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ABSTRACT 

 

Traditionally, interseismic deformation in subduction zones has been modeled using simple 

elastic dislocation models (EDMs).  Such models have been extensively used over the past 

couple of decades as geodetic networks were being established around the world.  

However, with the availability of 3D (vector) velocity data with dense spatio-temporal 

coverage during the past decade, it becomes possible to explore more complex models of 

deformation.  Such models may allow us to infer higher-order properties of the megathrust 

interface or the subducting plate from the observed deformation field.  For instance, we 

show that it may be possible to infer the elastic plate thickness of the subducting plate (over 

the seismic cycle timescale) under certain conditions, especially if ocean-bottom geodetic 

measurements become routinely available in the near future.  The plate thickness can affect 

surface deformation on the overriding plate if only a small fraction of the flexural stresses 

at the trench are continuously released over the seismic cycle time-scale.  Another problem 

we address here is how the rheology of the megathrust interface affects the evolution of slip 

over the seismic cycle, and therefore, the seismic hazard inferred from geodetic data.  We 

model such slip evolution on a realistic 3D fault surface having a frictional rheology.  

Assuming that seismic rupture zones (or “asperities”) persist across several seismic cycles, 

we test the hypothesis that mechanical coupling on such asperities alone is sufficient to 

explain currently available geodetic observations in northern Japan.  We find that it is not 

necessary to lock large portions of the megathrust between ruptures – unlike recent EDM 

predictions for northern Japan – resulting in potentially large future earthquakes.  Instead, 

post-seismic slip around asperities immediately following seismic rupture can result in 

large “stress-shadow” regions, which experience negligible slip late in the cycle.  Such 

stress-shadow regions can mimic the long-wavelength “locked” zones inferred from EDMs 

for the interseismic period, and account for most of the present day GPS velocities in 

northern Japan.  The approach developed here can be extended to more complex models of 

deformation that include heterogeneities in crustal properties, multiple fault surfaces, and 

perhaps, even multiple rheologies over a single fault.   
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 1-1

C h a p t e r  1                                                                                            

INTRODUCTION 

 

Geodetic data collected since the 1990s from subduction zones have been interpreted 

using simple kinematic elastic dislocation models [Savage, 1983, 1995; Zweck et al., 

2002; Wang et al., 2003; Chlieh et al., 2008b].  However, over the last decade, a vast 

amount of geodetic data has become available from various subduction zones around the 

world, having not only good spatial coverage (using InSAR, see, e.g., Massonnet and 

Feigl [1998], Simons and Rosen [2007]), but also high temporal density and resolution 

(high-rate GPS, see for e.g., Larson et al. [2003]).  Such dense datasets of velocity 

vectors provide an opportunity to explore more complex kinematic or quasi-dynamic 

mechanical models of the seismic cycle in subduction zones in order to estimate for 

instance, elastic thickness of the downgoing plate, or frictional properties on realistic 3D 

megathrust interface between the subducting and overriding plates.  Eventually, such 

information will allow us to refine assessments of potential seismic hazard within 

different geographic regions of a plate boundary zone, thereby providing guidance on 

where to focus preventative measures (such as retrofitting buildings), and resources for 

emergency preparedness (such as evacuation plans and their facilitation).   

 

Early theoretical attempts to model the kinematics of deformation during the entire 

seismic cycle were made in the late 1970s to mid 1980s, using 2D earth models having a 

single subduction interface embedded in (a) a fully elastic half-space [Savage, 1983], (b) 

an elastic layer (lithosphere) overlying a viscoelastic half-space (asthenosphere) 

[Thatcher and Rundle, 1979; Rundle, 1982; Thatcher and Rundle, 1984; Cohen, 1994], 

(c) an elastic layer (lithosphere) over a viscoelastic layer (asthenosphere), over an elastic 

half-space [Sato and Matsu'ura, 1988; Matsu'ura and Sato, 1989], or (d) a viscoelastic 

lithosphere over viscoelastic asthenosphere, over a viscoelastic half-space [Sato and 

Matsu'ura, 1992, 1993; Fukahata and Matsu'ura, 2006].  These models considered gravity 

and realistic subduction interface geometries.  Models (a) and (b) assumed that there is no 

net accumulation of deformation in the overriding plate.  Models (b) require two 
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parameters that have high uncertainties in addition to those in elastic dislocation models – 

the asthenospheric viscosity, and the recurrence time for seismic events.  The key result 

from models (b) was that the surface velocity field was much larger than the 

corresponding elastic field [model (a)] right after a megathrust event, and much smaller 

than the elastic field just before the subsequent event.  So, the integrated velocity field 

during the interseismic period exactly cancels the coseismic displacements after each 

cycle, resulting in zero net deformation of the overriding plate.  Including gravity 

diminishes the magnitude of viscoelastic deformation in the model, which reaches steady 

state faster than in the zero-gravity case [Rundle, 1982].  Because the more complex 

physics included in these models introduces additional parameters, they can fit the 

coseismic, postseismic, and at least in some cases, the interseismic deformation fields 

well [Thatcher and Rundle, 1984].  Models (c) and (d) predict a net accumulation of 

deformation in the overriding plate after each seismic cycle, owing to the steady state 

motion at the rate of plate convergence along the curved fault interface within the upper 

elastic lithosphere — this conclusion is unaffected by the inclusion of gravity.  As we 

will see in Chapter 1, this so-called permanent deformation is very similar to that 

required to support elastic stresses resulting from bending of the subducting plate at the 

trench.  Although this runaway surface deformation can be modulated by parameterizing 

accretion, erosion and sedimentation during the seismic cycle [Sato and Matsu'ura, 1993; 

Cohen, 1999], such complexity introduces many more free parameters having high 

uncertainties.  Furthermore, Savage [1995] argued that the coseismic, postseismic and 

interseismic fields can be fit equally well (given the data uncertainties) with a modified 

elastic dislocation model having a fault patch downdip of the locked zone that slips only 

post-seismically — and that it is hard to demonstrate that asthenospheric relaxation 

contributed to interseismic deformation on the surface of the overriding plate.   

 

Going beyond these semi-analytical approaches, finite-element-method (FEM)-based 

models also do not do better than dislocation models, given the current spatial resolution 

and uncertainty limits of geodetic data.  Quasi-static models that are computationally 

more challenging, and are driven by dynamically consistent boundary conditions have 

also been developed.  It is illustrative to consider two representative studies that model 
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the two distinct types of plate compression zones — subduction and collision zones — 

using FEM models.   

 

Williams and McCaffrey [2001] developed a 2D quasi-static, self-gravitating, purely 

elastic finite element model of the Cascadia subduction zone beneath Oregon and 

southwest Washington.  The quasi-static deformation fields within the overriding plate 

are entirely determined by uniform and constant shear tractions along the locked 

subduction interface (a proxy for the effect of locking), as well as along its bottom 

surface (a proxy for upper mantle flow).  Using that model, they attempted to constrain 

shear stresses acting along the fault interface and the bottom of the overriding plate using 

regional geodetic data.  They compare the surface velocity and tilt-rate fields predicted by 

their preferred FEM with those of an equivalent elastic dislocation model having the 

same fault geometry, and find that both models fit the vertical velocities (at a single 

observation point) as well as the observed surface tilt rates equally well.  Their main 

argument for preferring the FEM was its ability to better fit the location of the change in 

slope of the horizontal velocity profile, as well as a broad region of elevated horizontal 

velocities just beyond this slope change.  As is well known, and also illustrated in 

Chapter 2, the location of the change in slope of the horizontal velocity profile predicted 

by an elastic dislocation model (with a locked zone extending all the way up to the 

trench) is sensitive to the abruptness of transition between zero to finite aseismic slip at 

the downdip end of the locked zone.   

 

Vergne et al., [2001] compared the predictions of interseismic surface velocities and 

crustal stress concentrations from a realistic 2D finite element model of an intra-

continental thrust fault — which is kinematically and dynamically similar to a subduction 

thrust interface — with an elastic dislocation model having the same fault geometry.  The 

2D finite element model incorporated a layered crust and mantle with temperature 

dependent rheology, topography, gravity, and surface processes, and fit all available 

constraints on interseismic and long-term surface displacements.  Their main conclusion 

was that the dislocation model fit the data as well as the finite element model, including 
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predictions of micro-seismicity near the bottom of the locked patch during the 

interseismic period. 

 

So, unless complexities such as poro-elasticity, material heterogeneity, anisotropy, or 

inelastic bulk rheology are included in modeling the subduction zone [e.g., Masterlark, 

2003], simple elastic dislocation models would do as well as FEM in fitting current 

geodetic data.  It seems reasonable, therefore, that such models — which can be 

essentially described with only two parameters, the extent of the locked fault interface, 

and the plate geometry — have been widely used in modeling interseismic period 

geodetic data in subduction zones, and have been used to successfully fit geodetic 

observations using realistic plate interface geometries [Savage, 1983, 1995; Zweck et al., 

2002; Wang et al., 2003; Chlieh et al., 2008b].   

 

Here, we want to understand late post-seismic and interseismic deformation in subduction 

zones, and as such, only consider a purely elastic crust (represented by the half-space for 

the purpose of computing the surface deformation field).  We do not seek to model the 

complex dynamics of rupture nucleation, interaction between asperities, or rupture 

propagation [see, e.g., Rice, 1993; Lapusta and Rice, 2003; Kato, 2008; Perfettini and 

Ampuero, 2008].  We also do not model topographic evolution on time-scales longer than 

the interseismic since we use purely linear elastic bulk rheology that, by definition, 

cannot accumulate net long-term (geologic) deformation while keeping the stresses 

bounded.  Instead, we pursue kinematic and quasi-dynamic approaches to modeling slip 

(and its evolution) on the fault over the seismic-cycle.  Throughout this work, we assume 

that crustal deformation is localized along fault zones, and the bulk of the crust is rigid, 

and perfectly elastic.  We therefore ignore any bulk relaxation processes in the crust 

owing to viscous or poro-elastic effects.  While this assumption may not hold true over 

the geologic time-scale, over the span of several seismic cycles (<104 yrs) that we model 

here, it is reasonable to assume that crustal response to constant tectonic loading is 

elastic.  This assumption is borne out by the ability of elastic dislocation models to fit 

much of the geodetic data collected over the past couple of decades.  Further, elastic 

deformation fields can provide intuition about regions that could potentially experience 
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long-term deformation, where it may be more appropriate to use non-linear rheologies.  

Therefore, within the context of elastic crustal deformation, we want to ask the following 

questions:  

 

Why does the backslip model fit geodetic observations so well?  

 

As a first step towards more complex models for interseismic deformation in subduction 

zones, we want to ask how the thickness of the downgoing plate influences the 

deformation field at the surface of the overriding plate.  We also want to understand why 

the backslip model [Savage, 1983] works so well for interpreting interseismic geodetic 

data in subducton zones.  In essence, how can one reconcile this half-space model with 

subduction of a downgoing plate?  While standard textbooks discuss the elastic flexure of 

a subducting plate at the trench, the effect of this bending on overriding plate deformation 

has not been systematically analyzed so far.  In Chapter 2, we introduce an elastic 

subducting plate model (ESPM), and compare its predictions with that of the backslip 

model (BSM), in order to address the above questions.  The ESPM links elastic plate 

flexure processes to interseismic deformation, and helps clarify under what conditions the 

BSM is appropriate for fitting interseismic geodetic data at convergent margins.  We 

show that the ESPM is identical to the BSM in the limiting case of zero plate thickness - 

thereby providing an alternative motivation for the BSM.  The ESPM also provides a 

consistent convention for applying the BSM to any megathrust interface geometry.  Even 

in the case of non-negligible plate thickness, the deformation field predicted by the 

ESPM reduces to that of the BSM if stresses related to plate flexure at the trench are 

released either continuously and completely at shallow depths during the interseismic 

period, or deep in the subduction zone (below ~100 km).  However, if at least a portion of 

these stresses are not continuously released in the shallow portion of the subduction zone 

(via seismic or aseismic events), then the predicted surface velocities of these two models 

can differ significantly at horizontal distances from the trench equivalent to a few times 

the effective interseismic locking depth.  We also suggest potential geographic areas 

where the subduction zone geometry is favorable for testing the ESPM in the near future 
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— especially as onshore geodetic coverage improves in these areas, and ocean-bottom 

geodetic measurements become available.  

 

What are some practical surface observables that have immediate relevance to field-

geologic studies or building intuition for numerical modeling? 

 

Surface observables — especially, the location of the zero-crossing (hinge-line) and peak 

value of uplift rates — can be useful tool in determining the approximate location (to 

within a horizontal distance of 50 km) of the location of the downdip end of the locked 

portion of a megathrust interface.  These two uplift-rate values are important because 

gradients in the surface deformation field (strains) are strongest ocean-ward of this 

region, and highest right above the downdip end of the locked patch.  Geodetic or field-

geologic observations can be taken more cost-effectively by choosing to sample at a 

higher spatial resolution in the zone of peak strains (using either land-based or ocean-

bottom stations), and more sparsely farther away.  If a reasonable estimate for slab dip 

can be obtained, then the location of this high-strain region can be narrowed down to a 

zone as narrow as 10–15 km.  So, while the relationship between the hinge-line and 

downdip end of the locked zone is not necessary for geodetic inversions per se, such 

information can be very helpful in optimally collecting the data for these inversions.  The 

relationships between surface observables and ranges of fault dip, as well as the effect of 

fault curvature and subducting plate thickness are discussed in Chapter 3.  We show that 

irrespective of the fault geometry, the mean of the location of zero-vertical surface 

velocities, xhinge, and the peak surface vertical velocities, xmax, gives a good 

approximation for the surface projection of the locked zone, xlock, for both the BSM and 

the ESPM with shallow dipping plate interfaces (< 30°).  However, in the presence of a 

transition zone, or a large plate thickness, xmax gives a more reliable estimate for xlock, and 

hence, the extent of the locked zone.  Therefore, the common notion that the location of 

the peak in vertical velocities (xmax,) determines the extent of the locked megathrust 

(xlock), is valid only if a transition zone is assumed downdip of the locked interface. 
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For a given subduction zone, what fraction of the current surface deformation field 

inferred from geodetic data can be explained by the stress-shadow effect of ruptures 

during the past century on known seismic asperities? 

 

During the past decade, with the availability of high-resolution spatio-temporal geodetic 

data as well as strong-motion seismic data, the characteristic asperity model for the 

seismic cycle [e.g., Ruff, 1992] has been shown to apply to the Sumatra [Chlieh et al., 

2008b; Sieh et al., 2008; Konca et al., 2009], Kurile [Nanayama et al., 2003; Satake and 

Atwater, 2007], Chile [Cisternas et al., 2005; Satake and Atwater, 2007], and 

northeastern Japan [Tanioka et al., 1996; Nakayama and Takeo, 1997; Robinson and 

Cheung, 2003; Miyazaki et al., 2004; Miura et al., 2006; Umino et al., 2006] subduction 

zones.  For the Japan trench, for instance, it is thought that the ruptures off Miyagi [Miura 

et al., 2006; Umino et al., 2006], Sanriku [Tanioka et al., 1996; Nakayama and Takeo, 

1997], and Tokachi [Robinson and Cheung, 2003; Hamada and Suzuki, 2004; Miyazaki 

et al., 2004; Satake et al., 2006] occurred repeatedly over roughly the same region of the 

subduction megathrust.  Owing to the fact that geodetic and seismic data resolution was 

much poorer during the earlier part of the last century — and good spatio-temporal 

coverage was lacking in most subduction zones excluding Japan even as recently as the 

1990s — the exact details of coseismic slip distribution vary between each of these 

“repeating” sequence of ruptures.  However, the picture that seems to be emerging is that, 

overall, coseismic slip tends to be restricted to only a small fraction of the shallow 

seismogenic megathrust interface — at “asperities” — while the rest of the interface slips 

aseismically during the postseismic or interseismic periods of the seismic cycle.   

 

Inversions of geodetic data from interseismic periods, however, produce models that are 

locked (i.e., are modeled to have backslip) over spatially smooth and extensive region of 

the seismogenic megathrust [Bürgmann et al., 2005; Suwa et al., 2006; Chlieh et al., 

2008b], in contrast to the smaller discrete asperities estimated by the above earthquake 

source studies.  Such smooth, broad regions may be a consequence of a lack of model 

resolution and the resulting need for regularization inherent to the use of onshore 

geodetic data.  It is also possible that the inferred interseismically coupled regions are 
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larger than the collective asperity sizes for known earthquakes due to an incomplete 

earthquake catalogue, and may imply the potential for large earthquakes in the future.  

Hence, the different levels of apparent coupling implied by interseismic and seismic-

source inversions (Figure 1-1) have very different implications for regional seismic 

hazard. 

 

 
Figure 1-1. (a) Coseismic slip and (b) interseismic slip deficit (“backslip”) estimates for the megathrust 
interface off northeastern Japan.  Adapted from Yamanaka and Kikuchi [2003; , 2004] and Suwa et al. 
[2006].   
 

 

Bürgmann et al., [2005] tested several asperity models for the Kamchatka subduction 

zone, but assumed that all areas outside the asperities were freely slipping — so they did 

not model slip evolution around the asperities.  Recently, Hetland et al. [2010] and 

Hetland and Simons [2010] developed a 3D mechanical model of stress-dependent 

interseismic creep along the megathrust, considering frictional rheologies.  Their 

mechanical “toy”-models predict that late in the seismic cycle, there are relatively 

smooth, long wavelength regions of very low slip-rates on the megathrust interface 

surrounding these asperities, owing to the "stress-shadow" effect of seismic ruptures.  

The effect of such "physical" smoothing on surface velocity predictions may be 
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indistinguishable from the artificial smoothing produced by model regularization in 

inversions of interseismic geodetic data. 

 

Here, assuming that (i) known asperities persist across multiple earthquake cycles, and 

(ii) ruptures are both time- and slip-predictable [see, e.g., Shimazaki and Nakata, 1980], 

we test the hypothesis that mechanical coupling on asperities inferred from the locations 

of past earthquakes alone is sufficient to explain currently available geodetic observations 

for Japan — or alternatively, that these data require additional regions of the Japan 

Trench megathrust to be coupled.  Underlying our approach is the assumption that known 

asperities persist across multiple earthquake cycles.  The modeling approach and setup 

are discussed in Chapter 4, and results presented in Chapter 5.  The preliminary results 

presented here show that we can explain most of the horizontal interseismic GPS 

velocities in northern Japan, by assuming mechanical coupling only on the inferred 

asperities.   

 

As a corollary to the last question, can the late post-seismic and interseismic 

response in models incorporating these asperities tell us something about the 

rheology of the megathrust interface over the seismic-cycle timescale?  

 

Recently, several research groups have attempted to infer fault rheologies from inversions 

of post-seismic geodetic data at plate-boundary zones — for e.g., Sumatra [Hsu et al., 

2006], California (Landers [Perfettini and Avouac, 2007], Parkfield [Johnson et al., 

2005]), Taiwan [Perfettini and Avouac, 2004], and Japan (Tokachi-oki [Fukuda et al., 

2009]).  These have used either spring-slider type models [Perfettini and Avouac, 2004; 

Fukuda et al., 2009] or planar frictional faults made up of rectangular patches embedded 

in a half-space [quasi-static models, e.g., Johnson et al., 2005; Perfettini and Avouac, 

2007].  The model introduced by Hetland et al. [2010] and Hetland and Simons [2010] 

(summarized in Sections 4.1 and 5.2) belongs to this class of quasi-static models.  Spring-

slider models have no spatial length-scale (or explicit fault geometry) associated with 

them, predictions using such models have only local applicability.  On the other hand, 

fully heterogeneous fault frictional properties can be modeled by the latter class of 
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models.  There is another class of forward models that consider the dynamic evolution of 

stresses and slip on a frictional fault surface due to non-uniform rheology [e.g., Hori, 

2006; Kato, 2008].  Currently, such quasi-dynamic models focus on simulating seismic 

ruptures only, and are not constrained by surface geodetic observations.  In contrast, the 

quasi-static models mentioned above are designed to be constrained by geodetic 

observations and allow us to ask an important question from a forward modeling 

standpoint: what is the effect of lateral and depth variations in rheological parameters on 

predictions for afterslip and postseismic/ interseismic deformation?  Another important 

question is the practicality of considering different rheologies (and therefore, different 

evolution time-scales) over different regions of the megathrust interface.  For the 

preliminary results presented in Chapter 5, we only consider uniform rheological 

properties over the entire fault surface.   
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C h a p t e r  2                                                                                           

AN ELASTIC PLATE MODEL FOR INTERSEISMIC DEFORMATION IN 

SUBDUCTION ZONES1 

 
2.1 Introduction 

 

At subduction plate boundaries, geodetic data from the interseismic period — decades to 

centuries after a megathrust earthquake — help to delineate regions of the megathrust 

that are not presently slipping and can potentially produce large earthquakes.  Due to both 

observational and theoretical considerations, such data are frequently interpreted using 

simple elastic dislocation models (EDMs).  EDMs are in fact used for interpreting secular 

as well as transient deformation in subduction zones [e.g., Savage, 1983; 1995; Zweck et 

al., 2002; Miyazaki et al., 2004; Hsu et al., 2006].  The most common of the dislocation 

models used for interpreting surface deformation in subduction zones is the backslip 

model [Savage, 1983] (henceforth referred to as the BSM, and depicted schematically in 

the left column of Figure 2-1).  The BSM was originally motivated by the recognition 

that the overriding plate apparently experiences little permanent inelastic deformation on 

the time scales relevant to the seismic cycle (several hundred years) [see, Savage, 1983].  

The BSM accomplishes this zero net strain in the overriding plate by parameterizing 

interseismic fault slip as normal slip, i.e., backslip, on the same patch that also slips in the 

reverse sense during great earthquakes [Savage, 1983].  Therefore, the seismic cycle is 

completely described by two equal and opposite perturbations — abrupt coseismic 

reverse slip cancels cumulative interseismic normal slip (or “backslip”) at the plate 

convergence rate.  Thus, to first order, the interseismic strain field and the sum of 

coseismic and postseismic (afterslip) strain fields must cancel each other, and 

asthenospheric relaxation does not significantly contribute to the interseismic 

deformation field [Savage, 1983, 1995].  Further, it has been shown that the predictions 

of interseismic surface velocities for a two-layered elastic halfspace model (e.g., elastic-

                                                 
1 Published in JGR-Solid Earth: Kanda, R. V. S., and M. Simons (2010), An elastic plate model for interseismic deformation in 

subduction zones, J. Geophys. Res., 115, B03405, doi:10.1029/2009JB006611. 
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layer-over-elastic-halfspace) differ by less than 5% from those for a homogeneous 

elastic-halfspace model [Savage, 1998].  Similarly, the effect of gravity on the elastic 

field is also very small (< 2%, see [Wang, 2005]).  In the case of linear elastic-layer-over-

viscoelastic-halfspace models, data for the interseismic period do not require 

asthenospheric relaxation, and can be fit equally well by afterslip downdip of the locked 

zone in an equivalent homogeneous elastic-halfspace model [Savage, 1995]. 

 

Thus, the BSM provides a first-order description of the subduction process on the time-

scale of several seismic cycles (on the order of 103 yrs) using only two parameters — the 

extent of the locked fault interface and the plate geometry (constant or depth—dependent 

fault dip).  To be precise, the BSM as intended by Savage [1983], assumed a mature 

subduction zone — where plate bending and local isostatic effects on the overriding plate 

are compensated by unspecified “complex asthenospheric motions” [Savage, 1983, page 

4985].  These asthenospheric motions are assumed not to play a role in surface 

deformation, and there is no net vertical motion between the two plates at the trench.  

Thus, the BSM as intended by Savage [1983] is purely a perturbation superimposed over 

steady state subduction, with the deformation fields due to coseismic slip (thrust sense) 

and cumulative post-/interseismic-slip (backslip) on the locked portion of the fault 

canceling each other (left column of Figure 2-1 and Figure 2-2).  Therefore, the BSM 

does not include block motion [Savage, 1983, page 4985; and J.C. Savage (personal 

communication, 2009)].  Henceforth, we use BSM to refer to this original model, as 

intended by Savage [1983].  However, subsequent authors have interpreted the relative 

steady state motion illustrated in Figure 1 of Savage [1983] literally, assuming that steady 

state motion implies block-motion (e.g.,Yoshioka et al. [1993], Zhao and Takemoto 

[2000]; Vergne et al. [2001]; Iio et al. [2002; , 2004]; Nishimura et al. [2004]; Chlieh et 

al. [2008a]).  Henceforth, we use pBSM to refer to this popular (mis-) interpretation of 

the BSM with block-motion (middle column of Figure 2-1 and Figure 2-2).  In the 

pBSM, the interseismic backslip perturbation applied to the locked zone is viewed as the 

difference between two elastic solutions: (a) continuous steady state rigid-block motion 

along the plate interface, and (b) continuous aseismic slip along the plate interface 
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Figure 2-1 Comparison of the BSM, the pBSM, and the ESPM.  The trench is defined by the intersection of the free-surface (horizontal solid line) and the 
(upper) dipping line; cross-sectional geometry is assumed to be identical along strike;  Dlock is the depth to the downdip end of the locked megathrust; xlock 
represents the surface projection of the downdip end of the locked megathrust; θ is the dip of the plate interface; H is the plate thickness in the ESPM; xG, 
represents the typical range for the location of the nearest geodetic observation from the trench.  The arrows represent relative motion at the plate boundary. 
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downdip of the locked zone, representing the interseismic strain accumulation process.  

Thus, in the pBSM, the asthenosphere is primarily represented as two rigid fault blocks, 

and strain accumulation is assumed to occur only at the upper boundary of the subducting 

plate, specifically, as steady-slip downdip of the locked zone.  The pBSM is unphysical 

in that on longer time scales, the steady state block motion along the megathrust interface 

between the two converging plates results in net long-term uplift of the overriding plate, 

as well as an unrealistic prediction of zero net strain in the downgoing plate.  Ad hoc 

arguments have been used to simply ignore the vertical component of block motion, 

while including its horizontal component to account for plate convergence.  From the 

perspective of implementation and interpretation, the pBSM is also ambiguous when 

considering non-planar faults — i.e., where one should one impose backslip.  Even 

though the original BSM envisaged by Savage [1983] postulates application of backslip 

directly to the locked interface, irrespective of its geometry, this ambiguity arises in the 

pBSM because assuming block motion along a non-planar interface leads to net 

deformation in the overriding plate over the seismic cycle (upper middle panel of Figure 

2-2), violating the original BSM’s assumption of zero-net deformation there.  As a result, 

several authors have either used a fictitious planar fault tangent to the downdip end of the 

locked zone to apply interseismic backslip [e.g., Simoes et al., 2004; Chlieh et al., 2008], 

or have argued against the use of the BSM for curved fault geometries [e.g., Chlieh et 

al., 2004]. 

