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Abstract

This work explores different aspects of the statics and dynamics of the mutual fund industry.

In addition, we answer a major question in the field of complex systems; the anomalous

growth fluctuations observed for systems as diverse as breeding birds, city population and

GDP.

We study how much control is concentrated in the hands of the largest mutual funds by

studying the size distribution empirically. We show that it indicates less concentration than,

for example, personal income. We argue that the dominant economic factor that determines

the size distribution is market efficiency and we show that the mutual fund industry can be

described using a random entry, exit and growth process.

Mutual funds face diminishing returns to scale as a result of convex trading costs yet

there is no persistence nor a size dependence in their performance. To solve this puzzle we

offer a new framework in which skillful profit maximizing fund managers compensate for

decreasing performance by lowering their fees. We show that mutual fund behavior depends

on size such that bigger funds charge lower fees and trade less frequently in more stocks.

We present a reduced form model that is able to describe quantitatively this behavior.

We conclude with an investigation of the growth of mutual funds due to investor funds

flows. We show that funds exhibit the same unusual growth fluctuations that have been

observed for phenomena as diverse as breeding bird populations, the size of U.S. firms, the

GDP of individual countries and the scientific output of universities. To explain this we

propose a remarkably simple additive replication model. To illustrate how this can emerge

from a collective microscopic dynamics we propose a model based on stochastic influence

dynamics over a scale-free contact network.
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Chapter 1

Introduction

Truth is ever to be found in simplicity, and not in the multiplicity

and confusion of things. Isaac Newton.

1.1 Thesis Overview

This thesis was written as part of my work as a graduate fellow at the Santa Fe Insti-

tute under the supervision of J. Doyne Farmer. The work is in the relatively young field

of Econophysics and uses the financial market and more specifically mutual funds as an

empirical laboratory for the study of complex systems.

In Chapter 2 we examine how much control is concentrated in the hands of the largest

mutual funds; a question best quantitatively discussed in terms of the tail behavior of the

mutual fund size distribution. We study the distribution empirically and show that the tail

is much better described by a log-normal than a power law, indicating less concentration

than, for example, personal income. The results are highly statistically significant and are

consistent across fifteen years. This contradicts a recent theory concerning the origin of the

power law tails of the trading volume distribution.

Then, in Chapter 3, we argue that the dominant economic factor that determines the size

distribution is market efficiency, which dictates that fund performance is size independent

and that fund growth is essentially random. The random process is characterized by entry,

exit and growth. We present a new time-dependent solution for the standard equations

used in the industrial organization literature and show that relaxation to the steady-state

solution is extremely slow. Thus, even if these processes were stationary (which they are

not), the steady-state solution, which is a very heavy-tailed power law, is not relevant. The

distribution is instead well-approximated by a less heavy-tailed log-normal. Our random
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model contradicts the predominant belief that investor choice, mediated by trading costs,

ensures that the size of a fund is directly related to its manager’s skill (her alpha). To this

end we investigate two things: the stochastic nature of investor fund flows and the role that

managerial skill and trading costs play in mutual fund behavior.

It is well established amongst practitioners that market impact induces diseconomies of

scale in mutual funds. Nevertheless, market impact and it detrimental effect on mutual fund

performance has yet to be fully accepted in the academic world. In Chapter 4 we show that

market impact is not unique to financial markets but rather that for any market the laws of

supply and demand dictate its existence. We argue using the CRSP holdings dataset that

mutual funds trade mostly with counter-parties outside the industry and assuming that

mutual funds act as liquidity takers their performance suffers due to market impact. We

further provide an approximate functional form for mutual funds’ trading costs.

Mutual funds face diminishing returns to scale as a result of convex trading costs yet

there is no persistence nor a size dependence in their performance. To solve this puzzle

we offer in Chapter 5 a new framework in which skillful profit maximizing fund managers

compensate for decreasing performance by lowering their fees. We show that mutual fund

behavior depends on size such that bigger funds charge lower fees and trade less frequently

in more stocks. We present a reduced form model that is able to describe quantitatively this

behavior. Our model is simple enough to have economic intuition yet rich enough to describe

the observed stylized facts; compared to small funds the average large fund decreases the

turnover rate by 50%, it increases the number of positions by 30% and reduces the overall

expense ratio by approximately 50%. In addition we offer a functional form for the average

before costs performance and for the trading costs of mutual funds.

In Chapter 6 we investigate the growth of mutual funds due to investor funds flows.

We show that funds exhibit the same unusual growth fluctuations that have been observed

for phenomena as diverse as breeding bird populations, the size of U.S. firms, the GDP

of individual countries and the scientific output of universities. The fluctuations display

characteristic features, including double exponential scaling in the body of the distribution

and power law scaling of the standard deviation as a function of size. To explain this we

propose a remarkably simple additive replication model: At each step each individual is

replaced by a new number of individuals drawn from the same replication distribution. If

the replication distribution is sufficiently heavy tailed then the growth fluctuations are Levy
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distributed. We analyze the mutual fund data as well as data from bird populations and

firms and show that our predictions match the data well. To illustrate how this can emerge

from a collective microscopic dynamics we propose a model based on stochastic influence

dynamics over a scale-free contact network and show that it produces results similar to

those observed. We also extend the model to deal with correlations between individual

elements. Our main conclusion is that the universality of growth fluctuations is driven by

the additivity of growth processes and the action of the generalized central limit theorem.

To conclude, this thesis covers the different aspects of mutual fund dynamics and makes

contribution to finance, industrial organization and to the field of complex systems. Sec-

tion 1.2 provides a short introduction to the mutual fund industry. Section 1.3 offers some

motivation to the work discussed in this thesis. We conclude this chapter with a short

introduction to the field of Econophysics in Section 1.4.

1.2 Mutual fun(d) facts

Mutual funds offer a way for people, who lack the sufficient funds, to diversify their in-

vestments by pooling funds from many investors. The first mutual fund, Massachusetts

Investors Trust (now MFS Investment Management), was founded on March 21, 1924. At

the end of the first year it had 200 investors and 392,000 USD in assets. The entire mutual

fund industry in 1924 managed less than 10 million USD.

The mutual fund industry started growing with a fast pace after the 1975 change in the

Internal Revenue Code allowing individuals to open individual retirement accounts (IRAs).

While at the end of the 1970s the mutual fund industry was at its infancy, today the industry

plays an important role in the world economy. In 2009 1 there were 7691 mutual funds,

out of which 44% are equity funds, with a total asset value of about 11 trillion USD. This

is a very large number when compared to the US GDP of 14.4 trillion USD in 2009 or to

the entire US market capitalization of approximately 15 trillion USD at the end of 2009.

Mutual funds are important not only because of their asset value but also because a large

fraction of the country is invested in some way or another in mutual funds. As of 2009,

87 million Americans representing 50.4 million households (43% of all households) invest in

mutual funds. Even more impressive is the fact that 51% of all direct contribution (DC)

1Data is taken from the Investment Company Institute’s 2010 factbook available online.
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retirement plan assets are invested through mutual funds. This growth is illustrated in

Figure 1.1

Figure 1.1: Here we illustrate the dramatic growth of the mutual fund industry in the past

50 years. Figures are taken from the Investment Company Institute’s 2010 factbook.

1.3 Motivation

1.3.1 Regularities and scaling laws in financial markets

In Chapter 2 we analyze empirically the size distribution of the mutual fund industry. The

work has originated as an attempt to describe several of the recently observed scaling rules

and regularities in financial markets: the high occurrence of large stock price movements,

the high occurrence of large trades and the fact that future trades are strongly correlated

with past trades.
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The distribution of the dollar value of a trade v was observed to have a power law upper

tail2

P (v > X) ∼ X−ζv , (1.1)

where the tail exponent was observed to be ζv ≈ 3/2 across different stocks and different

markets (Gopikrishnan et al., 2000). This is a surprising observation as it implies that

trades do not have a typical size and that the frequency of very large trades is so high that

the second moment does not exist. Similarly, price movements were also observed as having

extremely large fluctuations. The log return defined as rτ = log(pt+τ/pt), where pt is the

price of a stock at time t, was shown to obey

P (r > X) ∼ x−ζr , (1.2)

with ζr ≈ 3 across different stocks and different markets (Lux, 1996; Longin, 1996; Plerou

et al., 1999b). This is a an important result since it implies that there is no typical size for

price movements. This is in stark contradiction with most financial models in which the

return is assumed to have a normal distribution3.

The fact that the above regularities were observed across different stocks and in different

markets implies that the cause is not necessarily related to a particular stock (or firm)

but rather something more general. A plausible explanation for the observed regularities

is the existence of large financial players. One can hypothesize that large players trade

large quantities corresponding to the observed large trades. Under the assumption that

trading affects the price, i.e. buying a stock raises its price, then these large trades might

be responsible for the observed large price movements. Moreover, to avoid large price

movements these large orders are split into small packages and traded over longer time

periods. This in turn can cause the observed correlation between future trades and past

trades (Lillo and Farmer, 2004; Bouchaud et al., 2004). This line of thought is very appealing

since not only is this a possible explanation for the above regularities but it also connects

them using a simple and elegant argument.

2The notation y ∼ x implies that asymptotically, i.e. for large x, y is proportional to x.
3Ever since Bachelier (1900), stock returns have been treated as random variables. However, dating back

to R. (1931), the random movement has been categorized as a geometric random walk. This assumption is

widely used in the foundations of finance such as the capital asset pricing model (CAPM) (Sharpe, 1964).
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This argument was presented by Gabaix et al. (2006) using mutual funds as a proxy for

large players. The argument is based on the empirical ‘law’ that trading a volume v causes

an expected price change r that scales with volume as a square root 4

E[r|v] ∼ v1/2. (1.3)

This, as they argue, forces mutual funds to trade a volume that is related to its size s (in

US dollars) to the power of two thirds

v ∼ s2/3. (1.4)

This results in a scaling relation between the size of mutual funds, the volume they trades

and the resulting price movements. Under the assumption that mutual funds have the same

power law size distribution as firms 5

P (s > X) ∼ X−ζs (1.5)

with a tail exponent ζs ≈ 1 6, one gets that ζv = 3/2 and ζr = 3 7, in agreement with the

observed exponents. Thus, as a first step in determining the feasibility of such an argument

is to study the size distribution of mutual funds, which we do in Chapter 2.

1.3.2 Market concentration

The study of mutual funds presented in this thesis is important in and of itself since mutual

funds represent a large fraction of the financial market and thus play an important role

in the U.S. economy (as described in Section 1.2). Naturally this leads to the question of

whether the large influence that mutual funds assert on the U.S. financial system spread

across many funds, or is it concentrated in only a few? In view of the latest financial crisis

4The effect of trading an asset on the price of the asset has been studied extensively in recent years.

Even though the argument Gabaix et al. give for the square root law is debatable (Gillemot et al., 2006),

the empirical evidence does not reject such a hypothesis. A more detailed discussion and literature review

can be found in Chapter 4.
5Axtell (2001) was first to show that the size distribution of US firms has a power law upper tail.
6A power law distribution with a tail exponent ≈ 1 is commonly referred to as a Zipf distribution.
7For random variables a and b that obey P (a > X) ∼ Xζa and P (a > X) ∼ Xζa , that obey the scaling

relation a ∼ bα one can show that the tail exponents are related through ζa = ζb/α.
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one might be concerned with the relative size of the largest funds.

While it is standard in economics to describe distributional inequalities in terms of

statistics such as the Gini or Herfindahl indices, discussed in Chapter 3, this approach is

inadequate to describe the concentration in the tail. Instead, the best way to describe the

concentration of assets is in terms of the functional form of the tail. As is well-known

in extreme value theory (Embrechts et al., 1997), the key distinction is whether all the

moments of the distribution are finite. If the tail is truly concentrated, the tail is a power

law, and all the moments above a given threshold, called the tail exponent, are infinite.

Thus power law tails imply a very high degree of concentration. We show in Chapter 2 that

the tail of the mutual fund size distribution is not a power law, and is well-approximated

by a lognormal, for which all of the moments exist. indicating less concentration than, for

example, personal income (Silva and Yakovenko, 2005) or US firms (Axtell, 2001).

In Chapter 3, motivated by the results described in Chapter 2, we investigate what

economic factors determine the tail properties of the mutual fund distribution. There are

two basic types of explanation. One type of explanation is based on a detailed description of

investor choice, and another is based on efficient markets, which predicts that growth should

be random, and that the causes can be understood in terms of a simple random process

description of entry, exit and growth. Of course market efficiency depends on investor

choice, but the key distinction is that the random process approach does not depend on any

of the details, but rather only requires that no one can make superior investments based on

simple criteria, such as size. Our work shows that a simple model based on market efficiency

provides a good explanation of the concentration of assets, suggesting that other effects,

such as transaction costs or the behavioral aspects of investor choice, play a smaller role.

Explanations based on investor choice can in turn be divided into two types: rational and

behavioral. For example, Berk and Green (2004) have proposed that investors are rational,

making investments based on past performance. Their theory implies that the distribution

of fund size is determined by the skill of mutual fund managers and the dependence of

transaction costs on size. This view is somewhat in disagreement with behavioral studies,

such as the work by Barber et al. (2005), where they have shown that investors are influenced

by other factors such as marketing and advertising. These observations play an important

role in both Chapter 5 and Chapter 6.

Another motivation comes from industrial organization since, after all, mutual funds
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are firms and so why is it that they do not exhibit the same power law concentration

that has been observed for firms? The question is especially relevant since the random

process approach was originally pioneered as an explanation for firm size by Gibrat, Simon

and Mandelbrot (Gibrat, 1931; Simon, 1955; Simon, H. A. and Bonini, Charles P., 1958;

Mandelbrot, 1963; Ijiri and Simon, 1977). While mutual funds are in many respects like

other firms, we show in Chapter 3 that market efficiency introduces effects that make their

growth process distinctly different.

1.3.3 Mutual Fund Flows

Investors play an important role in the dynamics of mutual funds. In fact, we show in Chap-

ter 3 that for small funds investor fund flows are the primary source of growth. Therefore

it is important to understand the interaction between mutual funds and investors 8. The

questions that are most relevant to us are: how do investors choose which fund to put their

money into, what parameters are they taking into account when they make this decision

and more importantly, are they rational?

Typically the answers to these questions belong to one of two types; investors are rational

or investors are irrational and their behavior is a mystery best left for neuroscientists and

psychologists. This rational investor view backed by the theoretical work of Berk and Green

(2004), discussed in Chapter 5. Even though this line of thought has a big following, there

are many, such as Fama and French (2010) and others, that show that actively managed

mutual funds underperform the benchmark (on average) and therefore argue that investors

are not rational. In Chapter 5 we discuss other arguments against the Berk and Green

point of view. For most of us, intuition alone suggests that the way investors choose where

to invest their money is far from the Berk and Green rational view.

Rationality aside, there is no reason to believe that the mechanism in which investors

choose which fund to invest in is unique. While Berk and Green have nicely shown that

a mutual fund can not be treated simply like any other firms, the investors are the same

human beings that buy the product of all the other firm. After all, for many investors

choosing a mutual fund is one of many choices they face on a regular basis. Moreover, this

choice is similar to many other choices such as: deciding on a mortgage, buying a new car,

8This can be viewed under as part of the study of delegated portfolio management. For a review see

(Stracca, 2006).
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buying a new camera, etc. What most of these choices have in common is that there is

a vast amount of products to chose from, the choice involves a lot of technical know-how

that the consumer/investor does not necessarily have and most importantly, many other

consumers/investors face the same dilemma.

Even though our choices are not always rational, it does not mean we cannot explain

them using a simple mathematical model. In fact, in Chapter 6 we do just that. Our model

makes the natural assumption that the choices we make, including which fund to invest

in, are influenced by our surroundings. Not surprisingly Barber et al. (2005) have shown

that choosing a fund is influenced by marketing and advertising. Still, there is another

environmental factor that can be as influential or even more influential than marketing; our

social contacts, i.e. friends, family, co-workers etc. 9

Thus, one can model investor choice as a contagion process taking place on a social

network. What this model implies is that the fund I choose to invest in will be influenced

by the recommendations of my social contacts. This is a general model that is as suited

to describe firm sales (cameras, cars, etc.) as it is suited to describe mutual fund investor

flows. When simplified to its bare essence this model is a very general additive replication

process. In Chapter 6 we test this model on the observed growth of mutual funds and find

that the model is in superb agreement with the data.

Moreover, in Chapter 6 we show that the growth of mutual funds due to investor fund

flows is similar to the growth of many other systems: firm sales, GDP growth, urban

population growth, scientific output growth and bird population growth, among others.

All these systems exhibit growth fluctuations that display characteristic features, including

double exponential scaling in the body of the distribution and power law scaling of the

standard deviation as a function of size.

1.4 Econophysics

Econophysics, a term coined by Stanley et al. (1996), is a discipline in which the method-

ology and tools of statistical physics are applied to the study of economical and financial

systems. Econophysics is regarded as an empirical discipline that seeks to discover empirical

9There is a growing branch in marketing science that is dedicated to understanding the role our social

network plays in shaping our decisions. See Watts and Dodds (2007) and references within.
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regularities, define empirical ‘laws’ and develop theories to explain these regularities10. This

is part of a larger effort to study Complex Adaptive Systems (CAS), a term that was first

defined and used by the Santa Fe Institute. We define CAS as systems of adapting agents

with non-linear microscopic interactions, which lead to the emergence of macroscopic be-

havior. Usually these systems are out of equilibrium. Economic and financial systems serve

as perfect examples of CAS and offer abundant high quality data. Consequently a large

fraction of past and current research is focused on financial markets since the large amounts

of quantitative data facilitate the construction of data driven and falsifiable theories.

10Econophysics has gained much attention in the past decade and was the subject of numerous editorial

and commentary articles appearing in some of academia’s top journals. For an example of such articles see

Bouchaud (2008); Farmer and Foley (2009); Buchanan (2009); Roehner (2010).
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Chapter 2

An Empirical Study of the Tails of Mutual Fund

Size

1 The mutual fund industry manages about a quarter of the assets in the U.S. stock market

and thus plays an important role in the U.S. economy. The question of how much control

is concentrated in the hands of the largest players is best quantitatively discussed in terms

of the tail behavior of the mutual fund size distribution. We study the distribution empir-

ically and show that the tail is much better described by a log-normal than a power law,

indicating less concentration than, for example, personal income. The results are highly sta-

tistically significant and are consistent across fifteen years. This contradicts a recent theory

concerning the origin of the power law tails of the trading volume distribution. Based on

the analysis in a companion paper, the log-normality is to be expected, and indicates that

the distribution of mutual funds remains perpetually out of equilibrium.

2.1 Introduction

As of 2007 the mutual fund industry controlled 23% of household taxable assets in the

United States2. In absolute terms this corresponded to 4.4 trillion USD and 24% of U.S.

corporate equity holdings. Large players such as institutional investors are known to play

an important role in the market (Corsetti et al., 2001). This raises the question of who has

this influence: Are mutual fund investments concentrated in a few dominant large funds,

or spread across many funds of similar size? Are there mutual funds that are so large that

they are “too big to fail”?

This question is best addressed in terms of the behavior of the upper tail of the mutual

1Published work: Yonathan Schwarzkopf and J.Doyne Farmer, Empirical study of the tails of mutual

fund size, Phys. Rev. E 81, 066113 (2010).“Copyright (2010) by the American Physical Society.”
2Data is taken from the Investment Company Institute’s 2007 fact book available at www.ici.org.
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fund size distribution. The two competing hypotheses usually made in studies of firms are

Zipf’s law vs. a lognormal. Zipf’s law means that the distribution of the size s is a power

law with tail exponent ζs ≈ 1, i.e.

P (s > X) ∼ X−ζs ,

Log-normality means that log s has a normal distribution, i.e. the density function pLN (s)

obeys

p(s) =
1

sσ
√

2π
exp

(
−(log(s)− µs)2

2σ2
s

)
.

From the point of view of extreme value theory this distinction is critical, since it implies

a completely different class of tail behavior3. These are both heavy tailed, but Zipf’s law

is much more heavy tailed. For a log-normal all the moments exist, whereas for Zipf’s

law none of the moments exist. For Zipf’s law an estimator of the mean fails to converge.

In practical terms, for mutual funds this would imply that for any sample size N , with

significant probability an individual fund can be so large that it is bigger than all other

N − 1 firms combined. In contrast, for a log-normal, in the limit as N → ∞ the relative

size of a single fund becomes negligible.

This question takes on added meaning because the assumption that mutual funds follow

Zipf’s law has been argued to be responsible for the observed power law distribution of

trading volume (Levy et al., 1996; Solomon and Richmond, 2001). Gabaix et al. have

also asserted that the mutual fund distribution follows Zipf’s law and have used this in

a proposed explanation for the distribution of price returns (Gabaix et al., 2003; Gabaix

et al., 2006).

We resolve this empirically using the Center for Research in Security Prices (CRSP)

dataset and find that the equity fund size distribution is much better described by a log-

normal distribution.

Our results are interesting in the broader context of the literature on firm size. Mutual

funds provide a particularly good type of firm to study because there are a large number of

3According to extreme value theory a probability distribution can have only four possible types of tail

behavior. The first three correspond to distributions with finite support, thin tails, and tails that are

sufficiently heavy that some of the moments do not exist, i.e. power laws. The fourth category corresponds

to distributions that in a certain sense do not converge; it is remarkable that most known distributions fall

into one of the first three categories (Embrechts et al., 1997).
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funds and their size is accurately recorded. It is generally believed that the resulting size

distribution from aggregating across industries has a power law tail that roughly follows

Zipf’s law, but for individual industries the tail behavior is debated4. A large number of

stochastic process models have been proposed to explain this5. Our results add support to

the notion that for single industries the distribution is log-normal.

The log-normality of the distribution of mutual funds is also interesting for what it

suggests about the underlying processes that determine mutual fund size. In a companion

paper (Schwarzkopf and Farmer, 2010a) we develop a model for the random process of

mutual fund entry, exit and growth under the assumption of market efficiency, and show

that this gives a good fit to the data studied here. We show that while the steady-state

solution is a power law, the timescale for reaching this solution is very slow. Thus given

any substantial non-stationarity in the entry and exit processes the distribution will remain

in its non-equilibrium log-normal state. See the discussion in Section 2.5.

2.2 Data Set

We analyze the Center for Research in Security Prices (CRSP) Survivor-Bias-Free US Mu-

tual Fund Database6. The database is survivor bias free as it contains historical performance

data for both active and inactive mutual funds. We study monthly data from 1991 to 20057

on all reported equity funds. We define an equity fund as one whose portfolio consists of at

least 80% stocks. The results are not qualitatively sensitive to this, e.g. we get essentially

the same results even if we use all funds. The data set has monthly values for the Total

Assets Managed (TASM) by the fund and the Net Asset Value (NAV). We define the size

s of a fund to be the value of the TASM, measured in millions of US dollars and corrected

4Some studies have found that the upper tail is a log-normal (Simon, H. A. and Bonini, Charles P., 1958;

Stanley et al., 1995; Ijiri and Simon, 1977; Stanley et al., 1996; Amaral et al., 1997a; Bottazzi and Secchi,

2003a; Dosi, 2005) while others have found a power law (Axtell, 2001; Bottazzi and Secchi, 2003a; Dosi,

2005).
5For past stochastic models see (Gibrat, 1931; Simon, 1955; Simon, H. A. and Bonini, Charles P., 1958;

Mandelbrot, 1963; Ijiri and Simon, 1977; Sutton, 1997; Gabaix et al., 2003; Gabaix et al., 2003).
6The US Mutual Fund Database can be purchased from the Center for Research in Security Prices

(www.crsp.com).
7There is data on mutual funds starting in 1961, but prior to 1991 there are very few entries. There is a

sharp increase in 1991, suggesting incomplete data collection prior to 1991.
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Figure 2.1: The CDF for the mutual fund size s (in millions of 2007 dollars) is plotted with

a double logarithmic scale. The cumulative distribution for funds existing at the end of the

years 1993, 1998 and 2005 are given by the full, dashed and dotted lines respectively.

Inset: The upper tail of the CDF for the mutual funds existing at the end of 1998 (dotted

line) is compared to an algebraic relation with exponent −1 (solid line).

for inflation relative to July 2007. Inflation adjustments are based on the Consumer Price

Index, published by the BLS.

2.3 Is the tail a power law?

Despite the fact that the mutual fund industry offers a large quantity of well-recorded data,

the size distribution of mutual funds has not been rigorously studied. This is in contrast

with other types of firms where the size distribution has long been an active research subject.

The fact that the distribution is highly skewed and heavy tailed can be seen in Figure 2.1,

where we plot the cumulative distribution of sizes P (s > X) of mutual fund sizes in three

different years.

A visual inspection of the mutual fund size distribution suggests that it does not follow

Zipf’s law8. In the inset of Figure 2.1 we compare the tail for funds with sizes s > 102

million to a power law s−ζs , with ζs = −1. Whereas a power law corresponds to a straight

line when plotted on double logarithmic scale, the data show substantial and consistent

downward curvature. The main point of this paper is to make more rigorous tests of the

8Previous work on the size distribution of mutual funds by Gabaix et al. (Gabaix et al., 2003; Gabaix

et al., 2003; Gabaix et al., 2006) argued for a power law while we argue here for a log-normal.
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power law vs. the log-normal hypothesis. These back up the intuitive impression given by

this plot, indicating that the data are not well described by a power law.

