
 4-1

C h a p t e r  4                                                                                           

MODEL SETUP AND VALIDATION  

 

4.1 Introduction 

 

Hetland et al. [2010] (referred to as HSD10, henceforth), and Hetland and Simons [2010] 

(referred to as HS10, henceforth) developed a procedure for simulating slip evolution on 

a planar fault surface resulting from kinematically imposed ruptures on pre-defined 

portions of the fault (“asperities”) that are otherwise locked during a seismic cycle.  Slip 

evolves on the fault surface because as the stress perturbation around an asperity resulting 

from the imposed seismic rupture decays.  The rate of this decay is determined by the 

induced slip-rates, which in turn, are determined by the fault rheology.  A fundamental 

feature of this model is that the mean stress on the fault surface evolves to a steady state 

because the imposed ruptures and far-field loading are identical over multiple cycles.  

This  “spin-up” results in self-consistent background stresses that depend only on the 

history of past ruptures.  The above formulation supports a variety of rheological 

relationships (linear/non-linear viscous, purely rate dependent, or Dietrich-Ruina rate and 

state friction).   

 

The work presented here extends the procedure developed above to not only handle 3D 

fault geometry and actual rupture history for a given megathrust interface, but also the 

complex visualization required for the analysis of fault surface parameters, surface 

velocity field, as well as routine quality control checks.  Several major developments 

were required in order to achieve the above goals:  

 

• HSD10 and HS10 use a planar fault discretized into rectangular patches.  However, it 

is nearly impossible to discretize an arbitrary 3D surface using rectangles without 

developing surface discontinuities (“kinks”) in regions having even moderate 

curvature, unless extremely high resolution is used over the entire fault surface.  For 

the problem to be tractable, we require a mesh that is fine only near the asperities, 

 



 4-2

where the gradients in the stress and strain fields are extreme.  For such an “adaptive” 

mesh, kinks are unavoidable, unless extra elements are added wherever there is non-

negligible curvature along the fault surface.  Since we are dealing with the decay of 

coseismic stress “pulses” along the fault surface, the stress-singularities resulting 

from such kinks would not only dominate the simulation, but also make it very 

unstable.  Here, we choose to avoid such kinks by discretizing with triangular 

patches.  We use a comprehensive geometry and meshing package developed by 

Sandia National Laboratory, Cubit [Owen, 2006], for this purpose.   

 

• The discretization above is a four-stage process: First, the geometry needs to be 

generated in a CAD package such as the widely used commercial package for 

geologic applications, Gocad [2010].  Such a base model was put together by Eric 

Hetland.  Next, this geometry needs to be imported into a meshing package like 

Cubit, cut and smoothed into an orthogonal edged curved surface.  Then, the 

smoothed fault surface is discretized using an optimal adaptive mesh (different for 

every configuration of asperities) designed to focus most elements (“patches”) around 

the asperities.  Finally, the numerical quality of the mesh and its smoothness are 

improved through an iterative process involving the computation of fault traction 

kernels at the centroids of all patches (see below). 

 

• Before this project, the only openly available triangular dislocation solutions [Meade, 

2007] were in Matlab and much slower than the Okada [1992] solutions available for 

rectangular patches.  So, effort was put into improving the efficiency of the triangular 

solutions (by 250X), building a common interface for both types of solutions for 

benchmarking purposes, so they can directly process the discrete patch information 

from unstructured surface meshes output from Cubit.  Fault traction kernels at the 

centroids of all patches are used to determine the local mesh resolution, and hence, 

the quality of the mesh (as described in the previous bullet-point).   

 

• HSD10 and HS10 use Matlab for visualizing the simple planar faults tested in those 

papers.  Since here, we are dealing with unstructured meshes for 3D fault surfaces, 

 



 4-3

arbitrarily oriented surface grid for computing synthetic observations, and a “point-

cloud” of stations at the surface where actual data is available, a visualization system 

is needed that can handle such complex tasks on-the-fly.  For that purpose, we use a 

comprehensive, open-source, 3D visualization package, the Visualization ToolKit 

[Schroeder et al., 2006], VTK, that allows easy visualization of multiple types of 3D 

spatial datasets such as those mentioned above, as well as their temporal evolution.  

Such visualization is an essential part of both the analysis of simulation output as well 

as routine quality control tasks such as checking and validating model input 

parameters.   

 

• HSD10 and HS10 do not consider surface displacement/velocity fields, but instead 

focus on the stress shadow effect on the fault surface due to different configurations 

and shapes of asperities.  Here, we want to compare the surface velocity predictions 

from the model to actual GPS data.  In order to facilitate this, we needed to not only 

make sure the model is properly geo-referenced, so correct station locations can be 

used, but also develop a way to view maps and geographical locations (e.g., 

epicenters) for visualization in both a meshing package like CUBIT as well as VTK-

based visualization packages (e.g., Paraview, and Mayavi).  Without such geo-

referencing, it is hard to make sure the locations of asperities are consistent with the 

epicentral coordinates, and their extents are consistent with say, topographic features 

on the overriding plate (e.g., locations of long-term geologic uplift, locations of 

coastlines, undersea canyons, etc.).   

 

• HSD10 and HS10 use one or two asperities with relatively simple rupture sequences 

with specified rupture intervals on each asperity.  Model spin-up was a 

straightforward point measure — namely, the mean value of tractions along the fault 

surface at the last time-step of every cycle.  Here, we are dealing with a real 

subduction zone, where the rupture sequence for a given set of asperities is quite 

arbitrary, and the rupture interval has to be estimated from the best known near-field 

seismic and geodetic data.  Also, in such cases, the definition of a “cycle” for a single 

characteristic earthquake has to be changed to that of a “cycle” for a characteristic 

 



 4-4

sequence of earthquakes — a characteristic rupture sequence time, or CRS-time.  

Instead of a single point in time, spin-up has to be tested over a span of at least a 

single CRS duration.  In order to check for spin-up of solutions, the simulated 

tractions are averaged over several moving average “windows” and the smallest 

window (typically, the CRS-time) that shows stable spin-up is chosen to determine 

which cycle to use for finally computing synthetic GPS velocities to compare to data. 