 

In order to reconcile a plate view of subduction with observed deformation over the 

seismic cycle, we propose here a plate-like EDM for subduction zones, the ESPM, that 

essentially differs from the BSM as well as the pBSM in the form of the steady state 

solution (right column of Figure 2-1 and Figure 2-2).  The steady state “plate” solution in 

the ESPM is simply the superposition of two parallel dislocation glide surfaces in the 

half-space, representing the top and bottom of the plate. The ESPM is intended to be a 

kinematic proxy for slab driven subduction [e.g., Forsyth and Uyeda, 1975; Hager, 

1984], where the shear strains between the bottom of the downgoing plate and the 

surrounding mantle are approximated by the bottom dislocation glide surface.  So, the 
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Figure 2-2. Comparison of the velocity fields in the half-space for the BSM, the pBSM, and the ESPM. Top row illustrates the interseismic velocity fields 
predicted by the models (solid black line represents the locked zone), and the bottom row shows the imposed “geologic” steady state creep velocity field.  All 
velocities are computed relative to the far-field of the overriding plate (and normalized relative to the plate convergence rate, Vp).  Velocity vectors are drawn to 
the same scale in all panels (yellow vector at bottom left in each panel), relative to the plate convergence rate.  The steady state field for the BSM is only a 
schematic representation of “complex asthenospheric motions” assumed by Savage [1983], and not a computed field.
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ESPM retains the BSM’s mathematical simplicity, while providing more intuition 

regarding the plate bending process.  Because bending is explicitly included in the 

ESPM, the fraction of flexural stresses released continuously over the seismic cycle, fσ, 

as well as plate thickness, H, are two additional parameters in this model.  Our goals here 

are to (a) understand the contribution of flexure to such short-term surface deformation, 

(b) quantify the criteria under which flexural contribution to surface deformation can be 

ignored, as originally postulated by Savage [1983] for the BSM; and (c) obviate the need 

for many of the ambiguities inherent in the pBSM, the popular (mis-) interpretation of the 

BSM.  We will show that the ESPM may not fit currently available geodetic data any 

better than the BSM, but its importance lies in providing additional physical insight into 

the complete elastic deformation field owing to plate flexure at the trench, and why a 

fault interface perturbation model has been so successful in approximating a more 

complicated geodynamic process like plate subduction over the seismic cycle timescale.   

 

The simplicity of EDMs allows parameters such as the slip distribution on the subduction 

interface during different phases of the seismic cycle to be easily estimated from 

inversions of geodetic data.  It is therefore not surprising that the BSM has been used to 

successfully fit geodetic observations using realistic plate interface geometries [e.g., 

Zweck et al., 2002; Khazaradze and Klotz, 2003; Wang et al., 2003; Suwa et al., 2006].  

Clearly, as the quality of geodetic data as well as our knowledge of the 3D elastic 

structure improves, EDMs can be used to constrain more complicated models [e.g. 

Masterlark, 2003].   However, in spite of their success in fitting geodetic observations, it 

is important to remember that kinematic EDMs such as the ones discussed here fit the 

geodetic data by assuming that all of the observed deformation is due to current fault 

motion, ignoring any bulk relaxation processes [see Wang and Hu, 2006; see review by 

Wang, 2007].  Another disadvantage of purely elastic models is that they cannot model 

topographic evolution on time-scales longer than a few seismic cycles since they cannot 

accommodate monotonically increasing displacements (over geologic time) while 

keeping the stresses bounded.  To the extent that such elastic deformation may provide 

the driving stresses for building permanent topography on the overriding plate, however, 

EDMs could be useful in guiding our intuition for models with inelastic rheologies. Using 
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the ESPM, we demonstrate below the potential for such net surface topographic evolution 

owing to elastic flexure of the subducting plate at the trench.  

 

 

2.2 The Elastic Subducting Plate Model (ESPM) 

 

If the negative buoyancy of subducting plates plays a significant role in mantle 

convection [as suggested originally by Forsyth and Uyeda, 1975; and explored for 

example, in Hager, 1984], then there must be shear tractions and associated shear strain 

between the downgoing slab (“plate”, or “lithosphere”) and the surrounding mantle 

(“asthenosphere”).  We want to encapsulate the effect of such plate-driven subduction on 

the deformation at the surface of the overriding plate during the interseismic time period.  

In order to reconcile the BSM view of subduction along a single fault interface with that 

of subduction of a finite thickness plate at the trench, we propose a more physically 

intuitive and generalized kinematic model – the elastic subducting plate model (ESPM, 

right column of Figure 2-1 and Figure 2-2).  The ESPM is constructed by the 

superposition of solutions for two edge dislocation glide surfaces in an elastic half-space 

that delineate the subducting plate, having a uniform plate thickness that remains 

unchanged as it subducts at the trench (right column of Figure 2-1).  The lower 

dislocation glide surface is a kinematic proxy for the shear strains related to plate-

buoyancy driven subduction.  In fact, such a surface is the simplest way to explicitly 

account for Savage [1983]’s assumption of asthenospheric motions compensating for 

overriding plate deformation — especially for subduction zones that may not be mature, 

and therefore affected by plate flexure at the trench.  By construction, the relative slip 

across the upper and lower plate surfaces of the ESPM is equal in magnitude, but 

opposite in sign.  The principal effect of the lower glide surface (i.e., surface along which 

the lower edge dislocation moves) is to channel material in the “oceanic plate” into the 

“mantle”, relative to a reference frame that is fixed with respect to both the sub-oceanic 

mantle as well as the far-field of the overriding plate (right column of Figure 2-2).  In 

contrast, while the pBSM considers steady state subduction of material down the trench 

via block motion (lower-middle panel of Figure 2-2), usually ad hoc arguments are used 
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to ignore the vertical component of block-motion – resulting in no net subduction of 

material into the mantle.  The BSM does not explicitly model asthenospheric motions 

causing material subduction (left panel of Figure 2-1 and Figure 2-2).   

 

There are two significant assumptions implicit in the construction of the ESPM.  The first 

assumption is that the lithosphere-asthenosphere boundary is sharp (rather than diffuse), 

contrary to expectations from seismic, thermal, and rheological data.  This simplification 

of a sharp lithosphere-asthenosphere boundary may be justified here because over the 

short timescales being considered here relative to mantle convection, surface deformation 

on the overriding plate is relatively insensitive to whether there is a gradient or step-jump 

in velocities across the lower boundary, as long as the same volume of material 

undergoes subduction.  In addition to this kinematic role, the bottom dislocation glide 

also serves to decouple the shallow depths of the half-space (“lithosphere”) from mantle 

depths, so that there are negligible elastic stresses in the region of the half-space that 

would normally be considered to be viscous mantle.  Further, such a sharp lower 

lithospheric boundary is commonly assumed in the parameterization of the flexural 

strength of oceanic lithosphere with an elastic plate thickness, Te [Turcotte and Schubert, 

2001], as well as in viscous plate models for analyzing long-term flexural stresses and 

dissipation in the subducting slab [Buffett, 2006].  Thus, the plate thickness defined in the 

ESPM could also be viewed as a way to parameterize the fraction of volumetric flexural 

stresses that may persist in the subducting lithosphere over the duration of a seismic 

cycle.   

 

The second assumption is that over a single seismic cycle, the underlying “mantle” in the 

ESPM does not undergo significant motion relative to the far-field boundary of the 

overriding plate.  The BSM as motivated by Savage [1983] assumes such motion as being 

part of the “complex asthenospheric motions” not included in that model.  In contrast, by 

including block subsidence of the footwall (or block uplift of the hanging-wall), the 

pBSM predicts net relative vertical motion between the entire “oceanic” block (which 

includes the downgoing plate as well as the mantle) and the “continental” block (lower-

middle panel of Figure 2-2), which is unrealistic.  However, if this net relative uplift were 

 



 2-9

eliminated by an ad hoc correction to only the vertical velocity field of the overriding 

plate, then the pBSM would predict only net horizontal convergence between the 

footwall and the hanging-wall, but with a velocity equal to only the horizontal component 

of block motion.  In addition, given that the pBSM assumes no net deformation in the 

overriding plate over the seismic cycle, there is no “sink” for this converging material — 

thus leading to a physically irreconcilable model that violates mass balance.  In contrast, 

the ESPM satisfies continuity by allowing material to “subduct”, in addition to predicting 

the expected sense and magnitude of relative motion between the two plates to be at the 

plate convergence velocity.  The ESPM can be viewed as the elastic component of 

lithospheric response over the seismic cycle timescale, and does not preclude the 

existence of viscous stresses at mantle depths (in a visco-elastic sense).  In fact, one could 

add a (linear-) viscous mantle convection deformation field to the ESPM field below the 

subducting plate (similar to the layered models mentioned in the previous section), in 

order to introduce a gradient in the deformation field at the bottom boundary of that plate, 

as well as introduce relative motion between the sub-oceanic mantle and the overriding 

plate when integrated over several seismic cycles.  Superposing such a field is no 

different from the asthenospheric motions envisaged by Savage [1983], because while 

such a field introduces long-term relative motion in the mantle underlying both plates, it 

does not affect the short-wavelength deformation field in the vicinity of the trench 

(upper-left panel of Figure 2-2), thereby not changing the predictions of the ESPM over 

the seismic cycle.  

 

Thus, the ESPM adds only two extra degrees of freedom relative to the BSM — the plate 

thickness, H, and the fraction of flexural stresses released continuously, fσ — while still 

retaining the BSM’s advantages (small number of parameters) for geodetic data 

inversion.   The additional complexity of the ESPM due to these extra parameters is 

compensated by the elimination of ambiguities related to the implementation of the 

pBSM.  By separating the subduction zone into distinct regions that undergo coseismic 

slip (locked megathrust along the upper surface) and interseismic slip (remainder of the 

plate surfaces), the ESPM unambiguously accounts for (a) the expected horizontal 

convergence at the plate-rate between the subducting and overriding plates, (b) a net zero 
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steady state vertical offset between the subducting and overriding plate (integrated over 

many seismic cycles), and (c) deformation due to slip along non-planar megathrust 

interfaces.  As we will show in the next section, the ESPM can also be thought of as a 

more general model that reduces to the BSM under special conditions.   

 

EDMs similar to the ESPM have been adopted in earlier papers on modeling interseismic 

surface deformation in subduction zones.  For instance, Sieh et al. [1999] consider a 

tapered “bird-beak” shaped subducting plate whose thickness reduces to a point at its 

downdip end.  Such a tapered geometry violates mass conservation within the subducting 

plate, given the purely elastic and homogeneous rheology assumed.  Zhao and Takemoto 

[2000] propose a dislocation model for the subduction zone using a superposition of 

steady slip along a planar thrust fault downdip of the locked zone, and reverse slip along 

two lower glide surfaces representing the bottom of the subducting plate before and after 

the trench.  However, they assume that the lower glide surfaces have interseismic 

velocities that are twice that of the upper surface and that the subducting plate thickness 

decreases with depth — both of which are again inconsistent with the conservation of 

mass within the subducting plate.  In contrast, the simpler ESPM assumes a constant, 

depth invariant plate thickness for the downgoing plate, H, as well as identical slip 

velocity magnitudes along both glide surfaces at all times.   

 

We use the 2D elastic dislocation solutions for a dip-slip fault embedded in an elastic 

half-space given by Freund and Barnett [1976], as corrected by Rani and Singh [1992] 

(see also, Tomar and Dhiman [2003] and Cohen [1999]) for computing surface velocities.  

To verify our code, we compared surface velocity predictions using the above 

formulation with those predicted by Okada [1992]’s compilation, for identical plate 

geometries.  We choose the origin to be at the trench, the x-axis to be positive “landward” 

of the trench, and the z-axis to be positive upwards (so depths within the half-space are 

negative).  Dips are positive clockwise from the positive x-axis.  For the vertical surface 

deformation field, uplift is considered positive, and for the horizontal field, arc-ward 

motion is assumed positive.  Although we only consider the plane strain problem here, 

the ESPM can be extended to 3D problems with along-strike geometry variations; 
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however, in this case, flexure associated with along-strike plate-interface curvature (e.g., 

Japan trench between northern Honshu and Hokkaido, or the Arica bend of the 

Peruvian/Chilean trench) may cause additional elastic deformation in the overriding 

plate. 

 

 

2.3 End-member models of the ESPM 

 

For the ESPM, subtracting the steady plate-subduction solution (top-right panel of Figure 

2-1) from that for strain-accumulation during the interseismic (middle-right panel of 

Figure 2-1), we obtain a mathematically equivalent model for the interseismic — the 

BSM (bottom-right panel of Figure 2-1).  Thus, the ESPM provides an alternate but 

kinematically more intuitive framework for deriving the BSM.  Further, in the limiting 

case of the ESPM with zero plate thickness (H=0), the edge dislocation representing the 

horizontal section of the bottom surface of the plate vanishes.  Also, slip along the 

creeping sections of the top and bottom dipping surfaces cancel each other — except 

along the locked megathrust zone, where normal slip (or “backslip”) ensues, irrespective 

of fault geometry (bottom panels of Figure 2-3).  Thus, backslip along the locked 

megathrust can also be understood as the slip prescribed along the bottom surface of a 

“thin” subducting plate, and in this limit, the ESPM is identical to the BSM as motivated 

by Figure 1 of Savage [1983] (left column of Figure 2-1).  In this zero plate thickness 

limit, there is no net deformation in the overriding plate over the seismic cycle, 

irrespective of the plate interface geometry.  In contrast, for the pBSM with a non-planar 

plate interface, since no lower plate boundary is assumed, net deformation in the 

overriding plate is unavoidable owing to steady state slip along a curved interface [e.g., 

Sato and Matsu'ura, 1988; Matsu'ura and Sato, 1989; Sato and Matsu'ura, 1992; 1993; 

Fukahata and Matsu'ura, 2006]).  Thus, when using the BSM (or the pBSM) to invert for 

geodetic data in subduction zones, one is inherently assuming negligible thickness for the 

subducting plate, or continuous relaxation of stresses resulting from plate flexure.  In this 

limit, kinematic consistency requires not only that the two glide surfaces (plate surfaces) 

in the ESPM have the same magnitude of slip, but also identical geometries.   
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Figure 2-3. Geometric comparison of the ESPM with planar (left column) and curved (right column) 
geometry.  In each column, the top row is the ESPM in the limit of a very thick plate (the BFM); the 
bottom row is the ESPM in the limiting case of negligible plate thickness (the BSM).  Note that the “dip” of 
the curved fault is defined at a point where the plate straightens out.  The dip of the curved fault at the 
trench is assumed to be zero.  Other notation and assumptions are identical to those in Figure 2-1.

 

 

Therefore, when applying the pBSM to subduction zones where the downgoing slab is 

inferred to have a non-planar geometry, the locked megathrust interface — where 

backslip is imposed — should be modeled with the same geometry as that of the bottom 

surface of the downgoing plate directly beneath it (lower-right panel of Figure 2-3).  

While there are several examples of papers that use the actual non-planar interface 

geometry for the BSM [e.g., Zweck et al., 2002; Khazaradze and Klotz, 2003; Wang et 

al., 2003; Suwa et al., 2006], some confusion has been created by the use of a planar 

extension of the deeper portion of a curved subduction interface for modeling backslip 

[e.g., Simoes et al., 2004; Chlieh et al., 2008].  Such a planar fault tangential to the 

interface at the downdip end of the locked zone intersects the free surface arc-ward of the 
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Figure 2-4.  Appropriate application of the BSM to curved faults.  Backslip must be applied to the curved 
interface geometry appropriate for a subduction zone, instead of to its tangent at the downdip end of the 
locked zone.  The curved fault (solid gray line) resembles the subduction thrust interface geometry below 
the island of Nias, offshore of Sumatra (θtop = 3°, θbot = 27°[Hsu et al., 2006]).  The tangent-approximation 
to the curved fault [Chlieh et al., 2004; Simoes et al., 2004; Chlieh et al., 2008] is represented by the dashed 
black line.  The top panel presents the faults in cross-sectional view. x* (= x/DLock) is he dimensionless 
distance perpendicular to the trench; z*(= z/DLock) is the dimensionless depth.  The origin of the 
dimensionless x*-z* system is at the location of the trench axis.  Vertical surface velocity profile, Vz

* 

(middle panel), and horizontal surface velocity profile, Vx
* (bottom panel), are scaled by the uniform plate 

convergence velocity, Vp. 
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trench (“pseudo-trench”, top panel of Figure 2-4).  The surface velocity predictions in the 

far-field due to slip on a curved fault and its tangent planar approximation are nearly 

indistinguishable.  But because of the artificial arc-ward shift in the tangent 

approximation’s “trench”, its predictions of surface deformation differ significantly from 

those for the curved megathrust right above the locked interface (middle and bottom 

panels of Figure 2-4).  An additional concern is the use of entirely different faults for 

coseismic and interseismic displacements.  Savage [1983] explicitly states this notion of 

applying backslip to the megathrust interface, irrespective of its shape.  But as discussed 

earlier, that model’s application by subsequent researchers – possibly arising from the 

pBSM notion of block-motion - have created an apparent ambiguity in the 

implementation of the BSM to non-planar fault geometries.   

 

In the limiting case of the ESPM with very large plate thickness (H→∞), the lower glide 

surface is at a large depth below the upper plane, and for a fixed radius of curvature 

(typically a few hundred km), the plate behaves like a planar slab with a sharp kink at the 

trench (left panels of Figure 2-3).  So, the contribution of the bottom glide surface 

reduces to a single dislocation at this kink that is deeply embedded within the half-space.  

Consequently, the contribution of the bottom glide surface has almost negligible 

amplitude and a very broad wavelength, its contribution to the total ESPM surface 

deformation field becomes negligible.  The only contribution to the surface ESPM 

deformation field in this “infinite-thickness” limit comes from the buried thrust fault 

downdip of the locked zone.  Thus, in this limit of “infinite” plate thickness (i.e., for very 

thick plates, as in plate collision zones), the ESPM mathematically reduces to the buried 

fault model (the BFM, top panels of Figure 2-3), which is typically used for modeling 

interseismic surface deformation in continental collision zones [e.g., Vergne et al., 

2001].  The ESPM can therefore be viewed as a more general model for plate 

convergence zones, which reduces to previously developed models for subduction (the 

BSM or pBSM) or collision zones (the BFM) for limiting values of plate thickness (zero 

and infinity, respectively).  
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2.4 Effect of plate flexure on the ESPM surface deformation field 

 

When the plate has non-negligible thickness, H, the ESPM and the BSM differ 

significantly close to the trench due to strains induced by plate flexure.  The differences 

in the predictions of the ESPM and the BSM arise from having the same magnitude of 

relative slip along both surfaces of the downgoing plate, as it subducts at the trench.  As a 

consequence, material at any cross-section of the downgoing plate moves with a uniform 

velocity equal to the plate-convergence rate, resulting in permanent shearing of the 

subducting material passing through the trench.  Henceforth, we use “flexural strain” to 

refer to this shear-dominated strain within the elastic subducting plate as it passes through 

the trench.  The associated “flexural stresses” cause net deformation in the overriding 

plate at the end of each seismic cycle.  So, unless these flexural stresses (a) have 

negligible magnitudes (as when H = 0), or (b) are continuously released in their entirety 

in the shallow portions of subduction zones, the surface velocity predictions of the ESPM 

differ significantly from those of the BSM above the locked megathrust interface (Figure 

2-5).  One might argue that this region of discrepancy in these models’ predictions lies 

over the forearc wedge, and therefore cannot be modeled by a purely elastic model like 

the ESPM.  However, any excess elastic deformation predicted for this zone by the 

ESPM (compared to that of the BSM) can provide insight into the localization of 

incremental inelastic strain accumulation over multiple seismic cycles.  Also, to the 

extent that such net seismic-cycle deformation can contribute to the long-term evolution 

of surface topography in the real Earth, we expect inelastic processes (such as erosion, 

accretion and/or sedimentation) to counter any “runaway” topographic evolution 

resulting from the discrepancy in these models’ predictions.  In addition, the ESPM can 

still be used to infer the short-term elastic component of wedge deformation over the 

duration of a single seismic cycle, especially as ocean-bottom geodetic data become 

available in the near future.   

 

To understand the strain accumulation arising from our assumption of uniform velocity 

for the two ESPM glide surfaces, we need only consider the steady state motion of the 

subducting plate (i.e., without any locked patch).  Such steady state motion results in a 
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Figure 2-5.  Comparison of deformation for the BSM and the ESPM with plates of different thickness, H, 
for a realistic curved fault geometry.  In all panels, the thick gray solid curves represent the BSM, and the 
extent of the locked zone is shaded in yellow.  The blue solid curve coinciding with the BSM surface 
velocities is the ESPM with zero plate thickness. The thick light-blue curve is the surface velocity field due 
to the buried thrust downdip of the locked zone (i.e., the BFM).  The thin dashed red curve coinciding with 
the BFM surface velocity field is the ESPM having an “infinite” plate thickness.  In all cases, the imposed 
uniform slip rate is in the normal sense for the BSM (backslip), and reverse (thrust) sense for the ESPM. 
Panel organization and non-dimensionalization of the plot axes is identical to that in Figure 2-4.  
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uniform cross-sectional velocity for material being transported within the subducting 

plate, and is identical to flexural shear folding, where individual layers within the plate do 

not undergo changes in either their thickness or length (similar to folding a deck of cards 

[see Suppe, 1985; Twiss and Moores, 1992]).  Material moving through each layer 

undergoes only a change in direction as it bends through the trench during the 

interseismic time period (bottom-right panel of Figure 2-2).  This kinematic, volume-

conserving assumption leads to runaway deformation of the plate beyond the trench. 

 

Within the framework of dislocations embedded in an elastic half-space, there are two 

equivalent approaches to simulating flexural stress release as the plate subducts at the 

trench: 

a) Applying an additional uniform velocity gradient within the plate — whose 

magnitude varies continuously along its length depending on the local curvature — 

that extends material near the top surface of the plate, and compresses material near 

the bottom surface as the plate subducts at the trench.  This gradient is therefore zero 

for the planar sections of the plate before the trench and after straightening out in the 

upper mantle.  

b) Allowing slip at the axial hinges across which the plate successively bends as it 

subducts, so as to rotate planes that were perpendicular to the top and bottom surface 

of plate before subduction remain so after subduction.   

 

We first consider releasing the flexural stresses in the ESPM by superimposing a velocity 

gradient within the plate — which is equivalent to assuming that the subducting slab 

behaves as a thin viscous or elastic plate in flexure [Turcotte and Schubert, 2001].  This 

approach is a bit arbitrary when applied to a planar interface geometry as its curvature is 

infinite at the trench and zero otherwise.  So, we illustrate this approach using a curved 

plate geometry.  We want plane sections that are normal to the top and bottom surface of 

the incoming plate to remain so as it bends through the trench and straightens out in the 

upper mantle.  We assume that the material at the centerline (or the neutral-axis) of the 

incoming plate passes through the trench without a change in speed, Vp.  Material above 
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the centerline accelerates as it passes through the trench relative to Vp, in proportion to its 

“radial” distance from this centerline: 

V = Vp

R p
r , (1) 

where, Rp is the radius of curvature of the centerline as it passes through the bend, and r 

is the distance normal to the centerline profile.  This would ensure that the rectangular 

patch in Figure 2-6(a) remains rectangular as it passes through the trench.  So, the speeds 

for the top and bottom surfaces of the plate would be: 

 

Vtop = Vp

R p
Rtop = Vp

R p
(Rp + H

2 ) = Vp 1+ HC p

2( )= Vp 1+ δV
Vp( ),   and 

Vbot = Vp

R p
Rbot = Vp

R p
(Rp − H

2 ) = Vp 1− HC p

2( )= Vp 1− δV
Vp( )

 (2) 

 

where Rtop and Rbot refer to the local radii of curvature for the top and bottom surfaces of 

the plate, H is the plate thickness, and Cp is the plate curvature.  Cp is equal to zero for the 

straight sections in the ESPM.  So, the velocity corrections apply only to the curved 

section of the subducting plate.  For radius of curvature, Cp, equal to 250 km (which is 

roughly the value used for all the curved profiles in this paper), and an elastic plate 

thickness, H, of 50 km for the subducting lithosphere, the velocity correction, (δV/Vp), 

equals 10%.  We verified that the surface velocity field predicted by the ESPM with these 

velocity corrections is identical to that predicted by the BSM.  Therefore, as long as the 

plate geometry has finite curvature, adding velocity corrections to the finite thickness 

ESPM (H > 0) generates a model with no net deformation of the overriding plate (the 

BSM).  Since the resulting surface deformation field due to this visco-elastic 

approximation looks identical to that for the kinematically equivalent plastic 

approximation (discussed next), we do not show separate plots for this approach here.  

 

We next consider releasing flexural stresses via slip along planar axial hinges of folding 

as the plate subducts through the trench (the “plastic” formulation of flexure), which is 

equivalent to adding localized plastic deformation within the subducting plate.  In order 

to conserve the thickness of the plate as it bends at the trench, the hinge must bisect the 

angle between the horizontal and bent sections of a planar subduction interface, or 
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Figure 2-6. Kinematics of plate bending. (a) Bending of the plate at the trench for the ESPM with linear 
fault interface geometry; Motion of subducting material through the trench results in shearing as indicated 
by the shaded area.  Axial hinges of folding can be kinematically represented by dislocations, across which 
incoming material in the plate experiences a change in direction, but not in magnitude.  (b) Bending of the 
plate at the trench for the ESPM with a non-planar (or curved) fault interface geometry.  The curved 
interface is represented by a number of linear segments having different slopes, and the number of hinges 
corresponds to the number of planar segments representing the discretization.  (c) Velocity vector diagram 
showing required slip rate on an axial hinge to kinematically restore strains due to bending at the hinge. 
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between adjacent sections of a non-planar interface, whose dip changes with increasing 

depth (Figure 2-6(a) and (b)).  Although the axial hinge plane does not experience 

relative displacement across itself, it can be shown that the deformation gradient tensor 

associated with this plane is identical to that of a fault experiencing relative displacement 

across that plane, especially at distances larger than the radius of curvature of the fold 

hinge [Souter and Hager, 1997].  A curved fault can be thought of as bending along a set 

of such axial hinge planes, whose number depends on the discretization of the non-planar 

fault profile (Figure 2-6(b)).  As the discretization of the fault profile becomes finer, 

correspondingly more hinges are required to accurately model flexural strains.  Axial 

hinges help relax the accumulated flexural stresses by allowing the transport of material 

from the vicinity of the trench down the subducting plate in a kinematically consistent 

way (Figure 2-6(c)) – resulting in a thrust sense of slip across each axial hinge with the 

magnitude, 

  

Δv = 2Vp sin( Δθ
2 ), (3) 

 

where, Δv is the relative slip required to exactly compensate for plate flexural strains at 

the hinge, and Δθ is the same as in Equation 1.  Again, in the limiting case of a curved 

fault, this reduces to,  

 

Δv ≈ VpΔθ . (4) 

 

 Figure 2-6(a) geometrically illustrates this flexural strain for a planar fault interface 

characterized by a single discrete bend in the subduction plate.  Since the two glide 

surfaces have the same slip rate, the gray rectangular volume in that figure is sheared into 

a parallelogram after completely passing through the trench.  The accumulated shear 

strain due to bending (represented by the hachured zone in Figure 2-6(a)) is proportional 

to the difference in path lengths for the top and bottom edges of the rectangle at the upper 

and lower dislocations (Figure 2-6(a)): 
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εxz = 2H tan( Δθ
2 )

H
= 2tan( Δθ

2 ), (5) 

 

where εxz is the shear strain, and Δθ is the change in dip angle at the trench.  Similarly, a 

curved geometry can be thought of as a series of infinitesimally small bends in the plate 

(Figure 2-6(b)).  In this case, the incremental strain due to each such bend can be 

calculated from Equation 1, in the limit of infinitesimally small Δθ: 

 

Δεxz ≈ 2( Δθ
2 ) = Δθ , (6) 

 

which is identical to pure shear.  In this case, the local rate of strain accumulation along 

the curved plate is given by:  

pp
s

p
s

xz
p

xz CV
s

V
s

V
dt

d =
Δ
Δ=

Δ
Δ=

→Δ→Δ 00

θεε
, (7) 

 

where Vp is the long-term plate convergence velocity, t is time, s is the arc-length along 

the curved profile, and Cp is the local curvature of the profile, as in Equation 2.  So, the 

strain rate in the slab is proportional to the convergence velocity and curvature in this 

purely kinematic model.  Because this derivation was based on fixing the geometry of the 

plate, the strain rate obtained above is equivalent to that derived for viscous plates by 

Buffett [2006], or bending of thin plates by Turcotte and Schubert [2001], except for a 

factor of distance from neutral axis (since we have assumed uniform velocity here).   

