear arrays of 

parallel electrodes were fabricated for unidirectional transportation. Radial arrays were 

also designed to attempt to transport particles in circles at high speed. Furthermore, the 

radial geometry shows the spacing between electrodes which allows motion because of 

the pitch increase from the center to the outer periphery of the structure. The dimensions 

of the various structures are displayed in Table 3-1. 

Table 3-1: Description of 1 st generation designs 

Structure type Electrode width Spacing Total size 

Linear 5 11m, 811m 5 11m, 811m 2.5mmx3mm 

Radial 5 11m, 811m >8um 1 mm (diameter) 
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radial linear 

Figure 3-3: Examples of radial and parallel electrode geometries. 

3.4 Experimental Setup and Testing 

The electrode structures were operated with a 3-phase circuit capable of waveforms from 

typically 20 to 200Vpp with frequencies from O.IHz to 10kHz. An example ofthe voltage 

patterns required for each phase is illustrated in the schematic (Figure 3-4). The 

corresponding circuit schematic is shown in Figure 3-5. Experiments were also 

conducted with other voltage patterns such as sinusoidal waves, triangular waves, bi­

polar traveling waves, and the inverse of the waveforms shown in Figure 3-4. The effects 

of these waveforms are discussed below. 

Fxn generator 
signal 

Phase I (VI) 

Phase 2 (V2) 

Phase 3 (V3) 

lOOV 

OV 
lOOV 

ov 

:::: 

:::: 
lOOV 

ov 

~ 

... <0---- One Cycle 

Figure 3-4: Example of three-phase waveform 
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Figure 3-5: Circuit for three phase rectangular waveform (lO-200Vpp) 

A variety of particle sizes and materials were tested with this particle transportation chip. 

Most of the experiments were performed on linear electrode and spacing widths of 5~m 

and 8~m (pitch and width spacing is identical). Table 3-2 summarizes the types of 

particles tested. 

Table 3-2: Particle types and sizes 

Microspheres e Mean 
diameter(Jlm) 

Borosilicate Glass 5.8 5,8, 11, 15.4 

Polystyrene DVB 2.5 5,8.7 

Paper Mulberry Pollen * 11.1-15.6 -

Bermuda Grass Smut Spores * - 5.8 - 8.2 

* refers to hydrated size, and E, relative permittivity 

Testing was conducted as the following: First, the electrode panel was "turned on" and 

then particles were released on the electrode panel with the aid of a micromanipulator 

probe tip. As the probe tip neared the electrode panel surface, the traveling electric field 

force was sufficient to detach particles from the probe tip onto the surface of the transport 

chip. Multiple sets of experiments for each parameter (particle type, size, insulation, 
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electrode spacing) were performed in this fashion. Particle efficiency data was gathered 

by noting the ratio of particles transported to the edge of the linear electrode array vs. the 

total number of particles on the structure. The snapshots in 3-6 are pictures showing the 

start and end of one particle transportation trial. Hundreds of trials were performed to 

generate efficiency data. For the experiments, the laboratory environment was standard 

room temperature, 22°C and 30-60% relative humidity. 

Figure 3-6: Particles before(1eft) applying waveform and then transported to the bottom 
edge of the electrodes. 

Because of the irregularity of particles and surface contact areas, experimental results for 

this range of particles are often denoted in percentages of particles that are removed vs. 

adhered throughout the prior work in this field. It is very important to understand that 

large variation in these percentages was common due to the statistical nature of the 

phenomena. One drawback with this method of measurement is with device designs that 

work so poorly that no particles make it down to the other edge. In this case, it becomes 

hard to compare two electrode panels, both of which generate particle motion but result 

in zero efficiency. Ideally, mapping each particle's position, and then calculating 

weighted averaged length, would certainly be more accurate, but this would be extremely 

time consuming (1 + hour per trial). 
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Figure 3-7: Testing setup showing video, ~-scope, probe tips, and circuit 

The goal of the first generation of particle transportation chips was twofold - to see how 

well the DEP technique worked, and to see which electrode designs were suitable for our 

particle sizes. Initial experiments using the rectangular waveform (Figure 3-4) were 

conducted on dies with the particles listed in Table 3-2. What quickly became apparent 

was that DEP motion was clearly not sustainable with the current devices. For the first 

trials, insulated (PECVD silicon nitride) electrodes as well as bare electrodes were tested. 

Bare electrode chips could easily be fabricated by modifying the last mask in process 

Figure 3-2. Regardless of the type of structure or electrode insulation, large threshold 

voltages (the minimum voltage required to generate any particle movement) were needed, 

and particles, would exhibit motion for a few seconds and then stop moving. Motion 

would resume only when the voltage level was increased further. This was observed for 

voltage levels as high as 250V. Any further increase in voltage larger than 250V resulted 

in breakdown of the (PECVD SixNy) insulation layer between the 1st and 2nd metal layers 

on the chip. Dielectric strengths for the nitride and LTO films ranged from 2-5 x 106 

V/cm. Particles when stopped, generally adhered close to the electrodes and not between 

them. Figure 3-8 shows a typical pearl chain formation of particles, which could not be 

moved. The electric field significantly changes for particles in such formation and the 

DEP forces are greatly reduced [1]. 
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Electrodes 

Figure 3-8: Top view of particle stuck in a pearl chain fonnation. 

In conclusion, although the transportation characteristics of these devices were far from 

ideal, valuable infonnation was gained from these initial tests. The first observation was 

that the relationship between the particle size and the electrode spacing was non-trivial. 

For instance, if particles were smaller than the electrode width, no amount of voltage 

would move the particle. Similar failure would also occur, if the particle size was large 

enough that the particle spanned more than two electrodes. This size dependency will be 

explained in the DEP finite element simulation section later in this chapter. Secondly, the 

frequency range of motion was below 20Hz for the silicon nitride insulated devices. 

Higher frequencies did not exhibit any movement. Another failure mode that was also 

observed were particles in a pearl chain fonnation (Figure 3-8). 
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Low efficiency 
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SiO, 

L--r __ -r __ -; __ ~ __ ~~ ______________ ~Si 

Figure 3-9: Schematic of initial qualitative observations regarding relationship of particle 
size to electrode widths and spacing 
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Consequently, a systematic series of experiments was undertaken to ascertain the primary 

cause of this "stopping problem." From our discussion of particle forces in Chapter 2, 

there were mainly Van der Waals forces, meniscus forces, and the electrostatic forces 

acting on the particles in this size range. Therefore, numerous particle transportation 

experiments were methodically devised to affect each of these forces. Isolating the 

different adhesion mechanisms individually was difficult and often each modification 

affected other forces. For example, a thin 50A coating of gold was deposited on the 

electrodes to alleviate particle charging, but this step also shielded the particles from the 

applied traveling waveform. The following sections detail each specific experiment, its 

purpose, the specific experimental procedure, the set-up, and the outcome. 

3.4.1 Various Three Phase Waveforms 

To solve the "stopping problem," one of the first things that was done was to change the 

travelling waveform circuit and experiment with other voltages, waveforms, and 

frequencies. Experiments with triangular waveforms, bi-polar waveforms, grounded 

waves, and positive waves showed no improvement. A sinusoidal three-phase circuit was 

also designed, but without any success. The transportation efficiency in the best case was 

noted to be 10% with a threshold voltage of 80V. 

3.4.2 Surface Silanization Treatment 

The phenomenon of particles initially moving on the substrate and then stopping seemed 

unlikely to be caused by meniscus forces. Capillary forces normally would be present at 

the start of particle motion and not have an increasing effect as previously observed. 

However, to verify that this problem was not due to capillary forces between the particle 

and the substrate, the electrode chips were silanized using trimethylchlorosilane (TMCS). 

TMCS is one of many silanizing agents that can be used for transforming hydrophilic 

surfaces into more hydrophobic ones [2]. Although most studies indicate that meniscus 

forces generally do not dominate unless the relative humidity is above 50%, we wanted to 
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confinn if this trend was indeed true of our microfabricated surfaces. The TMCS coating 

would increase the contact angle of the liquid film (if present) and reduce the adhesion 

force in accordance with Equation 2-9 and Figure 2-4. 

The coating process was liquid based. The dies were cleaned using acetone, alcohol, and 

DI water. After immersion for 20 minutes in 4% solution of TMCS in toluene, the dies 

were rinsed with 100% toluene, and then DI water. The interaction of the solution with 

exposed aluminum on the die caused large bubbles to fonn, but no structures were 

damaged. A DI water rinse showed that the chip surface was very hydrophobic. As 

expected, the subsequent testing of the silanized chips showed no quantifiable 

improvement in particle motion characteristics. The particles still moved a little bit and 

then stopped requiring more and more voltage to move again. 

3.4.3 Substrate Heating 

Another way to reduce meniscus forces was to perfonn particle transportation 

experiments with the chip heated from 90-200°C. From the literature, the effect of the 

temperature has been shown to both increase and decrease adhesive forces. One 

hypothesis is that the increase is due to the "softening" of the contact zone between the 

particles and the surface. This work claimed that adhesive force increased 25 times as the 

temperature was raised from 100°C to 400°C. Another source confinns the opposite 

trend; a six-fold decrease when the temperature was decreased from 400°C to 20°C [3]. 

In any case, these opposing results show the difficulty and variance in measuring 

adhesion phenomena. The substrate heating experiment was done in the following 

fashion. The chip was affixed with heat sink: compound on a temperature controlled hot 

chuck, and placed under the microscope. As a last step in proving that meniscus forces 

were not the source of adhesion in our devices, the silicon nitride coated chips were 

annealed at 400°C for 3 hrs in order to remove surface moisture. No significant 

improvement was noted with the in-situ heating experiment or the annealing step. 
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3.4.4 Surface Metallization 

With the failure of the capillary force experiments previously mentioned, the next attempt 

to improve the device performance was to experiment with thin (50A) gold coatings on 

the silicon nitride insulated electrodes. If the particles were charged, this thin conductive 

coating might dissipate this surface charge on the particle. The gold layer was thermally 

evaporated on to the processed dies on which the bond pads were physically masked so 

that each of the three phases would still be electrically independent. Because of such a 

thin coating of gold, no chrome was pre-deposited for adhesion. This reduced the bond 

between the silicon nitride and the gold but was sufficient for this application. Next, 

transportation experiments were performed using frequencies from I-10kHz and 

voltages from 20-200V. The new metal layer was grounded for some experiments and 

set floating for others. However, the results were worse than before. Almost no 

movement at any voltage and frequency was noted. The low frequency electrical fields at 

which the particles did exhibit movement in prior experiments were shielded by the gold 

coating. 

3.4.5 Mechanical Vibration 

The particle chip was also tested on a piezoelectric stack in an attempt to understand if 

body forces could reduce the stiction force between the particle and chip surface. 

Previous work by Zimon shows that body forces created by gravity or centripetal 

acceleration can overcome adhesive forces for large particles. Although this mechanical 

method is difficult to incorporate into our type of device, it would aid in understanding of 

the nature of the particle to surface bond. Nevertheless, the chips were attached to a 

piezotransducer and vibrated at frequencies from 10Hz to 20 kHz. The maximum 

detachment force can be calculated from Equation 3-1 where m is the mass of the 

particle, f represent the oscillation frequency, y the displacement, and g the graviatational 

acceleration. The displacement of the transducer was measured to be -2f.lm and the 

forces exerted on the 8f.lm silica particles were approximately calculated to be in 10-9N 

range. 
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F det= m (4 'IT f y + g) (3-1) 

Testing was done for 5-15~m particles with no improvement. From visual observation 

under a microscope, no detachment or horizontal motion of the particle from the surface 

was noted. These mechanical vibration experiments confirmed that the adhesive forces 

were greater in magnitude as in agreement with references [3,4]. 

3.4.6 Plasma Roughening 

Increase in surface roughness has also been known to reduce particle adhesion [3]. 

Depending on the size of the asperities, adhesion can be increased or decreased. Figure 

3-10 exaggerates the two possible scenarios: a) reduction of particle to surface contact 

area when the height of the asperities is less than the particle size, and b) increase in 

contact area when the particle is smaller than the height of the asperities. 

(b) 

Figure 3-10: Surface roughness effect on particle contact area. 

Consequently, the resist surface was roughened with oxygen plasma (300W, 8min, 

150mtorr) which changed the characteristics of the motion. The particles did not only 

move in the same direction of the traveling wave, but rather, in a random fashion. This 

effect was due to the large amount of negative charge implanted in the resist surface from 

the plasma, not the increase in surface roughness. 
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3.4.7 Dielectric Cycling and Aging Effects 

To rule out time dependent polarization effects on both the particle and the silicon nitride 

surface, dielectric cycling experiments were performed. For the insulation layer, particle 

transportation experiments were performed with new dies where the nitride layer had not 

been exposed to the electrical fields beforehand. The motion characteristics were 

observed and then the three-phase circuit was turned on (200Y, 20 - 10,000 Hz) and left 

connected the electrodes for 3 hours. Following this electrical cycling, fresh silica and 

polystyrene particles were dropped on the electrodes, and observed. No change in 

motion was observed. The particles exhibited the same pattern of initial movement and 

then stopping until voltage could not be increased further. 

Experiments were also undertaken to ensure that the particles were given sufficient times 

to discharge if contact charging was taking place. Experiments were done until voltage 

could not be increased further. Then, the chip was left for 5 hours with the circuit turned 

off to give enough time for the particles to discharge. In our case, this waiting period 

with the circuit turned off proved ineffective, and particles that were stopped could not be 

moved again. This characteristic remained the same for both silica and glass particles 

although the relaxation time constants differed by orders of magnitude. From Jones [I] 

we can calculate the dielectric relaxation time constant of the particles. The formula is 

given below and the appropriate relaxation times are shown for silica and polystyrene 

particles. 

t 

(3-x) 

Table 3-3: Relaxation times of particles 

Particle type Conductivity(S/m) Dielectric constant Relaxation time(s) 

Silica glass 2.5 x 10-14 5.8 0.069 

Polystyrene 1 x 10-15 2.5 780 

The failure of this experiment did not, however, rule out the possibility of contact 

charging. Other research in the nature of particle charging points out that, in many cases, 
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particle discharge may take on the order of days [3]. Furthermore, as mentioned in 

Chapter 2, charged particles would create an image force between the charged particle 

and the electrodes. Consequently, if this were the case, how to eliminate or reduce this 

image force? 

3.4.8 Photoresist as an Insulation Layer 

One way to mitigate the effect of this image force (due to particle charging) was to 

increase the distance between the particle and the conductor. We saw from Equation 2-7 

that the image force was inversely proportional to the square of the distance between the 

particle and the conductor. An easy way to increase this distance was to coat the 

electrode structures with different thicknesses of photoresist. To test this hypothesis, 

various thicknesses of AZ P4400 resist (Hoechst Celanese Corp.) were spun on and a 

series of experiments was performed for each thickness. The table below shows the spin 

speeds and the corresponding thicknesses (Table 3-4). 

Table 3-4: AZ P4400 resist spin chart 

Spin Speed (rpm) Thickness(Jlm) 

1000 9.0 

2000 6.1 

3000 5.2 

4000 4.0 

The final cross-sectional view of one of the complete electrode structures is shown in 

Figure 3-11. 

variable 
thickness 

111m ~~~~~~~~=r~~~~~~~2Z~~~s1siN 
Si02 

L-__ -+ ________ ~--------~--------------~Si 

Figure 3-11: Electrode structure with additional insulation to reduce image force. 
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With the addition of a thicker insulation coating, particle transportation improved 

remarkably. Before, particles would stop after a few seconds of initial movement, but 

now, particles repeatably moved across the entire 3mm structure to the opposite side. 

Transportation efficiency for the photoresist insulated structures improved from 10% (for 

SixNy) to 45%, and the threshold voltage decreased to 50V. Figure 3-12 below 

demonstrates that there was a distinct optimal thickness of insulation to maximize 

transportation efficiency. 

50% 
45% 
40% 

;.35% 
~30% 
Q,j 

'c::l25 % 
520% 
~15% 

10% 
5% 
0% 

0 

Transport Efficiency vs. Insulation Thickness 
(8J.1.m Si02 particles, 160V) 

rll -+- Photoresist 

J 
f 

/ 
IV\ 

1 \ 
Y.. l\ 

,( 

2 4 6 8 10 

Insulation thickness (J.1m) 

12 

Figure 3-12: Evidence of an optimal resist thickness which maximized transportation 
efficiency. 

This remarkable result was interesting considering the fact that the DEP driving force is 

greater the closer the particle is to the electrode panel and decreases if electrode to 

particle distance is increased. However, the DEP force also pulls the particle downward 

toward the substrate, increasing the adhesion. At some point the downward forces 

minimized but the horizontal component is sufficient to translate the particle across the 

electrodes. 

3.5 2nd Generation Fabrication 

Now, since the primary cause of the particle adhesion force had been identified, the next 

step was to further study electrode geometries and other insulators. The process for the 

second generation of electrodes was exactly similar to what is described previously. In 

this run, however, low temperature thermal oxide (L TO) and evaporated gold were used 

as the insulation and conductive layers, respectively. Various types of electrode 
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geometries were added into this second run. Parallel electrode structures were designed 

with 3J.lm electrode widths and spacings of 2, 4, 6, 8, 10, 15, and 30 J.lm. In addition, zig­

zag and hexagonal electrode geometries were also fabricated (Figure 3-13). 

P63 H63 Z63 
Figure 3-13: 2nd run of electrodes with 3 J.lm width and different geometries 

The reduction of electrode widths and tighter spacings (less than 3J.lm) resulted in serious 

yield problems. About 80% of the structures were electrically shorted. This poor yield 

was the result of the following problems: a) dust particles during lithography, b) pinholes 

in the LTO insulation layer, c) undercut of the chrome-gold layer during the wet etch 

step, and d) the imperfections in the acetate films used the make the lOx chrome mask. 