 

• HSD10 and HS10 use all asperity patches in their forward calculations.  Here, by 

predefining the asperities during meshing, we compute fault parameters only on fault 

patches during forward modeling.  Given that a large fraction of the total number of 

patches lie within asperities, we end up with up to 50% smaller kernel matrix sizes for 

a given mesh resolution (see below), or use 50% more elements for modeling 

stress/slip evolution on a given fault surface. 

 

This chapter details the framework of pre-processors, elastic-dislocation codes, and post-

processors that were developed to handle simulations with realistic 3D fault surfaces.  In 

what follows, the general codes we developed for generating a smooth megathrust 

interface, its discretization into patches for kernel and model parameter generation, and 

major developments to the existing forward model solver to handle the complexities of 

3D faults as well as realistic rupture patterns, as well as some key post-processing steps 

are discussed.  While each of the above steps is “automated”, the underlying code was 

built so that the results from each stage can be extracted, visualized, and validated 

independently.  All newly developed codes use open-source and/or free programming 

languages/packages.  All lower-level (and stable) code is built as a python package 

(“Fslip”) which is installable, so it can be invoked from any python script or dynamically, 

in the python interpreter.   

 

Figure 4-1 illustrates the workflow involving the Fslip package and external packages 

used for the analysis here.  Currently, there are two components to running a model using 

Fslip: The python pre- and post-processors developed here, and the forward model solver 

 



 4-5

in Matlab (EvolveSlip, written by Eric Hetland, and modified for more general 

application to real faults here).   

 

 
 
Figure 4-1. Workflow for the Fslip software developed to generate, simulate and visualize models of slip 
evolution on realistic fault surfaces.  For simplicity, the exact long-from module names are not used for the 
lower level modules or Matlab pre-/post-processor scripts (e.g., Fslip.Model.Out, FslipMATproc, etc.).  The 
matlab component, EvolveSlip, solves the forward problem, given the fault traction and surface 
displacement kernels, rheology, initial and boundary conditions for the 3D megathrust surface.  The Matlab 
output is post-processed in two stages —  in a Matlab and then in Fslip to generate VTK files and 
“dashboards” for visualization.  See text for details.   
 

 

4.2 Model visualization  

 

Given the complex nature of real fault/station geometries, it is important to have the 

ability to probe both input and output data “on-the-fly”.  As mentioned previously, we 

use VTK, as it is an extensive 3D data visualization package having well-defined native 

input file formats for different data types (e.g., structured/unstructured grids, and point 

 



 4-6

clouds).  For example, while the fault is discretized as an unstructured mesh, the 

structured mesh is used to define a surface grid of observation points to sample surface 

deformation more densely than station locations allow.  Stations are treated as surface 

point clouds.  The XYZ-Cartesian system in which the 3D fault interface is defined in a 

CAD package such as Gocad [2010], becomes the “geographic” reference frame for all 

the forward models: i.e., all hypocenters, stations, and seismic asperities on the 

megathrust interface are now defined relative to. this reference frame in the VTK format.  

Coastal boundaries and trench location are also defined in this frame for visually locating 

the extents of seismic asperities on the megathrust interface.  These legacy or XML-based 

VTK files can then be visualized using several open-source or free software packages 

(Mayavi, Paraview, etc).  Such “on-the-fly” visualization is extremely helpful in 

debugging model inputs as well as outputs by making it possible to quickly probe the 

quality of a 3D model or simulation statistically, point-wise, along line-profiles, cross-

sections, as well as from different angles.  The tremendous flexibility in visualization, 

however, comes at the cost of extensive bookkeeping, and file I/O required for keeping 

track of the multiple types of data-sets being handled here.  So, both pre- and post-

processing steps are more involved and much slower than the Matlab based plotting used 

in HSD10 or HS10.  While VTK follows a relatively simple protocol for mesh numbering 

(e.g., nodes are numbered in the order they appear in element connectivity), translators 

are required to convert unstructured mesh nodal IDs (which are typically output in 

arbitrary order by Cubit) into the ordering expected by VTK.  All this functionality is 

built into the input and output modules under Fslip.Model.  The actual file I/O is 

performed under the Fslip.Data module. 

 

 

4.3 Megathrust interface geometry & discretization 

 

Since triangular patches can represent a 3D surface with higher accuracy than 

quadrilateral patches, we choose unstructured triangular meshing to divide the megathrust 

interface into discrete patches.  All model parameters (i.e., rheological parameters, 

stresses, slip, slip-rate, any state-variables, etc.) are defined or computed at the centroids 

 



 4-7

of these triangular patches.  The procedures adopted for creating and analyzing the 

megathrust geometry and subsequent triangulation into patches are discussed here.   

 

Table 4-1 illustrates our workflow for generating an optimal discretization of the fault.  

The geometry for the upper surface of the subducting slab for the whole of Japan was 

generated by Eric Hetland, by fitting hypocentral locations, and published seismic 

reflection surveys in the commercial geological CAD package, Gocad (Table 4-1.1).  

These discrete patches (“facets”) are then exported to the geometry and meshing package, 

Cubit [Owen, 2006] (Table 4-1.2).  All stages in the geometry/mesh generation process 

are fully automated using python scripts within CUBIT, using separate input files for 

model geometry and meshing.  These functions are available under the module 

Fslip.Geom.  However, at the present time, access to Cubit without the GUI interface 

(“Claro”) is not straightforward (since CUBIT is not open-source, the version of python 

packaged in the binary release might conflict with the local system python), so the default 

assumption behind these geometry/mesh scripts is that they will be run from inside 

Cubit’s python command line interpreter.   

 

In CUBIT, the geometry is first cut along a vertical surface defined by the trench profile.  