 

Henceforth, we use “flexural field” to denote the deformation field resulting from either 

the velocity corrections or the axial hinges for a steadily slipping plate with no locked 

zone on the subduction thrust interface (Figure 2-7(a) and Figure 2-8(a)).  Subtracting the 

surface velocity field due to either of the flexural fields from that for the ESPM having a 

locked zone results in the BSM surface velocity field (Figure 2-7(b) and Figure 2-8(b)).  

It is important to note that the plate interface geometry has a very strong effect on the 

shapes of the surface velocity profiles of the flexural field.  For the planar interface, both 

the horizontal and vertical surface velocity profiles indicate that the frontal wedge of the 
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(a) (b)

 
 
Figure 2-7. The surface deformation field for the ESPM for a planar plate geometry: (a) the ESPM with no locked zone is equivalent to the long-term, 
steady state plate motion (solid black line).  The surface velocity field due to the axial hinge (thin dashed gray line) cancels the effect of plate flexure at 
the trench (thin solid black line), resulting in net zero long-term strain accumulation over the seismic cycle (thick solid black line).  (b) Effect of a single 
axial hinge on the ESPM with a locked megathrust fault.  Again, note that the ESPM predicts the correct sense of motion for the oceanic plate.  The sum 
of the ESPM (thin solid black line) and axial hinge (thick dotted gray line) velocity fields — shown as the thick dashed black line — exactly equals that 
for the equivalent BSM (thick solid gray line).  Panels and plot axes are as described in Figure 2-4. 
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(a) (b)

0

 
 
Figure 2-8. Surface deformation field for the ESPM for curved plate geometry: (a) the ESPM with no locked zone is equivalent to the long-term, steady 
state plate motion (solid black line).  The axial hinges or velocity gradient corrections are introduced at positions corresponding to the discretization 
resolution of the curved fault.  The surface velocity field due to axial hinges or a velocity gradient (thin dashed gray line) cancels the effect of plate 
flexure at the trench (thin solid black line), resulting in net zero long-term strain accumulation over the seismic cycle (thick solid black line).  Note that 
the peak uplift due to the bending of a curved plate is shifted arc-ward in comparison to the peak for the planar geometry (Figure 2-7).  (b) Effect of the 
plate flexural field (axial hinges or velocity gradient corrections) on the ESPM with a locked megathrust fault.  The sum of the ESPM (thin solid black 
line) and axial hinge (thick dotted gray line) velocity fields — shown as the thick dashed black line — exactly equals that for the equivalent BSM (thick 
solid gray line).  Panels and plot axes are as described in Figure 2-4. 
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overriding plate — immediately adjacent to the trench — undergoes net compression 

(bottom two panels of Figure 2-7(a)).  The horizontal surface velocity profile for the 

curved interface is “ramp-like” — but shows more subdued strain rates (flatter slope) 

near the trench compared to the planar case (bottom panel of Figure 2-8(a)).  In contrast, 

the vertical surface velocity profile for the curved interface predicts subsidence adjacent 

to the trench, strains having the opposite sense to those for the planar case (middle panel 

of Figure 2-8(a)), and attains a maximum value directly above the straightening of the 

plate interface at depth (compare the top and middle panels of Figure 2-8(a)).   

 

Thus, irrespective of the geometry of the downgoing plate, adding either flexural 

deformation field to that for the finite thickness ESPM (H > 0, and having a locked zone) 

yields predictions identical to that for the ESPM with H = 0 (i.e., the BSM).  This 

equivalence between the ESPM having a finite plate thickness (H ≠ 0) and the BSM 

implies that if the “volumetric” flexural stresses are released continuously and 

aseismically in the shallow parts of the subduction zone during the interseismic period, 

then the surface deformation due to both BSM and the ESPM are identical for any plate 

thickness and shape (curvature).  If these stresses are released in the deeper parts of the 

subduction zone (depth » H) — episodically or continuously — we expect net surface 

topography to persist after each cycle.  But in the real Earth, we would expect such 

topographic buildup to be modulated by gravity and limited by processes like accretion, 

sedimentation, and/or erosion in the frontal wedge of the overriding plate.  In this 

equilibrium scenario, the support for near-trench flexural stresses would eventually 

generate surface topography that is stable after each seismic cycle.  So, even when 

flexural stresses are released at depths (> 100 km), the interseismic velocity fields from 

the ESPM and the BSM should be nearly identical.  In all the above cases, it is 

appropriate to use the BSM as a simple mathematical approximation to the ESPM.  

However, within the context of an elastic Earth, the ESPM is still the kinematically more 

realistic model to interpret the pBSM.  The only scenario where the ESPM and the BSM 

(or pBSM) surface velocity predictions differ would be when part or all of the flexural 

stresses not released continuously in the shallow parts of the subduction zone (e.g., 
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normal faulting in the forebulge of the subducting plate) — and in this case, it is more 

appropriate to adopt the ESPM.   

 

 

2.5 Comparison of the ESPM and the BSM surface displacements 

 

As noted in the previous section, Flexural stresses near the trench cause the ESPM field 

to be more compressive than the BSM stress field — resulting in larger surface uplift 

rates above the downdip end of the locked megathrust interface.  This compression is 

enhanced with either increasing plate thickness or plate curvature.  For typical H/Dlock 

ratios and curvatures found in most subduction zones, a measurable difference exists 

between the BSM and the ESPM surface velocity fields (> 5 mm/yr, for a typical 

subducting plate velocity of 5 cm/yr) up to a distance of approximately five to six times 

the locking depth (Figure 2-5).  Intuitively, we expect that in the real Earth, the tip of the 

frontal wedge adjacent to the trench may not deform in a purely elastic manner.  But even 

in this region, deformation predicted by the ESPM can be considered as the purely elastic 

component of the total deformation field within the overriding plate during a seismic 

cycle, and as the driving force for inelastic deformation — and the discrepancy between 

the ESPM and the BSM (or the pBSM) at a horizontal distance of one interseismic 

locking depth from the trench can still be as large as ~ 100% in the verticals and ~ 15% in 

the horizontals.   

 

As plate thickness increases, this zone of significant difference between these two models 

broadens for both horizontals and verticals.  The location of the zero vertical velocity 

(commonly referred to as the “hingeline”) for a thick plate shifts trenchward by as much 

as 20% from its location for the BSM (middle panel of Figure 2-5).  However, the 

locations of the peak in vertical velocity profile or the break in slope of the horizontal 

velocity profile show negligible dependence on plate thickness.  Increasing plate 

thickness results in a nearly uniform increase in the horizontal strain-rate profile, 

resulting in a long-wavelength upward tilt of the horizontal surface velocity field relative 

to the far-field boundary of the overriding plate (middle and bottom panels of Figure 
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2-5).  Thus, a larger plate thickness enhances the non-uniform differences between the 

vertical surface velocity profiles of the ESPM and the BSM, in contrast to causing only a 

subtle change in slope between their horizontal surface velocity profiles.  Therefore, 

vertical surface velocities are the key to differentiating between the ESPM and the BSM 

— i.e., for estimating the minimum elastic plate thickness for a given subduction 

interface geometry.  Owing to the sensitivity of hingeline location to plate thickness, 

vertical velocities are clearly important in constraining the arc-ward extent of the locked 

megathrust.   

 

Hence, to characterize both the degree of coupling and minimum elastic plate thickness, 

it is best to use both horizontal and vertical velocity data for geodetic inversions.  Perhaps 

most importantly, the uncertainties in the measured vertical velocities on land must be 

small (< 1 cm/yr) — which is possible with current processing methods for regions 

having good geodetic data coverage over long periods of time (e.g., > 13 years of 

continuous GPS coverage in Japan) — and/or ocean bottom geodetic surveys are 

required.  Of course, we must also be confident that these vertical velocities are only due 

to elastic processes, and not due to inelastic effects like subduction erosion [Heki, 2004].  

Therefore, given the current uncertainty of geodetic data and their location with respect to 

the trench, unless a thick lithosphere or a shallow locking depth can be inferred from 

other kinds of data (e.g. seismicity, gravity signature associated with plate flexure, 

seismic reflection, etc.), the BSM is as good a model as the ESPM.  But the ESPM still 

provides not only a generalized framework for deriving, implementing, and interpreting 

the BSM, but also a fundamental understanding of why the BSM (or pBSM) has been so 

successful in interpreting interseismic geodetic data in subduction zones.  This generality 

is an important feature of the ESPM, regardless of whether geodetic data can, at present, 

distinguish the predictions of this model from that of either the BSM or the BFM. 
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2.6 Elastic stresses and strains in the half-space 

 

Subduction is ultimately governed by the negative buoyancy of the downgoing slab 

[e.g., Elsasser, 1971; Forsyth and Uyeda, 1975].  The kinematic assumptions used here 

assume that the dynamics of subduction do not change significantly during time-scales 

relevant to seismic cycles (< 104 yr), and therefore the convergence velocity between the 

subducting and overriding plates, and the geometry of the subduction interface are 

relatively constant over this time period.   

 

Viewing the BSM (or pBSM) as an end-member model of the ESPM clarifies some of 

the concerns of Douglass and Buffett [1995; 1996] regarding the former model.  By 

definition, all glide surfaces in the ESPM creep aseismically (at a steady rate) during the 

interseismic period, continuously loading the locked megathrust as well as surrounding 

regions in the overriding plate.  The burgers vector — which is the displacement of the 

edge-dislocation representing the bottom of the locked fault over one seismic cycle — 

accumulates steadily over the glide surfaces bounding the plate until a megathrust event.  

Therefore, the ESPM provides a natural explanation for the slip-rate dependence of stress 

along the locked zone even though there is no relative slip across that portion of the 

interface.  It must be noted that both the BSM and the pBSM also consider the locked 

zone to be at rest during the entire inter-seismic period because of the superposition of 

steady-creep and backslip on the fault.  In fact, as noted earlier, in the ESPM view of the 

BSM, “backslip” is actually the creep along the bottom surface of the plate, as well as 

equal to the creep directly downdip of the locked zone.   

 

Another concern of Douglass and Buffett [1995; 1996] was that given the boundaries of 

the half-space are at infinite distance in EDMs, the tractions along the bottom of the 

overriding plate (“hanging-wall”) are equal but opposite in sense, on either side of the 

dislocation tip (i.e., the downdip end of the locked zone).  Within the kinematic context 

of EDMs, we can make a rough estimate of the strain (and stress) perturbations 

introduced by BSM during a seismic cycle.  Typical plate convergence rates are of the 

order of cm/yr with the maximum convergence having a value of the order of 10 cm/yr 
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(10-1 m/yr).  This long-term slip velocity divided by the typical width of the locked patch 

of the order of 100 km (105 m) should give us the an estimate of the magnitude of strains 

and stresses in the elastic half-space owing to the presence of the edge dislocation 

representing the locked patch.  The above calculations yield a typical strain-rate of 

several μ-strain/yr, which, when multiplied by a typical value of shear modulus for 

crustal rocks (10s of GPa), gives stress rates of the order of 10 kPa/yr.  Thus, over a 

typical megathrust earthquake recurrence interval of 300 yrs, the accumulated stress on 

the locked patch reaches 3 MPa, equivalent to the average stress drop in inter-plate 

earthquakes [Kanamori and Anderson, 1975].  In addition to the BSM strain field, the 

ESPM introduces additional strains associated with material transport down the 

subducting plate.  Observations and theoretical estimates constrain the radius of curvature 

for subducting plates to ~ 200 km [Conrad and Hager, 1999, and references therein].  

From Equation 3, we can calculate the additional flexural strain rate introduced by the 

ESPM to be of the order of 0.1 μ-strain/yr, (1/10th of the BSM’s interseismic strain 

accumulation rate) which causes a mean surface velocity perturbation of roughly 10% of 

the BSM’s field (Figure 2-5, Figure 2-7, and Figure 2-8).  In contrast, both plate flexure 

theory [Turcotte and Schubert, 2001] and thin-plate finite-strain theory [e.g., Seth, 1935] 

predict plate bending stresses that are of the order of several 100  MPa —1 GPa over 

mantle-convection time-scales.  Therefore, the ESPM (as well as the BSM) introduces 

stress perturbations during the seismic cycle that are much smaller than the long-term 

stress field associated with plate tectonics.  Thus, as Savage [1996] argued for the BSM, 

when this plate-tectonic stress field is added back to that for the BSM, the correct sense 

of absolute stress is restored all along the bottom of the overriding plate. 

 

The flexural fields discussed in the previous sections help counter the bending strain 

perturbation from the ESPM, either partially or in full.  The key to estimating the ESPM 

plate thickness, H, then is identifying what fraction of the flexural stresses associated 

with the above perturbation is released episodically in the shallow part of the subduction 

zone.  If we can estimate a plate thickness from interseismic geodetic data ignoring this 

fraction — that is, assume that all of the flexural stresses are only released episodically in 

the shallow portion of the subduction zone — then we will end up with the minimum 
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effective plate thickness required by such data.  Otherwise, this fraction can also be 

estimated as an additional ESPM parameter during inversion.  Thus, depending on 

whether other kinds of data warrant the determination of a fractional flexural stress 

release (fσ), the ESPM can be used for inverting interseismic geodetic data with only one 

(H), or two (H, and fσ) additional parameters compared to the BSM. 

 

 

2.7 Discussion  

 

Our capacity to resolve between the BSM and the ESPM, and therefore, the characteristics 

of plate flexural stress relaxation, depends on whether there are geodetic observations close 

to the trench [xGPS < xlock, see Figure 2-1].  Typically, GPS stations are on the overriding 

plate at distances much larger than xlock from the trench, where both the ESPM and the 

BSM predict nearly identical velocities.  However, if highly accurate vertical geodetic data 

are available on the surface of the overriding plate, at distances less than xlock from the 

trench — and if we are confident that this data reflects elastic processes — then we would 

be able to discriminate between the surface deformation fields predicted by these two 

models if: (a) subducting plate thickness in the ESPM is large, and/or (b) the plate 

geometry has a large curvature near the trench, and (c) if the volumetric strain associated 

with plate bending is released episodically in the shallow portions of the subduction zone 

(< 100 km depth).  Even in this case, there will be a trade-off between the actual plate 

thickness and the fraction of flexural stresses released episodically in the shallow portion of 

the subduction zone.  Therefore, we will only be able to estimate a minimum plate 

thickness from even a very accurate and dense network of geodetic observation stations.  

However, if the flexural strain is released continuously in the shallow parts of the 

subduction zone, or released at larger than ~ 100 km depth — in which case the release 

occurs too deep to have an effect on the surface deformation of the overriding plate — then 

the surface velocity fields predicted by the ESPM and the BSM are nearly identical to each 

other and the latter may be a better model to use because it has two fewer parameters to 

estimate.   
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Potential areas where the subduction zone geometry is favorable for testing the ESPM 

include: Nankai Trough underneath Kii Peninsula [e.g., Hacker et al., 2003 (Figure 3)], 

Costa Rica Trench, south of the Nicoya peninsula [e.g., Hacker et al., 2003 (Figure 4)], 

Peru-Chile Trench from Equador through Peru [e.g., Gutscher et al., 2000 (Figures 3, 

5, and 10)], northern Chile [e.g., ANCORP Working Group, 2003 (Figure 7)], and 

perhaps, Sumatra [e.g., Chlieh et al., 2008a].  

 

Based on the typical radius of curvature of most subducting slabs, the current distribution 

of geodetic observations as well as their accuracy, and the surface velocity field 

predictions above, the ESPM is a relevant model for subduction zones wherever H/Dlock ≥ 

2 — that is, either the locked zone is constrained to be shallow (for instance, from 

thermal modeling [Oleskevich et al., 1999]) or the downgoing slab can be inferred to be 

thick (say > 50 km) based on sea-floor age at the trench [e.g., Fowler, 1990; Turcotte 

and Schubert, 2001].  In contrast, the ESPM with H/Dlock ≤ 1 is indistinguishable from the 

BSM, even though the latter may over-predict the extent of the locked zone by roughly 

10 km (leading to similar discrepancies in xlock); in this case, the BSM may be a better 

model to use because of its simplicity.  These requirements immediately exclude the 

following: Nankai Trough (because of the small curvature of the Phillippine Sea plate, 

with shallow dip < 15° [Park et al., 2002]), Tohoku, Japan Trench (inferred to have very 

deep locking depth [Suwa et al., 2006]); and Sumatra (because the inferred locking depth 

is not shallow (30–55 km [Subarya et al., 2006])).  The most promising of the above 

subduction zones for future investigations to discriminate the ESPM from the BSM (or 

the pBSM) are: Nicoya peninsula, Costa Rica (shallow seismogenic zone and strong slab 

curvature [DeShon et al., 2006]); and Northern Chile in the vicinity of the Mejillones 

peninsula (possibly shallow locking depth, and strong plate curvature [ANCORP 

Working Group, 2003; Brudzinski and Chen, 2005]).  Of course if ocean bottom geodetic 

stations are successfully installed in the future [see for instance, Gagnon et al., 2005], 

then many of the above subduction zones might be more amenable to application of the 

ESPM.   
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To the extent that net deformation remaining after a seismic cycle may contribute 

incrementally to the long term surface topography of the overriding plate, Figure 2-8(a) 

(middle panel) points to another important consequence of elastic plate flexure.  For a 

realistic curved subduction megathrust interface, the peak in the vertical surface velocity 

field due to plate flexure has a magnitude of < 5% of the long-term plate convergence rate 

(for plate thickness of < 100 km), and occurs at distances of approximately 75–150 km arc-

ward of the trench.  The location of the peak uplift rate is independent of the plate 

thickness, but depends strongly on plate curvature.  The purely elastic ESPM cannot 

accumulate such long-term inelastic strain, but it can still provide a measure of where such 

deformation could occur in the overriding plate over several seismic cycles.  In the real 

Earth, we expect such runaway elastic deformation to be continuously modulated by 

gravity, inelasticity, accretion, sedimentation, and erosion, resulting in near-equilibrium 

surface topography.  So, if even a small fraction of this peak surface uplift rate arising from 

elastic flexure promotes inelastic deformation in the real earth, then stable islands, or 

coastal uplift [e.g., Klotz et al., 2006] could occur at such distances over the long-term.  We 

illustrate this flexural effect for the Sumatran subduction zone (Figure 2-9, with interface 

geometry as described in [Hsu et al., 2006]).  The location of the peak uplift rate is at a 

distance of ~ 100 km, irrespective of plate thickness (bottom panel of Figure 2-9), and 

corresponds roughly to the location of the islands in the forearc — as discerned by the 

along-strike averaged, trench perpendicular bathymetric profile (middle panel of Figure 

2-9). 

 

Thus, plate bending could be a plausible driving mechanism for forearc uplift phenomena 

— such as the presence of forearc islands or coastal uplift — in young, evolving 

subduction zones, even if only a fraction of the flexural strain after each seismic cycle is 

inelastic.  While such forearc uplift phenomena have been predicted by layered elastic-over 

viscoelastic models [e.g., Sato and Matsu'ura, 1988; Matsu'ura and Sato, 1989; Sato and 

Matsu'ura, 1992; 1993; Fukahata and Matsu'ura, 2006], they include many more 

parameters related to erosion, accretion, and sedimentation, with much larger uncertainties.  

In addition, the long-term deformation in these models was shown by the above authors to 

be entirely attributable to only the portion of the fault interface  
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Figure 2-9. Comparison of predicted surface velocity profiles from the elastic plate bending flexural field 
[bottom panel, for plate thicknesses of 25 (dashed gray), 50 (gray), and 100 km (black)], with that of the 
long-term along-strike averaged trench-perpendicular topographic profile (middle panel, with error bars in 
blue) for the Sumatran subduction zone (top panel, and inset map).  Note that the location of the peak 
uplift-rate is independent of plate thickness, Hslab (bottom panel).  The trench profile in the map is from 
Bird [2003], and the rectangle indicates the zone of along-strike averaging of the plate geometry (top panel) 
as well as bathymetry (middle panel).  The geometry of the mean plate interface profile (top panel, only 
Hslab=100 km is shown) is similar to that assumed in [Hsu et al., 2006], and attains a dip of 30° at a depth of 
~27 km below the islands.  Note the correspondence in the location of the peak values in the middle and 
bottom panels.  See text for details.  
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embedded in the upper elastic layer (of thickness H), which results in a surface 

deformation field that is qualitatively similar to that of the steady state component of the 

ESPM with plate thickness, H.  The advantage of the ESPM is that only a single 

parameter (fσ) is required to determine the potential locations of permanent deformation, 

and therefore much more conducive to geodetic inversions. 

 

 

2.8 Conclusions 

 

The ESPM can be thought of as a kinematic proxy for slab-buoyancy-driven subduction.  

The derivation of the ESPM provides a kinematically consistent and physically more 

intuitive rationale for why the BSM works so well for interpreting current interseismic 

geodetic data, especially for young, evolving subduction zones.  The BSM can be viewed 

as an end-member model of the ESPM, in the limiting case of zero plate thickness.  The 

BSM is also an end-member model of the ESPM having a finite plate thickness, if all of 

the stresses associated with these plate flexural strains are either released continuously in 

the shallow portion of the subduction zone, or released deeper in the subduction zone (> 

100 km depth).  So, the current practice of fitting available interseismic geodetic data 

using the BSM is in effect using the ESPM, but assuming either (a) a negligible elastic 

plate thickness, or (b) that all flexural stresses are released continuously during bending 

or at depth.  Only in the case where these plate flexural stresses are not released 

continuously in the shallow parts of the subduction zone, can the deformation field of the 

ESPM be distinguished from that of the BSM.  In this case, the differences between the 

surface velocity fields predicted by the two models is measurable within a few locking 

depths of the trench, and our ability to discriminate between them is limited by lack of 

geodetic observations above the locked patch in most subduction zones.   

 

Unlike the pBSM, the ESPM, by definition, yields the correct sense and magnitude of 

horizontal velocities on the surface of the downgoing plate before it subducts into the 

trench, as well as zero net steady state block uplift of the overriding plate — primarily 

because volume conservation is integral to its formulation.  Therefore, unlike the pBSM, 
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the ESPM does not require ad hoc steady state velocity corrections.  The ESPM 

eliminates ambiguities associated with the application of the pBSM to non-planar 

geometries by providing a kinematically consistent framework in which to do so.  For 

plates with curved geometry, the equivalent BSM should have backslip applied along the 

corresponding curved subduction interface (Figure 2-3, and as explicitly stated by Savage 

[1983]), and not along the tangent plane to this curved interface at depth.   

 

Characterizing the ESPM requires the estimation of at most two additional parameters 

(plate thickness, and fraction of flexural stresses released), which can potentially be 

inverted for in subduction zones that have an H/Dlock ratio equal to 2 or greater.  If we 

assume all flexural stresses are only released episodically in the shallow part of the 

subduction zone, then this elastic thickness is a minimum plate thickness over the 

seismic-cycle timescale — as seen by geodetic data.  If the BSM is used for the inversion 

instead of the ESPM, it would predict a wider locked zone compared to the ESPM, 

assuming that the fault geometry is well constrained.  In order to discriminate between 

the ESPM and the BSM, we must use both the horizontal and vertical surface velocity 

fields.  As the data quality, duration, and coverage improve in the future — especially 

station density near the trench, say with the deployment of GPS stations on islands or 

peninsulas close to the trench or on the ocean bottom — inversion for the ESPM 

parameters can provide an independent estimate for a minimum elastic thickness of the 

subducting plate, and perhaps even its along-strike variation.   
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Table 2-1. Notation 
 
εxz Shear-strain 
dεxz/dt Shear strain rate 
θ,θdip  Planar fault/plate interface dip 
θbot Dip at the bottom of the locked zone for a curved plate interface  
Δθ Change in interface dip from one curved segment to the next 
Dlock,, dlock Depth of locking along the megathrust interface 
Cp Local curvature of the centerline of the plate 
fσ Fraction of flexural stresses released episodically at shallow depths 
H Thickness of the subducting plate in the ESPM 
Rbot Local radius of curvature for the bottom surface of the plate 
Rp  Local radius of curvature for the centerline of the plate 
Rtop Local radius of curvature for the top surface of the plate 
s Arc-length along the plate interface, or fault-width 
slock Width of locked plate interface 
Te Elastic plate thickness in plate flexure models 
δV Velocity perturbation to be added to (subtracted from) the centerline plate 

velocity 
Vbot Velocity at the bottom surface of the plate 
Vp Plate convergence velocity 
Vtop Velocity at the top surface of the plate 
Vx

* Horizontal surface velocity normalized by plate rate 
Vz

* Vertical surface velocity normalized by plate rate 
x Horizontal coordinate, positive landward, or away from the trench  
x* Horizontal coordinate, normalized w.r.t. locking depth 
xGPS, (min/max) Distance range from the trench to the nearest geodetic observation 
xhinge Distance from the trench to the location of zero vertical surface velocity  
xlock Distance between trench and surface projection of the downdip end of the 

locked zone 
xmax Distance from trench to the location of the peak in the vertical surface 

velocity field 
z Vertical coordinate, positive upward (depths are therefore, negative) 
z* Vertical coordinate, normalized w.r.t. locking depth 
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C h a p t e r  3                                                                                         

A SENSITIVITY ANALYSIS OF ELASTIC DISLOCATION MODELS FOR 

INTERSEISMIC DEFORMATION IN SUBDUCTION ZONES 

 

3.1 Introduction 

 

At subduction plate boundaries, geodetic data from the interseismic period — decades to 

centuries after a megathrust earthquake — help to delineate regions of the megathrust 

that are not presently slipping and can potentially produce large earthquakes.  Due to both 

observational and theoretical considerations, such data are frequently interpreted using 

simple elastic dislocation models (EDMs).   The simplest of these EDMs, the backslip 

model [the BSM, see Savage, 1983], can be essentially described with only two 

parameters — the extent of the locked fault interface, and the plate geometry.  The BSM 

has been widely used in modeling interseismic period geodetic data in subduction zones, 

and to successfully fit geodetic observations using realistic plate interface geometries 

[Zweck et al., 2002; Khazaradze and Klotz, 2003; Wang et al., 2003; Suwa et al., 2006].  

Even when nonlinear rheologies (e.g., elasto-plastic) are assumed for modeling plate 

deformation, strains tend to localize in narrow zones.  The far-field deformation due such 

shear zones can be hard to distinguish from the field resulting from slip along a single 

fault, assuming purely elastic rheology [Souter and Hager, 1997].  Also, as the quality of 

geodetic data improves, they can be used to constrain more complicated 3D models [e.g., 

Masterlark, 2003]. 

 

Owing to the simplicity of EDMs, and their success in fitting current geodetic 

observations, the analysis presented here is entirely based on such models — specifically, 

on the BSM.  The BSM is motivated by the recognition that the overriding plate 

apparently experiences little permanent inelastic deformation on the time scales relevant 

to the seismic cycle (less than a few thousand years) [see, Savage, 1983; Wang and Hu, 

2006].  To first order, the interseismic and coseismic strain fields must cancel each other 
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and asthenospheric relaxation does not significantly contribute to the interseismic 

deformation field [Savage, 1983, 1995].  In a previous paper [see Chapter 2, and Kanda 

and Simons, 2010], we showed the equivalence between a subducting plate model (the 

ESPM) and the BSM, and concluded that owing to practical considerations, the BSM 

would fit currently available geodetic data as well as the ESPM.  For reasons described 

there, the small effects associated with layering as well as gravity are typically ignored 

when applying the BSM, a homogeneous elastic half-space is assumed for estimating the 

firstorder features of the interseismic surface deformation field..   