3.6 Spin on Teflon as an Insulation Layer 

Because of the remarkable improvement by using an additional insulation layer, new 

experiments were done using the Dupont spin-on Teflon® film, AF1601. Discovered in 

1938, Teflon films have been utilized since the 1960's as chemically inert non-stick 

layers and lubricative films. However, until recently, Teflon® had never been used in the 

fabrication of MEMS. Hsu et al. [5] demonstrated AF1601S qualities as a charge 

implantable thin film for MEMS applications. In our case, with its low coefficient of 

friction (.001), this Teflon film appeared an obvious substitute for the photoresist 

insulation layer. Available as a liquid amorphous copolymer of 2,2-bistrifluoromethyl-

4,5-difluoro-l,3-dioxole (PDD) dissolved in tetrafluoroethylene (TFE), AF1601S is spun 

on just like photoresist. Because of their perfluorinated structure, this film, like other 

PTFE based materials, has excellent chemical resistance, low water absorption, and low 

surface energy. However, unlike PTFE, Teflon AF is amorphous, soluble at room 

temperature in several solvents, and is optically transparent. Table 3-6 shows the 
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thickness vs. spin speed after the 200°C, 3 hour hard-bake process in a vacuum oven. For 

thicker coats, a second spin step was performed after a 20 minute 100°C soft-bake. Some 

of the prominent properties are described in Table 3-5 below. 

Table 3-5: Properties of Dupont Teflon® AF1601S 

Thermal Stability <360°C 

Glass Transition Temperature 160°C 

Dielectric Constant 1.93 

Tensile Modulus 1.55 Gpa 

Thermal Expansion Coefficient 74 x 1O-6
/ oC 

Resistivity 1015 Q cm 

Table 3-6: A1601S Spin chart 

Spin Speed (rpm) Thickness (J.UD) 

2000 0.78-0.80 

3000 0.57-0.60 

5000 0.44 

Particle transportation experiments with Teflon® coated chips showed the highest particle 

efficiency. Maximum efficiency was as high as 90% using 81Jll1 borosilicate glass 

particles with 81Jll1 width and 81Jll1 spaced electrodes. Like the photoresist insulated 

chips, the Teflon coated electrodes exhibited a similar optimal relationship between 

efficiency vs. film thickness. Table 3-7 summarizes the efficiencies and the threshold 

voltages associated with the different dielectric films. Specifically, for the Teflon, 

optimal thickness range was between 1-2 J.lID as shown in the Figure 3-14. For thicker 

Teflon coats, the efficiency begins to drop. The trend is seen at a height of 3J.lID, but data 

for 3+1Jll1 thicknesses is not shown. 
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Table 3-7: Linear electrodes 8j.lm spacing structure, 8j.lm glass particles 

Surface Coating Frequency Range Max Threshold Voltage 
(Hz) Efficiency 

PECVD silicon nitride 0.9 - 10 10% 

AZ4400 0.1 -1000 45% 

Teflon (AF 1601S) 1- 20,000 90% 

Note: data has +/- 30% variation 

100% 
95% 
90% 

~85% 

~ 80% 

'0 75% 
S 70% 
~ 65% 

60% 

Transport Efficiency vs. Teflon Thickness 
(8~m Si02 particles, 160V) 

80 

50 

40 

-- Teflon 55% 
50%+---_r--~r_--~--_r--~r_--~--_r--~ 

o 0.5 1.5 2 2.5 3 3.5 4 

Teflon thickness (!-lm) 

Figure 3-14: Transport efficiency vs. Teflon film thickness 

(V) 

In addition, as frequency increased the efficiency improved and then saturated. For 

photoresist, motion cut off at ~ 1kHz, and for Teflon motion was observed up to 20kHz. 

This frequency window could be explained due to the dynamics of particle movement. 

There was a finite time associated with particle stepping from one electrode to another. 

This time involved particle acceleration and deceleration from one electrode to the next. 

At the cut-off frequency, the particle was unable to keep up with the traveling wave. 
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Traveling Wave Frequency Effect 
(8Jlm Si0 2 particles on Teflon) 
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Figure 3-15: Transport efficiency as a function of thickness and different frequencies. 

The electrode width and spacing was also optimized to increase transportation efficiency. 

In contrast to previous experiments perfonned with electrode width and spacing of 8J.lm, 

Figure 3-16 shows the improvements resulting from decreasing the electrode width to 

3Jlm and the effect of varying electrode spacing. For the experiments in Figures 3-16 and 

3-17, the frequency was kept constant at 10 Hz and two sets of experiments were 

conducted. One set of data was recorded at 100V (Figure 3-16) and the other recorded at 

160V (Figure 3-17). The trials in this case were not done at the optimum frequency, but 

rather at 10Hz because it was easier to take accurate data. At higher frequencies, the 

particles moved so fast across the electrodes that over 70% got "thrown off' the chip. 

Figure 3-16 shows that 70% transportation efficiencies were achieved with only 100V 

and 10Hz. This perfonnance improvement is solely due to the higher e-field gradients 

generated by the narrower electrode widths. In addition, as foreseen, both graphs 

revealed the decline of efficiency as the spacing between the electrodes was increased 

(for this size range of particles). This fact was also demonstrated in experiments with the 

radial electrode structures in which the particles only rotated at the innennost radius. At 

this radius, the electrode and spacing was 8J.lm, and as the radius increased the spacing 

increased linearly to 30+J.lm. Particle rotation speeds on the order of 60rpm were 

recorded. In short, the Teflon surface qualities coupled with the detennination of an 
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optimal thickness resulted III the highest particle transport efficiencies for these 

microfabricated structures. 
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Figure 3-16: The effect of increasing electrode spacing on transport efficiency (100V) 
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Figure 3-17: The effect of increasing electrode spacing on transport efficiency (160V) 
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3.7 Simulation of the DEP Force 

In order to understand some of the trends in the experiments and to further optimize the 

electrode geometry, simulation of the dielectrophoretic force on the particle was 

performed using MAXWELL (Ansoft Corp.), a finite element (FEM) electrostatic 

simulation software. Due to the complexity of the DEP force equation, investigation of 

this phenomena has been primarily done using approximate methods such as the 

substitute charge method by Masuda et al.. [6] and various levitational modes in which 

the particle is charged [7]. Many others have investigated DEP forces on biological cells 

in liquid media [8] [9]. Machowski et al.. [10] have studied DEP separation efficiency on 

dry powders, but the electrode pitch and diameter were an order of magnitude larger than 

the our MEMS electrode panel. 

Although one can easily compute complex geometries and their corresponding electric 

fields with adequate FEM software, the results are limited because of the difficulties in 

deriving adequate simulation parameters. For example, it has been explained in section 

2.2.2 that particles do have surface charge distributions, but the magnitude may vary 

depending on a whole array of conditions. Also, because of the computational 

complexity and time required for 3-D simulations, most of the simulation results were 

generated with 2-D models where the position of the particle was stepped across the 

electrode panel while keeping the particle to electrode distance (height) constant. The 

DEP forces in the horizontal direction and vertical direction, FxD and FyD respectively, 

were calculated for each step. Furthermore, the simulation was performed using a single 

uncharged particle on the electrode panel without nearby particles so that trends could be 

discerned. Note that the number of electrodes in the model were between 15-20 because 

it was iteratively determined that electrodes further away had negligible effect on the 

particle force. Parameters for the materials are given in Table 3-8 . 
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Table 3-8: Simulation parameters 

Material type Conductivity Relative Permittivitty 
(S/m) Er 

Air 0 1 

Aluminum 3.7 x 10' 1 

Borosilicate glass - 5.8 

Si_doped 66 12 

Photoresist - 4 

Silicon nitride 10-1'1 7 

Using the 2-D Maxwell solver, DEP x and y forces on a single, uncharged 8f..lm glass 

particle (at zero height) have been plotted with respect to electrode position (Figure 3-

18). The circles represent the 3-component of the force and triangles represent the y­

component. 8f..lm electrodes (and 8f..lm spacing) with their corresponding voltages have 

been drawn on the 3-axis. The force is shown on the vertical axis in N/m since this is a 

2-D model. For the most part the 2-D model is sufficient in depicting trends such as 

variation of force with electrode spacing, width, etc. This simulation showed that the 

DEP driving force not only generates the horizontal force, which moves the particle, but a 

much larger downward force as well. The simulation also confirmed the periodic 

characteristic of the forces due to the three-phase electrode scheme. 

DEP particle forces at height = 0 vs. position on electrodes 
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Figure 3-18: DEP forces vs. particle position 
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For the same 2-D model above, simulations were conducted for various particle heights 

above the electrodes. Figure 3-19 verified the expected reduction of both x and y 

components of the DEP force as the particle was moved further above the electrodes. 

The darkened simulation points are for particle to substrate (electrode) distance of 1 ~m 

and the clear points represent the particle 2~m above. 
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Figure 3-19: DEP force decreases with increase in particle height from electrodes 

A 3-D simulation confirmed the same force trend as for the previous 2-D case. In this 

case, the particle is located at a height of 3~m above the electrodes. The irregularity of 

the curve in the graph stems from the discreteness of the simulation mesh. 

3-D DEP simulation for 8/lm Si02 particle at height of3/lm 

----_ .... j 

-+- X-Force (N) . 

--- Y-Force (N) 

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 

Particle coordinate (/lm) 

Figure 3-20: 3-D simulation of particle DEP force 
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The effect of changing electrode pitch and width was also analyzed. Figure 3-21 and 

Figure 3-22 below show that as electrode pitch was increased, the available DEP force in 

both x and y directions reduced. For this simulation, the electrode width and the test 

particle were kept constant at 811m. 
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Figure 3-21: DEP force in Y -direction is reduced when electrode pitch is increased 
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Effect of Pitch Increase on DEP Horizontal Force (Width 8J..1m) 
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Figure 3-22: DEP force in X-direction is reduced when electrode pitch is increased 

In addition to simulating various electrode geometries, the effect of the image force and 

various insulation permittivities were also investigated. In simulating the interaction of a 

charged particle with the unpowered electrodes, a charge of 9xl0-7 Clm which 

corresponds to 10-16 C per particle was assumed because of the large variance reported in 

literature. Nonetheless, the FEM simulation enabled confirmation of the hypothesis. 

Figure 3-23 clearly showed that the vertical component was greater when the particle was 

directly above the electrodes (with no driving voltage in this case), and also shown was 

the reduction of image force as the particle height is increased. The electrodes were 

located between 0 and -4/-lm, and -12 and -16/-lm which completed a full period (for the 

unpowered electrode case). 
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Vertical Component ofhnage Force, Q=IO-6C/m 
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Figure 3-23: Simulation of particle image force for various heights above the electrodes. 

For a gIven particle position, simulations were performed for insulation films with 

different dielectric constants for a fixed particle position (x and y fixed). Figures 3-24 

and 3-25 show that the x and y components of force increased with increasing dielectric 

constant initially, and then begin to saturate as the relative dielectric constant of the film 

approached 8. The graphic inside the figure shows the 3-y axes and the position of the 

8~m particle on the electrodes at x=-7~m. This result explains the benefits of utilizing 

insulative films with the same surface qualities (low stiction) like AF Teflon (£=1.93) and 

AZ photoresist (£=4.00), but with larger dielectric constants. 
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Effect of Changing Dielectric Constant onX-component 
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Figure 3-24: DEP horizontal force increases with larger dielectric constant 
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Figure 3-25: DEP vertical force increases with larger dielectric constant 

3.8 Discussion 

Understanding the interaction between the DEP forces and adhesive forces on the particle 

is the key to interpretation of the experimental observations. From the experimental 



3-28 

observations, the image force contribution appears to be the dominant adhesive force; 

consequently, decreasing this image force, FI, leads to higher transportation efficiency. 

As stated in Chapter 2, the image force arises when particles are charged and are in close 

proximity to a conductor. In fact, the presence of an optimal thickness with the insulative 

films supports this hypothesis, because FI is reduced when the distance from the particle 

to the electrodes is increased. To simplify this discussion of the various forces, 3-26 

accounts for each type of force, acting on the particle. The quantities in parentheses 

represent what the force is dependent on. For the MEMS structures presented here, 

analytical expressions for the forces and their respective x and y components are difficult. 

Nevertheless, a list of equations for simple particle to surface interactions and references 

is provided in the Appendix. 

r ~Wl:""""""':----32-..-J~~4.=~~~~ SiN 

SiOz 

L-~~ ________________________________ ~Si 

Fo(x,y): 
F1(x,y,q): 
Ftx,y): 
Fst: 

driving force from applied voltage 
image force due charges on particle 
friction force, {~s· F/x,y)} 
stiction forces 

Figure 3-26: Schematic of particle forces 

The downward force on the particle, Fy , arises from three sources: the image force, F/ , 

the stiction force, F/\ and also the y-component of the DEP force, FyD. The horizontal 

force, Fx, can be separated into four parts: 1) the DEP force, FxD, 2) Fx\ the 3-component 

of the image force, 3) the frictional force, Ff, and 4) Fxst. However, Ff is inherently 

related to Fy through the frictional coefficient, /-!so Because of this relationship, any 

change in insulation thickness also has an effect on the net horizontal force on the 

particle. 
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Proof of these downward forces on the particle, FyD and F/ were computed using 

Maxwell in Figure 3-19 and Figure 3-23, respectively. From Figure 3-19, we saw that 

although the horizontal or X-component of the DEP force, Fx D, due to the voltage 

waveform was responsible for particle transport, the DEP y-component, FyD, acted 

downward thus adding to the frictional force. In other words, the DEP force not only 

exerted a horizontal force but a downward force as well. Likewise in agreement with 

electrostatic theory, Figure 3-23 showed that F/ diminished as the particle height from 

the electrodes was increased, and it was greatest when the particle was directly above the 

electrode. Superposition of these forces (image, DEP, and stiction) then gives us total 

downward force. 

The FEM results corroborate the phenomena observed in experiment. In our experiments 

variation of this distance (between the particle and the electrode), which was controlled 

by the thickness of the insulation film, clearly affected the performance. If the insulation 

was too thin, the downward forces dominated and efficiency dropped. If the insulation 

film was too thick, the driving force was not sufficient enough to overcome the adhesive 

forces. Therefore, at a specific thickness, Fx was maximized and thus gave the highest 

transportation efficiency. However, each insulation film had its own optimal thickness 

(Figures 3-12 and 3-14) because Van der Waals, meniscus forces, and frictional 

coefficients between the particle and the insulation surface differ from film to film. In 

addition to this complexity, the FEM simulations of varying pitch point to the fact that as 

electrode pitch was increased, the DEP force dropped (Figure 3-22). However, if pitch 

was decreased too much, then the image force became greater and greater because the 

electrodes looked more like a solid sheet (as shown below) (Figure 3-27). 

f?"'Tr:J~I2I2I2I2I2I2=*P2IillL3iilI:J2t."'~~~~";.·."."l SiN 

Si02 

'-+11--------' Si 

Decreasing pitch 

Figure 3-27: Decreasing pitch resulted in higher image force contribution. 
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3.9 Conclusion 

In contrast to the work done in the past in this field, this work shows that it is possible to 

move /-lm-sized particles in air. It has been shown that particles of 5-10 /-lm size range 

can be manipulated electrostatically with voltages below 200V in a standard room 

environment. Because of the interrelationship of the image force, the DEP force, friction, 

electrode geometry, and particle charge, we see that simulation of all the particle forces is 

complex. Thus, many of these critical parameters are difficult to measure, and other 

researchers have substantiated the large variability in adhesion characteristics. In our 

case, by performing a multitude of experiments designed to isolate and investigate the 

different types of particle to surface forces, we have determined that particle charging is a 

significant cause of adhesion on our MEMS transportation system. More importantly, we 

have discovered a simple way to reduce its negative effect on particle transportation 

performance, and have demonstrated an effective means (90% efficiencies) of 

transporting particles on a substrate in a standard dry environment. With this knowledge 

of the transportation characteristics, we propose to demonstrate applications, such as -

active filters and liquid interfaces, with which this MEMS transportation system can be 

combined. The next chapter illustrates this application. 
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Chapter 4 

Particle Collection from Air to Liquid 

4.1 Introduction 

As pointed out in the introduction of this thesis, currently there is a growing need for a 

hand-held automated environmental detection system for detection of bio-aerosols such 

as toxins, viruses, and spores. Successful detection of these types of particles requires 

three steps - collection, transport, and analysis. For airborne particles, collection and 

transport typically occur in the air environment, but the third step, analysis, becomes a 

problem because many of the sensitive bio-analytical techniques (such as florescence, 

DNA analysis, etc.) only work in the liquid medium. Consequently, engineering of an 

air-liquid interface is required to transport the collected particles from air to into liquid. 

In the past, the transport of particle into a liquid medium has been done primarily by 

manual pipetting and washing. Other large-sized automated systems have employed 

liquid wash steps where the collected particles of washed off a denuder [1], or a cyclone 

chamber. However, these types of traditional techniques become impractical for such a 

hand-held system with microliter fluid volumes and without conventional mechanical 

valves and pumps. 

In this chapter, a solution to this interface problem was engineered and integrated with 

the MEMS particle transportation technology developed in Chapter 3. The first 

generation design consisted of a glass chip with channels bonded to the electrodes. The 

focus here was to design hydrophobic channels small enough so that the surface tension 

forces would prohibit liquid leakage outward, but allow particles to be transported across 

the air-liquid interface. After discovering problems with this first scheme, the interface 

problem was tackled with a different approach. In this second approach, instead of 

moving particles and a stationary interface, we demonstrated a working particle-to-liquid 

collection mechanism with a moving meniscus and stationary particles. The feasibility 
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of this technique was applied together with a micromachined active membrane filter 

fabricated by Lee et al. [2]. Although particle transport efficiency decreased greatly on 

the filter surface, the feasibility for an airborne particle sampling system was 

demonstrated. Some of the issues explored in this chapter are the following: 

1) Stability of the air-liquid interface 

2) Control of the fluid meniscus 

3) Performance of the transportation scheme in liquid 

4) Integration of particle transportation technology with a fluidic interface chip 

and an active micromachined membrane filter. 