The same profile is shifted down-dip (by ~ 400 km), to make a parallel cut defining the 

bottom of the “active” megathrust boundary, or “fault”.  Two vertical surfaces, locally 

orthogonal to the trench-profile then cut the interface, completing the basic fault 

geometry generation.  The resulting orthogonal-edged fault surface is extended to the 

surface (z=0), then smoothed to remove any along-dip kinks in the fault surface, owing to 

the fact that the amount of updip extension required to get to the free-surface varies along 

strike.  Next, the fault surface is extended along the local trench strike at both ends, so its 

boundaries are far-enough from the outermost asperities (~ 4–5 times the characteristic 

asperity size, Dasp).  The surface is smoothed once more after this extension to remove 

any kinks along strike (Table 4-1.3).  This two-stage smoothing of the fault surface was 

found to be necessary in order for the tractions computed from any triangulation (or 

mesh, see below) to be relatively smooth over the curved fault surface.  Next, the fault 

surface is subdivided into six orthogonal edged surfaces (three along strike, times two 

 



 4-8

down-dip), such that the upper middle surface [“Fsurf”, the yellow patch in (Table 

4-1.4a)] contains all asperities.  “Fsurf” enables tighter control over transitioning of the 

mesh from coarser resolution near the fault boundaries to very fine resolution around the 

asperities (patch sizes vary over two orders of magnitude).  The asperities are then cut out 

of “Fsurf” and locally smoothed around each “cut”, to remove any discontinuities.  The 

megathrust interface is now ready to be meshed (Table 4-1.4b).   

 

The first step in the meshing process is setting interval sizes for its bounding curves 

and/or surfaces.  The interval size used directly affects not only the quantity, but also the 

quality of elements in the mesh.  We set the mesh interval size for the asperity-region 

bounding curves, as well as all asperity boundaries, to ~ 0.3-0.5 of the interval size for 

rest of the fault.  This ratio of interval sizes depends on the aspect ratio of “Fsurf” relative 

to that of the fault surface, as well as the circumference of the smallest asperity relative to 

the edge-lengths of “Fsurf”.  We use “QTri” patches (quads divided into constituent 

triangles) outside the asperity region, as these were found to result in much faster 

convergence of the forward model (as opposed to fully unstructured triangular patches).  

Meshing within “Fsurf” as well as inside the asperities is done by an automatic paving 

algorithm built into Cubit.   

 

The mesh is first refined (each triangular patch is split into three triangles formed by its 

edge-bisectors) around to asperity, to improve its resolution at a coarse level.  So, it is 

important to obtain good quality elements around the asperities in the lowest resolution 

mesh because any poor quality element yields poorer quality “child” elements during 

such refinement.  The whole of “Fsurf” is now refined once, transitioning into the coarse 

“QTri” elements outside this asperity region.  This forms the base resolution mesh 

(~3500 fault elements, and ~ 500 asperity elements, for the mesh presented here), 

“RES0” (Table 4-1.5(a)).  The mesh itself is smoothed after every refinement step, to 

eliminate any abrupt element-size changes as well as better represent the original 

geometry.  Since our model is driven by near singular tractions due to ruptures on 

asperities, most of the driving stress is concentrated right around the asperity.  Therefore, 

further refinement is intended to better resolve the stresses around the asperity, and 

 



 4-9

results in a transition zone of high mesh density between the asperity and the surrounding 

fault surface.  The upper limit on the number of elements is placed by 64-bit Matlab’s 

restriction of 104x104 elements.  This limitation can be overcome when the forward 

model code, EvolveSlip, is eventually ported out of Matlab into Python.  Given this 

restriction on the maximum number of fault patches, there are tradeoffs between the 

dimension of the smallest asperity, the fractional area of “Fsurf” that all asperities 

constitute, the size of “Fsurf”, and the number of elements in the transition zone between 

the asperity and “Fsurf” – “Ftrans”.  For the coarse “RES0” mesh, roughly one-fourth of 

the fault patches (that is, excluding asperity patches) lie within a distance from asperity 

centers equal to the respective asperity dimensions (“Ftrans”).  For the highest resolution 

mesh tested here (“RES2”, with ~9,500 fault elements, and 4000 asperity elements), 

nearly 70% of the fault elements lie within this same distance (Table 4-1.5(b)).  Thus, 

virtually all of the increase in resolution (~ 6000 elements) occurs right around the 

asperities, leaving the rest of the mesh relatively untouched.  One could generate meshes 

that conform to the fault surface outside of “Fsurf” even better, by adaptively focusing on 

regions of higher curvature.  In our case, the added expense due to refined elements far-

from the asperities did not allow for the use of such meshes.  However, this form of mesh 

refinement can be explored in the future.   

 

The ultimate check for a mesh is the smoothness of the traction kernels computed from 

that mesh.  For every mesh used in benchmarking and simulations, several iterations were 

required to remove any subtle kinks from the fault surface.  The goal was to preserve the 

large scale 3D structure of the fault, without introducing numerical perturbations of the 

traction field (at least in the predominant slip direction).  Knowledge gained from these 

iterations were directly incorporated into making the geometry and meshing modules, 

Fslip.Geom, more effective.  Benchmarking with kernels is discussed in more detail 

below.   

 

In order to improve the accuracy of locating asperities relative to the geographical region, 

a set of scripts were written to import a coastline map into the meshing package, Cubit.  

This not only aids in visualizing where the asperities are relative to surface stations, but 

 



 4-10

also provides a scale for quickly checking their extent, as well as their location relative to 

seismic epicenters (Table 4-1.6).   

 

Finally, the mesh is output in Abaqus as well as ExodusII (for the sake of generality) 

formats.  An Abaqus parser module (within Fslip.Data) and a comprehensive mesh post-

processor module (within Fslip.Geom) were written to then extract patch data for Kernel 

computation.  Such patch data include the nodal coordinates, area, aspect-ratio, strike, 

and dip of each element.  Given we are dealing with unstructured meshes here, the mesh 

post-processor also includes several advanced utility functions to generate semi-infinite 

extensions of the curved fault surface (for imposing far-field boundary conditions), 

finding neighboring elements based on several criteria, e.g., shared edges, or element IDs, 

are included in this module.  In addition, the mesh post-processor is general enough (and 

tested) to handle both triangular and quadrilateral meshes.  The output from the Mesh 

post-processor is directly used by Fslip.Kernel module, to compute any type or 

combination of Kernels, as discussed in the next section. 

 

 
Table 4-1. Work-flow for generating fault patches from a geo-referenced subducting slab 
surface geometry.   
 