 

Owing to the rich variety of behavior that can be simulated, as well as their 

computational speed, such simple EDMs warrant serious consideration when inverting 

interseismic geodetic data in subduction zones.  Even though geometry has a first-order 

effect on EDM predictions, geometric parameters (and sensitivity to variations in these 

parameters) are seldom included in slip-inversions because inverting for geometry at the 

same time as slip distribution can become prohibitively expensive (since Greens 

functions/kernels have to be re-computed each time fault discretization changes 

significantly).  So, this paper is a purely theoretical effort to systematically analyze, and 

quantitatively estimate the sensitivity of surface velocity predictions to parameterizations 

of (i) megathrust interface geometry, and (ii) presence of slip-transition zones along the 

megathrust interface.  By allowing quantitative estimation of uncertainties due to 

geometrical parameterization, we obtain more accurate constraints on the actual slip 

deficit along the megathrust interface during the interseismic period.   

 

In the following analysis, the definition of the locked zone during the interseismic period 

includes both coseismic and postseismic slip zones on the subduction interface.  

Throughout this paper, we assume Volterra edge-dislocations, i.e., the burger’s vector is 

uniform and constant over the glide-plane of the dislocations — except for the section of 

the glide surface that is locked (Vp = 0) or lies within a slip transition zone (Vp is a linear 

function) immediately above or below the locked section.  We use the 2D elastic 

dislocation solutions for a dip-slip fault embedded in an elastic half-space given by 

Freund and Barnett [1976], as corrected by Rani and Singh [1992] (see also, Tomar and 
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Dhiman [2003] and Cohen [1999]) for computing surface velocities.  We quantify the 

sensitivity of key surface observables — the locations of the hinge-line (xhinge, where the 

vertical velocities switch from subsidence to uplift during the interseismic, i.e., where Uz 

= 0) and maximum uplift rates in the vertical velocity field (xmax, where Uz is a maximum) 

— to EDM parameters: subduction thrust geometry, the extent of the locked zone, slock, 

and the width of a transition zone, strans, downdip of slock.  We assume that the origin is at 

the trench, the x-axis is positive “landward” of the trench, and the z-axis is positive 

upwards (so depths within the half-space are negative).  Dips are positive clockwise from 

the positive x-axis.  For the vertical surface deformation field, uplift is considered 

positive, and for the horizontal field, “landward” motion is assumed positive.  If the fault 

geometry is linear (straight line), a circular arc (constant curvature), or a parabolic profile 

(decreasing curvature with depth) — all passing through the origin (the trench) — it is 

straightforward to relate slock to either Dlock, or xlock.  Using faults having the same lengths 

and same dips at the downdip end of the locked zone allows us to compare predictions of 

surface observables like xhinge and xmax for different fault geometries.  Although we only 

consider the 2D problem (the fault is assumed to extend to infinity along strike, in-and-

out of the plane of this paper) the analysis here can be easily extended to 3D problems 

with geometry varying along the strike of the trench axis. 

 

 

3.2 Transition zones adjoining the locked megathrust 

 

In reality, it is physically implausible for an abrupt transition from locked to creeping at 

the downdip end of the locked zone, as a dislocation model would imply.  Stress 

concentrations would be too high for the material to behave elastically [e.g., Scholz, 

1990].  In addition, the downdip end of the locked zone as well as the surrounding 

overriding plate is thought to be thermally controlled [Hyndman and Wang, 1993] and 

experience time-dependent anelastic deformation.  So, we make use of a kinematically 

imposed transition zone along the plate interface downdip of the locked zone as a proxy 

for the integrated effects of anelastic deformation during the seismic cycle [e.g., Wang et 

al., 2003].   The width of this transition zone is thought to be controlled by the 350° and 
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450° isotherms [Hyndman and Wang, 1993], and its location along the subduction 

interface strongly depends both on the interface geometry as well as the thermal structure 

for the subduction zone.  For instance, Wang et al. [2003] assume a transition zone whose 

width is as large as the locked zone, governed by different tapered slip distribution 

profiles at different times during the seismic cycle.  Here, in our intuition building toy 

models, we consider a transition zone whose width is 25% of that of the locked zone 

(ftz=0.25), along which slip increases linearly from zero to the long-term plate 

convergence rate during the interseismic period.  Such a tapered slip zone is only 

partially slipping (creeping) during the interseismic period, but also partially ruptures 

coseismically.  Although ftz was arbitrarily chosen here, our purpose is to demonstrate its 

significant effect of tapered slip zones on the predictions of elastic dislocation models – 

even when they have such a small extent.  For a subducting plate having a finite 

thickness, as represented in the ESPM, the steady motion of its bottom surface can result 

in interseismic slip — at velocities less than or equal to the plate convergence rate — 

along the shallow portion of the plate interface (between the trench and depths of 5–10 

km).  Such shallow slip is plausible in view of the fact that the frontal wedge of the 

overriding plate is made up of unconsolidated sediments that do not have significant 

internal strength.  However, slip along the shallow interface must transition from a finite 

value to zero at the updip limit of the locked zone.  As will be shown later, such shallow 

updip transition zones do not significantly affect the vertical velocities (and hence, 

surface observables like the locations of the hinge-line and maximum vertical velocity), 

but strongly affect horizontal velocities within a few locking depths of the trench (~ by as 

much as 100% of the plate convergence rate).  In this study, we use an updip transition 

zone extending from the trench (where, slip velocity is assigned the plate rate) to the 

updip limit of the locked zone (where slip is zero during the interseismic), to illustrate the 

effects of varying its extent.  Here, we consider a lower transition zone having a width, 

strans, along the plate interface downdip of the locked zone, as well as a shallow transition 

zone of width ≤ strans along the plate interface between the trench and the updip limit of 

the locked zone.   
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We explore the effect of fractional transition zone widths, ftr ( = strans/slock) in Figure 3-1 

(a) through (d).  The effect of adding a downdip transition zone is the same as that of 

increasing slock, and slightly reducing the effective uniform convergence velocity 

(averaged over both the fully and partially locked interface) for the interseismic period 

(Figure 3-1 (a) and (b)).  In other words, the velocity profiles from dislocation models 

having a transition zone are of a longer wavelength (or broader) than those for the case 

having no transition zone.  Also, a transition zone of the same length affects the surface 

velocity predictions for both the ESPM and the BSM (having the same geometry and 

convergence velocity), by roughly the same fractional amount.  Because the locations of 

the change in slope of the horizontal velocity profiles follow the effective xlock, it occurs 

farther than that for the no-transition-zone case.  Furthermore, the horizontal velocity 

profile is broader beyond this change in slope when there is a transition zone.  To 

facilitate comparison, the geometry considered in Figure 3-1 is identical to that 

considered for the Cascadia subduction zone by Williams and McCaffrey [2001].  The 

broadening of horizontal velocity profiles due to a downdip transition zone (Figure 3-1 a 

and b – for the ESPM or the BSM) can help explain the discrepancy between their EDM-

predicted and observed horizontal GPS velocities [Figure 3a, Williams and McCaffrey, 

2001].  Again, the shapes of the vertical velocity profiles are much more sensitive to the 

extent of the transition zone (Figure 3-1 (a) and (b) middle), compared to those of the 

horizontal velocity profiles (Figure 3-1 (a) and (b) bottom).   

 

On the other hand, the vertical surface velocity profiles predicted by either the ESPM or 

the BSM are not significantly affected by the presence of an updip transition zone (Figure 

3-1 (c) and (d)), owing to the typically shallow dip of the plate interface near the trench 

(which is typical of most subduction interfaces).  An updip transition zone causes a large 

gradient in horizontal surface velocities near the trench, without significantly affecting 

these velocities landward of xlock.  As before, the shapes of the horizontal surface velocity 

predictions of the ESPM and the BSM are nearly identical, making it hard to use this 
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Figure 3-1. 
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Figure 3-1. Effect of doubling the width of the transition zones updip and downdip of the locked megathrust interface for the ESPM and the BSM.  ftr is the 
fractional length of the transition zone relative to the width of the locked megathrust, strans/slock.  For updip transition zones (parts a and b), results are presented 
for ftr = 0, 0.125, and 0.25. For downdip transition zones (parts c and d), results are presented for ftr = 0, 0.25, 0.5, and 1. Axes are as described in text. 
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component to distinguish between the two models.  The vertical surface velocity profiles 

can still discriminate between the two models, owing to the strong dependence of their 

shape on both the plate thickness as well as the extent of the downdip transition zone 

(Figure 3-1 (c) and (d)).  Therefore, vertical surface velocities are the key to not only 

differentiating between the ESPM and the BSM (i.e., for estimating the minimum elastic 

plate thickness for a given subduction interface geometry), but also the location of the 

effective xlock.  However, the uncertainties in horizontal velocities are smaller than those 

for the verticals (sometimes by a factor of two), and for most subduction zones or thrust 

faults (which typically have dips < 30° near their surface trace), surface horizontal 

velocities are much larger than the verticals, and therefore have a much better signal-to-

noise ratio compared to the verticals.  The relative importance of horizontal and vertical 

velocity data in inverting geodetic data is investigated next, using an idealized 

distribution of noisy, “synthetic” observations derived from the ESPM having different 

plate thicknesses. 

 

 

3.3 Inverting geodetic data using the ESPM vs. the BSM 

 

We performed a general Monte Carlo simulation to determine the potential error incurred 

in inverting geodetic data using the BSM as opposed to the ESPM.  We generate 

synthetic data (horizontal and vertical surface velocities) assuming that subduction zones 

in the real Earth are represented by ESPMs having different plate thicknesses.  The 

ESPM is characterized by three independent parameters of practical interest — fault dip, 

θ, length of the locked megathrust (extending downdip from the trench along the plate 

interface), slock, and the plate thickness, H (H/Dlock = 0.01 (nearly identical to the BSM), 

1, and 3 are presented in the respective columns of Figure 3-2 (a), (b) and (c)).  For 

simplicity, we use a planar megathrust interface geometry having a dip, θ = 25°, and 

depth of locking, Dlock = 40 km, corresponding to a fault width, slock, of ~ 95 km).  Our 

principal conclusions here would not differ qualitatively for curved plate geometry.  

Although typical geodetic inversions do not invert for geometry, we include the 

sensitivity of the misfits to variations in dip, in order to emphasize the importance of 

 



 

 

3-9

tightly constraining this parameter at the outset.  We show that the minimum BSM 

misfits become biased — that is, the best fit BSM would predict a wider fault with a 

shallower dip — with increasing subducting plate thickness.  If dip were tightly 

constrained (using seismic data, for instance), then the extant of the locked zone along the 

megathrust can be better constrained.  The generalized Monte Carlo approach used here 

consists of the following steps: 

a) We assume a Gaussian distribution for noise, having zero means and standard-

deviations of 0.02Vp for the horizontals and 0.03 Vp for the verticals — or 2 and 3 

mm/yr, respectively, if Vp = 10 cm/yr. 

b) Next, one thousand samples of the noise in vertical and horizontal data are 

generated from the above distributions for the ESPM having a given H 

(perturbations: δVx, δVz).  These perturbations are then added to the respective 

ESPM surface velocity fields (synthetics: Vx, Vz) to generate “noisy” datasets (Vx 

+δVx, Vz +δVz).   

c) Finally, the BSM with the smallest misfit to each noisy (synthetic) dataset — 

consisting of only the vertical velocities, only the horizontal velocities, or 

verticals-plus-horizontals (presented in respective rows of a, b and c) — is 

estimated via a grid-search in the θ - slock parameter space for a given H.  

 

The closest geodetic observation on the overriding plate was assumed to be 100 km 

landward from the trench — a typical distance for most subduction zones — and 

observations were assumed to be uniformly spaced at 5 km intervals.  Increasing 

observation station spacing, or using a different set of ESPM parameters for generating 

the synthetic surface velocity data would not qualitatively change our conclusions.  With 

such uniform and dense spacing, we are assuming that we have a high-resolution dataset 

(e.g., GPS and InSAR imagery) to understand the model-based limitations of the 

inversion process, given the “best-case scenario” data.  Here, we use the arc-length of the 

locked zone, slock, for parameterization.  Had we chosen either Dlock (= slock sin(θ)) or xlock 

(= slock cos(θ)) instead, we would have observed positive and negative correlations 

(respectively) between these parameters and fault dip, since the steeper the best-fit BSM 

fault, the deeper its Dlock, and smaller its xlock.  By using slock, we avoid these obvious  
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Figure 3-2. BSM inversions of ESPM synthetics.  Each column represents results for a given plate-
thickness to locking depth ratio: H/Dlock = 0.01 (BSM), 1, and 3.  (a) 1000 best-fit BSM in the slock-θ 
parameter space that fit as many samples of ESPM-based noisy synthetic data for the specified H/Dlock 
ratio.  Shown are the lowest misfit solutions satisfying only vertical data (top row), only horizontal data 
(middle row), and sum of the two datasets (bottom row). The corresponding 1-σ error-ellipses are shown in 
red.  (b) Misfit between the BSM at each point in the slock -θ parameter space and one of the synthetic data 
samples in (a). (c) Best-fit backslip model (solid red line), satisfying both the horizontal and vertical 
synthetic data (solid gray lines) — corresponding to the yellow ⊗ in the bottom row of (b).  The best-fit 
BSMs are as follows: θ = 25°, Dlock = 40 km (identical to the ESPM, for column 1); θ = 22.5°, Dlock = 38.3 
km (column 2); and θ = 20°, Dlock = 39.3 km (column 3).  The BSM corresponding to θ = 25°, and D = 40 
km (dashed green line) is also shown.  The top row shows the subduction zone geometry, the middle row 
shows vertical velocities, and the bottom row shows horizontal velocities. Dashed vertical lines mark the 
nearest geodetic observation point to the trench 
.

 



 3-12

correlations.  The best fitting BSM was found by computing the L2-norm of the misfit at 

every point of the discretized slock-θ parameter space — having limits of 0-200 km, and 0-

45°, respectively — and discretized at a resolution of 0.5 km x 0.5° for each H/Dlock ratio. 

 

Owing to their larger signal-to-noise ratio, the best-fit BSM for the combined (horizontal-

plus-vertical) datasets are controlled by the errors in horizontal velocities (note the 

similarity of the misfit surface for the bottom two rows in Figure 3-2(a)).  In the limit of 

small plate thickness, the geometry of the best-fit BSM corresponds to that of the thin 

plate ESPM, and the centroids of the error ellipses (which give the most likely model 

parameter estimates) are nearly the same as the original parameters used to generate the 

ESPM synthetic data, irrespective of the velocity component(s) considered.  This 

similarity implies that given a dense dataset with randomly distributed data errors, if we 

repeatedly sample a subset of the data for inverting a BSM, after a sufficient number of 

samples, we will be able to obtain the “true” model parameters.  However, a given 

sample in this distribution of models can be off by as much as 10% in estimating the 

extent of the locked zone, slock, which translates into ~ 5% error in estimating the locking 

depth, dlock, for typical dips found in subduction zones.  Furthermore, as the plate 

thickness increases, and stresses are released episodically in the shallow portions of the 

subduction zone, the best-fit models collapse into an error-ellipse having much smaller 

dimensions and a biased centroid, indicating that the region of small misfits both shifts 

and shrinks as H increases.   

 

We would expect the minimum misfit region of the parameter space to shrink because the 

synthetic data (from the ESPM) have a variability (plate thickness, H) that the forward 

model (the BSM) cannot capture and therefore, the overall misfits would become larger, 

shrinking the regions of low misfit in the parameter space.  The minimum misfit region 

would shift because the effect of increasing H is larger for larger slock and θ.  By taking 

the L2-norm misfit surface as well as the minimum misfit model for one of the data-sets 

randomly chosen from each panel of Figure 3-2(a), we obtain Figure 3-2(b) – in which 

this shrinking of the low misfit regions can be clearly seen going from the right to the left 

columns.  If a different data-set were chosen, the misfit surface would look slightly 

different with a different best fit model, but clearly, the error ellipses (Figure 3-2(a)) 
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reside in the corresponding minimum misfit troughs, which also shrink in size with 

increasing plate thickness (Figure 3-2(b)).  If the dip of the fault-segment undergoing 

rupture is tightly constrained from teleseismic studies, then the minimum misfit lies along 

a horizontal line corresponding to that dip (25° in this case), thus constraining slock (and 

hence, xlock and Dlock) more tightly.   

 

Therefore, if the BSM is used to fit interseismic geodetic data, the mean of the best-fit 

models (the centroids of the ellipses in Figure 3-2(a)) always underestimates θ or 

overestimates slock, if plate thickness is non-negligible — that is, the BSM typically 

predicts a wider-deeper fault, if dip were well constrained.  The overestimation of locking 

depth stems from the main effect of plate thickness on the ESPM predicted surface 

velocities — above the locked zone, both the horizontal and vertical velocity profiles 

landward of xhinge are higher (as well as broader) than those for the corresponding BSM.  

The BSM with a wider fault (or shallower dip) has exactly the same amplification effect 

above the locked zone (Figure 3-2(c), which presents the best fit models for inversions 

based on the vertical-plus-horizontal data-set).  When the observing stations are located 

sufficiently far from the trench, as is frequently the case, the error associated with the 

underestimation of θ or overestimation of slock is small, and the BSM does a good job of 

fitting the observations.  

 

 

3.4 Sensitivity of surface observables to parameterizing the BSM and the ESPM 

 

In view of the wide applicability of the BSM, it is important to understand the sensitivity 

of surface observables to parameterization of the BSM, especially interface geometry.  It 

has long been known that the geometry of the plate interface has a first-order effect on 

the surface velocity predictions of dislocation models.   

 

Figure 3-3 presents the effect of fault curvature on the BSM surface velocity predictions.  

The geometry presented in the figure is similar to that inferred for the Sumatran 
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Figure 3-3. Effect of curvature on the BSM surface velocity predictions.  The curved fault (solid black 
line) resembles the subduction thrust interface geometry below the island of Nias, offshore of Sumatra (θtop 
= 3°, θbot = 27° [Hsu et al., 2006]).  The gray solid line represents a planar fault having the same end-points 
as the curved fault, and the dashed gray line represents the tangent-approximation to the curved fault.  The 
dotted line represents a shallow dipping fault that approximates the shallow part of the curved interface.  
See text for details.  The top row presents the fault in cross-sectional view.  In all cases, uniform normal 
slip was imposed on the fault patch.  Plot axes are as described in text.  
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subduction zone in the area of the 28 March 2005, (Mw 8.7) Nias-Simeulue rupture 

[Engdahl et al., 2007].  The effect of curvature is to stretch the velocity profiles non-

linearly near either end.  Compared to the velocity field of the planar fault having the 

same end-points, the curved fault behaves like a shallower dipping planar fault with a 

smaller locking depth near the trench; the curved geometry predicts a shorter-wavelength 

velocity profile, with a smaller subsidence (Figure 3-3 middle) but larger horizontal 

compression (Figure 3-3 bottom) near the trench.  But away from the trench, the curved 

fault velocity profiles resemble the broader fields characteristic of a planar fault having a 

steeper dip (lower peak amplitude of vertical and horizontal velocities above the bottom 

of the locked patch).  Also, above the bottom of the locked zone (and farther landward), 

the curved fault velocities are nearly identical to those of a steeper but shorter planar fault 

extending tangentially to the surface (dashed gray line).   

 

Given that geodetic data in subduction zones are typically available starting at distances 

comparable to xlock from the trench, and the surface velocity profiles at these distances for 

a curved fault and its downdip tangential approximation are nearly indistinguishable, it 

may be reasonable to use this tangential fault approximation for modeling far-field 

landward surface velocities [Chlieh et al., 2004; Simoes et al., 2004; Chlieh et al., 

2008b].   However, the tangential fault intersects the free surface landward of the trench, 

while the location and slope of the tangent fault is highly sensitive to the width of the 

locked zone, slock.  Also, in this case, interseismic deformation is modeled to be due to 

slip on the tangent fault, while coseismic deformation is due to slip on the curved (or any 

non-planar) fault — which is kinematically inconsistent.  Therefore, as Savage [1983] 

originally asserted, if the geometry of the seismogenic zone of the megathrust is known 

to be curved, then this surface should be used for the BSM as well.  Figure 3-3, therefore, 

demonstrates the significant effect of fault geometry on interpreting geodetic data where 

data above the locked patch and/or in the vicinity of the trench may become available in 

the near future.  

 

We next consider the sensitivity of surface observables xhinge and xmax to the BSM 

parameterization — specifically, we explore the values for these observables relative to 

xlock (Figure 3-4).  Although xlock can be directly inverted from geodetic data (especially  
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Figure 3-4. Schematic illustration of the relative locations of surface observables, xhinge, xlock, and xmax, 
using the vertical velocity profile for the curved fault presented in Figure 3-6.  

 

from the vertical velocity field), being able to constrain that parameter using xhinge or xmax 

(or both) — in addition to constraining dip from teleseismic observations — can allow us 

to better constrain the remaining BSM parameter, ftr (= strans/slock).  So, here we quantify 

how the dimensionless distances between xlock, and xhinge, xmax, their mean, or their 

difference, vary with fault dip, θ for generalized fault geometries.  By normalizing these 

distances with xlock , our results can be made independent of slock.  We start with the 

analytical expression for the surface vertical velocity due to an edge-dislocation in a half-

space, normalized by the geologic plate convergence rate, Vp, vy
*, as a function of trench 

perpendicular distance, x, dip, θ, and fault width, s (corrected version of Freund and 

Barnett [1976] — see Savage [1983], and Rani and Singh [1992]):  

 

vy
* =

vy

Vp

= sin(θ)

π
xs.sin(θ)

x 2 + s2 + 2xs.cos(θ)

 
 
 

 
 
 + tan−1 x − scos(θ)

s.sin(θ)

 
 
 

 
 
 −

π
2

 

 
 

 

 
  . (1) 
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To find the hinge-line location, xhinge, we set the above equation to zero, and solve the 

resulting transcendental equation numerically using a non-linear root-finding algorithm.  

Although not obvious from the above equation, for nearly vertical faults (as θ tends to 

90°), xhinge tends to infinity, and as θ tends to 0°, xhinge tends to a value close to (but less 

than) s.  As Savage [1983] has already shown, the location of the maximum velocity, 

xmax, can be obtained by differentiating (1), setting the result to zero, and solving for x.   

The final result is:  

 

xmax = s

cos(θ)
= s.sec(θ)  . (2) 

 

For nearly vertical faults, (as θ tends to 90°), xmax tends to infinity (but at a faster rate 

than xhinge) and as θ tends to 0°, xmax tends to s.  As discussed previously, the depth of 

locking, Dlock, equals s.sin(θ); the surface projection of the bottom of locked fault is given 

by,  

 

xlock = s.cos(θ).  (3)  

 

For nearly vertical faults (θ tends to 90°), xlock tends to zero, but at a much slower rate 

than either xmax or xhinge blow up; as θ tends to 0°, xlock tends to s.  For the analysis here, 

we choose as our independent parameters, the locked fault width, s, and fault dip, θ, 

which naturally fall out of the analytical solution (1).  The theoretical solutions shown in 

the last three equations are plotted as yellow curves, wherever they appear in Figure 3-5 

(a) and (b).  For curved faults, faults with downdip transition zones, as well as the ESPM, 

we first compute the vertical surface velocity field (Uz), for every combination of θ and s, 

at a resolution of 0.5° x 50 km.  We then search for the locations of both the hinge-line 

(Uz = 0) and maximum vertical velocity (Uz’ = 0).  To verify our code, we compute these 

locations for the planar fault case and check that they plot right on top of the theoretical 

solutions (Figure 3-5(a)).   
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Figure 3-5. Location of the maximum vertical velocity (xmax), zero vertical velocity (xhinge), the surface projection of the bottom of locked fault (xlock), 
and the differences between them, as a function of the length of the locked fault patch, s, and dip angle,θ.  Each parameter is plotted for s ranging from 
25 to 200 km, in steps of 25 km.  Thicker curves represent fault lengths of 50, 100, 150, and 200 km. (a) Planar faults: Blue curves (cutting across the s-
curves from the top left to bottom right) are lines of constant locking depth (10 to 50 km, in steps of 10 km).  Theoretical estimates are presented in dark 
yellow.  (b) Curved faults: Red curves (cutting across the s-curves from the bottom right to top left) are lines of constant radii of curvature (100 to 300 
km, in steps of 50 km).  Blue curves are the same as in (a).  Theoretical estimates for planar faults are presented in yellow in the bottom two panels for 
comparison to (a). 
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Owing to the simple geometrical parameterizations used to generate linear or curved 

subduction profiles here, xhinge, xmax, and xlock are directly proportional to the fault width, 

slock.  Therefore, dividing by xlock removes any dependence on fault width, and curves for 

different slock collapse into a single curve (Figure 3-6).  Figure 3-6 presents the variation 

of xhinge and xmax as a function of θ (for any slock) for planar faults without a downdip 

transition zone (Figure 3-6(a)), curved faults without a downdip transition zone (Figure 

3-6(b)), planar faults having a downdip transition zone (Figure 3-6(c)), and curved faults 

having a downdip transition zone (Figure 3-6(d)).  Within each part, the first (top) panel 

presents the dimensionless distance between xmax and xlock, relative to xlock: 

 

Δxm
* = (xmax-xlock)/xlock . (4) 

 

The second panel presents the dimensionless distance between xhinge and xlock, relative to 

xlock:  

 

Δxh
* = (xhinge-xlock)/xlock . (5) 

 

The third panel presents the mean of (4) and (5), i.e., the dimensionless mean of xhinge and 

xmax, ΔXM
* = (Δxm

*+Δxh
*)/2.  The fourth panel presents the difference between Equations 

4 and 5, i.e., the distance between xhinge and xmax, ΔXD
* = (Δxm

*-Δxh
*).  Finally, the fifth 

(bottom) panel presents the ratio of xhinge and xmax (which is always less than 1.0).  Ranges 

of θ within which xhinge, xmax, or some combination of the two is a good predictor for the 

location of xlock for the BSM are highlighted by gray boxes in Figure 3-6 and 

encapsulated in Table 3-1 (for faults without a downdip transition zone) and Table 3-2 

(for faults with a downdip transition zone, ftr = 25%).  As noted previously, updip 

transition zones do not significantly affect vertical velocities, and therefore, do not 

influence the values of these surface observables significantly.  For the ESPM (not 

shown), the variation of these dimensionless parameters with dip angle is qualitatively 

similar to that for the corresponding BSM, but with wider uncertainty relative to xlock.  
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Figure 3-6. Dimensionless plots of the variation in the location of xmax and xhinge as a function of fault dip in the BSM having a planar (a, c) or curved (b, d) plate 
interface geometry, with (c, d) or without (a, b) a transition zone (of fractional length, ftr = 25%) downdip of the locked megathrust zone.  See text for definitions 
of y-axis parameters.  Top panels: Dimensionless relative distance between xmax and xlock (Δxm*) as a function of the dip of the BSM fault; Second-from-top 
panels: Dimensionless relative distances between xhinge and xlock (Δxh*); Third-from-top panels: Mean value of plots in top two panels; Second-from-bottom panel: 
Difference between the top two panels; Bottom panels: (xhinge /xmax).  Theoretical estimates for planar faults without any transition zone (thick gray lines from 
part(a)) are repeated for each panel in parts (b)-(d) for comparison purposes.   
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Table 3-1  Theoretical Estimates for the horizontal distance between the trench and the 
surface projection of the downdip end of the locked zone, xlock, for planar and curved 
faults locked up to the trench.  Notation: X = X hinge +X max

2( ), Xh = Xhinge, Xm = Xmax. 