4.2 First Generation Interface Design 

The concept for the particle interface design is shown below in Figure 4-1. The glass 

chip (shown on top in the Figure 4-1) contains etched channels which simulate a liquid 

system in which the particles could be distributed and analyzed. The three "T" channels 

(shown as dashed lines) containing the liquid meniscus interfaces are connected to a 

larger central channel in which liquid is flowing. Using the DEP force, the particles 

would be transported from the electrode across the interface into the bulk liquid. 

Glass chip with 

channels ~ ~ 

electrode ;;/'~ ~.::~., .. 

~ Capillary connections 

c'LiqUid flowing .1, 
~~/ .;) iquid 

-.,. ...... ' ... " 
~ .. 

("::---:C~C_~"::;'::J ..... . 
Particle transportation chip 

top view 

Figure 4-1: 1 st Particle air to liquid collection scheme (L) and schematic (R) 

Pout 

DEP control of particles in liquid has been demonstrated by [2] [3] [4] who have shown 

that in contrast to the high voltage low frequencies required in air, low voltages and high 

frequencies are required for particle transport in liquid. In fact, particle motion in liquid 

has been shown to be much more robust and efficient than in air. Table 4-1 illustrates the 

different regimes demonstrated by various groups. In our case, two circuits were 

connected to the electrodes so that when the particles entered the liquid, the proper 

waveform (circuit) would be activated. 
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Table 4-1: DEP electrical requirements for different media. 
Reference Voltage Frequency Medium 

This work 100-200V 5 -100 Hz Air 

Fuhr et al. [3] 1-5 Vpp 1 Mhz Conductive liquid (10mS/m) 

Lee et al. [4] 120-140V I-1000Hz Com oil (lO-IIS/m) 

Morgan et al. [5] lOVpp 500kHz Conductive liquid (150mS/m) 

To work, this scheme reqUIres that the midstream pressure, Pm, of the flow at the 

interface be less than the capillary pressure, Pc. The governing aspects of this design are 

the Young-Laplace and the Hagen-Poiseuille equations [6]. From the Young-Laplace 

equation we are able to predict the maximum pressure that can be present near the 

opening. Similarly, the Poiseuille equation helps us predict the pressure drop in the 

central channel for a given flow rate. The Young-Laplace equation, Equation 4-1, is a 

function of the surface tension of the fluid, a, the capillary radius, r, and the meniscus 

contact angle, S. Assuming the meniscus is a section of a spherical surface that intersects 

the capillary at a finite contact angle, we have the static case [7], 

P = (2alr) cos (S). (4-1) 

Though Equation 4-1 is valid only for circular openings, it is sufficient to demonstrate the 

features of this design. The elaborate closed form solution for our case, a rectangular slit 

has been derived by Kagen and Pinczewski [8] in a lengthy derivation. They show that 

closed form solution for the pressure, P, for the rectangular slit falls below that for the 

circular channels. Consequently, the Young-Laplace equation represents the "best case" 

solution. To better understand the maximum possible interface pressures, Equation 4-1 

has been plotted in Figure 4-2 for pure water and a highly hydrophobic capillary wall (S -
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Interface channel radius, (m) 

Figure 4-2: Maximum meniscus pressures for water vs. interface channel radius. 

The Poiseuille flow equation relates flow rate, Q, to the pressure drop, L\P, the pipe 

radius, r, viscosity, 11, and the distance from the interface to the exit, L. 

(4-2) 

Substituting Equation 4-1 for L\P in Equation 4-2 and making the following assumptions, 

we can estimate the best case flow rates possible for given interface channel sizes. The 

following values, 5mm and 50llm, were chosen for Land r, respectively. Note that 

Figure 4-2 represents an ideal case, where the contact angle is 180°, the interface channel 

surface is perfectly smooth and clean, and the interface channel is circular. In our case, 

the channels are rectangular slits. Furthermore, the exit pressure due to external piping 

and constrictions due to the connection is probably much greater than estimated. 

Therefore, we expect the order of the allowable flow rates to be correct, but certainly two 

to three times lower than these idealize flow rates shown in Figure 4-3. 
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Interface Channel Radius (m) 

Figure 4-3: Idealized flow rates possible for given interface channel sizes 

4.3 First Generation Interface Chip Fabrication 

Fabrication of the interface chip requires two glass etching steps to create the deeper 

central flow channel and the shallower interface "T" channels. Evaporated gold acts as 

the masking layer and buffered hydroflouric acid (BHF), as the etchant. Photographs of 

various designs are shown in Figure 4-4. The designs have curved, tapered, and widened 

channel entrances to study which types can sustain the fluid meniscus and which types 

capture more particles. 

Inlet/outlet holes 
drilled here 

depth 40!J,m depth 15!J,m 

Figure 4-4: Various glass interface channel designs 
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The process steps are shown in Figure 4-5. First, 800A of Au is thermally evaporated 

onto the wafer which is already patterned with photoresist. Next, the resist is "lifted-off" 

with acetone leaving behind the gold masking layer. More photoresist is spun and 

patterned to mask the interface channel while the other areas are etched to 15J..lm. The 

resist is removed with acetone and etching is continued to the desire depth. The etch rate 

of the glass in BHF is roughly 1 J..lmlmin. Inlet and outlet holes are drilled mechanically 

with a 700J..lm diameter drill bit. 

resist 

I) Au evaporation on 
patterned resist 

= 

2) Lift-off of resist with 
acetone 

1= ~ 
3) Re-patterning to protect 

smaller interface channel 

4) Resist removed after 
BHF etch 

5) Final BHF etch 

Figure 4-5: Glass interface channel fabrication steps. 

To make the interface channels hydrophobic, a Teflon-like polymer film was plasma 

deposited as the final step. In the past, flourine-based gases have been utilized in plasma 

processing for their ability to selectively etch silicon. But, under certain conditions these 

gases can be polymerized to form thin films on a substrate. For the interface chip, the 

fluorocarbon gas, CHF3, was polymerized in the plasma at the following conditions: 

170W 300mTorr, 2.7J..Lm1hr [9]. Resistant to acetone, hydroflouric acid, and alcohol, this 

"plasma teflon" coating is stable. However, special care had to be taken to pre-clean the 

surface before deposition because of the weak plasma teflon adhesion to the substrate. In 

addition to the CHF3 film, hexamethyldisilizane (HMDS) vapor treatment was also used 

to make the glass surface hydrophobic. Selective deposition of the hydrophobic films 

only in the interface channel area was done with a physical mask because any type of 
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photoresist processing such as developer and acetone rinsing destroyed the 

hydrophobicity of the polymer film surface (AZ4400 and AZ developer). 

After correct priming of the channel surfaces, the interface chip was bonded to a glass 

slide for the initial experiments (Figure 4-6). The inlet pipe was connected to a digitally 

controlled syringe to simulate a micromachined liquid pumping system. The interface 

chips were bonded to a particle transportation chip, Figure 4-7, after suitable control of 

the meniscus was achieved. In addition, the particle transportation chip had to be 

redesigned to include large 5 x 3 mm electrode arrays, and adjacent dies on either side 

were left blank to leave room for bonding the liquid channel chip. 

~ 
Interface channels 

Figure 4-6: lcm x lcm glass interface die bonded to a glass substrate for initial testing. 

The glass die was bonded onto a particle transport chip using the spin on the Dupont 

AF 160 1 for two purposes - as the bonding material, as well as the optimized dielectric 

spacer in one step. No modification to coating procedure was necessary. Both the pieces 

were aligned and clamped together before the 200°C hard-bake. Some devices were 

prone to cracking due to the thermal mismatch of the spin-on Teflon and the glass; in 

effect, proving the efficacy of the bond. 
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Figure 4-7: Glass interface die (R) bonded to a particle transportation chip (L). 

4.4 First Generation Interface Experiments and Discussion 

The first experiments with just the interface die bonded to glass proved to be difficult. 

The epoxy bonding step was problematic and decreased yield. Experiments were 

conducted by slowly increasing the flow rate until the meniscus broke down for various 

coatings (bare glass, HMDS, and the CHF3 fluoro-polymer). As expected, uncoated 

interface channels only withstood flow rates on the order of 0.1-1 ilL/min. The more 

hydrophobic the interface, the higher the flow rate achieved. For example, the silane 

coated dies attained flow rates on the order of I-SilL/min, and the CHF3 Teflon dies 

could withstand flow rates of SO-1001lL/min. Observations showed that the fluid 

meniscus was only stable for -30 min. Once the surface had been contaminated, the 

level of hydrophobicity decreased, the chip would fail. Furthermore, the position of the 

meniscus was hard to control. Nevertheless, the next step was to experiment with 

working electrodes and moving silica glass particles. 

Experiments with the combined electrode and interface chips proved to be failures for 

two reasons. Firstly, particles transported in air on the electrodes could not travel past the 

liquid meniscus, and conglomerated at the boundary (Figure 4-8). Secondly, the high 

voltage required for particle transportation in air caused electrolysis of the water present 

on the electrodes - even though the electrodes were well insulated by LTO and Teflon. 

The bubbles in the water would form within minutes and destroy the electrodes. This 

result made it clear that during the high voltage, low frequency transportation, no water 
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could be present on the electrodes. The voltage required turned out to be an order of 

magnitude higher than the voltages demonstrated in prior work in this field (Table 4-1). 

50V at 500Mhz were required to move the silica particles in water in our system. 

Glass chip --.. 

Direction of 
particle motion 

• 

surface tension 
causes blockage! 

TWO CIRCUITS 

Figure 4-8: DEP force in air not enough to cross liquid meniscus. 

Although this meniscus based interface design failed to work, valuable information on 

properties of surfaces, stability of air-liquid interface, and the performance envelope of 

the DEP force was acquired. The CHF3 Teflon-like film was the most hydrophobic, and 

as expected, the highest flow rate (100~/min) was achieved for the 15J..lm x Imm which 

was three times slower than for the idealized case (see Figure 4-3). Because of the 

rectangular channel, and unaccounted exact pressure drops in the outlet side of the chip, 

we expected this slower flow rate. On the other hand, the DEP scheme in both 

environments, air and water, on the same set of electrodes proved unfeasible. From the 

observations, it was clear that the water could not be exposed to the high voltage, low 

frequency scheme needed for particle transport in air. Moreover, even if the electrolysis 

problem could be solved, the DEP force was insufficient to force the particles through the 

fluid meniscus. A different solution was needed. 



4-10 

4.5 Second Generation Interface Design 

Because of these two obstacles, a different approach was taken to transport the particles 

across the air-liquid interface. Since the DEP force was insufficient to provide the 

penetration force, the energy of a moving meniscus was used instead. Initial experiments 

using a water droplet to "capture" particles off the electrodes showed promise. The water 

droplet was attached to a fused silica capillary (150/-!m ill) and positioned so that the 

droplet rested on the Teflon coated transportation chip (Figure 4-9). Because of the two 

dissimilar surfaces (the hydrophilic capillary tip and the hydrophobic chip surface), the 

droplet remained firmly attached to the capillary tip while the tip was "scanned" across 

the surface of the particle chip. Almost every particle that contacted the moving droplet 

was captured inside. 

Droplet moving with silica capillary 

• II II • • - hydrophilic liquid 
droplet hydrophobic ID ",.:.".::::, 

Figure 4-9: Particle collection experiment with a moving droplet 

With success of this initial test, the 2nd generation interface was designed with a moving 

meniscus controlled by conventional pressure driven pumping and sucking. Unlike the 

original scheme, the particles are collected in a three-step mode shown in Figure 4-10. 

With this technique, the circuit (high voltage, low frequency) is turned on until particles 

are transported inside the interface channel. Then, the power is turned off, and the 

meniscus captures the particles in a back and forth motion. In step three, the meniscus is 

sucked back so that no liquid is present on the electrodes, and the electrode circuit is 

turned back on. This cycle is repeated. In the demonstration, here, the pumping and 

sucking was done manually to illustrate the concept; though in the future, one could 

envision integration with micro-pumps and valves. Furthermore, an active filter was 

integrated onto a section of the particle transportation chip to for demonstration purposes. 
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The active filter was a modification of the electrode fabrication process described 

previously but with backside wafer processing to realize the electrodes on a silicon filter 

membrane. Figure 4-11 shows a new transportation chip layout (lcm x lcm) redesigned 

with large array of various electrodes and filter areas with their respective sizes. To 

increase collection efficiency (with respect to the linear arrays), the radial electrodes, 

depicted here, serve as particle concentrators - grouping the particles in one central area. 

The first number in the label ("R" or "P") refers to the electrode width, and the second 

number refers to the space in between the electrodes. 

Step 3 suction .... 

L • 
Figure 4-10: 2nd generation particle collection scheme 

P83 
4.8x3mm 

R83 
radius l.3mm 

P88 
3.6x2.8mm 

~I 

Filter 
1. 15x2.54 mm 
holes: 3x20l-lm 

Filter 
0.967x2.37 mm 
holes: 3x20l-lm 

Figure 4-11: Integrated filter and particle transport layout (1 em x 1 em) 
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4.6 Silicone Elastomer - Sylgard® 184 

In the past few years, silicones such as Sylgard@ 184 (Dow Coming Corp.), commonly 

referred to as (po1ymethy1disi10xane) PDMS in literature [10], have become quite popular 

for lithographic molding, and other micromachining applications [11]. The PDMS 

backbone makes up the primary structure shown in Figure 4-12. This clear, naturally 

hydrophobic elastomer is cured by an organometallic crosslinking reaction which can be 

sped up with exposure to air and at elevated temperatures from 25 to 150DC. The 

hardness can be increased or decreased by 10% by increasing or lowering the amount of 

curing agent. 

Pt-m.se::l 
cataljoSt • 

Figure 4-12: PDMS crosslinking reaction 

Table 4-2: Properties of Sylgard@ 184 
Brittle point -65DC 

Dielectric strength 450 -600 V fmil 

Durometer hardness 40 Shore A 

Elongation 100% 

Tear strength 2.6 kNfm 

Tensile strength 6.20 MP 

Thermal expansion coefficient 9.6% per lODDe 

Water absorption 0.10% after 7 days 

Because of its ability to seal over rough surfaces, its chemical resistance, and high 

dielectric strength, PDMS offers many advantages over the etched glass channels. For 

instance, the molding technique allows channel depths from 10J,!m to 5mm. Though 
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naturally hydrophobic, its surface can be made hydrophilic in O2 plasma. Table 4-2 

summarizes some of these properties of this elastomer. 

The elastomer processing was fairly simple. The base and curing agent (in a 10: 1 ratio) 

were mixed thoroughly and allowed to sit in a vacuum of 25 inches of mercury for 30 

minutes. Next, the viscous solution was spun on the silicon wafer mold and cured at 

130°C for 3 hours. Cured thickness vs. spin rates are shown in Table 4-3. The 1~ of 

CHF3 polymer was deposited on the silicon master as the release agent (Figure 4-13). 

Table 4-3: Sylgard® 184 spin chart 
Spin speed (krpm) Cured thickness 

0 2-3mm 

0.12 1.5mm 

0.2 650J..lm 

4.0 100J..lm 

Figure 4-13: PDMS being released off the silicon wafer mold 

1. Photoresist patterned on Si wafer 
4. PDMS spin coating and cure 

2. DRIE Si etch 

3. CHF3 deposition 5. Mold release 

Figure 4-14: PDMS Channel fabrication steps 
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4.7 Second Generation Interface Fabrication 

Combining the filter-plus-electrode structure, Figure 4-15, complicated bonding of the 

interface channels with the transportation chip because the spin-on AF 160 1 S could not be 

used as the bonding material like before. Instead of the spin-on Teflon, the conformal 

CHF3 polymer was deposited as the insulation spacer because of the filter holes. Because 

of the filter membrane, no spin on type processing could be done on the wafer. Details of 

this active filter fabrication can be found in work by Lee et al. [1] In any case, bonding 

to Teflon-like materials is generally troublesome; so the interface channel was molded 

with a flexible, transparent silicone elastomer, Sylgard ® 184 (Dow Coming Corp.), and 

clamped down to the particle transportation chip. The fabrication steps for the PDMS 

channel are depicted in Figure 4-14. A schematic of the cross section and side view of 

the assembled device is illustrated in Figure 4-15. A video snapshot of a working 

prototype is shown in Figure 4-16. Much larger than the -50llm glass channels, the 

500llm diameter PDMS channel allowed better control of the meniscus position. 

~ ~ clamp force ~ ~ 

I w I 

elastomer channel 

x-sectional view 

Figure 4-15: Moving meniscus concept integrated with an active filter region. 

movIng 
liquid 

PDMS channels 
Transport chip 

Figure 4-16: Video image of interface chip on radial transportation structure. 
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4.8 Second Generation Experiments 

For the moving meniscus collection technique, experiments were successfully performed 

(see video) for the linear electrodes as well as for the radial structures (8/lID silica glass 

particles tested). A series of video snapshots of one experiment is depicted in Figure 4-

17. The velocity of the oscillating meniscus ranged from 1-3 mm1s. 

1. Particles moved into 2. Meniscus wash step 3. Interface area cleared 
interface area 

Figure 4-17: Snapshots of particles being captured from the air into the liquid meniscus 

The collection efficiency was only about 5-10% because of three factors. First, there was 

a significant drop in efficiency due to the CHF 3 polymer coating. Secondly, the filter 

holes and structure also reduced efficiency from the normally observed 80-90% levels on 

the standard electrode grid. Finally, the particle contact with the liquid meniscus was 

limited by the interface opening width of 500j..lm. The rest of the particles collected on 

the edges of the PDMS. Regarding this problem, the particle radial structures worked 

much better because particles which moved, moved toward the collection area (Figure 4-

18). 

linear radial 

Figure 4-18: More particles moved near meniscus area with the radial design 
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One problem during testing was the long-term hydrophobicity of the plasma Teflon 

surface. After exposure to water, the Teflon surface started to retain micro-droplets of 

water «2J..lm). This liquid residue affected the shape of the meniscus, and also reduced 

particle transportation efficiency in that area. In other words, particles would begin to get 

stuck just outside the travel of the meniscus. In addition, the whole experiment failed, if 

the liquid accidentally was pushed out beyond the interface channel onto the rest of the 

electrode grid. Some of the other design issues relate to the control of the liquid 

meniscus and the actual retention of the particles into the "flowing" part of the liquid 

system. 