To test the validity of the power law hypothesis we use the method developed by Clauset

et al. (2007). They use the somewhat strict definition9 that the probability density function

p(s) is a power law if there exists an smin such that for sizes larger than smin, the functional

form of the density p(s) can be written

p(s) =
ζs
smin

(
s

smin

)−(ζs+1)

, (2.1)

where the distribution is normalized in the interval [smin,∞). There are two free parameters

smin and ζs. This crossover size smin is chosen such that it minimizes the Kolmogorov-

Smirnov (KS) statistic D, which is the distance between the CDF of the empirical data

Pe(s) and that of the fitted model Pf (s), i.e.

D = max
s≥smin

|Pe(s)− Pf (s)| .

Using this procedure we estimate ζs and smin for the years 1991- 2005 as shown in

Table 2.1. The values of ζs computed in each year range from 0.78 to 1.36 and average

ζ̄s = 1.09 ± 0.04. If indeed these are power laws this is consistent with Zipf’s law. But

of course, merely computing an exponent and getting a low value does not mean that the

distribution is actually a power law.

To test the power law hypothesis more rigorously we follow the Monte Carlo method

utilized by Clauset et al. Assuming independence, for each year we generate 10, 000 synthetic

data sets, each drawn from a power law with the empirically measured values of smin and

ζs. For each data-set we calculate the KS statistic to its best fit. The p-value is the fraction

of the data sets for which the KS statistic to its own best fit is larger than the KS statistic

for the empirical data and its best fit.

The results are summarized in Table 2.1. The power law hypothesis is rejected with two

standard deviations or more in six of the years and rejected at one standard deviation or

9In extreme value theory a power law is defined as any function that in the limit s→∞ can be written

p(s) = g(s)s−(ζs+1) where g(s) is a slowly varying function. This means it satisfies lims→∞ g(ts)/g(s) = C

for any t > 0, where C is a positive constant. The test for power laws in reference (Clauset et al., 2007) is

too strong in the sense that it assumes that there exists an s0 such that for s > s0, g(s) is constant.
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Figure 2.2: A Quantile-Quantile (QQ) plot for the upper tail of the size distribution of

equity funds. The quantiles are the base ten logarithm of the fund size, in millions of

dollars. The empirical quantiles are calculated from the size distribution of funds existing

at the end of the year 1998. The empirical data were truncated from below such that only

funds with size s ≥ smin were included in the calculation of the quantiles. (a) A QQ-plot

with the empirical quantiles as the x-axis and the quantiles for the best fit power law as the

y-axis. The power law fit for the data was done using the maximum likelihood described

in Section 2.3, yielding smin = 1945 and α = 1.107. (b) A QQ-plot with the empirical

quantiles as the x-axis and the quantiles for the best fit log-normal as the y-axis, with the

same smin as in (a). The log-normal fit for the data was done used the maximum likelihood

estimation given smin (2.2) yielding µ = 2.34 and σ = 2.5.

more in twelve of the years (there are fifteen in total). Furthermore there is a general pattern

that as time progresses the rejection of the hypothesis becomes stronger. We suspect that

this is because of the increase in the number of equity funds. As can be seen in Table 2.1,

the total number of equity funds increases roughly linearly in time, and the number in the

upper tail Ntail also increases.

We conclude that the power law tail hypothesis is questionable but cannot be unequiv-

ocally rejected in every year. Stronger evidence against it comes from comparison to a

log-normal, as done in the next section.
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2.4 Is the tail log-normal?

A visual comparison between the two hypotheses can be made by looking at the Quantile

Quantile (QQ) plots for the empirical data compared to each of the two hypotheses. In

a QQ-plot we plot the quantiles of one distribution as the x-axis and the other’s as the

y-axis. If the two distributions are the same then we expect the points to fall on a straight

line. Figure 2.2 compares the two hypotheses, making it clear that the log-normal is a

much better fit than the power law. For the log-normal QQ plot most of the large values in

the distribution fall on the dashed line corresponding to a log-normal distribution, though

the very largest values are somewhat above the dashed line. This says that the empirical

distribution decays slightly faster than a log-normal. There are two possible interpretations

of this result: Either this is a statistical fluctuation or the true distribution really has slightly

thinner tails than a log-normal. In any case, since a log-normal decays faster than a power

law, it strongly suggests that the power law hypothesis is incorrect and the log-normal

distribution is a better approximation.

A more quantitative method to address the question of which hypothesis better describes

the data is to compare the likelihood of the observation in both hypotheses (Clauset et al.,

2007). We define the likelihood for the tail of the distribution to be

L =
∏

sj≥smin

p(sj).

We define the power law likelihood as LPL =
∏
sj≥smin pPL(sj) with the probability den-

sity of the power law tail given by (2.1). The lognormal likelihood is defined as LLN =∏
sj≥smin pLN (sj) with the probability density of the lognormal tail given by

pLN (s) =
p(s)

1− P (smin)
(2.2)

=

√
2

s
√
πσ

[
erfc

(
ln smin − µ√

2σ

)]−1

exp

[
−(ln s− µ)2

2σ2

]
.

The more probable it is that the empirical sample is drawn from a given distribution,

the larger the likelihood for that set of observations. The ratio indicates which distribution
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Figure 2.3: A histogram of the base 10 log likelihood ratios R computed using (2.3) for

each of the years 1991 to 2005. A negative log likelihood ratio implies that it is more likely

that the empirical distribution is log-normal then a power law. The log likelihood ratio is

negative in every year, in several cases strongly so.

the data are more likely drawn from. We define the log likelihood ratio as

R = ln

(
LPL
LLN

)
. (2.3)

For each of the years 1991 to 2005 we computed the maximum likelihood estimators for

both the power law fit and the log-normal fit to the tail, as explained above and in Sec-

tion 2.3. Using the fit parameters, the log likelihood ratio was computed and the results

are summarized graphically in Figure 2.3 and in Table 2.1. The ratio is always negative,

indicating that the likelihood for the log-normal hypothesis is greater than that of the power

law hypothesis in every year. It seems clear that tails of the mutual fund data are much

better described by a log-normal than by a power law.

2.5 Implications of log-normality

The log-normal nature of the size distribution has important implications on the role in-

vestor behavior plays in the mutual fund industry. Is the size distribution of mutual funds,

i.e. the concentration of assets, determined through investor choice or is it just a con-

sequence of the random nature of the market? In a companion paper (Schwarzkopf and

Farmer, 2010a) we propose that the size distribution can be explained by a simple random
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process model. This model, characterizing the entry, exit and growth of mutual funds as a

random process, is based on market efficiency, which dictates that fund performance is size

independent and fund growth is essentially random. This model provides a good explana-

tion of the concentration of assets, suggesting that other effects, such as transaction costs

or the behavioral aspects of investor choice, play a smaller role.

The fact that the fund distribution is a log-normal is interesting because, as we argue in

the companion paper, this indicates a very slow convergence toward equilibrium. There we

find a time-dependent solution for the underlying random process of mutual fund entry, exit,

and growth, and show that the size distribution evolves from a log-normal towards a Zipf

power law distribution. However, the relaxation to the steady-state solution is extremely

slow, with time scales on the order of a century or more. Given that the mutual fund

industry is still young, the distribution remains in its non-equilibrium state as a log-normal.

Furthermore, given that the properties of the entry and exit processes are not stable over

long periods of time, the non-equilibrium log-normal state will very likely persist indefinitely.

2.6 Conclusions

We have shown in unequivocal terms that the mutual fund size distribution is much closer

to a log-normal than to a power law. Thus, while the distribution is concentrated, it is

not nearly as concentrated as it might be. Among other things this suggests that that the

power law distribution observed for trading volume by Gopikrishnan et al. (2000) cannot be

explained based on a power law distribution for funds. The companion paper discussed in

the previous section (Schwarzkopf and Farmer, 2010a) constructs a theory that explains the

log-normality based on the random nature of the mutual fund entry, exit and growth, and

the very long-time scales required for convergence to the steady-state power law solution.
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Chapter 3

What Drives Mutual Fund Asset Concentration?

Is the large influence that mutual funds assert on the U.S. financial system spread across

many funds, or is it is concentrated in only a few? We argue that the dominant economic

factor that determines this is market efficiency, which dictates that fund performance is

size independent and fund growth is essentially random. The random process is char-

acterized by entry, exit and growth. We present a new time-dependent solution for the

standard equations used in the industrial organization literature and show that relaxation

to the steady-state solution is extremely slow. Thus, even if these processes were station-

ary (which they are not), the steady-state solution, which is a very heavy-tailed power

law, is not relevant. The distribution is instead well-approximated by a less heavy-tailed

log-normal. We perform an empirical analysis of the growth of mutual funds, propose a

new, more accurate size-dependent model, and show that it makes a good prediction of

the empirically observed size distribution. While mutual funds are in many respects like

other firms, market efficiency introduces effects that make their growth process distinctly

different. Our work shows that a simple model based on market efficiency provides a good

explanation of the concentration of assets, suggesting that other effects, such as transaction

costs or the behavioral aspects of investor choice, play a smaller role.

3.1 Introduction

In the past decade the mutual fund industry has grown rapidly, moving from 3% of taxable

household financial assets in 1980, to 8% in 1990, to 23% in 20071. In absolute terms,

in 2007 this corresponded to 4.4 trillion USD and 24% of U.S. corporate equity holdings.

Mutual funds account for a significant fraction of trading volume in financial markets and

have a substantial influence on prices. This raises the question of who has this influence:

1Data is taken from the Investment Company Institute’s 2007 fact book available at www.ici.org.
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Are mutual fund investments concentrated in a few dominant large funds, or spread across

many funds of similar size? Do we need to worry that a few funds might become so large

that they are “too big to fail”? What are the economic mechanisms that determine the

concentration of investment capital in mutual funds?

Large institutional investors are known to play an important role in the market (Corsetti

et al., 2001). Gabaix et al. recently hypothesized that the fund size distribution plays a

central role in explaining the heavy tails in the distribution of both trading volume and price

returns2. If their theory is true this would imply that the heavy tails in the distribution of

mutual fund size play an important role in determining market risk.

While it is standard in economics to describe distributional inequalities in terms of

statistics such as the Gini or Herfindahl indices, as we show in Appendix A, this approach

is inadequate to describe the concentration in the tail. Instead, the best way to describe

the concentration of assets is in terms of the functional form of the tail. As is well-known in

extreme value theory (Embrechts et al., 1997), the key distinction is whether all the moments

of the distribution are finite. If the tail is truly concentrated, the tail is a power law, and all

the moments above a given threshold, called the tail exponent, are infinite. So, for example,

if the tail of the mutual fund size distribution follows Zipf’s law as hypothesized by Gabaix

et al., i.e. if it were a power law with tail exponent one, this would imply nonexistence of

the mean. In this case the sample estimator fails to converge because the tails are so heavy

that with significant probability a single fund can be larger than the rest of the sample

combined. This is true even in the limit as the sample size goes to infinity. Thus power law

tails imply a very high degree of concentration.

Instead, empirical analysis shows that the tail of the mutual fund size distribution is not

a power law, and is well-approximated by a lognormal (Schwarzkopf and Farmer, 2010b).

Thus, while the distribution is heavy tailed, it is not as heavy tailed as it would be if the

distribution were a power law. The key difference is that for a log-normal all of the moments

exist.

This naturally leads to the question of what economic factors determine the tail prop-

erties of the mutual fund distribution. There are two basic types of explanation. One type

2The equity fund size distribution was argued to be responsible for the observed distribution of trading

volume (Levy et al., 1996; Solomon and Richmond, 2001), and Gabaix et al. have argued that it is important

for explaining the distribution of price returns (Gabaix et al., 2003; Gabaix et al., 2006).
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of explanation is based on a detailed description of investor choice, and another is based on

efficient markets, which predicts that growth should be random, and that the causes can

be understood in terms of a simple random process description of entry, exit and growth.

Of course market efficiency depends on investor choice, but the key distinction is that the

random process approach does not depend on any of the details, but rather only requires

that no one can make superior investments based on simple criteria, such as size.

Explanations based on investor choice can in turn be divided into two types: rational and

behavioral. For example, Berk and Green [2004] have proposed that investors are rational,

making investments based on past performance. Their theory implies that the distribution

of fund size is determined by the skill of mutual fund managers and the dependence of

transaction costs on size. If we assume, for example, that the transaction cost is a power

law (which includes linearity) if the distribution of fund size is log-normal, then it is possible

to show that the distribution of mutual fund skill must also be log-normal. Unfortunately,

without a method of measuring skill this is difficult to test.

Another type of explanation is behavioral, i.e. that investors are strongly influenced

by factors such as advertising, fees, and investment fads3. We strongly suspect that this is

true, and that they play an important role in determining the size of individual funds. The

question we investigate here is not whether such effects exist, but whether they are essential

to explain the form of the distribution.

The alternative is that the details of investor choice don’t matter, and that the distri-

bution of fund size is driven by market efficiency, which dictates an approach based on the

random process of entry, exit and growth. The random process approach was originally

pioneered as an explanation for firm size by Gibrat, Simon and Mandelbrot, and is popular

in the industrial organization literature4. The basic idea is that while details of investor

choice are surely important in determining the size of individual funds, the details may

average out or be treatable as noise, so that in aggregate they do not matter in shaping the

overall size distribution.

On the face of it, however, there seems to be a serious problem with this approach.

Under simple assumptions about the entry, exit and growth of fund size, Gabaix et al.

3Barber et al. (2005) have found that investors flows are correlated to marketing and advertising while

they are not correlated to the expense ratio.
4For past stochastic models see (Gibrat, 1931; Simon, 1955; Simon, H. A. and Bonini, Charles P., 1958;

Mandelbrot, 1963; Ijiri and Simon, 1977; Sutton, 1997; Gabaix et al., 2003; Gabaix et al., 2003).
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(2003) showed that the steady state solution is a power law; a similar argument is described

in Montroll and Shlesinger (1982) and Reed (2001)5. As already mentioned, however, the

upper tail of the empirical distribution is a log-normal, not a power law. Thus there

would seem to be a contradiction. Apparently either the correct random process is more

complicated, or this whole line of attack fails.

We show here that the central problem comes from considering only the steady state

(i.e. infinite time) solution. We study the same equations considered by Gabaix et al. and

Reed, but we find a more general time-dependent solution, and show that the time required

to reach steady state is very long. The mutual fund industry is rapidly growing and, even

if the growth process had been stationary over the last few decades, not enough time has

elapsed to reach the stationary solution for the fund size distribution. In the meantime the

solution is well approximated by a log-normal. This qualitative conclusion is very robust

under variations of the assumptions. In contrast to the hypothesis of Berk and Green, it

does not depend on details such as the distribution of investor skill – the log-normal property

emerges automatically from market efficiency and the random multiplicative nature of fund

growth.

To test our conjectures more quantitatively we study the empirical properties of entry,

exit and growth of mutual funds, propose a more accurate model than those previously

studied, and show it makes a good prediction of the empirically observed fund size distri-

bution. The model differs from previous models in that it incorporates the fact that the

relative growth rate of funds slows down as they get bigger6. This makes the time needed

to approach the steady state solution even longer: Whereas the relaxation time for the

size-independent diffusion model is several decades, for the more accurate size-dependent

model it is more than a century.

Market efficiency is the key economic principle that makes the random process model

work, and dictates many of its properties. It enters the story in several ways. (1) The

fact that stock market returns are essentially random implies that growth fluctuations are

random, for two reasons: (a) Without inflows and outflows, under the principle that past

returns are not indicative of future returns, fund growth is random. (b) Although investors

5For a review on similar generative models see Mitzenmacher (2003).
6For work on the size dependence of firm growth rate fluctuations see(Stanley et al., 1995, 1996; Amaral

et al., 1997a; Bottazzi, 2001; Bottazzi and Secchi, 2003a, 2005; Dosi, 2005; De Fabritiis et al., 2003).
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chase past returns, since what they are chasing is random, fund growth due to inflow and

outflow is random on sufficiently long time scales. (2) Efficiency dictates that mutual fund

performance must be independent of size. Thus as mutual funds randomly diffuse through

the size space, there is no pressure pushing them toward a particular size. (3) Efficiency,

together with the empirical fact that the relative importance of fund inflows and outflows

diminishes as funds get bigger, implies that the mean growth rate and the growth diffusion

approach a constant in the large size limit. As we show, this shapes the long-term properties

of the size distribution. All of these points are explained in more detail in Section 3.4.3.

Market efficiency makes mutual funds unusual relative to most other types of firms. For

most firms, in the large size limit the mean and standard deviation of the growth rate are

empirically observed to decay to zero. For mutual funds, in contrast, due to market efficiency

they both approach a positive limit. This potentially affects the long-term behavior: Most

firms approach a solution that is thinner than a log-normal, i.e under stationary growth

conditions their tails are getting thinner with time, whereas mutual funds approach a power

law, so their tails are getting fatter with time. Nonetheless, as we have already mentioned,

even under stationary growth conditions the approach to steady-state takes so long that

this is a moot point.

At a broader level our work here shows how the non-stationarity of market conditions

can prevent convergence to an “equilibrium” solution. Nonetheless, even under stationary

conditions the random process model usefully describes the time-dependent relationships

between entry, exit and growth phenomena on one hand and size on the other hand. While

we cannot show that the random process model is the only possible explanation, we do

show that it provides a good explanation7. The conditions for this are robust, depending

only on market efficiency, without the stronger requirements of perfect rationality, or the

complications of mapping out the idiosyncrasies of human behavior.

The paper is organized as follows. In Section 3.2 we develop the standard exit and entry

model. Section 3.2.1 presents the time-dependent solution for the number of funds, Section

3.2.2 presents the time-dependent solution for the size distribution, and Section 3.2.3 intro-

7While variations in the assumptions about the random process preserve certain qualitative conclusions,

such as the log-normal character of the upper tail, we found that getting a good fit to the data requires a

reasonable degree of fidelity in the modeling process. The size-dependent nature of the diffusion process, for

example, is quite important.
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duces a size-dependent model. Section 3.3 describes our data. In Section 3.4 we perform an

empirical analysis to justify our assumptions and to calibrate the model. In Section 3.5 we

present simulation results of the proposed model and compare them to the empirical data.

Finally Section 3.6 presents our conclusions.

3.2 Model

Our central thesis in this paper is that due to market efficiency the mutual fund size distri-

bution can be explained by a stochastic process governed by three key underlying processes:

the size change of existing mutual funds, the entry of new funds and the exit of existing

funds. In this section we introduce the standard diffusion model and derive a time-dependent

solution for the special case when the diffusion process has constant mean and variance. We

then make a proposal for how to model the more general case where the mean and variance

depend on size.

The aim of the model we develop here is to describe the time evolution of the size

distribution, that is, to solve for the probability density function p(ω, t) of funds with size

s at time t, where ω = log s. The size distribution can be written as

p(ω, t) =
n(ω, t)

N(t)
, (3.1)

where n(ω, t) is the number of funds at time with logarithmic size ω and N(t) =
∫
n(ω, t)dω

is the total number of funds at time t. To simplify the analysis we solve separately for the

total number of funds N(t) and for the number density n(ω, t).

3.2.1 Dynamics of the total number of funds

As we will argue in Section 3.4, the total number of funds as a function of time can be

modeled as
dN

dt
= ν − λN (3.2)

where ν is the rate of creating new funds and λ is the exit rate of existing funds. Under the

assumption that ν and λ are constants this has the solution

N(t) =
ν

λ

(
1− e−λt

)
θ(t), (3.3)
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where θ(t) is a unit step function at t = 0, the year in which the first funds enter. This

solution has the surprising property that the dynamics only depend on the fund exit rate λ,

with a characteristic timescale 1/λ. For example, for λ ≈ 0.09, as estimated in Section 3.4,

the timescale for N(t) to reach its steady state is only roughly a decade. An examination

of Table 3.3 makes it clear, however, that ν = constant is not a very good approximation.

Nonetheless, if we crudely use the mean creation rate ν ≈ 900 from Table 3.3 and the fund

exit rate λ ≈ 0.09 estimated in Section 3.4, the steady state number of funds should be

about N ≈ 10, 000, compared to the 8, 845 funds that actually existed in 2005. Thus this

gives an estimate with the right order of magnitude.

The important point to stress is that the dynamics for N(t) operate on a different

timescale than that of n(ω, t). As we will show in the next section the characteristic

timescale for n(ω, t) is much longer than that for N(t).

3.2.2 Solution for the number density n(ω, t)

We define and solve the time evolution equation for the number density n(ω, t). The empiri-

cal justification for the hypotheses of the model will be given in Section 3.4. The hypotheses

are:

• The entry process is a Poisson process with rate ν, such that at time t a new fund

enters the industry with a probability νdt and (log) size ω drawn from a distribution

f(ω, t). We approximate the entry size distribution as a log-normal distribution in

the fund size s, that is a normal distribution in ω given by

f(ω, t) =
1√
πσ2

ω

exp

(
−(ω − ω0)2

σ2
ω

)
θ(t− t0), (3.4)

where ω0 is the mean log size of new funds and σ2
ω is its variance. θ(t− t0) is a unit

step function ensuring no funds funds enter the industry before the initial time t0.

• The exit process is a Poisson process such that at any time time t a fund exits the

industry with a size independent probability λdt.

• The size change is approximated as a (log) Brownian motion with a size dependent

drift and diffusion term

dω = µ(ω)dt+ σ(ω)dW, (3.5)
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where dW is an i.i.d random variable drawn from a zero mean and unit variance

normal distribution.

Under these assumptions the forward Kolmogorov equation (also known as the Fokker-

Plank equation) defining the time evolution of the number density (Gardiner, 2004) is given

by
∂

∂t
n(ω, t) = νf(ω, t)− λn(ω, t)− ∂

∂ω
[µ(ω)n(ω, t)] +

∂2

∂ω2
[D(ω)n(ω, t)], (3.6)

where D(ω) = σ(ω)2/2 is the size diffusion coefficient. The first term on the right describes

the entry process, the second describes the fund exit process and the third and fourth terms

describe the change in size of a existing funds.

Approximate solution for large funds

To finish the model it is necessary to specify the functions µ(ω) and D(ω). It is convenient

to define the relative change in a fund’s size ∆s(t) as

∆s(t) =
s(t+ 1)− s(t)

s(t)
, (3.7)

such that drift and diffusion parameters in our model are given by

µ(ω) = E[log(1 + ∆s)] D(ω) =
1

2
Var[log(1 + ∆s)].

The relative change can be decomposed into two parts: the return ∆r and the fractional

investor money flux ∆f (t), which are simply related as

∆s(t) = ∆f (t) + ∆r(t). (3.8)

The return ∆r represents the return of the fund to its investors, defined as

∆r(t) =
NAV (t+ 1)−NAV (t)

NAV (t)
, (3.9)

where NAV (t) is the Net Asset Value at time t. The fractional money flux ∆f (t) is the

change in the fund size by investor deposits or withdrawals, defined as

∆f (t) =
s(t+ 1)− [1 + ∆r(t)]s(t)

s(t)
. (3.10)
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In Section 3.4 we will demonstrate empirically that the returns ∆r are independent

of size, as they must be for market efficiency. In contrast the money flux ∆f decreases

monotonically with size. In the large size limit the returns ∆r dominate, and thus it is

reasonable to treat µ(s) as a constant, µ = µ∞. Market efficiency also implies that in the

large size limit the standard deviation σ(s) is a constant, i.e. σ = σ∞. Otherwise investors

would be able to improve their risk adjusted returns by simply investing in larger funds.

With these approximations the evolution equation becomes

∂

∂t
n(ω, t) = νf(ω, t)− λn(ω, t)− µ ∂

∂ω
n(ω, t) +D

∂2

∂ω2
n(ω, t), (3.11)

In this and subsequent equations, to keep things simple we use the notation D = σ2
∞/2 and

µ = µ∞.

The exit process is particularly important, since it is responsible for thickening the upper

tail of the distribution. The intuition is as follows: Since each fund exits the industry with

the same probability, and since there are more small funds than large funds, more small

funds exit the industry. This results in relatively more large funds, making the distribution

heavy-tailed. As we will now show this results in the distribution evolving from a log-normal

upper tail to a power law upper tail. In contrast, the entry process is not important for

determining the shape of the distribution, and influences only the total number of funds

N . This is true as long as the entry size distribution f(ω, t) is not heavier-tailed than a

lognormal, which is supported by the empirical data.

In the large size limit the solution for an arbitrary entry size distribution f is given by

n(ω, t) = ν

∫ ∞
−∞

∫ t

0
exp−λt

′ 1√
4πDt′

exp

[
−(ω − ω′ − µt′)2

4Dt′

]
f(ω′, t− t′) dt′dω′. (3.12)

Stated in words, a fund of size ω′ enters at time t−τ with probability f(ω′, t−τ). The fund

will survive to time t with a probability exp(−λτ) and will have a size ω at time t with a

probability according to (3.23).

If funds enter the industry with a constant rate ν beginning at t = 0, with a log-normal

entry size distribution f(ω, t) centered around ω0 with width σω as given by (3.4), the size
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density can be shown to be

n(ω, t) =
νµ

4
√
γD

exp

[
(γ +

1

4
)
σ2
ω

2
−√γ

∣∣∣∣σ2
ω

2
+
µ

D
(ω − ω0)

∣∣∣∣+
µ

2D
(ω − ω0)

]
×
(
A+ exp

[√
γ|σ2

ω + 2
µ

D
(ω − ω0) |

]
B
)
. (3.13)

The parameters A, B and γ are defined as

γ =

√
1

4
+
λD

µ2
, (3.14)

A = Erf


∣∣∣σ2
ω
2 + µ

D (ω − ω0)
∣∣∣−√γσ2

ω
√

2σω

 (3.15)

−Erf


∣∣∣σ2
ω
2 + µ

D (ω − ω0)
∣∣∣−√γ (σ2

ω + 2µ
2

D t
)

√
2
√
σ2
ω + 2µ

2

D t


and

B = Erf

√γ
(
σ2
ω
2 + µ2

D t
)

+ |σ
2
ω
2 + µ

D (ω − ω0) |
√

2
√
σ2
ω + 2µ

2

D t

 (3.16)

−Erf

√γσ2
ω +

∣∣∣σ2
ω
2 + µ

D (ω − ω0)
∣∣∣

√
2σω

 ,
where Erf is the error function, i.e. the integral of the normal distribution.