 
Fault Type 0°< θDip ≤ 25° 25°< θDip ≤ 35° 35°< θDip ≤ 45° 

Planar fault 1.1 X  > Xlock > 0.9 X  1.1 Xh > Xlock > 0.9 Xh 1.0 Xh > Xlock > 0.7 Xh 

Curved fault  
(Circular/ 
Parabolic arc) 

1.05 X  > Xlock > 0.95 X 1.0 X  > Xlock > 0.9 X  1.1 Xh > Xlock > 0.9 Xh 

 
 
Table 3-2.  Theoretical Estimates for the horizontal distance between the trench and the 
surface projection of the bottom of the locked patch, xlock, for planar and curved faults 
having transition segments immediately downdip of the locked zone.  The following 
results are for transition zones having along-fault lengths of up to 25% of the length of 
the locked zone.  Notation: X = X hinge +X max

2( ), Xh = Xhinge, Xm = Xmax. 

 
Fault Type 0°< θDip ≤ 25° 25°< θDip ≤ 35° 35°< θDip ≤ 45° 

Planar fault 1.1 Xm > Xlock > 0.9 Xm 1.1 X  > Xlock > 0.9 X  1.0 Xh > Xlock > 0.7 Xh 

Curved fault  
(Circular arc) 

1.1 Xm > Xlock > 1.0 Xm 1.0 Xm > Xlock > 0.9 Xm 1.1 Xh > Xlock > 1.0 Xh 

Curved fault  
(Parabolic arc) 

1.1 Xm > Xlock > 1.0 Xm 1.1 X  > Xlock > 0.9 X  1.1 Xh > Xlock > 0.9 Xh 

 
 

From the theoretical solutions for planar faults (Figure 3-5(a)), we note that the location 

of peak vertical uplift rates, Xmax, changes significantly (by as much as 50%  as θ varies 

from 0° to 45°, as expected from Equation 2.  Also, xmax ≥ xlock always, because 

comparing (2) and (3), sec(θ) ≥ cos(θ) (Figure 3-6(a) top and middle). We also plot 

curves of constant locking depth, Dlock, for every 10 km, in the range, 10-50 km (Figure 

3-6(a), blue curves).  This allows for quantifying xmax, xhinge, and xlock for any combination 

of independent parameters defining the planar BSM (s, θ or Dlock).  Using the non-

dimensionalization discussed above for the dependent variables in Figure 3-5(a), all 

curves for different fault dimensions, s, collapse into a single curve (Figure 3-6(a)).  

Dimensional plots for a curved fault are presented in Figure 3-5(b)).  In addition to the 

curves of constant locking depth (blue), another set is included in the upper three panels 

of this figure for curves of constant radius of curvature, Rp (red), for every 50 km, in the 
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range, 100–300 km.  This allows for quantifying xmax, xhinge, and xlock for any combination 

of independent parameters defining the curved BSM (s, curvature, θbot or Dlock).  

Theoretical plots for planar faults (yellow curves) are also presented in the bottom two 

panels of this figure for comparison.  

 

For shallow dips characteristic of most subduction zones (θ ≤ 30° irrespective of 

geometry, Figure 3-5(a) and (b)), xhinge lies trenchward of xlock (so, Δxh
* is negative), while 

xmax lies landward of it (Δxm
* is always positive), but almost equally distant - irrespective 

of the extent of slock.  We would therefore expect that ΔXM
* would be a good estimator of 

xlock for shallow dipping interfaces (third panel of Figure 3-6(a) and (b)) — in fact, this 

parameter can estimate xlock to within 5 % for planar faults and 2.5 % for curved faults 

(i.e., with half the uncertainty of using either xhinge or xmax alone).  To get a feel for the 

maximum possible difference between these two distances, for slock ~ 200 km, the 

difference between xhinge and xlock can vary between 20–40 km for such shallow dipping 

interfaces.  For steeper dips (30°< θ ≤ 45°), both xhinge and xmax lie on the same side of 

xlock, with the former being much closer to it (Figure 3-5).  So, we would expect xhinge to 

be a better estimator of xlock compared to xmax for steeper plate interfaces (second panel of 

Figure 3-6(a) and (b)). 

 

In the presence of a transition zone along the plate interface, downdip end of the locked 

fault — in which slip transitions gradually from zero to the full plate convergence rate — 

both Δxh
* and Δxm

* are negative for dips as high as 40° (Figure 3-6(c) and (d), top).  Also, 

owing to the parameterization of the profile geometries — and given that the effective 

slock increases in the presence of a transition zone (Figure 3-1(a) and (b)) — xlock also 

increases by a factor equal to ftz, irrespective of the fault geometry.  Furthermore, xmax 

now becomes much closer to xlock than xhinge.  So, in the presence of a downdip transition 

zone, we would expect xmax to be a better estimator of xlock compared to either xhinge, or the 

mean of xhinge and xmax (top panel of Figure 3-6(c) and (d)).  However, the uncertainties 

are almost quadruple the values for faults without any transition zone — that is, xmax can 

be used to estimate xlock to within 20% for planar fault interfaces, and to within 10% for 

curved interfaces.  The ratio xhinge /xmax varies between 70 and 90 % for a wide range of 
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realistic dips of the subduction interface irrespective of both the geometry as well as the 

presence of a transition zone. 

 

The effect of including the bottom glide surface of the ESPM is to move xhinge trenchward 

(Figure 2-5; and Kanda and Simons [2010]).  For shallow dips (θ < 20°), the effect of 

bending is small, and the dimensionless parameter curves xhinge are nearly identical to 

those for the corresponding geometry in Figure 3-6.  For steeper dips, xhinge is located 

trenchward relative to that for the BSM having the same slock and θ.  Therefore, the 

distance between xhinge and xlock will be negative over a wider range of θ, compared to the 

corresponding BSM.  Also, xmax for the ESPM with a finite plate thickness changes little 

from its value for the ESPM having zero plate thickness (that is, the BSM) [Owen, 2006].  

The above results were confirmed for the ESPM having planar or curved interface 

geometry and different plate thicknesses.  In general, we find that xlock for the ESPM can 

be constrained using the same dimensionless parameter ranges as those for the BSM 

(Table 3-1 and Table 3-2), for shallow dips (< 20°).  Even for the range, 20° < θ  < 30°, 

the uncertainty in estimating xlock using these tables is only double that for the 

corresponding BSM.  However, for steeper dips, the uncertainty in estimating xlock from 

the above surface observables increases significantly.   

 

 

3.5 Discussion  

 

For megathrust interfaces dipping at an angle of 15° or greater, the distance between xhinge 

(or xmax) and xlock for planar fault geometry is roughly twice that for a curved geometry 

having the same dip at the downdip end of the locked zone.  Also, the location of xlock for 

a planar fault is much more sensitive to fault dip than for a curved fault (see Figure 3-5,  

Figure 3-6, and Table 3-1).  If geodetic stations are located right above the locked zone 

(as in Sumatra, for example), then ignoring curvature of the megathrust interface may 

overpredict vertical uplift rates in that region by as much as 50% (Figure 3-3).  Therefore, 

it is important to constrain fault geometry as tightly as possible before inverting geodetic 

data.  If fault geometry cannot be tightly constrained, then the above uncertainties due to 

fault geometry should be incorporated into any Bayesian (or Monte-Carlo type) inversion 
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procedure.  Accounting for geometry uncertainties prior to inversion modeling will lead 

to more realistic families of best-fitting slip-deficit distributions for the megathrust 

interface.  For the ESPM, a tighter a priori estimate for interface geometry and slock also 

allows better constraints to be placed on the minimum elastic plate thickness [2001]. 

 

There is a strong trade-off between including subducting plate thickness and including a 

transition zone downdip of the locked megathrust (compare Figure 3-1(a) and (b)), 

especially for horizontal velocities, which have the best signal-to-noise ratio amongst 

surface velocity components.  The horizontal velocity profile for ftr=0 for finite plate-

thickness (black, Figure 3-1(a), bottom) may be indistinguishable in real life from the 

ftr=0.25 horizontal velocity profile for the BSM (or zero plate thickness case, red in 

Figure 3-1(b), bottom).  This similarity will be more pronounced for subduction zones 

where plate thickness to locking depth ratio (H/Dlock) is 2 or greater (e.g.,  northeastern 

Japan, Cascadia, Nicoya Peninsula in Costa-Rica, Peru-Chile trench between Equador 

and northern Chile, and perhaps Sumatra [see Figure 2-9, and Kanda and Simons, 2010].  

As demonstrated with the Monte-Carlo analysis, a similar trade-off exists between the 

ESPM and a BSM having a wider (and deeper) locked zone (Figure 3-2(c)).   

 

 

3.6 Conclusions 

 

Here, we quantified the effects of using a more realistic curved plate interface profile, as 

opposed to a linear fault tangent to it at the downdip end of the locked zone. We note that 

where the megathrust is not planar, one should still assign backslip onto the actual plate 

interface (as [1983] originally intended), instead of to a planar fault tangent to the bottom 

of the locked zone.  Irrespective of the fault geometry, we can estimate the surface 

projection of the downdip end of the locked zone (xlock) from the mean of the locations of 

xhinge and xmax, for most realistic fault dips.  

 

The presence of transition zones broadens the surface velocity profiles landward of the 

surface projection of the downdip end of the locked zone, and the zone of “broadening” 

increases with increasing transition zone width.  A transition zone can thus smooth the 
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stresses associated with dislocations while increasing the effective depth of locking.   

Surface velocities for the curved fault geometry trenchward of xmax — the location of the 

maximum vertical velocities — differ significantly from those due to a planar fault 

tangent to it at the bottom of the locked zone.  However, velocities due to the curved fault 

landward of xmax are nearly identical to those due to the tangent fault.  We showed that 

irrespective of the fault geometry, the mean of xhinge and xmax gives a good approximation 

for xlock for both the BSM and the ESPM with shallow dipping plate interfaces (< 30°).  

However, in the presence of a transition zone, or a large plate thickness, xmax gives a more 

reliable estimate for xlock, and hence, the extent of the locked zone.  Therefore, the 

common notion that the location of the peak in vertical velocities (xmax,) determines the 

extent of the locked megathrust (xlock), is valid only if a transition zone is assumed 

downdip of the locked interface.  Using the BSM instead of the ESPM (having a finite 

plate thickness, H) for inverting interseismic geodetic data would result in the prediction 

of a wider (and hence, deeper) locked zone, assuming that the fault geometry is well 

constrained.   

 

 



 

 

3-27

Table 3-3. Notation 
 
θ,θdip  Planar fault/plate interface dip 
θbot Dip at the bottom of the locked zone for a curved plate interface  
Δθ Change in interface dip from one curved segment to the next 
Dlock,, dlock Depth of locking along the megathrust interface 
da Depth to bottom of updip transition zone, or to the updip limit of locked 

zone 
Cp Local curvature of the centerline of the plate 
ftr Fractional length of transition zone downdip of locked plate interface, 

strans/slock. 
fa Fractional depth of updip transition zone w.r.t. locking depth, da/dlock. 
H Thickness of the subducting plate in the ESPM 
Rp  Local radius of curvature for the centerline of the plate 
S Arc-length along the plate interface, or fault-width 
slock Width of locked plate interface 
strans Width of the transition zone downdip of the locked plate interface 
Δv Change in velocity from one plate segment to the next 
Vx

* Horizontal surface velocity normalized by plate rate 
Vz

* Vertical surface velocity normalized by plate rate 
ΔXD

* Dimensionless distance between xmax and xhinge, (Δxm
* - Δxh

*) 
ΔXM

* Mean of dimensionless xlock and xmax, (Δxm
* +Δxh

*)/2 
Δxh

* Dimensionless distance between xhinge and xlock, (xhinge - xlock)/xlock 
Δxm

* Dimensionless distance between xmax and xlock, (xmax - xlock)/xlock 
x Horizontal coordinate, positive landward, or away from the trench  
x* Horizontal coordinate, normalized w.r.t. locking depth 
xGPS Distance from the trench to the nearest geodetic observation 
xhinge Distance from the trench to the location location of zero vertical surface 

velocity  
xlock Distance between trench and surface projection of the downdip end of the 

locked zone 
xmax Distance from trench to the location of the peak in the vertical surface 

velocity field 
z Vertical coordinate, positive upward (depths are therefore, negative) 
z* Vertical coordinate, normalized w.r.t. locking depth 
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C h a p t e r  4                                                                                           

MODEL SETUP AND VALIDATION  

 

4.1 Introduction 

 

Hetland et al. [2010] (referred to as HSD10, henceforth), and Hetland and Simons [2010] 

(referred to as HS10, henceforth) developed a procedure for simulating slip evolution on 

a planar fault surface resulting from kinematically imposed ruptures on pre-defined 

portions of the fault (“asperities”) that are otherwise locked during a seismic cycle.  Slip 

evolves on the fault surface because as the stress perturbation around an asperity resulting 

from the imposed seismic rupture decays.  The rate of this decay is determined by the 

induced slip-rates, which in turn, are determined by the fault rheology.  A fundamental 

feature of this model is that the mean stress on the fault surface evolves to a steady state 

because the imposed ruptures and far-field loading are identical over multiple cycles.  

This  “spin-up” results in self-consistent background stresses that depend only on the 

history of past ruptures.  The above formulation supports a variety of rheological 

relationships (linear/non-linear viscous, purely rate dependent, or Dietrich-Ruina rate and 

state friction).   

 

The work presented here extends the procedure developed above to not only handle 3D 

fault geometry and actual rupture history for a given megathrust interface, but also the 

complex visualization required for the analysis of fault surface parameters, surface 

velocity field, as well as routine quality control checks.  Several major developments 

were required in order to achieve the above goals:  

 

• HSD10 and HS10 use a planar fault discretized into rectangular patches.  However, it 

is nearly impossible to discretize an arbitrary 3D surface using rectangles without 

developing surface discontinuities (“kinks”) in regions having even moderate 

curvature, unless extremely high resolution is used over the entire fault surface.  For 

the problem to be tractable, we require a mesh that is fine only near the asperities, 
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where the gradients in the stress and strain fields are extreme.  For such an “adaptive” 

mesh, kinks are unavoidable, unless extra elements are added wherever there is non-

negligible curvature along the fault surface.  Since we are dealing with the decay of 

coseismic stress “pulses” along the fault surface, the stress-singularities resulting 

from such kinks would not only dominate the simulation, but also make it very 

unstable.  Here, we choose to avoid such kinks by discretizing with triangular 

patches.  We use a comprehensive geometry and meshing package developed by 

Sandia National Laboratory, Cubit [Owen, 2006], for this purpose.   

 

• The discretization above is a four-stage process: First, the geometry needs to be 

generated in a CAD package such as the widely used commercial package for 

geologic applications, Gocad [2010].  Such a base model was put together by Eric 

Hetland.  Next, this geometry needs to be imported into a meshing package like 

Cubit, cut and smoothed into an orthogonal edged curved surface.  Then, the 

smoothed fault surface is discretized using an optimal adaptive mesh (different for 

every configuration of asperities) designed to focus most elements (“patches”) around 

the asperities.  Finally, the numerical quality of the mesh and its smoothness are 

improved through an iterative process involving the computation of fault traction 

kernels at the centroids of all patches (see below). 

 

• Before this project, the only openly available triangular dislocation solutions [Meade, 

2007] were in Matlab and much slower than the Okada [1992] solutions available for 

rectangular patches.  So, effort was put into improving the efficiency of the triangular 

solutions (by 250X), building a common interface for both types of solutions for 

benchmarking purposes, so they can directly process the discrete patch information 

from unstructured surface meshes output from Cubit.  Fault traction kernels at the 

centroids of all patches are used to determine the local mesh resolution, and hence, 

the quality of the mesh (as described in the previous bullet-point).   

 

• HSD10 and HS10 use Matlab for visualizing the simple planar faults tested in those 

papers.  Since here, we are dealing with unstructured meshes for 3D fault surfaces, 
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arbitrarily oriented surface grid for computing synthetic observations, and a “point-

cloud” of stations at the surface where actual data is available, a visualization system 

is needed that can handle such complex tasks on-the-fly.  For that purpose, we use a 

comprehensive, open-source, 3D visualization package, the Visualization ToolKit 

[Schroeder et al., 2006], VTK, that allows easy visualization of multiple types of 3D 

spatial datasets such as those mentioned above, as well as their temporal evolution.  

Such visualization is an essential part of both the analysis of simulation output as well 

as routine quality control tasks such as checking and validating model input 

parameters.   

 

• HSD10 and HS10 do not consider surface displacement/velocity fields, but instead 

focus on the stress shadow effect on the fault surface due to different configurations 

and shapes of asperities.  Here, we want to compare the surface velocity predictions 

from the model to actual GPS data.  In order to facilitate this, we needed to not only 

make sure the model is properly geo-referenced, so correct station locations can be 

used, but also develop a way to view maps and geographical locations (e.g., 

epicenters) for visualization in both a meshing package like CUBIT as well as VTK-

based visualization packages (e.g., Paraview, and Mayavi).  Without such geo-

referencing, it is hard to make sure the locations of asperities are consistent with the 

epicentral coordinates, and their extents are consistent with say, topographic features 

on the overriding plate (e.g., locations of long-term geologic uplift, locations of 

coastlines, undersea canyons, etc.).   

 

• HSD10 and HS10 use one or two asperities with relatively simple rupture sequences 

with specified rupture intervals on each asperity.  Model spin-up was a 

straightforward point measure — namely, the mean value of tractions along the fault 

surface at the last time-step of every cycle.  Here, we are dealing with a real 

subduction zone, where the rupture sequence for a given set of asperities is quite 

arbitrary, and the rupture interval has to be estimated from the best known near-field 

seismic and geodetic data.  Also, in such cases, the definition of a “cycle” for a single 

characteristic earthquake has to be changed to that of a “cycle” for a characteristic 
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sequence of earthquakes — a characteristic rupture sequence time, or CRS-time.  

Instead of a single point in time, spin-up has to be tested over a span of at least a 

single CRS duration.  In order to check for spin-up of solutions, the simulated 

tractions are averaged over several moving average “windows” and the smallest 

window (typically, the CRS-time) that shows stable spin-up is chosen to determine 

which cycle to use for finally computing synthetic GPS velocities to compare to data. 

 

• HSD10 and HS10 use all asperity patches in their forward calculations.  Here, by 

predefining the asperities during meshing, we compute fault parameters only on fault 

patches during forward modeling.  Given that a large fraction of the total number of 

patches lie within asperities, we end up with up to 50% smaller kernel matrix sizes for 

a given mesh resolution (see below), or use 50% more elements for modeling 

stress/slip evolution on a given fault surface. 

 

This chapter details the framework of pre-processors, elastic-dislocation codes, and post-

processors that were developed to handle simulations with realistic 3D fault surfaces.  In 

what follows, the general codes we developed for generating a smooth megathrust 

interface, its discretization into patches for kernel and model parameter generation, and 

major developments to the existing forward model solver to handle the complexities of 

3D faults as well as realistic rupture patterns, as well as some key post-processing steps 

are discussed.  While each of the above steps is “automated”, the underlying code was 

built so that the results from each stage can be extracted, visualized, and validated 

independently.  All newly developed codes use open-source and/or free programming 

languages/packages.  All lower-level (and stable) code is built as a python package 

(“Fslip”) which is installable, so it can be invoked from any python script or dynamically, 

in the python interpreter.   

 

Figure 4-1 illustrates the workflow involving the Fslip package and external packages 

used for the analysis here.  Currently, there are two components to running a model using 

Fslip: The python pre- and post-processors developed here, and the forward model solver 
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in Matlab (EvolveSlip, written by Eric Hetland, and modified for more general 

application to real faults here).   

 

 
 
Figure 4-1. Workflow for the Fslip software developed to generate, simulate and visualize models of slip 
evolution on realistic fault surfaces.  For simplicity, the exact long-from module names are not used for the 
lower level modules or Matlab pre-/post-processor scripts (e.g., Fslip.Model.Out, FslipMATproc, etc.).  The 
matlab component, EvolveSlip, solves the forward problem, given the fault traction and surface 
displacement kernels, rheology, initial and boundary conditions for the 3D megathrust surface.  The Matlab 
output is post-processed in two stages —  in a Matlab and then in Fslip to generate VTK files and 
“dashboards” for visualization.  See text for details.   
 

 

4.2 Model visualization  

 

Given the complex nature of real fault/station geometries, it is important to have the 

ability to probe both input and output data “on-the-fly”.  As mentioned previously, we 

use VTK, as it is an extensive 3D data visualization package having well-defined native 

input file formats for different data types (e.g., structured/unstructured grids, and point 
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clouds).  For example, while the fault is discretized as an unstructured mesh, the 

structured mesh is used to define a surface grid of observation points to sample surface 

deformation more densely than station locations allow.  Stations are treated as surface 

point clouds.  The XYZ-Cartesian system in which the 3D fault interface is defined in a 

CAD package such as Gocad [2010], becomes the “geographic” reference frame for all 

the forward models: i.e., all hypocenters, stations, and seismic asperities on the 

megathrust interface are now defined relative to. this reference frame in the VTK format.  

Coastal boundaries and trench location are also defined in this frame for visually locating 

the extents of seismic asperities on the megathrust interface.  These legacy or XML-based 

VTK files can then be visualized using several open-source or free software packages 

(Mayavi, Paraview, etc).  Such “on-the-fly” visualization is extremely helpful in 

debugging model inputs as well as outputs by making it possible to quickly probe the 

quality of a 3D model or simulation statistically, point-wise, along line-profiles, cross-

sections, as well as from different angles.  The tremendous flexibility in visualization, 

however, comes at the cost of extensive bookkeeping, and file I/O required for keeping 

track of the multiple types of data-sets being handled here.  So, both pre- and post-

processing steps are more involved and much slower than the Matlab based plotting used 

in HSD10 or HS10.  While VTK follows a relatively simple protocol for mesh numbering 

(e.g., nodes are numbered in the order they appear in element connectivity), translators 

are required to convert unstructured mesh nodal IDs (which are typically output in 

arbitrary order by Cubit) into the ordering expected by VTK.  All this functionality is 

built into the input and output modules under Fslip.Model.  The actual file I/O is 

performed under the Fslip.Data module. 

 

 

4.3 Megathrust interface geometry & discretization 

 

Since triangular patches can represent a 3D surface with higher accuracy than 

quadrilateral patches, we choose unstructured triangular meshing to divide the megathrust 

interface into discrete patches.  All model parameters (i.e., rheological parameters, 

stresses, slip, slip-rate, any state-variables, etc.) are defined or computed at the centroids 

 



 4-7

of these triangular patches.  The procedures adopted for creating and analyzing the 

megathrust geometry and subsequent triangulation into patches are discussed here.   

 

Table 4-1 illustrates our workflow for generating an optimal discretization of the fault.  

The geometry for the upper surface of the subducting slab for the whole of Japan was 

generated by Eric Hetland, by fitting hypocentral locations, and published seismic 

reflection surveys in the commercial geological CAD package, Gocad (Table 4-1.1).  

These discrete patches (“facets”) are then exported to the geometry and meshing package, 

Cubit [Owen, 2006] (Table 4-1.2).  All stages in the geometry/mesh generation process 

are fully automated using python scripts within CUBIT, using separate input files for 

model geometry and meshing.  These functions are available under the module 

Fslip.Geom.  However, at the present time, access to Cubit without the GUI interface 

(“Claro”) is not straightforward (since CUBIT is not open-source, the version of python 

packaged in the binary release might conflict with the local system python), so the default 

assumption behind these geometry/mesh scripts is that they will be run from inside 

Cubit’s python command line interpreter.   

 

In CUBIT, the geometry is first cut along a vertical surface defined by the trench profile.  

The same profile is shifted down-dip (by ~ 400 km), to make a parallel cut defining the 

bottom of the “active” megathrust boundary, or “fault”.  Two vertical surfaces, locally 

orthogonal to the trench-profile then cut the interface, completing the basic fault 

geometry generation.  The resulting orthogonal-edged fault surface is extended to the 

surface (z=0), then smoothed to remove any along-dip kinks in the fault surface, owing to 

the fact that the amount of updip extension required to get to the free-surface varies along 

strike.  Next, the fault surface is extended along the local trench strike at both ends, so its 

boundaries are far-enough from the outermost asperities (~ 4–5 times the characteristic 

asperity size, Dasp).  The surface is smoothed once more after this extension to remove 

any kinks along strike (Table 4-1.3).  This two-stage smoothing of the fault surface was 

found to be necessary in order for the tractions computed from any triangulation (or 

mesh, see below) to be relatively smooth over the curved fault surface.  Next, the fault 

surface is subdivided into six orthogonal edged surfaces (three along strike, times two 
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down-dip), such that the upper middle surface [“Fsurf”, the yellow patch in (Table 

4-1.4a)] contains all asperities.  “Fsurf” enables tighter control over transitioning of the 

mesh from coarser resolution near the fault boundaries to very fine resolution around the 

asperities (patch sizes vary over two orders of magnitude).  The asperities are then cut out 

of “Fsurf” and locally smoothed around each “cut”, to remove any discontinuities.  The 

megathrust interface is now ready to be meshed (Table 4-1.4b).   

 

The first step in the meshing process is setting interval sizes for its bounding curves 

and/or surfaces.  The interval size used directly affects not only the quantity, but also the 

quality of elements in the mesh.  We set the mesh interval size for the asperity-region 

bounding curves, as well as all asperity boundaries, to ~ 0.3-0.5 of the interval size for 

rest of the fault.  This ratio of interval sizes depends on the aspect ratio of “Fsurf” relative 

to that of the fault surface, as well as the circumference of the smallest asperity relative to 

the edge-lengths of “Fsurf”.  We use “QTri” patches (quads divided into constituent 

triangles) outside the asperity region, as these were found to result in much faster 

convergence of the forward model (as opposed to fully unstructured triangular patches).  

Meshing within “Fsurf” as well as inside the asperities is done by an automatic paving 

algorithm built into Cubit.   

 

The mesh is first refined (each triangular patch is split into three triangles formed by its 

edge-bisectors) around to asperity, to improve its resolution at a coarse level.  So, it is 

important to obtain good quality elements around the asperities in the lowest resolution 

mesh because any poor quality element yields poorer quality “child” elements during 

such refinement.  The whole of “Fsurf” is now refined once, transitioning into the coarse 

“QTri” elements outside this asperity region.  This forms the base resolution mesh 

(~3500 fault elements, and ~ 500 asperity elements, for the mesh presented here), 

“RES0” (Table 4-1.5(a)).  The mesh itself is smoothed after every refinement step, to 

eliminate any abrupt element-size changes as well as better represent the original 

geometry.  Since our model is driven by near singular tractions due to ruptures on 

asperities, most of the driving stress is concentrated right around the asperity.  Therefore, 

further refinement is intended to better resolve the stresses around the asperity, and 
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results in a transition zone of high mesh density between the asperity and the surrounding 

fault surface.  The upper limit on the number of elements is placed by 64-bit Matlab’s 

restriction of 104x104 elements.  This limitation can be overcome when the forward 

model code, EvolveSlip, is eventually ported out of Matlab into Python.  Given this 

restriction on the maximum number of fault patches, there are tradeoffs between the 

dimension of the smallest asperity, the fractional area of “Fsurf” that all asperities 

constitute, the size of “Fsurf”, and the number of elements in the transition zone between 

the asperity and “Fsurf” – “Ftrans”.  For the coarse “RES0” mesh, roughly one-fourth of 

the fault patches (that is, excluding asperity patches) lie within a distance from asperity 

centers equal to the respective asperity dimensions (“Ftrans”).  For the highest resolution 

mesh tested here (“RES2”, with ~9,500 fault elements, and 4000 asperity elements), 

nearly 70% of the fault elements lie within this same distance (Table 4-1.5(b)).  Thus, 

virtually all of the increase in resolution (~ 6000 elements) occurs right around the 

asperities, leaving the rest of the mesh relatively untouched.  One could generate meshes 

that conform to the fault surface outside of “Fsurf” even better, by adaptively focusing on 

regions of higher curvature.  In our case, the added expense due to refined elements far-

from the asperities did not allow for the use of such meshes.  However, this form of mesh 

refinement can be explored in the future.   