4.9 Conclusion 

Two different particle air-to-liquid collection schemes were explored. The first type 

involved two regimes of voltages and frequencies but failed because the strength of the 

DEP force was too small to penetrate the liquid meniscus, and because of electrolysis of 

water on the electrodes. Successful collection was demonstrated through an entirely 

different type of technique- in which the liquid meniscus was moving and not the 

particles. With this method, the problems of the first type were circumvented. In 

addition, a membrane filter structure was integrated with the transportation technology 

and a new radial design demonstrated improved collection efficiency. In retrospect, 

although the solution for transporting particles from air to liquid in a micro-system may 

not be the most ideal because of complexity of assembly and lifetime issues, the 

knowledge gained here can be used to develop and understand more about stability of 

coatings and air-liquid interfaces. In fact, the initial droplet-on-a-capillary experiment 

shows great promise for the development of analyses and chemistries on arrays of liquid 

droplets. 



4-17 

References 

1. P.K. Dasgupta, L. Ni, S.K. Poruthoor, and D.C. Hindes, "A Multiple Parallel Plate 
Wetted Screen Diffusion Denuder for High-Flow Air Sampling Applications," 
Analytical Chemistry, Vol. 69, 5018-5023. 

2. S.W. Lee, J.M. Yang, Y.C. Tai, and C.M. Ho, "Electrostatically Active Microfilters 
For Automated Airborne Particle Collection," Proceedings of Transducers '99, 
IEEE1999. 

3. G. Fuhr, T. Muller, Th. Schnelle, R. Hagedorn, A. Voigt, and S. Fiedler, "Radio 
Frequency Microtools for Particle and Live Cell Manipulation," Natur 
Wissenschaften Aufsatze, Springer-Verlag, 1994. 

4. S.W. Lee, Y-W Kim, and Y-K Kim, "Determination of Dielectric Constant of 
Dielectric Particles Using Negative Dielectrophoresis," Conference Proceedings on 
Electrical Insulation and Dielectric Phenomena," San Francisco, October 20-23, 
1996. 

5. H. Morgan, N.G. Green, M. P. Hughes, and W. Monaghan, T.C. Tan, "Large-area 
travelling-wave dielectrophoresis particle separator," Journal of Mechanics and 
Microengineering, Vol. 7, Pg. 65-70, 1997. 

6. F.M. White, Viscous Fluid Flow, McGraw Hill, New York, 1991. 

7. Middleman, S., "Modeling Axisymmetric Flows: Dynamics of Films, Jets, and 
Drops," Academic Press, San Diego, 1995. 

8. M. Kagan and W.V. Pinczewski, "NOTE Meniscus in a Narrow Slit," Journal of 
Colloid and Interface Science, Vol. 180, Pg. 293-295, 1996. 

9 . Wen Hsieh, personal communications, 1997. 

10. S. Brittain, P. Kateri, Z. Xiao-Mei, and G. Whitesides, "Soft lithography and 
microfabrication" Physics World, May 1998. 

11. X. Yang, C. Grosjean, Y. C. Tai, and C.M. Ho, "A MEMS Thermopneumatic 
Silicone Rubber Membrane Valve," Sensors and Actuators A, 64, pp.101-108, 1998. 



5-1 

Chapter 5 

Electrospray Fundamentals 

5.1 Introduction 

Miniaturization of chemical analysis systems has been gaining popularity as MEMS 

technology has become more robust, feasible, and widely accepted as the technology for 

tomorrow's chip based chemical analysis systems. Over the past decade, several key 

steps have been taken in fabricating compact liquid chromatographs (LC) [1] and 

capillary electrophoresis chips (CE) [2]. There has been significant advancement in 

MEMS based chemical separation systems, but on-chip detection can be performed 

mainly by methods such as UV absorbance and electro-chemi-Iuminescence. These 

optical methods are not viable for most biomolecule (protein and peptide) detection; they 

are no match for the femtomole sensitivity, selectivity, and versatility (minimal liquid 

sample preparation) provided by a mass spectrometer (MS). The MS is an analytical 

instrument which can detect mass to charge (m1z) ratios of sample molecules. Further 

detail about MS is outlined in the next section. 

Table 5-1: Mass spectrometer has superior sensitivity 

Detection Method Approximate Detection Limits 

UV Ivisible absorbance 10-13-10-16 Moles 
Fluorescence 10-15 _10- 17 Moles 
Mass spectrometry 10-16-10-17 Moles 

Furthermore, because of this tremendous advantage in sensitivity, mass spectrometry is 

ideally suited for detection from small sample volumes. This femtomolar sensitivity, 

then, can be crucial for MEMS chemical systems where only small sample volumes are 

available. Therefore, these advantages compensate the drawbacks of the MS which are 

primarily cost and size. Thus, how to couple MEMS systems to an MS is the heart of the 

problem. 
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One method by which MEMS chemical systems can generate ions for MS analysis is 

with electrospray ionization (ESI) which was brought to light by Fenn et al. in 1989. A 

detailed explanation of the ESI method is presented in further detail in this chapter. 

Briefly, ESI is a simple method in which sample ions are produced in a fine stream from 

a liquid droplet in the presence of a strong electric field applied between the capillary tip 

and MS inlet. ESI has distinct advantages over other ionization strategies. Since it can 

generate multiply charged molecules (reducing the mass to charge (m1z) ratio), it makes it 

possible for mass spectrometer with small mass ranges to detect much larger molecules. 

Consequently, it can detect large molecules (theoretical limit -200,000 Da, practical 

limit, 70,000 Da) directly from the liquid sample. This capability is imperative for 

MEMS protein and peptide analysis where techniques like PCR amplification are futile. 

Other advantages include: the softest ionization (compared to other methods which 

makes it possible to observed biologically native non-covalent interactions), ease of use, 

and compatibility with liquid chromatography (LC) [3]. Therefore, ESI has been chosen 

to be the bridge between the MEMS device and the MS. This chapter includes a brief 

overview of MS, MS ionization methods, and an examination of electrospray ionization 

fundamentals. 

5.2 Mass Spectrometry Overview 

Mass spectrometry has been used for biomedical applications since the 1970's. Initially 

developed in the 1940's for the petroleum industry, it has now become standard 

equipment for biochemists. The MS is analogous to an optical prism that takes light as 

the input and separates it into different colors (wavelengths). In contrast to the prism, 

however, the MS takes ions as its input, and outputs a spectrum showing the number vs. 

ions mass to charge ratio. This operation is schematically shown in Figure 5-1. 
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Figure 5-1: Parts of a mass spectrometry system 

A complete MS system can be broken down into four main parts: a sample ionizer which 

produces a stream of sample ions, an ion accelerator, a mass analyzer which separates the 

ions according to their mass to charge (mlz) ratio, and a detector, to measure their relative 

abundance. The MS outputs a scanned spectrum showing a "fingerprint" of the sample 

which can be uniquely identified by spectrometrists. Except for the 15t stage, the sample 

ionizer, the rest of the parts are contained inside a typical benchtop MS. Our focus here 

lies in the sample ionization step in which the test biological liquid sample is introduced. 

The typical methods by which sample ions are generated and their advantages and 

disadvantages are shown in Table 5-1. From the table, we can see that ESI's main 

advantage lies in its simplicity; it does not require much preparation. In fact, the liquid 

sample can be introduced in-line with high performance liquid chromatographic 

separations [HPLC] at flow rates up to 1 mllmin with a mass accuracy of ± 0.01 % [3]. 

On the other hand, Fast Atom Bombardment (F AB) and Matrix Assisted Laser 

Desorption Ionization (MALDI) require the sample be prepared in a matrix, which is 

unsuitable for liquid samples. The most distinct advantage of ESI over other ionization 

methods is that it can form a simple and direct way to interface MEMS device and mass 

spectrometers. All that is required on the MEMS chip is an electro spray nozzle which 

can be positioned in front of the MS inlet. 
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Table 5-2: Comparison ofMS ionization methods 

FAB MALDI ESI 

Sensitivity nanomole subpicomole 

Mass Limit (Da'l 7,000 -300,000 -100,000 

Preparation }\tiatrix l\'latrix None 

Direct LC? NO NO YES 

Figure 5-2 shows a typical ESI source, a glass capillary packed with a filter and the MS 

inlet which operates at a few microliters per minute. Note that it is very important to 

have particle filters in the system to prevent clogging of the tip, which is typically on the 

order of 3-15 ~m for micro-ES. In order to make this technique more compatible with 

conventional LC methods (requiring increased flow rates and reduced dependency on 

surface tension), various MS companies have developed pneumatically assisted spray tips 

(Perkin Elmer Sciex Inc.), heated metal capillary tubes (Finnigan MAT Inc.), and even 

tips with ultrasonic nebulizers (Analytica Inc.) [4]. These devices, using conventional 

production methods, cannot, however, be used in conjuction with the new MEMS LC or 

CE technology in which sample volumes are themselves on the order of microliters and 

require nanoliter per minute flow rates. Conventional ESI is done using glass capillaries 

creating large unnecessary dead volumes which require more of the sample fluid. 

Consequently, if MEMS bio-devices are interfaced using this conventional technique, the 

liquid sample must be piped out with conventional capillary tubing to the MS intake 

where the sample molecules are ionized and then detected. This increases in overall 

system dead volume, and in effect, compromises all the advantages gained in MEMS 

miniaturization of the liquid separation stage. What is needed then is a microfabricated 

on-chip interface that has the advantage of directly connecting the two systems together 

without these losses. 
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f 
Figure 5-2: Typical electrospray configuration 

5.3 Micro-Electrospray Ionization Fundamentals 

In order to understand some of the MEMS design criteria for the ESI nozzle, we present 

here the fundamentals of the ESI phenomenon. Electrospray ionization (ESI) has become 

an important technique of generating ions for mass spectroscopic analysis of chemical 

and biological liquid samples [5, 6]. With its growing popularity, a lot of experimental 

data and understanding has been acquired by various groups such as Fenn (1985) and 

Wilm (1994); so today, ESI is an accepted technique for MS. ESI occurs when fluid in a 

capillary tip is subjected to a potential drop (1-4 kV) at atmospheric pressure. Because of 

the high electric field, the normal pendant shaped droplet turns into a sharp cone, referred 

to as the Taylor Cone, with charge induced on the surface. Spraying occurs at the 

Rayleigh limit when coulombic forces are large enough to overcome the surface tension 

forces. This Rayleigh limit [7] can be expressed as 

where 

2 

a=-q-
3V~ 

q : charge on the drop 

V: volume of drop 

y: surface tension 

E: dielectric constant. 

(5-1) 

The limit is reached when a is greater than or equal to 4. Although significant work has 

been done in the past decades with liquids and electrostatics, much of the modeling is 
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limited to ideal approximations and geometries [7,8,9]. A brief derivation of the ideal 

Taylor Cone is presented here starting with the following assumptions: 1) the main forces 

acting on the liquid droplet are surface tension and electrostatic forces, 2) gravity is 

neglected, and 3) the fluid cone is static and conductive (so that electric field is 

orthogonal to the surface (Figure 5-3). From this derivation and its assumptions we can 

validate the benefits of scaling down from a conventional capillary ESI tip to a MEMS 

ESI structure. The final derived equation will show that with typical ESI conditions, the 

droplet radius is orders of magnitude smaller than the orifice diameter. 

Figure 5-3: The Taylor Cone, where v is the cone angle, py the surface tension pressure, 
and PE the outward pressure from the electrical field. Note that the tip of the cone is an 
ellipsoid. 

(5-2) 

(5-3) 

Equations 5-2 and 5-3 represent the two opposmg pressures. PE, the electrostatic 

pressure, is a function of the dielectric constant of the liquid and the field at the 

equipotential surface of the fluid. Py, the surface tension pressure is proportional to the 

surface tension divided by the radius of curvature, r. Converting these equations into a 

spherical coordinate system, we can express them in the following form [10]: 

p _ r cos(v) 

y r (1- cos 2 (v)) 
(5-4) 
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P, = 1-£ n.2r2(n-l)[~ P COS(8)]2 
E 2 00/ d8 n 

v is the cone angle, 

$0, the electrical potential constant 

P n, the Legendre Polynomial of degree n 

n, the radius dependence of potential $. 

(5-5) 

Setting Equations (5-4) and (5-5) equal to each other, we find that n=0.5 and P1I2(cos 

8)=0. This solution also implies that angle, v, must be 49.3° resulting in the classical 

Taylor Cone formula (Equation 5-6). When the liquid is spraying, this angle decreases 

with increasing flow rate. 

<p(r,8) = <Po r o.s ~/2 (cos(8)) (5-6) 

By adding a perturbation term [11] to potential Equation (5-6), we approximate the 

change of the ellipsoid into a pointed cone (as shown in Figure 5-4 below) when the 

electrical field is increased above the threshold value. 

I 
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I 
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I 
I 
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, 

I 
\ 
\ 
\ 
\ 

\ , 

-

counter-electrode 

U1-UO=Ua (applied voltage) 

Figure 5-4: The liquid surface below threshold for cone generation [10]. 
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From computer simulations, Wilm and Mann [10] have shown that ra :::::: 7ro. With this 

step, they show that the pressure difference can be related to applied voltage in the 

following form: 

(5-7) 

Solving for U a at the threshold point (left side of Equation (5-7) set to zero). We arrive at 

the equation for the threshold voltage, UT: 

1 

U, ~ 0.863 ( ~ r (5-8) 

Substituting Equation 5-8 into Equation 5-7, we have a relation for pressure, p: 

(5-9) 

Next the droplet radius can be calculated if the experimental conditions do not stray far 

from the static Taylor Cone. However, do note that for large flow rates, the cone 

becomes elongated and v<49.3°. The elongation is depicted in Figure 5-5 below. 

high flow rate 
low flowrate 

Figure 5-5: At higher flow rates of spray, cone angle deviates from 49.3°. 

Consequently, for low flow rates we can assume that the emission diameter, re, 

approximates the droplet size. Also, by using the Bernoulli Equation (Equation 5-10), it 

is possible to approximate the radius at the apex of a spraying Taylor Cone. 

where p is the density of the fluid, 

U, the velocity, and 

p, the pressure. 

(5-10) 
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The velocity of the fluid, dV/dt, is given by the relationship between the total flow rate 

divided by the cross-sectional area. In this case, we take this bounded area the radius, reo 

dV Idt 
V=--­

;rr2 e 
(5-11) 

Figure 5-6: Magnified view of cone region 

From the geometric correlation of the spraying Taylor cone and the curvature of the fluid 

sphere between the emission of two droplets [10], the relationship between ra and re exists 

such that: 

re 
r =--=-----

a tan('r 2 - V) 
(5-12) 

Substituting the relation for pressure (Equation 5-9), velocity (Equation 5-11), and ra 

(Equation 5-12), we have the Wilm-Mann equation that gives us the radius of the 

emission region as a function of the following parameters: 

where: 

1/3 

p 
re = 

re represents the radius of the emission region at the tip ofthe Taylor cone, 

y the surface tension of the liquid, p the density of the liquid, 

Ua the applied voltage, 

Ut the voltage at which the cone is formed, 

(5-13) 



v the cone angle, and 

dV/dt the flow rate. 
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This equation predicts that re, the emission radius, can be reduced with a reduction in flow 

rate. To see if MEMS type nozzles are compatible with this theoretical model, we can 

calculate the emission radius size for typical ESI conditions. U sing the following: 

y = 0.03531 Nm-1
, p = 896kg m-3

, Ua=4000V, U t = 1000V, re is calculated as 33 nm. This 

result verifies that re is much smaller than 1 ~m, so MEMS nozzles do make sense. If re 

were larger than the normal MEMS sizes, then scaling down the nozzle might not have 

any merit. 

5.4 MEMS for ESI? 

From the calculation above, we see that the scaling of the ESI tip will not affect the size 

of the emitted droplets. Consequently, other advantages of microfabrication can be 

realized. Scientists working in the field of protein chemistry have shown that scaling 

down the ESI tip from typically 100/-lm to l/-lm ID would result in significant 

improvements due to: 

1) a smaller dead volume (minimum sample required for operation), 

2) a more stable electro spray, 

3) lower sample flow rates, and 

4) lower voltages required for ionization [10]. 

A close-up photograph (Figure 5-7) of actual electro spray from a 370~m OD (160/-lm ID) 

capillary illustrates the possible savings in dead volume with a smaller ES tip. The 

potential is 1250V, and the sample fluid (1: 1 methanol solution: water) is being pumped 

at -l/-lLimin. For a 400/-lm OD capillary, we estimate only the Taylor cone volume as 10 

nL. The calculation is shown below. 

Volume 
1 2 

·1t·r ·h 
3 

h 6 25(} 10 ·m 

Volume = 1.04110 8 . liter 
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However, for a 4J..lm diameter cone the dead volume would be reduced to 10fL! 

Moreover, since this scaling down also reduces the cylindrical volume (inside the large 

capillary) behind the cone, the effective diameter of this cylindrical volume also 

decreases by two orders of magnitude with MEMS size scales. 