Approximating the distribution of entering funds as having zero width simplifies the

solution. Let us define a large fund as one with ω � ω0, where ω0 is the logarithm of the

typical entry size of one million USD. For large funds we can approximate the lognormal

distribution as having zero width, i.e. all new funds have the same size ω0. The number

density is then given by

n(ω, t) =
νD

4
√
γµ2

e
1
2
µ
D

(ω−ω0)

[
e−
√
γ µ
D
|ω−ω0|

(
1 + erf

[√
γµ2t

D
− |ω − ω0|

2
√
Dt

])

−e
√
γ µ
D
|ω−ω0|

(
1− erf

[
µ

√
t

D
(
1

2
+
√
γ)

])]
. (3.17)
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Since γ > 1/4 (3.14), the density vanishes for both ω →∞ and ω → −∞.

Steady state solution for large funds

The steady state solution for large times is achieved by taking the t → ∞ limit of (3.17),

which gives

n(ω) =
ν

2µ
√
γ

exp
µ

D

(
ω − ω0

2
−√γ|ω − ω0|

)
. (3.18)

Since the log size density (3.18) has an exponential upper tail p(ω) ∼ exp(−ζsω) and

s = exp(ω) the CDF for s has a power law tail with an exponent8 ζs, i.e.

P (s > X) ∼ X−ζs . (3.19)

Substituting for the parameter γ using Eq. (3.14) for the upper tail exponent yields

ζs =
−µ+

√
µ2 + 4Dλ

2D
. (3.20)

Note that this does not depend on the creation rate ν. Using the average parameter values

in Table 3.4.3 the asymptotic exponent has the value

ζs = 1.2± 0.6. (3.21)

This suggests that if the distribution reaches steady state it will follow Zipf’s law, which is

just the statement that it will be a power law with ζs ≈ 1. As discussed in the introduction,

this creates a puzzle, as the empirical distribution is clearly log-normal (Schwarzkopf and

Farmer, 2010b).

Timescale to reach steady state

Since we have a time dependent solution we can easily estimate of the timescale to reach

steady state. The time dependence in Eq. 3.17 is contained in the arguments of the error

function terms on the right. When these arguments become large, say larger than 3, the

8To calculate the tail exponent of the density correctly one must change variables through p(s) =

p(ω) dω
ds
∼ s−ζs−1. This results in a CDF with a tail exponent of ζs.
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solution is roughly time independent, and can be written as

t >
9D

4γµ2

1 +

√
1 +

2

9

√
γµ2

D
|ω − ω0|

2

. (3.22)

Using the average values in Table 3.4.3 in units of months µ = µ∞ ≈ 0.005, D = σ2
∞/2 and

σ∞ ≈ 0.05. This gives

t > 180
(

1 +
√

1 + 0.7 |ω − ω0|
)2
,

where the time is in months. Plugging in some numbers from Table 3.4.3 makes it clear that

the time scale to reach steady state is very long. For instance, for funds of a billion dollars

it will take about 170 years for their distribution to come within 1 percent of its steady

state. This agrees with the empirical observation that there seems to be no significant

fattening of the tail in the fifteen years from 1991 - 2005. Note that the time required for

the distribution n(ω, t) to reach steady state for large values of ω is much greater than that

for the total number of funds N(t) to become constant.

During the transient phase the solution remains approximately log-normal for a long

time. If funds only change in size and no funds enter or exit, then the resulting distribution

is normal

ñ(w, t) =
1√

4πDt
exp

[
−(ω − µt)2

4Dt

]
, (3.23)

which corresponds to a size distribution p(s) with a lognormal upper tail. While the exit

process acts quickly in changing the total number of funds, it acts slowly in changing the

shape. This is the key reason why the distribution remains approximately log-normal for

so long.

3.2.3 A better model of size dependence

The mean rate of growth and diffusion are in general size dependent. We hypothesize that

the mean growth rate µ(s) and the standard deviation σ(s) are the sum of a power law and

a constant, of the form

σs(s) = σ0s
−β + σ∞ (3.24)

µs(s) = µ0s
−α + µ∞.
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The constant terms come from mutual fund returns (neglecting inflow or outflow of funds),

and must be constant due to market efficiency, as explained in more detail in Section 3.4.3.

The power law terms, in contrast, are due to the flow of funds in and out of the market.

There is a substantial literature of proposed theories for this, including ours9. We present

the empirical evidence for the power law hypothesis and explain the role of efficiency in

more detail in Section 3.4.3.

The functional form given above for the size dependence can be used to make a more

accurate diffusion model. The non vanishing drift µ∞ > 0 and diffusion terms σ∞ > 0 are

essential for the distribution to evolve towards a power law. As already mentioned, due to

market efficiency E[∆r(s)] must be independent of s, and since E[∆f (s)] is a decreasing

function of s, for large s µ(s) = E[∆r(s)] + E[∆f (s)] = µ∞ > 0. This distinguishes

mutual funds from other types of firms, which are typically observed empirically to have

µ∞ = σ∞ = 0 (Stanley et al., 1996; Matia et al., 2004). Assuming that other types of

firms obey similar diffusion equations to those used here, it can be shown that the resulting

distribution has a stretched exponential upper tail, which is much thinner than a power

law10.

3.3 Data Set

We test our model against the CRSP Survivor-Bias-Free US Mutual Fund Database. Be-

cause we have daily data for each mutual fund, this database enables us to investigate the

9There has been a significant body of work attempting to explain the heavy tails in the growth rate of

firms and the associated size dependence in the diffusion rate. See (Amaral et al., 1997a; Buldyrev et al.,

1997; Amaral et al., 1998; De Fabritiis et al., 2003; Matia et al., 2004; Bottazzi, 2001; Sutton, 2001; Wyart

and Bouchaud, 2003; Bottazzi and Secchi, 2003b, 2005; Fu et al., 2005; Riccaboni et al., 2008; Podobnik

et al., 2008). Our theory argues for an additive replication model, and produces predictions that fit the data

extremely well for a diverse set of different phenomena, including mutual funds (Schwarzkopf et al., 2010).

We argue that the fundamental reason for the power tails is the influence network of investors.
10A stretched exponential is of the form p(x) ∼ exp(ax−b), where a and b are positive constants. There is

some evidence in the empirical data that the death rate λ also decays with size. However, in our simulations

we found that this makes very little difference for the size distribution as long as it decays slower than the

distribution of entering funds, and so in the interest of keeping the model parsimonious we have not included

this effect.
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mechanism of fund entry, exit and growth to calibrate and test our model11. We study the

data from 1991 to 200512. We define an equity fund as one whose portfolio consists of at

least 80% stocks. The results are not qualitatively sensitive to this, e.g. we get essentially

the same results even if we use all funds. The data set has monthly values for the Total

Assets Managed (TASM) by the fund and the Net Asset Value (NAV). We define the size

s of a fund to be the value of the TASM, measured in millions of US dollars and corrected

for inflation relative to July 2007. Inflation adjustments are based on the Consumer Price

Index, published by the BLS. In Table 3.3 we provide summary statistics of the data set

and as seen there the total number of equity funds increases roughly linearly in time, and

the number of funds in the upper tail Ntail also increases.

3.4 Empirical investigation of size dynamics

In this section we empirically investigate the processes of entry, exit and growth, providing

empirical justification and calibration of the model described in Section 3.2.

3.4.1 Fund entry

We begin by examining the entry of new funds. We investigate both the number Nenter(t)

and size s of funds entering each year. We perform a linear regression of Nenter(t) against the

number of existing funds N(t−1), yielding slope α = 0.04±0.05 and intercept β = 750±300.

The slope is not statistically significant, justifying the approximation of entry as a Poisson

process with a constant rate ν, independent of N(t).

The size of entering funds is more complicated. In Figure 3.1 we compare the distribution

of the size of entering funds f(s) to that of all existing funds. The distribution is somewhat

irregular, with peaks at round figures such as ten thousand, a hundred thousand, and a

million dollars. The average size13 of entering funds is almost three orders of magnitude

11Note that we treat mergers as the dissolution of both original firms followed by the creation of a new

(generally larger) firm. This increases the size of entering firms but does not make a significant difference

in our conclusions.
12There is data on mutual funds starting in 1961, but prior to 1991 there are very few entries. There is a

sharp increase in 1991, suggesting incomplete data collection prior to 1991.
13When discussing the average size one must account for the difference between the average log size and

the average size: Due to the heavy tails the difference is striking. The average entry log size E[ωc] ≈ 0,

corresponding to a fund of size one million, while if we average over the entry sizes E[sc] = E[eωc ], we get
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Figure 3.1: The probability density for the size s of entering funds in millions of dollars

(solid line) compared to that of all funds (dashed line) including all data for the years 1991

to 2005. The densities were estimated using a Gaussian kernel smoothing technique.

smaller than that of existing funds, making it clear that the typical surviving fund grows

significantly after it enters. It is clear that the distribution of entering funds is not important

in determining the upper tails14. The value of the mean log size and its variance are

calculated from the data for each period as summarized in Table 3.4.3.

Thus the empirical data justifies the approximation of entry as a Poisson process in

which an average of ν funds enter per month, with the size of each fund drawn from a

distribution f(ω, t).

3.4.2 Fund exit

Unlike entry, fund exit is of critical importance in determining the long-run properties of

the fund size distribution. In Figure 3.2 we plot the number of exiting funds Nexit(t) as

a function of the total number of funds existing in the previous year, N(t − 1). There is

a good fit to a line of slope λ, which on an annual time scale is λ = 0.092 ± 0.030. This

justifies our assumption that fund exit is a Poisson process with constant rate λ.

an average entry size of approximately 30 million. For comparison, both the average size and the average

log size of existing funds are quoted in Table 3.3.
14In Section 3.2.2 we showed that the entry process is not important as long as the tails of the entry

distribution f are sufficiently thin. We compared the empirical f to a log-normal and found that the tails

are substantially thinner.
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Figure 3.2: The number of equity funds exiting the industry Nexit(t) in the year t as a

function of the total number of funds existing in the previous year, N(t − 1). The plot is

compared to a linear regression (full line). The error bars are calculated for each bin under

a Poisson process assumption, and correspond to the square root of the average number of

funds exiting the industry in that year.

3.4.3 Fund growth

We first test the i.i.d and normality assumptions of the diffusion growth model, and then test

to demonstrate the size dependence of the growth process that we proposed in Section 3.2.3.

We also discuss the diverse roles that efficiency plays in shaping the random process for

firm growth in more detail.

Justification for the diffusion model

In the absence of entry or exit we have approximated the growth of existing funds as

a multiplicative Gibrat-like process15 satisfying a random walk in the log size ω. This

implicitly assumes that ∆s is an i.i.d normal random variable.

The assumption of independence is justified by market efficiency, which requires that

the returns ∆r of a given fund should be random (Bollen and Busse, 2005; Carhart, 1997).

Under the decomposition of the total growth as ∆s = ∆r+∆f , as demonstrated in the next

15A Gibrat-like process is a multiplicative process in which the size of the fund at any given time is given

as a multiplicative factor times the size of the fund at a previous time. In Gibrat’s law of proportionate

effect (Gibrat, 1931) the multiplicative term depends linearly on size while here we allow it to have any size

dependence.
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sub-section, in the large size limit the returns ∆r dominate, so under market efficiency the

i.i.d. assumption is automatically valid.

This is not so obvious for smaller size firms, where the money flux ∆f dominates the

total growth ∆s. It is well known that investors chase past performance16. Even though

the past performance they are chasing is random, if they track a sufficiently long history of

past returns, this can induce correlations. This causes correlations in the money flux ∆f ,

which in turn induces correlations in the total size change ∆s.

To test whether such correlations are strong enough to cause problems with the random

process hypothesis, we perform cross-sectional regressions of the form

∆f (t) = β + β1∆r(t− 1) + β2∆r(t− 2) + . . .+ β6∆r(t− 6) + ξ(t), (3.25)

where ξ(t) is a noise term. The results are extremely noisy; for example, when we perform

separate regressions in five different periods, eight of the thirty possible coefficients βi shown

in Table 3.4.3 are negative and only two of them are significant at the two standard deviation

level. We also perform direct tests of the correlations in ∆f and we find that they are small.

This justifies our use of the i.i.d. hypothesis.

The normality assumption is also not strictly true. Here we are saved by the fact that

the money flux ∆f is defined in terms of a logarithm, and while it has heavy tails, they are

not sufficiently heavy to prevent it from converging to a normal. We have explicitly verified

this by tracking a group of funds in a given size range over time and demonstrating that

normality is reached within 5 months. Thus even though the normality assumption is not

true on short timescales it rapidly becomes valid on longer timescales.

Size dependence of the growth process

We now test the model for the size dependence of the growth process proposed in Sec-

tion 3.2.3. We also discuss the crucial role of the decomposition into returns and money

flux in determining the size dependence.

16For empirical evidence that investors react to past performance see (Remolona et al., 1997; Busse, 2001;

Chevalier, Judith and Ellison, Glenn, 1997; Sirri, Erik R. and Tufano, Peter, 1998; Guercio, Diane Del and

Tkac, Paula A., 2002; Bollen, 2007).
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Figure 3.3: A summary of the size dependence of mutual fund growth. The average mean

µr and volatility σr of fund returns, as well as the average µf and volatility σf of money flux

(i.e. the flow of money in and out of funds), are plotted as a function of the fund size (in

millions) for the year 2005 (see Eqs. (3.7 - 3.10)). The data are binned based on size, using

bins with exponentially increasing size; we use monthly units. The average monthly return

µr is compared to a constant return of 0.008 and the monthly volatility σr is compared to

0.03. The average monthly flux µf is compared to a line of slope of -0.5 and the money flux

volatility σf is compared to a line of slope -0.35. Thus absent any flow of money in or out

of funds, performance is independent of size, as dictated by market efficiency. In contrast,

both the mean and the standard deviation of the money flows of funds decrease roughly as

a power law as a function of size.
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date 12/2005 9/2005 6/2005 3/2005 12/2004

β1 0.10± 0.16 0.40± 0.98 0.27± 0.68 1.17± 4.68 −0.23± 1.24

β2 0.14± 0.27 0.36± 1.20 0.48± 0.83 −0.79± 3.13 −0.65± 2.31

β3 0.28± 0.45 0.01± 1.07 0.33± 0.83 1.79± 3.24 0.60± 2.57

β4 0.56± 0.40 −0.28± 0.85 0.24± 1.27 −0.28± 1.65 0.44± 2.32

β5 0.24± 0.43 −0.25± 1.13 0.21± 0.90 −0.24± 2.95 0.43± 2.49

β6 0.48± 0.38 −0.02± 1.03 0.30± 0.92 1.27± 3.50 0.31± 2.09

β −0.02± 0.02 0.03± 0.05 0.01± 0.05 0.14± 0.21 0.06± 0.15

Table 3.2: Cross-sectional regression coefficients of the monthly fund flow, computed for

several months, against the performance in past months, as indicated in Eq. 3.25. The

regression was computed cross-sectionally using data for 6189 equity funds. For example

the entry for β1 in the first (from the left) column represents the linear regression coefficient

of the money flux at the end of 2005 on the previous month’s return. The errors are 95%

confidence intervals.

Figure 3.3 gives an overview of the size dependence for both the returns ∆r and the money

flux ∆f . The two behave very differently. The returns ∆r are essentially independent of

size17. This is expected based on market efficiency, as otherwise one could obtain superior

performance simply by investing in larger or smaller funds (Malkiel, 1995b). This implies

that equity mutual funds can be viewed as a constant return to scale industry (Gabaix

et al., 2006). Both the mean µr = E[∆r] and the standard deviation σr = Var[∆r]
1/2 are

constant; the latter is also expected from market efficiency, as otherwise it would be possible

to lower one’s risk by simply investing in funds of a different size.

In contrast, the money flux ∆f decreases with size. Both the mean money flux µf =

E[∆f ] and its standard deviation σf = Var[∆f ]1/2 roughly follow a power law over five

orders of magnitude in the size s. This is similar to the behavior that has been observed

for the growth rates of other types of firms (Stanley et al., 1995, 1996; Amaral et al., 1997a;

Bottazzi and Secchi, 2003a). As already discussed in footnote 9, there is a large body

of theory attempting to explain this (and we believe our own theory presented elsewhere

provides the correct explanation (Schwarzkopf et al., 2010)).

17The independence of the return ∆r on size is verified by performing a linear regression of µr vs. s for

the year 2005, which results in an intercept β = 6.7 ± 0.2 × 10−3 and a slope α = 0.5 ± 8.5 × 10−8. This

result implies a size independent average monthly return of 0.67%.
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variable 1991- 1998 1991- 2005

ω0 0.14 −0.37

σω 3.02 3.16

σ0 0.35± 0.02 0.30± 0.02

β 0.31± 0.03 0.27± 0.02

σ∞ 0.05± 0.01 0.05± 0.01

R2 0.93 0.96

µ0 0.15± 0.01 0.08± 0.05

α 0.48± 0.03 0.52± 0.04

µ∞ 0.002± 0.008 0.004± 0.001

R2 0.98 0.97

Table 3.3: Model parameters as measured from the data in different time periods. ω0 and

σ2
ω are the mean and variance of the average (log) size of new funds described in (3.4). σ0,

β and σ∞ are the parameters for the size dependent diffusion and µ0, α and µ∞ are the

parameters of the average growth rate (3.24). The confidence intervals are 95% under the

assumption of standard errors. The adjusted R2 is given for the fits for each period. The

time intervals were chosen to match the results shown in Fig. 3.5.

As explained in Section 3.2.3, the steady state solution is qualitatively different depend-

ing on whether the parameters µ∞ and σ∞ in Eq. 3.24 are positive. As can be seen from

the fit parameters in Table 3.4.3, based on data for ∆s alone, we cannot strongly reject

the hypothesis that the drift and diffusion rates vanish for large sizes, i.e. µ∞ → 0 and

σ∞ → 0. However, because the size change ∆s can be decomposed as ∆s = ∆r + ∆f ,

efficiency dictates that ∆r is independent of size, and since E[∆r] > 0, we are confident

that neither µ∞ nor σ∞ are zero.

As we showed in Table 3.4.3, the correlation between the returns ∆r and the money

flux ∆f is small. This implies that the standard deviations can be written as a simple

sum. Since ∆r is independent of size and both the mean and standard deviation of ∆f are

power laws, this indicates that Eq. 3.2.3 is a good approximation, and that µ∞ and σ∞

are both greater than zero. As illustrated in Figure 3.4, these functional forms fit the data

reasonably well, with only slight variations of parameters in different periods, as shown in
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Figure 3.4: An illustration that the empirical power law-based model provides a good fit

to the distribution of mutual funds. (a) The standard deviation σ of the logarithmic size

change ∆s = ∆(log s) of an equity fund as a function of the fund size s (in millions of

dollars). (b) The mean µ of ∆s = ∆(log s) of an equity fund as a function of the fund size

s (in millions of dollars). The data for all the funds were divided into 100 equally occupied

bins. µ is the mean in each bin and σ is the square root of the variance in each bin for the

years 1991 to 2005. The data are compared to a fit according to (3.24) in Figures (a) and

(b) respectively.

Table 3.4.3.

3.5 Testing the predictions of the model

In this section we use our calibrated model of the entry, exit and size-dependent growth

processes to simulate the evolution of the firm size distribution through time. We are

forced to use a simulation since, once we include the size dependence of the diffusion and

drift terms as given in equation (3.24), we are unable to find an analytic solution for the

general diffusion equation (Eq. (3.6)). The analytic solution of the size independent case

(Eq. (3.17)) gives the correct qualitative behavior, but the match is much better once one

includes the size dependence.

The simulation was done on a monthly time scale, averaging over 1000 different runs to

estimate the final distribution. As we have emphasized in the previous discussion the time

scales for relaxation to the steady state distribution are long. It is therefore necessary to

take the huge increase in the number of new funds seriously. We begin the simulation in

1991 and simulate the process for varying periods of time, making our target the empirical

distribution for fund size at the end of each period. In each case we assume the size
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Figure 3.5: The model is compared to the empirical distribution at different time horizons.

The left column compares CDFs from the simulation (full line) to the empirical data (dashed

line). The right column is a QQ-plot comparing the two distributions. In each case the

simulation begins in 1991 and is based on the parameters in Table 3.4.3. The first row

corresponds to the years 1991-1998 and the second row to the years 1991-2005 (in each case

we use the data at the end of the quoted year).

distribution for injecting funds is log-normal, as discussed in Section 3.4.1.

To compare our predictions to the empirical data we measure the parameters for fund

entry, exit and growth using data from the same period as the simulation, summarized

in Table 3.4.3. A key point is that we are not fitting these parameters on the target

data for fund size18, but rather are fitting them on the individual entry, exit and diffusion

processes and then simulating the corresponding model to predict fund size. One of our

main predictions is that the time dependence of the solution is important. In Figure 3.5

we compare the predictions of the simulation to the empirical data at two different ending

times. The model fits quite well at all time horizons, though the fit in the tail is somewhat

less good at the longest time horizon. Note, that our simulations make it clear that the

fluctuations in the tail are substantial. The deviations between the prediction and the data

are thus very likely due to chance – many of the individual runs of the simulation deviate

18It is not our intention to claim that the processes describing fund size are constant or even stationary.

Thus, we would not necessarily expect that parameters measured on periods outside of the sample period

will be a good approximation for those in the sample period. Rather, our purpose is to show that the random

model for the entry, exit and growth processes can explain the distribution of fund sizes.
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from the mean of the 1000 simulations more than the empirical data does.

3.6 Conclusions

We have argued that the mutual fund size distribution is driven by market efficiency, which

gives rise to a random growth process. The essential elements of the growth process are

multiplicative random changes in the size of existing funds, entry of new funds, and exit

of existing funds as they go out of business. We find, however, that entry plays no role

at all other than setting the scale; exit plays a small role in thickening the tails of the

distribution, but this acts only on a very slow timescale. The log-normality comes about

because the industry is young and still in a transient state, and the exit process has not had

a sufficient time to act. In the future, if the conditions for fund growth and exit were to

remain stationary for more than a century, the distribution would become a power law. The

thickening of the tails happens from the body of the distribution outward, as the power law

tail extends to successively larger funds. We suspect that the conditions are highly unlikely

to remain this stationary, and that the fund size distribution will remain indefinitely in its

current log-normal, out of equilibrium state.

There is also an interesting size dependence in the growth rate of mutual fund size,

which is both like and unlike that of other types of firms. Mutual funds are distinctive in

that their overall growth rates can be decomposed as a sum of two terms, ∆s = ∆f + ∆r,

where ∆f represents the flow of money in and out of funds, and ∆r the returns on money

that is already in the fund. The money flow ∆f decreases as a power law as a function of

size, similar to what is widely observed in the overall growth rates for other types of firms.

Furthermore the exponents are similar to those observed elsewhere. The returns ∆r, in

contrast, are essentially independent of fund size, as they must be under market efficiency.

As a result, for large sizes the mean and variance of the overall growth are constant – this is

unlike other firms, for which the mean and variance appear to go to zero in the limit. As we

discuss here, this makes a difference in the long-term evolution: While the exit process is

driving mutual funds to evolve toward a heavier-tailed distribution, other firms are evolving

toward a thinner-tailed distribution. Again, though, due to the extremely slow relaxation

times, we suspect this makes little or no difference.

Our analysis here suggests that the details of investor preference have a negligible in-
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fluence on the upper tail of the mutual fund size distribution, except insofar as investors

choose funds so as to enforce market efficiency. Investor preference enters our analysis only

through ∆f , the flow of money in and out of the fund. Since ∆f becomes relatively small

in the large size limit, the growth of large funds is dominated by the returns ∆r, whose

mean and variance are constant. Thus the upper tail of the size distribution is determined

by market efficiency, which dictates both that returns are essentially random, and thus

diffusive, and that there is no dependence on size. As a result, for large fund size investor

preference doesn’t have much influence on the growth process. This is reinforced by the fact

that the statistical properties of the money flux ∆f are essentially like those of the growth

of other firms.

How can size-dependent transaction costs be compatible with our results here? We

have performed an empirical study, which we will report elsewhere, that demonstrates that

as size increases fund managers maintain constant after-transaction cost performance by

lowering fees, reducing trading and diversifying investments. This is in contrast to the

theory proposed by Berk and Green (2004) that fund size is determined by the skill of fund

managers, i.e. that better managers attract more investment until increased transaction cost

causes excess returns to disappear. Both our theory and that of Berk and Green are based

on market efficiency. The key difference is that we find that the flatness of performance

vs. size is enforced by simple actions taken by fund managers that do not influence the

diffusion of fund size. In contrast, the Berk and Green theory requires choices by investors

that directly influence fund size, and thus is not compatible with the free diffusion that we

have prevented empirical evidence for here. In their theory transaction costs and investor

skill determine fund size; in our theory, neither plays a role.