GEOMETRY 

1. GOCAD 
Facets 

 

 
Models of the slab surface (a) and the Japan Mohorovicic discontinuity (b); for reference, a 
few of the seismic lines used as constraints are shown: 1, Iwasaki et al [2001]; 2, Miura et 
al.[2003]; 3, Ito et al. [2004]; 4, Nakanishi et al. [2004]; 5, Takahashi et al.[2004]; 6, Miura 
et al. [2005]. (Above figure, courtesy Eric Hetland) 
 

 



 4-11

2. Cubit ACIS 
net-surface 
approximation 
to Gocad facets 

 

3. Smoothed, 
orthogonally 
cut fault surface 
generated from 
the above mesh 

 

4. Subdivided 
fault surface (a) 
creating an 
upper-central 
area for 
locating 
asperities, 
“Fsurf” [yellow 
region in (a), 
red in (b)]  

(a) 

 
(b) 

 



 4-12

 

MESH 

5. Coarsest (4x103 
patches) and finest 
(104 patches) mesh 
resolutions used for 
testing convergence 
of solution 

(a) 
 

(b) 

6. Adaptively meshed 
fault surface with 
asperities, along with 
a coastal map (only 
coarse resolution 
shown here) of Japan, 
and epicentral 
locations.  Such 
meshes with map 
overlays can be 
routinely generated in 
“auto” mode. 

 

 

 



 4-13

7. Semi-infinite 
extensions of the fault 
surface, that can 
potentially be used to 
test the validity of 
backslip on the active 
fault. (Colors indicate 
centroidal distance 
from the center of the 
projected Cartesian 
reference frame) 

 
 

4.4 Kernels 

 

The term “Kernel” is used here to denote the matrix of impulse-response functions that 

define the tractions or displacements at each observation point due to a unit slip along 

each of the constituent source patches of the fault.  Considerable effort was expended in 

generating and testing the source code for the kernels.  The existing half-space solutions 

for rectangles [summarized in Okada, 1992] and triangles [summarized in Meade, 2007] 

have different sign conventions.  The Okada [1992]  solutions were originally written in 

F77, but their most common form is a Matlab-MEX file, which needs to be recompiled 

and/or modified with each Matlab upgrade.  The Meade [2007] solutions were entirely 

cast in Matlab, but very inefficient because the bulk of the calculations were “cut-and-

pasted” from Matlab’s symbolic language toolbox.  The Meade [2007] approach resulted 

in typical arithmetic expressions that were thousands of elements long, with nearly as 

many repetitions of function evaluations.  Significant improvements in efficiency could 

be achieved by simplifying these symbolic language expressions.  Here, triangular 

patches are used to accurately represent a real (curved) megathrust interface, and the 

much widely used rectangular patch solutions were used to benchmark these triangular 

solutions.   

 



 4-14

In order to overcome (a) the lack of a common interface for defining real-world faults for 

either the Okada [1992] or Meade [2007] solutions (the existence of which would be 

useful for benchmarking), (b) improve the computational efficiency of the triangular-

dislocation solutions, and (c) make these solutions available in open-source format, two 

distinct but architecturally similar python-wrapped packages (OkadaWrap, and TriWrap) 

were developed, having identical functional interfaces that could be called from the same 

driver script using identical input data (a set of fault patches and observation points).  

These packages were extensively benchmarked using a suite of tens of 2D and 3D test 

problems — not only against each other (“peer-to-peer”), but also against the original 

Matlab versions (“parent-to-peer”).  For OkadaWrap, the original F77 code was 

converted into F90 syntax, while for TriWrap, the original code was entirely re-written as 

optimized F90 modules.  For TriWrap, special python scripts were written to 

automatically parse and translate the hundreds of Matlab expressions (output from the 

symbolic toolbox) into F90 syntax, as well as subsequently simplifying the resulting 

expressions to eliminate any repeating expressions or intrinsic function calls.  As a result, 

TriWrap was found to be roughly 250 times faster than the original Matlab code [Meade, 

2007] during benchmarking.  The core dislocation codes in both packages are supported 

by several common F90 modules.  The respective F90 driver routines for each package 

take care of the different input parameter conventions for these two solutions, and 

assemble kernels for a specified combination of patch and observation stations.  These 

F90 driver routines are finally wrapped into python functions using the F2py package 

within Numpy.  Installing and using either of these packages require both python/numpy 

as well as one of the free F90/95 compilers (Intel Fortran, or GFortran), but scripts for 

compiling with F2py are included with the packages.  Beyond this basic requirement, the 

end-user can simply use these solutions as a “black-box” with a common interface.  The 

packages also provide sample “well-commented” python driver scripts that can be a good 

starting point.   

 

While space does not permit presenting the tests done in ensuring the accuracy of the 

kernels, it is worth mentioning the kinds of tests that were carried out in comparing the 

two sets of kernels.  In all tests, fault orientation (strike and dip) were varied to get four 

 



 4-15

different combinations (positive or negative values for each angle).  2D tests included 

comparison of both free-surface and along fault displacement and traction vectors, as 

well as the full stresses tensor, for different fault and observation profile resolutions.  The 

profile along the free-surface or fault was varied to compare both near- and far-field 

predictions.  3D tests involved comparing surface and fault deformation fields due to slip 

on a planar fault, discretized using rectangular patches, with a planar fault discretized 

using different triangular subdivisions of these same rectangles (from two to seven 

triangles per rectangle).   

 

For the Japan megathrust interface used in the simulations here, the computed traction 

kernels were checked for both internal consistency and smoothness.  In the context of 

half-space models, if a fault surface were to rupture the entire half-space, the relative 

motion between the hanging-wall and foot-wall can be described by rigid blocks sliding 

past each other.  There is no net strain accumulation anywhere in the half-space owing to 

such rigid-body sliding.  Say, we divide this fault surface into three regions: (a) small 

patches that slip only episodically (“asperities”) during seismic ruptures, (b) a region 

surrounding these asperities that slips in response to these ruptures (“fault”), and (c) the 

semi-infinite extension of the fault both along strike and dip (“loading”).  The basic idea 

here is that over the course of an appropriately defined seismic “cycle”, all three regions 

of the fault would experience the same slip (albeit at different times), so that the net 

motion is equivalent to rigid-block motion.  Let us now define at every point on the fault 

surface (in practice, at the centroid of every triangle on the discretized fault), (a) tractions 

resulting from slip on all fault patches (excluding asperities), τFF, (b) tractions resulting 

from slip on all asperity patches, τFA, and (c) those resulting from slip of the semi-infinite 

loading patches that continuously slip at the plate convergence rate, τFI.  If all three 

regions slip the same amount, then the resulting rigid-body motion implies that at every 

point on the semi-infinite fault surface within the half-space,  

 

τFF  + τFA + τFL = 0 .  (1) 

 

 



 4-16

For realistic 3D meshes, however, discretization of the fault surface results in not all 

components of Equation 1 exactly cancelling each other.  This consistency check is 

carried out every time kernels are computed for a given asperity configuration.  