Figure 5-7: Electrospray from a capillary 

With this trend toward smaller ESI tips, the conventional way of fabricating these 1-3J..lm 

diameter tips becomes difficult even with a micro-capillary puller. In addition to being 

time consuming, the major problem of this technique is to yield reproducible tip 

geometries. Finally, particle filters have to be inserted manually to prevent the tiny 

capillaries from clogging with debris. Figure 5-8 below shows a schematic of the various 

sizes of fused silica capillaries that have to be manually mated together to create the in­

line filter [12]. 

200llm ID 
Packed Fused 
Silica Column 

50llm ID 
Fused Silica 

Capillary 

============ ---. to MS 

Glass Fiber 
Membrane Frit 

Epoxy 

Figure 5-8: By careful manual packing, in-line filters are constructed 
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Many of these problems now can be taken care of simultaneously with MEMS 

technology. The capability to fabricate micron-sized tips with micromachining is 

advantageous in many ways: 

1) the shape and finish of the tip can be reproducible from chip to chip, 

2) complex MEMS filter structures can be constructed inside the micromachined 

liquid channel in order to filter out debris, and 

3) mass production is available due to batch processing. 

5.5 Conclusion 

MEMS technology appears to be suited for the mass spectrometry field in the form of an 

EST nozzle. We have discussed the various types of MS ionization schemes and the 

advantages of EST. Furthermore, electro spray physics show that properties of the spray 

are not compromised when orifice geometries are scaled down to micron sizes. With 

MEMS technology various handling problems such as clogging and inconsistent tip 

structure can be addressed. Lastly, integration of other microfabricated elements such as 

filters, separation channels, electrophoresis electrodes, pumps, and valves becomes 

possible. The next chapters detail the development of a micromachinined silicon nitride 

electro spray nozzle. 
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Chapter 6 

First Generation Silicon Nitride Nozzles 

6.1 Introduction 

To realize this bridge between MEMS chemical devices and MS, the first few generations 

of the nozzle were designed primarily using silicon nitride and phospho silicate glass 

(PSG) sacrificial layer technology. Other groups have demonstrated flat-edged glass 

channels for ESI, but their technology has significant limitations with respect to surface 

micromachined silicon nitride/PSG technology. This work is not alone in developing 

MEMS overhanging structures; Talbot and Pisano [1] demonstrated a two-wafer 

polyrnolding process to make polysilicon microcapillary, but in our case it is not easy to 

integrate these needles with microchannels and other micro fluidic components on chip. 

Similarly, Papaustky et al. [2] reported a low temperature process to fabricate surface 

micromachined overhanging metallic microchannels. Unfortunately, the metallic 

structure material makes it difficult to perform many of the on-chip separation techniques 

(such as electrophoresis), and to visualize the liquid flow in the channels. 

First, an overview of this PSG sacrificial layer technology is given. This overview is 

followed by the design and fabrication, and the testing and results of this 1 st generation. 

Next, the advantages and drawbacks of further generations of silicon nitride nozzles are 

discussed. For example, on the second generation, effort was made to study the 

feasibility of different inlet-outlet geometries, on-chip grooves to attach silica capillaries, 

and longer nozzle overhang lengths. Finally, the benefits of polysilicon sacrificial layer 

technology for mrn-Iong overhanging structures will be discussed, as well as the various 

thin film stress problems encountered. 

6.2 Design Requirements 

From the knowledge gained in conventional fused silica capillary (FSC) ESI, there are 

important criteria for a working MEMS ESI interface. Firstly, the device must have an 
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overhanging or protruding orifice so that the electric field can be better concentrated to 

induce electrospray for a given voltage. Secondly, the orifice geometry must be 

controllable at the micron-scale. Finally, incorporation of filter structures is necessary for 

<10!-lm tips. Many of these requirements cannot be met with the glass channel type 

devices. Recently, Xue [3] and Ramsey [4] have both developed micro-ESI devices by 

interfacing flat-edged glass microchannels with cross sections of 10/-lffi deep by 60!-lm 

wide to a MS and demonstrating electro spray (ES). The 1 st generation device structure 

developed here is very different from Xue's and Ramsey's. Instead of employing a 

"blunt" orifice, we have fabricated an overhanging silicon nitride micro-channel l!-lm 

high by 2!-lm wide, which dramatically reduces wetted surface area at the ES tip. 

Reduction of this orifice diameter and tip surface area reduces the size of the fluid cone 

during electro spray, thus reducing dead volume as discussed in the previous chapter. In 

addition to reducing dead volume, our nozzle design also included an important feature of 

integrated particle filter structures, which minimize clogging of this MEMS ESI tip. 

Figure 6-1 illustrates and compares the various ESI schemes. 

Xue et al. Ramsey et al. 
lst Generation 
Nozzles 

Structure GLASS GLASS ~r S' N ~ I, ~ Ix1 v 

Orifice size 25 x 60 f..lm 10 x 60 f..lm 1 x 211m 

Filters NO NO YES 

Nozzle NO NO YES 

Stability 30 min. 4.5+ min 40+ min 

Figure 6-1: Related work on micro fabricated ESI devices 

The top figure shows the designed features and dimensions of the MEMS ESI interface. 

The silicon micromachined nozzle consists of a "sandwich" of l!-lm phospho silicate glass 

(PSG) enclosed by two silicon nitride layers each l!-lm thick on a 500J..lm silicon 

substrate. The silicon nitride layers form the overhanging channel after the wafer is 
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etched in a potassium hydroxide (KOH) solution at 58°C. For testing, a 600l..lm OD silica 

capillary is epoxied into the trapezodial backside inlet as shown in Figure 6-2 (right). 

Top View 

_ silicon nitride 

Side Cross-section 

500 f.!m 

J 

Overhanging 
nozzle ~ 

~ 

silicon substrate n fused silica capillary 

Figure 6-2: 1st generation nozzle design 

The tiny black squares in the top view are filter structures, which prevent debris from 

moving forward and clogging the tip outlet. Electrical connection to the sample fluid is 

made with an in-line platinum fitting on the silica capillary. 

6.3 Fabrication 

The ESI nozzle fabrication involves using PSG sacrificial etch developed in the 1980's 

by researchers at Berkeley [5]. The key to this fabrication technique is the selectivity of 

the etchant to the sacrificial material vs. the structural material. Originally, the structures 

were created out of low pressure vapor deposited (LPCVD) polysilicon using PSG as the 

sacrificial layer and hydrofluoric (HF) acid as the etchant. Since HF etches PSG about a 

1000 times faster [6], simple cantilever beams and channels can be easily fabricated. The 

main steps are shown in Figure 6-3 below. The sacrificial layer is first deposited and 

patterned in the shape of the micro-channel or cavity. Then, the structural material is 

deposited and etching windows are opened to allow the HF acid inside. After this liquid 

etch and DI water rinse, a microchannel with an inlet and outlet is formed. In this same 

way, silicon nitride can also be used instead of polysilicon [7]. Liu in our group 

demonstrated the feasibility and the use of silicon nitride micro-channels for gas pressure 

measurement and transport [8]. 
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Top view Side cross-sectional view 

1. PSG deposition and patterning on Si substrate 

J : I 
, , , r 

2. Deposition and etch holes opened in SiN 

3. HF etch of PSG sacrificial layer 

c::::::J Si _ SiN PSG 

Figure 6-3: Typical steps for micro-channel fabrication 

The etching of micro-channels is diffusion limited and has been studied and modeled by 

several groups [9]. Most importantly, as the channel length increases, the etch rate 

decreases such that only a certain maximum channel etch (200-300f..lm) length is 

practical. Otherwise, the HF starts attacking the structural layer and increasing 

susceptibility for the layer to crack. 

The fabrication sequence began with a 1 f..lID deposition of low stress LPCVD silicon 

nitride (850°C, SiH2Ch:NH3 ratio 4: 1) [10]. Next, the silicon nitride was patterned with 

SF 6/02 plasma. This step exposed inlet holes so that access to the channel was permitted 

after the backside KOH etch. After patterning the silicon nitride, a 1 f..lm layer of PSG 

was deposited (450°C, PH3:Si&:02 1:2:6) and patterned with buffered HF. The PSG 

acted as the sacrificial layer for the micro-channel. In addition to forming the channel, 

the patterning of the rectangles into the PSG served to strengthen the inlet roof as well as 

create particle filter structures inside the channel. 
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structures 

samp Ie inlet (backside of chip) 

~ 700um tubing 

Figure 6-4: 3-d view ofES Nozzle 

Figure 6-5: Nozzle top view showing backside inlet hole and filter structures. 

To complete the "sandwich," one more layer of I~m silicon nitride was deposited and 

patterned. When this nitride layer was deposited on PSG, it became the roof of the 

channel, and in the areas where the PSG had been etched, this second nitride contacted 

the first nitride, the channel floor. Next, square backside windows were patterned into 

the wafer for the subsequent KOH bulk-etching step. The bulk etching was designed to 

occur from the front and backside simultaneously. From the front side, the KOH etch 

removed the silicon under the channel, thus defining the nozzle tip, and on the backside 

the wafer was etched until the nitride inlet holes had been reached. Keep in mind that to 

control size of the inlet opening at the top, the mask design had to be tailored to a specific 

wafer thickness. Figure 6-6 shows how each I cm x I cm die contains multiple nozzle 

design variations perched on the front-side cavities. 
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Figure 6-6: lcm x lcm die layout with overhanging ESI nozzles. 

After rising the KOH off, the dies are etched for approximately 40 minutes in 49% HF to 

remove the sacrificial PSG inside the channel. The chips are subsequently rinsed in DI 

water overnight and baked dry. For testing, the connection was made by gluing a 700~m 

OD fused silica capillary to the backside inlet (Figure 6-4). The major fabrication 

process steps are shown in two cross-sectional views in Figure 6-7. 

+ 1st silicon nitride (l/-lm) 

PSG deposition (If.lm) 

Back & front side bulk Si etch 

PSG sacrificial layer etch 

.. Si "SiN PSG 

Figure 6-7: 1 st generation major fabrication steps 
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6.4 Testing and Results 

Fabricated nozzles were first extensively tested for structural rigidity and channel 

blockage by injection ofDI water into the inlet. Many of the l~m nozzles were prone to 

clogging at the very tip. Contamination from the sacrificial etch and crystallization of 

particles in the drying process were believed to be the cause of this clogging. This 

clogging problem was greatly reduced by a 24+ hour rinse in DI water, and a tip bum-in 

with an ethanol lamp. During fluidic testing, the liquid meniscus was monitored visually 

through a microscope as it traveled out to the tip. From video footage of this moving 

meniscus in the 2 ~m channel, we estimated a flow rate of 3.6 nL/min. Although the 

pressure drop of the fluid as it traveled through the nozzle channel was not measured, the 

reduction of the overall channel from -200 ~m to a micron size posed no significant 

back pressure when the channels were not clogged. A close-up of the nozzle orifice is 

shown in Figure 6-8. The l~m channel height and particle filters ensured that no 

particulate matter was deposited at the nozzle tips from the sample fluid. 

Figure 6-8: SEM photograph 

For MS testing, the pyramidal liquid port on the back of the micromachined chip was 

converted to a tubular configuration by the addition of a short section of 740 J..lm OD x 

530 ~m ID Fused Silica Capillary (FSC)(Polymicro Technologies, Phoenix, AZ). The 

FSC extension was positioned within the liquid port using a crude micro-manipulator 
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with visual confirmation of joint alignment from a Leica X 1000 stereo microscope. The 

extension was secured using a standard two-part epoxy resin. Once cured, the extension 

was cut to a final length of one cm. Liquid connection to the chip interface was achieved 

using a multi-laminate fused silica transfer line constructed as follows. The running 

length of transfer line (10-15 cm) was constructed from 150 /-lm OD x 25 /-lm ID FSC. 

Each end of the transfer line was inserted into a 2-3 cm section of 350 /-lID OD x 155 /-lm 

ID FSC until flush and then sealed with epoxy resin. Upon drying, one end of the butted 

transferline was inserted into the 530 /-lm ID FSC extension and sealed in the same 

manner. 

Chip performance was analyzed using a standardized solution of Gramicidin S. The test 

sample was dissolved in 50:50 MeOH:Water, 1% HOAc (by volume) at a final 

concentration of 4 pmole//-ll. A Harvard Apparatus model 44 syringe pump fitted with a 

50 /-ll gastight syringe (Hamilton, Reno, NV) was used to deliver the test compound to the 

nozzle via a separate 75 cm length of 350 /-lm OD x 75 /-lm ID FSC transfer line. A 2.5 

cm section of 22 gauge Platinum tubing (Hamilton) was fitted to the end of the transfer 

line to provide the necessary liquid-metal contact for sample ionization. Final connection 

to the transfer line was through a Supelco Capillary Butt connector using a O.4-mm to 

0.8-mm ID dual sided Vespel ferrule (Supe1co Inc., Bellafonte, PA). 

The standard ESI interface to the Finnigan Mat LCQ Ion Trap mass spectrometer was 

replaced with a custom polyacrylic platform upon which an XYZ micropositioning 

translational stage had been mounted. The nozzle chip was secured to the XYZ stage 

using a modified micro-clamp (clothes pin) and precisely positioned under a high-power 

stereomicroscope (Zeiss, STEMI SV8, 200mm lens, 25x ocular). A fiber optic cold light 

source (Schott, model KL1500) was used for illumination. The high voltage lead from 

the mass spectrometer was modified to terminate in a small alligator clamp to facilitate 

the connection to the Platinum electrode. The nozzle was centered in front of the heated 

capillary inlet of the mass spectrometer at a distance of 0.25 mm to 0.4 mm. 

The Finnigan Mat LCQ Ion Trap mass spectrometer was operated under manual control 

through the "Tune Plus" view over a scan range from 500 to 1200 AMU. The maximum 
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injection time was 500 ms with an AQC setting of 1.0 x 10 8 for full mass range analysis. 

A 4 kV potential was applied to the platinum electrode for sample ionization. Figure 6-9 

shows a mass spectrum analysis of gramicidin S. The group of doubly charged ions (m/z 

ratios 571.3-572.3) characteristic of Gramicidin S have been clearly detected above the 

background ions. The additional peaks (background noise) in the spectrum seem to have 

come from epoxy residue. Although epoxy contamination remains an important issue 

when the nozzle is used by itself, on-chip integration with other separation devices should 

eliminate this problem. The sensitivity of this MS analysis was comparable to 

conventional analyses using ESI sources. 

100 

50 

a 
570 

57 1 .3 Group of 'Ii doubly charged 
ions 

572.3 

rnJz 575 

Figure 6-9: MS scan of Gramicidin S using MEMS nozzle 

6.5 1 st Generation Problems 

Though the concept of MEMS ESI had been demonstrated, there were several limitations 

imposed on the design of the nozzle because of the HF!PSG process. Firstly, the channel 

length (distance from inlet to outlet) was limited to <300llm because of the diffusion 

controlled HF etching technique. From HF !PSG etching data from [9] we saw that it 

took approximately 20min to etch the B-type structures and <5 min for the A-types. 

However, doubling the nozzle dimension lengthwise required etch times of more than 2 

hours! Prolonged time in the etchant etched the silicon nitride channel walls and resulted 
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in cracking. Yield was also limited by high pinhole density in the 2nd silicon nitride 

layer. 

Furthermore, this 300J.lm length limit of the channel coupled with undercut of the <111> 

silicon plane resulted in a fragile front wall of the backside inlet window. Figure 6-10 

below clearly shows the problem. The large inlet hole also caused many of the structures 

to burst during testing, and the filter structures, which were supposed to act as posts, were 

ineffective. Non-uniformity of during the sacrificial etch was created by the hydrophobic 

silicon sidewalls (freshly etched in KOH). Their hydrophobic nature did not allow the 

HF to enter the backside inlet hole. Although this problem was solved by manual 

probing and "breaking" of the air bubble, it was a tedious serial process. The smaller the 

inlet hole, the harder it was to remove this bubble (see surface tension discussion in 

Chapter 3) (Figure 6-11) 

Top view 

too thin 

Cross sectional view 

limited by 
300/J.m 

• • 

Back side inlet hole 
OVER ETCHED! 

Figure 6-10: Backside inlet hole enlargement results in weak front wall 
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° HF acid etch 00 0 

f7 
Figure 6-11: Fonnation of air bubble in backside inlet holes on wafer. 

As an artifact of the plasma etching process, initial prototypes also had a silicon nitride 

"tongue." The "tongue,"circ1ed in Figure 6-12 below, fonned during the plasma etching 

of the 2nd silicon nitride layer. During the etch, the PSG layer acted as a mask for the 1 st 

nitride layer. This problem was eliminated by an intennediate HF dip after the SF6/02 

plasma had etched the 1 st nitride, and then continuing to plasma etch the bottom nitride 

layer. 

Top view Cross sectional view 

plasma etch 
t t t t 

Nitride 2 2 
Nitride 

Figure 6-12: Picture of silicon nitride "tongue" at the nozzle outlet because of PSG layer 
masking. 

In addition to these fabrication problems, the attachment of the FSC proved to be a 

daunting and tedious task. The gluing had to be perfonned at the right moment with the 

Dupont 5 Minute epoxy - when the epoxy was viscous enough not to flow into the 

backside cavity and seal the device, but still uncured enough to position the capillary. 

Over 50% of the working devices were destroyed during this gluing process which had to 

be done under a stereo microscope. 
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Chapter 7 

Further Generations of SixNy Nozzles 

7.1 Introduction 

From the previous chapter, there were many features that could be improved and other 

which could be added. This chapter discusses the advantages and drawbacks of further 

generations of silicon nitride nozzles. For example, on the second generation, effort was 

made to study the feasibility of different inlet-outlet geometries, on-chip grooves to 

attach silica capillaries, and longer nozzle overhang lengths. Furthermore, rationale is 

given for the various substrate sidewall designs through electrostatic simulation. In 

addition, the benefits of polys iIi con sacrificial layer technology for mm-10ng overhanging 

structures will be discussed, as well as the various thin film stress problems encountered. 