We would like to stress that, while we are fitting econometric models to the entry, exit

and growth processes, and calibrating these models against the data, we are not fitting

any parameters on the size data itself. This makes it challenging to get a model that fits

as well as the model shown in Fig. 3.5. Of course, we have only demonstrated that the

random process model is sufficient to explain fund size; we cannot demonstrate that other

explanations might not also be able to explain it. However, the assumptions that we make

here are simple and natural. The stochastic nature of fund growth is not surprising: It is

well known that past returns do not predict future returns. Thus even if investors chase

returns, they are chasing something that is inherently random. We believe that this is at
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the core of why our model works so well. Our demonstration that a good explanation can

be obtained based on market efficiency alone, which requires weaker assumptions than full

rationality, provides a theory that is robust and largely independent of the details of human

choice.

3.A Inadequacy of Gini coefficients to characterize tail be-

havior
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Figure 3.6: The Gini coefficients as described in equation (3.26) are calculated numerically

for a lognormal distribution and a Pareto distribution. The Gini Coefficients were calcu-

lated for different parameter values and are plotted as a function of the resulting standard

deviation. For the Pareto distribution (footnote 20) we used s0 = 0.01 and different ex-

ponents α in the range (2, 5], i.e. a finite second moment. The lower standard deviation

σ = 0.0033 corresponds to α = 5 and σ = 1916.17 corresponds to α→ 2. For the lognormal

we used a = 0 and different b in the range [0.1, 2.8] where b = 0.1 corresponds to σ = 0.101

and b = 2.757 corresponds to σ = 2000.

The Gini coefficient (Gini, 1912) is commonly used as a measure of inequality but as

we show here it is not suitable for distinguishing between highly skewed distributions when

one wishes to focus on tail behavior. For a non negative size s with a CDF F (s), the Gini

coefficient G is given by

G =
1

E[s]

∫ ∞
0

F (s)(1− F (s))ds, (3.26)

where E[s] is the mean (Dorfman, 1979). To illustrate the problem we compare the Gini
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coefficients of a Pareto distribution to those of a lognormal19. For a Pareto distribution

with tail parameter α the m > α moments do not exist. This is in contrast to the lognormal

distribution, for which all moments exist. Naively one would therefore expect that the Gini

coefficient of the Pareto distribution (see footnote 18) to be larger than that of a lognormal

since it has a heavier upper tail. This is true for a Pareto distribution with α < 2, for

which the Gini coefficient is one due to the fact that the standard deviation does not exist.

However, when α < 2, for large standard deviations the Gini coefficient of the log-normal

is greater than that of the Pareto, as shown in Figure 3.6. In order to compare apples to

apples in Figure 3.6 we plot the Gini coefficient as a function of the standard deviation

(which is a function of the distribution parameters). For a Pareto distribution with a finite

second moment (α > 2) the lognormal has a higher coefficient.

Thus, even though the Gini coefficient is frequently used as measure for inequality, it is

not a good measure when one seeks to study tail properties, particularly for comparisons of

distributions with different functional representations. The reason is that the Gini coefficient

is a property of the whole distribution, and depends on the shape of the body as well as

the tail. Similar remarks apply to the Herfindahl index.

3.B Simulation model

We simulate a model with three independent stochastic processes. These processes are

modeled as Poisson process and as such are modeled as having at each time step a probability

for an event to occur. The simulation uses asynchronous updating to mimic continuous

time. At each simulation time step we perform one of three events with an appropriate

probability. These probabilities will determine the rates in which that process occurs. The

probability ratio between any pair of events should be equal to the ratio of the rates of

19The CDF of the Pareto distribution is defined as

Fp(s) = 1−
(
s

s0

)−α
, (3.27)

where s0 is the minimum size and α is the tail exponent. The CDF of a lognormal is given by

Fln(s) =
1

2

(
1 + Erf

[
log(s)− a√

2b

])
, (3.28)

where a is a location parameter and b is the scale parameter.
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the corresponding processes. Thus, if we want to simulate this model for given rates our

probabilities are determined.

These processes we simulate are:

1. The rate of size change taken to be 1 for each fund and N for the entire population.

Thus, each fund changes size with a rate taken to be unity.

2. The fund exit rate λ which can depend on the fund size.

3. The rate of creation of new funds ν.

Each new fund enters with a size ω with a probability density f(ω).

Since some of these processes are defined per firm as opposed to the creation process, the

simulation is not straightforward. We offer a brief description of our simulation procedure.

1. At every simulation time step, with a probability ν
1+λ+ν a new fund enters and we

proceed to the next simulation time step.

2. If a fund did not enter then the following is repeated (1 + λ)N times.

a. We pick a fund at random.

b . With a probability of λ
1+λ the fund enters.

c. If it is not annihilated, which happens with a probability of 1
1+λ , we change the

fund size.

We are interested in comparing the simulations to both numerical and empirical results.

The comparisons with analytical results are done for specific times and for specific years

when comparing to empirical data. In order to do so, we need to convert simulation time

to “real” time. The simulation time can be compared to “real” time if every time a fund

does not enter we add a time step. Because of the way we defined the probabilities each

simulation time step is comparable to 1/(1 + λ) in “real” time units. The resulting “real”

time is then measured in what ever units our rates were measured in. In our simulation we

use monthly rates and as such a unit time step corresponds to one month.
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Chapter 4

Mutual fund trading costs

It is well established amongst practitioners that market impact induces diseconomies of

scale in mutual funds. Nevertheless, market impact and its detrimental effect on mutual

fund performance has yet to be fully accepted in the academic world. Here we show that

market impact is not unique to financial markets but rather that for any market the laws of

supply and demand dictate its existence. We argue using the CRSP holdings dataset that

mutual funds trade mostly with counter-parties outside the industry and, assuming that

mutual funds act as liquidity takers, their performance suffers due to market impact. We

further provide an approximate functional form for mutual funds’ trading costs.

4.1 Introduction

Trading costs can turn a profitable strategy into an unprofitable one as a fund gets bigger

and therefore should be regarded as a driver of fund behavior. Therefore, it is important

to understand their role in mutual fund dynamics. In this section we introduce and discuss

some of the empirical work on trading costs as well as develop their role in the mutual fund

industry.

Trading costs are comprised of both direct and indirect costs. Direct costs, which include

brokerage and exchange fees, can be easily measured and controlled. Indirect costs, on the

other hand, are not easily quantified. For large trades the most significant of them is the

price impact, which is the effect the trade itself has on the price. The importance of each of

the two cost components varies with the size of the fund. Direct costs are mainly fees paid

for trading and as the fund grows it can negotiate lower fees. What this means is that the

per dollar direct costs decrease with the size of the fund and can become negligible for large

funds. Market impact, however, grows with the size of the trade and if the fund’s position

size increases as it grows then this results in an increasing per dollar costs. Thus for small
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funds, direct costs are of most concern while for larger funds market impact dominates. As

a result, trading costs can be treated as a source of diseconomies of scale.

It is clear to practitioners and academics that paper trading is always more profitable

than actual trading. Leinweber (2002) gives an explicit example of the performance dif-

ference between a fund’s paper portfolio and its real portfolio. Nevertheless, the academic

views on the role of trading costs in mutual funds is surprisingly polarized. Some, such

as Edelen et al. (2007), argue that they are a major source of diseconomies of scale, while

others argue that they are negligible at best. For instance, Chen et al. (2004) argue that

they are not that important as funds can overcome increasing trading costs by splitting

into independent sub funds and keep the (per dollar) trading costs constant. Another view,

given in Fama and French (2010), argues that equilibrium accounting dictates that funds

on average should not feel price impact. We address the equilibrium accounting view in

this chapter and show empirically that it does not hold for mutual funds.

4.2 Market impact and the law of supply and demand

Market impact is usually attributed to market micro structure. However, market impact is

present in any transaction as it results directly from the law of supply and demand. Stated

simply: leaving all else equal, when a market participant changes her demand function this

results in a change in the price.

We consider a simple case of a market for one stock with two participants. Given that

participant i has a demand function Di(p) and that there are N shares, the price p∗ of a

single share is determined through market clearing as

D1(p∗) +D2(p∗) = N. (4.1)

If participant 1 changes his demand function to D1(p) + δ(p) the new price p̂ is given by

D1(p̂) + δ(p̂) +D2(p̂) = N. (4.2)

For small changes D1(p)� δ(p) and a slow varying δ(p), we can approximate p̂ = p∗+ ∆p,
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where p∗ � ∆p such that we can approximate (4.3) as

D1(p∗) + ∆p
∂D2(p∗)

∂p
+ δ(p∗) + ∆p

∂δ(p∗)

∂p
+D2(p∗) + ∆p

∂D2(p∗)

∂p
= N, (4.3)

where ∂D2(p∗)
∂p is the derivative estimated at p = p∗. By using the market clearing condition

(4.1) for p∗ we get

∆p =
δ(p∗)

λ
, (4.4)

where λ can be thought of as the liquidity and is defined as

λ = −[
∂δ(p∗)

∂p
+
∂D1(p∗)

∂p
+
∂D2(p∗)

∂p
]. (4.5)

Assuming that the demand functions are decreasing function of the price, the liquidity is

positive.

Thus, for a positive change in demand by participant 1, i.e. δ > 0 corresponding to

initiating a buy trade, the price of the asset will go up according to (4.4). Similarly, for

δ < 0, corresponding to selling an asset, the price of the asset will go down. This price

change can be thought of as market impact. This means that for the initiator of a trade,

the price changes adversely and the passive agent (agent 2), which did not change her

demand, gained on the expense of the other agent. The initiating agent can be thought of

as liquidity taker and the passive agent as a liquidity provider and what we have shown

is that supply and demand alone dictated that liquidity providers gain at the expense of

liquidity providers.

4.3 Market impact under equilibrium accounting

In the previous section we showed that market impact for a single trade results directly

from the law of supply and demand. To persuade critics that market impact is truly

important we must address the argument that the price impact of a single trade does

not necessarily translate to an overall performance loss of a fund. Research as recent as

Fama and French (2010) suggests that on aggregate (before fees) mutual funds have zero

over performance with respect to the market. Therefore, one can mistakenly assume that

mutual fund performance is a zero sum game where if one fund loses to impact another
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gains. A notion often referred to as equilibrium accounting. One can then argue that, on

average, market impact should not affect performance since lose on trades is recuperated

from other market participants’ trading.

Equilibrium accounting can also lead to the mistaken arguement that if the market is a

zero sum game then due to market impact, active investing is a negative sum game. We do

not agree with such an argument. The fact that net losses equal to the total net gains does

not mean that active investing is a negative sum game. We argue that instead of dividing

the market into active and passive investors we argue here that the market should be divided

into liquidity takers and liquidity providers. For such a distinction, equilibrium accounting

dictates that on average liquidity providers gain on the expense of liquidity takers, even

though both can be active traders.

To show this we investigate a simple toy model where two agents trade a single com-

modity. The impact can be intuitively thought of as resulting from the law of supply and

demand. Stated simply: leaving all else equal, when a market participant changes her de-

mand function this results in a change in the price. Each time a trade is initiated by a sell

order the price moves down p(t+1) = p(t)−1 and when it is initiated by a buy it moves up

p(t+ 1) = p(t) + 1. For simplicity, the agents trade a single issue and ∆p = 1. As expected

from equilibrium accounting, when one participant initiates a buy the price moves up and

the seller gaines from the transaction.

To investigate the long term gains and losses we take a stochastic approach: At each time

step, participant 1 will choose to trade with probability ν. If participant 1 is in possession

of the asset then he will chose to sell and buy otherwise. Similarly participant 2 will choose

to trade with probability 1− ν. The probabilities are defined such that each time step one

of the participants initiates a trade. The expected price impact of buying an asset by agent

1 is then given by

E[∆p|buy] = ν − (1− ν) = 2ν − 1, (4.6)

where the first term is for a buy initiated by participant 1 with probability ν and the second

term is for a trade initiated by participant 2 selling with probability 1 − ν. Similarly, the

expected price impact of buying an asset by participant 1 is given by E[∆p|sell] = 1− 2ν.

Given that the price at time t is p and that participant 2 is in possession of the asset,
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participant 1 will buy the asset at an expected price of

E[p(t+ 1)] = p+ 2ν − 1

and will sell it at time t+ 2 at a price

E[p(t+ 2)] = E[p(t+ 1)] + 1− 2ν.

As we expect from equilibrium accounting, the expected price at time t+ 2 is equal to that

at time t

E[p(t+ 2)|p(t) = p] = p. (4.7)

However, even though one participant’s gain is another’s loss, participant 1 gained ∆1,

which is given by

∆1 = E[p(t+ 2)]− E[p(t+ 1)] = 1− 2ν (4.8)

and the participant 2 gained

∆2 = E[p(t+ 1)]− p(t) = 2ν − 1. (4.9)

The net expected gain, ∆1 + ∆2, is always zero in agreement with equilibrium accounting

but it does not vanish separately for each participant. The individual gains depend on the

probability of a participant to initiate trades and will vanish only for the case of complete

symmetry ν = 1/2 where each agent is as likely to initiate a trade. For ν > 1/2 participant

1 acts as a liquidity taker more frequently than as a provider and will lose on average to

participant 2 who mostly acts as a liquidity provider.

4.4 Herding and equilibrium accounting of mutual fund trad-

ing

So far we have shown that one can separate the market into two types of participants,

where liquidity providers on average gain at the expense of liquidity takers. The claim

that mutual funds feel no impact requires that they act as both liquidity providers and

liquidity takers. Equilibrium accounting suggests that this scenario can occur if they are
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trading solely between themselves (Fama and French, 2010). But, as we now show, they do

not trade solely with each other but rather trade mostly with counterparts outside of the

industry1. This means that if we assume that mutual funds act as liquidity takers then, on

average, they lose to market impact.

To study this, we examine the directionality of trades, i.e. what fraction of the total

trading volume in each asset is carried out within the industry. We define trading in a

stock as one directional if all the funds that traded that stock in a given quarter were doing

the same thing: either buying or selling that stock but not both. Trading in a stock is

non-directional if all trades for a given quarter were carried out between mutual funds with

one mutual fund selling to another.

To quantify the directionality of mutual fund trading we define the directionality param-

eter ρj(t) for stock j at time t. The directionality can have values in the range ρj(t) ∈ [0, 1]

ranging from non-directional trading (ρj(t) = 0) to complete directionality ρj(t) = 1. We

denote as vij(t) the volume (in US dollars) that fund i traded in asset j at time t. The volume

vij(t) can be negative corresponding to the fund selling the asset or positive correspond-

ing to the fund buying the asset. This leads to the natural definition of the directionality

parameter 2

ρj(t) =
vnetj (t)

vtotj (t)
. (4.10)

The total volume vtotj (t) traded in an asset j at time t is defined as

vtotj (t) =
∑
i

|vi,j(t)|, (4.11)

where the summation is over all funds. Similarly the net volume vnetj (t) traded is given by

vnetj (t) =

∣∣∣∣∣∑
i

vi,j(t)

∣∣∣∣∣ . (4.12)

To get a feel for the directionality parameter, we investigate the expected value of ρ

for three hypothetical scenarios: funds trading solely with each other, funds trading solely

1Using the CRSP holdings data set described in Appendix 5.A we can approximate mutual fund trading

by comparing the change in its reported portfolios.
2The directionality parameter is similar to the dollar ratio trade imbalance defined by Lakonishok et al.

(1992).
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with counter-parties outside the industry and funds trading with any counter-party with

equal probability. If the mutual fund industry was a closed system, such that the funds

were trading solely with each other, then we expect ρj(t) =
∑

i vi,j(t) = 0 for all assets

j. If, on the other hand, funds trade solely with counter-parties outside the industry then

we expect that for all assets |
∑

i vi,j(t)| =
∑

i |vi,j(t)|, which corresponds to ρj(t) = 1. For

the case were funds trade with any counter-party with equal probability, the value of ρj(t)

depends on the size of the mutual fund industry relative to the entire market. Since mutual

funds hold approximately 25% of US equity3 we expect that, on average, 75% of trades will

be made with counter-parties outside the industry while 25% of the trades are with other

funds. What this means is that half the trades volume will be between funds which results

in ρj(t) = 0.5. We summarize this as

ρj(t) =


0 Trading solely amongst funds

0.5 Uncorrelated fund trading

1 Completely correlated trading

(4.13)

To investigate the actual behavior of the industry we compute the values of ρj(t) using

the empirical holdings data. For each quarter in the data set we computed ρj for all the

assets 4 and computed the probability density P (ρ) and the cumulative distribution function

P (ρ < X), 5 the probability of a randomly picked asset j′ to have a value ρj′(t) < X. The

results are given in Figure 4.1. From the CDF we can infer that most assets have ρ > 0.62,

suggesting that mutual fund trading tends to be correlated and directional. Moreover, the

probability density appears to have a peak near ρ ≈ 0.96 which suggests that many assets

appear to have one directional trading. What this means is that mutual fund trading is

correlated such that if one fund acts in a certain way, i.e. buys or sells an asset, the others

will follow suit.

To test the competing hypothesis of uncorrelated fund trades, we use a bootstrap simu-

lation where each trade is assigned a random sign with equal probability to buy or sell. We

3As described in the investment company fact book available online at http://www.ici.org.
4To calculate ρj(t) we used only assets with more than ten trades in that quarter.
5The density and cumulative distributions were estimated using a kernel smoothing technique with a

normal kernel.
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Figure 4.1: Here we show that funds mainly trade with counter-parties outside the industry

by estimating the distribution of ρ as given by equation (4.10). The results (◦) are compared

to a bootstrap simulation of random fund trades where each trade receives a sign with equal

probability (�). Left: The cumulative distribution P (ρ < X) for the volume traded per

asset in a quarter. Right: The probability density P (ρ) for the volume traded per asset in

a quarter.

compare the results with a bootstrap estimation of a closed industry in which each trade

was assigned with equal probability a random sign, corresponding to either buying or sell-

ing. The results are compared to the empirical distributions in Figure 4.1. The bootstrap

estimation is strikingly different than the empirical results; the PDF has a peak around

ρ ≈ 0.08 and the CDF suggests that most assets have ρ < 0.32. There are two reasons

why ρ is not strictly zero; the trades have different sizes and some assets have a relatively

small number of trades. To test the robustness of these results with respect to the random

trade signs, the estimation of the PDF and CDF was repeated 100 times and for each ρ we

calculated the standard error of p(ρ) and P (ρ < X). The standard errors are plotted in the

figure but they are smaller than the marker and can’t be seen.

The results, as we have shown here, suggest that not only do mutual fund trade mainly

with counter-parties outside the industry but that mutual fund strategies are correlated. It

seems that funds tend to herd in the sense that if one fund buys a certain stock the other

funds tend to do the same, that is, if they trade that stock it will be to buy it in agreement

with past work 6.

6Past work has shown that mutual funds do tend to herd albeit mainly in smaller cap stocks (see Wermers
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4.5 A functional form for market impact

What we have shown so far is that mutual funds are affected by market impact. We now

turn to try and estimate the magnitude and components of market impact. Our goal in this

section is to derive a good approximation for the functional form of mutual fund’s trading

costs.

4.5.1 Market impact of packaged or block trades

The functional form of the impact of a single trade has been extensively studied both

theoretically and empirically. Kyle (1985) in a pioneering work argued that the per dollar

impact increases linearly with the size of the trade while more recent work postulates that

the impact increases as the square root of size7. For a recent review on price impact see

Bouchaud et al. (2008). This research has enabled market practitioners to predict, within

reasonable accuracy, the cost of a trade (Torre, 1997). For large institutional investors,

however, the story is a bit more complicated. Institutional investors such as mutual funds

trade large positions. Due to liquidity constraints large positions cannot be simply executed

as if they were smaller trades, on which most empirical studies are based. These large orders

are either traded in blocks or split into smaller trades, called packaged trades. The impact

of these trades is harder to estimate as it will depend not only on the size of the package

(or block) but also on the duration of the execution8.

It is important that we have a sensible estimate of the functional form of market impact

since our results are sensitive to its magnitude and to the way it depends on the size of

the fund. In Table 4.1 we provide a short literature review that summarizes the estimated

magnitudes and different functional forms for market impact. From the table, one thing

is clear: market impact is not negligible. The magnitude, for the most part, is the order

of tens of basis points and the functional form χ(v) appears to increase as some power of

the traded volume vβ. Therefore, using these results as a guide, we approximate the price

(1999) and references therein). In more recent work Brown et al. (2009) have shown that funds tend to follow

analysts’ upgrades and downgrades.
7Torre (1997); Kempf and Korn (1999); Farmer and Lillo (2004); Gabaix et al. (2006); Hasbrouck (2009).
8The size dependence of blocks and packaged trades has been studied by (Holthausen et al., 1987, 1990;

Loeb, 1991; Hausman et al., 1992; Keim and Madhaven, 1996; Chan and Lakonishok, 1997; Plerou et al.,

2002; Leinweber, 2002; Moro et al., 2009). The impact was shown to decrease with the duration of the trade

by Dufour and Engle (2000) and more recently by Almgren et al. (2005).
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impact of mutual fund trades as

χ(v) ≈ cvβ, (4.14)

where c is a scale constant. The scale constant c will vary between stocks with different

market cap and liquidity. Regardless of the exact value of the exponent, there is an agree-

ment that impact is a concave function of the volume. This means that the exponent takes

the value β ∈ [0, 1), where β = 0 corresponds to a logarithmic dependence.

4.5.2 Mutual fund trading costs

We estimate the amount of trading costs a fund incurs using the market impact models

described in Section 4.5.1 as a guideline. Neglecting fixed costs the trading cost of trading

a volume v in a given asset is given by the market impact

χ(v) = c v1+β, (4.15)

where v is the dollar value of the trade. If a fund of size s trades in only a single asset and

changes a position once a year then it trades twice a year a volume v = s such that the

trading cost is given by

stCt(st) = χ(st) = c s1+β
t . (4.16)

In a more general case a fund has a turnover ratio λ, defined as the minimum of total sales

or purchases of the asset in a year divided by the average fund size. If the turnover is

smaller than unity λ < 1 then the fund traded only a part of its assets, i.e. traded a volume

v = λs. If the turnover is larger than unity then we can think of it as if the fund traded

v = s (all its assets) λ times. Written more quantitatively, the trading cost for a fund of

size s and a turnover rate of λ is given by

stCt(st, λ) =


λχ(st) if λ ≥ 1,

χ(λ st) if λ < 1.

(4.17)
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Using the definition of χ in equation (5.19) yields

stCt(st, λ) =


c λ s1+β

t if λ ≥ 1,

c (λst)
1+β if λ < 1.

(4.18)

If we assume that the traded volume is divided equally between N assets, i.e. if the total

volume traded by the fund is v then it trades N assets with a volume of v/N in each. Under

such conditions we write the impact as

stCt(st, λ,N) =


c λ

s1+β
t

Nβ if λ ≥ 1,

c (λst)1+β

Nβ if λ < 1.

(4.19)

Since most funds (about 80% of the funds in the data set) have a turnover rate below 1 we

approximate the turnover rate as

C(s, λ,N) = c λ1+β
( s
N

)β
. (4.20)

4.6 Conclusions

We have shown that market impact should not be viewed as a unique phenomenon to the

financial market but rather as something more general. In every market supply and demand

dictates that for an initiator of a trade, the price moves adversely. Instead of dividing the

market into active and passive traders we divided it into liquidity takers and liquidity

providers. The liquidity provider earns, on account of market impact, at the expense of the

liquidity taker.

We argue that market impact as it relates to mutual funds cannot be dismissed on the

basis of equilibrium accounting. To do so we calculated the directionality of mutual fund

trading. What we have shown is that on most assets mutual funds’ strategies tend to be

correlated; at a given quarter a stock is either mostly bought or mostly sold by mutual

funds. This directionality of trading can be also viewed as an indicator for mutual fund

herding.
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4.A Dataset

We use the Center for Research in Security Prices (CRSP) survivor-bias-free mutual fund

data set. We focus on the holdings data set containing holdings data for a subset of the

mutual funds, reported at various dates for the years 2002 to 2009 (excluding the last

quarter of 2009). The dataset contains data on 8487 funds. Out of this universe of funds

we consider only active equity funds, which we define as funds whose portfolio consists of

at least 80% of cash and stocks and have a reported yearly turnover rate larger than zero.

Out of these funds we consider only funds with a real TNA of at least 1 million USD. This

reduces the universe of funds we consider to 1404 funds. For these funds the trades were

estimated by looking at the change in the quarterly reported portfolios.
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Chapter 5

Solving the persistence paradox: a reduced form

model of mutual fund behavior

Mutual funds face diminishing returns to scale as a result of convex trading costs yet there

is no persistence nor a size dependence in their performance. To solve this puzzle we

offer a new framework in which skillful profit maximizing fund managers compensates for

decreasing performance by lowering their fees. We show that mutual fund behavior depends

on size such that bigger funds charge lower fees and trade less frequently in more stocks.

We present a reduced form model that is able to describe quantitatively this behavior. In

addition we offer a functional form for the average before costs performance and for the

trading costs of mutual funds.

5.1 Introduction

Mutual fund performance is paradoxical; while the per dollar trading costs create disec-

onomies of scale which should lead to persistent performance and a fund performance that

decreases with the size, there is no persistence in returns and all funds yield the same

performance, on average, regardless of their size1. In this work we resolve the no perfor-

mance paradox by introducing a new framework for fund behavior in which the manager

compensates for increasing costs by lowering fees in agreement with empirical data.