“Dashboards” containing 3D views of the above fault tractions are automatically 

generated for viewing in the open-source parallel VTK visualization package, Paraview 

[e.g., Henderson, 2004].  This consistency check (Equation 1) is presented for each 

traction component (strike-slip, dip-slip, and normal), for dip-slip over the fault, asperity, 

and loading patches in Figure 4-2, and for strike-slip along these patches in Figure 4-3.  

In these figures, each row of panels represents the contributions for one traction 

component, while each column represents τFF, τFA, τFL, and the residual Δτ (the right-hand 

side of Equation 1), respectively.   

 

Since coseismic tractions are the principal driver of the models presented here, both the 

3D fault geometry and the mesh were iteratively smoothed until the tractions along the 

principal slip-component directions (e.g., τdip due to dip-slip, and τstrike due to strike-slip) 

exhibited local fluctuations of < 0.1% of the main coseismic signal around the asperities.  

However, for the “cross”-component directions (e.g., τstrike due to dip-slip, and τdip due to 

strike-slip), these fluctuations cannot be entirely eliminated owing to the fact that these 

tractions (which are mathematically the difference of two large numbers) are small over 

most of the fault surface, and due to the inherent discontinuities from the discretization of 

the fault surface (see upper-right and lower-right panels of Figure 4-2 and Figure 4-3).  It 

was checked that such fluctuations did not exist for a planar fault surface, which yielded 

zero residuals everywhere on the fault surface from Equation 1.  These fluctuations for 

the 3D fault geometry can, however, be minimized if curvature-based adaptive meshing 

is used everywhere on the fault surface, but the current limit on the maximum mesh size 

did not allow the use of meshes having high resolutions far from the asperities.  Once 

kernels have been computed, they are stored and used for multiple simulation scenarios 

(or “runs”).  In order to check model inputs going into the Matlab forward solver, 

EvolveSlip, another “dashboard” of model inputs is automatically generated for Paraview 

after generating all inputs for a run (see Figure 4-4 for dip-slip motion and Figure 4-5 for 

strike-slip motion), including (a) the tractions on the fault surface due to slip on fault and 

 



 

 

4-17

asperity patches, (b) surface displacement field due to unit asperity slip for every 

asperity, (c) rheological parameter distribution, and (d) the initial slip, or slip all over the 

fault surface immediately after each asperity ruptures.   

 

To be more realistic, a narrow slip transition zone is included around each asperity over 

which coseismic slip drops to zero (see bottom right panel of Figure 4-4 and Figure 4-5).  

The effect of different parameterizations for the slip distribution in this transition zone (or 

slip-”tapering”) are discussed in Hetland et al. [2010].  Several tapering functions are 

available in Fslip.ModelInp module for estimating this transitional slip.  Typically, a 

fraction (0.25–0.5) of the asperity dimension is choosen to be the (arbitrary) width of this 

transition zone.  As noted above, during meshing, this transition zone is where much of 

the refinement occurs to resolve coseismic tractions, and routine checks are carried out 

for each mesh to make sure that most of the coseismic stress pulse lies within this well-

resolved transition zone, as far as practically possible.   



 4-18

 

 
Figure 4-2. An automatically generated Paraview dashboard showing fault traction components (τS, top row; τD, middle row; τN, bottom row) due to dip-slip on 
all fault patches (column 1), slip on each asperity (column 2: the duller color is due to the use of transparency in Paraview to show all asperity contributions in a 
single panel), slip on the semi-infinite extensions of the fault (or backslip, column 3), and the residuals obtained from the superposition (Equation 1).  For a 
planar fault, these residuals were found to be zero, as expected. 

 



 4-19

 
 
Figure 4-3. An automatically generated Paraview dashboard showing fault traction components (τS, top row; τD, middle row; τN, bottom row) due to strike-slip on 
all fault patches (column 1), slip on each asperity (column 2: again, the duller color is due to the use of transparency in Paraview to show all asperity 
contributions in a single panel), slip on the semi-infinite extensions of the fault (or backslip, column 3), and the residuals obtained from the superposition 
(Equation 1).  For a planar fault, these residuals are zero, as expected. 

 



 4-20

 
 
Figure 4-4. An automatically generated Paraview quality control dashboard for unit dip-slip on the fault and asperities, showing the rheological parameter 
distribution (rightmost middle panel), initial slip distribution (bottom-right panel), tractions (top two rows of panels), and surface displacements.  Such figures are 
automatically generated and used for visualizing model inputs before a run or for debugging after a run.  All 3D plots are colored on a log-scale, to bring out any 
small-scale heterogeneities.   

 



 

 

4-21

 
 
Figure 4-5. An automatically generated Paraview quality control dashboard for unit strike-slip on the fault and asperities, showing the rheological parameter 
distribution (rightmost middle panel), initial slip distribution (bottom-right panel), tractions (top two rows of panels), and surface displacements.  Such figures are 
automatically generated and used for visualizing model inputs before a run or for debugging after a run.  All 3D plots are colored on a log-scale, to bring out any 
small-scale heterogeneities.   



 4-22

4.5 Rheology 

 

The Matlab forward slover, EvolveSlip, models linear-viscous, non-linear viscous, purely 

rate-dependent and Dietrich-Ruina rate-state rheologies.  Hetland et al. [2010] showed 

that late in the seismic cycle, which is what we are attempting to simulate here, both 

purely rate-dependent as well as rate-state rheologies give very similar fault slip rates.  In 

our simulations presented here, we use only purely rate-dependent rheology.  However, 

for the purposes of intuition building in terms of the effects of strong vs. weak faults, we 

use a linear viscous rheology.  For linear viscous rheology, slip-rate depends linearly on 

fault loading tractions, as opposed to the exponential dependence in typical rate-

dependent rheologies.  Therefore, simulations with linear viscous rheology can be used as 

a starting point in understanding the “strength” of the fault required to match surface 

velocity predictions to the observed velocities.  While EvolveSlip can theoretically handle 

heterogeneous fault zone rheology, in this initial work, we only explore constant 

rheological properties, ignoring any lateral or depth dependence.  In order to compare 

runs for different rheologies, all simulations are carried out with non-dimensional 

parameterizations.  Hetland et al. [2010] cast the relationship between slip-rate and fault 

tractions for various rheologies in the form: 

),( ατfs =   (2) 

where, α is a strength parameter that depends on the rheology.   