For the first time, MEMS ESI flow visualization was performed validating some of the 

theoretical assumptions of the Taylor Cone, and bringing to light some new aspects of 

this phenomenon. 

7.2 2nd Generation Nozzle Design 

To address many of the problems of the 1 st generation, a second fabrication of the nozzles 

was done. The process and design of these ESI nozzles was significantly different from 

the previous run. In this design, the sacrificial layer was switched from PSG to 

polysilicon in the hope of increasing the overall length of the nozzle. There are many 

benefits of using polysilicon as the sacrificial layer instead of PSG. The most important 

is that the etch rate is linear [1], and not parabolic like HF-PSG etching. This feature 

allows channel lengths of 1000/1111 with only the inlet and outlet as the etch holes. 

Furthermore, the polysilicon is etched using tetramethylammonium hydroxide (TMAH) 

solution which is much more selective, and almost does not attack the silicon nitride [2]. 

On the other hand, concentrated HF (48%) etches silicon nitride at 50-1 OOA/min. 
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The use of the polysilicon offers other advantages as well. The polysilicon can be locally 

oxidized, and thus true post-type filter structures can be fabricated reducing stress 

concentrations in the silicon nitride. The stress concentration in the silicon nitride 

(demonstrated by [3,4]) can be reduced by keeping the top silicon nitride flat on the 

boundary of the channel. Further details on the fabrication technique are provided in the 

next section. Figure 7-1 shows the difference between the first and the second 

generation. 

stress concentration 

~ 
SiN .L.._ .... ULIIL.;aI~ 

Si L-____________________ ~ 

1 st generation 

Less topography on 2nd SiN 

I,ll., 

2nd generation 

Figure 7-1: Polysiliconloxide posts can be used to create flatter, stronger channel roofs. 

Though the first prototype demonstrated sustainable ESI from the tip, electrostatic 

simulations clearly quantified the benefits of having an outlet that projected far beyond 

the (conductive) substrate sidewall. Simulations were accomplished using the 2-D 

MAXWELL electrostatic simulator [5]. In reality, the MS inlet is more like a thick 

walled pipe, but the simulation serves as a point of reference (relative) in comparing the 

different nozzle-silicon substrate profiles with each other. The conductivity of the fluid 

was assumed to be 5 Sim at a potential of lOOOV. The silicon substrate was also set to 

the same high potential since the sample fluid contacted the backside substrate. From the 

simulation, it was apparent that the silicon substrate shape and nozzle overhang length 

affected the electric field concentration at the tip. Results of the simulations of the 

various substrate profiles are tabulated below (Table 7-1). 

Table 7-1: Electric field concentration at the nozzle tip for various overhang profiles 



Structure description 
(overhang length) 

Short-slant-forward 
1. (30)lm) 

2. 

3. 

Short-slant -back 
(30)lm) 

(proposed 2nd 

Long 
(1.5rnrn) 
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Schematic Electric field 
magnitude at tip 

From the table, most of the field concentration increase comes from keeping the silicon 

substrate away from the nozzle tip. There is a 100% increase from structure type I to 2 

but only 50% from structure 2 to 3. This simulation also suggests that getting rid of the 

silicon could be very beneficial. Contour plots of the three simulations above are shown 

in Figures 7-2, 7-3, and 7-4 below. Note that each contour plot scaling is slightly 

different for color and e-field magnitude. 

Figure 7-2: Type 1- Short-slant-forward, maximum field concentration, 2x106 Vim 
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Figure 7-3: Type 2 - Short-slant-back, maximum field concentration, 4xl06 Vim 

Figure 7-4: Type 3 - Long, maximum field concentration, 5xl06 Vim 

Other modifications and improvements included the following: a) front side grooves for 

easier capillary connections, b) inward sloping side-wall and larger overhang lengths, and 

c) gold line to tip for electrical connection to sample fluid (Figure 7-5). Demonstration of 

polysilicon as sacrificial layer for these 800J..Lm long structures was the object of this 

nozzle design. 



Gold 

,/ 
Front side groove for 
capillary connection 
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Inside sloping 
side-wall 

Figure 7-5: 2nd generation modifications 

7.3 2nd Generation Nozzle Fabrication 

The 2nd generation fabrication steps, in general, were quite similar to the first nozzle 

process. On a <100> Si wafer, 4000A of PSG was deposited and patterned to define the 

fronts ide grooves. Next, IJ..lID of silicon nitride was deposited and patterned with SF6:02 

plasma. Instead of the PSG sacrificial layer, here, 111m of LPCVD polysilicon was 

deposited at 620°C. The poly was dry oxidized at 900°C for 45 minutes to form 1000A 

of oxide. After patterning the polysilicon, another loooA of silicon nitride was deposited 

and patterned. The next critical step was to partially wet etch 6000A of polysilicon with 

HNA (HN03 (70%), H20, N&F (40%)). Control of this etch determined the flatness of 

the final silicon nitride deposition for the channel roof. The thin (IOOOA) nitride layer 

acted as the oxidation mask allowing oxidation only on exposed poly areas. The 4000A 

of remaining polysilicon was converted into ~ll1m Si02 posts (Step 5, Figure 7-6). 111m 

silicon nitride was deposited to create the roof of the channel. After a 5 minute TMAH 

dip (90°C 10% TMAH concentration), 100A of chrome and 700A of gold were thermally 

evaporated and patterned to form electrodes to connect the tip. Finally, the wafer was 

etched in TMAH in two steps. The first etch for seven hours to etch the channels, and the 

second etch to open up the grooves on the front side and the inward slanting slope from 

the backside. Typical polysilicon etch rate in TMAH was 90I.unlhr. Figure 7-7 shows an 

SEM picture of a released nozzle (structure A). 
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I "-1. 1st Silicon nitride deposition (1~m) 

<100> Silicon 

2. Polysilicon deposition & etching (1~m) .. 

3. Deposition & pattern 1000A silicon nitride 
"'TT5" m 

4. Etch 6000A polysilicon 
5!!!!!!!II 5 1!!1 

5. Oxidize polysilicon 

6. 2nd silicon nitride 

7. BackIFront side TMAH etch 

III 

__ Tli __ 

Figure 7-6: Major fabrication steps for the polysilicon sacrificial layer process 
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Figure 7-7: 2nd generation nozzles 

Figure 7-8: Detail of evaporated gold line over nozzle tip. 

7.4 2nd Generation Fabrication Issues 

The polysilicon sacrificial layer fabrication technique was clearly successful and the two 

advantages of utilizing polys iii con as a sacrificial layer were established. Channel 

structures as long as 800j..lm were released with only two etch holes - an inlet and outlet. 

Large silicon nitride membranes (50j..lm x 225j..lm) over the inlet cavity could be 

fabricated although there was significant bubble generation during etching. Test 

membrane structures showed that the upper limit before cracking was about 200j..lm x 
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200~m. Membranes larger than this dimension required internal supporting structures 

such as posts or walls. 

1. Patterned polysi 
on SiXNy 

2. loooA SixN for 
thermal oxitlation 
barrier 

CJ Silicon 
_ SixNy 

3A. 6000A of polysi 3B. All the polysi 
etched etched 

4. Dry oxidation of polysi 

5. IJ..lm S~Ny deposition for channel 
roof and sacrificial polysi etched. 

_ PolySi 

CJ Si02 

Figure 7-9: Same fabrication process resulted in two different filter/post structures due to 
overetch. 

Two types of flat channel roof-post techniques were demonstrated. The first method 

pictured in Figure 7-9 is shown in further detail in Figure 7-10 below. This method relies 

on the delicate etch-back of polys iIi con (poly) to a predetermined level. In our case, l~m 

of poly is etched back leaving 4000A. Due to the silicon dioxide-silicon consumption 

ratio (-1.6), these "vias" are converted to posts which are approximately at the same 

height to the original polysilicon thickness (Step 4, left). Thus, instead of a corrugated 

type channel roof structure, the top silicon nitride profile is flatter thus stronger. Figure 

7-10 below shows the bird's beak effect ("donuts") and the elimination of a corrugated 

channel roof. 
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Figure 7-10: The "donuts" are boundaries of the post/filter structures. 

Though this technique eliminates the corrugated type structure, it is difficult to control 

the RNA etch since the etch rate can vary from 1500 to 3000Almin. In Step 3B of figure 

7-9, all of the polysilicon was etched, leaving exposed poly on the sidewalls which could 

be readily converted to Si02 in Step 4. In this case, the oxidation occurs laterally and the 

corrugated silicon nitride stress concentrations are strengthened with oxide "rings." 

Figure 7-11 shows close-ups of this type of structure. Since there is a 1 J..lm step at every 

post structure, the gold line had to be rerouted around the filter structures to avoid step 

coverage problem such as the one shown in Figure 7-12. 
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Figure 7-11: Flat silicon nitride channel roof achieved with ringed oxide post structures. 

Figure 7-12: 1-2/-.Im step causes discontinuity in evaporated gold line to tip. 

In tenns of practical usage, the grooves with the top nitride membrane support for the 

silica capillaries were fragile. Despite the fact that with delicate stereoscopic 

manipulation insertion of the FSC was possible, sealing of the inlet was prone to failure. 

The epoxy wicked its way into the l~m channel structure. Furthennore, MS testing 

revealed epoxy contamination. In conclusion, the feasibility of TMAH etching for long 

channel lengths paved the way for a third generation of nozzles with 2.0 mm-Iong 

overhangs and 10.0 em-long T-channels. This third process is described below. 
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7.5 3rd Generation Nozzle Design and Fabrication 

The design of the 3rd generation nozzle included a 2.0 mm long overhang, and a 15 mm 

separation channel so that separation experiments could be perfonned. A schematic of 

the design is shown below (Figure 7-13). 

50 ~m inlet windows 

" .---- -----. I 

0.2 ~I"o.8 m~1 ..... -- 3-4 mm--' 2mm 

~--------------------8mm------------------------------------~ 

Filter structures Serpentine channels Backside inlet hole 

50~m 

Figure 7-13: 3rd generation MS nozzle with separation channel, 2mm overhang, and 
additional inlet 

As shown, this nozzle version was much more complex - containing an additional inlet 

for the separation channel. The fabrication process incorporated many of the results 

learned in the 2nd generation, but because of the massive length of the channels, the 

etching holes and additional sealing steps had to be included. The spacing between these 

etch holes was 600~m requiring a 3 hr TMAH sacrificial etch time. Photographs of the 

completed structures are shown in Figure 7-14. 



7-12 

Inlet holes Overhanging 
nozzle 

Serpentine channels 
(10 cm) 

Figure 7-14: Completed 3rd generation structure with freestanding mm-Iong silicon 
nitride nozzle. 

Although the silicon nitride sacrificial polysilicon process demonstrated free standing 

mm-Iong freestanding structures, this type of process required very good control of 

LPCVD thin film stress. Because of such long freestanding structures, any stress 

gradients between the various silicon nitride depositions produced curling and bowing of 

nozzle. A wonderful example (unfortunately) of how these stress gradients (typically 

200MPa for LPCVD SixNy) can affect the geometry of the structure has been 

photographed below (Figure 7-15). 

Figure 7-15: Upward curling of nozzle structures due to stress gradients in silicon nitride. 

To achieve channels longer than a few hundred microns long, etching and sealing of 

holes on SixNy channels had to be perfonned after sacrificial layer etching. These etch 

holes not only complicated the process, but the resulting stress concentration around the 

etching holes caused the released microchannels to crack as shown in Figure 7-16. 

Cracking of the channel was thought to be due to the release of built-up stress during the 
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sacrificial layer etch [6]. The crack is generally initiated at or near an a stress 

concentration. 

Etching Holes 4um ID 

Figure 7-16: Cracking due to stress in SixNy micro-channels after sacrificial layer etch 
(same chip as in previous figure). 

Although several methods such as filleting and posts do improve yields, this type of 

process is contingent upon the thin film deposited stress. Stress measurement of silicon 

nitride LPCVD was performed on wafers with 0.7).lm - 1.0).lm silicon nitride, a Cannon 

Flatness Gauge, and the Stoney [7] formula. The nitride stress for one deposition was 

~300MPa. 100 to 200MPa is typically acceptable for most MEMS structures, but in our 

case, because of the extremely long freestanding length and the number of silicon nitride 

depositions, this stress level proved to be disastrous. Furthermore, although we have 

demonstrated that ESI can be performed successfully with silicon nitride structures, their 

practicality was very questionable. The fragile silicon nitride capillaries shattered with 

the slightest contact with mass spectrometer inlet during handling. What was desired, 

then, was another type of MEMS nozzle material that could be fabricated into a similar 

nozzle type structure, but without the drawbacks of this complex surface micromachined 

process. 

7.6 Taylor Cone Visualization 

The ability to fabricate precise micrometer-sized tip geometries introduces further 

opportunities to examine micro-electro spray phenomena. Flow visualization experiments 

were conducted for two purposes: 1) to confirm proper operation of the micro-channels 
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and the ESI at the tip and 2) to investigate the Taylor Cone properties at the tip. In fact, 

current literature lacks adequate flow visualization of this phenomenon especially at the 

micron scale. Photographing a clear fluid droplet that is only IO~l.m in size becomes very 

difficult due to lack of adequate light into the microscope objective, depth of field, and 

the transparent nature of the liquid. The nm-sized fluid stream of droplets emanating 

from the cone are virtually impossible to observe with conventional methods. Attempts 

were made with fluourescein, a fluorescent dye, and a red laser but without success. 

Nonetheless, visualization of the 1 O~m cone on Parylene tip showed that, indeed, the 

droplet base dimension could be controlled by the nozzle orifice size and was stable over 

a wide range of distances and sample conditions. The imaging done, here, was done 

using novel polymer nozzles using Parylene technology developed by Wang et al. [8J. 

More details on this technology can be found in Wang's thesis [9]. 

•• 
MOCKMS 
INLET TUBE I 

TO SUCTION ~ 
PUMP OIl -~"'.-=--mJ:i2iiiJllEl:~2iiiJllEl:9 

I----------l HIGH VOLTAGE 
POWER SUPPLY 

Figure 7-17: Taylor Cone visualization set-up. 

The visualization was done with a standard video camera connected to a Microzoom 

probestation microscope. To simulate conditions similar to the inlet of a real mass 

spectrometer, an actual MS inlet tube was utilized. However, instead of ion focusing 

lenses and high vacuum, the other end of the tube, as shown in Figure 7-17, was 
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connected to a simple suction pump. The suction pump was needed to ensure that excess 

sample would not collect on the MS inlet tube and short out the power supply. The cone 

was observed with and without the suction pump on to make sure that the air flow was 

not creating a "fake" Taylor Cone effect. With the MS inlet tube at ground potential, the 

MEMS ESI chip was mounted in a custom Plexiglas chip holder which eliminated the 

tedious backside gluing required to connect the previous MEMS ESI chips to the 

"macro" world. Figure 7-18 shows the 3 x 3cm Plexiglas jig which allows multiple chips 

to be tested without the typical epoxy connection. The seal is made by tiny O-rings 

which are just slightly larger than the backside inlet holes on the ESI chip. 

Figure 7-18: Chip holder connected to XYZ stage for ESI visualization. 

(a) (b) 
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(c) (d) 

Figure 7-19: Video snapshots of formation of Taylor Cone on microcapillary as voltage is 
increased from 800 V to 12S0 V (alphabetical order). 

With a high magnification lens (Leica 1000x), the Taylor Cone formation at the orifice of 

the polymer micro-capillaries was video taped. The test solution consisted of 1 % acetic 

acid (by volume) added to 1:1 MeOH:Water. The sequence of snapshots above clearly 

indicates how the base size of the Taylor Cone is governed by the Parylene tip orifice 

geometry, and the formation of the cone is governed by electrical potential. Although 

there was no wetting of the Parylene surface behind the outlet, the outer periphery of the 

nozzle does wet. This is good news because with micromachining this wall thickness can 

be thinned down even further. Figure 7-19 shows four different freeze frame shots of the 

creation of the Taylor Cone as the electrical potential is increased from SOOV to 12S0V. 

The Parylene surface looks rough because of the silicon roughening step early in the 

fabrication process, but the internal channel walls are quite smooth. In frames (a) and 

(b), we note that although the electric field was applied, the meniscus forces were strong 

enough to create the curvature. Subsequently, as the potential was increased to 12S0V, a 

sharp and stable cone appeared (Figure 7-19 (d)). The distance from the tip to the inlet 

was roughly SOO ~m. No plume was visible from the point of the cone, because droplet 

size was likely to be below 100nm as discusssed in Chapter S. It is also important to note 

that the view of the ESI was taken from a top view through a microscope, and that the 

"cone" is not circular but flattened in the vertical dimension because the tip orifice is 

rectangular. In fact, the cone size and shape are also related to flow rate and the distance 

between the tip and MS inlet. Furthermore, initial measurements of the cone angle show 
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significant deviation from the 49° Taylor Cone (Figure 7-19, (d)) from that derived in the 

previous chapter. 

7.7 Electrostatic Simulation 

In Chapter 6, electrical field simulations showed the benefits of extending the tip and 

reducing the silicon sidewall profile. With the new Parylene technology [10], structures 

on other non-conductive substrates like glass or plastic also become feasible. To insulate 

the silicon substrate from the sample fluid in the current design is difficult due to the 

large backside silicon wall area, which has to be insulated without any pinholes. In any 

case, this task of isolating the substrate becomes feasible as micromachinists expand 

beyond the standard silicon substrates to glass and plastic substrates. 