There are currently two popular explanations for the lack of persistence in the literature;

the first explanation is a trivial no skill and no increasing costs argument while the second

argument is that any over-performance is eroded by increase in costs due to investor inflows.

1The size independent performance has been observed in Schwarzkopf and Farmer (2010b,a) and is

investigated here in Appendix 5.E. Lack of persistence has been documented by Malkiel (1995a) by Carhart

(2009) and others. For a more detailed review on persistence see Berk and Green (2004) and references

therein.
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The first type of explanation argues that on average fund managers have no skill (Fama and

French, 2010) and therefore there should be no persistence in their pre-cost performance.

The lack of after-cost persistence or size dependence requires that the relative trading costs

do not increase with size. One such argument against increasing relative trading costs is

an equilibrium accounting ‘you win some you lose some’ type argument. In Chapter 4 we

argue that for mutual funds the relative trading costs increase with size and therefore this

type of explanation for the performance paradox cannot hold.

The second type of argument was proposed by Berk and Green (2004). In their frame-

work skillful managers generate higher than the benchmark pre-costs performance. Investors

react to over-performance by investing in the fund, which increases its size. The increase

in size results in higher relative trading costs which diminishes the fund’s after-cost perfor-

mance. Thus, it is the performance chasing investors that are responsible for the observed

lack of persistence. While theoretically appealing, we argue in Section 5.4 that, among

other things, investors do not react strongly enough to past performance and conclude that

the Berk and Green argument cannot explain the paradox.

Our solution to the persistence paradox is relatively simple and does not require sophis-

tication from either the investors nor from the fund managers. Even though our solution

seems similar to Berk and Green (2004) it is conceptually different. In our model, investors

have no direct role. The role investors play in our model is indirect. Since funds have to

compete over investors they make sure to have a performance that is as good as that of

its competitors. While it is true that investors have been shown to chase past performance

(Chevalier and Ellison, 1997) we show in Section 5.4 that this relation is very noisy. It

is quite reasonable to assume that investors react to other things such as advertising and

marketing, an assumption supported by Barber et al. (2005). Moreover, Schwarzkopf and

Farmer (2010a) have shown that part of fund growth that results from investor flows shows

universal features observed in firm growth and many other systems. They modelled investor

decisions via a social influence process taking place over the investors social network.

This leads us to the simple model in which the managers’ main agenda is to maximize

the funds profit while remaining competitive. A skillful manager with before costs over-

performance, her alpha, will charge fees such that the after-cost performance is equal to its

competitors. What this means is that persistence is eliminated through fees. This is a very

plausible behavior given that Christoffersen (2001) has shown that managers change fees
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dynamically in reaction to the fund’s relative performance. Thus, this is a simple and very

plausible solution to the persistence paradox that does not require investors to be highly

sophisticated but rather that the fund managers follow a relatively simple strategy.

The manger in our model takes the size of the fund as given and seeks to maximize fees

without hurting the after costs performance. To do so the manager optimizes her strategy to

reduce costs by changing the number of stocks the fund trades in and the trading frequency

as given by the turnover rate. We argue that a strategy with reduced costs can have a lower

alpha which can result in a lower performance. What this means is that for a given fund

size there is an optimal strategy that maximizes the funds’ profits with respect to both

alpha and costs.

To test our model we propose a reduced form model for fund behavior which we fit to

empirical data. The resulting fund behavior, as defined by its expense ratio, 2 the number of

different assets it trades in and the yearly turnover rate are in agreement with the empirically

observed behavior. We show that on average the number of different assets a fund trades in

increases with fund size, the turnover rate and the expense ratio decreases with fund size.

We interpret this as a fund’s reaction to increasing costs; it tries to control them through

diversification and lowering of turnover rates. It compensates for whatever costs cannot be

reduced by lowering its fees. Our reduced form model suggests that approximately 47%

of the compensation is due to turnover rate reduction 3% due to diversification and the

remaining 50% is achieved by lowering fees.

The paper is organized as follows: In Section 5.2 we discuss mutual funds trading costs

and in Section 5.3 we discuss the empirical observations of mutual fund behavior as a

function of size. In Section 5.4 we discuss the Berk and Green framework and its failures

with respect to empirical observations. In Section 5.5 we describe our framework for mutual

fund behavior and in Section 5.6 we test our model with respect to empirical data. Finally,

we conclude in section 5.7.

2The expense ratio is defined as the fraction of the assets under management used for operating expenses,

such as management and advisory fees, overhead costs, and distribution and advertising (12b-1) fees. The

expense ratio does not include brokerage fees incurred by the fund.
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5.2 Performance and trading costs

The after-cost performance of a fund, which is the return for an investor in the fund, can

be written in the following general form

r = α− C − f, (5.1)

where r is defined as the excess return over the average mutual fund performance 3, α is the

fund manager’s skill as translated to an ability to produce excess return, C denotes the per

dollar costs of the fund and f denotes the expense ratio. The excess return for an investor

in a fund, given by (5.1), is a sum of two competing terms: the first is the manager’s skill

and the second is the costs and fees and as we soon show, all of these terms depend on the

size of the fund.

As we describe in Chapter 4, trading costs are a source of diseconomies of scale in

mutual funds and therefore have an important role. Trading costs are comprised of both

direct and indirect costs. Direct costs, which include brokerage and exchange fees, can

be easily measured and controlled. Their relative size decreases as a fund grows and has

more leverage to negotiate better prices. Indirect costs, on the other hand, are not easily

quantified. For large trades the most significant of them is the price impact, which is the

effect the trade itself has on the price. As described in Chapter 4, impact grows with the

size of the trade and if the fund’s position size increases as it grows then this results in an

increasing per dollar costs. Thus for small funds, direct costs are of most concern while for

larger funds market impact dominates.

5.3 Empirical observation of fund behavior

One of the goals of this work is to explain the size dependence of fund behavior observed

in the CRSP holdings dataset for equity funds4. The dataset contains the reported number

of holdings N , the yearly turnover rate5 λ and the expense ratio f for each fund for each

3This is similar to Berk and Green (2004) however we do not make the assumption that mutual fund

average performance is equal to the benchmark.
4We have defined equity funds as funds whose portfolio is comprised of at least 80% cash and stocks. A

more detailed description of the data set can be found in Appendix 5.A.
5The yearly turnover rate is reported yearly and is calculated using the minimum of the total purchases

and the total sales. We use the reported turnover rates even though a better approximation would be the
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quarter. To get better statistical power we aggregate over different years, where for each

year we use the data reported at the end of the second quarter of that year yielding 2190

observations for which we have the three entries: N , λ and f . The average number of

different stocks in the portfolio N , the average yearly turnover rate λ and the average

expense ratio f are plotted as a function of fund size in Figure 5.1. What we see is that

larger funds have a lower expense ratio, they hold more assets and they trade slower than

smaller funds.

In addition to the plots, which enable an easy visualization of the behavior, we sum-

marize in Table 5.1 the data according to size deciles. The number of different assets held

by a fund increases with the size such that funds in the first size decile hold a median of

53 assets compared to 84 for the 10th decile. This is a weak effect and funds do not tend

to increase the number of assets dramatically, in agreement with findings by Pollet and

Wilson (2008). The turnover rate decreases more dramatically with a median turnover rate

of 0.73 for funds in the 1st decile compared to a median turnover rate of 0.28 for funds in

the largest decile. The expense ratio decreases dramatically as well: the median expense

ratio for the 1st decile is 175.5 bps compared to 90 bps for funds in the 10th decile, which is

more than a 50% decrease. From the table and figures the size behavior is clear; compared

to smaller funds, larger funds trade in more assets, they have a lower turnover rate and

they have a lower expense ratio.

We use these summary statistics to emphasize that this is a non-negligible behavior that

needs to be explained. As a teaser for things to come, we added in Table 5.2 a comparison

of the empirical observations to the predictions of our model described in Section 5.5. One

can see that our model is in good agreement with the data and that we are able to explain

these observations.

5.4 The Berk and Green framework

Berk and Green (2004) proposed, in a highly influential paper, a framework in which trading

costs are an increasing convex function of fund size, fund managers are endowed with some

skill, i.e. a before costs alpha and investors are bayesian updaters that use past returns

ratio of half the net trading volume, to the average fund size. To verify that the reported turnover rates are

a reasonable approximation we compared them to the estimated turnover rate from the holdings data and

found them to be proportional.
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Figure 5.1: Fund behavior as a function of size (in millions of real USD). In all three panels the

data was binned into 50 exponentially spaced bins. For each bin the median is quoted and the error

bar corresponds to the mean absolute deviation in the bin divided by the square root of the number

of observations in the bin. Top: The number of assets in the portfolio N . Center: The yearly

turnover rate. Bottom: The yearly expense ratio.
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Decile
size N λ f (bps)

(in millions) data model data model data model

1/10
5.2 53 65 0.73 0.96 176 164

(1.2,10.6) (7,336) (62,66) (0.12,2.62) (0.85,1.23) (76,351) (154,184)

2/10
19 62 67 0.73 0.76 148 146

(12,28) (17,387) (66,68) (0.11,2.85) (0.72,0.83) (75,260) (142,153)

3/10
45 53 69 0.69 0.66 146 136

(30,62) (6,307) (68,70) (0.10,2.41) (0.62,0.71) (39,253) (132,141)

4/10
84 57 70 0.72 0.59 140 129

(66,113) (11,288) (70,71) (0.15,2.57) (0.56,0.62) (67,208) (126,132)

5/10
156 64 72 0.53 0.53 124 122

(120,200) (12,285) (71,72) (0.07,1.70) (0.51,0.56) (75,191) (119,125)

6/10
261 72 73 0.61 0.48 123 117

(208,348) (10,338) (72,73) (0.10,1.75) (0.46,0.50) (49,197) (113,119)

7/10
488 63 74 0.50 0.43 115 110

(364,611) (10,475) (74,75) (0.06,1.62) (0.42,0.46) (49,175) (108,113)

8/10
852 70 75 0.49 0.39 114 104

(646,1146) (6,531) (75,76) (0.08,1.63) (0.37,0.41) (50,158) (102,107)

9/10
1.9 [103] 64 77 0.44 0.34 105 97

(1.2,3.2)[103] (6,364) (76,78) (0.06,1.62) (0.31,0.37) (30,156) (92,101)

10/10
7.4 [103] 84 80 0.28 0.26 90 85

(3.6,67)[103] (9,500) (78,83) (0.05,0.78) (0.17,0.30) (18,133) (68,91)

Table 5.1: Summary statistics of mutual fund behavior and the model behavior calculated

for each size decile. The ‘data’ values for the size (in millions of USD), the number of assets

N , the yearly turnover rate λ and the expense ratio f are calculated from the CRSP holdings

dataset. The ‘model’ values were estimated using parameter values given in Table 5.2 for

fitting scheme Ma . The median value in the corresponding size decile is quoted in each

table entry. The values in parentheses represent the 5th and 95th percentile in each bin.
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to estimate the fund’s alpha. A fund with a positive expected before costs performance

attracts inflows until its size increases to the point where trading costs offset the fund’s

alpha and the after cost performance is zero. Similarly, funds with negative expected before

costs performance experience outflows and are driven out of business. Thus, In equilibrium

their model predicts that even though all remaining funds have a positive alpha there is no

persistence.

Fama and French (2010) argue that Berk and Green’s framework fails because they

concluded that on average they underperform the benchmark. While we agree with Fama

and French that the Berk and Green framework is based on faulty assumptions, we think

that other assumptions are more important. It is important to note that Berk and Green’s

explanation is valid only in equilibrium while Schwarzkopf and Farmer (2010a) have shown

that the industry is in a non-stationary state and given that they calculated a relaxation

time scale of over a century, equilibrium is an invalid assumption. Since their model can

explain the lack of persistence only in equilibrium, it is clearly not the right explanation.

Nevertheless, we list in this section the key assumptions that we think are either false or do

not seem to agree with recent work.

An interesting point arises when one considers the relation between the skill and the

size in light of the size distribution of funds, which Schwarzkopf and Farmer (2010b) have

shown to be log-normal. In the Berk and Green model the equilibrium size of a fund can

be mapped directly to the manager’s alpha. Therefore if one assumes that the industry

is in equilibrium one can back out the implied α distribution using equation (5.28). In

Figure 5.2 we compare the implied alpha distribution to the distribution used by Berk and

Green to empirically test their model. It is clear from the figure that they are qualitatively

different. They are also quantitatively different; the implied distribution has a mean of 14%

and a standard deviation of 20% while Berk and Green used a normal with a mean of 6.5%

and standard deviation of 6%. This means two things; first, the parameter values and skill

distribution used by Berk and Green to validate their fund flows predictions are wrong,

which undermines the validity of their tests. Second the implied skill distribution has a

heavy tail (it is a log-normal distribution) which does not seem plausible yet we cannot

reject their model on account of this.

Second, the Berk and Green argument relies on the fact that investors are rational

Bayesian updaters with infinite pockets that react swiftly to fund performance. What we
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Figure 5.2: Here we show that the empirical size distribution implies a qualitatively dif-

ferent alpha distribution than the distribution used by Berk and Green in their empirical

comparison. The implied alpha distribution was calculated from the size distribution of

equity firms existing at the end of 2007 using equation (5.28) with β = 1, c = 10−3 (for size

in millions) and f = 0.015. The implied distribution has a mean of 14% and a standard

deviation of 20%. The Berk and Green skill distribution is a normal with a mean of 6.5%

and standard deviation of 6.5%. These are the parameter values used in Berk and Green

(2004).
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Figure 5.3: Here we show that investor performance chasing is noisy. Monthly fund flows

are plotted as a function of the past yearly (idiosyncratic) returns. The data is aggregated

for each for the years 1998 to 2007. The data is compared to a linear regression ∆f =

0.06r − 0.014. One can see that even though a trend exists the data is very noisy.

now show is that both of these assumptions are not valid and therefore the lack of persistence

can not be explained by their framework.

According to Berk and Green investors react solely to past performance. However, when

one looks at the relation between past performance and fund flows, as given in Figure 5.3,

it is clear that even though a relationship exists it is very noisy. This leads us to question

the importance of past performance in determining fund flows. Even so, investor money is

very sticky with an average investor tenure in a fund family of 8 years 6. Thus, if the Berk

and Green explanation were true then the whole process would take place in time scales of

years and one would expect to see performance persist for similar time periods.

Another reservation we have with the role investors play in their model is the complicated

tasks that are required of them. There are more than 7000 funds in the US with more than

87 million Americans investing in them. The notion that these investors are capable of

estimating fund performances and picking out over performing funds is utterly ridiculous

and surely not the way people invest. This is strengthened by recent work by Barber et al.

(2005) who suggest that investors react strongly to other things such as advertising and

marketing. Moreover, Schwarzkopf et al. (2010) suggest that investor choices are strongly

influenced by their social network. This leads us to conclude that their investor behavior

does not hold water.

6Taken from the 2010 Investment Company Institute fact book.
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Another key assumption made by Berk and Green is that investors have infinite pockets.

They assume that investors have enough money to invest in all mutual funds regardless of

their estimated skill and the corresponding size. If we use their rational, and their assumed

parameter values, then to ensure efficiency in equilibrium mutual fund sizes have to be very

large. If we aggregate over their hypothesized skill distribution then the resulting size of

the industry is several orders of magnitude larger than it really is. What this means is that

there is not enough money in the industry to ensure efficiency, i.e. that funds’ expected

over-performance vanishes. We discuss this in more depth in Appendix 5.D.

We conclude that in light of the arguments given above, the Berk and Green framework

is qualitatively flawed and fails to describe the data in a consistent way.

5.5 A new framework for fund behavior

Here we develop a framework for mutual fund behavior that is able to explain the lack

of persistence in mutual fund performance in a way that is consistent with the empirical

observations of Section 5.3. Given the arguments on investor fund flows in Section 5.4 we do

not include investor fund flows directly in the model but rather treat them as an exogenous

process. Instead, we focus on the fund manager actions.

In this framework, the fund manager has some skill α and her main objective is to

maximize profits given the current fund size.7 The manager’s constraint is that the fund

has to remain competitive and by that we mean that it must perform as well as the other

funds. We write the fund’s after costs performance r as

r = α− C − f, (5.2)

where we treat r as relative to the industry average at that period. The profit of a fund of

size s is given by

s f = q (α− C − r) . (5.3)

Since the manager would like to maximize her profit she would like to charge as high a fee

as possible. The constraint that the fund has to remain competitive means that the return

to the investor cannot drop below 0. Therefore, for a given α and C the fees the manager

7As the size s of a fund we refer to the dollar value of its total net assets (TNA).
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charges will be the amount that ensures that r = 0, i.e. the after costs performance is equal

to the industry average. 8 Thus the fees charged by a fund are given by

f = α− C. (5.4)

To further maximize the fees without hurting performance, the manager can increase the

before costs performance α and/or decrease the costs C by choosing an appropriate strategy.

For simplicity we define a strategy by N and λ, where N is the number of different assets

held by the fund and λ is the yearly turnover rate. Since both α and C depend on all three

variables s, λ and N , we write the fees as

f(s, λ,N) = α(s, λ,N)− C(s, λ,N). (5.5)

Changing N and λ in order to lower costs can have an adverse effect on α. Increasing N

reduces the average position size which reduces the costs incurred by the fund due to price

impact. However, if we assume that the fund trades in what it thinks are the best performing

stocks, then increasing the number of stocks means that it has to include inferior stocks

in the portfolio, which reduces α. 9 Similarly by decreasing λ the fund reduces costs by

trading less. However, by trading less frequently the fund reacts more slowly to information

and it cannot exploit inefficiencies occurring at higher frequencies. This results in a decrease

in α. Therefore, for a given fund size there is an optimal number of assets Nopt(s) and an

optimal turnover rate λopt(s) for which the fees, given by equation (5.5), are maximal, i.e.

∂f(s, λ,N)

∂N

∣∣∣
λopt,Nopt

= 0 and
∂f(s, λ,N)

∂λ

∣∣∣
λopt,Nopt

= 0. (5.6)

This results in an optimal fee fopt(s) that depends on size and is given by

fopt(s) = α(s, λopt(s), Nopt(s))− C(s, λopt(s), Nopt(s)). (5.7)

Thus, given a functional form for α(s, λ,N) and C(s, λ,N), we can infer fund behavior as

8Christoffersen (2001) has shown empirically that managers dynamically control the amount of fees they

charge through rebates on an initially high fee.
9Increasing N can have a positive effect on the performance when taking risk into account as it increases

the diversification of the portfolio.
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function of size, where the number of positions is given by Nopt(s) the turnover rate λopt(s)

and the fee by fopt(s).

The functional form of skill and costs

Our cost function estimation is based on the approximate functional form of price impact

described in Chapter 4 and in Appendix 5.C of this chapter. The per dollar managed

trading costs for a fund of size s trading N different assets with a yearly turnover ratio λ

is given by

C(s, λ,N) = c λ1+β
( s
N

)β
, (5.8)

where c is a constant that can be interpreted as the annual trading cost of trading a million

USD. The costs increases as a power of the average position size s/N , such that as the

fund gets bigger the costs increase and the after transaction performance suffers. A fund

can decrease those costs by diversifying, i.e. increasing N or by trading less frequently, i.e.

decreasing the turnover rate λ.

As a first approximation for the functional form, we describe α as a product of three

terms

α(s, λ,N) = Q(s)L(λ)N (N).

The first term is the size dependence, the second is the turnover rate dependence and the

third is the number of different assets dependence. We now approximate each one of these

terms using simple economic intuition as a guide.

For the turnover rate term L(λ), we assume that L is an increasing function of the

turnover rate L′(λ) > 0. This is because we assume that a larger turnover rate corresponds

to a larger volume of strategies which translates to more profit opportunities. We further

assume that L is a concave function such that L′′(λ) < 0. Furthermore, if the excess return

of indexing vanishes, then this leads to L(0) = 0, which leads to the following approximation

L(λ) = 1 + log

(
1 +

λ

Λ

)
, (5.9)

where Λ is a scale parameter.

We now turn to N (N), the term describing the dependence of α on the number of assets

held. We expect that the over-performance will decrease with the number of assets held i.e.
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N ′(N) < 0. The reasoning is quite simple. If one sorts the assets according to the expected

over-performance then as we add assets starting at the best performing to the worst the

expected performance of the portfolio decreases. Increasing N can have positive effects on

risk, due to diversification, which we are not considering. We approximate the dependence

on the number of assets as linear

N = 1− N

M
, (5.10)

where M is the maximal number of assets for which over-performance can be achieved. The

linear form is a first order approximation that can be thought of as ordering according to a

linear regression of performance as a function of some predictor.

For the size dependence term Q(s) we have somewhat less economic intuition as to the

proper functional form even whether it should be an increasing or decreasing function of

size. One can argue that skill should increase with size since bigger funds can afford more

and better skilled employees. The skill can also decrease with size as suggested by Stein

(2002) if, for instance, the hierarchical structure of the fund inhibits efficient processing of

soft information which could have been turned into profit. Chen et al. (2004) have found

evidence for such losses which they termed structural losses. As a first approximation we

choose to approximate it as

Q(s) = sδ. (5.11)

Using the above approximations for Q, N and L (equations 5.9–5.11), the fund manager’s

skill is given by

α(s, λ,N) = α0s
δ

(
1 + log(1 +

λ

Λ
)

)(
1− N

M

)
(5.12)

using the functional form of cost described in equation (5.8) the managerial fee is given by

f(s, λ,N) = α0s
δ

(
1 + log(1 +

λ

Λ
)

)(
1− N

M

)
− cλ1+β

( s
N
,
)β
. (5.13)

which has six free parameters out of which four parameters describe alpha: α0, δ, Λ and

M , and two parameters describe the cost: c and β.

Profit maximization

As we now show, the maximization will result in non-trivial size dependence of the fees,

the number of assets and the turnover rate. Plugging in the expressions for C and α in
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Model α0 (bps) β c (bps) δ [10−3] Λ [10−2] M MAR

Ma

60 0.15 67 -31 53 1919
0.38

(58,62) (0.14,0.16) (55,73) (-33,-28) (50,59) (1819,2167)

Mb

66 [0.5] 71 -35 59 821
0.43

(57,71) – (51,84) (-41,-27) (50,68) (721,986)

Table 5.2: A summary of the parameter values resulting from the best fit of the model

to the data. The values in parenthesis represent the 95% confidence interval for each

parameter obtained using the bootstrap technique described in Appendix 5.B. The fit was

conducted by minimizing the median absolute (relative) residual (MAR). A parameter that

was held constant has its value in square brackets.

Ma . The MAR fit of our model described in Section 5.5.

Mb : similar to Ma but holding β = 0.5 fixed.

equations (5.8) and (5.12) into equation (5.3), we get that the fund’s profit is given by

s f(s, λ,N) = α0s
1+δ

(
1 + log(1 +

λ

Λ
)

)(
1− N

M

)
− cλ1+β s

1+β

Nβ
. (5.14)

The first order conditions, described in equation (5.6), for maximizing the profit (5.14)

results in the following set of equations

λβopt(Λ + λopt) =
α0

c(1 + β)

Nβ
opt(1−Nopt/M)

sβ−δ
(5.15)

N1+β
opt =

βcM

α0

λ1+β
opt s

β−δ

1 + log (1 + λopt/Λ)
.

There is no closed form solution to these equations but for a given size they can be easily

solved numerically. The optimal fees can then be calculated by using equation (5.7). Thus,

we have a reduced form model that describes the behavior of the fund as given by λopt(s),

Nopt(s) and fopt(s). In the next section we compare the predictions of this model to the

empirical data and show that the model fits the data extremely well.
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Figure 5.4: The fund behavior as a function of size is compared to the model predictions. The data

(◦) is compared to the best fit (solid line), with parameter values given in Table 5.2 for modelMa .

In all three panels the data was binned into 50 exponentially spaced bins. For each bin the median

is quoted and the error bar corresponds to the mean absolute deviation in the bin divided by the

square root of the number of observations in the bin. Top: The number of assets in the portfolio (◦)

is plotted as a function of the fund size (in millions). The data is compared to the MAR solution for

Nopt. Center: The turnover rate (◦) is plotted as a function of the fund size (in millions). The data

is compared to the MAR solution for λopt. Bottom: The expense ratio (◦) is plotted as a function

of the fund size (in millions). The data is compared to the MAR solution for f(λopt, Nopt, q).
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5.6 Empirical verification of the model

In this section we show that the observed fund behavior can be described by our model;

by fitting Nopt(s), λopt(s) and f(λopt, Nopt, s) to the data according to equations (5.14) and

(5.15). The fitting procedure is carried out such that we find the parameter values that

minimized the median absolute residual (MAR) 10. The result of the fitting procedure is an

estimation of the parameters α0, β, c, δ, Λ and M . It is important to emphasize that we

are fitting with respect to all three observables N , λ and f (6270 data points in total). The

fitting procedure was carried out twice where in the second time we hold β = 0.5 fixed. The

different fits are denoted as schemes Ma and Mb respectively. The resulting parameter

values for, α0, β, c, δ, Λ and M are described in Table 5.2.

Scheme Ma corresponds to the most general fit where all 6 parameters are allowed to

vary. This fits the data very well as can be seen in Figure 5.4 where we compare the best fits

to the binned data. To try and gauge the capability of the model to describe the data we

look not only on the resulting goodness of fit but also on the parameter values given their

economic meaning. For instance, the number of assets above which no over-performance is

possible is M = 1919 which is about a quarter of the approximately 8000 stocks traded in

the NYSE 11. This is a relatively large number but is still reasonable.