 

The ultimate check for a mesh is the smoothness of the traction kernels computed from 

that mesh.  For every mesh used in benchmarking and simulations, several iterations were 

required to remove any subtle kinks from the fault surface.  The goal was to preserve the 

large scale 3D structure of the fault, without introducing numerical perturbations of the 

traction field (at least in the predominant slip direction).  Knowledge gained from these 

iterations were directly incorporated into making the geometry and meshing modules, 

Fslip.Geom, more effective.  Benchmarking with kernels is discussed in more detail 

below.   

 

In order to improve the accuracy of locating asperities relative to the geographical region, 

a set of scripts were written to import a coastline map into the meshing package, Cubit.  

This not only aids in visualizing where the asperities are relative to surface stations, but 
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also provides a scale for quickly checking their extent, as well as their location relative to 

seismic epicenters (Table 4-1.6).   

 

Finally, the mesh is output in Abaqus as well as ExodusII (for the sake of generality) 

formats.  An Abaqus parser module (within Fslip.Data) and a comprehensive mesh post-

processor module (within Fslip.Geom) were written to then extract patch data for Kernel 

computation.  Such patch data include the nodal coordinates, area, aspect-ratio, strike, 

and dip of each element.  Given we are dealing with unstructured meshes here, the mesh 

post-processor also includes several advanced utility functions to generate semi-infinite 

extensions of the curved fault surface (for imposing far-field boundary conditions), 

finding neighboring elements based on several criteria, e.g., shared edges, or element IDs, 

are included in this module.  In addition, the mesh post-processor is general enough (and 

tested) to handle both triangular and quadrilateral meshes.  The output from the Mesh 

post-processor is directly used by Fslip.Kernel module, to compute any type or 

combination of Kernels, as discussed in the next section. 

 

 
Table 4-1. Work-flow for generating fault patches from a geo-referenced subducting slab 
surface geometry.   
 

GEOMETRY 

1. GOCAD 
Facets 

 

 
Models of the slab surface (a) and the Japan Mohorovicic discontinuity (b); for reference, a 
few of the seismic lines used as constraints are shown: 1, Iwasaki et al [2001]; 2, Miura et 
al.[2003]; 3, Ito et al. [2004]; 4, Nakanishi et al. [2004]; 5, Takahashi et al.[2004]; 6, Miura 
et al. [2005]. (Above figure, courtesy Eric Hetland) 
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2. Cubit ACIS 
net-surface 
approximation 
to Gocad facets 

 

3. Smoothed, 
orthogonally 
cut fault surface 
generated from 
the above mesh 

 

4. Subdivided 
fault surface (a) 
creating an 
upper-central 
area for 
locating 
asperities, 
“Fsurf” [yellow 
region in (a), 
red in (b)]  

(a) 

 
(b) 
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MESH 

5. Coarsest (4x103 
patches) and finest 
(104 patches) mesh 
resolutions used for 
testing convergence 
of solution 

(a) 
 

(b) 

6. Adaptively meshed 
fault surface with 
asperities, along with 
a coastal map (only 
coarse resolution 
shown here) of Japan, 
and epicentral 
locations.  Such 
meshes with map 
overlays can be 
routinely generated in 
“auto” mode. 
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7. Semi-infinite 
extensions of the fault 
surface, that can 
potentially be used to 
test the validity of 
backslip on the active 
fault. (Colors indicate 
centroidal distance 
from the center of the 
projected Cartesian 
reference frame) 

 
 

4.4 Kernels 

 

The term “Kernel” is used here to denote the matrix of impulse-response functions that 

define the tractions or displacements at each observation point due to a unit slip along 

each of the constituent source patches of the fault.  Considerable effort was expended in 

generating and testing the source code for the kernels.  The existing half-space solutions 

for rectangles [summarized in Okada, 1992] and triangles [summarized in Meade, 2007] 

have different sign conventions.  The Okada [1992]  solutions were originally written in 

F77, but their most common form is a Matlab-MEX file, which needs to be recompiled 

and/or modified with each Matlab upgrade.  The Meade [2007] solutions were entirely 

cast in Matlab, but very inefficient because the bulk of the calculations were “cut-and-

pasted” from Matlab’s symbolic language toolbox.  The Meade [2007] approach resulted 

in typical arithmetic expressions that were thousands of elements long, with nearly as 

many repetitions of function evaluations.  Significant improvements in efficiency could 

be achieved by simplifying these symbolic language expressions.  Here, triangular 

patches are used to accurately represent a real (curved) megathrust interface, and the 

much widely used rectangular patch solutions were used to benchmark these triangular 

solutions.   
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In order to overcome (a) the lack of a common interface for defining real-world faults for 

either the Okada [1992] or Meade [2007] solutions (the existence of which would be 

useful for benchmarking), (b) improve the computational efficiency of the triangular-

dislocation solutions, and (c) make these solutions available in open-source format, two 

distinct but architecturally similar python-wrapped packages (OkadaWrap, and TriWrap) 

were developed, having identical functional interfaces that could be called from the same 

driver script using identical input data (a set of fault patches and observation points).  

These packages were extensively benchmarked using a suite of tens of 2D and 3D test 

problems — not only against each other (“peer-to-peer”), but also against the original 

Matlab versions (“parent-to-peer”).  For OkadaWrap, the original F77 code was 

converted into F90 syntax, while for TriWrap, the original code was entirely re-written as 

optimized F90 modules.  For TriWrap, special python scripts were written to 

automatically parse and translate the hundreds of Matlab expressions (output from the 

symbolic toolbox) into F90 syntax, as well as subsequently simplifying the resulting 

expressions to eliminate any repeating expressions or intrinsic function calls.  As a result, 

TriWrap was found to be roughly 250 times faster than the original Matlab code [Meade, 

2007] during benchmarking.  The core dislocation codes in both packages are supported 

by several common F90 modules.  The respective F90 driver routines for each package 

take care of the different input parameter conventions for these two solutions, and 

assemble kernels for a specified combination of patch and observation stations.  These 

F90 driver routines are finally wrapped into python functions using the F2py package 

within Numpy.  Installing and using either of these packages require both python/numpy 

as well as one of the free F90/95 compilers (Intel Fortran, or GFortran), but scripts for 

compiling with F2py are included with the packages.  Beyond this basic requirement, the 

end-user can simply use these solutions as a “black-box” with a common interface.  The 

packages also provide sample “well-commented” python driver scripts that can be a good 

starting point.   

 

While space does not permit presenting the tests done in ensuring the accuracy of the 

kernels, it is worth mentioning the kinds of tests that were carried out in comparing the 

two sets of kernels.  In all tests, fault orientation (strike and dip) were varied to get four 
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different combinations (positive or negative values for each angle).  2D tests included 

comparison of both free-surface and along fault displacement and traction vectors, as 

well as the full stresses tensor, for different fault and observation profile resolutions.  The 

profile along the free-surface or fault was varied to compare both near- and far-field 

predictions.  3D tests involved comparing surface and fault deformation fields due to slip 

on a planar fault, discretized using rectangular patches, with a planar fault discretized 

using different triangular subdivisions of these same rectangles (from two to seven 

triangles per rectangle).   

 

For the Japan megathrust interface used in the simulations here, the computed traction 

kernels were checked for both internal consistency and smoothness.  In the context of 

half-space models, if a fault surface were to rupture the entire half-space, the relative 

motion between the hanging-wall and foot-wall can be described by rigid blocks sliding 

past each other.  There is no net strain accumulation anywhere in the half-space owing to 

such rigid-body sliding.  Say, we divide this fault surface into three regions: (a) small 

patches that slip only episodically (“asperities”) during seismic ruptures, (b) a region 

surrounding these asperities that slips in response to these ruptures (“fault”), and (c) the 

semi-infinite extension of the fault both along strike and dip (“loading”).  The basic idea 

here is that over the course of an appropriately defined seismic “cycle”, all three regions 

of the fault would experience the same slip (albeit at different times), so that the net 

motion is equivalent to rigid-block motion.  Let us now define at every point on the fault 

surface (in practice, at the centroid of every triangle on the discretized fault), (a) tractions 

resulting from slip on all fault patches (excluding asperities), τFF, (b) tractions resulting 

from slip on all asperity patches, τFA, and (c) those resulting from slip of the semi-infinite 

loading patches that continuously slip at the plate convergence rate, τFI.  If all three 

regions slip the same amount, then the resulting rigid-body motion implies that at every 

point on the semi-infinite fault surface within the half-space,  

 

τFF  + τFA + τFL = 0 .  (1) 
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For realistic 3D meshes, however, discretization of the fault surface results in not all 

components of Equation 1 exactly cancelling each other.  This consistency check is 

carried out every time kernels are computed for a given asperity configuration.  

“Dashboards” containing 3D views of the above fault tractions are automatically 

generated for viewing in the open-source parallel VTK visualization package, Paraview 

[e.g., Henderson, 2004].  This consistency check (Equation 1) is presented for each 

traction component (strike-slip, dip-slip, and normal), for dip-slip over the fault, asperity, 

and loading patches in Figure 4-2, and for strike-slip along these patches in Figure 4-3.  

In these figures, each row of panels represents the contributions for one traction 

component, while each column represents τFF, τFA, τFL, and the residual Δτ (the right-hand 

side of Equation 1), respectively.   

 

Since coseismic tractions are the principal driver of the models presented here, both the 

3D fault geometry and the mesh were iteratively smoothed until the tractions along the 

principal slip-component directions (e.g., τdip due to dip-slip, and τstrike due to strike-slip) 

exhibited local fluctuations of < 0.1% of the main coseismic signal around the asperities.  

However, for the “cross”-component directions (e.g., τstrike due to dip-slip, and τdip due to 

strike-slip), these fluctuations cannot be entirely eliminated owing to the fact that these 

tractions (which are mathematically the difference of two large numbers) are small over 

most of the fault surface, and due to the inherent discontinuities from the discretization of 

the fault surface (see upper-right and lower-right panels of Figure 4-2 and Figure 4-3).  It 

was checked that such fluctuations did not exist for a planar fault surface, which yielded 

zero residuals everywhere on the fault surface from Equation 1.  These fluctuations for 

the 3D fault geometry can, however, be minimized if curvature-based adaptive meshing 

is used everywhere on the fault surface, but the current limit on the maximum mesh size 

did not allow the use of meshes having high resolutions far from the asperities.  Once 

kernels have been computed, they are stored and used for multiple simulation scenarios 

(or “runs”).  In order to check model inputs going into the Matlab forward solver, 

EvolveSlip, another “dashboard” of model inputs is automatically generated for Paraview 

after generating all inputs for a run (see Figure 4-4 for dip-slip motion and Figure 4-5 for 

strike-slip motion), including (a) the tractions on the fault surface due to slip on fault and 
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asperity patches, (b) surface displacement field due to unit asperity slip for every 

asperity, (c) rheological parameter distribution, and (d) the initial slip, or slip all over the 

fault surface immediately after each asperity ruptures.   

 

To be more realistic, a narrow slip transition zone is included around each asperity over 

which coseismic slip drops to zero (see bottom right panel of Figure 4-4 and Figure 4-5).  

The effect of different parameterizations for the slip distribution in this transition zone (or 

slip-”tapering”) are discussed in Hetland et al. [2010].  Several tapering functions are 

available in Fslip.ModelInp module for estimating this transitional slip.  Typically, a 

fraction (0.25–0.5) of the asperity dimension is choosen to be the (arbitrary) width of this 

transition zone.  As noted above, during meshing, this transition zone is where much of 

the refinement occurs to resolve coseismic tractions, and routine checks are carried out 

for each mesh to make sure that most of the coseismic stress pulse lies within this well-

resolved transition zone, as far as practically possible.   
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Figure 4-2. An automatically generated Paraview dashboard showing fault traction components (τS, top row; τD, middle row; τN, bottom row) due to dip-slip on 
all fault patches (column 1), slip on each asperity (column 2: the duller color is due to the use of transparency in Paraview to show all asperity contributions in a 
single panel), slip on the semi-infinite extensions of the fault (or backslip, column 3), and the residuals obtained from the superposition (Equation 1).  For a 
planar fault, these residuals were found to be zero, as expected. 
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Figure 4-3. An automatically generated Paraview dashboard showing fault traction components (τS, top row; τD, middle row; τN, bottom row) due to strike-slip on 
all fault patches (column 1), slip on each asperity (column 2: again, the duller color is due to the use of transparency in Paraview to show all asperity 
contributions in a single panel), slip on the semi-infinite extensions of the fault (or backslip, column 3), and the residuals obtained from the superposition 
(Equation 1).  For a planar fault, these residuals are zero, as expected. 
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Figure 4-4. An automatically generated Paraview quality control dashboard for unit dip-slip on the fault and asperities, showing the rheological parameter 
distribution (rightmost middle panel), initial slip distribution (bottom-right panel), tractions (top two rows of panels), and surface displacements.  Such figures are 
automatically generated and used for visualizing model inputs before a run or for debugging after a run.  All 3D plots are colored on a log-scale, to bring out any 
small-scale heterogeneities.   
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Figure 4-5. An automatically generated Paraview quality control dashboard for unit strike-slip on the fault and asperities, showing the rheological parameter 
distribution (rightmost middle panel), initial slip distribution (bottom-right panel), tractions (top two rows of panels), and surface displacements.  Such figures are 
automatically generated and used for visualizing model inputs before a run or for debugging after a run.  All 3D plots are colored on a log-scale, to bring out any 
small-scale heterogeneities.   
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4.5 Rheology 

 

The Matlab forward slover, EvolveSlip, models linear-viscous, non-linear viscous, purely 

rate-dependent and Dietrich-Ruina rate-state rheologies.  Hetland et al. [2010] showed 

that late in the seismic cycle, which is what we are attempting to simulate here, both 

purely rate-dependent as well as rate-state rheologies give very similar fault slip rates.  In 

our simulations presented here, we use only purely rate-dependent rheology.  However, 

for the purposes of intuition building in terms of the effects of strong vs. weak faults, we 

use a linear viscous rheology.  For linear viscous rheology, slip-rate depends linearly on 

fault loading tractions, as opposed to the exponential dependence in typical rate-

dependent rheologies.  Therefore, simulations with linear viscous rheology can be used as 

a starting point in understanding the “strength” of the fault required to match surface 

velocity predictions to the observed velocities.  While EvolveSlip can theoretically handle 

heterogeneous fault zone rheology, in this initial work, we only explore constant 

rheological properties, ignoring any lateral or depth dependence.  In order to compare 

runs for different rheologies, all simulations are carried out with non-dimensional 

parameterizations.  Hetland et al. [2010] cast the relationship between slip-rate and fault 

tractions for various rheologies in the form: 

),( ατfs =   (2) 

where, α is a strength parameter that depends on the rheology.   

 

For linear viscous rheology, 

α
τατ == ),(fs   (3) 

and α depends only on the characteristic viscosity, η, and width, h, of the fault zone: 

h

ηα =  . (4) 

The viscosity can be computed as the product of the shear-modulus, μ, and a relaxation 

time (in the case of Maxwell viscoelasticity), TR.  The non-dimensional scaling for the 

strength parameter is simply,  
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where, V0 is the loading rate (plate velocity), S0 is the characteristic slip on the asperity, 

and D0 is the characteristic asperity dimension.  So, from (4) and (5), a dimensionless 

strength parameter for viscous rheology is: 
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Non-dimensionalizing (3) using α0, τ0, and V0, and rearranging, we obtain, 
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Thus, late in the cycle, when most of the fault is slipping at the loading rate, the mean 

dimensionless shear tractions along the fault surface will equal the dimensionless strength 

parameter, α΄.  Typical values for the above parameters are: V0 ≈ 10-2 m/yr, S0 ≈ 1 m, D0 

≈ 104 m, h ≈ 1 m, and TR ≈ 10-3–10-1 yr.  Substituting these into (6) yields the range of 

values for α' as 0.1 to 10. 

 

For rate-dependent rheology,  
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where, f0 is the static friction coefficient, a and b are the coefficients of the direct and 

indirect (state-dependent) dynamic frictional effects, and σ0 is the effective normal 

traction on the fault surface.  In our model, σ0 can be both time-dependent (e.g., in 

response to slip evolution on the fault surface), as well as spatially heterogeneous (e.g., 

due to pore-pressure variations).  In the demonstrative results presented in Chapter 5, we 

choose a constant σ0 over the entire fault surface.  The implications of such an 

assumption are discussed in more detain in Section 5.2.  Therefore, there are two non-

dimensional rheological parameters in this case [Hetland et al., 2010]:  
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where, ρ = f0/(a-b), and α = (a-b)σ0.  Thus, late in the cycle, when most of the fault is 

slipping at the loading rate, the mean dimensionless shear tractions along the fault surface 
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will equal ρ times the dimensionless strength parameter, α'.  Typical values of (a−b) ≈ 

10−2 [Blanpied et al., 1991; Marone et al., 1991], f0 ≈ 0.1–1, σ0. ≈ 10–102 MPa [Rice, 

1993; Lapusta and Rice, 2003].  Thus, typical range of values for ρ ≈10–100, and α ≈ 

105–106 Pa.  Assuming the same values as before for the non-dimensionalization of 

stresses, and μ ≈ 1010 Pa, α' ≈ 10−2–10−1. 

 

 

4.6 Significant developments over the existing Matlab forward solver, EvolveSlip 

 

In addition to the general codes discussed above, several developments needed to be 

made to the existing Matlab forward solver, EvolveSlip, and its dependencies, in order to 

handle models with real fault surfaces.  Here, we discuss the most significant changes.  

As before, we refer to Hetland et al. [2010], and Hetland and Simons [2010] as HSD10, 

and HS10, respectively. 

 

Size of the problem: In HSD10 and HS10, a set rectangular region surrounding the 

asperities is always discretized at a fine resolution.  This fine rectangular mesh around the 

asperities transitions into coarser rectangles towards the edges of the fault. In their 

implementation, asperities are defined at the time of running the model by designating 

patches lying within a specified region of the planar fault to be locked (“asperity”).  Here, 

we use a different approach, whereby the asperities are defined at the time of meshing the 

megathrust interface, and fault parameter evolution is simulated only over the region of 

the fault outside these asperities.  Driving coseismic stresses (and hence, the largest 

gradients in the modeled field parameters) occur along a narrow band surrounding the 

asperities.  Therefore, as discussed in the meshing section, a very fine mesh resolution is 

applied over a narrow transition zone around the asperities.  By not storing model 

parameter evolution over asperities during forward model calculations, the size of the 

Kernel array can be reduced by a factor of 40–50%, which can be significant when there 

are thousands of patches within the asperities.  Also, a much higher patch size contrast is 

achieved between the fault edges and asperity boundaries, because a large fraction of the 

finer mesh residing within the asperities is ignored.  In addition, the above references did 
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not consider surface deformation at observation stations (which can number in the several 

100s to 1000, for a place like Japan).  So, excluding the evolution of model parameters 

over asperity surfaces allows us to not only resolve the driving tractions after each 

rupture at a much finer scale than in the scheme implemented in Hetland et al. (by 

roughly an order of magnitude), but also to include thousands of surface observation 

points (actual stations as well as a surface observation grid for visualizing surface 

deformation).   

 

Rupture sequence and timing of rupture: Since HSD10 and HS10 were trying to 

demonstrate a method for simulating postseismic fault slip, they did not consider realistic 

rupture sequences.  In reality, the rupture interval for each asperity may not be related to 

that of another asperity by whole fractions (because rupture timing offset, or rupture 

intervals, or both).  In this case, the concept of a characteristic rupture sequence time (or 

CRS cycle) — which is arithmetically equivalent to the least common multiple of all 

asperity rupture intervals — is utilized.  Essentially, after each CRS cycle, ruptures on all 

asperities repeat in the same sequence, and rupture-time offsets as the previous CRS 

cycle.  Therefore, a different convergence criterion had to be developed for the case of an 

arbitrary sequence of ruptures on multiple asperities.  The convergence criterion used in 

Hetland et al. was designed for relatively uniform meshes with small gradients in mesh 

size (arithmetic mean of tractions measured at a single time — just before a subsequent 

rupture).  When using unstructured grids having a large range of mesh element sizes (as 

is the case here), it is more appropriate to use an area-weighted mean for checking 

convergence.  In addition, when using realistic rupture sequences, the mean tractions vary 

significantly between the individual constituent earthquakes in each CRS-cycle, thus 

making it inappropriate to use only a single point in time to measure convergence.  Here, 

we use moving averages taken over different time-spans to determine an appropriate 

time-scale over which the model is deemed to have converged.  Not surprisingly, the 

smallest moving average window beyond which convergence is stable turns out to be the 

CRS-cycle time.  Therefore, the first complete CRS-cycle after convergence gives the 

simulated earthquake sequence for the given set of asperities.  Synthetic surface 

velocities are extracted from this cycle for comparison to surface geodetic data.   
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Application of backslip with varying rake over an arbitrary fault surface in 3D: 

HSD10 and HS10 considered only planar faults.  For a given relative plate velocity 

orientation, the rake (angle between slip vector and down-dip vector along the fault 

plane) is constant across the fault surface.  However, for an arbitrary dipping fault surface 

in 3D, rake is a spatially varying quantity, whose local rate of variation depends on the 

degree of smoothing applied to that surface (as discussed in the meshing and kernels 

sections above).  As originally postulated by Savage [1983], and demonstrated by Kanda 

and Simons [2010], backslip over a curved megathrust interface must be applied only 

along the local tangent to the fault surface.  So, an additional feature was introduced 

whereby backslip is prescribed locally, over every patch depending on its orientation 

(strike and dip) relative to that of the plate velocity vector.  Also, depending on the 

relation between the plate velocity vector direction and trench strike along the megathrust 

interface, it is possible to have strike-slip component of the plate velocity having both 

“up-strike” and “down-strike” directions along the same mega-thrust interface.  In order 

to handle both positive and negative slip-rates in a given slip-direction, Kernel pre-

multipliers computed from the local backslip unit vector were used to determine their 

correct response.  Using a local backslip distribution results in significant strike-parallel 

fault slip partitioning (Figure 4-6) along the northern Japan-Kurile trench, with negligible 

along-strike slip for the southern Japan-Trench.  This is consistent with slip inferred from 

observed surface geodetic measurements [see for example, DeMets, 1992; Loveless and 

Meade, 2010]. 

 

 

4.7 Steps in running a model 

 

All model parameters (numbering about 150 for a typical run) are input into a 

comprehensively documented Input file, ModelData.py, consisting of three python data-

classes — Global Data, Kernel Data, and Run Data.  Given the number of inputs, and for  
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(a) 

 
(b) 

 
Figure 4-6.  (a) Strike-slip, and (b) dip-slip components of the non-dimensional backslip velocity field 
applied to the 3D fault surface.  Color-scale indicates the same range of magnitudes in both figures as well 
as for the arrows.   
 

 

tight quality control, this same input file is read by all the python drivers in Fslip, as well 

as the Matlab driver for EvolveSlip.  A parser/translator was written in Matlab (and 

extensively tested) that can understand simple python assignment statements, including: 

lists, tuples, 1D and 2D arrays, concatenated strings, intrinsic functions and simple 

arithmetic expressions.   

 

Currently, there are three python driver scripts and one matlab driver script for carrying 

out the different components of a simulation: (1) Mesh2Kernels.py: Mesh data extraction 

and kernel generation (typically, a one-time process for a given mesh resolution), (2) 

ModelPar.py: Python pre-processing run to generate model input parameters (Coseismic 

slip components, rupture history, Initial slip and rheological parameters distributions, 

locked fault patches — for every run), (3) RunPyModel.m: Forward model calculations, 
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using a Matlab driver that parses the input file, ModelData.py, extracts the kernels as well 

as model parameters from binary files, assembles the kernel matrix, sets additional run-

time parameters, and finally, runs EvolveSlip, and (4) Matbin2Vtk.py: Post-procesing to 

probe and extract binary Matlab output for further processing as well as VTK files for 

visualization.   

 

In order to aid in debugging and check for any run-time issues, the drivers currently 

output a large amount of screen output to indicate different stages of activity.  In the 

future a verbosity flag will be added to suppress this output when not required.  Also, as 

part of validating the code, we tested a series of runs for both spin-up and consistency of 

surface velocity predictions.  Different fault-asperity configurations were used along with 

either linear viscous (for benchmarking) or rate strengthening rheology: (a) single 

asperity on a planar fault approximating the Tohoku section of the Japan Trench (TL), (b) 

entire 3D fault along the Japan Trench, with one (JT1) and two (JT2) asperities, (c) entire 

3D fault along the Japan Trench, with the five major asperities (discussed in the next 

chapter), both without (JT5) and with variable backslip rake (JT5vb).  Due to space 

constraints only the results from the last run (JT5vb) are presented in the next chapter.   

 

 

4.8 Future directions for research and development 

 

More sophisticated scientific questions can be addressed with extensions to the software 

developed here, for instance:  

• The effect of lateral and depth variations in fault rheology.   

• As the spatio-temporal resolution of geodetic data gets better, and crustal structure 

gets better resolved using seismic data, we could also use kernels generated 

accounting for local 3D crustal heterogeneities.  Such 3D kernels would have to be 

computed numerically, using for example, a Finite Element Method (FEM) code, but 

are straightforward to compute at the present time.   

• A long-term challenge is to attain the ability to simultaneously model multiple 

rheologies on the fault surface, which result in slip evolution over multiple length and 

 



 

 

4-29

time-scales on the fault surface.  This will involve a thorough re-formulation of the 

meshing schemes, as well as the forward model solver, taking into account any 

potential numerical instabilities resulting from such multi-scale evolution.   

 

Thus, future software development can proceed in several directions.  First, we want to 

migrate all the forward modeling functionality (currently in the Matlab scripts 

EvolveSlip) to python in order to avoid the array size limitations imposed by Matlab — 

so higher resolution discretizations and/or larger fault areas can be handled.   