As before, simulations were done using the 2-D MAXWELL electrostatic simulator. The 

conductivity of the fluid was assumed to be 5 Sim at a potential of 1000V. In this case, 

however, the silicon substrate was left electrically floating (i.e., completely insulated 

from the charged sample fluid). The improvements are compared in Table 7-2 below and 

contour plots of the new simulations are shown in Figures 7-20, 7-21, and 7-22. 

Table 7-2: Electric field concentration at the nozzle tip for various overhang profiles 

Structure 
description 

1. Short-slant-forward 
(30~m) 

Short-slant -back 
2. (30~m) 

(proposed 2nd 

generation) 

3. Long 
(1.5mm) 

Schematic 
Tip electric field 

(VIm) 
Non-insulated 
(Si & fluid at lKV) 

Insulated 
(fluid at lKV) 
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Figure 7-20: Type 1 - Si insulated, maximum field concentration, 4x106 Vim 

Figure 7-21: Type 2 - Short-slant-back, maximum field concentration, 7x106 Vim 

Figure 7-22: Type 3 - Short-slant-forward, maximum field concentration, 9x106 Vim 
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7.8 Conclusion 

To sum up, a new area of MEMS applications has been investigated. The feasibility of 

MEMS devices for MS ESI interface has been demonstrated by repeatable MS scans of 

Gramicidin S. A MEMS overhanging nozzle structure has been developed using typical 

semiconductor fabrication steps, and multiple methods of fabricating mm-long surface 

micromachined structures have been studied. The advantages of polysilicon sacrificial 

layer technology for mm-Iong structures has been demonstrated. Two methods of 

designing micro-channel post-filter structures were utilized and three generations of the 

basic nozzle design were systematically fabricated; each new run incorporated knowledge 

gained from the previous generations' experiments. In addition, fluid visualization of the 

Taylor Cone formation from our tips unearthed new issues in the study of electrospray 

phenomena. Furthermore, the complex integration of backside grooves and frontside 

cavities with the silicon nitride overhanging structures demonstrated (with low yields) the 

viability of this process in an academic laboratory. Certainly better results could be 

achieved in an industrial VLSI facility where tight process control over thin film stress 

and etch uniformity are the norm. 



7-20 

References 

1. O.Tabata, H. Funabashi, K. Shimaoka, R. Asahi, and S. Sugiyama, "Surface 
Micromachining using Polysilicon Sacrificial Layer," Proceedings of International 
Symposium on Micromachine and Human Science, pp. 163-172, Nagoya, Japan, Oct. 
1991. 

2. o. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama, "Anistropic 
Etching of Silicon in TMAH Solutions," Sensors and Actuators (A:Physical), Vol. 34, 
pp. 51-57, 1992. 

3. L.V. Ngo, P. Nelson, and C.J. Kim, "Surface-Micromachined Beams Without Spring 
Effect of Anchor Step-up," Technical Digest, Solid State Sensor and Actuator 
Workshop (Hilton Head '96), pp.140-143, Hilton Head Island, South Carolina, USA, 
June 1996. 

4. X. Yang and Y.c. Tai, "Improved Boundary Conditions of Surface Micromachined 
Diaphragms," Micromachining Workshop III, Southern California Chapter of 
American Vacuum Society, Anaheim, California, USA, Sep. 1996. 

5. Ansoft Corp., PA, USA. 

6. Xing Yang, Micromachined Silicone Rubber Valves/or Fluidic Applications, Ph.D. 
Thesis, California Institute of Technology, 1999. 

7 Nancy A. Winfree, Wen H. Hsieh, Ren Wu, and Yu-Chong Tai, "The Effects of 
Boundary Conditions on Implementing the Stoney Formula for Stress 
Measurements." TRANSDUCERS '93 The 7th International Conference on Solid­
State Sensors and Actuators, 1993. 

8. X.Q. Wang, Q. Lin, and Y.C Tai. "A Parylene Micro Check Valve." The Twelfth 
Annual International Workshop on Micro Electro Mechanical Systems (MEMS '99), 
Jan 1999. 

9. Xuan-Qi Wang, Ph.D. dissertation, California Institute of Technology, 2000. 

10. X. Q. Wang, A. Desai, and Y. C. Tai, "Polymer Based Electrospray Chips for Mass 
Spectrometry. " The Twelfth Annual International Workshop on Micro Electro 
Mechanical Systems (MEMS '99), Jan 1999. 



8-1 

Chapter 8 

Fast Mixers for Reaction Kinetics 

8.1 Introduction 

Fluidic mixing has become an important issue in the study of microfluidic devices and 

their applications. The length scales (for liquids) in micromachined devices range from 

10 to 1 OOO~m and the fluid flows associated with them are typically below Reynolds 

number of 2000. Consequently, MEMS devices such as polymerase chain reaction 

(PCR) chips [1], DNA detection chips [2], and other chip-based biochemical protocols all 

involve and depend on mixing. Therefore, to speed up and optimize many of these 

processes, understanding and developing ways of measuring micro-mixing at MEMS 

length scales is vital. 

The impetus for these fast mixers has also been the area of liquid-phase reaction kinetics, 

where much of the chemistry occurs in sub-millisecond time-scales. For example, many 

biological processes such as cell activation, enzyme reactions, and protein folding 

demand sub-millisecond analysis if one wants to investigate intermediate states formed 

during the reaction. These biochemical processes inevitably involve mixing of certain 

reactants (i.e., A and B) to initiate the reaction. The schematic below depicts a practical 

means of investigating intermediate states of a fast liquid-phase reaction. The lines 

represent fluid channels and the "M" represent mixing points. As an example, assume A 

and B react to form product C. 
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for off-line analysis 

Figure 8-1: Mixer schematic 

We would like to able to instantaneously mix liquids A and B together at mixer 1, control 

the reaction time by varying the delay (the traveling time between two mixers), and then 

again be able to instantaneously mix D, a reaction inhibitor, at mixer (Figure 8-1). The 

collected products can then be collected continuously with a desired volume. The ability 

to perform this series of high speed mixing steps, therefore, is crucial to the study of 

chemical reactions which can be analyzed in this fashion. Practically, it is crucial to have 

fast mixers (short mixing time) and short delay (reaction) time if the reaction is fast. The 

mixing time must also be reasonably shorter than the intended reaction time. 

8.2 Past Mixers 

Commercial machines capable of performing this series of fast mixing steps are available 

today but are limited in several ways. For example, the best available in the market, the 

BioLogic SFM4/Q Quenchflow, uses series of Berger ball mixers [3]. These larger ball 

mixers (lin x Y2 in x Y2 in), however, only allow reaction delay times as short as 3 ms. 

Any significant delay shorter than 3 ms cannot be studied using these ball mixers because 

the mixers are not integrated, but rather composed of two separate units assembled 
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together. Figure 8-2 shows the internal cross section of this mixer, which works by 

employing the turbulent wake behind the sphere. A picture of this common phenomenon 

is depicted in a wind tunnel experiment in Figure 8-3. 

,,, ,,, 
(a) Schematic of mixer. (b) Mixer orientation: 

(1) jets at 0', (2) jets at ~5°. 

sa. • 

Figure 8-2: Schematic of the Berger Ball 
mixer developed in 1968 still used 
today. 

Figure 8-3: Turbulent wake behind a 
sphere [4]. 

In the field of biochemistry, although chemists like Moskowitz [5] and Takahashi [6] 

have demonstrated Ils mixing using multicapillaries and free jet mixing respectively, 

these methods have very limited use because a second quench cannot be performed after 

the first jet mixing. A second quench or subsequent mixing steps is key to stopping the 

reaction and thus "freezing" the chemical state of the reactants in time. Table 8-1 

summarizes designs of previous liquid mixers and their shortcomings. 
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Table 8-1: Brief overview of liquid mixers 

Date Author Technique 

1966 Moskowitz et al. Multi-capillary 

1968 Berger et al. Turbulent wake 

1993 Miyake et al. [7} Micro-nozzles 

1995 Takahashi et al. Free jet 

1997 This work Turbulent flow 

1998 Knight et al. [8} Fluid dynamic 
focusing 

Mixing 
time 

-200/-Ls 

-Is 

-20/-Ls 

Problem 

Quench step not possible 

Delay time 3+ms 

Mixing not fast enough 

Quench step not possible 

Single mixing stage, no 
offline analysis 

With micromachining, short delay length is obviously available and, more importantly, 

several mixers can be integrated on one chip and several mixing events in series or 

parallel can be initiated. Decreasing the reaction volume and the distances between the 

mixing chambers combined with high flow velocities enabled us to achieve greatly 

reduced dead times as well as large volumes of samples for examination with continuous 

operation. 

8.3 Design, Fabrication, and Experiments 

Although the mixing of fluids is fundamentally governed by molecular diffusion, 

turbulence in the flow can enhance mixing by many orders of magnitude [9]. It is well 

known that turbulence in the flow field (Re > 2000) will increase reactant area and reduce 

reaction times. Accordingly, we designed our mixers to be used in the high Reynolds 

number regime to minimize mixing time. 

The design of the mixing chip was similar to the schematic shown previously. The semi­

vertical and rough profile of anisotropically etched <110> Si wafers was used to create 

channels through which high speed fluids could be injected. <110> orientation silicon 

wafers were chosen instead of the common <100> ones for two reasons: 1) to have a 

"rectangular" reaction zone channel cross section rather than the characteristic 54.7° 

trapezoid and 2) to be able control the etching dimensions in convex corners (at every 
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tum III the channel). Knowing the dimensions of the delay channel was key to 

determination of reaction products, and thus, key to mixer calibration. Consequently, 

most recent generations of the chip designs were fabricated using the Deep Reactive Ion 

Etching (DRIE) technique [10]. With DRIE channel geometries could be better 

controlled and features were limited to being aligned with the Si etch planes. We 

fabricated "T" mixers with various delay lengths per chip (Table 8-2). The silicon mixer 

(Figure 8-4) was fabricated using <110> Si wafers, KOH etching, and anodic glass 

bonding [11]. Using thermal oxide as a mask, the mixer channels, 150~m deep and 408 

~m wide, were etched in 70°C KOH for 2.2 hrs. An exit hole (750 ~m diameter) was 

drilled into the silicon chip before anodically bonding [12] the Pyrex 7740 glass, which 

also had three similarly sized machine drilled holes(750~m). The anodic bonding 

process is detailed in the Appendix. lcm x lcm mixer chips with delay lengths of 5.33 

mm, and 20.33 mm, respectively, without the glass cover are shown below in Figure 8-4. 

Figure 8-4: Two mixers with delay lengths of 5.33mm(L) and 20.33mm(R). 

Table 8-2: Fabricated mixer delay lengths and their respective volumes 

Delay Length Delay Volume 
(mm) (uI-) 
2.66 0.27 

5.33 0.53 

10.66 1.0 

21.33 1.97 
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Figure 8-5: Cleaved chip showing the seamless glass-Si anodic bond. 

The chip and a holder was designed so that they could be exactly substituted for the ball 

mixer provided with a commercial quenched flow apparatus, BioLogic SFM4/Q (Figure 

8-6) [13]. The machine, equipped with 5 and 20mL Kel-F syringes, delay lines from 17 

to 1901lL and a diverting exit valve could accurately control input flow rates. 

Figure 8-6: Biologic machine with lcm x lcm mixer chip before clamping. 
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Pyrex Glass 

Figure 8-7: 3-D view of fabricated mixer chip 

Kel-F holder 

Figure 8-8: Mixer interface to Biologic machine (left) and close-up of chip Kel-fholder 
(right) 

In order to simplify calibration of the mixer, we designed the mixer chip so that it could 

be substituted for the BioLogic mixer and use the BioLogic machine to accurately control 

the input flow rates. The chip was interfaced to the Biologic machine using the Kel-F 

holder and O-rings shown in Figure 8-8. Clamping the two holders together sealed the 

chip. Fluids at precisely controllable flow rates up to 1.5 mIls could be injected into the 

three inlets and ejected from the top. The mechanics of the mixer chip operation are 

graphically portrayed in Figure 8-7. The two fluids to be mixed were first injected in 
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ports A and B, and the two mixing steps occurred at the 1 st and 2nd mixing point shown. 

Between these two mixing points, the two fluids were allowed to react in the delay 

length. Since the dimensions of the channel are known, by controlling the flow rates the 

reaction time could be controlled. Furthermore, by using a well-calibrated chemical 

reaction, the actual delay between the two mixing steps could be confirmed. 

8.4 Chemical Calibration Method and Theory 

The mixer was calibrated with two pseudo 1 st order reactions. The first reaction, the 

hydrolysis of DNPA (2,4 dinitrophenylacetate), is a well studied reaction specifically 

suitable for fast mixing [14]. Mixer calibration relied on the fact that as the DNP A was 

hydrolyzed by a base, sodium hydroxide, it was converted into DNP (dinitrophenol) (Eq. 

1, & 2). 

O2 

~: ( ~o: o(,~ 0 H+ 
+ OH- ~ )l.. ~ 

0-

N02 
N02 N02 

DNPA DNP 

Figure 8-9: DNP A hydrolysis reaction [15] 

DNP A + NaOH ~ DNP + Acetic Acid (8-1) 

dCDNPA(t) I 

- == k . CDNPA(t) 
dt 

(8-2) 

where k'= k- [OH-] (8-3) 

k is the rate constant of this reaction, and [OK] represents the hydroxide concentration. 

This reaction is pseudo 1st order with a time constant, 't = 11k', if [DNPA]« [OK], i.e., 

-( 

CDNPA(t) CDNPA(O) . e T (8-4) 
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Experimentally, this reaction was quenched at mixer 2 with HCI which neutralized the 

NaOH. We used mixer chips with different delay lengths to collect fluids with the 

corresponding reaction times. Then, the UV absorbance of these fluids was measured to 

determine concentration of unreacted DNP A. This is possible because the reactant, 

DNPA, and its reacted product, DNP, have different sensitivities at a wavelength of 320 

nm. Spectroscopic data were collected using a Shimadzu UV 1601 spectrophotometer 

with a 16-cell changer. Mathematically, the absorption dependency to concentration of 

DNPA and DNP can be described in Equation 8-5, where a and b are absorption 

coefficients ofDNPA and DNP respectively. 

(8-5) 

Since the chemical reaction is 1 to 1, we also have the following relationship: 

M - C ONPA(t) = C ONP(t) (8-6) 

where the constant, M, represents the concentration of DNP A at t=O and the 

concentration of DNP at t=oo. We can also define the following absorbance constants 

from the equations above: 

Ao = a CONPA(O) = a M 

Aoo = b CONP(oo) = b M 

(8-7) 

(8-8) 

Combining the two equations (Equation 8-7 and 8-8) and two unknowns, we arrive at the 

relationship between concentration and absorbance. 

C DNPA (t) _ A= - At 

CDNP(O) A= -Ao 
(8-9) 
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Substituting Equation 8-9 into Equation 8-4 yields the 1 st order exponential function 

relating absorbance change as the reaction progresses: 

(8-10) 

where 't = lIk'= 1/(k [OH-n. 

For the DNPA reaction, we have the rate constant to be 56M-1s- 1 (at 20C e) and the 

hydroxide concentration was 2M. With these numbers, the time constant of the reaction 

was determined to be 0.0089s or ~ 1 Oms. Therefore, by measuring the absorbance 

change of the quenched products and calculating the experimentally measured reaction 

rate constant, we can observe if the mixers were working. Theory predicts that all the 

experimental data should coalesce together showing the same rate constant even if 

different chips with different delay lengths and at different flow speeds are used. The 

linearized expression that the experimental data was compared against is shown below. 

(8-11 ) 

8.4.1 Experimental Procedure - DNPA 

The experimental protocol involved four major steps - preparation of the base and acid, 

programming the SFM-4/Q, determining the reaction end points, and collecting the time 

points from various mixer chips. The strong acid and base solutions were prepared 

several hours prior to the experiment since time is required for the solutions to re­

equilibrate to room temperature. 500mL of 4.5M Hel and 4.0M NaOH were prepared. 

10mgs of DNPA was dissolved in 100mL of 2mM Hel and stirred for 1 hour. This 

solution was then filtered through a 0.45~M filter. The DNPA solution was finally 

diluted with more 2mM Hel so that the OD was 1.2. This solution must be used within 

3-6 hours. The SFM-4/Q syringes were typically programmed as in Table 8-3. This 

particular program sequence used a flow rate of 2mLlsec/syringe. 
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DNPA NaOH 

Syringe 1 Syringe 4 

DNPA He! 

Syringe 2 Syringe 3 

collect waste 

Figure 8-10: BioLogic and chip connection schematic 

Table 8-3: Syringe sequence steps for the Biologic quenched flow machine 

Fluid Stepl Step 2 Step 3 

Time (ms) - 75ms 240ms lOOms 

Syringe 1 (JlL) DNPA 150/-lL 0 

Syringe 2 (JlL) DNPA 150/-lL 480/-lL 0 

Syringe 3 (JlL) HCl 150/-lL 480/-lL 0 

Syringe 4 (JlL) NaOH 150/-lL 480/-lL 0 

Valve Waste Collect Waste 

Equal volumes of DNPA, HCI, and NaOH were used. Note that Syringe 1 was filled 

with extra DNP A to fill the lines so that no air bubbles were present. With the 

commercial mixers, the contents of syringe 3 and 4 were reversed due to the different 

inlet geometry. The absorbances at the reaction endpoints, to and 100, were determined 

with the following procedures in Tables 8-4. Finally, using various syringe programs like 

the one shown previously, many reaction time points were collected. Four experiments 

were done for each speed (flow rate). Furthermore, to check for problems, end points 

were re-determined using the procedure shown above. 