An important consequence of this fitting procedure is that it results in an estimation of

the cost function. The fitted value for the cost function scale parameter is c ≈ 66 (bps),

a value which is close to the estimates reviewed in Chapter 4. The exponent of the cost

function was found to be β ≈ 0.15, a value that is close to some of the estimates given in

Table 4.1 in Chapter 4. This gives us an estimation of the costs incurred by a fund of a

given size, with N assets, and turnover rate λ.

There is an increasing amount work, both empirical and theoretical, that argues for the

square root law, i.e. β = 0.5, a value which is significantly different than our estimation. To

this end we carried out the fitting procedure again while holding β = 0.5 fixed, which we

denote sceme Mb . As can be expected holding one parameter fixed results in an inferior

10We chose to use a median absolute residual (MAR) optimizing scheme because of the non-normal nature

of the residuals. The residuals distribution is heavier tailed than a normal and skewed such that most of the

large fluctuations tend to be for funds with large N and large λ. The fitting procedure is described in more

detail in Appendix 5.B.
11Taken form the NYSE website www.nyse.com.
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fit when considering the value of the MAR (as can be seen in Table 5.2). However, the

resulting parameter estimation of M ≈ 821 has a greater appeal on an intuitive level and

therefore might be an argument for considering schemeMb even though it offers an inferior

fit. We expand on this point later on.

In both fitting schemes Ma and Mb our parameter estimations resulted in a weak size

dependence of skill with δ ≈ −0.03. This value is negative on a statistically significant level.

What this means is that holding all else equal funds have a decreasing ability to create pre-

cost excess returns. For instance a large fund with net assets of 100 billion USD can produce

30% less excess returns compared to a similar fund that manages solely 1 million USD. This

is in line with the results of Chen et al. (2004) who call this organizational loss.

To conclude, we have shown that our proposed model is capable of explaining the ob-

served mutual fund behavior. Moreover, the resulting parameter values, summarized in

Table 5.2, are sensible with respect to their economic content. In the following section we

examine the implications of the results by estimating performance loss and trading costs

incurred by funds of different sizes.

5.6.1 Estimating performance loss and costs

In this section we examine the implied costs and performance loss as a function of fund size.

To do so we use the fitted parameters given in Table 5.2 to estimate the cost and alpha,

the pre-transaction cost performance, as given by equations (5.8) and (5.12) for each of the

funds in the data base. The results for each size decile are summarized in Table 5.3. What

these results show is that larger funds suffer a performance loss relative to smaller funds,

i.e. alpha is smaller for larger funds than for smaller ones.

For both fitting schemes Ma and Mb the alpha estimation exhibit similar a pattern.

For Ma the estimated performance is 207 bps for the smallest decile and decreases to 162

bps for the largest decile. We conclude that there is a clear downward trend even though

the values vary widely in each bin. We report similar results for Mb , where funds in the

smallest size decile have a median alpha of 212 bps which decreases to 162 for funds in

the largest decile. Thus, due to the increase in size, the lowering of the turnover rate and

diversification, the funds have a diminished ability to produce excess return. We denote

this decrease in alpha as performance loss.

When examining the estimated costs the two fitting schemes differ qualitatively. For
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Ma the estimated costs on the other hand do not seem to exhibit a trend and remain

approximately 40 bps annually. What this means is that under this model funds manage

to hold their (relative) costs fixed by diversifying and lowering the turnover rates. As we

have shown this comes at the expense of performance.

For schemeMb the results are quite different. Since we hold β = 0.5 fixed the estimated

costs increase much more than the estimated costs using scheme Ma for which we fit

β = 0.15. We estimate that funds in the smallest size decile have an annual cost of about

12 bps that increase dramatically to an annual cost of about 125 bps for the largest decile.

Thus, two different fitting schemes Ma and Mb result fundamentally different expected

behavior. While under Ma funds manage to control their cost they are not able to do so

for Mb where the relative costs increase dramatically.

5.6.2 Maximal fund size

In this section we investigate how the profitability of a fund changes with the size of the

fund. To study this expected behavior over a large range of fund sizes, we solve the profit

maximization problem numerically using the fit parameters summarized in Table 5.2.

The resulting number of assets N and the turnover rate λ are presented graphically

in Figures 5.5 and 5.6. The expected optimal behavior is non trivial; while the optimal

turnover rate decreases monotonically towards zero, the optimal number of assets held Nopt

increases initially but for large fund sizes it decreases and eventually goes to zero. What

this means is that past a certain size a fund cannot sustain the costs while remaining an

active investor12. As can be seen in Figures 5.7 and 5.8, the fees a fund charges decrease as

it grows but the absolute profit increases. Thus, a profit maximizing manager would prefer

to grow up to smax in which point the fund profitability cannot be sustained.

The maximal size of a fund differs dramatically between fitting scheme Ma and Mb ;

in fitting scheme Ma the maximal size of the fund is smax ≈ 2000 trillion US dollars. At

that size the maximal fees are 30 bps yielding a yearly profit of 6 trillion USD. This size is

so large that what it means is that funds can essentially grow indefinitely. However, at this

size the fund is trading in very few assets and such a strategy may not be feasible because

of the market cap of the stocks even if the turnover rate is very low. The maximal number

12Similar arguments for an optimal fund size have been discussed by Farmer (2002), where he has shown

that for value strategies an optimal size smax exists above which a strategy is less profitable.
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decile
size model Ma model Mb

(in millions) cost (bps) alpha (bps) cost (bps) alpha (bps)

1/10
5.28 31 207 12 212

(1.2,10.6) (4,131) (118,286) (1,97) (120,295)

2/10
19 38 210 21 210

(12,28) (4,196) (105,289)) (1,222) (90,302)

3/10
45 41 209 35 211

(30,62) (5,179) (119,279) (2,262) (111,290)

4/10
84 47 210 51 215

(66,113) (8,201) (131,280) (5,314) (120,289)

5/10
156 37 193 42 198

(120,200) (4,138) (104,259) (4,251) (95,266)

6/10
261 45 198 57 199

(208,348) (7,166) (106,259) (4,470) (90,274)

7/10
488 39 189 69 191

(364,611) (3,151) (91,253) (2,440) (69,260)

8/10
852 44 186 87 188

(646,1146) (5,178) (100,257) (4,850) (58,267)

9/10
1.9 [103] 41 182 107 181

(1.2,3.2) [103] (4,183) (91,254) (5,997) (78,263)

10/10
7.4 34 162 125 162

(3.6,66.7) [103] (4,108) (80,215) (6,700) (49,223)

Table 5.3: A summary of the estimated skill and costs of funds using fitting schemes Ma

and Mb . The cost represents the estimated early trading cost incurred by the fund given

by (5.8). alpha represents the estimates of the (pre-cost) yearly excess performance given

by (5.12). The results were obtained by estimating the skill and costs using equations (5.12)

and (5.8) for each of the funds in the dataset using the best fit parameter values given in

Table 5.2. For each of the models we bin the results according to size deciles. For each

decile the entry in the table represents the median quantity and the parentheses represent

the 5% and 95% quantiles for the quantities in that decile.
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Figure 5.5: Here we show the optimal fund behavior as a function of size as resulting from

fitting scheme Ma . The optimal number of assets Nopt and the optimal yearly turnover

rate λopt as a function of fund size (in millions of USD). The values were calculated by

by maximizing sfopt(s) numerically, for a given size, using equation (5.14) with the fit

parameters for fitting scheme Ma summarized in Table 5.2.
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Figure 5.6: Here we show the optimal fund behavior as a function of size as resulting from

fitting scheme Mb . The optimal number of assets Nopt and the optimal yearly turnover

rate λopt as a function of fund size (in millions of USD). The values were calculated by

by maximizing sfopt(s) numerically, for a given size, using equation (5.14) with the fit

parameters for fitting scheme Mb summarized in Table 5.2.
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Figure 5.7: Here we show the maximal profitability of a fund as a function of size as resulting

from fitting scheme Ma . The maximal (yearly) fees fopt(s) and the corresponding yearly

profit (in millions of USD) as a function of fund size (in millions of USD). The values were

calculated by by maximizing sfopt(s) numerically, for a given size, using equation (5.14)

with the fit parameters for fitting scheme Ma summarized in Table 5.2.

of assets is reached at a fund size of approximately 1 trillion USD after which the number

of assets decreases to zero passing 50 assets at 200 trillion. Realistically due to market cap

limitation and diversification needs, active fund size cannot exceed 1 trillion USD. Still this

is an order of magnitude larger than the largest funds existing today. When using fitting

scheme Mb the trading costs are much higher due to the β = 0.5 constraint. What this

means is that the maximal size of funds is smaller on average. As can be seen in Figure 5.8,

the maximal size of a fund, under this fitting scheme, is smax ≈ 200 billion USD, which is

on the order of magnitude of the largest funds existing today.

As an example, the size of the largest fund in our sample is approximately 100 billion

USD. This fund has an average expense ratio of 70 bps, an average turnover rate of 0.23 and

trades approximately 200 assets. Except for the number of assets which is a bit high, our

model under fitting scheme Ma is able to predict fund behavior pretty well. A summary

comparison of the full data set is given in Table 5.1.
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Figure 5.8: Here we show the maximal profitability of a fund as a function of size as resulting

from fitting scheme Mb . The maximal (yearly) fees fopt(s) and the corresponding yearly

profit (in millions of USD) as a function of fund size (in millions of USD). The values were

calculated by by maximizing sfopt(s) numerically, for a given size, using equation (5.14)

with the fit parameters for fitting scheme Mb summarized in Table 5.2.
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We can conclude that our model predicts that the maximal size of an actively traded

fund is larger than what we observe today. Since the profit increases as the fund gets bigger,

fund managers have an incentive to grow as much as they can. When they approach the

maximal size, they can either limit the size of a fund, or turn into an passively managed

fund for which no over-performance is expected.

5.7 Conclusions

Mutual fund performance displays a paradoxical lack of persistence given the diminishing

returns to scale induced by trading costs. Moreover, we have shown that mutual fund

behavior, as given by the fees they charge, the number of positions and the turnover rate,

displays a dependence on size. To solve the persistence paradox while explaining mutual

fund behavior we have proposed a framework for mutual fund behavior. We argue that it

is not investor behavior but rather managerial behavior that is responsible for ensuring the

lack of persistence. Fund managers optimize their behavior in a way that ensures that all

funds have the same expected after cost returns. An important point is that our model

allows for the industry to be out of equilibrium and agrees with the diffusion type dynamics

of the random exit and entry process proposed in Schwarzkopf and Farmer (2010a).

A point worth iterating is that in our model diseconomies of scale are caused by both

alpha and the costs; as funds grow their costs increase and their performance (alpha) de-

creases. A small 5.2 million USD fund, represented by the median values for the first size

decile, has an estimated alpha of 207 bps, it incurs a cost of 32 bps and charges an investor

175 bps of fees. The after cost annual performance of such a fund is approximately -16 bps

which is well within the noise and can be treated as zero. If the fund were to keep the

same number of stocks, the same turnover rate and charge the same amount of fees as it

grew to be a large 7.4 billion USD fund, represented by the tenth size decile, then the costs

would increase by about 200% to 96 bps and alpha would decrease by approximately 20%

to 166 bps. This would mean that the fund would have an after cost performance of -105

bps, which is a significant underperformance. Thus, if funds were to keep their behavior

unchanged as they grew they would become uncompetitive.

What we have shown in this work is that fund managers compensate for increasing

costs and decreasing alpha by lowering their fees (while still increasing profit). In order
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to maximize their profit fund managers try to keep the fee decrease to a minimum by

controlling costs through turnover rate reduction and diversification. The performance,

alpha, is adversely affected by turnover rate reduction and diversification and acts as a

constraint on the manager’s profit maximization problem.

Using the best fit parameters for fitting scheme Ma and the summary statistics in

Table 5.3, we estimate the contribution of λ, N , and f to the effort of the fund to remain

competitive as it increases in size. If the fund was to compensate by solely reducing its fees

is would need to reduce them by 20 bps more than it does, an amount that represents a

significant profit loss. If on the other hand the fund was just to increase the number of assets

from 53 to 84 our model predicts the costs would decrease by 7 bps and while decreasing

alpha by 3 bps. Thus such weak diversification by itself reduces the under performance by

a mere 4 bps. The decreasing of the turnover rate from 0.73 to 0.28 has a larger effect. The

costs decrease by 64 bps, which is approximately the costs incurred by the small fund and the

alpha decreases by 42 bps. Thus, lowering the turnover rate reduces the underperformance

by 22 bps. None of the effects is enough to compensate and the fund manager adapts by

changing both the number of assets and the turnover rate simultaneously such that the

profits (fees) are maximized. Our results (and observations) suggest that diversification

plays a relatively small role in the manager’s strategy; 13 it accounts for just 9% of the cost

reduction while contributing 3% to the alpha loss. The role of turnover rate decrease is

much more dramatic; it accounts for 91% of the decrease in costs while contributing 47%

to the alpha loss. Note, that 50% of the alpha loss is solely due to size.

5.A Data sets

We use the Center for Research in Security Prices (CRSP) survivor-bias-free mutual fund

data set. We focus on the holdings data set containing holdings data for a subset of the

mutual funds, reported at various dates for the years 2002 to 2009 (excluding the last

quarter of 2009). The dataset contains data on 8487 funds.

For each fund in the holdings dataset we match the yearly turnover rate, the expense

ratio and total net assets under management (TNA) corresponding to the reported date.

13The observation that funds only weakly increase their number of positions to accommodate growth was

made previously by Edelen et al. (2007).
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The TNA, reported monthly, was corrected for inflation with respect to June 2009’s con-

sumer price index14. The yearly turnover rate, reported yearly, is defined as the minimum

of aggregated sales or aggregated purchases of securities, divided by the average 12-month

Total Net Assets of the fund. The expense ratio is reported yearly as of the most recently

completed fiscal year. The expense ratio is the ratio of total investment that shareholders

pay for the funds operating expenses, which include 12b-1 fees and includes waivers and

reimbursements.

Out of this universe of funds we consider only active equity funds, which we define as

funds whose portfolio consists of at least 80% of cash and stocks and have a reported yearly

turnover rate larger than zero. Out of these funds we consider only funds with a real TNA

of at least 1 million USD. This reduces the universe of funds we consider to 1404 funds with

a total of 2190 observations corresponding to holdings reported at the end of the second

quarter of each year. For each observation we have the number of assets, the turnover rate

and the expense ratio resulting in 6570 data points.

5.B Fitting procedure

Our model relates the size of the fund s to the expense ratio f , the number of assets N and

the turnover rate λ through equation (5.15) which we rewrite here

λβopt(Λ + λopt) =
α0

c(1 + β)

Nβ
opt(1−Nopt/M)

sβ−δ
(5.16)

N1+β
opt =

βcM

α0

λ1+β
opt s

β−δ

1 + log (1 + λopt/Λ)
.

Since there is no closed form solution (that we were able to get) for λopt and Nopt equation

(5.16) has to be solved numerically. Given λopt and Nopt the predicted expense ratio fopt is

given by

fopt(λopt, Nopt, q) = α0s
1+δ

(
1 + log(1 +

λopt
Λ

)

)(
1− Nopt

M

)
− cλ1+β

opt

s1+β

Nβ
opt

. (5.17)

14The consumer price index (CPI) is reported online on the US Bureau of Labor Statistics website

www.bls.gov/cpi/.
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Thus, for a fund of size s we have a prediction for λ̂, N̂ and f̂ for that fund that depends

on the six parameters α0, β, c , δ, M and γ. Our goal in the fitting procedure is to estimate

the values of the six parameters such that our estimators best describe the reported λi, Ni

and fi for fund i with a reported size si.

The fit is carried out for the 2190 observations in the aggregated dataset in the following

manner: For each fund, using the reported si we solve for the estimators λ̂i, N̂i and f̂i and

calculate the relative residuals vector resi

resi =

[
λ̂i − λi
λi

,
N̂i −Ni

Ni
,
f̂i − fi
fi

]
. (5.18)

We then follow to build the aggregated residual vector res = [res1, res2, res3 . . . ], which has

3 × 2190 = 6570 entries. We use relative residuals since N , λ and f have different scales.

Finally, the parameters are estimated by minimizing the median absolute residual (MAR),

which is a robust statistic. We use a robust statistic because of the non-normal nature of

the residuals, which are better described by a heavy tailed skewed distribution. The heavy

tailed nature of the residuals is due to due to the heavy tailed distribution of the number

of assets and of the turnover rates.

The confidence bounds for the parameter estimation were calculated using a bootstrap-

ping technique. The fitting procedure was carried out 100 times for a random subset of the

observations. The subset is constructed by incorporating each point with a probability that

ensures that on average the subset contains 500 points. The confidence intervals are then

calculated using the quantiles of the resulting parameter estimations.

5.C Mutual fund trading costs’ functional form

We estimate the amount of trading costs a fund incurs using the market impact models

described in Chapter 4 as a guideline. Neglecting fixed costs the trading cost of trading a

volume v in a given asset is given by the market impact

χ(v) = c v1+β, (5.19)

where v is the dollar value of the trade. If a fund of size s trades in only a single asset and

changes a position once a year then it trades twice a year a volume v = s such that the
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trading costs are given by

stCt(st) = χ(qt) = c s1+β
t . (5.20)

In a more general case a fund has a turnover ratio λ, defined as the minimum of total sales

or purchases of the asset in a year divided by the average fund size. If the turnover is

smaller than unity λ < 1 then the fund traded only a part of its assets, i.e. traded a volume

v = λs. If the turnover is larger than unity then we can think of it as if the fund traded

v = s (all its assets) λ times. Written more quantitatively, the trading cost for a fund of

size s and a turnover rate of λ is given by

stCt(st, λ) =


λχ(st) if λ ≥ 1,

χ(λ st) if λ < 1.

(5.21)

Using the definition of χ in equation (5.19) yields

qtCt(st, λ) =


c λ s1+β

t if λ ≥ 1,

c (λst)
1+β if λ < 1.

(5.22)

If we assume that the traded volume is divided equally between N assets, i.e. if the total

volume traded by the fund is v then it trades N assets with a volume of v/N in each. Under

such conditions we write the impact as

stCt(st, λ,N) =


c λ

s1+β
t

Nβ if λ ≥ 1,

c (λst)1+β

Nβ if λ < 1.

(5.23)

For most funds (about 80% of the funds in the data set) the turnover rate is below 1. Thus

we approximate the turnover rate as

C(s, λ,N) = c λ1+β
( s
N

)β
. (5.24)

5.D Implications of an infinite pockets assumption

Under the Berk and Green (2004) model the optimal size of a fund s∗ (without indexing) is

given by a demand that the marginal benefit of investing in a fund is equal to the expected
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µ = E[φ] σ =
√

Var[φ] φ̄

6.5% 6% 3%

Table 5.4: Parameter values for the prior distribution as used in Berk and Green (2004). φ̄

is the mean prior under which a fund’s size is too small for it to extract the necessary rents

to survive.

excess return it is believed to be able to deliver

∂

∂s
[sC(s)] = φ, (5.25)

where φ is the expected excess return. For a cost function of the form

C(s) = c sβ (5.26)

the optimal size of a fund s given by

s∗ =

(
φ

(1 + β)c

)1/β

. (5.27)

By taking indexing into account the size of a fund s is given by

s(φ) =
s∗φ− s∗C(s∗)

f
=

β

c1/β(1 + β)(1+β)/β

φ(1+β)/β

f
. (5.28)

Using the assumption that the priors are normally distributed φ ∼ N(µ, σ) with a mean of

µ and a standard deviation σ the average size of a fund is given by

E[s] =

∫∞
φ̄ s(φ) exp

[
− (φ−µ)2

2σ2

]
∫∞
φ̄ exp

[
− (φ−µ)2

2σ2

] . (5.29)

The mean prior under which a fund’s size is too small for it to extract the necessary rents

is given by φ̄.

To check the plausibility of the resulting sizes we solve equation (5.29) for the parameter

values used by Berk and Green (2004) with different values of β and c. The results are

summarized in Figure 5.9. The values of c can be interpreted as the yearly performance

loss for a fund of a size of a million USD, e.g. c = 10−3 corresponds to a loss of 10 basis
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Figure 5.9: Top: the average fund size given by (5.29) for different parameter values of the

cost function (5.26) and prior distribution parameters described in Table 5.D. Bottom:

For each value of β in equation (5.26) we calculate the corresponding c such that the average

size given by equation (5.29) is 100 million USD.
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points a year. What we see is that for realistic values of c and β = 1 the fund size is larger

than the observed mean of ≈ 100 million USD but not by much. However, recent studies

suggest that β is far smaller than one and is in the range of β ≈ 0.5 for which the average

sizes become unreasonably large. To stress the connection between the resulting average

size of a fund and the parameters of the cost function, we plot the value of c as a function

of β that ensures that the average size is 100 million USD. One can see that indeed the

resulting values of c are unreasonable.

If we take diversification and turnover rate into account, as described in Appendix 5.C,

the for the cost function given by equation (5.8) the optimal size s∗ is given by

s∗(N,λ, α) =


N
λ1/β s

∗ if λ ≥ 1,

N
λ(1+β)/β s

∗ if λ < 1.

, (5.30)

where s∗ is given by equation (5.27) and similarly the size would be given by

s(N,λ, α) =


N
λ1/β s if λ ≥ 1,

N
λ(1+β)/β s if λ < 1.

, (5.31)

where s is given in equation (5.28). Therefore if the average fund holds N ≈ 100 assets

and a turnover of λ ≈ 1 then the average size E[s] would be 100 times more than what

is calculated in Figure 5.9 using equation (5.29). This makes the average size of a fund

unreasonably large and the size of the whole industry several orders of magnitude larger

than it really is. The infinite investor pockets assumption seems to be unreasonable.

We conclude that if this was indeed the sole mechanism compensating for fund over-

performance then for any reasonable set of β and c parameters the resulting fund sizes are

extremely large compared to what we observe. What this means is that the Berk and Green

model would predict an industry with funds of an average size of more than a billion dollars.

So either fund over-performance is not saturated and we should observe persistence, or that

this is not the entire story.
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Figure 5.10: The aggregated value-weighted (VW) performance of the mutual funds in the

data set are compared to the performance of the S&P 500 index. Top: the value of 1 USD

invested, at the end of 2000, in the VW aggregated funds compared to 1 USD invested in

the S&P 500 index. Bottom: The monthly VW return of the mutual funds compared to

the monthly return on investing in the S&P 500.

5.E Mutual fund performance

5.E.1 Mutual fund skill and over-performance

One of our goals in this paper is to explain the observed lack of size dependence in mutual

fund performance. Our assumption about the competitive nature of the market, i.e. that

funds must remain competitive, leads to a natural definition of performance; the return on

investment for a mutual fund investor. This return is defined as the change in net asset

value (NAV) of the mutual fund and is reported monthly in the data set15. Similarly, we

define skill (α) as the excess returns above a benchmark, the S&P 500 index for instance.

This definition of skill differs from the approach used by some researchers, such as Fama and

French (2010). They investigate skill by decomposing the returns using three factor (Fama

and French, 1993) and four factor (Carhart, 1997) models. It is hard to believe that most

investors use such metrics to compare fund performances and it is even harder to believe

that investors can actually reproduce the market performance defined by these models. It

is much more reasonable to assume that an investor compares the fund’s performance to

15A more detailed description of the data set can be found in Appendix 5.A.
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what he can easily access which is the market performance as given by the S&P 500.

Under our simplistic definitions the aggregate skill is deduced by comparing the ag-

gregate fund performance to the benchmark. To this end, we compute the value-weighted

(VW) monthly returns for equity funds in the period 2002 to March 2008. In Figure 5.10

the VW aggregate monthly performance of the industry as a function of time is compared

to the S&P 500 index returns16. To visualize the comparison we use the aggregated returns

to compare the value of 1 USD invested in the aggregated VW fund industry compared to

the S&P 500 index. The results seem to suggest that α, as we defined it, is positive. Indeed

there are periods were the mutual fund industry underperforms the market but there are

also periods of significant over-performance. In the period at hand we are better of investing

in the VW funds. This is in contradiction with Fama and French (2010) who conclude that

the after costs performance is below the benchmark. This investigation of α is by no means

rigorous, but what is important to take from this is that fund performance is not necessarily

below the benchmark and funds need to actively trade to remain competitive.

5.E.2 Performance VS. size
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Figure 5.11: The monthly (log) returns as a function of fund size. The aggregated monthly

data is binned into 25 equal occupation bins according to size. In each bin the mean size

and mean return are quoted. The error bars represent the 2 sigma confidence interval for

the mean in each bin. The binned data is compared to a constant 57 bps return.

16The S&P 500 monthly returns were calculated using the monthly index values available online at

www.finance.yahoo.com.
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We are interested in testing whether fund performance depends on size or stated dif-

ferently, do larger funds have, on average, different performance than smaller funds. Our

assumption, based on previous work (Schwarzkopf and Farmer, 2010b,a), is that perfor-

mance does not depend on size. We cannot choose a better performing fund, on average,

just by looking at its size. To test this we used cross-sectional linear regressions. As a

first test we regressed the entire aggregated data of monthly returns rit = a0 +a1 log10(sit),

where rit is the monthly return of fund i at time t and sit is its size (in millions). The

resulting parameter values (in bps) are a1 = −0.96 (−1.98, 0.05) and a0 = 51.7 (46.7, 56.7),

where the values in parenthesis represent the 95% confidence bounds. This result means

that a1 is not statistically significantly different than zero and the hypothesis of size inde-

pendent performance cannot be rejected. To visualize this, we plot the binned aggregated

data as a function of size in Figure 5.11.