 

For linear viscous rheology, 

α
τατ == ),(fs   (3) 

and α depends only on the characteristic viscosity, η, and width, h, of the fault zone: 

h

ηα =  . (4) 

The viscosity can be computed as the product of the shear-modulus, μ, and a relaxation 

time (in the case of Maxwell viscoelasticity), TR.  The non-dimensional scaling for the 

strength parameter is simply,  

 



 4-23

00

0

0

0
0 DV

S

V

μτα ==  (5) 

where, V0 is the loading rate (plate velocity), S0 is the characteristic slip on the asperity, 

and D0 is the characteristic asperity dimension.  So, from (4) and (5), a dimensionless 

strength parameter for viscous rheology is: 

h

D

S

TV

S

DV

h

T RR 0

0

0

0

00

0

===′
μ

μ
α
αα  . (6) 

Non-dimensionalizing (3) using α0, τ0, and V0, and rearranging, we obtain, 

V
V

s ′′===′ α
α

α
τ
ττ

000


 . (7) 

Thus, late in the cycle, when most of the fault is slipping at the loading rate, the mean 

dimensionless shear tractions along the fault surface will equal the dimensionless strength 

parameter, α΄.  Typical values for the above parameters are: V0 ≈ 10-2 m/yr, S0 ≈ 1 m, D0 

≈ 104 m, h ≈ 1 m, and TR ≈ 10-3–10-1 yr.  Substituting these into (6) yields the range of 

values for α' as 0.1 to 10. 

 

For rate-dependent rheology,  









−

==








−

−

0

)(
0 )(

sinh),(
0

σ
τατ
ba

eVfs ba

f

   (8) 

where, f0 is the static friction coefficient, a and b are the coefficients of the direct and 

indirect (state-dependent) dynamic frictional effects, and σ0 is the effective normal 

traction on the fault surface.  In our model, σ0 can be both time-dependent (e.g., in 

response to slip evolution on the fault surface), as well as spatially heterogeneous (e.g., 

due to pore-pressure variations).  In the demonstrative results presented in Chapter 5, we 

choose a constant σ0 over the entire fault surface.  The implications of such an 

assumption are discussed in more detain in Section 5.2.  Therefore, there are two non-

dimensional rheological parameters in this case [Hetland et al., 2010]:  

( ) 







′
′

==′ −

α
τρ sinh

0

e
V

s
V


  (9) 

where, ρ = f0/(a-b), and α = (a-b)σ0.  Thus, late in the cycle, when most of the fault is 

slipping at the loading rate, the mean dimensionless shear tractions along the fault surface 

 



 4-24

will equal ρ times the dimensionless strength parameter, α'.  Typical values of (a−b) ≈ 

10−2 [Blanpied et al., 1991; Marone et al., 1991], f0 ≈ 0.1–1, σ0. ≈ 10–102 MPa [Rice, 

1993; Lapusta and Rice, 2003].  Thus, typical range of values for ρ ≈10–100, and α ≈ 

105–106 Pa.  Assuming the same values as before for the non-dimensionalization of 

stresses, and μ ≈ 1010 Pa, α' ≈ 10−2–10−1. 

 

 

4.6 Significant developments over the existing Matlab forward solver, EvolveSlip 

 

In addition to the general codes discussed above, several developments needed to be 

made to the existing Matlab forward solver, EvolveSlip, and its dependencies, in order to 

handle models with real fault surfaces.  Here, we discuss the most significant changes.  

As before, we refer to Hetland et al. [2010], and Hetland and Simons [2010] as HSD10, 

and HS10, respectively. 

 

Size of the problem: In HSD10 and HS10, a set rectangular region surrounding the 

asperities is always discretized at a fine resolution.  This fine rectangular mesh around the 

asperities transitions into coarser rectangles towards the edges of the fault. In their 

implementation, asperities are defined at the time of running the model by designating 

patches lying within a specified region of the planar fault to be locked (“asperity”).  Here, 

we use a different approach, whereby the asperities are defined at the time of meshing the 

megathrust interface, and fault parameter evolution is simulated only over the region of 

the fault outside these asperities.  Driving coseismic stresses (and hence, the largest 

gradients in the modeled field parameters) occur along a narrow band surrounding the 

asperities.  Therefore, as discussed in the meshing section, a very fine mesh resolution is 

applied over a narrow transition zone around the asperities.  By not storing model 

parameter evolution over asperities during forward model calculations, the size of the 

Kernel array can be reduced by a factor of 40–50%, which can be significant when there 

are thousands of patches within the asperities.  Also, a much higher patch size contrast is 

achieved between the fault edges and asperity boundaries, because a large fraction of the 

finer mesh residing within the asperities is ignored.  In addition, the above references did 

 



 4-25

not consider surface deformation at observation stations (which can number in the several 

100s to 1000, for a place like Japan).  So, excluding the evolution of model parameters 

over asperity surfaces allows us to not only resolve the driving tractions after each 

rupture at a much finer scale than in the scheme implemented in Hetland et al. (by 

roughly an order of magnitude), but also to include thousands of surface observation 

points (actual stations as well as a surface observation grid for visualizing surface 

deformation).   