8-12 

Table 8-4: Absorbance procedure 

For to, absorbance of each of the following mixtures was measured twice: 

1. 480/-lL DNPA, 960 /-lL 2mM Hel 

2. 480/-lL DNP A, 960 /-lL 2mM Hel, 480/-lL 4.5M Hel 

3. 1st mix 480/-lL 4M NaOH and 480/-lL 4.5M Hel, wait 5 min and add 480/-lL DNPA 

For too, absorbance of the following mixtures was measured 6 times: 

1. 480/-lL NaOH, 480/-lL DNPA, wait 5 min and add 480/-lL 4.5 Hel 

8.4.2 DNPA Results 

Numerous experiments were done using silicon mixers with reaction delay lengths from 

2.66 mm to 20.66 rnrn and flow rates from 100 /-lLis to 1000 /-lLis. By varying the flow 

rates of DNPA and NaOH, we were able to collect data of absorbance vs. reaction time. 

Figure 8-11 shows an example where 2M NaOH was reacted with DNP A for reaction 

intervals from 3ms to 12ms. This base concentration corresponded to a published rate 

constant of 5 6M-1 s -1 [14] and a reaction time constant, 't, of 10 ms [14]. 

"'C 
CJ) .. 
CJ 
CO 
CJ) 
~ 

CJ 
CO 
'-
~ 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

1st Order E Function: A =Ce-t/'rxn+ A~ 

02468101214161820 
time(ms) 

Figure 8-11: DNP A Absorbance vs. Time Plot 
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Figure 8-12: Linearized DNPA data 

Figure 8-12, then, shows a series of experiments done with both the commercial and 

silicon mixers for comparison. Linear fits of these experiments produced rate constants 

of 5IM-1s-1 and 46M-1s-1 for the silicon and commercial mixers, respectively, which 

agreed well with the published figure of 56M-1s-1 for DNPA hydrolysis. The good 

agreement with the published rate constant illustrated that the reaction delay length on the 

chip authenticated the 1 st order reaction model. This fact was important because it 

demonstrated mixing time was negligible compared to the reaction delay time. The 

experimental data also shows a vertical offset in the straight line fit. In the ideal case of 

instantaneous mixing, the linear fits should intersect the origin. In other words, at time 

zero there should be no products (no change in A(t)). Due to the design of the Berger 

ball mixers, it is likely that there may be some reaction occurring in the mixer stage itself 

which causes this upward shift of the data. There was also a similar shift associated with 

the silicon mixers, but the value was on the order ofthe experimental error (~±100~s). 

8.4.3 peA Reaction For Faster Kinetics 

As we had designed our mixers to be used in the sub-ms regime, we were unable to 

utilize the DNP A reaction experiment to investigate shorter delay times. In order to test 
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the fast performance envelope of our mixer chip further, a faster chemical reaction was 

necessary. For shorter reaction intervals a reaction with a shorter time constant was 

required. By analyzing Figure 8-11, we saw that for sub-millisecond reaction times, the 

change in absorbance was not significant enough for accurate calibration - the reaction 

time constant (10ms for DNPA reaction) needed to be shortened. Although this 

modification could be done by simply increasing the base concentration, this change 

created many problems such as excessive heat generation, viscosity changes, corrosive 

etching of the chip and valves, and required addition of stronger acid concentration in the 

quenching step. As expected, experiments performed with 4M NaOH resulted in 

determination of reaction rates that were 100% above the expected constant at 20°e. 

This high base concentration resulted in excess heat which, in tum, exponentially varied 

the reaction rate. Furthermore, 4 M NaOH had almost twice the viscosity (in comparison 

with 2 M) which resulted in increased back pressure and a lower Re number flow. 

Consequently, a new reaction had to be chosen; but one which had the following 

properties: 1) only one primary chemical mechanism, 2) easy to induce and quench, 3) 

products and reactants could be detected by UV spectrometry, and 4) be commercially 

available. A faster reaction, the hydrolysis of PCA (phenylchloroacetate) to phenol and 

chloroacetate, was chosen with a time constant of ~2.5ms(400M-ls-l) using 1M NaOH. 

The procedure in implementing this PCA reaction was very similar to the procedure 

shown for the DNP A since this reaction was also psuedo 1 st order. The chemical 

structure and hydrolysis is shown below in Figure 8-13. Appropriate experimental 

conditions and the rate constant were determined from hydrolysis experiments at 

different pH values [16]. 

peA phenol chloroacetate 

Figure 8-13: The new PCA hydrolysis reaction with 2.5ms time constant. 
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8.4.4 Experimental Procedure - peA 

Unlike the established DNPA hydrolysis reaction, the PCA hydrolysis rate constant had 

to be experimentally detennined. The rate constant, 444M-Is-I, fit well with other similar 

hydrolysis reactions [16]. After the rate constant was detennined, only then could we use 

this to calibrate our mixer chips. Fourteen experiments were conducted and the rate 

constant, 430 ± 47.6 M-Is-I with a dead time of 120 ~s ± 100~s (measured with the silicon 

mixers (Fig. 8)), agreed quite well with chemical kinetic theory. More importantly, 

Figure 8-14 revealed the achievement of reaction times as short as 110J..ls. Note that the 

rate constant derived from silicon mixer PCA experiments differ from the commercial 

mixer by 20% (362M-Is-I); a similar trend was noted in the DNPA experiments. The 

commercial mixers consistently seemed to predict a rate constant that was 20% lower 

from the actual value. 

_1.75 
"'C 
(1) 1.5 
'0 1.25 
~ 1 
~ 0.75 
(J 

E 0.5 
~ 

'C 0.25 

° 

Silicon Mixers, peA, [OH1=1 M 
........... _...... .. ....................... _ ........ . 

° 0.5 1 1.5 2 2.5 3 3.5 4 
time(ms) 

Figure 8-14: Plot of silicon mixers with PCA reaction 
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Commercial Mixer, PCA, [OH1=O.5 M 

2 4 6 8 10 12 14 16 
time(ms) 

Figure 8-15: Plot of commercial mixers with PCA reaction 

It should be emphasized that 10% to 20% error in the experimental data is considered 

very good in these types of quench flow experiments where there are a number of sources 

of error such as manual pipetting of collected solution, time delay in measurements, and a 

shift in NaOH concentrations over time. Nevertheless, one drawback of the PCA 

reaction is background hydrolysis. The fast PCA reaction was so sensitive that it slowly 

hydrolyzed by itself. To minimize this background hydrolysis, the PCA solution and its 

reacted samples used in our experiment are kept chilled in ice, but it may still contribute 

errors for some of the shortest reaction time points. Overall, though, the silicon mixers 

have demonstrated a superb performance which was unavailable from the commercial 

state-of-the-art instrument. 

8.5 Flow Visualization 

Here, we then report our work on using flow visualization to confirm the performance of 

our silicon mixers. One primary goal of the visualization was to justify why mixer chips 

failed below certain flow velocities. Also, we wanted to check for cavitation effects. 

Fortunately, because of the continuous quench flow mixer configuration in the chip, we 

were able to visually observe this microsecond mixing without the use of high speed 
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imaging equipment. In the past, others such as Li [17] and Bourne [18] have performed 

flow visualization experiments using acid-base indicators and reactions in millimeter (2-5 

mm diameter) sized pipes. No other group has used similar techniques on these size 

scales to date. Consequently, to further correlate some of the mixing trends in our silicon 

mixers, extensive flow visualization experiments were conducted first by mixing of dyes 

and then a more sophisticated and accurate method, the color change of an acid-base 

indicator, bromothymol blue. A new chip holder, similar to the Kel-F one, had to be 

fabricated so that the whole fluidic pathway could be seen during the experiment. In 

addition, the mixer chip holes had to be shifted from the glass to the silicon. Figure 8-16 

shows the glass-Plexiglas flow visualization jig with PEEK tubes attached at the back. 

Any leaks could be spotted instantly with the clear material. The PEEK tubes were 

affixed to the Biologic machine so that the same computer-controlled fluid delivery was 

possible. 

,---- bonded 
Pyrex glass 

lass 
nt~=ltii··~··;;;;··;;;;··· ·i· ~==~fl- silicon 

chip 
plexiglas .. _. l 

liquid in/out 

Figure 8-16: Flow visualization jig, cross-sectional view right 

At first, dyes (food coloring) were used to observe mixing event, but this technique had 

many flaws. Figure 8-17 is an example of the dye visualization showing the improved 

mixing at 1 000 ~Lls vs. 1 00 ~Lls. The images were converted to greyscale to show the 

interface between the two colored fluid streams. Even with high concentration of 

different colored dyes, the image intensity was not sufficient. Furthermore, the mixer 

chip had two mixers, and with this dye technique, only a single mixer could be studied at 

any time because mixing of more than two dyes resulted in a darkened fluid stream 

without any discernable interface (greyscale conversion in the picture fails to show this). 
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To solve these problems and to really observe the two mixers during a chemical reaction, 

an acid-base indicator technique was employed. 

Figure 8-17: Dyes, 100J.lLls (left) and 1000 J.lLls (right) 

Bromothymol blue was determined to be the indicator with the best optical change for 

both the acid and base mixing step. The indicator worked in the following fashion. 

Bromothymol blue remained dark green between pH 6.0 - 7.6, but turned yellow in the 

presence of acid and blue in the presence of base. By injecting acid into inlet A (Figure 

8-7), the indicator solution into inlet B, and base into inlet D, three color changes, green 

to yellow to blue, of the indicator were observed. Photographs of mixer chips with delay 

lengths of 2.66 mm, 5.33 mm, 10.66 mm, and 20.33 mm while varying flow rates (in the 

delay channel) from 100J.lLls to 2000J.lLls were taken (Figure 8-18). Two significant 

trends were observed. First, at low flow rates, a clearly visible interface between the two 

streams could be seen; at higher velocities such a boundary could not be discerned. This 

observation agreed quite well with chemical reaction calibration data. For example, it 

was noted that consistent reaction data was produced only at flow rates corresponding to 

flow rates above -250J.lLls. 
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Reynolds No.:2800 
Reaction time: 540 

Green, Indicator unchanged 

L...--_--I, Yellow, Reaction w/Acid 

Blue, Reaction wi Base 

Figure 8-18: Comparison of mixing quality with different flow regimes. (Color plate in 
Appendix) 

Flow rates below this point resulted in scattered data points (data not shown) below the 

linear fit. Second, the visualization showed that there were finite mixing delays after the 

first and second mixing points at all flow rates. These mixing distances, in effect, shifted 

the actual reaction zone without substantially affecting the reaction delay time for the 

longer delays (Figure 8-19). The photograph below was taken at a flow velocity of 

750JlLls (Re 2800). An estimation of mixing time from the distance marked below 

reveals a mixing time of 50 to 1 OOJls! Otherwise, our chemical calibration could not 

have been successful. 
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Figure 8-19: Visual estimation of mixing time is 50 to 100 Jls 

8.6 Further Optimization of the Mixer Chip 

The flow visualization experiments were very useful III identifying which features 

enhanced mixing, and if those features could be optimized. For example, another series 

of acid-base indicator experiments were undertaken to examine two mixer chips (with the 

same reaction delay length) but one with a "straight" path and the other with extra sharp 

90° turns. The series of pictures shown on the next page are arranged as follows: the left 

and the right column show the "straight" (S) and the "extra tum" (ET) mixers, 

respectively. Three different flow rates (or Reynolds numbers) are depicted from top to 

bottom in increasing order (200-1666 JlLls). Comparing the top row, we can see that at 

this low flow rate both the chips are at the lower end of the mixing envelope. However, 

the ET mixer at 200JlLls is performing better. Unlike the S mixer chip, a solid yellow 

zone can be seen. As the fluid speeds were increased, the effect of the turns seemed less 

differentiable; although qualitatively speaking, the ET mixers seemed to show a shorter 

mixing length. In other words at high speeds (>750JlLls), the mixing length remained at 

a stable minimum, whereas in the "S" mixer chip, this length was still decreasing. Since 

the turns are simply additional sharp comers, this trend demonstrated validity in adding 

sharp structures directly into the T-mixing zone to enhance mixing. Two other minor 

effects that were noted at the high speed range of all the experiments were the evidence 
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of stagnation or recirculation zone and possible cavitation. The recirculation can been 

seen in pictures (c) in (Figure 8-21) near the upstream wall at the entrance of the first and 

second mixer. In the first mixer, a tiny triangular area of yellow and in the second mixer, 

a similarly shape blue area. Though a minor effect, this could be eliminated by giving the 

silicon wall in that area a convex curve. Finally, the photographs at high speed suggest 

that there might be cavitation or creation of very high turbulence because of two 

observations. First, the appearance of the whitish plume after the second mixer in the 

blue zone (pictures (c)). Second, while conducting the experiment at this speed, a high 

pitched noise was also heard consistently when this plume was observed. Further 

investigation needs to be done to identify the nature of this plume. In any case, a final 

generation of mixer chips was fabricated incorporating the knowledge from these 

experiments. An SEM picture of the two types of mixers featuring additional sharp 

structures at the mixers and outward wall profiles near the stagnation areas are shown in 

Figure 8-20. 

Figure 8-20: Mixer designed with sharp wedges and a convex trapezoid to eliminate the 
recirculation zone. 
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Flow Rate Type "S" Type "ET" 

200J.!Lls 

75 0 J.!Lls 

1333J.!Lls 

Figure 8-21: Comparison of two mixer chips with identical reaction lengths (2.66mm) at 
various flow rates. Mixing quality and mixing length decreases with increasing flow 
rates (top to bottom). Channel width is 400J.!m. (color plate in Appendix) 



8-23 

8.7 Conclusion 

As a first demonstration, this project has spawned the fastest sub-millisecond quench 

flow type mixers available to chemists. In contrast, the best quench flow mixer 

commercially available today boasts -3 ms as the minimum reaction time. This is a 

significant leap considering the fact that the best device available today has had little 

improvement since 1968 [3]. Further optimization of these devices, then, has the 

possibility of controlling liquid-phase reactions at scales never possible before. 

Moreover, a chemical reaction technique to calibrate these micromachined mixers has 

been proven, and verified through flow visualization. This visualization technique can be 

applied to other MEMS mixers, and reaction times constants can be increased or 

decreased (by controlling base concentration) depending on the operating regime of the 

particular device. The design of these mixers allows not only the two mixers shown here 

but the possibility of studying more complex reactions with multiple reactants mixing at 

precise intervals. 
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Chapter 9 

Conclusion and Future Work 

As MEMS microfluidic and bio-analysis devices continue to improve, the viability of 

handheld, automated micro systems for air sampling, and environmental monitoring, 

become a reality. This thesis has presented specific micromachined solutions in this area 

-- airborne particle transport, particle collection from air to liquid, an electro spray 

interface for a mass spectrometer, and creation of fast mixers for study of liquid 

reactions. 

It has been shown that particles of 5-10 J..lm size range can be efficiently manipulated 

electrostatically with voltages below 200V in a standard room environment. Because of 

the interrelationship of the image force, the DEP force, friction, electrode geometry, and 

particle charge, we see that simulation of all the particle forces is complex. Thus, many 

of these critical parameters are difficult to measure. In our case, by perfonning a 

multitude of experiments designed to isolate and investigate the different types of particle 

to surface forces, we have detennined that particle charging is a significant cause of 

adhesion on our MEMS transportation system. The work presented here is a catalyst for 

further research into better stiction free coatings and three-dimensional electrode 

geometries. 

With this knowledge of the transportation characteristics, integration with active filters 

and liquid interfaces were demonstrated. Two different particle air-to-liquid collection 

schemes were explored. The first type involved two regimes of voltages and frequencies 

but failed because the strength of the DEP force was too small to penetrate the liquid 

meniscus, and because of electrolysis of water on the electrodes. Successful collection 

was demonstrated through an entirely different type of technique in which the liquid 

meniscus was moving and not the particles. In addition, a membrane filter structure was 

integrated with the transportation technology and a new radial design demonstrated 
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improved collection efficiency. In retrospect, although the solution for transporting 

particles from air to liquid in a micro-system may not be the most ideal because of 

complexity of assembly and lifetime issues, the knowledge gained here can be used to 

develop and understand more about stability of coatings and air-liquid interfaces. In fact, 

the initial droplet-on-a-capillary experiment shows great promise for the development of 

analyses and chemistries on arrays of liquid droplets. 

Bio-particles in liquid require sensitive detection techniques. One method explored here 

was an electro spray ionization interface for mass spectrometry. Several generation of 

silicon nitride ES nozzles were designed, fabricated, and tested. Attempts to further 

optimize the surface micromachined nozzle process were plagued by silicon nitride thin 

film stress. It was noted that although feasibility of on-chip ES was validated, different 

nozzle materials would be required for a more robust device. A next step would be to 

develop an integrated packed separation column behind the MS nozzle. This would 

involve study of biocompatible gels and new protocols to enable these gels to be 

implemented via thin film deposition techniques. For example, column packings that are 

capable of being spun on and photo-patternable would be key. A move towards glass 

substrates instead of silicon might enable ESI at lower voltages, and also enable capillary 

electrophoresis separations on-chip with MS analysis. 

Finally, as a first demonstration, this project has spawned the fastest sub-millisecond 

quench flow type mixers available to chemists. In contrast, the best quench flow mixer 

commercially available today boasts ~3 ms as the minimum reaction time. Moreover, a 

chemical reaction technique to calibrate these micromachined mixers has been proven, 

and verified through flow visualization. This visualization technique can be applied to 

other MEMS mixers, and reaction time constants can be increased or decreased (by 

controlling base concentration) depending on the operating regime of the particular 

device. The design of these mixers allows not only the two mixers shown here but the 

possibility of studying more complex reactions (protein folding) with multiple reactants 

mixing at precise intervals. 
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Without question, the promise of "lab-on-a-chip" has fueled the growth of MEMS 

micro fluidic research. Although much work needs to be done in integration, the 

fabrication technology developed here paves the way for future research into the world of 

bio-MEMS. 
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