Figure 5.10 suggests that the overall performance, relative to the benchmark, changes

from month to month. To check if this is also the case for the size dependence we regressed

the cross-sectional data for each month separately. The results are summarized in Table 5.5.

The results are interesting by their own merits. In some months the performance seems to

increase with size, in some months it decreases while in others it seems not to depend on

size. Furthermore, when we aggregate the monthly data for each year, the results mainly

suggest that performance is indeed independent of size in agreement with market efficiency.
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Chapter 6

The cause of universality in growth fluctuations

Phenomena as diverse as breeding bird populations, the size of U.S. firms, money invested

in mutual funds, the GDP of individual countries and the scientific output of universities

all show unusual but remarkably similar growth fluctuations. The fluctuations display

characteristic features, including double exponential scaling in the body of the distribution

and power law scaling of the standard deviation as a function of size. To explain this we

propose a remarkably simple additive replication model: At each step each individual is

replaced by a new number of individuals drawn from the same replication distribution.

If the replication distribution is sufficiently heavy tailed then the growth fluctuations are

Levy distributed. We analyze the data from bird populations, firms, and mutual funds and

show that our predictions match the data well, in several respects: Our theory results in a

much better collapse of the individual distributions onto a single curve and also correctly

predicts the scaling of the standard deviation with size. To illustrate how this can emerge

from a collective microscopic dynamics we propose a model based on stochastic influence

dynamics over a scale-free contact network and show that it produces results similar to

those observed. We also extend the model to deal with correlations between individual

elements. Our main conclusion is that the universality of growth fluctuations is driven by

the additivity of growth processes and the action of the generalized central limit theorem.

6.1 Introduction

Recent research has revealed surprising properties in the fluctuations in the size of entities

such as breeding bird populations along given migration routes, U.S. firm size, money in-

vested in mutual funds, GDP, scientific output of universities, and many other phenomena1.

1The anomalous growth fluctuations were observed for bird population (Keitt and Stanley, 1998), U.S.

firm size (Stanley et al., 1996; Amaral et al., 1997; Bottazzi and Secchi, 2003a; Matia et al., 2004; Bottazzi
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This is illustrated in Figures 6.1 and 6.2. The first unusual property is in the logarithmic

annual growth rates gt, defined as gt = log(Nt+1/Nt), where Nt is the size in year t. As seen

in the top panel of Figure 6.1, all of the data sets show a similar double exponential scaling

in the body of the distribution, indicating heavy tails. The second surprising feature is the

power law scaling of the standard deviation σ with size, as illustrated in Figure 6.2. In each

case the standard deviation scales as σ ∼ N−β with β ≈ 0.3.

These results are viewed as interesting because they suggest a non-trivial collective

phenomena with universal properties. If the individual elements fluctuate independently,

then (with a caveat we will state shortly) the standard deviation of the growth rates scales

as a function of size with an exponent β = 1/2, whereas if the individual elements of the

population move in tandem the standard deviation scales with β = 0, i.e. it is independent

of size. The fact that we instead observe a power law with an intermediate exponent

0 < β < 1/2 suggests that the individual elements neither change independently nor in

tandem. Instead it suggests some form of nontrivial long-range coupling. Why should

phenomena as diverse as breeding bird populations and firm size show such similar behavior?

There is a substantial body of previous work attempting to explain individual phenomena,

such as firm size or GDP 2. However none of these theories has the generality to explain

how this behavior could occur so widely.

The caveat in the above reasoning is the assumption that the fluctuations of the in-

dividual elements are well-behaved, in the sense that they are not too heavy-tailed. As

we show in a moment, if the growth fluctuations of the individual elements are sufficiently

heavy-tailed then the fluctuations of the population are also heavy tailed, even if there

are no collective dynamics. Under the simple additive replication model that we propose

the fluctuations in size are Levy distributed in the large N limit. This predicts a scaling

exponent 0 < β < 1/2 and the shape parameter of the Levy distribution predicts the value

and Secchi, 2005; Axtell et al., 2006), money invested in mutual funds (Schwarzkopf and Farmer, 2008), GDP

(Canning et al., 1998; Lee et al., 1998; Castaldi and Dosi, 2009), scientific output of universities (Matia et al.,

2005), and many other phenomena (Plerou et al., 1999a; Keitt et al., 2002; Bottazzi et al., 2007; Podobnik

et al., 2008; Rozenfeld et al., 2008).
2R. (1931); De Fabritiis et al. (2003); Fu et al. (2005); Riccaboni et al. (2008); Simon and Bonini (1958);

Ijiri and Simon (1975); Amaral et al. (1997b); Buldyrev et al. (1997); Amaral et al. (1998); Bottazzi (2001);

Sutton (2001); Wyart and Bouchaud (2003); Bottazzi and Secchi (2003b); Gabaix (2009); Schweiger et al.

(2007).
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year α κ c µ

NABB 1.40 0.81 0.156 -0.037

Mutual funds 1.48 0.3 0.111 -0.015

Firms 1.53 0.80 0.16 -0.05

Table 6.1: The parameter values for fitting the data with a Levy distribution.

of β. We show here that this model provides an excellent fit to the data.

In the first part of this paper we develop the additive replication model and show that it

gives a good fit to the data. Our analysis in the first part is predicated on the existence of a

heavy-tailed replication distribution. In the second part of the paper we present one possible

explanation for the heavy-tailed replication distribution in terms of stochastic influence

dynamics on a scale-free contact network, and argue that such an explanation could apply

to any of the diverse settings in which these scaling phenomena have occurred. This influence

dynamics is an example of “nontrivial” collective dynamics. Thus, the process that generates

the heavy tails in individual fluctuations may come from nontrivial collective dynamics even

though the replication model does not depend on this.

6.2 The additive replication model

We assume an additive replication process: At each time step each individual element is

replaced by k new elements drawn at random from a replication distribution p(k), where

0 ≤ k <∞. An individual element could be a bird, a sale by a given firm, or the holdings

of a given investor in a mutual fund. By definition the number of elements Nt+1 on the

next time step is

Nt+1 =

Nt∑
j=1

kjt, (6.1)

where kjt is the number of new elements replacing element j at time t. The growth Gt is

given by

Gt =
Nt+1 −Nt

Nt
=

∑Nt
j=1 kjt

Nt
− 1. (6.2)

The simplest version of our model assumes that draws from the replication distribution p(k)

are independent; we later relax this assumption to allow for correlations.
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Figure 6.1: An illustration of how our theory reveals the underlying regularity in the distribution of growth

fluctuations of highly diverse phenomena. The three data sets studied here are North American Breeding

Birds (◦), US firm sales (2) and US equity mutual funds (♦). The data is the same in all three panels,

the only change is the presentation. A: The traditional view. Histograms of the logarithmic growth rates

are plotted on semi-log scale, normalized such that the mean vanishes E[g] = 0 and the variance is unity

Var[g] = 1. The collapse is good for the body of the distribution, revealing double-exponential scaling, but

poor in the tails, where the three data sets look quite different. B: Comparison to a Levy distribution. The

cumulative distribution P (G > X) of relative growth rates for the three data sets are compared to fits to

the Levy distributions predicted by our theory (solid curves) and plotted on double logarithmic scale (for

positive X only). See Table 6.4 for parameter values. C: Superior collapse onto a single curve when the

data is scaled as predicted by our theory. The empirical values of the relative growth G (rather than the

logarithmic growth rate g) are normalized so they all have a scale parameter approximately one, as described

in the text. In order to compare to the top panel, we plot the logarithmic growth g and compare to a Levy

distribution (solid curve). This gives a better collapse of the data which works in the tails as well as the

body.
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Why might such a model be justified? First note that additivity of the elements is

automatic, since by definition the size is the sum of the number of elements. The assumption

that each element replicates itself in the next year amounts to a persistence assumption, i.e.

that the number of elements in one year is linearly related to the number in the previous

year, with each element influencing the next year independently of the others. We also

assume uniformity by letting all elements have the same replication distribution p(k). For

the case of firms, for example, each sale in year t can be viewed as replicating itself in

year t + 1. This is plausible if the typical customer remains faithful to the same firm,

normally continuing to buy the product from the same company, but occasionally changing

to buy more or less of the product. For migrating birds this is plausible if the number

of birds taking a given route in a given year is related to the number taking it last year,

either because of the survival probability of individual birds or flocks of birds, or because

individual birds influence other birds to take a given migration route.

6.3 Predictions of the model

Given that the size Nt at time t is known and the drawings from p(k) are independent, the

growth rate Gt is a sum of Nt I.I.D. random variables. Under the generalized central limit

theorem (Zolotarev, 1986; Resnick, 2007), in the large Nt limit the growth PG converges to

a Levy skew alpha-stable distribution

PG(Gt|Nt) = N
− 1−α

α
t Lκα(GtN

− 1−α
α

t ; c, µ). (6.3)

0 < α ≤ 2 is the shape parameter, −1 ≤ κ ≤ 1 is the asymmetry parameter, µ is the shift

parameter and c is a scale parameter.

The normal distribution is a special case corresponding to α = 2. This occurs if the

second moment of p(k) is finite. However, if the second moment diverges according to

extreme value theory, under conditions that are usually satisfied, it is possible to write

p(k) ∼ k−γ for large k 3. When 1 < γ < 3 the Levy distribution has heavy tails that

asymptotically scale as a power law with P (G > x) ∼ x−α, where α = γ − 1.

The additive replication process theory predicts power law behavior for σ(N) and pre-

3Under extreme value theory there are distributions for which there is no convergent behavior; the power

law assumes convergence.
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Degree Distribution β

p(k) ∼ k−γ with 1 < γ < 3 γ−2
γ−1

p(k) ∼ k−γ with 3 < γ 1
2

Thinner tail than a power law 1
2

Table 6.2: The dependence of the relative growth rate fluctuation scaling exponent β on

the underlying replication distributions p(k).

dicts its scaling exponent based on the growth distribution. If γ > 3 the growth rate

distribution converges to a normal with β = 1/2 4. However, when α = γ + 1 < 2, us-

ing standard results in extreme value theory (Zolotarev, 1986; Resnick, 2007) the standard

deviation scales as a power law with size, σG ∼ N−βt , where

β = (γ − 2)/(γ − 1). (6.4)

The dependence of β on the underlying replication distributions p(k) is summarized in

Table 6.2.

6.4 Testing the predictions

To test the prediction that the data is Levy-distributed, in the central panel of Figure 6.1

we compare each of our three data sets to Levy distributions. The three data sets are (1)

the number of birds of a given species observed along a given migration route, (2) the size

of a firm as represented by its sales, and (3) the size of a U.S. mutual fund. The data

shown in the middle panel of Figure 6.1 are exactly the same as in the upper panel, except

that we plot the growth fluctuations G rather than their logarithmic counterpart g, we

plot a cumulative distribution rather than a histogram, and we graph the data on double

logarithmic scale. The fits are all good.

Because we are lucky enough that the shape parameter α and the asymmetry parameter

κ are similar in all three data sets, we can collapse them onto a single curve. This is done by

transforming all the data sets to the same scale in G by dividing by an empirically computed

scale factor equal to the 0.75 quantile minus the 0.25 quantile (we do it this way rather

4For γ = 3 and γ = 2 there are logarithmic corrections to the results.
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Figure 6.2: Illustration of the non-trivial scaling of the standard deviation σ as a function

of size N . The straight lines on double logarithmic scale indicate power law scaling. Same

symbols as in Figure 6.1. The standard deviation is computed by binning the data into bins

of exponentially increasing size and computing the sample standard deviation in each bin.

For clarity the breeding bird population is shifted by a factor of 10 and the mutual fund

data set by a factor of 10−1. The empirical data are compared to lines of slopes −0.303,

−0.308 and −0.309 respectively.

than dividing by the standard deviation because the standard deviation does not exist).

It is important that this normalization is done in terms of G, in contrast to the standard

method which normalizes the logarithmic growth g. The standard method, illustrated in

the top panel, produces a collapse for the body of the distribution, but there is no collapse

for the tails – mutual funds have very heavy tails while the breeding birds closely follow the

exponential even for large values of g. In contrast, the collapse using G as suggested by our

theory, illustrated in the bottom panel, works for both the body and the tails.

To test the prediction of the power law scaling of the standard deviation with size we

estimated γ from the data shown in Figure 6.1 and β from the data in Figure 6.2. We then

make a prediction β̂ for each data set using Eq. 6.4 and the estimated value of γ for each

data set. The results given in Table 6.1 are in good statistical agreement in every case. (See

Materials and Methods.)
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year β β̂ γ

NABB 0.30± 0.07 0.29± 0.03 2.40± 0.06

Mutual funds 0.29± 0.03 0.32± 0.04 2.48± 0.08

Firms 0.31± 0.07 0.35± 0.03 2.53± 0.07

Table 6.3: A demonstration that the Levy distribution makes a good prediction of the

scaling of the standard deviation as a function of size. The measured value of γ based on

the center panel of Figure 6.1 is used to make a prediction, β̂, of the exponent of the scaling

of the standard deviation. This is in good statistical agreement with β, the measured value.

NABB stands for North American Breeding Birds.

6.5 Why is the replication distribution heavy-tailed?

Part of the original motivation for the interest in the non-normal properties and power law

scalings of the growth fluctuations is the possibility that they illustrate an interesting col-

lective growth phenomenon with universal applicability ranging from biology to economics.

Our explanation so far seems to suggest the opposite: In our additive replication model

each element acts independently of the others. As long as the replicating distribution is

heavy tailed the scaling properties illustrated in Figures 6.1 and 6.2 will be observed, even

without any collective interactions.

There is a subtle point here, however. Our discussion so far leaves open the question

of why the replication distribution might be heavy-tailed. Based on the limited data that

is currently available there are many possible explanations – it is not possible to choose

one over another. One can postulate mechanisms that involve no collective behavior at all,

for example, if individual birds had huge variations in the number of surviving offspring.

(This might be plausible for mosquitos but does not seem plausible for birds). One can also

postulate mechanisms that involve collective behavior, as we do in the next section.

6.6 The contact network explanation for heavy tails

In this section we present a plausible explanation for power law tails of p(k) in terms of

random influence on a scale-free contact network. This example nicely illustrates how the

heavy tails of the individual replication distribution p(k) can be caused by a collective
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phenomenon.

Assume a contact network where each node represents individuals5. They are connected

by an edge if they influence each other. For simplicity assume that influence is bi-directional

and equal, i.e. that the edges are undirected and unweighted. Let individual i be connected

to di other individuals, where di ∈ {1, . . .M} is the degree of the node. The degree distri-

bution D(d) is the probability that a randomly selected node has degree d.

Let each individual belong to one of Γ groups. For example, belonging to group a ∈

{1 . . .Γ} can represent a consumer owning a product of firm a, an investor with money in

mutual fund a, or a bird of a given species taking migration route a. The groups are the

same as the populations discussed earlier, i.e. Na
t is the size of group a at time t. The

dynamics are epidemiological in the sense that an individual will stay in her group unless

her contacts influence her to switch. The switching is stochastic: An individual in group a

with a contact in group b will switch to group b with a rate ρab. Furthermore, the switching

rate is linearly proportional to the number of contacts in that group, i.e. if an individual

belonging to group a has n contacts in group b, she will switch with a rate nρab. As an

example, the individual in the center of the graph in Fig. 6.6 has a degree d = 8 and belongs

to group a. She will switch to group b with a rate 4ρab, to group c with a rate 2ρac and to

group d with a rate ρad.

For example consider firm sales. If a given consumer likes the product of a given firm,

she might influence her friends to buy more, and if she doesn’t like it, she might influence

them to buy less. Thus each sale in a given year influences the sales in the following year.

A similar explanation applies to mutual funds, under the assumption that each investor

influences her friends, or it applies to birds, under the assumption that each bird influences

other birds that it comes into contact with6.

We now show how the contact network gives rise to an additive replication model. To

calculate Na
t+1 consider each of the Na

t individuals in group a one at a time. Individual j

in group a replicates if she remains in the group, and/or if one or more of her contacts that

belong to other groups join group a. She fails to replicate if she leaves the group and also

fails to influence anyone else to join. Let the resulting number of individuals that replace

5For a review on complex networks and dynamical processes on networks see Newman (2003) and Doro-

govtsev et al. (2008).
6It has recently been shown that influence in flocking pigeons is hierarchical (Kurvers et al., 2009; Nagy

et al., 2010).



108

b

b

b

a bd

a

c

c

Figure 6.3: Here we show an example of a simple network. Each node represents an indi-

vidual and each edge represents a contact between them. The labels represent the group

the individual belongs to.

individual j be kjt. This implies

Na
t+1 =

Na
t∑

j∈Group a

kjt, (6.5)

which is identical to Eq. 6.1 except for the group label (which was previously implicit).

The replication factor kjt is a random number with values in the range ki ∈ [0, dj ]. Given

the stochastic nature of the influence process we approximate7 kjt as a Poisson random

variable with mean E[kjt] = (1−θa)dj , where θa is the probability that a randomly selected

contact belongs to group a. This means that the replication factor kjt is proportional to

the degree, i.e. kjt ∼ dj , and that the replication distribution is proportional to the degree

distribution,

p(k) ≈ (1− θa)D((1− θa)d). (6.6)

Thus the influence dynamics of the contact network are an additive replication process

with the individual replication distribution proportional to the degree distribution of the

network. If the network is scale free, i.e. if for large k the degree distribution is a power

law with γ < 3, then the growth fluctuations will be Levy distributed. It is beyond the

scope of this paper to explain why the contact groups in the various settings that have been

studied might be scale free, but there is at this point a large literature demonstrating that

7This approximation is valid for random networks, which have a local tree-like structure Dorogovtsev

et al. (2008).
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Figure 6.4: A demonstration that influence dynamics on a scale-free contact network give

rise to the Levy behavior predicted by the additive replication model. The influence model

was simulated for 103 groups on a network of 106 nodes, an average degree 〈d〉 = 10 and

a power law degree distribution D(d) ∼ d−γ with γ = 2.2. The cumulative growth rate

distribution P (G′ > G) is in good agreement with the predicted Levy distribution (6.3)

Inset: the fluctuations are compared to a line of slope β = −0.1667, illustrating the

expected power law scaling.

such behavior is common (Albert and Barabasi, 2002; Newman, 2003).

A numerical simulation verifies these results8. We simulated a network of 106 nodes

with a power law tailed degree distribution D(d) ∼ d−γ with γ = 2.2 and average degree

〈d〉 = 10. The dynamics were simulated for 103 groups with a homogeneous switching rate

ρab = ρ. As expected the growth rates have a Levy distribution P (G) ∼ G−γ as shown in

Figure 6.6. The fitted parameter values are α = 1.2, κ = 0.25, c = 0.09 and µ = −0.17.

The fitted value of the fluctuation scaling β = 0.14± 0.03, shown in the inset of Figure 6.6,

is in agreement with the predicted value of β = (γ − 2)/(γ − 1) = 1/6.

8The average number of individuals and the average growth rate of a group can be approximated using

a mean field approach. The mean field growth rates are given by ∂Na/∂t = 〈d〉Mθa(1 − θa)
∑Γ
b=1(ρab −

ρba)Pastor-Satorras and Vespignani (2001). and θa = 〈d〉−1∑
d′ d
′ fd

′
a D(d′), where fda is the fraction of

individual elements with degree d that belong to group a. We know of no analytic method to compute the

growth fluctuations.
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6.7 Correlations

So far we have assumed that the growth process for individual elements is uncorrelated, i.e.

that the draws from p(k) are I.I.D. Sufficiently strong correlations can change the results

substantially. There can be correlations among the individual elements or correlations in

time. For example, suppose some groups are intrinsically more or less popular than others.

For example, the popularity of a city might depend on its economy and living conditions.

This can be modeled by assuming that the replication of individual j in group i is

given by a random variable k̂ijt which is the sum of a random variable that depends on the

individual and one that is common for the group, i.e.

k̂ijt = kjt + ζit, (6.7)

where kjt is the uncorrelated individual replication factor, which we have defined and used

previously, and ζit corresponds to the attractiveness of group i at time t, an I.I.D random

variable and is drawn from a distribution pζ .

It is important to note that while we are adding correlations between elements of the

same group, we are not adding correlation between elements of different groups. The repli-

cation factors k̂ijt of the different elements are identically distributed but are now correlated

with a correlation factor given by

ρ =
Cov(k̂ijt, k̂

i
j′t)

σ2
k̂

=
σ2
ζ

σ2
k + σ2

ζ

, (6.8)

where σ2
ζ = V ar[ζ] and σk = V ar[k]. The correlation coefficient depends on the ratio of

the variances and, assuming σζ is non diverging, will vanish for distributions p(k) with

diverging second moments. It is important to note that since ζit is an I.I.D random variable

drawn separately for each group, i.e. the common factor is uncorrelated among different

groups, the replication factors of elements belonging to different groups are uncorrelated

Cov(k̂ijt, k̂
i′
jt) = 0.

In Appendices 6.B.5 and 6.B.6 we investigate empirically US population growth and

GDP growth. We show that the empirical results agree with the implications of adding

group correlations to the model, which we now describe.
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The resulting growth rate distribution PĜ

Given that there are Nt elements at time t we write

N i
t+1 =

N i
t∑

j=1

k̂ijt =

N i
t∑

j=1

[kjt + ζit] (6.9)

and the growth rate is given by

Ĝit = ζit +Git, (6.10)

where Git is the growth rate without correlations as discussed in the main text. The growth

rate distribution PĜ is given by

PĜ(Ĝt) = [PG ∗ Pζ ](Ĝt), (6.11)

which is the convolution of the distribution PG and Pζ and the tails of the resulting dis-

tribution PĜ are determined by the distribution with the heavier tail of the two. As the

size of the group increases, PG will converge to a stable levy distribution. The speed of

convergence and the parameters of the distribution depend on p(k). If Pζ has heavier tail

then PG, then the tails of PĜ are determined by Pζ . However, the dominance of Pζ over

PG might occur only at large group sizes depending on the convergence of PG.

As an example for the behavior of PĜ, consider an individual replication distribution

p(k) ∼ k−5 and a common replication factor distribution P (ζ) ∼ exp(−ζ). Since the

replication distribution p(k) has a finite second moment, we expect PG to converge, as the

size of the group increases, to a normal distribution. However, this convergence is slow

and for small group sizes, i.e. a small number of random summands comprising G, the

distribution has not yet converged to a normal and will obey PG ∼ G−5. The question

is how will the distribution PĜ behave? For small group sizes the distribution PG ∼ G−5

dominates over Pζ and we can expect the growth rate distribution to be PĜ ∼ Ĝ
−5. However,

for large enough group sizes PG will have converged to a normal and will be dominated by

Pζ such that PĜ ∼ exp(−Ĝ). Thus, as the group size increases, we observe a change in PĜ

such that for small groups the distribution obeys PĜ ∼ PG while for large groups we will

observe PĜ ∼ Pζ . The group size for which this transition occurs depends on the individual

replication distribution p(k) and the common replication factor distribution Pζ .
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The resulting fluctuation scaling of σĜ

We now show that for small sizes the individual fluctuations kjt dominate, so that there

is a power law scaling of σ, but for larger sizes the group fluctuations ζit dominate, and σ

becomes constant (i.e. β = 0).

Since the individual replication factor kijt is independent of the common factor ζit, the

relative growth rate variance σĜ is given by

σ2
Ĝ

= σ2
ζ + σ2

G, (6.12)

where σG depends on size according to the fluctuation scaling σG = σ1N
−β with β as given

in Table 6.2. The fluctuation scaling as a function of the group size is given by

σ2
Ĝ

= σ2
ζ + σ2

1N
−2β. (6.13)

For σζ < σ1, the second term in the RHS of equation (6.13) dominates for small N while

for large enough N the first term will dominate. We define the transition size N∗ as the

group size for which the volatility of both terms on the RHS are equal such that

N∗ =

(
σ1

σζ

) 2
β

and the volatility σĜ obeys

N � N∗ σĜ = σ1N
−β

N � N∗ σĜ = σζ . (6.14)

This corresponds to a fluctuation scaling exponent β̂ that depends on size such that

N � N∗ β̂ = β

N � N∗ β̂ = 0. (6.15)

For σζ ≥ σ1 there is no transition size and the volatility can be approximated as

σĜ ≈ σζ .
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and as a result the fluctuations are independent of size, i.e. β̂ = 0, in accordance with

Gibrat’s law. However, the size of the group for which this transition takes place can be

very large such that effectively we can have β̂ = β for the entire observation range.

6.8 Finite size effects

So far we have also assumed in our analysis that the number of elements is infinite, i.e.

that there is no upper limit on the replication factors. For finite systems the growth of

one group is at the expense of another. This can induce correlations which affect both the

growth rate distribution and the fluctuation scaling. Nevertheless, as our simulation shows,

under appropriate circumstances the theory can still describe finite systems to a very good

approximation.