The current code can also be speeded by simple changes such as eliminating verbose 

screen output and further optimization of file-I/O.  However, in order to make it feasible 

to routinely carry out inversions of geodetic data for fault rheological properties, 

significant speed improvements are needed.  Such improvements are possible by 

recognizing that the elastic fields due to slip on a fault patch have an inherent length-

scale (roughly a few times the characteristic patch size).  So, at the present, the kernel 

matrix is very “sparse” in a numerical sense.  Therefore, by introducing scale-dependent 

kernels, a kernel matrix with a much smaller band-width can be used for the forward 

model.  However, given that we are testing non-linear rheologies, the inherent time-

stepping (even if adaptive) limits the ultimate speed improvement that is possible for this 

problem, irrespective of the numerical integration scheme used.  However, even now, 

simulations can be run and processed within a couple of days using an “embarrassingly-

parallel” approach — that is, by simultaneously launching jobs on thousands of 

processors.  In this sense, even now, a limited Bayesian type inversion is currently 

feasible within a reasonable time-frame.  However, with increasing computing power 

(e.g., use of Graphical Processing Units, or GPUs) and cluster sizes, inverting for fault 

rheogical properties in a fully Bayesian sense will become even more tractable in the 

coming years.
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C h a p t e r  5                                                                                                 

ASPERITY MODEL FOR INTERSEISMIC DEFORMATION IN 

NORTHEASTERN JAPAN 

 

 

5.1 Introduction 

 

In the last century, several large (M > 7) earthquakes have occurred on the megathrust 

interface along the Japan Trench, offshore of Japan's Tohoku region.  Published 

earthquake source inversions based on seismological and high-rate GPS data suggest that 

the earthquakes off Miyagi [Miura et al., 2006; Umino et al., 2006], Sanriku [Tanioka et 

al., 1996; Nakayama and Takeo, 1997], and Tokachi [Robinson and Cheung, 2003; 

Hamada and Suzuki, 2004; Miyazaki et al., 2004; Satake et al., 2006] occurred repeatedly 

over roughly the same region of the subduction megathrust.  In contrast, inversions of 

geodetic data from interseismic periods produce models that are locked over more 

spatially extensive regions [e.g., Bürgmann et al., 2005; Suwa et al., 2006; Chlieh et al., 

2008b].  These broad and smooth regions are in contrast to the smaller discrete asperities 

indicated by earthquake source studies, and may be a consequence of lack of model 

resolution and a resulting need for regularization that is inherent to the use of onshore 

geodetic data.  Alternatively, the differences may imply the potential for a large 

earthquake in the future.  Thus, the different levels of apparent coupling implied by these 

two classes of models have very different implications for regional seismic hazard 

(Figure 1-1).  Here, we explore whether post-seismic slip resulting from mechanical 

coupling of the inferred seismic asperities alone can reconcile this apparent difference in 

seismic hazard estimates.  We do not seek to model the complex dynamics of rupture 

nucleation, interaction between asperities, or rupture propagation [see for e.g., Rice, 

1993; Lapusta and Rice, 2003; Hori, 2006; Kato, 2008; Perfettini and Ampuero, 2008].   
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Several studies have recently attempted to constrain post-seismic creep on faults from 

inversions of high-rate geodetic data.  These studies either tested the inferred postseismic 

creep for consistency with specific fault rheologies [e.g., Miyazaki et al., 2004; Hsu et al., 

2006], or by modeling this inferred creep as a response of the fault to coseismic tractions, 

inferred its rheological properties [e.g., Johnson et al., 2005; Perfettini and Avouac, 

2007].  However, the latter modeling studies were restricted to planar faults with rate-

state frictional rheologies, and used ad hoc, but physically based initial conditions — for 

example, both studies assume that the entire fault slips at the plate convergence rate just 

before an earthquake.  Below, we show that this assumption is not true, especially within 

the “stress-shadow” regions surrounding the asperities.  While Perfettini and Avouac 

[2007] assumed that fault behavior was partitioned between an upper seismogenic zone 

and a lower brittle creep zone,  Johnson et al. [2005] allowed coseismic and post-seismic 

slip to occur along the entire modeled fault surface.   

 

Using a Boundary Element Method (BEM) model, Bürgmann et al., [2005] tested the 

effect of stress-shadows from “pinned” asperities on horizontal velocity predictions for 

the subduction zone off Kamchatka for several asperity models.  They assumed that all 

areas outside the asperities slip freely (i.e., with zero driving shear stress, which is 

unphysical), resulting in a stress-shadow that is primarily located up-dip from each 

asperity.  Since they ignore fault friction, they cannot model slip evolution around the 

asperities over the seismic cycle — especially down-dip of, and laterally (along strike) 

from, the asperity.  Recently, Hetland et al. [2010] and Hetland and Simons [2010] 

developed an internally consistent 3D mechanical model of stress-dependent interseismic 

creep along the megathrust, considering both frictional and viscous fault rheologies.  The 

stresses in this model evolve as a consequence of long-term deformation of the system 

(“spin-up”), and are determined by cumulative slip on the fault over this evolutionary 

period.  Further, their model allows localized regions (“asperities”) of the fault surface to 

only slip coseismically at pre-assigned rupture times, thus allowing them to model the 

known spatio-temporal distribution of large earthquakes (similar to Bürgmann et al., 

[2005]).  Unlike Bürgmann et al., [2005], however, slip in the regions surrounding these 

asperities is controlled by the specific fault rheology being assumed.  They used “toy” 
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models to show that asperities are surrounded by a “halo” of very low creep-rates (a 

“stress-shadow” effect) late in the seismic cycle, which can potentially result in a 

relatively smooth and long wavelength surface velocity field.   

 

As described in detail in the previous chapter, we extend this approach to an arbitrary3D 

fault surface experiencing an arbitrary sequence of ruptures.  We apply this extended 

model to northern Japan, to investigate whether this “physical” smoothing preserves any 

signature of the original asperities, in comparison to the artificial smoothing produced by 

model regularization in inversions of interseismic geodetic data.  Here, we test the 

hypothesis that on inferred asperities along the Japan Trench megathrust, mechanical 

coupling alone is sufficient to explain available geodetic observations or alternatively, 

that these data require additional regions on the megathrust to be coupled.  Underlying 

our analysis is the assumption that known asperities persist across multiple earthquake 

cycles.   

 

In the following sections, we briefly review the forward modeling approach (see Hetland 

et al. [2010] for details), discuss the criteria used to determine the extent and rupture 

interval of each asperity chosen, present model “spin-up” and “convergence”, and finally, 

present results of our hypothesis test.  The results presented here are meant to 

demonstrate the applicability of our approach for simulating realistic 3D fault surfaces.  

More thorough parameter-space searches are planned to be carried out in the near future 

to refine the analysis presented here.   

 

 

5.2 Summary of the forward modeling approach 

 

As discussed in Chapter 4, Hetland et al. [2010] cast the relationship between slip-rate 

and fault tractions for various rheologies in the following dimensionless form: 

)','(' ατfs =   (1) 

where, α΄ is a strength parameter that depends on the rheology.  For linear viscous 

rheology, 
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Thus, late in the cycle, when most of the fault is slipping at the loading rate, the mean 

dimensionless shear tractions along the fault surface will equal the dimensionless strength 

parameter, α΄.  In Chapter 4, we estimated a typical range of values for α' as 0.1 to 10. 

 

For rate-dependent rheology,  

( ) 







′
′

= −

α
τρ sinh' es   (3) 

where, ρ = f0/(a-b), and α = (a-b)σ0*.  For the results presented below, we assume a 

uniform σ0*.  Hetland and Simons [2010] demonstrated that the effect of including 

variable normal tractions (that is, normal tractions due to the evolving slip distribution 

over the fault surface) was negligible, unless the static strength of the fault is assumed to 

be large (cf. Figure 3 of Hetland and Simons [2010]).  Even in the case where the fault is 

statically strong, the effect of variable tractions is significant only updip of the asperity, 

far from typical geodetic observations.  However, they consider an effective (or 

reference) stress, σ0*, that is much higher than the imposed coseismic traction 

perturbation.  If σ0* is small, as is thought to be typical of most subduction zones (owing 

to pore-pressure effects [e.g., Kanamori, 1971; Hyndman and Wang, 1993]), then 

variable normal tractions will significantly influence slip-evolution over the fault surface.  

But their effect will be pronounced in the vicinity of the asperities and especially during 

the period immediately following a rupture.   

 

From Equation 3 we can deduce that late in the cycle, when most of the fault is slipping 

at the loading rate, the mean dimensionless shear tractions along the fault surface will 

equal the product of ρ and the dimensionless strength parameter, α' — that is,  

 

τss' = ρ α'  (4) 

 

Plate loading and frictional stresses are then in equilibrium over most of the “active” fault 

surface (over which slip evolves), except around the regularly rupturing asperities.  This 
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product is nothing but f0σ0*/τ0, where the denominator is the characteristic rupture stress, 

μS0/D0, the mean frictional resistance over the fault surface (see Chapter 4).  So, α' 

determines the relative static strength of the fault surface relative to the induced 

coseismic stresses.  In Chapter 4, we estimated a typical range of values for ρ ≈10–100, 

and α ≈ 105–106 Pa.  Assuming the same values as before for the non-dimensionalization 

of stresses, and μ ≈ 1010 Pa, α' ≈ 0.01–0.1.  At the lower end, we have a fault that is 

“weak” (f0σ0* « τ0) compared to the imposed coseismic tractions, and the model spins up 

quickly.  On the other hand, a fault that is “strong” in comparison to the imposed 

coseismic tractions results in slow spin-up of fault tractions.  For α' ≈ 1, and the fault 

strength is comparable to the imposed coseismic stress pulses.  For realistic values of the 

“damping-parameter”, ρ, noted above, the effect of the first factor on the right hand side 

of equation (3) has only a minor influence on the evolution of post-seismic slip compared 

to that of the second factor.  However, tractions late in the seismic cycle (i.e., when the 

mean fault slip-rate is close to the imposed plate velocity) are strongly dependent on both 

ρ and α' (Equation 4, also see Figure 14 of Hetland et al. [2010]).  Thus, changing these 

two parameters allows us to explore the effect of background stresses on slip-evolution 

over a spun-up seismic cycle.   

 

In order to solve for slip evolution on the fault surface, the tractions, τ΄, everywhere on 

the fault surface at any given time have to be related to coseismic slip, the far-field plate 

loading rate, and any ongoing post-seismic slip along the fault itself.  This is 

accomplished by a discretized traction evolution equation, that can be represented in 

indicial notation as, 

 

+−=
a

jijajijji KSKVts ''')'''('τ  (5) 

where, K΄ji are the traction kernels (i.e., tractions at patch i due to slip on patch j), and 

traction (τ΄), and slip (s΄) vary both in space and in time.  Also, as discussed extensively 

in Chapter 2, in order to be kinematically consistent, we use a backslip rate distribution 

that is everywhere tangential to the 3D fault surface (i.e., backslip with spatially varying 

rake; Figure 4-6).  The first term in Equation 5 accounts for ongoing fault slip and 

continuous far-field plate loading, while the second term is the cumulative effect of 
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coseismic slip (S΄) on all asperities.  Due to the kinematic nature of the imposed ruptures, 

we cannot consistently model the effect of coseismic tractions due to the rupture of one 

asperity on subsequent coseismic slip on an adjacent asperity.  A relationship similar to 

Equation 5 defines surface displacement evolution.  Using indicial notation,  

 

+−=
a

jkjajkjjk GSGVtsu ''')'''('  (5) 

 

where, G΄jk are the surface displacement kernels (or Green’s functions, i.e., displacements 

at observation station k due to slip on patch j).   

 

As discussed in Chapter 4, we use the triangular dislocation solutions [as compiled in 

Meade, 2007] to compute K and G for a spatially discretized 3D fault in a homogeneous 

Poission half-space.  The traction evolution Equation 5 is solved together with the 

appropriate constitutive relation (e.g., Equation 3), by marching in time using adaptive 

time-stepping.  The time-step at any given time in such an adaptive scheme is controlled 

by the slip rate at that time, with larger slip rates resulting in smaller time-steps.   

 

 

5.3 Asperity parameters for the Japan Trench megathrust 

 

In this section, we discuss in detail the methodology used to estimate the location and 

extent of each inferred characteristic asperity on the Japan Trench megathrust surface, as 

well as its characteristic rupture interval.  We are inherently assuming there is no 

variability between individual ruptures on each asperity (that is, the rupture sequence is 

both time- and slip-predictable), and therefore there is a characteristic rupture dimension, 

characteristic coseismic slip, and hence, a characteristic rupture interval.  In determining 

these parameters, we try to honor, at a minimum, the latest significant (Mw>7.5) ruptures 

inferred to have occurred on these asperities during the past century.  Depending on the 

characteristic rupture interval determined for each asperity, some of the previous ruptures 

may not occur exactly at the same time as historical events.  However, usually, they occur 

within 5 years of their actual date – the effect of such small shifts in earlier ruptures was 
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not found to have a significant impact on surface displacement predictions, especially 

because of the much stronger influence of the more recent event.  We proceed from the 

southernmost asperity of our modeling domain (Fukushima) to the northernmost 

(Nemuro).  A summary of estimated parameters is presented in Table 5-1. 

 

5.3.1 Fukuyshima-oki — ruptures of 1938 

 

In the megathrust interface off Fukushima, three large events - Mw7.4 (May, 1938), Mw 

7.7 and Mw 7.8 (both in Nov 1938) — occurred in close succession.  On the scale of 

simulating an whole seismic cycle (~ 100 yrs), the moment release from these three 

events can be considered “instantaneous”.  So, combining the moment release from these 

three events (estimated from long-period surface waves [Abe, 1977]) yields a moment, 

M0, of 1.6×1021 N.m, equivalent to a moment-magnitude, Mw, of 8.1.  Using only the 

locally high-slip patches, Abe [1977] estimated stress-drop, Δσ, to be in the range ~ 2.8–

5.6 MPa.  However, if we assume an equivalent single characteristic elliptical asperity 

(assuming for purposes of mesh-quality, an aspect-ratio, f = (rmin/rmaj) =  0.8), with 

Δσmean ~ 1 MPa (10 bar), then the characteristic semi-major axis dimension can be 

estimated as: 

( ) kmmr f
M

maj  1261026.1).1( 53
1

0 =×≈Θ= Δσ  (6) 

resulting in a characteristic asperity area (= π rmaj rmin = π f rmaj
2) ~ 4×104 km2.  In 

comparison, Abe [1977] estimated the combined total area for these three events (based 

on first-motion data) to be ~ 1.5×104 km2.  However, the corresponding rupture interval 

turns out to be: 

( ) )(!  162
0

)(
yrsT

Pmaj Vrf

M
R ≈=Δ

μπ  (7) 

because we are assuming the same characteristic slip for every rupture event on this 

asperity.  Since there hasn’t been a Mw>7 earthquake off Fukushima since 1938, we 

assume a recurrence interval of ~ 75 yrs for a characteristic earthquake similar to the 

value assumed for the Tokachi-Oki region [Yamanaka and Kikuchi, 2003].  With this 

assumption, the characteristic semi-major axis dimension becomes: 
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( ) kmmr
RP TfV

M
maj  60106 4

)(
2
1

0 =×≈= Δμπ  (8) 

implying a stress drop of: 

( ) MPaPa
majrf

M  10100.1).1( 7

)( 3
0 =×≈Θ=Δσ ,  (9) 

which is at the upper-bound of observed seismic stress-drops [Kanamori and Anderson, 

1975].  To get a feel for the sensitivity of the above estimates to the exact value of the 

plate velocity vector (which has been assumed to be between 8 and 9 cm/yr by different 

researchers), we find that:  

( )
P
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maj

maj
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maj
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1
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Δ∂

∂ −=−=−= μπ  (10) 

and,  
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1

)(
3
1
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σ

σσσσ Δ
ΔΔΔ

ΔΔΔΔ∂
∂ −=−=−=

maj

majmajmaj

r

rr

f
Mr

 (11) 

so, for a ~ 10% larger VP (9.2 cm/yr), rmaj will be 5% (or ~ 3 km) smaller, slip 10% (or ~ 

0.6 m) larger, and stress-drop, 15% (1.5 MPa) higher.   

 

5.3.2 Miyagi-oki — ruptures of 1936, 1978, and 2005 

 

Umino et al. [2006] infer that three ruptures on this asperity that occurred in the mid 

1930s — in 1933, 1936, and 1937 (with a combined moment release of 2.6×1020 N.m, 

equivalent to Mw7.5) overlapped with the western, central and eastern portions of the 

Mw7.5 1978 rupture area, but with a moment of only a third of the latter event [Tanioka, 

2003b].  The 2005 rupture also partially overlapped with the updip (southeastern) portion 

of the 1978 rupture area [Miura et al., 2006].  We assume the 1978 Mw7.4-7.5 event as 

the characteristic earthquake for this region (M0 = 1.7-3×1020 N.m estimated from 

tsunami data [Tanioka, 2003b], and long-period surface waves [Seno et al., 1980]).  The 

stress drop, Δσ, based on localized high-slip patches was estimated to be 10 - 15 MPa.  

As before, assuming a characteristic elliptical asperity having a mean stress drop, Δσmean 

~ 1 MPa, the semi-major asperity dimension is: 
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( ) kmmr f
M

maj  70107).1( 43
1

0 =×≈Θ= Δσ  (12) 

resulting in a recurrence interval for the characteristic earthquake 

( ) )(!  92
0

)(
yrsT

Pmaj Vrf

M
R ≈=Δ

μπ  (13) 

 

Since the next major event after the 1933–37 sequence did not occur until the 1978 event, 

we estimate a semi-major asperity dimension, instead, assuming a rupture interval of ~40 

years (the 2005 event may be consistent with the 1933–37 sequence in that it ruptured 

only one part of the characteristic asperity, and subsequent events may follow to rupture 

the rest of the characteristic asperity) to be 

( ) kmmr
RP TfV

M
maj  35105.3 4

)(
2
1

0 =×≈= Δμπ  (14) 

implying a mean stress drop  

( ) MPaPa
majrf

M  9109).1( 6

)( 3
0 =×≈Θ=Δσ ,  (15) 

which is, again, near the upper-bound of observed seismic stress-drops [Kanamori and 

Anderson, 1975].  Another way to estimate the characteristic asperity dimension in this 

case is by assuming that the mean stress-drops and asperity shapes in the 2005 and 1978 

events are similar.  In this case, an estimate can be made of the 1978 (characteristic) 

asperity size relative to the well-determined asperity size for the 2005 Mw7.2 event (M0 = 

1.7-7×1019 N.m estimated from GPS and seismic data [Miura et al., 2006]): 

( ) ( )
( ) kmrr

M

M
majmaj

rf

M

rf

M

majmaj
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).1().1(

3
1

)2005(
0

)1978(
0

3
2005,

)2005(
0

3
1978,

)1978(
0

2005,1978,

)()(20051978

≈=

Θ=Θ=Δ=Δ σσ
 (16) 

 

which agrees almost exactly with that from the assumed recurrence interval. 

 

5.3.3 Sanriku-oki — ruptures of 1931, 1968, and 1994 

 

The 1994 Mw7.8 event off Sanriku (M0 = 3-4×1020 N.m) [Nishimura et al., 1996; Tanioka 

et al., 1996; Nakayama and Takeo, 1997] coincided with the shallow portion of the 1968 
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Mw8.2 event (based on source inversion for the former event using strong-motion 

[Nakayama and Takeo, 1997], and broad-band [Nishimura et al., 1996] data; and for the 

1968 event, using P-wave first motions as well as long-period surface waves [Kanamori, 

1971]).  We consider only the 1994 even rupture area as the characteristic asperity 

because the deeper part of the 1968 event may not even be on the subduction megathrust 

(based on focal mechanisms — Hiroo Kanamori, personal communication).  Again, if we 

assume a characteristic elliptical asperity having a mean stress drop, Δσmean ~ 1 MPa, the 

maximum semi-major asperity dimension is 

( ) kmmr f
M

maj  80108).1( 43
1

0 =×≈Θ= Δσ  (17) 

with an estimated recurrence interval for the characteristic earthquake as, 

( ) )(!  122
0

)(
yrsT

Pmaj Vrf

M
R ≈=Δ

μπ
 (18) 

 

Again, since the next “major” rupture after the 1968 one was not until 1994, we instead 

estimate a semi-major asperity dimension assuming a rupture interval of ~ 30 years 

(approximate mean value of rupture intervals between 1931, 1968, and 1994 events): 

( ) kmmr
RP TfV

M
maj  45105.4 4

)(
2
1

0 =×≈= Δμπ  (19) 

implying a mean stress drop of 

( ) MPaPa
majrf

M  5105).1( 6

)( 3
0 =×≈Θ=Δσ ,  (20) 

in the middle of the range of observed seismic stress-drops [Kanamori and Anderson, 

1975].   

 

5.3.4 Tokachi-oki — ruptures of 1952 and 2003 

 

The 2003 rupture off Tokachi was determined to be either slightly smaller than the 1952 

event (Mw8.0, from tsunami waveform modeling [Satake et al., 2006], and re-estimation 

of 1952 aftershock pattern [Hamada and Suzuki, 2004]), or roughly equal in size to 

the1952 rupture (Mw8.2, from broad-band SH & long-period mantle phases [Robinson 

and Cheung, 2003], as well as joint inversion using strong-motion and GPS [Koketsu et 
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al., 2004]), with nearly coincident rupture areas.  Using the better constrained and more 

recent estimates, the characteristic moment release, M0 , for Tokachi-Oki is ~ 2×1021 

N.m.  Robinson and Cheung [2003] estimated stress drop, Δσ, between 10–25 MPa, 

using localized high-slip regions, but a mean stress-drop, Δσmean ~ 0.5 MPa.  They also 

estimated the mean slip to be ~2.2 m.  If we assume that the 1952 and 2003 events 

ruptured the same characteristic elliptical asperity having a mean stress drop, Δσmean = 1 

MPa (10 bar), then the semi-major asperity dimension is  

( ) kmmr f
M

maj  140104.1).1( 53
1

0 =×≈Θ= Δσ  (21) 

resulting in a characteristic earthquake recurrence interval of  

( ) )(!  17
)103.8()1036.1)(8.0)(103(
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)( 22510
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2
0 yrsT

Pmaj Vrf

M
R ≈=


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
=Δ −×××

×
πμπ

 (22) 

 

Therefore, we assume that the 2003 event is the characteristic repeat event of the 1952 

event, for a rupture interval of ~ 50 years, implying a characteristic semi-major asperity 

dimension  

( ) ( ) kmmr
RP TfV

M
maj  80108 4

)50)(103.8)(8.0)(103(
102

)(
2
1

210

212
1

0 =×≈== −××
×

Δ πμπ  (23) 

resulting in a mean stress drop of  

( ) MPaPa
majrf

M  5105).1( 6

)( 3
0 =×≈Θ=Δσ ,  (24) 

which is within the observed range of seismic stress-drops [Kanamori and Anderson, 

1975].  Again, as with the Miyagi-oki asperity, if we assume that the mean stress-drops 

and asperity shapes in the 2003 and 1952 events are similar, then the last equation can be 

used to compute yet another estimate of the characteristic semi-major asperity dimension 

relative to the well determined coseismic asperity for the 2003 event: 

( ) ( )
( ) kmrr
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majmaj
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3
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0
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)()(20031952

≈=

Θ=Θ=Δ=Δ σσ
 (25) 

which agrees well with that estimated from the assumed recurrence interval.  The along-

strike dimension of the asperity, D (=2 × rmaj), of ~ 150 km, also agrees well with the 

width between two subduction zone geologic features that seem to bound this rupture 

 



 5-12

area: Kushiro canyon to the east, and the plate bend with deepening of continental shelf 

to the west [Hamada and Suzuki, 2004]. 

 

5.3.5 Nemuro-oki — rupture of 1973 

 

Great earthquakes occurred off Nemuro in 1894 and 1973, but the latter event is 

estimated to have been much smaller than the 1894 event.  It is conjectured that the 1894 

event ruptured the source areas of both the 1973 Nemuro-oki and 1952 Tokachi-oki 

events [Tanioka, 2003a].  The 1973 event has been estimated to be between Mw7.8 

[Tanioka, 2003a] (from tsunami waveforms, with M0 ~ 5×1020 N.m), and Mw7.9 

[Shimazaki, 1974] (M0 ~ 6.7×1020 N.m).  We adopt the more recent estimate from 

Tanioka [2003a], who estimated mean fault slip to be ~ 2 m.  In contrast, Shimazaki 

[1974] estimated a slip of 1.6 m, and mean stress drop of 35 bars (3.5 MPa).  As before, 

assuming a characteristic elliptical asperity having a mean stress drop, Δσmean ~ 1 MPa, 

the semi-major asperity dimension is 

( ) kmmr f
M

maj  85105.8).1( 43
1

0 =×≈Θ= Δσ  (26) 

implying a recurrence interval for the characteristic earthquake of,  

( ) )(!  112
0

)(
yrsT

Pmaj Vrf

M
R ≈=Δ

μπ  (27) 

 

So, we instead assume a recurrence interval of ~75 yrs for a characteristic earthquake as 

in the Tokachi-Oki region [Yamanaka and Kikuchi, 2003] (which is not unreasonable, 

given that the 1894 event must have completely ruptured the 1973 asperity), obtaining a 

semi-major asperity dimension of  

( ) kmmr
RP TfV

M
maj  30103 4

)(
2
1

0 =×≈= Δμπ  (28) 

implying a mean stress drop of  

( ) MPaPa
majrf

M  20102).1( 7

)( 3
0 ≈×≈Θ=Δσ ,  (29) 

which is beyond the upper bound for the range of observed seismic stress-drops 

[Kanamori and Anderson, 1975].  However, given there hasn’t been a rupture off Nemuro 
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since 1973, if we assume a characteristic rupture interval of ~ 40 years (similar to the 

Miyagi-oki region adjacent to the Fukushima asperity), we obtain a semi-major asperity 

dimension of  

( ) kmmr
RP TfV

M
maj  45105.4 4

)(
2
1

0 =×≈= Δμπ  (30) 

This latter estimate of rmaj implies a mean stress drop of: 

( ) MPaPa
majrf

M  7107).1( 6

)( 3
0 =×≈Θ=Δσ ,  (31) 

which is within the range of observed seismic stress-drops [Kanamori and Anderson, 

1975].   

 

5.3.6 Summary 

 

A summary of the final asperity parameters chosen for the northern Japan megathrust is 

presented in Table 5-1, and the resulting asperity configuration is illustrated in Figure 

5-1.   

 
 
Table 5-1. Summary of asperity parameters for Northern Japan.  The last column represents the 
time from the present (here, the year 2000, which marks the end of the time-period over which 
the observed GPS velocities were computed in Hashimoto et al. [2009]) to the most recent 
earthquake for each asperity. 
 

Region 
D 
(km) 

f (=rmin/rmax) 
(non-dim) 

s0
* 

(m) 
ΔTR

1 
(yr) 

Δσmean
2,3 

(MPa) 
TR 
[yrs(date)] 

Fukushima-oki 120 0.8 6.4 75 10 62 (1938) 
Miyagi-oki 70 0.8 3.3 40 9 22 (1978) 
Sanriku-oki 90 0.8 2.5 30 5   6 (1994) 
Tokachi-oki 160 0.8 4.2 50 5 48 (1952) 
Nemuro-oki 90 0.8 3.3 40 7 27 (1973) 
* VP = 8.3 ×10-2

 m/yr;  
1 ΔTR ∝ (1/A) ∝ (1/r2) 
2 Δσ ∝ s0 = VP × ΔTR 
3 Δσ ∝ (1/AD) ∝ (1/r3), and, Δσ ∝ (ΔTR)1.5 
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Figure 5-1.  Asperity configuration chosen for the northern Japan megathrust interface, and the epicentral 
locations of the last earthquake(s) prior to the year 2000 (blue stars, multiple around an asperity start 
indicate two ruptures within the same year). 
 

 

5.4 Simulating rupture-sequences for the northern Japan asperity configuration 

 

In section 4.7, we briefly mentioned the hierarchy of basic, but general benchmark tests 

done to test the physicality of our simulations.  Here, we discuss the issue of numerical 

convergence specifically for the Japanese megathrust problem, and then explore the 

analysis of model spin-up for the full five-asperity problem.  The first tests with any 

model were carried out with a linear viscous fault rheology (even if it may not be a 

realistic rheology for modeling slip evolution on fault surfaces).  Since the strain-rate and 

stress are linearly dependent, this rheology is more straightforward for testing model 

behavior (benchmarking, convergence, spin-up), and for developing some intuition about 
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the interaction between asperities and their relationship to the predicted surface velocity 

field.   

 

5.4.1 Model Convergence for the Japan megathrust interface 

 

An important issue for determining the accuracy of model predictions is whether the 

coseismic signal is accurately resolved by a given mesh resolution.  From the meshing 

convention described in Chapter 4, a higher resolution mesh has essentially the same 

number of elements as the coarse mesh outside the asperity transition zone, but may have 

significantly more elements within this transition zone.  The goal of such refinement was 

to better resolve the coseismic tractions that drive fault slip, which ultimately determines 

the predicted surface velocities.  However, increasing the mesh resolution beyond a 

certain point does not significantly improve the spun-up fault tractions.   

 

Exact convergence tests for the full five-asperity problem (JT5, of Section 4.7) will be 

carried out in the near future. Such tests are time-consuming, especially for the JT5 

problem with frictional rheologies.  During the hierarchical tests mentioned in Section 

4.7, we found that even though frictional faults were spun-up in fewer rupture-cycles than 

linear viscous faults, each cycle had a lot more time-steps owing to the exponential 

dependence of strain-rates on imposed coseismic stresses.  However, such tests are worth 

the “cost” because they allow us to test whether further mesh resolution improvement 

(which could be still more expensive computationally) is necessary.   