 

Rupture sequence and timing of rupture: Since HSD10 and HS10 were trying to 

demonstrate a method for simulating postseismic fault slip, they did not consider realistic 

rupture sequences.  In reality, the rupture interval for each asperity may not be related to 

that of another asperity by whole fractions (because rupture timing offset, or rupture 

intervals, or both).  In this case, the concept of a characteristic rupture sequence time (or 

CRS cycle) — which is arithmetically equivalent to the least common multiple of all 

asperity rupture intervals — is utilized.  Essentially, after each CRS cycle, ruptures on all 

asperities repeat in the same sequence, and rupture-time offsets as the previous CRS 

cycle.  Therefore, a different convergence criterion had to be developed for the case of an 

arbitrary sequence of ruptures on multiple asperities.  The convergence criterion used in 

Hetland et al. was designed for relatively uniform meshes with small gradients in mesh 

size (arithmetic mean of tractions measured at a single time — just before a subsequent 

rupture).  When using unstructured grids having a large range of mesh element sizes (as 

is the case here), it is more appropriate to use an area-weighted mean for checking 

convergence.  In addition, when using realistic rupture sequences, the mean tractions vary 

significantly between the individual constituent earthquakes in each CRS-cycle, thus 

making it inappropriate to use only a single point in time to measure convergence.  Here, 

we use moving averages taken over different time-spans to determine an appropriate 

time-scale over which the model is deemed to have converged.  Not surprisingly, the 

smallest moving average window beyond which convergence is stable turns out to be the 

CRS-cycle time.  Therefore, the first complete CRS-cycle after convergence gives the 

simulated earthquake sequence for the given set of asperities.  Synthetic surface 

velocities are extracted from this cycle for comparison to surface geodetic data.   

 



 4-26

Application of backslip with varying rake over an arbitrary fault surface in 3D: 

HSD10 and HS10 considered only planar faults.  For a given relative plate velocity 

orientation, the rake (angle between slip vector and down-dip vector along the fault 

plane) is constant across the fault surface.  However, for an arbitrary dipping fault surface 

in 3D, rake is a spatially varying quantity, whose local rate of variation depends on the 

degree of smoothing applied to that surface (as discussed in the meshing and kernels 

sections above).  As originally postulated by Savage [1983], and demonstrated by Kanda 

and Simons [2010], backslip over a curved megathrust interface must be applied only 

along the local tangent to the fault surface.  So, an additional feature was introduced 

whereby backslip is prescribed locally, over every patch depending on its orientation 

(strike and dip) relative to that of the plate velocity vector.  Also, depending on the 

relation between the plate velocity vector direction and trench strike along the megathrust 

interface, it is possible to have strike-slip component of the plate velocity having both 

“up-strike” and “down-strike” directions along the same mega-thrust interface.  In order 

to handle both positive and negative slip-rates in a given slip-direction, Kernel pre-

multipliers computed from the local backslip unit vector were used to determine their 

correct response.  Using a local backslip distribution results in significant strike-parallel 

fault slip partitioning (Figure 4-6) along the northern Japan-Kurile trench, with negligible 

along-strike slip for the southern Japan-Trench.  This is consistent with slip inferred from 

observed surface geodetic measurements [see for example, DeMets, 1992; Loveless and 

Meade, 2010]. 

 

 

4.7 Steps in running a model 

 

All model parameters (numbering about 150 for a typical run) are input into a 

comprehensively documented Input file, ModelData.py, consisting of three python data-

classes — Global Data, Kernel Data, and Run Data.  Given the number of inputs, and for  

 



 4-27

 
(a) 

 
(b) 

 
Figure 4-6.  (a) Strike-slip, and (b) dip-slip components of the non-dimensional backslip velocity field 
applied to the 3D fault surface.  Color-scale indicates the same range of magnitudes in both figures as well 
as for the arrows.   
 

 

tight quality control, this same input file is read by all the python drivers in Fslip, as well 

as the Matlab driver for EvolveSlip.  A parser/translator was written in Matlab (and 

extensively tested) that can understand simple python assignment statements, including: 

lists, tuples, 1D and 2D arrays, concatenated strings, intrinsic functions and simple 

arithmetic expressions.   

 

Currently, there are three python driver scripts and one matlab driver script for carrying 

out the different components of a simulation: (1) Mesh2Kernels.py: Mesh data extraction 

and kernel generation (typically, a one-time process for a given mesh resolution), (2) 

ModelPar.py: Python pre-processing run to generate model input parameters (Coseismic 

slip components, rupture history, Initial slip and rheological parameters distributions, 

locked fault patches — for every run), (3) RunPyModel.m: Forward model calculations, 

 



 4-28

using a Matlab driver that parses the input file, ModelData.py, extracts the kernels as well 

as model parameters from binary files, assembles the kernel matrix, sets additional run-

time parameters, and finally, runs EvolveSlip, and (4) Matbin2Vtk.py: Post-procesing to 

probe and extract binary Matlab output for further processing as well as VTK files for 

visualization.   

 

In order to aid in debugging and check for any run-time issues, the drivers currently 

output a large amount of screen output to indicate different stages of activity.  In the 

future a verbosity flag will be added to suppress this output when not required.  Also, as 

part of validating the code, we tested a series of runs for both spin-up and consistency of 

surface velocity predictions.  Different fault-asperity configurations were used along with 

either linear viscous (for benchmarking) or rate strengthening rheology: (a) single 

asperity on a planar fault approximating the Tohoku section of the Japan Trench (TL), (b) 

entire 3D fault along the Japan Trench, with one (JT1) and two (JT2) asperities, (c) entire 

3D fault along the Japan Trench, with the five major asperities (discussed in the next 

chapter), both without (JT5) and with variable backslip rake (JT5vb).  Due to space 

constraints only the results from the last run (JT5vb) are presented in the next chapter.   

 

 

4.8 Future directions for research and development 

 

More sophisticated scientific questions can be addressed with extensions to the software 

developed here, for instance:  

• The effect of lateral and depth variations in fault rheology.   

• As the spatio-temporal resolution of geodetic data gets better, and crustal structure 

gets better resolved using seismic data, we could also use kernels generated 

accounting for local 3D crustal heterogeneities.  Such 3D kernels would have to be 

computed numerically, using for example, a Finite Element Method (FEM) code, but 

are straightforward to compute at the present time.   

• A long-term challenge is to attain the ability to simultaneously model multiple 

rheologies on the fault surface, which result in slip evolution over multiple length and 

 



 

 

4-29

time-scales on the fault surface.  This will involve a thorough re-formulation of the 

meshing schemes, as well as the forward model solver, taking into account any 

potential numerical instabilities resulting from such multi-scale evolution.   

 

Thus, future software development can proceed in several directions.  First, we want to 

migrate all the forward modeling functionality (currently in the Matlab scripts 

EvolveSlip) to python in order to avoid the array size limitations imposed by Matlab — 

so higher resolution discretizations and/or larger fault areas can be handled.   