We examine here a setting for growth in which several groups compete over a fixed

number of elements Ntotal. In this setting elements that join one group must do so at the

expense of another group resulting in a decrease in the group size. At each time step the

number of elements in group a changes according to the replication process such that

Na
t+1 =

Na
t∑

j=1

kjt, (6.16)

where kjt is the number of new elements replacing element j at time t. The net change in

the number of elements in group a is defined as

∆a
t = Na

t+1 −Na
t

drawn from the distribution P∆(|∆t| |Nt). This distribution is equivalent to the distribution

of Nt+1, a distribution of a sum of Nt random variables, described in the main text. For

more than a single group, under the constraint on the number of elements, a negative net

size change in a group correspond to elements leaving the group to join other groups. We
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generalize the distribution of the net size change in group a as P∆(|∆a
t | |Na

t ) as

P∆(∆it|Nt) = P∆(|∆it| |Nt)Θ(∆it)Θ(Ntotal −Nit −∆it) (6.17)

+

 ′∑
{∆b

t}

′∑
{Nb

j }

P∆(|∆b
t | |N b

t )

Θ(−∆a
t )Θ(Na

t − |∆a
t |),

where ∆b
t is the change in the number of elements in group b, N b

t is the occupation of that

group and Θ is the unit step function. The summations are over all configurations where

∆b
t ≥ 0 and N b

t ≥ 0 such that
∑

b 6=a ∆b
t = ∆a

t and
∑

b6=aN
b
t = Ntotal −Nit. The first term

in (6.17) corresponds to elements joining group a and that number is bound from above by

the number of elements in the other groups Ntotal − Na
t . The second term corresponds to

elements leaving group a and is written in terms of elements joining the other groups.

Since the relative size change is given by Gt = ∆t/Nt we can write the relative size

change distribution as PG(G|N) = NP∆(NG|N) yielding

PG(Gat |Na
t ) = Na

t P∆(|Na
t G

a
t | |Na

t )Θ(Gat )Θ(
Ntotal −Na

t

Na
t

−Gat ) (6.18)

+

 ′∑
{Gbt}

′∑
{Nb

t }

N b
t P∆(|N b

tG
b
t | |N b

t )

Θ(−Gat )Θ(1− |Gat |)

where the Gbt are constrained such that Gbt ≥ −1 and
∑

bN
b
tG

b
t = Na

t G
a
t . The second term

corresponding to elements leaving group a is a sum of elements joining the different groups

and as such is a sum of random variables and will depend on the distribution of the number

of elements in a group.

The distribution can be written explicitly for Γ � 1 groups with an equal number of

elements N = Ntotal/Γ� 1 for which

PG(G|N) =
1

N1/α−1
Lκα(

G

N1/α−1
; c, µ)Θ(G)Θ(

Ntotal −N
N

−G) (6.19)

+
1

Γ1/αN1/α−1
Lκα(

G

Γ1/αN1/α−1
; c, µ)Θ(−G)Θ(1− |G|).

In general, the growth distribution under a constraint on the number of elements (6.18) can

be different than that of the non constrained case described in Section 6.2.
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6.9 Discussion

The explanation that we offer here is widely applicable and very robust. The idea that

a larger entity can be decomposed into a sum of smaller elements, and that the smaller

elements can be modeled as if they replicate, is quite generic. As discussed in the previous

section this can be broken if the growth of the elements is too correlated. Our explanation

for the heavy tailed growth rate distributions and fluctuation scaling requires that the

replication distribution p(k) is heavy tailed. The key thing we have shown is that when this

occurs, the generalized central limit theorem dictates that the growth distribution PG will

be Levy, which in turn dictates the power law size dependence of the standard deviation,

σ(N).

The previous models which are closest to ours are the model of firm size of Wyart and

Bouchaud (2003) and the model of GDP due to Gabaix (2009). Both of these models assume

that the size distribution P (Nt) has power law tails and that firms grow via multiplicative

fluctuations. They each suggested (without any testing) that additivity might lead to Levy

distributions for their specific phenomena (GDP or firm size). This is in contrast to our

model, which requires neither the assumption of power tails for size nor multiplicative

growth. This is a critical point because the size of mutual funds does not obey a power

law distribution (Schwarzkopf and Farmer, 2010b), which rules out both the the Wyart

and Bouchaud and Gabaix models as general explanations. We are apparently the first to

realize that these diverse phenomena all obey Levy distributions, and that this explains the

power law scaling of σ(N).

There are many possible explanations that could generate a heavy tailed replication

distribution p(k). Here we proposed an influence process on a scale free contact network as

a possible example. This mechanism is quite general and relies on the assumption that an

individual element’s actions are affected by those of its contacts. Scale free networks are

surprisingly ubiquitous and the existence of social, information and biological networks with

power law tails with 2 < γ < 3 is well documented (Albert and Barabasi, 2002; Newman,

2003), and suggests that the assumption that the degree distribution D(d) and hence the

replication distribution p(k) are heavy-tailed is plausible.

The influence model shows that the question of whether the interesting scaling properties

of these systems should be regarded as “interesting collective dynamics” can be subtle. On
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one hand the additive replication model suppresses this – any possibility for collective action

is swept into the individual replication process. On the other hand, the influence model

shows that the heavy tails may nonetheless come from a collective interaction. More detailed

data is needed to make this distinction.

Our model shows that, whenever its assumptions are satisfied, one should expect uni-

versal behavior as dictated by the central limit theorem: The growth fluctuations should

be Levy distributed (with the normal distribution as a special case). Our model does not

suggest that the tail parameter should be universal, though of course this could be possible

for other reasons. Based on our model there is no reason to expect that the value of the

exponent α (or equivalently γ or β) will not depend on factors that vary from example to

example. Thus the growth process is universal in one sense but not in another.

6.A The logarithmic growth rate distribution

The logarithmic size change g = log(Nt+1/Nt), as opposed to the relative size change G,

is not explicitly modeled in our theory. However, it is used by most researchers for its

additivity property, which makes calculations easier and in order to compare this work with

other models we describe here shortly the distribution of log changes Pg(g) and its size

scaling.

Given that we know the growth rate distribution PG, the distribution of log size changes

can be achieved through a change of variables G = exp(g)− 1 which yields9

Pg(g|N) = egPG(eg − 1|N). (6.20)

For distribution PG that decay slow enough as G approaches−1, i.e. in the limit g → −∞,

the lower tail of the distribution can be approximated as

Pg(g � 0) ∼ e−|g|. (6.21)

That is, the lower tail is an exponential independent of the form of the replication distri-

9Under a change of variables the distribution functions transform such that Pg(g)dg = PG(G)dG holds.

Given that we know PG(G) and a change of variables G = f(g) the distribution Pg(g) is then given by

Pg(g) = f ′(g)PG(f(g)).
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bution p(k).

The upper tail, as opposed to the lower tail, depends on the replication distribution p(k)

through PG and can be approximated as

Pg(g � 0) ∼ egPG(eg).

As was discussed previously, for a power law replication process p(k) with γ < 3 the

resulting distribution PG converges to a Levy stable distribution. The Levy stable distri-

butions can be shown Nolan (2009) to have an asymptotic power law decay

Lβγ−1(x; c, µ) ∼ x−γ (6.22)

in the x → ∞ limit. This suggests that the resulting logarithmic growth rate distribution

Pg will have an exponentially decaying upper tail

Pg(g � 0) ∼ e−(γ−1)g. (6.23)

For distributions with a well defined mean, i.e. with γ > 2, the upper tail (6.23) always

decays faster then the lower tail (6.21), which means that the logarithmic growth rate

distribution Pg is always asymmetric with more weight in the lower tail. This asymmetry

in the logarithmic growth distribution was observed in many systems.

6.B Additional empirical evidence

In this section we describe in more detail the empirical evidence for five data sets. Three

of these data sets have, as it turns out, growth rate distributions with diverging second

moments for which the group correlations are negligible; the growth rate of breeding birds

of North America in Section 6.B.2, the growth, due to investors, of mutual funds for the years

1997 to 2007 in Section 6.B.3 and the growth of firms with respect to sales in Section 6.B.4.

We offer here additional results to those discussed in the main text.

On the other hand, US population growth and the GDP of countries, have, as it turns

out, a growth rate distribution with a finite second moment. We argue here that the empir-

ical observations for these systems are consistent with the model with group correlations.
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For such systems the model predicts two things: first, the growth rate distribution for small

N is different than the distribution for large N since PG converges to a normal. Moreover,

if Pζ is heavier tailed than a normal, then as N increases the distribution will converge to

Pζ . Second, we predict a transition of the scaling exponent β from 1/2 to 0 as the size

increases. This is indeed what we observe for GDP and cities.

6.B.1 Empirical fitting procedures

The empirical investigation of the three data sets was conducted as follows: first, the

fluctuation scaling exponent β is estimated from the data. Then, we normalize the growth

rate distribution followed by an estimation of the tail exponent γ. Lastly we will compare the

measured β and γ to the expected relationship from our model. To estimate the fluctuation

scaling exponent β the relative growth rate distribution G = Nt+1/Nt−1 was binned into 20

exponentially spaced bins according to size Nt. For each bin i, the variance of the growth

rates σ2
i was empirically estimated. Then the logarithm of the measured variances were

regressed on the logarithm of the average size N̄i

log(σ) = β log(N) + σ1 (6.24)

such that the slope is the ordinary least squares (OLS) estimator of β. Using the fluctuation

scaling exponent β we predict the tail exponent

γ̂ =
2− β
1− β

,

which we will compare to the measured maximum likelihood estimator (MLE) of the tail

exponent. To estimate the tail exponent, we normalize the growth rate G such that it has

zero mean and unit variance. For distributions with a power law tail, the MLE power law

exponent was estimated using the technique described in Clauset et al. (2009) for fitting

power law tails. The method used uses the following modified Kolmogorov-Smirnoff statistic

KS = max
x>xmin

|s(x)− p(x)|√
p(x)[1− p(x)]

,

where s is the empirical cumulative distribution and p is the hypothesized cumulative dis-

tribution.
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Figure 6.5: Left panel: The cumulative distribution for the relative growth rates P (G > X)

for the year 2007 is plotted on a log-log scale. The distributions is compared to a linear

line with a lope corresponding to the upper tail exponent from the MLE fit for γ given

in Table 6.B.2. Inset: The relative growth rate fluctuations σ for the year 2007 as a

function of the number of birds, measured as yearly sales, is compared to a line with a slope

corresponding to β given in Table 6.B.2.

Right panel: The relative growth rates density Pg(g) for the year 2007, as resulting form

binning the data, is plotted on a semi-log scale. The distributions is compared to a laplacian

distribution.

6.B.2 Breeding birds of America

North american breeding birds dataset

We use the the North American breeding bird survey, which contains 42 yearly observations

for over 600 species along more than 3,000 observation routes. For each route the number

of birds from each species is quoted for each year in the period 1966-2007. For each year

in the data set, from 1966 to 2007, we computed the yearly growth with respect to each

species in each route. The data set can be found online at

ftp://ftpext.usgs.gov/pub/er/md/laurel/BBS/DataFiles/.

Empirical results

For each year in the data set, from 1966 to 2007, we computed the yearly growth with

respect to each specie in each route and compared the data to the model. For each year we

computed the Maximum Likelihood Estimators (MLE) for the power law exponents of the

upper tail. The results are summarized in Table 6.B.2 and the growth rate distribution for

the year 2007 is plotted in Figure 6.5. Remarkably, for most years, the MLE of the upper

law tail exponent γ is in agreement with the estimations from the growth fluctuations γ̂
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year β γ̂ γ

1966 0.39± 0.10 2.64± 0.27 2.37± 0.11

1967 0.36± 0.10 2.56± 0.25 2.53± 0.13

1968 0.44± 0.15 2.77± 0.46 2.39± 0.09

1969 0.30± 0.15 2.43± 0.30 2.45± 0.12

1970 0.42± 0.11 2.72± 0.31 2.29± 0.08

1971 0.31± 0.15 2.44± 0.32 2.38± 0.11

1972 0.30± 0.11 2.44± 0.23 2.61± 0.21

1973 0.32± 0.13 2.47± 0.27 2.53± 0.13

1974 0.26± 0.15 2.35± 0.28 2.61± 0.17

1975 0.33± 0.05 2.48± 0.12 2.64± 0.10

1976 0.33± 0.10 2.49± 0.21 2.46± 0.10

1977 0.29± 0.11 2.41± 0.22 2.65± 0.14

1978 0.44± 0.12 2.78± 0.37 2.42± 0.12

1979 0.50± 0.62 3.00± 2.48 2.63± 0.14

1980 0.41± 0.14 2.70± 0.41 2.48± 0.10

1981 0.30± 0.09 2.42± 0.19 2.43± 0.08

1982 0.40± 0.12 2.66± 0.32 2.85± 0.27

1983 0.43± 0.13 2.74± 0.40 2.58± 0.15

1984 0.34± 0.14 2.52± 0.33 2.31± 0.07

1985 0.33± 0.18 2.49± 0.40 2.36± 0.10

1986 0.34± 0.10 2.51± 0.24 2.46± 0.12

1987 0.35± 0.19 2.55± 0.45 2.26± 0.05

1988 0.32± 0.13 2.47± 0.28 2.60± 0.13

1989 0.33± 0.06 2.49± 0.12 2.33± 0.06

1990 0.32± 0.12 2.47± 0.26 2.76± 0.18

1991 0.30± 0.15 2.43± 0.30 2.73± 0.17

1992 0.35± 0.08 2.54± 0.19 2.52± 0.08

1993 0.35± 0.14 2.55± 0.33 2.87± 0.16

1994 0.34± 0.11 2.53± 0.26 2.53± 0.11

1995 0.31± 0.11 2.46± 0.24 2.42± 0.06

1996 0.48± 0.26 2.91± 0.96 2.71± 0.12

1997 0.40± 0.26 2.66± 0.71 2.35± 0.05

1998 0.30± 0.10 2.43± 0.20 2.61± 0.10

1999 0.34± 0.10 2.51± 0.24 3.06± 0.25

2000 0.22± 0.18 2.29± 0.30 2.51± 0.09

2001 0.32± 0.16 2.48± 0.36 2.69± 0.10

2002 0.39± 0.11 2.65± 0.29 2.70± 0.11

2003 0.42± 0.22 2.71± 0.65 2.71± 0.14

2004 0.30± 0.14 2.42± 0.28 2.55± 0.08

2005 0.27± 0.17 2.37± 0.33 2.95± 0.17

2006 0.33± 0.08 2.49± 0.18 2.54± 0.09

2007 0.30± 0.14 2.43± 0.29 2.41± 0.06

mean 0.35± 0.02 2.54± 0.04 2.55± 0.01

Table 6.4: The parameter values for the proposed growth model as measured for from the North

American breeding bird data. The parameters of the model were measured for the aggregated

monthly data during each year and the errors are the 95% confidence interval. The last row corre-

sponds to the average value over the different years. The parameters are as follows:

β - The OLS estimator for the exponent of the size dependence of the fluctuations in the relative

growth rate.

γ̂ - The predicted power law exponent as can be inferred from β. To be compared with γ.

γ - MLE for the power law exponent of the upper tail of P (G).
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. Moreover, for each of these values the mean over the different years was calculated and

all three are in agreement. Our model seems to describe well the relationship between

the growth rate distribution and the growth rate fluctuations observed observed the North

American breeding birds.

6.B.3 Mutual Funds

US equity mutual fund dataset

We use the Center for Research in Security Prices (CRSP) mutual fund database, restricted

to equity mutual funds existing in the years 1997 to 2007. An equity fund is one with at

least 80% of its portfolio in stocks. As the size of the Mutual fund we use the total net

assets value (TNA) in real US dollars as reported monthly. Growth in the mutual fund

industry, measured by change in TNA, is comprised of two sources: growth due to the

funds performance and growth due to flux of money from investors, i.e. mutual funds can

grow in size if their assets increase in value or due to new money coming in from investors.

We define the relative growth in the size of a fund at time t as

GTNA(t) =
TNAt+1

TNAt
− 1

and decompose it as follows;

GTNA(t) = rt +Gt, (6.25)

where rt is the fund’s return, quoted monthly in the database, and Gt is the growth due to

investors. For our purposes here we only consider Gt, the growth due to investors.

Empirical results

For each year we computed the Maximum Likelihood Estimators (MLE) for the power law

exponents of the upper tail. The results are summarized in Table 6.5 and the fits for some

of the years are given in Figure 6.6. For all years, the upper law tail exponent is in the

range γ ∈ (2, 3) and except for the years 1999, 2002 and 2005 the measured value γ is in

agreement with the estimations from the growth fluctuations γ̂. Moreover, for each of these

values the mean over the different years was calculated and all three are in agreement. Our

model seems to describe well the relationship between the growth rate distribution and the
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year β γ̂ γ

1997 0.34± 0.11 2.52± 0.25 2.36± 0.12

1998 0.38± 0.09 2.62± 0.24 2.67± 0.17

1999 0.49± 0.08 2.98± 0.30 2.53± 0.09

2000 0.35± 0.04 2.55± 0.09 2.58± 0.08

2001 0.38± 0.06 2.62± 0.17 2.85± 0.14

2002 0.44± 0.08 2.80± 0.26 2.50± 0.08

2003 0.32± 0.05 2.47± 0.10 2.68± 0.11

2004 0.37± 0.07 2.60± 0.17 2.63± 0.09

2005 0.42± 0.10 2.71± 0.29 2.35± 0.07

2006 0.34± 0.06 2.52± 0.15 2.56± 0.08

2007 0.29± 0.08 2.42± 0.16 2.53± 0.08

mean 0.38± 0.02 2.62± 0.05 2.57± 0.03

Table 6.5: The parameter values for the proposed growth model as measured for monthly size

growth (in US dollars) of equity mutual funds using the CRSP database. The parameters of the

model were measured for the aggregated monthly data during each year and the errors are the 95%

confidence interval. The last row corresponds to the average value over the different years. The

parameters are as follows:

β - The OLS estimator for the exponent of the size dependence of the fluctuations in the relative

growth rate.

γ̂ - The predicted power law exponent as can be inferred from β. To be compared with γ.

γ - MLE for the power law exponent of the upper tail of P (G).
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Figure 6.6: The cumulative distribution for the relative growth rates P (G > X) are plotted

on a log-log scale for the years 1997, 2000, 2003 and 2007. The upper tail is compared to a

line on a log-log plot with a slope corresponding to the MLE fits for γ given in Table 6.5.

Insets: The relative growth rate fluctuations σ as a function of the size of the mutual fund

are compared to lines with slopes corresponding to βG given in Table 6.5.
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β γ̂ γ

0.31± 0.07 2.45± 0.15 2.53± 0.07

Table 6.6: The parameter values for the proposed growth model as measured for the yearly growth

(in US dollars) of firm sales using the COMPUSTAT database. The errors are the 95% confidence

interval. The parameters are as follows:

β - The OLS estimator for the exponent of the size dependence of the fluctuations in the relative

growth rate.

γ̂ - The predicted power law exponent as can be inferred from β. To be compared with γ.

γ - MLE for the power law exponent of the upper tail of P (G).

growth rate fluctuations observed in the mutual fund industry.

Another interesting and non trivial observation is that the tail is heavy in the sense that

the second moment does not exist especially when one considers the fact that this growth is

solely due to investors. It seems that in mutual funds the individual replication dominates

over the common replication and growth is mostly affected by the ability of each new client

to generate more clients than the mere attractiveness of the fund.

6.B.4 Firm Growth

US public firms dataset

We use the 2008 COMPUSTAT dataset containing information on all US public firms. As

the size of a firm we use the dollar amount of sales. Growth is given by the 3 year growth

in sales.

Empirical results

The OLS estimator for β, the resulting tail exponent prediction γ̂ and the MLE tail exponent

γ are summarized in Table 6.6. Our model seems to describe well the relationship between

the growth rate distribution and the growth rate fluctuations observed for the growth of

public firms.
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Figure 6.7: Left panel: The cumulative distribution for the relative growth rates P (G > X)

is plotted on a log-log scale. The upper tail is compared to a line on a log-log plot with a

slope corresponding to the MLE fits for γ given in Table 6.6. Inset: The relative growth

rate fluctuations σ as a function of the size of the company, measured as yearly sales, is

compared to a line with a slope corresponding to β given in Table 6.6.

Right panel: The logarithmic growth rate distribution for the relative growth rates Pg(g),

as resulting from binning the data, is plotted on a semi-log scale.
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Figure 6.8: Here we show that the observed growth rate for US counties agrees with our

model with the addition of group correlations. Top: the cumulative growth rate distribution

P (G > X) calculated for the US Census decadal data on all counties (in the US) populations

in the years 1920 to 1990. The upper tail of the distribution is compared to linear slope of

−2.2 which corresponds to a power law upper tail with an MLE exponent of γ = 3.2. Top

inset: the fluctuations in the relative growth rate σ as a function of population. Bottom:

as in the top panel but for counties with a reported population of at least 50000 residents.

6.B.5 US population growth

US population dataset

We test our model on population growth using two data sets: US county population census

counts 10 for the years 1920-90 and US core based statistical areas (CBSA) population for

the years 2000 and 2007 11.

10The US county population counts contains data for every decade in the period 1900 to 1990 and can be

found online on the US Census Bureau website.
11The CBSA population for January 1st 2007 is an estimation by the United States Census Bureau. The

CBSA population for April 1st 2000 is based on the United States Census 2000
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Empirical results

We begin by investigating the empirical relative growth rate distribution PG for counties

using the US census county data set, which contains data on counties of all sizes including

less populated ones. In the top panel of Figure 6.8 the cumulative distribution P (G > X)

for all counties is plotted on a double logarithmic scale. The distribution is estimated as

having a power law tail with an MLE of γ = 3.2, which corresponds to a finite second

moment. Our theory, with group correlations, predicts that the scaling exponent β will

transition from 1/2 at small N to 0 at large N . This is indeed what we see in the inset of

the top panel of Figure 6.8. Moreover, it seems that the transition size is approximately

N∗ ≈ 50000.

Another prediction of our model, given that the PG has a finite second moment, is that

for N > N∗ the distribution should either converge to a normal or converge to Pζ (only if

Pζ is heavier tailed than a Gaussian). To check this we plot the growth rate distribution

for all counties with a population larger than N∗. The results are plotted in the bottom

panel of Figure 6.8. What we see as that the growth rate distribution is exponential, which

corresponds to a straight line on a semi-logarithmic scale. Since the exponential is heavier

tailed than a normal, we conclude that what we are observing is Pζ .

To verify the observations for counties, we now examine another data set containing data

on the population of core based statistical areas (CBSA) which have a population of at least

10,000. These are large populations with most falling at N > N∗ so we expect to observe

the same phenomena as we did for large counties; exponential growth rate distribution and

size independent fluctuations β = 0. This is indeed the case as can be seen in Figure 6.9.

To conclude, it seems that for urban growth we can say the following: the individual

replication factor is heavy tailed yet has a well defined second moment p(k) ∼ k−3.2. The

common replication factor is drawn from a exponential distribution Pζ(ζt) ∼ exp(−cζt)

where c is some constant. This means that for small urban areas the growth is determined

mostly buy the actions of the individuals and the incentives they manage to create. For

larger urban areas on the other hand, the growth is dominated by the common factor that

is the attractiveness of the urban area.

It is important to note that the nature of the scalings for cities is controversial and

strongly depends on how a city is defined – our results are in agreement with those who claim
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Figure 6.9: Here we show that the observed growth rate for US core based statistical areas

(CBSA) agrees with our model with the addition of group correlations. The relative growth

rate cumulative distribution P (G > X) calculated from the US CBSA growth between the

years 2000 to 2007. The CDF is plotted on a log-linear scale and is compared to a straight

line which corresponds to an exponential decaying tail for the CDF. Inset: the fluctuations

in the relative growth rate σ as a function of population.

the scaling is not very good (Eeckhout, 2004). Rather than using the census definitions,

Rozenfeld et al. (2008) use a clustering algorithm for defining cities and then the fluctuation

scaling (without the group correlations) seems to hold.

6.B.6 GDP Growth

GDP dataset

We investigate the growth of the gross domestic product (GDP) of countries using the

World Bank estimates12. The data set contains GDP data for 209 countries and territories

for the years 1960 to 2007 quoted in current USD. To avoid biases and to maximize the

number of observations, we chose to work only with countries that had data available for

the entire time range. This resulted in 96 countries with 48 observations each for a total of

4608 observations.

Empirical results

We investigate the annual GDP growth rate distribution by aggregating the data for the

various countries over all the years in the data set. By doing so we are using the approxima-

12We used publicly available data that can be found on the world bank website http://www.worldbank.org.
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Figure 6.10: Here we show that the observed growth rate for GDP agrees with our model

with the addition of group correlations. Top: the annual GDP growth rate CDF (plotted on

a semi logarithmic scale) is compared to a straight line which corresponds to an exponential

distribution. Top inset: the annual GDP growth rate fluctuation σ is plotted as a function

of GDP on a double logarithmic scale. The data was binned into 10 exponentially spaced

bins. The observations are compared to a straight line of slope 0, which corresponds to

fluctuations independent of size. Bottom: the annual GDP growth rate distribution PG(G)

as measured by binning the data into 100 equally spaced bins.
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tion that the observation for different years are independent. The aggregated growth rate

distribution PG(G) plotted in Figure 6.10 seems to be a Laplacian distribution which has

a finite second moment. Moreover, the growth rate fluctuations have been found to be size

independent with β ≈ 0 13. Under our model, with the group correlations, this reflects that

the common replication factor distribution Pζ dominates the sum of individual replication

factors. This in agreement with a case were the individual replication factor k is drawn from

some distribution p(k) with a finite second moment and the common replication factor ζ is

drawn from a exponential distribution Pζ(ζt) ∼ exp(−cζt) where c is some constant. This

result is similar to what we have observed for city population growth.

13The regression parameters resulted in parameter estimations of β = 0.02±0.04. Thus, a size independent

fluctuation null hypothesis can not be rejected.
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