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Abstract 

Sensory object recognition is the most fundamental of operations 

performed by the brain.  A key computational difficulty of object 

recognition is that it requires both selectivity to particular objects (e.g., 

exact odor mixture identification) and generalization across objects  

(identifying particular features or components common to different 

odors).  Although previous results (1) suggest that odor identity and 

intensity are represented in the activity of both PNs and KCs, it is not 

clear how these representations generalize across complex odor 

mixtures.  In particular, it is not clear what types of information are 

available in KC population (or if its even possible to decode across KC 

populations?) and how is this information represented?  Using the locust  

olfactory system as a model system, we found that Kenyon cells (KCs), 

the principal neurons of the mushroom body, an area required for 

associative learning can identify the presence of components in mixtures 

and thus enable odor segmentation.  As a population, small groups of 

KCs can both identify and categorize odors with high accuracy. We 

identified and tested simple circuit requirements for this computation, 

and propose that odor representations in mushroom bodies are 

optimized for odor memorization, identification and generalization. 

These rules may be relevant for pattern classifying circuits in general. 
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