 

Here, we present the results from such test for the two-asperity case (JT2, of Section 4.7, 

containing only the Miyagi & Sanriku asperities).  Since the strategy used in both cases is 

identical, as long as the kernels are computed from nearly identical sources around two 

common asperities in both models (i.e., having roughly the same element size, or 

resolution, in the transition zone), it is reasonable to qualitatively extrapolate 

convergence of spun-up solutions for the JT2 mesh to the JT5 mesh.  Such extrapolation 

through intuition can be helpful in figuring out whether the time spent generating the 
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mesh, computing kernels, and subsequent iterations for smoothing (discussed in Chapter 

4) would be worth it.   

 

Figure 5-2 shows the spun-up tractions for a benchmark linear-viscous run for three 

different transition zone mesh resolutions for JT2.  The number of elements in the 

asperity transition zone increases threefold between “RES1” (blue) and “RES2” (red) 

runs, but the spun-up solution appears to have “converged”, because no significant 

improvement is seen for the added cost of a high-resolution mesh – especially late in each 

rupture cycle (i.e., just before each rupture).  So, compared to the lowest resolution JT5 

mesh, the next level (“RES1”, with nearly 6000 fault patches) can be expected to improve 

our solution, but the next higher resolution (“RES2”, with nearly 9700 fault patches) may 

not be worth its significantly larger computational time relative to the improvement in the 

solution.  But it is perhaps good practice to compute the “RES2” solution for one case, 

and if significant improvement is not seen, then ignore this resolution for the rest of the 

suite of runs.  Further, the surface displacement field is much smoother (i.e., of longer 

wavelength) than the stress-perturbation on the fault surface, and therefore affected much 

less by the small improvement in tractions from “RES1” to “RES2”.   
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Figure 5-2. Convergence of spun-up fault tractions over a full cycle with increasing mesh resolution (RES0 
through RES2) around the asperity, for a JT2 mesh (see Section 4.7).  Significant improvement is not 
observed between RES1 and RES2, even though the latter has three-times as many elements in the asperity 
transition zone compared to the former.   
 

 

5.4.2 Model spin-up using a synthetic rupture catalog 

 

In order to simulate the multi-asperity problem, we need to start with a realistic catalog of 

ruptures for spin-up.  To build the catalog, we first set the end-time for each asperity’s 

rupture sequence as the time of the most recent rupture on that asperity.  We then 

compute a series of “past” ruptures for each asperity, going backward in time for a 

sufficiently large number of ruptures.  We thus build a synthetic rupture “catalog” that 

includes all past rupture times for each asperity.  We reset the simulation start time to the 

beginning of the oldest complete characteristic rupture sequence - a sequence consisting 

of ruptures on all five asperities, in the order of their most recent ruptures - in this 

catalog.  Irrespective of the starting time-shifts, TR (Table 5-1), as long as the 
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characteristic rupture interval, ΔTR for each asperity is fixed, the order of asperity 

ruptures will be identical after a time, TCRS, arithmetically equal to the least common 

multiple of all asperity rupture intervals, ΔTR.  For the rupture intervals estimated here 

(Table 5-1), TCRS is 600 years.  If one of the rupture intervals were off by even one year, 

TCRS would be much longer.  Here, to avoid unnecessarily extending simulation time, we 

rounded rupture intervals to the nearest 5 years.  So, TCRS is very sensitive to the actual 

rupture intervals chosen, which depend not only on the exact asperity size, but also on the 

mesh resolution used.  Therefore, TCRS does not have any physical meaning.  But as 

shown below, it is a convenient measure for following the evolution of model tractions, 

once a set of rupture-intervals are chosen for a given asperity configuration, and mesh 

resolution.   

 

We start each model with zero initial tractions.  Although the existing Matlab forward 

model EvolveSlip, has the option to prescribe a pre-stress, for the initial runs at least, we 

do not specify a pre-stress.  Tractions induced on the fault surface by repeated asperity 

ruptures as well as continuous far-field loading by the semi-infinite extensions of the 

fault (equivalent to backslip) eventually reach an equilibrium value determined by the 

fault rheology.  The time taken to reach equilibrium depends on the dynamic “strength” 

of the fault, as discussed in Section 5.2.  For a given rheology, this steady state traction is 

that which is required to maintain the relative motion between the hanging- and foot-

walls at the loading rate, V0.  We call this evolution of fault tractions from their initial 

value to a final steady state, the “spin-up” of fault tractions.  Once steady state is attained, 

the mean value of fault tractions as well as that of the surface displacement field do not 

change over a time scale equal to that for the characteristic rupture sequence, TCRS.   

 

Since TCRS does not have a physical basis and can be a very large number, a practical 

choice for the reference time-scale, T0, over which to compute the evolution of mean 

tractions is the largest rupture interval of all asperities (75 years, here).  Because of 

ongoing slip associated with ruptures, the mean tractions over the fault surface fluctuate 

significantly over a single cycle (Figure 5-3).  So, we take moving averages of the mean 

traction vector over time-windows that are multiples of this reference time, n.T0 (with n= 
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1, 2, …).  As this averaging time-window gets larger, the moving average of mean 

tractions gets smoother, and it becomes easier to measure model spin-up.  From Figure 

5-3, the smallest window for which the spun-up tractions are stable corresponds to the 

TCRS (or, cycle = TCRS /T0 = 600/75=8).  This is not a surprising result, since TCRS is an 

inherent numerical feature of the set of rupture intervals chosen for the simulation.  So, in 

order to measure spin-up, a simulation must be run for the duration of at least TCRS.  The 

minimum spin-up time estimated for a low-resolution run can be used to significantly 

reduce computation time for higher resolution runs.   

 

 
Figure 5-3.  Spin-up of mean fault tractions, and their moving averages for a linear viscous fault rheology 
with α΄=0.1.  The gray curve represents the mean tractions at every time-step.  The light blue curve at the 
bottom represents a single pick of the grey curve at the end of each cycle of duration equal to the reference 
time, T0.  The moving average window, Tmav = 8 (dark blue) corresponds to TCRS.  See text for details.   
 

 

Once the model is spun up, the cumulative slip on the fault surface over the duration of 

the reference cycle, T0 (right panels of Figure 5-4), must look identical to the applied 

variable-rake backslip on the fault surface (Figure 4-6), except for the asperities 
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themselves, which are in different stages of their cycle.  All asperities catch up with the 

rest of the fault only at the end of a TCRS-cycle.  At the end of a TCRS-cycle, there should 

be no difference (except for a scaling factor equal to TCRS) between cumulative slip and 

applied backslip.  The use of VTK for visualization allows on the fly spin-up checks such 

as these to be performed routinely.  The dip-slip (top row of Figure 5-4) and strike-slip (-

slip (bottom row of Figure 5-4) components are visualized separately in order to make 

sure that any slip-partitioning is being correctly applied.  In the left panels of Figure 5-4 

displaying slip-rates, the regions of nearly zero-rates surrounding the asperities are the 

“stress-shadow” zones, which travel passively with the downgoing plate, but are no-

longer stressed (until the subsequent rupture).  The surface velocities on the other hand 

depend only on the amount of the fault surface that is (nearly) not slipping.  Therefore, 

the larger these stress-shadow zones, the larger, the “apparent locked zone”, and larger 

the corresponding surface velocities.  We would expect dynamically weak rheologies to 

be able to propagate slip farther over each cycle, thereby producing larger apparently 

“locked” zones, and thus, larger surface velocities late in the cycle.   

 

Once a model is spun up, the reference cycle of duration T0 immediately following the 

last complete TCRS-cycle contains the “most recent” characteristic rupture sequence (here, 

the 75 years starting from the oldest rupture in the sequence: Fukushima in 1938).  The 

surface displacement field is extracted over the duration of this most recent rupture 

sequence, and synthetic surface velocities are estimated over the same time-window as 

that for the observed GPS velocities.   
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Figure 5-4. Plot of slip-rate (left column) and cumulative fault slip (right-column) at the end of the first 
reference cycle (T0), post model spin-up, for the linear viscous rheology used in Figure 5-3.  Top rows 
show the strike-slip component, bottom rows show the dip-slip component.  As expected, the right column 
looks nearly identical to the input backslip velocities (Figure 4-6), except for the asperities themselves, 
which will match the surrounding fault only at the end of the TCRS-cycle.  See text for details.  
 

 

5.5 Station velocity predictions for northern Japan using a realistic fault rheology 

 

In this section, we demonstrate the methodology discussed in the past couple of chapters 

by using it to predict synthetic station velocities using realistic rate strengthening 

frictional rheology parameters inferred for the northern Japan megathrust interface.  

Several recent studies inverted post-seismic surface displacements to infer rate-dependent 
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or rate-state friction parameters for faults in California and Japan [e.g., Johnson et al., 

2005; Perfettini and Avouac, 2007; Fukuda et al., 2009].  These studies have inferred that 

faults seem to be dynamically weak (i.e., low values for the strength parameter, α = (a-

b)σ0*, of 0.1 to 0.5 MPa).  So, for our demonstration run, we pick α ≈ 0.1 MPa, and ρ 

≈10, which yields a dimensionless strength parameter, α' ≈ 1 (see section 5.2).  Model 

tractions are mostly spun-up in just over three TCRS cycles (or 25 reference cycles, Figure 

5-5).  Note that equilibrium dimensionless stress is ten times larger than for the linear-

viscous benchmark presented above (Figure 5-3), while the stress pulses induced by 

ruptures remains the same as in that case.  Therefore, it is hard to see the individual 

ruptures at the scale of the full convergence test.  While the expected steady state 

tractions are 1.0, the model apparently spins up to a value about 20% higher, which 

implies that frictional stresses are larger than that expected for the imposed coseismic 

stresses.  The reason for a higher value has to do with which asperity was chosen for the 

reference asperity dimension, D0.  This reference dimension not only controls the non-

dimensionalization of the mesh (so, larger D0. implies a smaller non-dimensional mesh 

domain), but also that of tractions (since τ0 = μS0/D0).  The dimensionless result presented 

in Section 5-2 assumes a single characteristic asperity dimension, whereas here we have 

multiple asperities having a range of sizes.   

 

For the simulation shown below, we picked a single asperity (Fukushima, which is also 

the second biggest; Figure 5-1) to be the reference for both rupture interval as well as 

asperity dimension, to be consistent.  However, had we chosen the mean asperity size, 

then τ0 would be larger (that is, larger non-dimensional induced stress field), and hence, 

smaller value of the mean steady state tractions, τmean.  In fact a taking the ratio of these 

two sizes (RFukushima/Rmean ≈ 1.2), is roughly equal to the observed discrepancy.  The 

resulting stress pulses (Figure 5-6), would be steeper, and hence decay slightly faster, 

resulting in slightly smaller surface velocity predictions late in the cycle.  So, when 

multiple asperities are present, choosing a single characteristic asperity may be a 

challenge, especially when the largest asperity may not necessarily rupture with the 

largerst rupture interval, as is the case here.   
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Figure 5-5. Spin-up tractions for northern Japan megathrust, for a rate-strengthening frictional rheology, 
with ρ ≈10, and α ≈ 105 Pa (α' ≈ 1)  
 

 

The stress change over the 75-year reference cycle right after the third TCRS cycle —

simulating the past 75 years of asperity ruptures — shows the rapid evolution of stress 

early in the cycle, that is characteristic of frictional rheologies (Figure 5-6).  Only the 

most recent events that occurred prior to the observed GPS velocity estimation window 

(1996–2000) are labeled for each asperity.  The unlabeled stress spike in the middle of 

that figure is equivalent to the shallow portion of the 1968 Sanriku-oki event, while the 

last stress spike is equivalent to the 2003 Tokachi-oki event.  It is worth noting that the 

modeled Sanriku-oki event is roughly four years early, because of our assumption 

regarding the mean rupture interval time.  However, our simulations indicate that the 

1968 Sanriku-oki event is far enough removed from the GPS velocity window that this 

slight rupture time-shift may not have a significant impact on velocity predictions, given 

the same asperity experienced the most recent of these large earthquakes.   

 

 



 5-24

 

                      1938                 1952           (1964)     1973    1978                   1994       (2002) 

Figure 5-6. Evolution of tractions over the “present” reference cycle of 75 yrs.  Only the most recent 
events prior to the end-date of GPS velocity measurements (2000) are identified for each asperity.  The two 
unlabeled events correspond to the 1968 “Tokachi-Oki” event off  the Sanriku coast (but occurring in 1964 
due to the approximate rupture interval chosen in Section 5.3), and the 2003 M8.2 Tokachi-oki 2003 event 
(here, occurring in 2002). 
 

 

In order to check how realistic our input coseismic ruptures are, we compare the synthetic 

coseismic surface displacements due to characteristic slip on the modeled Tokachi-oik 

asperity to some recent joint geodetic/seismic inversions of the 2003 Tokachi-oki 

earthquake [Koketsu et al., 2004].  The overall pattern of surface displacements along 

southeastern Hokkaido seems to agree well with the observed coseismic surface 

displacement field (Figure 5-7).  The synthetic displacements are scaled relative to the 

coseismic slip imposed (~6.4 m, see Table 5-1).  The maximum scaled synthetic 

displacements are of the order of 0.07, or 45 cm.  In comparison, the peak observed 

coseismic displacements were roughly 70–80 cm.  It is possible that by spreading slip 

over the entire asperity, we are not able to produce the locally high slip regions (upto 8 
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m), that were inferred.  However, because we impose a characteristic rupture for Tohoku 

having a significant strike-slip component, our model predicts excessive strike-slip 

surface coseismic displacements northeast of the Tohoku asperity.  This is not seen in 

Figure 5-7(b), because the 2003 Tokachi-oki rupture was inferred to be predominantly in 

the dip-slip direction.  This discrepancy highlights a limitation of our approach: in reality, 

the character of coseismic slip changes from rupture to rupture, and is not identical from 

rupture to rupture.  The significant strike-slip partitioning due to the bend in the trench 

profile between the Sanriku and Tokachi asperities has to be absorbed some other way 

over the geologic time-scale.  One way would be to periodically introduce a purely strike-

slip rupture on the Tokachi asperity.  However, a more plausible explanation might be 

that a significant portion of this strike-slip motion is absorbed by the strike-slip fault 

forming the western boundary of the Kurile sliver plate, which extends almost half way 

down the eastern Hokkaido coast [e.g., Figure 6 of DeMets, 1992].   

 

 

(a) 
 

(b) 

Figure 5-7. (a) Synthetic Tokachi-oki coseismic displacements and (b) actual coseismic displacements 
from 2003 Mw 8.2 Tokachi-oki earthquake [Koketsu et al., 2004].  The synthetic displacements are scaled 
relative to the imposed mean coseismic slip of 6.4 m (Table 5-1).   
 

 

Sample surface displacements over the last reference cycle also show a rapid post-seismic 

response for the rheological parameters chosen here (Figure 5-8).  It is interesting to note 
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that both stations displayed here (located along the Sanriku coast) show a different sense 

of offset in their north (y) component (middle panels of Figure 5-8) for the 1952 Tokachi-

oki event and the subsequent 1968 Sanriku-oki event.  In our synthetic predictions, this is 

due to the fact that the applied variable-rake backslip is partitioned into a small northward 

component (as opposed to being southward over the rest of the fault surface), over a 

small region around the Sanriku asperity (Figure 4-6), because of the change in 

orientation of the trench profile relative to the mean plate convergence direction.  Such a 

reversal is also seen between the 1994 Sanriku-oki and 2003 Tokachi-oki events for this 

station.  It will be interesting to check whether this latter reversal is indeed observed in 

the time-series for this station.  A dynamically weaker frictional rheology (smaller α') 

could result in a more pronounced post-seismic response than that displayed in Figure 

5-8.   

 

 
Figure 5-8. Sample synthetic surface displacement time-series over the last 75 yr reference cycle for two 
stations (left: 960533; right: 950156; both located along the Sanriku coast).  Blue dashed lines indicate the 
observed and synthetic GPS velocity estimation window, and the slopes used to infer the velocities are 
indicated as grey lines within this window. 
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Finally, we present comparisons between the GPS velocities estimated for the period 

1996–2000 [Hashimoto et al., 2009], and the synthetic velocities assuming both a 

frictionless fault, as well as the rate strengthening rheology discussed above.  The 

observed velocities are relative to the station Adogawa (Geonet #950320), located along 

the Japan Sea coast, just off the lower left corners of Figure 5-9 and Figure 5-10.  In 

contrast, our model predictions are relative to the far-field of the overriding plate (i.e., 

Eurasia).  Also, we do not model the incipient subduction thought to be occurring along 

the Japan Sea coast.  Therefore, our “raw” model predictions near the Japan Sea coastline 

are opposite to the above relative velocities.  Given that the above reference station is 

outside the area we can model with motion purely along the Japan Trench megathrust, we 

pick as the reference station, Geonet #950241, which is northeast of Adogawa along the 

Japan Sea coast.  We confirmed that the observed GPS velocities at this station were 

negligible.  All synthetic velocities presented below are relative to this station.  All 

velocities are scaled relative to the plate velocity of 8.3 cm/yr for the Pacific Plate off 

Tohoku. 

 

We first compare the predicted horizontal velocity field computed assuming that only the 

asperities are locked late in the cycle, and the surrounding fault slips aseismically, at the 

long-term slip-rate equal to the plate velocity (Figure 5-9).  This scenario is equivalent to 

applying backslip over all of the asperities to estimate interseismic velocities.  Clearly, 

this model explains only a small fraction of the observed horizontal field.  From a purely 

backslip perspective, areas between the asperities are also required to be “locked”, or 

“coupled”, to explain the observed GPS velocities.  Alternatively, significant post-

seismic slip in the region between the three southernmost asperities, as well as between 

the two northernmost ones, could also explain the misfit.   

 

We now compare the predicted velocity fields for the frictional rheology assumed above 

(Figure 5-10).  The most interesting observation is that much of the horizontal velocity 

field in the vicinity of the two largest asperities (Fukushima in the south, and Tokachi in 

the north) is explained by the extensive post-seismic slip (Figure 5-11) around them after 

their most recent ruptures.  In fact, by including variable-rake backslip, we fit the 
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Figure 5-9. Observed (left), synthetic-backslip (middle), and residual (right) horizontal GPS velocity fields 
(relative to a fixed Okhotsk plate) for the period 1996-2000.  Synthetics were computed assuming that the 
fault is locked only at the asperities late in the cycle, and the rest of the fault surface is frictionless. 
Asperities are shaded in light gray and off-shore of the northern Japan coastline.  Thick black arrows 
indicate the plate convergence direction.  Velocities are scaled relative to the plate velocity of 8.3 cm/yr for 
the Pacific Plate off Tohoku.  The color intensity has the same scale in each plot.   
 
 
 
 
 

 
 
Figure 5-10. Observed (left), synthetic-frictional (middle), and residual (right) horizontal GPS velocity 
fields (relative to a fixed Okhotsk plate) for the period 1996-2000.  Synthetics were computed assuming 
that slip on the fault surface is governed by rate strengthening friction with α' ≈ 1. Asperities are shaded in 
light gray and off-shore of the northern Japan coastline.  Thick black arrows indicate the plate convergence 
direction.  Velocities are scaled relative to the plate velocity of 8.3 cm/yr for the Pacific Plate off Tohoku.  
The color intensity has the same scale in each plot.   
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Figure 5-11. Slip-rates at the end of the cycle, for a fault surface governed by rate strengthening friction 
with α' ≈ 1.  Notice the much larger areas of near-zero slip-rates compared to the upper-left panel of Figure 
5-4.  
 
 

horizontals much better in southern Hokkaido, compared to recently published horizontal 

velocity predictions based on a sophisticated inversion scheme that probably did not 

include this effect [e.g., Supplementary Figure 1, Hashimoto et al., 2009].  However, 

around both these asperities, a dynamically weaker fault (smaller α') would lead to higher 

velocities, and perhaps a lower misfit (similar to our conclusion from surface 

displacement plots above).   

 

However, there are several regions of significant misfits: (a) northeastern Hokkaido, 

along the Nemuro coastline, (b) along the Japan sea coast of southern Hokkaido, (c) 

along the eastern coastline of central Tohoku between the Miyagi and Sanriku asperities, 

and (d) along the Kanto-sourhern-Tohoku region in central Japan.  We now examine each 

of these regions more closely.   

 

(a) The biggest residuals are in northeastern Hokkaido, along the Nemuro coastline.  

There are a couple of plausible explanations for this discrepancy.  The first has to do with 

the fact that we have ignored the large 1994 M8.1 Shikotan island earthquake, and 

perhaps this asperity needs to be included in our simulation to account for the 

discrepancy.  The second has to do with the fact that the original slab geometry created in 

Gocad has a long-wavelength concave dip starting just downdip of Nemuro asperity.  As 
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a result, there is considerably less downdip component in the variable rake backslip field 

we impose (blue area in the right column of Figure 4-6).  This was confirmed by noting 

that in the synthetic surface displacement field just prior to the 1973 Nemuro-oki event, 

there is a significant trench-parallel, but almost no downdip, component (as would be 

expected late in the cycle, landward of a locked patch).  So, correcting this long-

wavelength feature (which was missed by the kernel residual checks discussed in Chapter 

4) might also help better model the horizontals in this region.   

 

(b) The misfit in southwestern Hokkaido could most likely be from ongoing post-seismic 

deformation after the 1993 Mw 7.8 Hokkaido-Nansei-oki earthquake in Japan Sea [Ueda 

et al., 2003].  The maximum residuals we obtain for this region are of the order of 0.2 of 

the plate velocity, or ~ 1.7 cm/yr.  In comparison, the best-fit post-seismic relaxation 

models of Ueda et al. [2003] yield horizontal surface velocities of 1.5 and 2 cm/yr.  

While there is good agreement between our residuals and their predicted horizontals, we 

observe a significant counter-clockwise rotation due to the excess strike-slip component 

in the characteristic rupture imposed on the Tokachi asperity as well as the anomalous 

strike-slip contribution to the Nemuro asperity (above).   

 

(c) The main characteristic of the misfits in central Tohoku are their trench-perpendicular 

orientations.  This indicates either (i) that a yet to be detected asperity exists between the 

Miyagi and Sanriku asperities [e.g., Slip deficit region in Fig 6 of Miura et al., 2006], or 

(ii) this region may be susceptible to episodic aseismic afterslip [Igarashi et al., 2003; 

Uchida et al., 2004], or (iii) a region that could become “locked” owing to coseismic 

Coulomb stress changes as observed by Miura et al. [2006].  Although many cases of 

small but repeating earthquake clusters have also been documented in this region 

[Igarashi et al., 2003; Uchida et al., 2004], the frequent release of any accumulated strain 

would not result in an apparent slip-deficit along the megathrust interface here, ruling out 

the first possibility.  Yet another possibility is that the location of the Miyagi asperity 

centroid may be too deep.  The Japanese coastline in this region is located right above a 

steep change in slab dip, and locating the asperity even a little too landward would also 

make it deeper, reducing its contribution to the horizontal velocity field.   
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(d) Recently, Townsend and Zoback [2006] argued for additional permanent horizontal 

deformation in central Japan — beyond that inferred from deformation due to cyclic 

subduction zone megathrust ruptures - related to the horizontal motion of the Amurian 

plate with respect to northeastern Honshu.  Their work was based on Henry et al. [2001], 

who estimated net deformation from GPS measurements to be directed west-northwest, 

ahead of the Izu-Bonin arc collision.  Their inferred direction of additional deformation 

and magnitude of approximately 1.5-2 cm/yr agrees reasonably with the misfit in 

southern Tohoku.   

 

In spite of the above discrepancies - some of which are due to phenomena we do not 

model here – to first order, ruptures on existing asperities do seem to explain a significant 

portion of the horizontal velocities in northeastern Japan.  Once the Nemuro asperity is 

corrected, and the Shikotan rupture is included, we expect the agreement between the 

observed and predicted horizontal velocity field to be much better even in northeastern 

Hokkaido.   

 

 
 
Figure 5-12. Observed (left), synthetic-frictional (middle), and residual (right) vertical GPS velocity fields 
(relative to a fixed Eurasian plate) for the period 1996-2000, for the same frictional rheology as in Figure 
5-10.   
 
 
The observed and predicted vertical velocities as well as their residuals are presented in 

Figure 5-12.  Deep afterslip seems to explain part of the subsidence along the Sanriku, 

and southeastern Hokkaido coasts.  However, most of the vertical signal remains 

 



 5-32

unexplained.  The residuals along the west coast could be due to the fact that we do not 

model the incipient subduction in Japan Sea.  It has long been known that much of the 

eastern Tohoku coastline has been experiencing persistent subsidence relative to the 

Eurasian plate.  It has been argued that this subsidence is perhaps related to ongoing 

subduction erosion [Aoki and Scholz, 2003; Heki, 2004; Hashimoto et al., 2008].  We do 

not consider off-fault processes here, and therefore cannot correctly model the observed 

vertical geodetic data – even in eastern Tohoku.   

 

 

5.6 Conclusions and future work 

 

The results presented above demonstrate that the procedure developed here provides us 

with a unique way to probe deformation during the late post-seismic to interseismic time-

periods.  In a manner similar to the locking of large regions of the megathrust required by 

interseismic geodetic data inversions [e.g., Suwa et al., 2006], we too require large areas 

of afterslip (especially downdip) of the inferred asperities to explain current horizontal 

geodetic velocities.  Such large afterslip areas create regions around the asperity having 

negligible slip-rates late in the seismic cycle, thus mimicking the effects of large slip-

deficits required by interseismic geodetic data.  Explaining the verticals is a more 

challenging problem that our single-fault model may not be able to constrain.  However, 

our hypothesis that mechanical coupling on inferred asperities alone is sufficient to 

explain available geodetic observations along the Japan megathrust seems to be 

reasonable.  More detailed exploration of the frictional rheology parameter space are 

required to solidify this assertion.  Based on the systematic under-prediction by our 

model, we postulate that perhaps a dynamically weaker rheology might be needed to 

explain the larger observed late-cycle velocities.   

 

There are some issues related to our model that still need to resolved.  Chief among them 

is to correct for the slab interface downdip on Nemuro-oki, and add the 1994 Mw 8 

Shikotan asperity northeast of the Nemuro asperity.  Another issue is the exact plate 

convergence velocity used.  The values used in literature range from 9.5 cm/yr [e.g., 
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Heki, 2004; Suwa et al., 2006], to 8.3 cm/yr, depending on whether the Eurasian or 

Okhotsk plates are used as the reference frame.  A 10% larger plate velocity will result in 

synthetic velocities being that much larger, and therefore reduce the misfits further in 

Fukushima and southeastern Hokkaido.  Also, in order to avoid reference frame issues, it 

may be more appropriate to compare strain rates instead of velocities.  Using depth 

dependent rheological parameters may result in slip being constrained to the shallower 

portions of the megathrust, leading to stronger horizontal signal from both the shallower 

dip (on average) as well as by creating a larger zone of apparent locking.   

 

Looking farther into the future, the procedure introduced here can be extended to model 

the full post-seismic to inter-seismic response of the megathrust to specified ruptures.  

Including ruptures on other major faults in the region (e.g., those related to incipient 

subduction in Japan Sea, or the Kurile sliver) can help us understand the current surface 

deformation field even better.  This method can also be applied to other subduction zones 

where high density geodetic data may become available in the near future (e.g., Sunda 

Trench off Sumatra, or the Peru-Chile subduction zone).  The ability to probe the 

synthetic velocity field in 3D, and being able to follow the evolution of surface 

displacements at hundreds of stations simultaneously has potential to provide valuable 

insights into the behavior of the subduction zones over the seismic cycle.  
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