The current code can also be speeded by simple changes such as eliminating verbose 

screen output and further optimization of file-I/O.  However, in order to make it feasible 

to routinely carry out inversions of geodetic data for fault rheological properties, 

significant speed improvements are needed.  Such improvements are possible by 

recognizing that the elastic fields due to slip on a fault patch have an inherent length-

scale (roughly a few times the characteristic patch size).  So, at the present, the kernel 

matrix is very “sparse” in a numerical sense.  Therefore, by introducing scale-dependent 

kernels, a kernel matrix with a much smaller band-width can be used for the forward 

model.  However, given that we are testing non-linear rheologies, the inherent time-

stepping (even if adaptive) limits the ultimate speed improvement that is possible for this 

problem, irrespective of the numerical integration scheme used.  However, even now, 

simulations can be run and processed within a couple of days using an “embarrassingly-

parallel” approach — that is, by simultaneously launching jobs on thousands of 

processors.  In this sense, even now, a limited Bayesian type inversion is currently 

feasible within a reasonable time-frame.  However, with increasing computing power 

(e.g., use of Graphical Processing Units, or GPUs) and cluster sizes, inverting for fault 

rheogical properties in a fully Bayesian sense will become even more tractable in the 

coming years.



 4-30

References 

 

Blanpied, M., D. Lockner and D. Byerlee (1991), Fault stability at hydrothermal 
conditions, Geophys. Res. Lett., 18, 609–612. 

DeMets, C. (1992), Oblique Convergence and Deformation Along the Kuril and Japan 
Trenches, J. Geophys. Res., 97, 17,615–617,625, doi:610.1029/1092JB01306. 

Gocad, 2010. (http://www.gocad.org/www/gocad/index.xhtml) Gocad Research Group. 

Henderson, A. (2004), The Paraview Guide, 1st edn, vol., Kitware Inc. 

Hetland, E.A. and M. Simons (2010), Postseismic and interseismic deformation due to fault 
creep II: Transient creep and interseismic stress shadows on megathrusts. , Geophys. J. Int., 
181, 99–112, doi:110.1111/j.1365-1246X.2009.04482.x. 

Hetland, E.A., M. Simons and E.M. Dunham (2010), Postseismic and interseismic 
deformation due to fault creep I: Model description. , Geophys. J. Int., 181, 81–98,  
doi:10.1111/j.1365-1246X.2010.04522.x. 

Ito, A., G. Fujie, T. Tsuru, S. Kodaira, A. Nakanishi and Y. Kaneda (2004), Fault plane 
geometry in the source region of the 1994 Sanriku-oki earthquake Earth Planet. Sci. Lett., 
223, 163-175. 

Iwasaki, T., W. Kato, T. Moriya, A. Hasemi, N. Umino, T. Okada, K. Miyashita, T. 
Mizogami, T. Takeda, S. Seikine, T. Matsushima, K. Tashiro and H. Miyamachi (2001), 
Extensional structure in northern Honshu arc as inferred from seismic refraction/wide-
angle reflection profiling, Geophys. Res. Lett., 28, 2329–2332. 

Kanda, R.V.S. and M. Simons (2010), An elastic plate model for interseismic deformation 
in subduction zones, J. Geophys. Res., 115, B03405. 

Lapusta, N. and J. Rice (2003), Nucleation and early seismic propagation of small and 
large events in a crustal earthquake model, J. geophys. Res., 108, 2205, 
doi:2210.1029/2001JB000793. 

Loveless, J.P. and B.J. Meade (2010), Geodetic imaging of plate motions, slip rates, and 
partitioning of deformation in Japan, J. Geophys. Res., 115, B02410, 
doi:02410.01029/02008JB006248. 

Marone, C., C. Scholz and R. Bilham (1991), On the mechanics of earthquake afterslip, J. 
geophys. Res., 96, 8441–8452. 

Meade, B.J. (2007), Algorithms for the calculation of exact displacements, strains, and 
stresses for triangular dislocation elements in a uniform elastic half space. , Comp. Geosci., 
33, 1064-1075, doi:1010.1016/j.cageo.2006.1012.1003. 

Miura, S., S. Kodaira, A. Nakanishi and T. Tsuru (2003), Structural characteristics 
controlling the seismicity of southern Japan Trench fore- arc region, revealed by ocean 
bottom seismographic data, Tectonophysics, 363, 79-102. 

Miura, S., N. Takahashi, A. Nakanishi, T. Tsuru, S. Kodaira and Y. Kaneda (2005), 
Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, 
deduced from a wide-angle reflection and refraction study, Tectonophysics, 407, 165-188. 

 Page 4-30 of 168 

http://www.gocad.org/www/gocad/index.xhtml


 

 Page 4-31 of 168 

4-31

Nakanishi, A., A.J. Smith, S. Miura, T. Tsuru, S. Kodaira, K. Obana, N. Takahashi, P.R. 
Cummins and Y. Kaneda (2004), Structural factors controlling the coseismic rupture zone 
of the 1973 Nemuro-Oki earthquake, the southern Kuril Trench seismogenic zone, J. 
Geophys. Res., 109, B05305, doi: 05310.01029/02003JB002574. 

Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. 
Seismol. Soc. Am., 82, 1018-1040. 

Owen, S.J., 2006. CUBIT 10.2 Documentation, pp. 532, Sandia National Laboratories, 
Albuquerque, NM, U.S.A. 

Rice, J. (1993), Spatio-temporal complexity of slip on a fault, J. geophys. Res.  , 98, 9885–
9907. 

Savage, J.C. (1983), A dislocation model of strain accumulation and release at a subduction 
zone, J. Geophys. Res., 88 4984-4996. 

Schroeder, W., K. Martin and B. Lorensen (2006), The Visualization Toolkit An Object-
Oriented Approach To 3D Graphics, 4th edn, vol., Kitware Inc. . 

Takahashi, N., S. Kodaira, T. Tsuru, J.-O. Park, Y. Kaneda, K. Suyehiro, H. Kinoshita, S. 
Abe, M. Nishino and R. Hino (2004), Seismic structure and seismogenesis off Sanriku 
region, northeastern Japan, Geophys. J. Int., 159, 129-145. 

 

 


